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1 Preliminaries

In this paper by a Hilbert space we will always mean a complex Hilbert space
of finite dimension with inner product (·|·) which is linear in the second entry,
unless explicitely mentioned otherwise.
For the sake of completeness we will first recall what a Hilbert space is, and to
do so we must introduce two concepts that will serve only to avoid any possible
unclearity.

Definition 1.1 Let V be a linear space with norm ‖ · ‖. A sequence (xn)n in
V is called a Cauchy sequence if for every ε > 0 there is an integer N such
that ‖xn − xm‖ < ε for every n,m > N . If every Cauchy sequence (xn)n in V
converges to an element in V , then we say that V is complete.

If H is a linear space with inner product (·|·), then ‖ξ‖ := (ξ|ξ) 1

2 defines a norm
on H. This observation should make the following definition unambiguous.

Definition 1.2 A Hilbert space is a complete linear space with inner product.

The next lemma certifies that we will need the notion of completeness for pre-
serving clearity only, and that it will not be needed in any proof, since the only
linear spaces we regard are ones that are finite dimensional. We omit the proof
because it is a basic result in linear algebra.

Lemma 1.3 Any normed linear space of finite dimension is complete.

1.1 Operators and algebras

Definition 1.4 Let A and B be normed linear spaces. An operator A → B is
a linear map from A into B. An operator on A is a linear map A → A.

Definition 1.5 An algebra A is a linear space endowed with a vector mul-
tiplication such that A is closed under the multiplication, and the following
conditions hold:

1. λ(xy) = (λx)y = x(λy), λ ∈ C, x, y ∈ A;

2. x(yz) = (xy)z, x, y, z ∈ A;

3. x(y + z) = xy + xz and (x+ y)z = xz + yz, x, y, z ∈ A.

Definition 1.6 Let H and K be Hilbert spaces and V a linear map from H
into K. The adjoint or dual of V is the unique linear map V ∗ from K into H
that satisfies (V ∗ξ|ψ) = (ξ|V ψ) for every ξ ∈ K and every ψ ∈ H.
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Definition 1.7 Let H be a Hilbert space. By L(H) we denote the set of all
operators on H.
The operator ξ 7→ ξ on H we call the identity on H and we denote it by 1.
The map a 7→ a∗, where a ∈ L(H), is called the ∗-operation of L(H).
The operator norm of an element a in L(H) is defined as

‖a‖ := sup { ‖aξ‖ : ξ ∈ H, ‖ξ‖ = 1}.

With the operator norm L(H) is a normed linear space.

Whenever we speak of an algebra we will think of an algebra of operators on a
Hilbert space H. Furthermore we will always assume that the algebra contains
the identity on H.

Definition 1.8 Let H be a Hilbert space and let M be a subset of L(H). The
commutant M′ of M is defined as the set of all operators on H that commute
with every operator in M. The center of M is M∩M′.

Definition 1.9 Let A be an algebra.

1. A is called Abelian or commutative if ab = ba for all a, b ∈ A;

2. A is called a ∗-algebra if it is closed under the ∗-operation;

3. A is called a factor if it is a ∗-algebra with trivial center A ∩ A′ = C1.

Definition 1.10 Let H be a Hilbert space and let a be an operator on H.

1. a is called Hermitian if a∗ = a;

2. a is called normal if a∗a = aa∗;

3. a is called a projection if a is Hermitian and a2 = a;

4. a is called positive if (ξ|aξ) ≥ 0 for every ξ ∈ H; we write a ≥ 0.

If A is a ∗-algebra of operators on H then the collection of Hermitian elements
in A is denoted by Ah and the collection of positive elements in A is denoted
by A+.

Definition 1.11 Let H be a Hilbert space and let a be an operator on H.
Ker(a − α1) = {ξ ∈ H : (a − α1)ξ = 0} is a linear subspace of H for every
α ∈ C. If Ker(a − α1) 6= {0} then α and the projection on Ker(a − α1) are
called a spectral value respectively a spectral projection of a. The collection of
spectral values of an operator a is called the spectrum of a.

The following theorem, the spectral theorem for normal operators on a finite
dimensional Hilbert space, is an important result in the basics of linear algebra.
A proof can be found in about any introductory textbook on linear algebra and
for that reason is omitted.
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Theorem 1.12 (Finite dimensional spectral theorem) Let H be a Hilbert

space of finite dimension and let a be a normal operator on H. Then there are

projections pi and complex numbers αi such that

pipj = δijpi,
∑

i

pi = 1, αi 6= αj if i 6= j,

and

a =
∑

i

αipi.

Lemma 1.13 Let A be a ∗-algebra of operators on a Hilbert space H. If a ∈ A
is normal, then any spectral projection of a is in A.

Proof: Let A be a ∗-algebra and let a ∈ A. By Theorem 1.12 there are spectral
projections pi and complex numbers αi such that a =

∑

i αipi, pipj = δijpi,
∑

i pi = 1 and αi 6= αj if i 6= j. For every index k we have

∏

j 6=k

(a− αj) =
∏

j 6=k

(αk − αj)pk,

and since
∏

j 6=k(αk −αj) 6= 0 we find that every spectral projection pk is in A.2

Definition 1.14 Let H be a Hilbert space and let a be a normal operator on
H. For any map f : C → C we define

f(a) :=
∑

i

f(αi)pi,

where αi and pi are the spectral values respectively spectral projections of a.

Proposition 1.15 Let A be a ∗-algebra and a ∈ A. The following conditions

are equivalent:

1. a is positive;

2. a is Hermitian and all the spectral values of a are positive;

3. there is an operator w ∈ A such that a = w∗w.

Proof: Let A be a ∗-algebra and let a ∈ A.
Suppose a is positive, then a is Hermitian; we do not prove this here, but refer
to [10], page 195. The definition of positivity and Theorem 1.12 imply that all
spectral values of a are positive.
Suppose a is Hermitian and all the spectral values of a are positive. According to
Lemma 1.13 all spectral projections of a are in A, and therefore, if a =

∑

i αipi

is the spectral decomposition of a, the operator w defined by w :=
∑

i α
1/2pi is

in A, and a = w∗w.
Suppose there is an operator w ∈ A such that a = w∗w. Then (ξ|aξ) =
(wξ|wξ) ≥ 0 for every ξ ∈ H, i.e. a is positive. 2
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1.2 States and density operators

Theorem 1.16 Let H be a Hilbert space.

1. If a, b ∈ L(H), then for any orthonormal basis {ϕn} in H, the sum

∑

n

(ϕn|a∗bϕn),

denoted by (a|b)2, is independent of the orthonormal basis chosen.

2. L(H) with inner product (·|·)2 is a Hilbert space.

Proof: [10], page 210, Theorem VI.22. 2

Definition 1.17 Let H be a Hilbert space. The trace of an element a ∈ L(H)
is defined as

tr a := (1|a)2.

In Definition 1.7 we mentioned the operator norm on the algebra L(H) of oper-
ators on a certain Hilbert space H. Here we introduce two more norms on L(H)
that will come in hand later on.

Definition 1.18 Let H be a Hilbert space. For every x in L(H) we define

‖x‖1 := tr
√
x∗x,

and
‖x‖2 := (x|x)1/2

2 .

From Theorem 1.16 it is clear that ‖ · ‖2 is a norm. For a discussion on ‖ · ‖1

we refer to [10], page 209, Theorem VI.20.

Definition 1.19 Let A and B be ∗-algebras and let S be a map A → B.

1. S is called positive if S(a) ≥ 0 for each positive a ∈ A;

2. S is called unital if S(1) = 1.

Definition 1.20 Let V be a linear space. By V∗ we denote the linear space of
all linear maps from V into C, and this linear space we call the dual space of V .

The following theorem accomplishes a 1-1 correspondence between elements in
a Hilbert space H and elements in the dual space H∗.

Theorem 1.21 Let H be a Hilbert space of finite dimension. For any element

ϕ ∈ H∗ there is a unique element s ∈ H such that ϕ(x) = (s|x) for every x ∈ H.
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Proof: Let H be a Hilbert space of dimension n. We choose an orthonormal
base {ei}n

i=1 in H. Suppose ϕ ∈ H∗.
∑n

i=1 ϕ(ei)ei is an element in H, let us
call it s.

(s|x) =

n
∑

i=1

ϕ(ei)(ei|x) = ϕ
(

n
∑

i=1

ei(ei|x)
)

= ϕ(x)

for any x ∈ H.
If s, t ∈ H such that ϕ(x) = (s|x) = (t|x) for every x ∈ H, then in particular by
choosing x = s− t we find 0 = (s|x) − (t|x) = ‖s− t‖2, s = t. 2

Definition 1.22 Let A be a ∗-algebra. A state on A is a positive, unital, linear
map A → C. The collection of states on A we denote by A∗

+,1.

Definition 1.23 Let H be a Hilbert space. An element ρ ∈ L(H) is called a
density operator if ρ is positive and of unit trace.

Let A be a ∗-algebra. Let ϕ ∈ A∗ and let σ ∈ A such that ϕ(x) = (σ|x)2 for
every x ∈ A. We can write σ = σ1 + iσ2 and ϕ = ϕ1 − iϕ2, where

σ1 :=
1

2
(σ + σ∗), σ2 :=

1

2i
(σ − σ∗), (1)

ϕ1(x) := (σ1|x)2, ϕ2(x) := (σ2|x)2, (x ∈ A). (2)

We note that σ1, σ2 ∈ Ah. Ah with the inner product (·|·)2 is a real Hilbert
space, and every element in A∗

h is a real valued functional.
Let j+ and j− be maps R → R defined by

j+ : x 7→
{

x , x ≥ 0
0 , x ≤ 0

j− : x 7→
{

0 , x ≥ 0
−x , x ≤ 0.

Then for any a ∈ Ah we have a+, a− ∈ A+ , a = a+ − a− and a+a− = 0, where
we adopted the shorthand notation

a+ := j+(a) a− := j−(a). (3)

The observation a+a− = 0 is implied by the fact that for any two spectral values
α and β of a, Ker(a− α1)∩Ker(a− β1) = {0} whenever α 6= β.

Lemma 1.24 Let A and B be ∗-algebras and let S : A → B be a positive linear

map. Then

1. S(a) is Hermitian for every Hermitian a ∈ A;

2. S(a∗) = S(a)∗ for every a ∈ A.

Proof: 1: Let a ∈ A be Hermitian. We adopt the denotation used in equation
(3) and we recall that a+, a− ∈ A+ and a = a+ − a−. Using the linearity and
positivity of S together with the fact that positive elements in B are Hermitian
(Proposition 1.15) we see that S(a) is Hermitian.
2: Let a ∈ A. Define a1 := 1

2 (a + a∗) and a2 := 1
2i (a − a∗), then a1, a2 ∈ Ah

and a = a1 + ia2. Using 1, we see that S(a∗) = S(a1 − ia2) = S(a1)− iS(a2) =
(S(a1) + iS(a2))

∗ = S(a)∗. 2
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Proposition 1.25 Let A be a ∗-algebra. Let ϕ ∈ A∗ and σ ∈ A such that

ϕ(x) = (σ|x)2 for every x ∈ A, then:

1. ϕ(x) ∈ R for every x ∈ Ah if and only if σ is Hermitian;

2. ϕ is positive if and only if σ is positive;

3. ϕ is unital if and only if σ is of unit trace.

Proof: 1: Suppose ϕ(x) ∈ R for every x ∈ Ah. Adopting denotations according
to equations (1) and (2), (σ2|x)2 = ϕ2(x) = 0 for every x ∈ Ah, in particular
‖σ2‖2

2 = (σ2|σ2)2 = 0, meaning that σ = σ1 ∈ Ah.
If on the other hand σ ∈ Ah, then, since Ah with inner product (·|·)2 is a real
Hilbert space, ϕ is real-valued on Ah.
2: Suppose ϕ is positive. According to Lemma 1.24 ϕ(x) ∈ R for every x ∈ Ah,
and a subsequent use of 1 yields that σ ∈ Ah. We adopt the denotation of
equation (3). σ+ and σ− are positive elements in A, and so

0 ≤ ϕ(σ−) = tr (σ+σ−) − tr (σ−σ−) = −‖σ−‖2
2,

which means that σ = σ+ is positive.
Suppose σ is positive, then by Proposition 1.15 there is an element w in A such
that σ = w∗w. If x ∈ A+, then likewise there is an element y in A such that
x = y∗y, and so

ϕ(x) = tr (w∗wy∗y) = tr ((wy∗)∗(wy∗)) = ‖wy∗‖2
2 ≥ 0.

3: ϕ(1)∗ = (1|σ)2 = tr σ, thus ϕ is unital if and only if σ is of unit trace. 2

Apparently there is a 1-1 correspondence between states on a ∗-algebra A and
density operators in A.

1.3 Direct sums and tensor products

Definition 1.26 Let H1 and H2 be Hilbert spaces with inner products (·|·)H1

respectively (·|·)H2
. The direct sum of H1 and H2 is the Cartesian product of

H1 and H2 endowed with the usual vector addition and scalar multiplication
and the inner product

((x1, x2)|(y1, y2)) = (x1|y1)H1
+ (x2|y2)H2

.

The direct sum of H1 and H2 we denote by H1 ⊕ H2, and instead of writing
(x1, x2) for an element in the direct sum we write x1 ⊕ x2.

Let V and W be two linear spaces. We introduce symbols ⊗ and ·+ ·, and with
these for x1, . . . , xn ∈ V and y1, . . . , yn ∈ W we make formal expressions

x1 ⊗ y1 · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn,

which we abbreviate by writing
∑n

i=1 xi ⊗ yi. Among these expressions we
introduce a relation ∼ subject to the rules
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1. x1 ⊗ y1 · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn

∼ x1′ ⊗ y1′ · + · x2′ ⊗ y2′ · + · . . . · + · xn′ ⊗ yn′ ,

where 1′, 2′, . . . , n′ denotes any permutation of the integers 1, 2, . . . , n;

2. (x1 + x′1) ⊗ y1 · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn

∼ x1 ⊗ y1 · + · x′1 ⊗ y1 · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn;

3. x1 ⊗ (y1 + y′1) · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn

∼ x1 ⊗ y1 · + · x1 ⊗ y′1 · + · x2 ⊗ y2 · + · . . . · + · xn ⊗ yn;

4. (c1x1) ⊗ y1 · + · (c2x2) ⊗ y2 · + · . . . · + · (cnxn) ⊗ yn

∼ x1 ⊗ (c1y1) · + · x2 ⊗ (c2y2) · + · . . . · + · xn ⊗ (cnyn),

where c1, c2, . . . , cn complex numbers.

Two expressions
∑n

i=1 xi ⊗yi and
∑m

j=1 vj ⊗wj we call equivalent if one can be
transformed into the other by a finite number of successive applications of the
rules 1, 2, 3 and 4, and we write

n
∑

i=1

xi ⊗ yi '
m

∑

j=1

vj ⊗ wj .

Lemma 1.27 Let V and W be linear spaces. For any x1, . . . , xn ∈ V and

any y1, . . . , yn ∈ W the expression
∑n

i=1 xi ⊗ yi is equivalent to either 0 ⊗ 0
or to an expression

∑m
i=1 vi ⊗ wi in which both the v1, . . . , vm ∈ V and the

w1, . . . , wm ∈ W are linearly independent.

Proof: Let V and W be linear spaces and let x1, . . . , xn ∈ V and y1, . . . , yn ∈ W .
If for instance we have x1 =

∑n
i=2 cixi, where c2, . . . , cn complex numbers, then

x1 ⊗ y1 · + ·
n

∑

i=2

xi ⊗ yi '
(

n
∑

i=2

cixi

)

⊗ y1 · + ·
n

∑

i=2

xi ⊗ yi

'
n

∑

i=2

(cixi) ⊗ y1 · + ·
n

∑

i=2

xi ⊗ yi

'
n

∑

i=2

xi ⊗ (ciy1) · + ·
n

∑

i=2

xi ⊗ yi

'
n

∑

i=2

xi ⊗ (ciy1 + yi),

the expression
∑n

i=1 xi ⊗ yi is equivalent to an expression consisting of n − 1
terms. This shows that if the sets x1, . . . , xn and y1, . . . , yn are linearly de-
pendent, then by repeatedly applying the above procedure we are able to ob-
tain an expression

∑m
i=1 vi ⊗ wi in which both the v1, . . . , vm ∈ V and the

w1, . . . , wm ∈ W are linearly independent or v ⊗ 0 for some v ∈ V or 0 ⊗ w for
some w ∈ W . But v ⊗ 0 ' (0v) ⊗ 0 ' 0 ⊗ 0, and similarly 0 ⊗ w ' 0 ⊗ 0. 2
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Definition 1.28 Let V and W be linear spaces. Let VW denote the collection
of expressions

∑n
i=1 xi ⊗ yi where x1, . . . , xn ∈ V and y1, . . . , yn ∈ W , and let

N denote the set of all such expressions that are equivalent to 0 ⊗ 0.
We define the algebraic tensor product of V and W as the collection of sets

z +N := {z + ν : ν ∈ N}, (z ∈ VW),

endowed with the vector addition

(x+N) + (y +N) := x+ y +N, (x, y ∈ VW),

and the scalar multiplication

λ(x +N) := λx+N, (x ∈ VW, λ ∈ C).

Often for an expression z in VW we will identify z with the set z + N . The
algebraic tensor product of V and W we denote by V �W .

Lemma 1.29 Let H1 and H2 be Hilbert spaces with inner products (·|·)H1
re-

spectively (·|·)H2
. The sesquilinear form

(

n
∑

i=1

ξ1i ⊗ ξ2i

∣

∣

∣

k
∑

j=1

ψ1j ⊗ ψ2j

)

=

n
∑

i=1

k
∑

j=1

(ξ1i|ψ1j)H1
(ξ2i|ψ2j)H2

, (4)

where ξ1i, ψ1j ∈ H1 and ξ2i, ψ2j ∈ H2 for every i = 1, . . . , n and j = 1, . . . , k, is

an inner product on the algebraic tensor product of H1 and H2.

Proof: Let
∑

i ξ1i ⊗ ξ2i and
∑

j ψ1j ⊗ψ2j in H1 �H2. We may assume there are
enough vectors ξ1i such that every ψ1j can be written as a linear combination
of vectors ξ1i, and then there are vectors φ2i in H2 such that

∑

j ψ1j ⊗ ψ2j =
∑

i ξ1i ⊗ φ2i. It is easy to see now that the sesquilinear form (4) is conjugate
linear in the first entry and linear in the second. By Lemma 1.27 we may assume
that the vectors ξ1i are linearly independent, and the vectors ξ2i are so too. With
the Gram-Schmidt orthogonalisation procedure we can find orthonormal sets of
vectors {ϕ1j}j in H1 and {ϕ2k}k in H2 and complex coefficients cjk such that
∑

i ξ1i ⊗ ξ2i =
∑

i cjkϕ1j ⊗ ϕ2k. We have

(
∑

i

ξ1i ⊗ ξ2i|
∑

i

ξ1i ⊗ ξ2i ) =
∑

jk

∑

st

c̄jkcst(ϕ1j |ϕ1s)H1
(ϕ2k |ϕ2t)H2

=
∑

jk

|cjk |2

≥ 0

with equality if and only if
∑

i ξ1i ⊗ ξ2i = 0 ⊗ 0. 2

Definition 1.30 Let H1 and H2 be Hilbert spaces. By the tensor product of
H1 and H2 we mean the algebraic tensor product H1 �H2 with inner product
defined by (4). We denote the tensor product of H1 and H2 by H1 ⊗H2.
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Proposition 1.31 If H1 and H2 are Hilbert spaces, then L(H1) � L(H2) =
L(H1 ⊗H2). Furthermore, for any a1 ∈ L(H1) and any a2 ∈ L(H2) there exists

a unique operator a1 ⊗ a2 ∈ L(H1 ⊗H2) satisfying

(a1 ⊗ a2)(ξ1 ⊗ ξ2) = a1ξ1 ⊗ a2ξ2 for all ξi ∈ Hi, i = 1, 2,

and for that operator

‖a1 ⊗ a2‖ = ‖a1‖‖a2‖.
Proof: [9], page 98, Proposition 16.1, and [11], page 185. 2

Definition 1.32 Let A be a ∗-algebra. For every positive integer n we define
Mn(A) as the algebra of n×n-matrices [aij ] with entries aij in A, or equivalently,
as the algebraic tensor product of the algebra of complex n × n-matrices and
the ∗-algebra A.

1.4 Completely positive maps

Definition 1.33 Let A and B be ∗-algebras. A linear map π from A into B is
called a ∗-homomorphism if it is ∗-preserving and π(xy) = π(x)π(y) for every
x, y ∈ A.
A representation of a ∗-algebra A is a pair {π,R} where R is a Hilbert space
and π is a ∗-homomorphism from A into L(R).

A representation {π,R} of a ∗-algebra A is called non-degenerate if for every
ξ ∈ R there is a a ∈ A such that π(a)ξ 6= 0. Whenever we speak of a repre-
sentation we will assume that it is non-degenerate unless explicitely mentioned
otherwise.

Definition 1.34 Let H and K be Hilbert spaces. A linear map V from H into
K is called an isometry if V ∗V = 1, where 1 the identity on H.

Definition 1.35 Let A and B be ∗-algebras and S a linear map from A into B.
For every positive integer n let S(n) be the map from Mn(A) into Mn(B) defined
by S(n) : [aij ] 7→ [S(aij)]. If S(n) is positive then we say S is n-positive. If S is
n-positive for every positive integer n, then we say S is completely positive.

Theorem 1.36 (Stinespring) Let A be a ∗-algebra and H a Hilbert space,

both of finite dimension.

1. If {π,R} is a representation of A and V is a linear map from H into R,

then the map S : A 3 a 7→ V ∗π(a)V ∈ L(H) is completely positive.

2. If S is a completely positive map from A into L(H), then there exist a

representation {π,R} of A and a linear map V from H into R such that

S(a) = V ∗π(a)V, (a ∈ A),

R = π(A)VH.
If in addition S is unital, then V is an isometry.

9



Proof: [11], pages 194-199, Theorem 3.6 and Remark 3.7 2

Remark 1.37 Since both the algebra A and the Hilbert space H in Theo-
rem 1.36 are finite dimensional, the Hilbert space R we can choose to be of
finite dimension as well.

Definition 1.38 Let A and B be ∗-algebras. The embedding of A into A � B
is the map eB from A into A�B, defined by

eB : a 7→ a⊗ 1.

The embedding of B into A�B is the map eA from B into A�B, defined by

eA : b 7→ 1⊗ b.

We state two more properties of completely positive maps in the following
lemma. The first one is known as the Schwarz inequality and we use it to
show the validity of the second one, a property known as the multiplication
theorem, which we will use later to illustrate our motivations.

Lemma 1.39 Let A and B be ∗-algebras and S a completely positive, unital

map from A into B, then:

1. S(a∗)S(a) ≤ S(a∗a) for every a ∈ A;

2. if S(a∗a) = S(a∗)S(a) for some a ∈ A then S(ba) = S(b)S(a) and

S(a∗b) = S(a∗)S(b) for all b ∈ A.

Proof: 1: [11], page 199, Corollary 3.8.
2: Suppose a ∈ A and S(a∗a) = S(a∗)S(a). For any b ∈ A and any t ∈ R we
have

S((a∗ + tb)(a+ tb∗)) = S(a∗)S(a) + tS(ba+ a∗b∗) + t2S(bb∗),

and by the Schwarz inequality

S((a∗ + tb)(a+ tb∗)) ≥ S(a∗)S(a) + t(S(b)S(a) + S(a∗)S(b∗)) + t2S(b)S(b∗).

This equality and inequality hold for all t ∈ R, which implies that

S(ba+ a∗b∗) ≥ S(b)S(a) + S(a∗)S(b∗).

Replacing a by ia and b by ib yields that the opposite is also true, so that we
have equality, and replacing only b by ib then yields that S(ba) = S(b)S(a) and
S(a∗b∗) = S(a∗)S(b∗). 2

10



2 Measurements

2.1 Physical systems and measuring devices

Any physical system, in particular any quantum mechanical system, we repre-
sent by a non-commutative generalisation of a classical probability space. Such
a space, a quantum probability space 1, is a pair {A, ϕ}, where A is a ∗-algebra
and ϕ is a state on A. If such a pair {A, ϕ} happens to describe a classical
physical system, then the algebra A is commutative.

Remark 2.1 A physical system we will identify with a pair {A, ϕ}, where A
is a ∗-algebra and ϕ is a state on A. Sometimes we will drop the state ϕ and
only mention the algebra A.

Definition 2.2 Let {A, ϕ} be a physical system. The observable quantities or
observables of {A, ϕ} are the Hermitian operators in A. For any Hermitian
operator a in A we can write down a spectral decomposition a =

∑

i αipi; the
event “observable a takes on value αj” is given by the spectral projection pj

and has probability ϕ(pj). The sure event is represented by 1.

One can obtain information on a physical system by performing a measurement
on it. This action involves a measuring device which generates classical out-
put. The measuring device, being a physical system itself, we characterize by
an Abelian ∗-algebra since it is only the classical output the measuring device
generates that is relevant to us.
We restrict ourselves to regarding measuring devices with a finite number of
possible outcomes, since any of those can be characterised by a ∗-algebra of
operators on finite dimensional Hilbert space.

If A is a physical system on which we perform a measurement by using a mea-
suring device C, then we regard the physical system and the measuring device
together, that is we regard the physical system consisting of the ∗-algebra A⊗C.
Since C is Abelian, any element in C is normal and according to Lemma 1.13
therefore all the spectral projections of an element in C are in C as well. Since
all the spectral projections in C commute with one another we can choose a base
of C consisting of mutually perpendicular projections, i.e. for any two elements
p and q in the base, pq = 0 if p 6= q. If {ei}n

i=1 is such a base, then any ele-
ment x in A⊗ C we can write in the form x =

∑n
i=1 xi ⊗ ei, where xi in A for

i = 1, . . . , n, or x = (xi)
n
i=1 for short.

The concept of measurement will be the topic of this section, and we will dis-
cuss it in two different frameworks, the Heisenberg picture and the Schrödinger
picture.

1This generalisation of a classical probability space to a quantum probability space is
obtained without any strain; one can find a very enlightening elaboration in [5].
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2.2 The Heisenberg picture

In the Heisenberg picture the observables change with time while the state of the
system remains the same. If {A, ϕ} is a physical system on which we perform
a measurement S with a measuring device {C, γ}, then before the measurement
is performed we have the physical system {A, ϕ}, and afterwards we have the
composite system A ⊗ C in some state ψ. An observable x in the composite
system {A ⊗ C, ψ} is mapped to an observable S(x) in {A, ϕ}.
In order to make S reflect the behaviour of a measurement, we have the follow-
ing definition.

Definition 2.3 A measurement on a physical system A with measuring device
C is an operator S from A⊗ C into A, such that:

1. S is completely positive;

2. S is unital.

An interpretation of this definition we postpone until we discuss the Schrödinger
picture.

2.3 The Schrödinger picture

In the Schrödinger picture it are not the observables but the states that change
with time. If we perform a measurement on a physical system A that is in a
certain state ϕ, and we perform this measurement by using a measuring device
{C, γ}, then in the Schrödinger picture we go from {A, ϕ} to the composite sys-
tem A⊗ C in some state or other.
We take a closer look at this picture. Suppose we expect a physical system A
to be in either of two states, for example we expect it to be in a state ϕ with
probability p and with probability 1−p in some other state ψ. Now we perform
a measurement on the system, a map S ′ from the states on A to the states on
A ⊗ C, where C our measuring device. After the measurement we expect the
composite system A⊗C to be in a state S ′(ϕ) with probability p and in a state
S′(ψ) with probability 1−p. In other words, we demand S ′ to be an affine map
on the collection of states on A.

Definition 2.4 A subset C of a linear space is convex if λx+ (1− λ)y is in C
for every x, y in C and 0 ≤ λ ≤ 1.
A map f defined on a convex subset C of a linear space is affine if

f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y)

for every x, y in C and 0 ≤ λ ≤ 1.

Since there is a 1-1 correspondence between states on a ∗-algebra and density
operators in that ∗-algebra we can formulate a measurement in the Schrödinger
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picture as an affine transformation of density operators. If S ′ represents a
measurement in the Schrödinger picture mapping states to states, then by S∗

we will denote the same measurement mapping density operators to density
operators. If the measurement is one on a physical system A and ϕ is a state
on A corresponding to a density operator σ in the sense that

ϕ(x) = (σ|x)2, (x ∈ A),

then we have the relation

S′(ϕ)(x) = (S∗σ|x)2, (x ∈ A).

The collection of density operators in a ∗-algebra is convex. We will now demon-
strate that any affine map defined on the collection of density operators in a
∗-algebra can be uniquely extended to a linear map defined on the entire ∗-
algebra.

Theorem 2.5 Let A be a ∗-algebra and let f be an affine map defined on the

collection of density operators in A, then there is a unique linear map f̃ defined

on A such that f̃(σ) = f(σ) for every density operator σ in A.

Proof: We start by extending f to a map f+ defined on A+, the positive elements
in A, by

f+ : a 7→
{

0 , a = 0,
tr (a)f(a/tr (a)) , a > 0.

It is not hard to verify that f+ coincides with f on the collection of density
operators in A, and that f+(a + b) = f+(a) + f+(b) and f+(λa) = λf+(a) for
every λ ≥ 0 and a, b ∈ A+.
We proceed by extending f+ to a map fh defined on Ah, the Hermitian elements
in A, by

fh : a 7→ f+(a+) − f+(a−),

where a+ and a− denote the positive parts of a respectively −a, like in equation
(3). fh is linear. Indeed, if a ∈ Ah and λ is a positive, real number then
λa = λa+ − λa− and

fh(λa) = f+(λa+) − f+(λa−) = λfh(a).

If a ∈ Ah and λ is a negative, real number then λa = (−λ)a− − (−λ)a+ and

fh(λa) = f+(−λa−) − f+(−λa+) = λfh(a).

To see that fh is additive take a, b ∈ Ah. Then (a+ b)+ − (a + b)− = a + b =
a+ − a− + b+ − b−, so when rearranging terms

(a+ b)+ + a− + b− = (a+ b)− + a+ + b+,

and applying f+

f+((a+ b)+) + f+(a−) + f+(b−) = f+((a+ b)−) + f+(a+) + f+(b+),
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we obtain

fh(a+ b) = f+((a+ b)+) − f+((a+ b)−)

= f+(a+) − f+(a−) + f+(b+) − f+(b−)

= fh(a) + fh(b).

Finally, we extend fh to a map f̃ defined on the entire algebra A by

f̃ : a 7→ fh(a1) + ifh(a2),

where

a1 =
1

2
(a+ a∗), a2 =

1

2i
(a− a∗).

f̃ is linear and coincides with f on the collection of density operators in A.
It is easy to see that this extension f̃ of f is unique. Suppose that g is a linear
map defined on A such that g(σ) = f(σ) for every density operator σ in A.
Then for any non-zero element a in A+ we have

g(a) = tr (a)g(a/tr (a)) = tr (a)f(a/tr (a)) = f+(a),

which means that g coincides with f+ on A+. Just as straightforward, g coin-
cides with fh on Ah and with f̃ on A. 2

A measurement S∗, an affine map defined on the density operators in a physical
system A, we can extend to a linear map S∗ defined on the entire ∗-algebra A.
It is immediate that the extended S∗ is positive and trace-preserving.
As a last consideration on measurements in the Schrödinger picture we take the
outside world into account. If we incorporate any outside environment into the
picture of a measurement S∗ on a physical system A, say one represented by
the algebra Mn(C) for some positive integer n, then by S∗ a density operator
in the system Mn(A) must be mapped to a density operator. This means that
S∗ extended to the entire ∗-algebra A must be n-positive, and it must be so for
every positive integer n, that is, S∗ must be completely positive.
If we dualize the measurement as given in the Schrödinger picture then we
obtain the measurement given in the Heisenberg picture. The measurement S∗

extended to the entire ∗-algebra A we can dualize to obtain an operator S from
A⊗ C into A according to the relation

(S∗a|x)2 = (a|S(x))2, (a ∈ A, x ∈ A ⊗ C).

S is completely positive and unital:

Proposition 2.6 Let A and B be ∗-algebras and let S be an operator from B
into A with dual S∗ : A → B.

1. if S∗ is positive, then S is positive;

2. if S∗ is completely positive, then S is completely positive;

3. S is unital if and only if S∗ is trace-preserving.
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Proof: 1: Suppose S∗ is positive. We can use point 2 of Proposition 1.25 to
observe that for every a ∈ A and b ∈ B, both positive, we have 0 ≤ (S∗a|b)2 =
(a|S(b))2. This means that S is positive.
2: If S∗ is completely positive, then S∗ is n-positive for every positive integer n
and according to point 1 so is S. Therefore S is completely positive.
3: For every a in A we have

(S∗a|1)2 = (a|S(1))2,

so S(1) = 1 if and only if (S∗x|1)2 = (x|1)2 for every x ∈ A, i.e. S is unital if
and only if S∗ is trace-preserving. 2

We summarize some of the above into a definition of a measurement in the
Schrödinger picture.

Definition 2.7 A measurement on a physical system A with a measuring de-
vice C is an affine transformation S ′ from the states on A into the states on
A ⊗ C, or equivalently an affine transformation S∗ from the density operators
in A into the density operators in A⊗C. These S ′ and S∗ are related to a com-
pletely positive, unital map S : A⊗C → A, the measurement in the Heisenberg
picture, according to the relations

S′ : ϕ 7→ ϕ ◦ S

and
(S∗σ|x)2 = (σ|S(x))2.

Definition 2.8 Let A and B be ∗-algebras. The linear maps trA and trB
defined on A�B by

trA : a⊗ b 7→ tr (a)b

and
trB : a⊗ b 7→ a tr (b)

are called a partial trace over A respectively a partial trace over B.

Lemma 2.9 The dual of an embedding is a partial trace.

Proof: Let A and B be ∗-algebras. Let eA be the embedding of B into A � B
and trA the partial trace over A defined on A � B. For any x ∈ A and any
b, y ∈ B we find

(x⊗ y|eA(b))2 = (x⊗ y|1⊗ b)2 = (x|1)2(y|b)2 = ((1|x)2y|b)2,

so e∗A(x⊗ y) = (1|x)2y = trA (x⊗ y). This means that e∗A = trA.
In the same way we find that e∗B = trB . 2
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3 Entropy

Before we arrive at this treatise’s highlight, which is an entropic uncertainty
relation for a single measurement, we need to discuss the subject of entropy as
a measure of uncertainty. Of coarse, when talking about an uncertainty rela-
tion one needs a measure to express uncertainty, and although there are many
such thinkable measures we will restrict ourselves to the one that is known as
entropy.2 We consider the Shannon entropy, the von Neumann entropy and the
quantum relative entropy. We mention the properties that make them suitable
as a measure of uncertainty, and we derive some results we will need to come to
an entropic uncertainty relation.

3.1 The Shannon entropy and the von Neumann entropy

Definition 3.1 The Shannon entropy of a probability distribution p =
(p1, . . . , pm) is defined as

H(p) := −
m

∑

i=1

pi log pi.

In this definition we adopted the convention that 0 log 0 = 0. We will uphold
this convention from here on.

A probability distribution is understood to be a state on a commutative space,
and since we regard spaces that are commutative as well as spaces that are not,
we need a counterpart of the Shannon entropy that applies to both:

Definition 3.2 The von Neumann entropy of a density operator σ is defined
as

H(σ) := −trσ logσ.

The von Neumann entropy is a generalisation of the Shannon entropy in the
sense that if we interpret a density operator ρ in an Abelian algebra as a prob-
ability distribution p, then the von Neumann entropy of ρ equals the Shannon
entropy of p.

A first feature of the von Neumann entropy we might notice as a suitable prop-
erty for a measure of uncertainty is that it is invariant under permutations of the
outcomes. If we exchange the spectral values of a density operator with respect
to its spectral projections, the outcomes, then it does not change the entropy:
the von Neumann entropy of the density operator before the permutation equals
that of the density operator after the permutation.

The von Neumann entropy takes on its minimum value in case of least uncer-
tainty, and its maximum value in case of most uncertainty. From its definition

2In [12] a comprehensive discussion is given on uncertainty measures in the context of the
uncertainty principle.
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it is clear that the von Neumann entropy is non-negative. If σ is a density
operator with spectral values σi, then we observe that

∑

i

σi logσi ≤
∑

i

σ log max
j
σj

= log max
j
σj ,

so
H(σ) ≥ − logmax

j
σj .

This inequality in particular implies that the von Neumann entropy of a density
operator is zero if and only if one spectral value equals 1 and the others are zero.
Then the density operator describes a situation of least uncertainty. The other
extreme is a situation of total uncertainty. In the classical case this corresponds
to a uniform distribution, a probability distribution p = (p1, . . . , pn) where every
pi = 1

n . In quantum physics a density operator corresponds to a situation of
total uncertainty if the spectral values are uniformly distributed, that is, if it
equals 1/n where n = tr1. For any density operator σ on a n-dimensional
Hilbert space we have

−H(σ) + logn = trσ logσ − trσ log(1/n) = trσ(log σ − log(1/n)).

The expression on the right is the relative entropy H(σ‖1/n) of σ relative to
1/n, a notion we will discuss in the following section, and where we will see that
H(σ‖1/n) is always strictly positive, unless σ equals 1/n when it will be zero.
Therefore, the von Neumann entropy of σ is smaller than or equal to logn with
equality if and only if σ = 1/n.

For future use we will introduce some notation considering states in systems
that are compositions of smaller systems. Let A and B be physical systems.
We use a density operator to describe the state the composite system A⊗B is
in, and say this density operator is σ then more explicitely we will denote it by
σ
AB

. We can ignore either of the systems A and B, i.e. take a partial trace, to
be left with a density operator in B respectively A, and this density operator
we will denote by σ

B
respectively σ

A
.

The following lemma tells us that if we regard two systems that are independent,
the entropy makes no difference between regarding the two systems separately
or regarding them as one larger system. If the one system is in a state σ1 and
the other is in a state σ2, since the two systems are independent they together
are in a state σ1 ⊗ σ2, and the entropy of σ1 plus the entropy of σ2 equals the
entropy of σ1 ⊗ σ2. However, if the two systems are not independent, then re-
garding the two systems separately means ignoring any correlation between the
two systems. Then the state σ of the composite system does not equal σ1 ⊗ σ2,
and the entropy of σ will be smaller than the sum of the entropy of σ1 and the
entropy of σ2.

Lemma 3.3 (Subadditivity) Let A and B be physical systems and let σ
AB

be

a density operator in the composite system A⊗B. Then

H(σ
AB

) ≤ H(σ
A
) +H(σ

B
),
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with equality if and only if σ
AB

= σ
A
⊗ σ

B
.

The proof of Lemma 3.3 relies on two results we will come across in the follow-
ing section, point 1 of Proposition 3.8 and Theorem 3.7. It is a straightforward
consequence of those two results.

Regard a density operator σ. We exchange its spectral values with repect to the
outcomes to obtain a different density operator σ(1). For any number λ between
0 and 1 we expect the entropy of the mixture λσ + (1 − λ)σ(1) to be greater
than the entropy of σ. If we create more density operators σ(k) like we created
σ(1), and we take positive numbers λk such that

∑

k λk = 1, then we expect to
have

H
(

∑

k

λkσ
(k)

)

≥ H(σ).

We noted earlier on that the entropy is invariant under permutations, soH(σ) =
H(σ(k)) for every σ(k). Therefore we can write

H
(

∑

k

λkσ
(k)

)

≥
∑

k

λkH(σ(k)).

In fact, this happens to be so, not only when the σ(k) are obtained from σ by
performing permutations on the spectral values, but also for just any density
operators σ(k). This property is known as the concavity of the von Neumann
entropy.

Theorem 3.4 (Concavity) Let σ1, . . . , σm be density operators in a ∗-algebra

A and let λ1, . . . , λm be positive real numbers that add up to 1, then

m
∑

i=1

λiH(σi) ≤ H
(

m
∑

i=1

λiσi

)

,

with equality if and only if for all the indices i the density operators σi for which

λi 6= 0 are equal.

Proof: Choose an orthonormal base {ei}m
i=1 in the Hilbert space Cm, and for

every i = 1, . . . ,m let Ei be the projection on ei. Let B denote the algebra
Mm(C). Define a state σ

AB
in A⊗B by

σ
AB

:=

m
∑

i=1

λiσi ⊗Ei.

Note that we have

σ
A

=

m
∑

i=1

λiσi,

σ
B

=

m
∑

i=1

λiEi

and

H(σ
AB

) = H
(

m
∑

i=1

λiEi

)

+
m

∑

i=1

λiH(σi).

18



Applying Lemma 3.3 then yields

m
∑

i=1

λiH(σi) ≤ H
(

m
∑

i=1

λiσi

)

,

with equality if and only if σ
AB

= σ
A
⊗ σ

B
, i.e. all the σi for which λi 6= 0 are

equal. 2

The following theorem shows that if we vary a density operator ρ by a small
amount, then the von Neumann entropy of ρ changes, but this change is bounded
from above, and the bound depends on how much ρ is varied. We make vari-
ations in density operators quantitative by introducing a distance on the col-
lection of density operators in a certain ∗-algebra. Such a distance is the map
(ρ, σ) 7→ ‖ρ− σ‖1.

Theorem 3.5 (Fannes’ inequality) Let A be a ∗-algebra of operators on a

Hilbert space of dimension n. For any two density operators ρ and σ in A

|H(ρ) −H(σ)| ≤ ‖ρ− σ‖1 logn+
1

e
.

Proof: [7], page 512, Theorem 11.6. 2

3.2 The quantum relative entropy

Definition 3.6 Let A be a ∗-algebra and let ρ and σ be two density operators
in A. The quantum relative entropy of ρ relative to σ is defined as

H(ρ‖σ) := tr ρ(log ρ− logσ).

Theorem 3.7 (Klein’s inequality) Let A be a ∗-algebra. For any two den-

sity operators ρ and σ in A
H(ρ‖σ) ≥ 0,

with equality if and only if ρ = σ.

Proof: [7], page 511, Theorem 11.7. 2

Theorem 3.7 might give the impression that the relative entropy serves as a
metric. However, it should be noted that the relative entropy is not symmetric,
that is, in general H(σ‖ρ) 6= H(ρ‖σ).
Unlike the von Neumann entropy, the quantum relative entropy is not bounded
from above. As a matter of fact, H(ρ‖σ) is infinite if the support of ρ is not
contained in the support of σ, i.e. if {ξ : ρξ 6= 0} * {ξ : σξ 6= 0}.

Proposition 3.8 Let A and B be physical systems. Let σ
AB

be a density oper-

ator in the composite system A ⊗ B, let ρ
A

be a density operator in A and let

ρ
B

be a density operator in B. Then:
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1. H(σ
AB

‖σ
A
⊗ σ

B
) = H(σ

A
) +H(σ

B
) −H(σ

AB
);

2. H(σ
AB

‖ρ
A
⊗ ρ

B
) = H(σ

AB
‖σ

A
⊗ σ

B
) +H(σ

A
‖ρ

A
) +H(σ

B
‖ρ

B
).

Proof: By writing down the spectral decomposition of σ
AB

explicitely and using
Definition 1.14 we find

log(ρ
A
⊗ ρ

B
) = (log ρ

A
) ⊗ 1 + 1 ⊗ (log ρ

B
),

and so

H(σ
AB

‖ρ
A
⊗ ρ

B
) = −H(σ

AB
) − tr (σ

AB
(log ρ

A
⊗ 1)) − tr (σ

AB
(1⊗ log ρ

B
))

= −H(σ
AB

) − tr (σ
A

log ρ
A
) − tr (σ

B
log ρ

B
)

= −H(σ
AB

) +H(σ
A
) +H(σ

A
‖ρ

A
) +H(σ

B
) +H(σ

B
‖ρ

B
),

where in the second line we have used Lemma 2.9.
We obtain 1. by taking ρ

A
= σ

A
and ρ

B
= σ

B
, and then we obtain 2. by

substituting 1. in the above equation. 2

We can not take the above results further, as we will see in the following exam-
ple. The limitation that we demonstrate here will turn out to be a limitation
on the uncertainty relation we will eventually derive.

Example 3.9 Let A and B be ∗-algebras, A equal to the algebra M2(C) of
2 × 2 matrices and B equal to the Abelian algebra C2 of complex funtions on a
set of two elements. Let p1 and p2 be projections in A such that p1p2 = 0 and
tr p1 = tr p2 = 1, and let ρ

AB
be the density operator ( 1

2p1,
1
2p2) in A ⊗ B and

σ
AB

the density operator (p1, 0).
We have

H(σ
AB

‖ρ
AB

) = tr p1(log p1 − log(p1/2)) = log 2,

and when taking partial traces

H(σ
A
‖ρ

A
) = H(p1‖1/2) = − log(1/2) = log 2

and
H(σ

B
‖ρ

B
) = H((1, 0)‖(1/2, 1/2)) = − log(1/2) = log 2,

so
2H(σ

AB
‖ρ

AB
) = H(σ

A
‖ρ

A
) +H(σ

B
‖ρ

B
).

Regard a system that is a composition of two physical systems A and B. If two
density operators σ

AB
and ρ

AB
are used to describe the system A⊗B, say by two

different people, then it is intuitively clear that these two density operators are
easier to distinguish than the two density operators σ

A
and ρ

A
that are obtained

after casting out the subsystem B. This thought is the content of the following
example.

Example 3.10 (Monotonicity under partial traces) Let A and B be phys-
ical systems. For any two density operators σ

AB
and ρ

AB
in the composite system

A⊗B we have
H(σ

AB
‖ρ

AB
) ≥ H(σ

A
‖ρ

A
).
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This example is a special case of the general result that quantum relative en-
tropy is decreasing under completely positive, unital maps. Indeed, a partial
trace is the dual of an embedding, which is a completely positive, unital map.

Theorem 3.11 Let A and B be ∗-algebras and let S be a completely positive,

unital map from B into A. Then for any two density operators σ
A

and ρ
A

in A

H(S∗σ
A
‖S∗ρ

A
) ≤ H(σ

A
‖ρ

A
).

The proof of this theorem is rather lengthy. It will be the subject of section 3.3.

A direct consequence of the monotonicity of the quantum relative entropy un-
der partial traces, Example 3.10, is the joint convexity of the quantum relative
entropy.

Theorem 3.12 (Joint convexity) Let ρ1, . . . , ρn, σ1, . . . , σn be density oper-

ators in a ∗-algebra A and let λ1, . . . , λn be positive numbers that add up to 1.

Then

H
(

n
∑

i=1

λiρi

∥

∥

∥

n
∑

i=1

λiσi

)

≤
n

∑

i=1

λiH(ρi‖σi).

Proof: Define density operators ρ and σ in Mn(A) by

ρ =







λ1ρ1

. . .

λnρn






, σ =







λ1σ1

. . .

λnσn






.

RegardingH(ρ‖σ) and applying Example 3.10 directly yields the joint convexity
property. 2

3.3 Proof of the monotonicity of quantum relative entropy

Here we prove the monotonicity of the quantum relative entropy under com-
pletely positive, unital maps, Theorem 3.11. In this pursuit we closely follow [1]
by Ahlswede and Löber who in turn say to have closely followed [2] (concerning
Lemma 3.13) and [8]. The proof requires some preparatory work, which we will
start with.

Lemma 3.13 Let H1 and H2 be Hilbert spaces, V a linear map from a H1

into H2 with the property ‖V ‖ ≤ 1, and x a positive operator on H2. For any

µ ∈ [0, 1],
(V ∗xV )µ ≥ V ∗xµV.

Proof: Let a := (1 − V ∗V )
1

2 and b := (1 − V V ∗)
1

2 , and define an operator U
from H1 ⊕H2 into H2 ⊕H1 by

U =

(

V b
a −V ∗

)
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and an operator X on H2 ⊕H1 by

X =

(

x 0
0 0

)

.

Choose a positive number λ large enough such that

Y :=

(

V ∗xV 0
0 λ1

)

≥
(

V ∗xV V ∗xb
bxV bxb

)

= U∗XU.

We note that V ∗ξ ⊕ bξ is an eigenvector of U∗XU with eigenvalue α if ξ is an
eigenvector of x with eigenvalue α. We have

Y µ ≥ (U∗XU)µ = U∗XµU = U∗

(

xµ 0
0 0

)

U =

(

V ∗xµV V ∗xµb
bxµV bxµb

)

for any µ ∈ [0, 1]. Consequently, (V ∗xV )µ ≥ V ∗xµV . 2

Lemma 3.14 Let A and B be ∗-algebras and let S be a completely positive,

unital map from B into A. If σ
A

and ρ
A

are density operators in A, ρ
A

invertible,

then for any µ ∈ [0, 1] and any x ∈ B

trS(x)∗σµ
A
S(x)ρ1−µ

A
≤ trx∗σµ

B
xρ1−µ

B
,

where σ
B

= S∗σ
A

and ρ
B

= S∗ρ
A
.

Proof: Define a map V from B into A by

V : b 7→ S(bρ−
1

2

B
)ρ

1

2

A
.

V is a contraction, that is, ‖V ‖ ≤ 1:

‖V (b)‖2
2 = tr ρ

A
S(bρ−

1

2

B
)∗S(bρ−

1

2

B
)

≤ tr ρ
A
S((bρ−

1

2

B
)∗bρ−

1

2

B
)

= trS∗(ρ
A
)ρ−

1

2

B
b∗bρ−

1

2

B

= ‖b‖2
2

for any b ∈ B, where the inequality results from Schwarz, i.e. point 1 of
Lemma 1.39.
We define two more maps,

W
A

: A → A : a 7→ σ
A
aρ−1

A
,

W
B

: B → B : b 7→ σ
B
bρ−1

B
.

W
A

and W
B

are positive. For example, for any a ∈ A

(a|W
A
a)2 = tr a∗σ

A
aρ−1

A
= tr ρ−

1

2

A
a∗σ

1

2

A
σ

1

2

A
aρ−

1

2

A
= (σ

1

2

A
aρ−

1

2

A
|σ 1

2

A
aρ−

1

2

A
)2 ≥ 0.
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Observe that if p and q are spectral projections of σ
A

and ρ
A

respectively, then
pq is an eigenvector of W

A
. So for any µ ≥ 0 we have W µ

A
a = σµ

A
aρ−µ

A
and

W µ
B
b = σµ

B
bρ−µ

B
for every a ∈ A and b ∈ B. Furthermore, for any x ∈ B,

(x|V ∗W
A
V x)2 = tr ρ

1

2

A
S(xρ−

1

2

B
)∗σ

A
S(xρ−

1

2

B
)ρ−

1

2

A

≤ trσ
A
S(xρ−1

B
x∗)

= trσ
B
xρ−1

B
x∗

= (x|W
B
x)2,

where we used Schwarz again, so V ∗W
A
V ≤W

B
.

W
A

and W
B

are positive and ‖V ‖ ≤ 1, so according to Lemma 3.13 for any
µ ∈ [0, 1] we have V ∗W µ

A
V ≤ (V ∗W

A
V )µ ≤W µ

B
, and so for any x ∈ B

tr ρ
1

2

A
S(x)∗σµ

A
S(x)ρ

1

2
−µ

A
= (V xρ

1

2

B
|W µ

A
V xρ

1

2

B
)2

≤ (xρ
1

2

B
|W µ

B
xρ

1

2

B
)2

= trx∗σµ
B
xρ1−µ

B
. 2

Example 3.15 Adopting notations from Lemma 3.14,

trσµ
A
ρ1−µ
A

≤ trσµ
B
ρ1−µ
B

.

Now we are ready to prove that the quantum relative entropy is decreasing un-
der completely positive, unital maps.

Proof: Suppose σ and ρ are density operators on a finite dimensional Hilbert
space and 0 ≤ µ ≤ 1, then we observe that

d

dµ
trσµρ1−µ = trσµ(lnσ − ln ρ)ρ1−µ,

and in the limit µ going to 1 from below this expression becomes the quantum
relative entropy H(σ‖ρ) = trσ(lnσ − ln ρ).
Let A and B be ∗-algebras and let S be a completely positive, unital map from
B into A. Let σ

A
and ρ

A
be density operators in A, and denote S∗σ

A
and S∗ρ

A

by σ
B

respectively ρ
B
. Without loss of generality we may assume that ρ

A
is

invertible. Using Example 3.15 we obtain

lim
µ↑1

d

dµ
trσµ

A
ρ1−µ
A

= lim
µ↑1

1

1 − µ
(1 − trσµ

A
ρ1−µ
A

)

≥ lim
µ↑1

1

1 − µ
(1 − trσµ

B
ρ1−µ
B

)

= lim
µ↑1

d

dµ
trσµ

B
ρ1−µ
B

.

This finishes the proof. 2
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4 Entropic uncertainty relations

4.1 The Heisenberg uncertainty principle

From daily experience we know that it is possible to obtain information about
a classical system without disturbing it. To be more precise, we can perform
such a measurement that would we ignore the outcome of the measurement,
the state of the classical system would be unaltered. A similar argument holds
for systems that are partially classical and partially quantum physical. As we
will now see, it is only a purely quantum physical system that does not allow a
measurement that yields information about the system but leaves the state of
the system unaltered in case we would ignore this information.

Definition 4.1 A measurement S on a physical system A with a measuring
device C we call non-interfering if S(a⊗ 1) = a for every a ∈ A.

Theorem 4.2 Let S be a non-interfering measurement on a physical system A
with a measuring device C, then S(1 ⊗ c) is in the center of A for every c in

C. Furthermore, if A is a factor, then c 7→ S(1 ⊗ c) is a state on C times the

identity of A.

Proof: By Lemma 1.39, for all a ∈ A and all c ∈ C,

S(1⊗ c)a = S(1⊗ c)S(a⊗ 1) = S(a⊗ c).

Replacing a by a∗ and c by c∗, and taking the ∗ of each term in these equalities,
we obtain

aS(1⊗ c) = S(a⊗ c).

So for every c ∈ C, S(1⊗ c) is in the center of A.
If A is a factor, then its center equals C1, and the map c 7→ S(1⊗ c) evidently
is a state on C times the identity of A. 2

A non-interfering measurement by definition is one that does not change the
state of the system if the outcome is ignored. According to the previous the-
orem, if the system is purely quantum physical, i.e. if it is a factor, then the
outcome of the measurement does not depend on the initial state of the system
and so the measurement supplies us no information about the system.

In the remaining sections we pursue to make the above observation quantitative
by means of an uncertainty relation for a single measurement. Our first en-
deavour will involve an uncertainty relation regarding two measurements, and
therefore that relation will be introduced first.

4.2 An entropic uncertainty relation for a pair of mea-

surements

There is an entropic uncertainty relation for a pair of measurements. It relates
the Shannon entropy of our expectations on the outcome of the measurements.
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The measurements in question are of a particular kind, and we start by regard-
ing those measurements.

Definition 4.3 A collection {Xi}n
i=1 of positive operators in an algebra A with

the property
∑n

i=1Xi = 1, where 1 is the identity in A, is called a positive

operator valued measure, or POVM for short.

A POVM induces a particular kind of measurement:

Lemma 4.4 If {Xi}n
i=1 is a POVM in a ∗-algebra A and C is an Abelian ∗-

algebra of dimension n, then the map S defined by

S : (xi)
n
i=1 7→

n
∑

i=1

X
1

2

i xiX
1

2

i (5)

is a completely positive, unital map from A⊗ C into A.

Proof: Let H be the Hilbert space on which A acts. We choose a base {ei}n
i=1

of projections in C with the property eiej = δijei. Next we define a map V from
H into the Hilbert space H⊗ C by

V : ξ 7→
n

∑

i=1

X
1

2

i ξ ⊗ ei.

Without difficulty it is verified that V is an isometry and that

V ∗(xi)
n
i=1V =

n
∑

i=1

X
1

2

i xiX
1

2

i ,

where (xi)
n
i=1 =

∑n
i=1 xi ⊗ ei. According to Theorem 1.36 this finishes the

proof. 2

In the Schrödinger picture the measurement given by (5) reads

S∗ : σ 7→ (X
1

2

i σX
1

2

i )n
i=1. (6)

The entropic uncertainty relation that is regarded here is concerned with this
kind of measurement. Actually, it concerns our expectations on the outcome of
the measurements. The map S∗ yields a state on the composite system that
consists of the physical system and the measuring device, and when ignoring
the physical system we are left with a state on the measuring device which
reflects our expectations on the outcome. This state is the classical probability
distribution

pi = trX
1

2

i σX
1

2

i , i = 1, . . . , n,

where σ is the initial state of the physical system. The Shannon entropy of
this probability distribution we will denote by H(X, σ), where X = {Xi}n

i=1. If
Y = {Yi}m

i=1 is another POVM, then there is a sharp lower bound for the sum
H(X, σ) +H(Y, σ) of the two entropies, and this lower bound does not depend
on the initial state σ.

25



Theorem 4.5 Let A be a physical system and let X = {Xi}m
i=1 and Y =

{Yi}n
i=1 be POVM’s in A. For any density operator ρ in A

H(X, ρ) +H(Y, ρ) ≥ −2 logmax
i,j

‖X
1

2

i Y
1

2

j ‖.

Proof: [4], page 9, Corollary 2.6. 2

In the case that every Xi in X is a projection on a vector ξi and the ξi form
an orthonormal set, and likewise for Y, we have an uncertainty relation for two
non-degenerate observables. The lower bound then is non-trivial, i.e. strictly
positive, if and only if the two observables have no eigenvectors in common.
The uncertainty relation in this form is first derived by Maassen and Uffink [6]
pursuing a conjecture of Kraus [3].

4.3 An entropic uncertainty relation for a single measure-

ment, I

In a first attempt to derive an uncertainty relation for a single measurement,
we take the uncertainty relation for two measurements as given by Theorem 4.5
and we choose the measurements to be the same. The uncertainty relation then
reads

H(X, ρ) ≥ − log max
i,j

‖X
1

2

i X
1

2

j ‖ (7)

for any density operator ρ.

However, for any i, j

‖X
1

2

i X
1

2

j ‖ ≤ ‖X
1

2

i ‖‖X
1

2

j ‖

≤ max
i

‖X
1

2

i ‖2

= max
i

‖Xi‖,

so

max
i,j

‖X
1

2

i X
1

2

j ‖ = max
i

‖Xi‖,

and the uncertainty relation for a single measurement as given by (7) becomes

H(X, ρ) ≥ − log max
i

‖Xi‖. (8)

It is clear that this cannot serve as a uncertainty relation that is typical for
quantum physics. The lower bound only depends on the norms of the elements
Xi in the POVM X, and not on the multiplicative structure of the algebra A
that represents the physical system, that is whether the system is classical or
quantum mechanical. In fact, we can derive inequality (8) straight from the
definition of the Shannon entropy:
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For any probability distribution (q1, . . . , qn) we have

n
∑

i=1

qi log qi ≤
n

∑

i=1

qi log max
j
qj

= log max
j
qj .

Observing that for any density operator ρ and any element Xi in the POVM X
the norm of Xi is greater than the trace of ρXi,

‖Xi‖ ≥ tr ρXi,

we obtain

H(X, ρ) ≥ − logmax
i

‖Xi‖.

4.4 An entropic uncertainty relation for a single measure-

ment, II

Our second attempt has an entirely different approach. We focus on relative en-
tropy instead of von Neumann or Shannon entropy, and perhaps not surprising
we use the monotonicity property of relative entropy under completely positive,
unital maps, Theorem 3.11. The relation we derive unfortunately does not ap-
ply to every measurement, but only to those that know a specific kind of state.
This state has to be an equilibrium state, a state that is returned if the outcome
of the measurement is ignored. Furthermore, it has to be such a state that after
the measurement there is a final state in which the physical system and the
measuring device are independent. This limitation relates to Example 3.9.

Definition 4.6 Let S be a measurement on a physical system A with a mea-
suring device C. We define the maps

T : A → A : a 7→ S(a⊗ 1),

Q : C → A : c 7→ S(1⊗ c).

The map T is interpreted as performing a measurement S but ignoring the out-
come given by the measuring device; the map Q is interpreted as performing
measurement S and then ignoring the physical system.

Theorem 4.7 Let S be a measurement on a physical system A with measuring

device C. If there is a density operator λ
A

in A and a density operator λ
C

in C
such that S∗λ

A
= λ

A
⊗ λ

C
, then

H(ρ
A
‖λ

A
) −H(T ∗ρ

A
‖T ∗λ

A
) ≥ H(Q∗ρ

A
‖Q∗λ

A
)

for every density operator ρ
A

in A.
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Proof: Let ρ
A

be a density operator in A, then there is a density operator σ
AC

such that S∗ρ
A

= σ
AC

, and then T ∗ρ
A

= σ
A

and Q∗ρ
A

= σ
C
. Suppose there are

density operators λ
A

in A and λ
C

in C such that S∗λ
A

= λ
A
⊗λ

C
. Then we have

H(ρ
A
‖λ

A
) ≥ H(S∗ρ

A
‖S∗λ

A
)

= H(σ
AC

‖λ
A
⊗ λ

C
)

≥ H(σ
A
‖λ

A
) +H(σ

C
‖λ

C
)

= H(T ∗ρ
A
‖T ∗λ

A
) +H(Q∗ρ

A
‖Q∗λ

A
).

The first inequality is a consequence of the monotonicity of relative entropy
under measurements, Theorem 3.11, the second inequality comes from applying
Proposition 3.8. 2

This uncertainty relation relates the information generated by a measurement
to the alteration of the state of the physical system due to the measurement.
The amount of information contained in the classical output of the measur-
ing device is bounded from above by the amount of change of the state of the
physical system subject to the measurement. In case the measurement is non-
interfering, the left hand side of the inequality in Theorem 4.7 is zero, but it
might be so that the measurement is one to which Theorem 4.7 does not apply.
If the measurement is one to which Theorem 4.7 does apply and it is non-
interfering, then evidently it supplies us no information whether the physical
system is purely quantum physical or not. So as far as such measurements are
concerned, Theorem 4.7 succeeds in making quantitative the thought contained
in the Heisenberg uncertainty principle as stated in Theorem 4.2.
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5 Summary

In this paper we pursue to find an entropic uncertainty relation for a single mea-
surement. We consider a measurement on a physical system using a measuring
device that yields classical output. In the Schrödinger picture a state on the
physical system then is transformed to a state on the composite system of phys-
ical system and measuring device. We use entropy as a measure of uncertainty.
In our pursuit we take two different approaches. The first starts from the en-
tropic uncertainty relation for two measurements by Krishna and Parthasarathy,
a generalisation of the Maassen-Uffink inequality. By taking the two measure-
ments in this inequality to be the same, we hope to derive an uncertainty relation
for a single measurement. This approach, however, appears to be fruitless. The
obtained inequality for a single measurement fails to say anything quantitative
in the context of the Heisenberg uncertainty principle.
The second approach appears to be of some succes. We use the monotonicity of
the quantum relative entropy under completely positive, unital maps to obtain
an uncertainty relation in terms of the quantum relative entropy. This relation
entirely succeeds in reflecting the idea of the Heisenberg uncertainty principle
in a quantitative way, though with the shortcoming that it does not apply to
all measurements, but only to those that know a certain kind of state. This
state has to be an equilibrium state, a state that is returned if the outcome of
the measurement is ignored. Furthermore, it has to be such a state that after
the measurement there is a final state in which the physical system and the
measuring device are independent.

31


