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Abstract: We prove an ergodic theorem for repeated measurement, indicating its

significance for quantum trajectories in discrete time. We roughly sketch the extension

to continuous time, and some connections to the algebraic theory of quantum Markov
processes.

1. Measurement in an operational approach.

A measurement, whether quantummechanical or not, is an operation performed on
a physical system which results in the extraction of information from that system,
while possibly changing its state.
So before the measurement there is the physical system, described by a state ρ, (a
probability measure in the classical case, a density matrix in the quantum case),
and afterwards there is a piece of information, say an outcome i ∈ {1, 2, . . . , k},
and there is the system itself, in some new (or posterior) state θi:

ρ −→ (i, θi) .

Now, a probabilistic theory rather than predicting an outcome i, gives a probability
distribution (π1, π2, . . . , πk) on the possible outcomes. In fact the measurement
operation is described by an affine map

M∗ : ρ 7→ (π1θ1, π2θ2, . . . , πkθk) ,

taking a state ρ on the algebra A of observables of the system to a state on the
tensor product of C := Ck with A. In the literature on measurement theory this is
called an operation valued measure or instrument [Dav, Hel, Hol1, BGL]. We shall
call the i’th component πiθi of the right hand side: (Ti)∗(ρ). The maps M∗ and
(Ti)∗ are the (pre)duals of completely positive maps

M : C ⊗ A → A and Ti : A → A .

Ti describes the effect on the system’s observables of the occurrence of an outcome
i. The effect of the measurement on the system, when we ignore the outcome, is
given by the map

T : A → A : x 7→M(1⊗ x) =
k∑

i=1

Ti(x) .

On the other hand, if we ignore the system after the measurement, we obtain the
map

Q : C → A : f 7→M(f ⊗ 1) =
k∑

i=1

f(i)Ti(1) ,
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which is known as a positive operator valued measure or generalised observable. We
note that M , T and Q are all completely positive and identity preserving linear
operators on C*-algebras. Such maps are called operations.

Example 1: Classical measurement with error.

We measure the length X of a bar by means of a measuring stick. The length X
is a random variable having distribution ρ with support [0,K], say. Its algebra of
observables A is L∞([0,K], ρ). After the measurement the bar has the same length
X as before, but a second random variable Y has arisen whose values depend in a
stochastic way on X. Let us assume that Y is the result of measuring the length
X with some random error, rounded off to an integer number of millimeters. Then
Y takes values from 0 to k, where k is number of millimeters in the upper bound
K.
This example is described by

((Ti)∗(ρ)) (dξ) = πi(ξ)ρ(dξ) ,

where πi(ξ) is the probability that the length ξ ∈ [0,K] will be ‘measured’ as i
millimeters. In the dual ‘Heisenberg’ picture the measurement is given by

M : C ⊗ A → A : M(f ⊗ g)(ξ) =
k∑

i=1

f(i)πi(ξ)g(ξ) .

In this example the measurement has no effect on the system, as is expressed by
the relation

(Tg)(ξ) =
k∑

i=1

(Tig)(ξ) =

(
k∑

i=1

πi(ξ)

)
g(ξ) = g(ξ) .

The generalised random variable Q is given by

Q(f)(ξ) =
k∑

i=1

f(i)πi(ξ) .

Example 2: von Neumann measurement.

Let A := Mn, the algebra of all complex n × n-matrices. We think of A as the
obserable algebra of some finite quantum system. Let p1, p2, . . . pk be mutually
orthogonal projections in A adding up to 1.
If some physical quantity is described by a self-adjoint matrix in A whose ei-
genspaces are the ranges of the pi, then according to von Neumann’s projection
postulate a measurement of this quantity is described by

(Ti)∗(ρ) = piρpi, so M(f ⊗ x) =
k∑

i=1

f(i)pixpi .
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Example 3: von Neumann measurement followed by unitary evolution.

Modify the above example by taking

M(f ⊗ x) :=
k∑

i=1

piu
∗xupi .

Each von Neumann measurements is now followed by a fixed unitary time evo-
lution. This will have the effect of making repetitions of this operation more
interesting.

Example 4: Kraus measurement.

Couple the finite quantum system with observable algebra A to an finite ‘appara-
tus’ with observable algebra B in the initial state β. Let the two systems evolve
for a while, say according to a unitary matrix u ∈ B ⊗A, and then perform a von
Neumann measurement on B described by the mutually orthogonal projections
p1, . . . , pk ∈ B. Then obtain

(Ti)∗(ρ) : x 7→ (β ⊗ ρ)(u∗(pi ⊗ x)u) ,

or, in the ‘Heisenberg picture’,

Ti(x) = (β ⊗ id)(u∗(pi ⊗ x)u) .

Let us call this indirect von Neumann measurement perfect if β is a pure state and
the pi are one-dimensional projections. (This corresponds to maximal information
concerning the apparatus, and maximally efficient measurement.) If this is the
case, let us write β(y) = 〈v, yv〉B and pi = |ei〉〈ei|. Then Ti is of the form

Ti(x) = a∗i xai ,

where the Kraus matrices a1, . . . , ak [Kra] are given by

ai =
k∑

j=1

〈ei, uej〉B〈ej , v〉

Here we have used the notation

〈ei, (y ⊗ x)ej〉B := 〈ei, yej〉x (x ∈ A, y ∈ B).

2. Repeated measurement.

By repeating the measurement operation of the previous section indefinitely, we
obtain for every initial state ρ of the finite quantum system a stochastic process
in discrete time, taking values in the outcome space X := {1, 2, . . . , k}. We shall
prove an ergodic theorem for this type of process.

Let Ω := XN, and let for m ∈ N and i1, . . . , im ∈ X the cylinder sets Λi1,...,im
⊂ Ω

be given by
Λi1,...,im := {ω ∈ Ω |ω1 = i1, . . . , ωm = im } .

Denote by Σ the σ-algebra generated by all these Σm.
Let A be a finite-dimensional von Neumann algebra, and let Ti (i = 1, . . . , k) be
completely positive operators A → A such that their sum maps 1A to itself.
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Proposition 1. There exists a unique A-valued probability measure Q∞ on
(Ω,Σ) such that

Q∞(Λi1,...,im) = Ti1 ◦ Ti2 ◦ · · · ◦ Tim(1) .

In particular, if ρ is a state on A, then Pρ := ρ ◦ Q∞ is an ordinary [0, 1]-valued
probability measure on (Ω,Σ).

Proof. By the reconstruction theorem of Kolmogorov and Daniel it suffices to
prove consistency: for all i1, . . . , im ∈ X ,

k∑
i=1

Q∞ (Λi1,...,im,i) = Q∞ (Λi1,...,im
) .

Indeed, since T (1) = 1, the l.h.s. is equal to

k∑
i=1

Ti1 ◦ Ti2 ◦ · · · ◦ Tim
◦ Ti(1) = Ti1 ◦ Ti2 ◦ · · · ◦ Tim

◦ T (1)

= Ti1 ◦ Ti2 ◦ · · · ◦ Tim
(1) ,

which is equal to the r.h.s.

We shall consider the left shift σ on Ω given by

(σω)j := ωj+1 .

A probability measure µ on (Ω,Σ) is called stationary if for all B ∈ Σ we have

µ(σ−1(B)) = µ(B) .

Proposition 2. If ρ ◦ T = ρ, then Pρ is stationary.

Proof. Since any probability measure on (Ω,Σ) is determined by its values on the
cylinder sets Λi1,...,im

, it suffices to prove the equality

Pρ

(
σ−1 (Λi1,...,im)

)
= Pρ (Λi1,...,im) .

Now,

σ−1 (Λi1,...,im
) =

k⋃
i=1

Λi,i1,...,im
.

Therefore, if ρ ◦ T = ρ, the l.h.s. of the equality to be proved is equal to

k∑
i=1

Pρ (Λi,i1,...,im
) =

k∑
i=1

ρ ◦ Ti ◦ Ti1 ◦ · · · ◦ Tim
(1)

= ρ ◦ T ◦ Ti1 ◦ · · · ◦ Tim
(1)

= ρ ◦ Ti1 ◦ · · · ◦ Tim
(1) ,

which is equal to the r.h.s.

In preparation of our ergodic theorem we prove the following lemma.
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Lemma 3. For all B ∈ Σ, m ∈ N, and i1, i2, . . . , im ∈ X we have

Q∞
(
Λi1,...,im

∩ σ−m(B)
)

= Ti1 ◦ Ti2 ◦ · · · ◦ Tim
◦Q∞(B) ,

in particular,
Q∞(σ−1(B) = T ◦Q∞(B) .

Proof. It suffices to prove the first equality for B = Λj1,...,jl
(some l ∈ N,

j1, . . . , jl ∈ X ). But then

Λi1,...,im
∩ σ−m(B) = Λi1,...,im,j1,...,jl

,

so that both sides of the first equality are equal to

Ti1 ◦ Ti2 ◦ · · · ◦ Tim ◦ Tj1 ◦ Tj2 ◦ · · · ◦ Tjl
(1) .

The second equality follows from the first since its l.h.s. side is equal to

k∑
i=1

Q∞(Λi ∩ σ−1(B)) .

We shall call an A-valued probability measure R on (Ω,Σ) ergodic if for all E ∈ Σ
we have

σ−1(E) = E ⇒ R(E) ∈ {0,1} .

Theorem 4. If T∗ has a unique invariant state, then Q∞ is ergodic.

An important consequence of the above ergodicity theorem is that path averages
are equal to quantummechanical expectations:

Corollary 5. (Ergodic theorem for repeated measurement.) If T∗ has a
unique invariant state ρ ∈ A∗, then for any initial state θ ∈ A∗ and any sequence
i1, . . . , im ∈ {1, 2, . . . , k}, we have almost surely with respect to Pθ

lim
n→∞

1
n
·#{j < n |ωj+1 = i1, ωj+2 = i2, . . . , ωj+m = im } = ρ ◦ Ti1 ◦ · · · ◦ Tim(1) .

Proof of the Corollary. By Proposition 2, Pρ is stationary. By Birkhoff’s individual
ergodic theorem, the path average on the l.h.s., F (ω) say, exists for almost all
ω ∈ Ω. Since F = F ◦ σ, the events E[a,b] := {ω ∈ Ω|a ≤ F (ω) ≤ b} are σ-
invariant, hence by Theorem 4 they all have Q∞-measure either 0 or 1. This
implies that for some c ∈ R we have Q∞(E{c}) = 1, hence Pθ(E{c}) = 1 for all
states θ ∈ A∗. In particular c must be the expectation Eρ(F ) of F under Pρ.
Using the stationarity of ρ we may calculate:

c = Eρ(F ) = Eρ

(
1Λi1,...,im

)
= Pρ (Λi1,...,im) = ρ ◦ Ti1 ◦ · · · ◦ Tim(1) .
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Proof of Theorem 4. As A is finite-dimensional, uniqueness of the T∗-invariant
state ρ implies that all T -invariant elements of A are multiples of 1. Now let
E ∈ Σ be such that σ−1(E) = E. Then by Lemma 3,

Q∞(E) = Q∞(σ−1(E)) = T ◦Q∞(E) ,

so Q∞(E) = λ ·1. It remains to show that λ = 0 or 1. For this purpose, define an
A-valued measure QE on (Ω,Σ) by

QE(B) := Q∞(B ∩ E), (B ∈ Σ).

By Lemma 3 we have for all m ∈ N, i1, i2, . . . , im ∈ X ,

QE (Λi1,...,im
) = Q∞ (Λi1,...,im

∩ E)

= Q∞
(
Λi1,...,im ∩ σ−m(E)

)
= Ti1 ◦ Ti2 ◦ · · · ◦ Tim

(Q∞(E))
= λ · Ti1 ◦ Ti2 ◦ · · · ◦ Tim

(1)
= λQ∞ (Λi1,...,im

) .

And since a measure on (Ω,Σ) is determined by its values on the cylinder sets, we
conclude that for all B ∈ Σ:

QE(B) = λQ∞(B) .

Applying this relation to E itself, we find that

λ · 1 = Q∞(E) = Q∞(E ∩ E) = QE(E) = λQ∞(E) = λ2 · 1 .

Therefore λ = 0 or 1.

3. Application to the examples.

Example 1: Classical measurement with error.

In this example T is the identity map on A. So the assumption of the Theorem
is that dim(A)=1. Since A = L∞([0,K], ρ), this means that ρ = δξ for some
length ξ ∈ [0,K]. In that case the measurement process ω1, ω2, . . . is a sequence
of independent random variables all with distribution π(ξ). Such a sequence is
indeed ergodic by the law of large numbers. Note however, that if different values
ξ1 and ξ2 can occur with positive probability, then the path average would still
exist, but could take different values according to chance.

Example 2: Repeated von Neumann measurement.

This is not an interesting case. The first measurement determines the outcome,
and all later measurements confirm it. Uniqueness of ρ amounts to k = 1, i.e., we
are measuring a sure observable without error.
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Example 3: Alternating von Neumann measurement and Schrödinger evolution.

In this case the condition of uniqueness of the invariant state becomes

{u, p1, p2, . . . , pk}′ = C1 .

The unique invariant state is the trace state on A = Mn: ρ(x) = 1
n tr(x). If we take

for pi one-dimensional projections, say pi = |ei〉〈ei|, then the stochastic sequence
of outcomes is a Markov chain with transition probabilities

|〈ei, uej〉|2 .

This is a bistochastic transition matrix, indeed having equipartition as an equi-
librium distribution. The condition that {u, p1, p2, . . . , pk}′ = C · 1 makes the
transition matrix irreducible and the equilibrium distribution unique.

Example 4: Davies processes or quantum trajectories in discrete time.

This is our most interesting example. Let us take repeated Kraus measurements,
i.e.

Ti(x) = a∗i xai, (i = 1, . . . , k) ,

for some a1, a2, . . . , ak ∈ A = Mn with
∑

i a
∗
i ai = 1. Then, if ρ ◦ T = ρ we have a

stationary measurement sequence satisfying

Pρ[ω1 = i1, ω2 = i2, . . . , ωm = im] = ρ(a∗i1a
∗
i2 · · · a

∗
im
aim · · · ai2ai1).

In general, this is not a Markov chain. However, it is intimately connected with
the following Hilbert space valued Markov chain.
On (Ω,Σ,Pρ), consider the stochastic process Ψ0,Ψ1,Ψ2, . . . with values in H :=
Cn given by

Ψm(ω) :=
aωm

aωm−1 · · · aω2aω1ψ0

‖aωm
aωm−1 · · · aω2aω1ψ0‖

.

The process Ψ is called the quantum trajectory associated to this repeated Kraus
measurement.

Proposition 6. In the situation of Example 4 (perfect case), the stochastic pro-
cess Ψ0,Ψ1,Ψ2, . . . is a classical Markov chain on the unit sphere of Hwith initial
condition Ψ0 = ψ0 and transition probabilities

P (ψ, θ) =
k∑

i=1

‖aiψ‖2δθ

(
aiψ

‖aiψ‖

)
,

where
δθ1(θ2) :=

{ 1 if θ1 = θ2,
0 otherwise.

The proof is a straightforward verification.
This Hilbert space valued version of the repeated Kraus measurement is very well
suited for numerical simulation, and has been fruitfully employed in areas such as
quantum optics [CSVR, WiM]. Our ergodic theorem implies that, if ρ is the unique
T∗-invariant state, then the jump process of this quantum trajectory is ergodic,
i.e. a single path reveals all the statistical properties of the whole jump process.
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4. Continuous measurement.

In this Section we roughly sketch how the ergodic theorem of Section 2 can be
extended to continuous measurement.
Making minimal assumptions, still allowing essentially the same proof, we arrive
at the following structure.
For Σ we take a σ-algebra of subsets of some sample space Ω, an for all 0 ≤ a ≤ b
we assume that we have a sub-σ-algebra Σ[a,b] of Σ such that, for 0 ≤ a ≤ b ≤ c,

Σ[a,b] ∩ Σ[b,c] = {∅,Ω} and Σ[a,b] ∨ Σ[b,c] = Σ[a,c] ,

expressing the localisation in time of the measurement outcomes. We assume that
for all t ≥ 0 a (left) time shift σt : Ω → Ω is given, i.e. for all t ≥ 0 and all a, b
with 0 ≤ a ≤ b we must have:

{σ−1
t (A) |A ∈ Σ[a,b]} = Σ[a+t,b+t] .

Let A be our finite-dimensional von Neumann algebra, and for all t ≥ 0 let a
CP(A)-valued measure Mt on Σ[0,t] be given such that for all s, t ≥ 0,

(a) Tt := Mt(Ω) maps 1A to itself;

(b) if A ∈ Σ[0,t] and B ∈ Σ[0,s], then Mt+s(A ∩ σ−1
t (B)) = Mt(A) ◦Ms(B).

Then one proves along the same lines as in Section 2 that the family of A-valued
probability measures

Qt : Σ[0,t] → A : B 7→Mt(B)(1A)

is consistent and extends to a single A-valued probability measure Q∞ on Σ.
Moreover, this measure is ergodic provided that the semigroup ((Tt)∗)t≥0 admits
only a single invariant state on A.

The above abstract scheme contains all the examples of continuous measurement
termed ‘Markovian’, such as the jump processes of Srinivas and Davies [SrD], the
diffusions of Gisin [Gis], and any infinitely divisible instrument in the sense of
Holevo [Hol2, BaH].

5. Some algebraic connections.

In Section 1 we have seen that a measurement on a system with observable algebra
A can be viewed as an operation

M : C ⊗ A → A .

with C abelian. In the spirit of Example 4 (Kraus measurement) we may extend
this idea somewhat by allowing the information extracted from the system to be
quantum information: we replace the abelian algebra C ⊂ B by B itself, thus
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postponing the choice of the abelian subalgebra to a later stage. So let us define
a generalised measurement operation as an operation

M : B ⊗A → A .

Repeating this generalised measurement indefinitely leads to the scheme

A
↗︷ ︸︸ ︷

B ⊗A
M

B
↗

⊗
↗︷ ︸︸ ︷

B ⊗A
id⊗M

B
↗

⊗ B
↗

⊗
↗︷ ︸︸ ︷

B ⊗A
id⊗ id⊗M

...
...

...
...

...

In this way any state ρ on A leads to a state on the infinite tensor product · · · ⊗
B ⊗ B ⊗ B ⊗ A. This is closely related to Accardi’s early version of a Quantum
Markov Process [Acc]. If ρ is invariant, i.e., if ρ(M(1 ⊗ x)) = ρ(x) for all x ∈ A,

then the above state naturally defines a shift-invariant state on
⊗Z B, which was

exploited by Fannes, Nachtegaele and Werner to describe states on spin chains
[FNW].
In the algebraic notation the m-fold measurement of Section 2 is described by the
operation M (m) :

⊗m
i=1 B ⊗A → A given by

M (m) := M ◦ (id⊗M) ◦ · · · ◦ (id⊗ · · · ⊗ id⊗M) .

For comparison we note that M (m)(p1 ⊗ · · · ⊗ pm ⊗ 1A) = Q∞(Λi1,...,im
).

By attaching an infinite product of copies of (B, β) to the right of the diagram
above, which we interpret as a chain of measurement devices queuing up to be
coupled to the system A, we obtain a dilation in the sense of Kümmerer of the
semigroup (Tn)n≥0 to a group of automorphisms. This is indicated in the following
diagram, which commutes for all n ≥ 0.

A T n

−→ A
1⊗id

y x(⊗Z β
)
⊗id(⊗

Z B
)
⊗A T̂ n

−→
(⊗

Z B
)
⊗A

.

Here, T̂ is given by
T̂ (y ⊗ x) := u∗(Sy ⊗ x)u ,

where S denotes the right shift on the infinite tensor power of B, and u ∈ B ⊗ A
is the unitary of Example 4, acting only on the 0-th component of this infinite
tensor power.

9



The connection between the dilation and the repeated measurement is expressed
by the following relation:

M (m)(y1⊗· · ·⊗ym⊗x) =
((⊗

Z β
)
⊗ id

) (
T̂m(· · ·⊗1⊗y1⊗· · ·⊗ym⊗

x
⊗
1 ⊗1⊗· · ·)

)
.

Davies processes in discrete time are obtained by restriction to some abelian sub-
algebra

⊗
Z C of

⊗
Z B.
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