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Abstract
For a quantum-mechanical counting process we show ergodicity, under the
condition that the underlying open quantum system approaches equilibrium
in the time mean. This implies equality of time average and ensemble
average for correlation functions of the detection current to all orders and with
probability 1.

PACS numbers: 03.65.Yz, 02.50.Ga, 02.70.Lq, 42.50.Lc

1. Introduction

Modern research on quantum-mechanical counting processes, be it numerical simulations
[Car] or experimental investigations [MYK], usually starts from the tacit assumption
that for the study of statistical properties of the counting records it does not make a
difference whether a large number of experiments is performed or a single very long one.
This assumption amounts to ergodicity of these records. In several recent discussions,
e.g. [BESW, NaS, PlK, Cre, DCM], investigators have addressed the question of its validity,
which has never been proved in the quantum-mechanical context. A partial result was
obtained by Cresser [Cre], who proved ergodicity in the L2-sense and to first order in the
detection current. In this paper we establish ergodicity in the full sense (theorem 3), under
a condition of convergence to equilibrium of the semigroup of completely positive maps
describing the dynamics of the source system. Our result holds in particular to all orders in the
detection current and exploits Birkhoff’s individual ergodic theorem to obtain convergence
with probability 1 (theorem 4). Theorem 5 formulates ergodicity in terms of multi-time
coincidences.

For the description of detection records we employ the rigorous formulation of Davies
and Srinivas [Dav, SrD], which has set the tone for later investigations [Car, WiM, GaZ].
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2. Counting processes according to Davies and Srinivas

We consider an open quantum system under continuous observation by use of a finite number
k of detectors. The state of the system is described by a density matrix ρ on a Hilbert
space, obeying a master equation ρ̇ = Lρ, where L is a generator of Lindblad form [Lin].
Normalization is expressed by the relation

tr L(ρ) = 0 for all ρ. (2.1)

A counting process connected to this quantum evolution is based on an unravelling of the
generator

L = L0 +
k∑

i=1

Ji (2.2)

which is interpreted as follows. The reaction of the detectors to the system consists of clicks
at random times. The evolution ρ �→ etL0(ρ) denotes the change of the state of the system
under the condition that during a time interval of length t no clicks are recorded. The operator
ρ �→ Ji(ρ) on the state space describes the change of state conditioned on the occurrence of a
click of detector i. For computational convenience we assume these operators to be bounded.
So, if ρ describes the state of the system at time 0, and if, during the time interval [0, t], clicks
are recorded at times t1, t2, . . . , tn of detectors i1, i2, . . . , in respectively, and none more, then,
up to normalization, the state at time t is given by

e(t−tn)L0Jin e(tn−tn−1)L0 · · · e(t2−t1)L0Ji1 et1L0(ρ). (2.3)

The probability density f t ((t1, i1), . . . , (tn, in)) for these clicks to occur is equal to the trace
of (2.3).

We imagine the experiment to continue indefinitely. The observation process will then
produce an infinite detection record ((t1, i1), (t2, i2), (t3, i3), . . .), where we assume that
0 � t1 � t2 � t3 � . . . , and limn→∞ tn = ∞ (i.e., the clicks do not accumulate).

Let � denote the space of all such detection records. By an event we mean some property
of the record, which we identify with the set E ⊂ � of all records with this property. The
events decidable at or before time t � 0 form a σ -algebra �t [Dav]. Together these σ -algebras
generate the full σ -algebra �. Following Davies and Srinivas we may now formulate the effect
of observation on the quantum system as follows: if t is a positive time, E an event in �t , and
ρ denotes a state, then we define

Mt(E)(ρ) :=
∞∑

n=0

k∑
i1=1

. . .

k∑
in=1

∫ t

0

∫ tn

0
· · ·

∫ t2

0
1E((t1, i1), . . . , (tn, in)) e(t−tn)L0Jin e(tn−tn−1)L0 . . .

× e(t2−t1)L0Ji1 et1L0(ρ) dt1 dt2 · · · dtn. (2.4)

Here 1E denotes the indicator function of the event E and Mt(E) is the effect on the quantum
system of the occurrence of E ∈ �t . Then

P
t
ρ (E) := tr Mt(E)(ρ) (2.5)

is the probability of the occurrence of E given that the system starts in ρ. We extend the
notation (2.5) also to density matrices ρ which are not normalized. The counting process as a
whole is described by the family (Mt )t�0. The effect of the counting on the quantum system,
when the outcome is ignored, is the time evolution

Tt(ρ) := Mt(�)(ρ).

It follows from the Dyson series (2.4) with E = � that Tt is indeed the original time evolution
etL, in particular, by (2.1), Tt preserves the trace.
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3. Ergodic theory

The time shift by t seconds is described by the map σt on �, which is given on a
particular record ω = ((t1, i1), (t2, i2), (t3, i3), . . .) ∈ � with tk � t < tk+1 by σt (ω) :=
((tk+1 − t, ik+1), (tk+2 − t, ik+2), . . .). The time shift of an event E towards the future is given
by σ−1

t (E).
The crucial property of the counting process (Mt)t�0 is the following. For all s, t � 0

and all events E ∈ �s, F ∈ �t we have

Ms+t

(
F ∩ σ−1

t (E)
) = Ms(E) ◦ Mt(F ). (3.1)

This Markov property was proved in [Dav]. Putting E = F = � we recover the semigroup
property Ts+t = Ts ◦ Tt of the time evolution.

When F ∈ �t and s � 0 then P
t+s
ρ (F ) does not depend on s. Indeed, since � = σ−1

t (�)

and Ts preserves the trace,

P
t+s
ρ (F ) = tr(Mt+s (F )(ρ)) = tr

(
Mt+s

(
F ∩ σ−1

t (�)
)
(ρ)

)
(3.1)= tr(Ms(�) ◦ Mt(F )(ρ)) = tr(Ts ◦ Mt(F )(ρ))

= tr(Mt (F )(ρ)) = P
t
ρ(F ).

Therefore, by Kolmogorov’s extension theorem, the family
(
P

t
ρ

)
t�0 of probability measures

on the σ -algebras (�t)t�0 with densities (f t )t�0 extends to a single probability measure Pρ

on the full σ -algebra �.

Lemma 1. For all t � 0, all E ∈ �,F ∈ �t and all states ρ:

Pρ

(
F ∩ σ−1

t (E)
) = PMt(F )(ρ)(E). (3.2)

In particular,

Pρ

(
σ−1

t (E)
) = PTt ρ(E). (3.3)

Therefore, if ρ is invariant under Tt , then Pρ is a stationary probability measure on �.

Proof. First suppose that E ∈ �s . Equality (3.2) is obtained from the Markov property
(3.1) by acting on ρ and taking the trace on both sides. Equation (3.3) follows by putting
F = �. The statements extend to all E ∈ � by Kolmogorov’s extension theorem since s was
arbitrary. �

Definition.

• The evolution (Tt)t�0 of a quantum system is said to converge in the mean to an equilibrium
state ρ if for all normalized density matrices ϑ and all observables x:

lim
τ→∞

1

τ

∫ τ

0
tr((Ttϑ)x) dt = tr(ρx).

• The counting process (Mt )t�0 will be called ergodic if the following holds. Given any
time-invariant event E, i.e. σ−1

t (E) = E for all t � 0, then either Pϑ(E) = 0 for all
density matrices ϑ or Pϑ(E) = 1 for all ϑ .

The condition on (Tt )t�0 is satisfied in many cases of practical importance. In particular if
(Tt )t�0 has only one normal equilibrium state and either multiples of the unit operator are the
only invariant observables or H is finite dimensional, then the above convergence in the mean
automatically holds.
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Theorem 2. If the evolution Tt = etL, t � 0, converges in the mean, then the counting process
(Mt)t�0 is ergodic for any unravelling (2.2).

Proof. Let E be a time-invariant event and ϑ any state. Then by (3.3), Pϑ(E) = Pϑ

(
σ−1

t (E)
) =

PTt ϑ (E). Since Pϑ is linear and continuous in ϑ , we may average both sides over the interval
[0, τ ] and take the limit τ → ∞ to obtain Pϑ(E) = Pρ(E). For an unnormalized density
matrix χ we find instead that

Pχ (E) = Pρ(E)tr(χ). (3.4)

If F is any event in �t then

Pϑ(F ∩ E) = Pϑ

(
F ∩ σ−1

t (E)
) (3.2)= PMt(F )(ϑ)(E)

(3.4)= Pρ(E)tr(Mt(F )(ϑ)) = Pρ(E)Pϑ(F )
(3.4)= Pϑ(E)Pϑ(F ).

The resulting equation extends to all F ∈ �, in particular it holds for F = E:

Pϑ(E) = Pϑ(E)2.

It follows that Pϑ(E) is equal to 0 or 1. �

Let us denote the expectation
∫
�

f (ω) dPρ(ω) of an integrable function f on � by Eρ(f ).

Theorem 3. If the evolution (Tt )t�0 converges in the mean to ρ, then for all integrable
functions h on � and all initial states ϑ we have, almost surely with respect to Pϑ ,

lim
τ→∞

1

τ

∫ τ

0
h(σt (ω)) dt = Eρ(h). (3.5)

Proof. By lemma 1 and theorem 2, Pρ is stationary and ergodic. Hence, by Birkhoff’s
individual ergodic theorem, the limit on the left exists almost surely with respect to Pρ , and
is equal to the constant Eρ(h). Since the set F of points ω ∈ � for which (3.5) holds, is time
invariant, we have Pϑ(F ) = Pρ(F ) = 1 for all states ϑ by (3.4). �

4. Applications

The main result of the present ergodic theory for quantum counting processes, theorem 3,
can be made considerably more concrete by applying it to detection currents and multi-time
coincidences. These applications are standard consequences of the ergodicity property.

For simplicity we consider only one detector, which responds to a point event at time s
by producing a current γ (t − s) at time t. (This will be zero for t < s.) The total detection
current is given by

It (ω) :=
∑
s∈ω

γ (t − s).

Let P̃ρ be the unique stationary extension of Pρ to negative times on the configuration
space �̃ of the full real line. We shall denote expectation with respect to this measure by Ẽρ .

Theorem 4. Let the quantum evolution (Tt )t�0 converge in the mean to a state ρ and let
the detector response function γ : R → [0,∞) be bounded and integrable. Then for all
0 � t1 � t2 � . . . � tn and all initial states ϑ we have, almost surely with respect to Pϑ ,

lim
τ→∞

1

τ

∫ τ

0
It1+t (ω) · · · Itn+t (ω) dt = Ẽρ

(
It1 · · · Itn

)
.
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For n = 2 this theorem implies a quantum-mechanical version of the Wiener–Khinchin
theorem which was proved by Cresser in the mean square sense [Cre]. In the proof we shall
make use of the non-exclusive probability density of the process [Ram, Bar, Str, vKa, GaZ],
which is stationary since Ttρ = ρ and tr ◦ Tt = tr,

gn(t1, t2, . . . , tn) := tr
(
JTtn−tn−1J · · · JTt2−t1J (ρ)

)
.

The advantage of using the functions gn instead of fn will be clear from theorem 5: they
have a straightforward physical interpretation as n-time correlation functions, which can be
measured in disregard of events taking place at other instants of time. The functions gn are
related to the probability densities f t

n from (2.3) of the counting process (where t � tn), by

gn(t1, t2, . . . , tn) = f t
n(t1, t2, . . . , tn) +

∞∑
m=1

∫ t

0

∫ sm

0
· · ·

∫ s2

0
f t

m+n({t1, . . . , tm} ∪ {s1, . . . , sn})

× ds1 · · · dsm =
∫

�t

f t ({t1, t2, . . . , tn} ∪ ω) dω (4.1)

where �t is the set of finite subsets of [0, t], which can be identified with the time-ordered
points in {∅} ∪ ⋃∞

m=1[0, t]m. By dω we mean ds1 ds2 · · · dsm if ω = {s1, s2, . . . , sm} with
s1 � s2 � · · · � sm.

Proof of theorem 4. First we note that theorem 3 also holds if �, Pρ and Eρ are replaced by
�̃, P̃ρ and Ẽρ respectively, as introduced above, and σt by the left shift of ω ⊂ R. Then we
have Is+t (ω) = Is(σt (ω)). Now fix n ∈ N and 0 � t1 � · · · � tn. Let h : �̃ → R be given by

h(ω) := It1(ω)It2(ω) · · · Itn (ω).

It follows that h◦ σt = It1+t It2+t · · · Itn+t , and the statement to be proved follows from theorem 3,
provided that h is integrable. In the appendix we shall show that this is indeed the case. �

As our second application we shall show that the non-exclusive probability densities gn

have a straightforward pathwise interpretation: they are equal to the frequency of multi-time
coincidences on almost every detection record. For this, let N[a,b](ω) := #(ω ∩ [a, b]) denote
the number of clicks detected during the time interval [a, b].

Theorem 5. Let (Tt )t�0 converge in the mean to the equilibrium state ρ. Then for all n ∈ N,
all 0 � t1 � t2 � · · · � tn, all ε between 0 and min1�j<n(tj+1 − tj ) and all initial states ϑ we
have, almost surely with respect to Pϑ ,

lim
τ→∞

1

τ

∫ τ

0

 n∏
j=1

N[tj +t,tj +t+ε](ω)

 dt =
∫ tn+ε

tn

· · ·
∫ t1+ε

t1

g(s1, . . . , sn) ds1 · · · dsn. (4.2)

Proof. Fix n ∈ N and a sequence 0 � t1 � t2 � · · · � tn of times. Let K : � → {0, 1} be
the function that maps ω ∈ � to 1 if ω contains exactly n points, one in each of the intervals
[t1, t1 +ε], . . . , [tn, tn +ε], and to 0 otherwise. Then we obtain for t � tn +ε, using set notation
and the integral-sum lemma from [LiM],∫ tn+ε

tn

· · ·
∫ t1+ε

t1

g(s1, . . . , sn) ds1 · · · dsn =
∫

�t

K(α)g(α) dα

(4.1)=
∫

�t

∫
�t

K(α)f t (α ∪ β) dα dβ
[LiM]=

∫
�t

(∑
α⊂ω

K(α)

)
f t(ω) dω. (4.3)
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A short calculation shows that∑
α⊂ω

K(α) =
n∏

j=1

N[tj ,tj +ε](ω). (4.4)

Since 0 � gn(s1, s2, . . . , sn) � ‖J‖n, the integral (4.3) is convergent, hence the product on
the rhs of (4.4) is integrable as a function of ω. Application of theorem 3 to this product now
yields the statement. �

5. Discrete time

There is an obvious analogue of our main result (theorem 3) in discrete time [MaK]. A Kraus
measurement [Kra] is given by a decomposition of a completely positive operator T on state
space as

Tρ =
k∑

i=1

aiρa∗
i

where ρ �→ aiρa∗
i describes the state change of the density matrix ρ when the measurement

gives the outcome i. Thus for initial state ϑ the probability of finding the sequence of outcomes
i1, i2, . . . , im by repeated Kraus measurement is given by

tr
(
aim · · · ai1ϑa∗

i1
· · · a∗

im

)
.

As in continuous time, this yields a probability measure Pϑ on the space of detection records
� := {1, 2, · · · , k}N. Again, if (T n)n∈N converges in the mean to some state ρ, then the only
time-invariant events in � have measure 0 or 1 for all Pϑ . In particular, Pρ is ergodic.
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Appendix

We shall show that, in the situation of theorem 4, h := It1 · · · Itn is an integrable function
on �̃ provided that the jump operator J is bounded and the detector response function
γ : R → [0,∞) is bounded and integrable.

Let M := max(1, ‖γ ‖∞). Fix n ∈ N and a sequence 0 � t1 � t2 � · · · � tn of times.
Let

ϕ(t) :=
n∑

j=1

γ (tj − t).

Then ϕ is also integrable, with ‖ϕ‖1 = n‖γ ‖1. For k ∈ N, let Jn,k denote the set of all
surjections {1, . . . , n} → {1, . . . , k}. Then we may write for any ω ∈ �̃,

It1(ω)It2(ω) · · · Itn (ω) =
∑
s1∈ω

· · ·
∑
sn∈ω

γ (t1 − s1) · · · γ (tn − sn)

=
n∑

k=1

∑
j∈Jn,k

∑
{a1,...,ak }⊂ω
a1<···<ak

γ (t1 − aj(1)) · · · γ (tn − aj(n))
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�
n∑

k=1

# (Jn,k)
∑
α⊂ω
#α=k

‖γ ‖n−k
∞

(∏
s∈α

ϕ(s)

)
� n · nnMn

∑
α⊂ω

(∏
s∈α

ϕ(s)

)
. (A1)

Using set notation and the integral-sum lemma [LiM] again we conclude that, for all t � 0
and u � tn + t ,

Eρ

((
It1It2 · · · Itn

) ◦ σt

)/
Mnnn+1

(A1)

�
∫

�u

∑
α⊂ω

(∏
s∈α

ϕ(s − t)

)
f u(ω) dω

[LiM]=
∫

�u

∫
�u

(∏
s∈α

ϕ(s − t)

)
f u(α ∪ β) dα dβ

(4.1)=
∫

�u

(∏
s∈α

ϕ(s − t)

)
g(α) dα

�
∞∑

m=0

‖J‖m

m!

∫
[0,u]m

ϕ(s1 − t) · · · ϕ(sm − t) ds1 · · · dsm

� exp

(
‖J‖

∫ u

0
ϕ(s − t) ds

)
� en‖J‖·‖γ ‖1 .

Therefore, since the rhs does not depend on t,

Ẽρ

(
It1 · · · Itn

) = lim
t→∞ Eρ

((
It1 · · · Itn

) ◦ σt

)
< ∞.
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