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Laser-based optical diagnostics, like planar Laser-Induced Fluorescence and,

especially, Raman imaging, often require very selective spectral filtering. We

advocate the use of an imaging spectrograph with a broad entrance slit as

spectral filter for two-dimensional imaging. A spectrograph in this mode of

operation produces output that is a convolution of the spatial and spectral

information present in the incident light. We describe an analytical decon-

volution procedure, based on Bayesian statistics, that retrieves the spatial

information while avoiding excessive noise blow-up. The method allows direct

imaging through a spectrograph even under broad-band illumination. In this

paper we introduce the formalism and discuss the underlying assumptions.

The performance of the procedure is demonstrated on an artificial, but

pathological example. In a companion paper (next paper in this issue) the

method is applied to the practical case of fuel equivalence ratio Raman

imaging in a combustible methane/air mixture. c© 2004 Optical Society of

America

OCIS codes: 000.2170, 100.1830, 100.3020
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1. Introduction

Optical techniques find ever more applications in (reactive or non-reactive) gas flow

diagnostics.1–3 There is good reason for that. Light scattering techniques are as near

as one can get to non-intrusive diagnostics, there exist widely available (laser) light

sources of unsurpassed spectral brightness that allow specific detection of selected

chemical species (of great importance especially in combustion), and a large variety

of experimental techniques has been developed for many specific purposes. This paper

focusses on two-dimensional (2-D) optical imaging of density distributions of specific

chemical species. There are two methods of choice for this purpose,1,2 Planar Laser-

Induced Fluorescence (PLIF) and Planar Raman scattering. Both combine a thin

(quasi-monochromatic) light sheet derived from a powerful laser system with (inten-

sified) CCD camera’s for detection of the scattered light. Both, also, usually require

good spectral filtering of the scattered light, in order to suppress undesired contribu-

tions to the measured light intensity. In this paper we discuss the use of an imaging

grating spectrograph with a CCD camera on the exit port (an Optical Multichannel

Analyser (OMA)) for spectrally selective 2-D imaging. Although we have the specific

purpose of Raman imaging in mind, the technique is not restricted to that, and can

be used for spectrally selective imaging in general. The use of a spectrograph has two

main advantages over the use of spectral band-pass filters: its spectral selectivity is

greater, and it provides a spectrum. Thus, undesired spectral contributions will be

suppressed more effectively, and even if unexpected spectral interferences occur, a

spectrograph will at least show them, whereas they are likely to pass unnoticed when
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using band-pass filters.

An ideal imaging grating spectrograph projects a faithful image of its entrance

slit onto its exit plane. Where exactly on the exit plane this image ends up also

depends on the wavelength of the incident light, as follows directly from the familiar

grating equation4,5 (see Fig. 1),

d (sin α ± sin β) = mλ , (1)

where m is the order of diffraction and d is the groove distance. Both the angle of

incidence (α) and of reflection (β) are defined with respect to the grating normal

(dash-dotted lines). The ‘+’-sign applies when α and β are on the same side of the

grating normal, and the ‘−’-sign when they are on opposite sides (as in the depicted

example). In most cases, a spectrograph is used with a narrow entrance slit to record

line (1-D) spectra, e.g. Raman spectra in combustion science,1,6–9 or point (0-D)

spectra for increased signal-to-noise ratios.10,11 In the former case (1-D), one of the

axes that span the exit plane carries a spectral scale and the other one still carries

purely spatial information (along the height of the entrance slit). One way to visualise

planar (2-D) patterns with 1-D imaging is to perform consecutive line measurements

for many longitudinal positions. Recently, Sijtsema et al.12 introduced direct 2-D

imaging through a spectrograph as a non-intrusive tool for quantitative, planar gas

flow visualisation. This technique, further referred to as OMA imaging, is the focus of

the present paper. It will be shown that OMA imaging, originally introduced for use

with quasi-monochromatic light,12 can be used in case of extended spectral structure

as well.13
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Below, we concentrate on the theoretical issues related to spectrally selective 2-D

imaging using a set-up that incorporates an imaging spectrograph with a diffraction

grating operated in first order. The grating effectively produces an output image on

the spectrograph exit plane in which the spectral and spatial information present

in the incident light are scrambled. It is shown that, in spite of the diffraction, the

original (spatial) image can nevertheless be reconstructed for many practical situa-

tions. The first section deals with the formalism that describes the scrambling of the

spatial and spectral information by the imaging spectrograph. Under not too strin-

gent prerequisites, this scrambling is shown to take the form of a convolution. The

second section describes the straightforward analytical deconvolution that, given the

spectral composition of the input, should in principle return the spatial distribution.

This scheme, however, is shown to suffer in practice from excessive noise blow-up.

Therefore, a linear Bayesian deconvolution filter was developed. This filter, that can

still be expressed analytically, is described in section 3B, together with a discussion

of its performance and the way it is tuned to a particular application. The procedures

are illustrated in this paper by means of actual recordings of a square grid that is

illuminated by bichromatic light. This is a fairly pathological example, because the

original object contains sharp contrast. Any algorithm that provides satisfactory re-

sults on this case may therefore be expected to perform well on less demanding cases

also.

The mathematics in this paper is not exhaustive; more mathematical detail and

properties of the Bayesian filter can be found in the thesis of Tolboom.14 A com-

panion paper15 (further referred to as T2) is devoted to the practical application of
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the general OMA imaging results derived here to 2-D Raman imaging for fuel equiv-

alence ratio mapping. It turns out that 2-D OMA imaging takes full benefit of an

imaging spectrograph and provides a technique that is very time and cost efficient for

simultaneous mapping of molecule-specific 2-D density distributions.

2. Convolution by a spectrograph

The images that are the subject of this paper are formed through a spectrograph via

a reflection grating operated in first order. The latter diffracts the incident light into

its constituent wavelength components in a direction perpendicular to the grooves,

as described by Eq. (1). If the spectrograph is operated with a narrow entrance slit

(as would normally be the case for spectroscopic measurements), the angle α is well-

defined and the light intensity on any position of the spectrograph exit plane is, via

the angle β and Eq. (1), directly related to a specific wavelength λ. However, if the

entrance slit is not narrow, the angle α is not well-defined, and this may give rise to

ambiguity in the light intensity distribution in the exit plane. In this broad-slit case,

one dimension of the image (say x̂) in the exit plane contains both spatial and spectral

information. The other dimension (parallel to the grooves of the grating and to the

height of the entrance slit; ŷ) contains spatial information only, and will be omitted in

the following discussion. Fig. 2 depicts a cross section of the spectrograph, showing the

entrance slit in the focal plane of a collimating lens, a reflective grating and the exit

port in the focal plane of a second lens. (In commercial spectrographs16 mirrors are

used instead of lenses, but this does not make a difference to the formalism presented.)

The input image on the entrance slit is a real image, formed by an external lens (not
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shown in Fig. 2), of some (planar) light source. For clarity, Fig. 2 illustrates the case of

bichromatic light, in which the two wavelengths are chosen to be sufficiently distinct

to prevent the two resulting images from overlapping. In practice, however, this need

not be the case: the incident light may be polychromatic, resulting in overlapping

images.

In principle, all rays with a given wavelength λ originating from a specific point

xin in the entrance slit plane will be imaged onto exactly one point xout in the exit

plane, thus transforming spectral information into spatial information. Conversely,

the wavelength λ that can be associated with any position xout in the exit plane also

depends on the source position xin. For an extended, polychromatic source, there-

fore, the relation between λ and xout is ambiguous. (This, in fact, is what usually is

loosely referred to as ‘loss of spectral resolution’ if the entrance slit of a spectrograph

is broadened.) In general terms, the relation between the measured light intensity

distribution T and the incident intensity distribution Sin can be written as17

T (xout) =

∫
λ

∫
xin∈slit

T (λ, xin; xout) Sin(λ, xin) dλ dxin , (2)

with xin,out coordinates in the spectrograph entrance and exit planes, respectively, T

the (spatial) intensity distribution in the exit plane, Sin the spectral and spatial in-

tensity distribution in the entrance plane, and T a transfer function. The integrations

run over the whole spectrum and, according to the reasoning above, over the whole

range of xin along the width of the entrance slit. As there is input only at the entrance

slit, the integration over space can be extended from −∞ to +∞ without affecting

the result.18
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For the present purpose, perfect imaging will be assumed, and only a grating

efficiency η(λ) is accounted for. Under this assumption the transfer function links λ

and xin to xout via

T (λ, xin; xout) = η(λ) δ(xout − f(λ, xin)) , (3)

in which the function f(λ, xin) depends on grating diffraction and imaging optics. It

is interpreted as the function that describes where on the exit plane a monochromatic

point source, having wavelength λ and being located at xin, would be imaged. The

Dirac delta function allows only the signals of those combinations of λ and xin for

which a point xout is illuminated to contribute to the signal at that point xout.

Unravelling of the spectral and spatial information contained in the input pattern

Sin(λ, xin) requires that Sin can be factorised, that is,

Sin(λ, xin) = Sλ(λ) × S(xin) . (4)

This restriction, by the way, is not particular to OMA imaging, but applies to spec-

trally selective imaging in general. It limits the interpretation of OMAgraphs (that

is, a photograph taken through an Optical Multichannel Analyser) to applications in

which either the light source has a uniform spectral composition over the width of

the entrance slit, or the contributions from sources with different spatial and spectral

distributions do not overlap on the OMAgraph (see below, section 3A). In T2 it will

further be discussed when and whether this factorisation is justified for multi-species

Raman scattered light. For the moment it suffices to assume that it holds for a sin-

gle light source that has a spectral profile Sλ(λ) and a spatial intensity distribution
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S(xin). In this case, the factorisation leads to

T (xout) =

∫
λ

∫
xin

η(λ) δ(xout − f(λ, xin)) Sλ(λ) S(xin) dλ dxin

=

∫
xin

η
(
f̂(xin; xout)

)
Sλ

(
f̂(xin; xout)

)
S(xin) dxin , (5)

with f̂(xin; xout) being the inverse of f(λ, xin) when solved for λ for a fixed xout. Note

that f̂ is a function of one variable (xin) only, because xout is a parameter dictated

by the point under investigation.19 In practice, the angles α and β will vary only over

small ranges. Linearisation of the sines in the grating equation, Eq. (1) with minus-

sign, then provides the relation between the three coordinates (subscripts 0 denote

reference positions),

Ms(xin,0 − xin) − (xout,0 − xout) = ζλ . (6)

This relation implies true imaging (magnification Ms, determined by the spectro-

graph) and linear diffraction (grating constant ζ , characterizing the grating). Both

Ms and ζ are dimensionless quantities. The Dirac delta function in Eq. (3) selects

f(λ, xin) = xout from Eq. (6). For this simple relation, the ‘inverse’ function is cast

explicitly by

f̂(xin; xout) = λ =
(xout − xout,0) − Ms(xin − xin,0)

ζ
. (7)
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Substitution of this specific inverse results in T (xout) taking the form

T (xout) =

∫
xin

η

(
(xout − xout,0) − Ms(xin − xin,0)

ζ

)

× Sλ

(
(xout − xout,0) − Ms(xin − xin,0)

ζ

)
S(xin) dxin (8a)

= [(η × Sλ) ∗ S] (xout) . (8b)

This outcome represents a convolution (∗) of a spectral distribution (that is shifted

forward and compressed in its argument) with a spatial distribution.

As it is the spatial pattern S that is of interest, it needs to be reconstructed from

the image T via a deconvolution procedure, once the spectral dependency (η×Sλ) is

known. The latter can be obtained by recording T (xout) using a narrow entrance slit

(located at the reference position xin,0 and illuminated with intensity S0), for which

case

Sδ(xin) = S0 δ(xin − xin,0) , (9)

in which the subscript δ indicates the narrow entrance slit. For this particular input

the convolution ends up as

Tδ(xout) = η

(
(xout − xout,0)

ζ

)
Sλ

(
(xout − xout,0)

ζ

)
× S0 , (10)

which, of course, is just a spectrum. Since it is used to deconvolve an OMAgraph for

the spectral distribution, we will refer to it as spectral reference function, R(xout), in

the following. In order to make the connection to Eq. (8), Eq. (10) is rewritten as

η

(
(xout − xout,0) − Ms(xin − xin,0)

ζ

)
Sλ

(
(xout − xout,0) − Ms(xin − xin,0)

ζ

)
=

=
R(xout − Ms(xin − xin,0))

S0
. (11)
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Back-substitution of this expression for the spectral reference function R turns the

convolution, Eq. (8), into its final form,

T (xout) =

∫
xin

R(xout − Ms(xin − xin,0))
S(xin)

S0
dxin . (12)

Note that the grating efficiency η(λ) cancelled, because it is present in both the

spectral reference image R and the convolved image S. Neither does the grating

constant ζ appear explicitly.

An example of the convolving action of the spectrograph is presented in Fig. 3,

where three OMAgraphs of a square grid under bichromatic illumination are shown for

three different entrance slit widths. Like all subsequent OMAgraphs in this chapter,

they were taken through an imaging spectrograph (Acton Research Corporation Spec-

traPro300i f/4 with a 2400 gr/mm grating). The slight curvature of the OMAgraphs

is an imaging artifact of the spectrograph; it will be seen below that the deconvolution

algorithm can automatically correct for it. Also, the magnification of the spectrograph

is 14% larger along the x̂-direction than along the ŷ-direction, which causes the square

grid to look rectangular; this is not corrected for in the examples presented here. (But

it is corrected for in the companion paper T2.) An intensified CCD camera (Prince-

ton Instruments ICCD-512-T: 512 × 512 pixels; ∅25 mm intensifier; 16 bit dynamic

range) at the exit port of the spectrograph recorded the OMAgraphs corresponding

to regions imaged by a camera objective (Nikon UV-Nikkor 105 mm f/4.5) on the

entrance slit of the spectrograph. In the images of Fig. 3 the slit width ds is increased

from 40 µm (b) to its maximum value of 3.10 mm (d). The ds = 40 µm OMAgraph is

taken as the infinitesimally narrow slit measurement of the spectral reference function
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for deconvolution purposes. It contains two lines of the mercury spectrum.20 Further

decrease of the entrance slit width did not result in a narrower line profile, but only

decreased the intensity levels. On broadening the entrance slit, the ‘spatial’ images

produced by both lines broaden accordingly (c) and eventually overlap (d). On top

of every OMAgraph, the intensity along a single strip is plotted, a horizontal cross

section (fixed y) at the height of the white arrows.

The notion of recording a somehow distorted version of the original input image is

not unfamiliar. In general imaging experiments, for example, artifacts are introduced

by aberrations of the optical detection system and its limited resolution. In image

restoration literature21,22, 24 such artifacts are often described in terms of a point-

spread function (psf), which describes how a point source is mapped onto the image

plane by a convolution procedure that is similar to the one presented here. Although

R is not exactly a psf, it can be thought of as acting like one, by linking the input

image to the output. Note, however, that R is not spatially invariant.

3. Deconvolution of OMAgraphs

The main result of the previous section is an analytical expression, Eq. (12), for the

intensity distribution in the exit plane of a spectrograph as a convolution of the spatial

and spectral intensity distributions incident on the entrance slit. In practice, one is

often interested in just the spatial intensity distribution. This section focusses on the

deconvolution of the spectrograph output with the spectral distribution, which should

provide the desired spatial input intensity distribution. Special attention is paid to

the role of noise, accumulated on the spectrograph output, in the deconvolution pro-
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cedure. First, a straightforward deconvolution algorithm is discussed and evaluated,

followed by a more sophisticated approach which yields much better results.

A. Analytical formulation

The general formulation of the convolution as given in Eq. (12) forms the starting

point for the deconvolution procedure, and is here restated as

T (xout) =

∫
xin

R(xout − Ms(xin − xin,0)) G(xin) dxin + N (xout) , (13)

where the normalised pattern S/S0 is substituted by G for notational convenience, and

a noise term N is added. The importance of this extra contribution to the formalism

will become clear below. The reconstruction of the original spatial distribution S

requires a deconvolution of the convolved image T (‘broad’ entrance slit measurement)

with respect to the spectral dependency R (‘narrow’ slit measurement). This inverse

problem can be solved conveniently via Fourier transformation. The Fourier transform

(FT) and its inverse are defined by

FT [F (x)] ≡ F̃ (k)
def
=

∫
x

F (x) exp(−ikx) dx (14a)

FT−1
[
F̃ (k)

]
≡ F (x)

def
=

1

2π

∫
k

F̃ (k) exp(ikx) dk , (14b)

respectively. Application of the Fourier transform to the convolution, Eq. (13), yields

T̃ (k) = R̃(k) exp(iMskxin,0) × G̃(Msk) + Ñ (k) , (15)

taking due care of the magnification Ms and the shift xin,0.
14 The convolution in

direct space thus becomes a regular product in reciprocal (k) space, for which the

components have decoupled.
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Once the Fourier components T̃ (k) and R̃(k) have been assessed, the Fourier com-

ponents of the original image at the entrance slit can formally be obtained analytically

by solving Eq. (15) for G̃,

G̃(Msk) =
T̃ (k) − Ñ (k)

R̃(k) exp(iMskxin,0)
, (16)

and after an inverse Fourier transform the entrance slit image in direct space, G(xin),

results.

In practical OMA imaging, the signal at the exit plane is recorded by a CCD

camera, requiring a reformulation (discretization) of the analytical problem. Details

on this procedure are given in the Appendix.

Fig. 4 demonstrates the effect of the analytical deconvolution procedure (Ap-

pendix, Eq. (A6)) to the data of Fig. 3. In this measurement, there was noise con-

tained in both the spectral reference signal (Fig. 3(b)) and the convolved distribution

(Fig. 3(d)). The straightforward deconvolution result is extremely noisy (image 4(a))

and contains virtually no useful quantitative information, as can be seen clearly in

the graph of the single-strip cross section above the image. Note that this occurs in

spite of the fact that both input images (Figs. 3(b) and (d)) are not particularly

noisy. A closer look at the reciprocal space components (image 4(b)) indicates that

the resulting noise can be attributed to large high-k-components25 that do not can-

cel each other on inverse Fourier transformation. The Fourier transform diagonalizes

the convolution problem and hence the deconvolution. However, since many of its

high k-components are small, the inverse problem is (numerically) ill-conditioned and

sensitive to small variations (noise!) in the recorded data. In a more physical explana-
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tion, the deconvolution algorithm attempts to increase the contrast in the image, i.e.

it attempts to restore structure in the input that was smeared out by the convolu-

tion: any structure that is present in the measured (convolved) image must have been

more pronounced in the actual spatial distribution on the entrance slit (before convo-

lution). There is, however, no way for the reconstruction algorithm to distinguish real

data from noise, that is added during detection and superposes artificial structure

(on a pixel-to-pixel basis, that is, high-frequency) onto the convolved signal. Since

the analytical algorithm does not treat the noise any different than the ‘real’ data,

it generates high k-components to account for the rapid pixel-to-pixel fluctuations in

the measured (signal + noise) data. Unfortunately, it is not trivial to discriminate

between ‘real’ data and noise.

Zero-padding the data (to array sizes up to 213 pixels) to increase the resolution

in k-space, did not alter the deconvolved result in direct space significantly. Addi-

tional windowing of the raw data to rigidly impose periodic boundary conditions as

required for the Fourier transform is also insufficient to restore the original image.

This means that the noise in the straightforward reconstruction is not a consequence

of ill-satisfied periodic boundary conditions. At the cost of loosing spatial resolution,

binning two neighbouring pixels is a trivial low-pass filter for the spectral and the

convolved data. A subsequent deconvolution yields Fig. 4(c), which looks less noisy

than (a). Indeed, its corresponding Fourier power spectrum (Fig. 4(d)) shows less con-

tributions from high k-components. However, although the structure of the object can

now be recognized, the S/N ratio in Fig. 4(c) is still poor, as compared to the input

(Fig. 3(d); compare especially the two single-strip cross sections above each image).

15



Clearly, additional filtering is required to separate data from noise by suppressing ‘ex-

ploded’ G̃(k)-contributions, especially at higher reciprocal space components. There

exist filters that globally do this job,22 but often they are ad hoc, and do not provide

dramatic improvements. A more general algorithm dedicated to filtered deconvolution

is presented below.

B. Linear Bayesian deconvolution filter

The goal is to reconstruct the original spatial pattern {Gn} (a strip of the input)

that gave rise to a measurement {Tm} (a strip of the output) for a given spectral

convolution function {Rm}. As the actual input {Gn} is in principle unknown, many

candidates might have given the same measured output (including noise), and one

of these has to be selected. This boils down to finding the most likely reconstruction

of {Gn}, given the incomplete knowledge provided by the experiment. ‘Incomplete’

means that the actual noise contribution is not known, for example. What we do

know, however, is (i) a measurement of the output and (ii) the convolution model

of Eq. (12), which links the output to the input. A Bayesian statistical analysis23

prescribes a procedure for quantifying the term ‘most likely’ and for assigning a

reliability to the reconstruction. For this purpose, the intensities of the input pattern,

the measured data, and the noise are thought of as stochastic variables to which

probability density functions (pdf) are associated, describing the probability that a

stochastic variable takes a certain value. The spectral reference function is assumed

to be well assessed as the response to a peak input. The principles of the data filter

are presented in this paper; details can be found in the thesis of Tolboom.14
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In this section, upper-case letters denote stochastic variables, the corresponding

lower-case letters represent their actual values (data). Bold-face vector notation indi-

cates that we deal with the entire set of N stochastic variables or their specific values,

respectively; subscripts indicate a single component.

Given the pdf’s and the experimental fact that the measurement of T resulted in

the particular outcome t (denoted by T = t), the reconstruction problem is equivalent

to calculating the conditional expectation values

E
[
G

∣∣T = t
]
≡ F(t) (17)

as a function F of the measured output t. These conditional expectation values are

the best a posteriori estimates of the a priori input g, given the measured outcome

T = t.26 The criterion ‘best’ is defined as that particular F(t) that minimizes the

mean square errors

E
[
|Gn −Fn(t)|2

]
∀n (18)

as based on the measured T = t. This section provides the best reconstruction by a

direct calculation of the conditional expectation value. It will be Bayes’ theorem which

is used to link a priori knowledge of both input and output to a posteriori knowledge.

Different ways exist to arrive at the final result, for example by a direct minimization

of the mean square error, either analytically or graphically.14 However, we think

that the formulation presented below gives the clearest insight in the mathematics

involved.

In the statistical approach, both the input image G and the noise N are modeled
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by stochastic variables, that is,

Gn = c + σXn ∀n and Nm = b + τYm ∀m , (19)

respectively, where the Xn’s and Ym’s are taken a priori from mutually independent

standard normal distributions, a choice that will be commented upon below. It is

assumed in the model that all pixels in a strip are characterized by one set of param-

eters {c, σ, b, τ}. The mutual independence (denoted by ‘⊥⊥’) of all distributions X

and Y implies that

Xm⊥⊥Xn (m �=n) the pdf of the optics before the spectrograph

is neglected;

Ym ⊥⊥ Yn (m �=n) the noise is accounted for per individual pixel;

Xm⊥⊥ Yn ∀m,n the noise is not correlated to the signal at all.

(20)

Since G (the normalized input signal) is a dimensionless quantity, the parameters c

and σ are dimensionless, too. On the other hand, b and τ have the same dimension

as N , which is [count]. It can be shown14 that the pdf (
) of the original image Gn

taking on the value gn can be derived from the standard normal distribution as


Gn(gn) =
1√
2π σ

exp

[
−1

2

(
gn − c

σ

)2
]

∀n (21)

and similarly for the noise term


Nm(νm) =
1√
2π τ

exp

[
−1

2

(
νm − b

τ

)2
]

∀m . (22)

The parameters b and c are the averages of the noise and the normalised input im-

age, respectively, and τ 2 and σ2 are the variances in the corresponding signals. The
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distribution 
Gn (Eq. (21)) illustrates the dilemma in choosing σ. On the one hand,

σ has to be sufficiently large to allow all the reasonable data, but on the other hand,

it should be small enough to exclude negative values (the input gm is necessarily pos-

itive), effectively by assigning small probabilities to them. The exclusion of negative

numbers is not an issue for the noise model. The addition of ‘mean’ c to the input is

an extension to existing analytical models (like documented by MacKay27), since it

shifts the a priori pdf to the (positive) intensities expected on physical principles. A

physical approach to determine σ and τ is discussed at the end of this section.

The discretized form of the convolution model, Eq. (A2), provides the link be-

tween the assumed stochastic variables Eq. (19) and the output, which we can mea-

sure. These output values,

Tm =
∑

n

Rm−n+n0 Gn + Nm ∀m , (23)

are also treated as stochastic parameters in the current approach. Once the values

g = (g0, . . . , gN−1) of the input pattern G = (G0, . . . , GN−1) are specified, the pdf for

the output follows from this equation as the conditional pdf (or: likelihood)


Tm

(
tm

∣∣G = g
)

=
1√
2π τ

exp

[
−1

2

(
tm − [

∑
n Rm−n+n0 gn + b]

τ

)2
]

∀m . (24)

This is an equation for a normal distribution once more, but now centered around

the value (
∑

n Rm−n+n0 gn + b) with variance τ .

The problem in OMA imaging, however, is that we measure the output T = t,

from which we want to retrieve the pdf for the input pattern. This (a posteriori) pdf

is also a conditional probability density function, 
Gq

(
gq

∣∣T = t
)
, but it cannot be
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calculated readily. Fortunately, it suffices for our problem to calculate the conditional

expectation value of Gq, which is defined for discrete stochastic variables as

E
[
Gq

∣∣T = t
]

=
∑
gq

gq P
[
Gq = gq

∣∣T = t
]

=
∑

g

gq P
[
G = g

∣∣T = t
]

∀q . (25)

(Note that these relations contain a summation over values gq and g rather than a

summation over components q. Since the individual components are independent, this

does not introduce additional components.14). The conditional probability P (on an

event; for discrete stochastic variables) that was introduced in Eq. (25) is related to

the conditional pdf 
 (of a value; for continuous stochastic variables) via

P
[
Gq ∈ (a, b)

∣∣T = t
]

=

b∫
a


Gq

(
gq

∣∣T = t
)
dgq . (26)

It is at this point that Bayes’ theorem

P
[
G = g

∣∣T = t
]

=
P
[
T = t

∣∣G = g
]
× P[G = g]

P[T = t]
(27)

enters the statistical approach for the deconvolution by reversing the ‘information’

(T = t) and ‘unknown’ (G = g) arguments of the likelihood, turning Eq. (25) into

E
[
Gq

∣∣T = t
]

=
∑

g

gq

P
[
T = t

∣∣G = g
]
× P[G = g]

P[T = t]
∀q . (28)

The denominator does not depend on g, so it can be taken out of the sum. Addition-

ally, the decomposition relation of probabilities is applied to the denominator

P[T = t] =
∑

g

P
[
T = t

∣∣G = g
]
× P[G = g] , (29)
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and the conditional expectation value becomes

E
[
Gq

∣∣T = t
]

=

∑
g

gq P
[
T = t

∣∣G = g
]
× P[G = g]∑

g

P
[
T = t

∣∣G = g
]
× P[G = g]

∀q , (30)

showing that the numerator and the denominator contain the same probabilities,

and that the numerator carries the additional value gq that is averaged. This is a

relation familiar from statistical physics, for example, where the population of a grand

canonical ensemble is normalised by the partition function.28

In the continuum limit of the stochastic variables, the last equation contains

Riemann summations that go over into integrals over pdf’s for every pixel q,

E
[
Gq

∣∣T = t
]

=

∫
RN

gq 
T

(
t
∣∣G = g

)
× 
G(g) dg∫

RN


T

(
t
∣∣G = g

)
× 
G(g) dg

=

∫
RN

gq exp
[
−1

2

∣∣ t−R∗g−b
τ

∣∣2]× exp
[
−1

2

∣∣g−c
σ

∣∣2] dg∫
RN

exp
[
−1

2

∣∣ t−R∗g−b
τ

∣∣2]× exp
[
−1

2

∣∣g−c
σ

∣∣2] dg

=

∫
RN

gq exp

[
−1

2

∑
m

(∣∣∣ tm−∑
n Rm−n+n0 gn−b

τ

∣∣∣2 +
∣∣gm−c

σ

∣∣2)]
dg

∫
RN

exp

[
−1

2

∑
m

(∣∣∣ tm−∑
n Rm−n+n0 gn−b

τ

∣∣∣2 +
∣∣gm−c

σ

∣∣2)]
dg

, (31)

where it is used that all stochastic variables are independent and that the pre-factors

in the numerator and the denominator cancel. Because the g and R values in the

first part of the exponentials are coupled via the convolution, these integrals cannot

be performed analytically in direct space. Substitution of the Fourier transforms of

the g, R, t, b, and c values provides a convenient change of the coordinates of inte-

gration that decouples the integrand once more. However, this change of coordinates

is rather intricate and introduces some complications with respect to the coordinates

and domain of integration (see appendix 6.A in the thesis of Tolboom14). Analytical
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evaluation via reciprocal space of the integrals in Eq. (31) eventually leads to the key

formula

E
[
Gq

∣∣T = t
]

=
c
(

τ
σ

)2 − bR̃k=0

R̃2
k=0 +

(
τ
σ

)2 + FT−1

 R̃∗
k,n0

t̃k∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2

 (32)

for the restoration of the unknown original input image. (The tilde denotes a Fourier

transform; see Appendix.)

Equation (32) is the main result of this paper, describing the reconstruction of

the most probable input pattern by means of filtered deconvolution of the measured

output. Since the expression is analytically closed, it enables a straightforward im-

plementation in computer code without iterative loops. In Eq. (32) the first term

denotes an offset, around which data is scattered by the FT−1 in the second term.

The parameter c is always taken as the average over the convolved image t.

The filter has only one free model parameter, the fraction σ/τ , instead of two (σ

and τ separately) as might perhaps be expected from the supposition of the stochastic

variables of Eq. (19). This effective filter parameter can be interpreted as a measure

for the contrast between the ‘real’ structure in the signal (e.g. the grid lines and the

numbers) and the ‘noise’ accumulated in the measurement.

Equation (32) is the linear Bayesian-filtered version of the straightforward de-

convolution, Eq. (A6). To compare the two results we rearrange the argument of the

FT−1 in Eq. (32) according to

R̃∗
k,n0

t̃k∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2
=

∣∣∣R̃k,n0

∣∣∣2∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2

t̃k

R̃k,n0

=
1

1 +
(

τ
σ

)2
∣∣∣R̃k,n0

∣∣∣−2

t̃k

R̃k,n0

. (33)

This shows that the filter effectively suppresses all k-components of the straightfor-

ward deconvolution by a factor [1 + (τ/σ)2|R̃k,n0|−2] ≥ 1. Alternatively, the power of
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the Fourier transformed components within the inverse FT can be written as∣∣∣∣∣∣∣
R̃∗

k,n0∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2

∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
filtered deconvolution

function

=


∣∣∣R̃k,n0

∣∣∣2∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2


2

︸ ︷︷ ︸
filter

×
∣∣∣∣∣ 1

R̃k,n0

∣∣∣∣∣
2

︸ ︷︷ ︸
deconvolution

function

. (34)

Written this way, the Bayesian filter with the choice of normal distributions for the

stochastic variables is seen to yield similar results as the Wiener deconvolution filter.22

The pre-factor ‘filter’ is a measure for the power attributed by the filter to the

‘real’ data, depending only on the spectral reference function R and the regularization

parameter σ/τ . It is clear that if τ/σ approaches zero (i.e. the measured structures

are completely due to structure in the input image), the non-filtered deconvolution,

Eq. (A6), will remain. In that limit, the offset in Eq. (32) approaches −b/R̃k=0,

corresponding to subtraction of the (constant) noise level b from the deconvolved

data. The results in this paper are obtained for b = 0, so there is no such additional

offset correction for accumulated noise. The limit of τ/σ → ∞, on the other hand,

would physically correspond to a measured output that is dominated by noise. In

this case, the filter effectively suppresses all Fourier components, resulting in the

prediction of a flat input distribution.

The graphs in Fig. 5 illustrate the action of the (filtered) deconvolution in re-

ciprocal space for the single-strip data R̃ of Fig. 3(b). At the right in Fig. 5 are the

powers of the deconvolution function (b) and of the filtered deconvolution function (d)

on a linear scale. The spectrum (b) is dominated by high-k components, and these

cause the extreme noise in the straightforward reconstruction (e.g. Fig. 4(a)). As can

be seen from Fig. 5(c), it is exactly these high-k components that are strongly sup-
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pressed by the ‘filter’-factor, Eq. (34). As a result, the power spectrum of the filtered

deconvolution (Fig. 5(d), which should be compared to Fig. 5(b)) is dominated by

(real) structure in the low-k components, a contribution that is present as only a mi-

nor wrinkle in the unfiltered spectrum (b). The exact shape of the filter (c) strongly

depends on the shape of |R̃k|2 (Fig. 5(a)). In this particular case, the presence of two

spectral lines causes the oscillations in |R̃k|2, and in all plots derived from it. For a

single-line spectrum, for example, all curves would have been smooth.

Fig. 6 illustrates the dependence of the reconstruction on the filter parameter σ/τ

in some more detail. The ‘turning point’ for the filter behaviour, as can be seen from

Eq. (34), lies at about σ/τ ≈ |R|−1. For σ/τ <∼ |R|−1, the structure in the measured

image is taken as dominated by noise, whereas for σ/τ >∼ |R|−1 it is attributed to the

input image itself. The former situation results in a relatively uniform input image

(as reflected in the smooth reconstruction of Fig. 6(a)) onto which read-out noise has

imposed structure. The latter situation corresponds to an input image with rich struc-

ture onto which relatively little noise has accumulated. The deconvolution therefore

produces a wildly fluctuating image (c), approaching the non-filtered deconvolution

result. In the best result (here σ/τ = 6 count−1; see below), the original object is

very well reproduced, and the other parts of the image are nearly empty. (Ideally,

they would be completely dark.) The horizontal cross sections (white arrows, similar

to those in Figs. 3 and 4) emphasize the truthful recovery of the input image; three

distinct minima represent the grid lines in the single-strip data, and an intermediate

structure is present that comes from cutting the ‘68’. The ‘grid’ minima are separated

by approximately 43 pixels and they are somewhat broader than 4 pixels (full width
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at half maximum), in perfect agreement with the printed grid of 1:10 for the line

thickness. Still, there are a few small undershoots (oscillations and negative num-

bers), also in the best result. As discussed after the equations Eq. (21) and Eq. (22)

for the pdf’s, this does not come as a surprise.

Although rigorous mathematical procedures exist for estimating the regulariza-

tion parameter σ/τ (see e.g. Engl et al.29), we have opted for a more physical approach.

The physical situation is that light is transmitted through the entrance slit only. Thus,

after deconvolution the signal should ideally be confined to a finite area on the CCD

chip corresponding to the entrance slit image, while the rest of the chip is empty. De-

fine the image contrast as 〈P (in)〉/〈P (out)〉, with 〈P (in)〉 the average power ‘inside’

the reconstructed entrance slit image (pixel numbers 176 through 335), and 〈P (out)〉

the average power ‘outside’ this part of the image (pixel numbers 1 through 165).

The ‘best’ σ/τ should then maximize the image contrast. From a plot of the image

contrast against σ/τ (Fig. 7), this is found to be the case for σ/τ = 6 count−1. Note

that the maximum in Fig. 7 is rather broad, so that the filter performance is not very

critical to the exact value of σ/τ that is used.

A final check on the quality of the reconstructed image is to re-convolve it with

the spectral reference function as done in Fig. 8. The difference of this result with

the measured data is also indicated, being one to two orders of magnitude smaller

than the actual data. The average power in the re-convolved image is 0.946 times the

average power contained in the original data, so the filter attributes approximately

5% of the power to noise for σ/τ = 6 count−1.
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4. Some properties of OMA imaging & the reconstruction of OMAgraphs

A. Linearity

The linearity of the deconvolution filter can be demonstrated by considering the

deconvolution of any linear combination of two measurements T = (a1t1 + a2t2),

given by

E
[
Gq

∣∣T = a1t1 + a2t2

]
= (a1 + a2)

c
(

τ
σ

)2 − bR̃k=0

R̃2
k=0 +

(
τ
σ

)2 +

+ FT−1

R̃∗
k,n0

{a1t1k + a2t2k}∣∣∣R̃k,n0

∣∣∣2 +
(

τ
σ

)2


= a1E

[
Gq

∣∣T = t1

]
+ a2E

[
Gq

∣∣T = t2

]
. (35)

The factor (a1 +a2) before the offset term is maybe not obvious. Since the total signal

now consists of two separate measurements (t1 and t2) multiplied by the factors a1

and a2, the average value c and the average noise level b of the two images need

to be multiplied by the same factor. Note that the linearity is a consequence of our

specific choice of standard normal distributions in Eq. (19), rather than that it has

been pre-supposed in the derivation of Eq. (32). The physical implication for OMA

imaging is that (spectral) structures that do not overlap in an OMAgraph can be

treated separately. This allows various sources with different spectral distributions

to be recorded in a single OMAgraph, as long as their contributions do not overlap

in the exit plane. (See Fig. 3(c), the deconvolved image can be found in Tolboom’s

thesis.14) Thus, the factorization requirement stated in Eq. (4) is seen not to be any

more severe for OMA imaging than for any other kind of spectrally selective imaging.
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B. 2-D image reconstruction

The spectrograph, like any other optical device, introduces imaging defects. Since the

impact of these effects increases with the distance from the optical axis, especially

the non-diffracting (ŷ) dimension will suffer from defects. The imaging artifacts of

the particular system used in our experiments can be judged from Fig. 3(a). The

two spectral lines (images of a straight entrance slit) are curved, and they become a

bit less sharp towards the upper and lower ends. Both effects do not noticeably vary

over the width of the image. Since horizontal cross sections are treated individually,

this justifies the perfect-imaging assumption of Eq. (3). Furthermore, the strip-by-

strip deconvolution provides two additional advantages related to inherent properties

of deconvolution. If the spectral reference function is recorded with the same spec-

trograph settings as the image (but with a narrow entrance slit, of course; compare

Figs. 3(a) and (c)), the reference image will contain a spectral reference function on

each image line (pixel row). The deconvolution will (i) consider the (1-D) psf as part

of the spectral reference function and it will (ii) center the deconvolved image around

the origin.30 Thus, if individual strips of an OMAgraph are deconvolved with a spec-

tral reference function of the corresponding strip in a spectral reference image (like

that of Fig. 4(a)), both the additional blurring and the curvature are corrected for.

In some practically complicated cases, the spectral reference function cannot be de-

termined for every strip, or needs to be averaged for sufficient signal-to-noise ratio. In

such cases, the reconstruction will still contain residual blurring and/or the curvature

will persist. Nevertheless, these images can often be used in quantitative studies, as
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shown in the companion paper T2.

C. Improvements and restrictions

A main advantage of the Bayesian deconvolution filter presented here is that it is

expressed in closed form, Eq. (32). Thus, the expectation values can be calculated

directly, which obviates the need for CPU-intensive optimization schemes. This, how-

ever, has its price. We had to assume linear imaging (Eq. (6)), and found that the

linearity of the filter in fact arises from our choice of normally distributed stochastic

variables (Eq. (19)). The linear imaging assumption was required for the spectro-

graph output to take on the form of a convolution (Eq. (12)). It may break down for

extended spectral structures, depending also on the equipment. Probably, the best

check of whether or not this assumption is justified will be empirical.

The choice of normal distributions for the stochastic variables is in itself not

expected to be a serious restriction, but it does allow (unphysical) negative values

in the final result (see the discussion of Fig. 6). More elaborate distributions could

remedy this, but probably at the expense of not yielding a closed expression for the

filter any more. This, for example, is the case with the Maximum Entropy method,31

where positivity of the reconstruction is assured, but a numerical global optimization

algorithm is required to find it.

Finally, there is the assumption of (piecewise) factorizability of the input (Eq. (4)).

We do not consider this a restriction that is particular to OMA imaging, but rather

one that holds for all spectrally selective quantitative imaging schemes. In fact, we

consider it one of the advantages of using a spectrograph over, for instance, band-pass
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filters: if the factorisability assumption breaks down, the spectrum will at least tell

you that it does.

5. Summary and conclusion

Under the hypothesis of factorizability of the input to a linearized spectrograph into

a purely spectral and a purely spatial part, the entangling of spatial and spectral

information by an OMA set-up is described effectively by a convolution. Reconstruc-

tion is achieved by a dedicated linear Bayesian deconvolution filter, depending on one

free model parameter only. The data filter is based on Gaussian probability density

functions for the unknown spatial input and the accumulated noise, allowing for a

closed analytical filter expression (Eq. 32). The resulting reconstruction shows clear

contrast and a good reproduction of the factual input. Moreover, the algorithm pre-

scribes a recipe for generating quantitatively interpretable data, thus satisfying an

essential criterion for quantitative 2-D imaging.

Since OMA imaging requires just an imaging spectrograph and a single camera,

this is a reliable, relatively cheap, and efficient technique for quantitative imaging

experiments. A practical application is discussed in the companion paper on the

following pages.
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6. Appendix: discretization

The photodetection chip in a CCD camera34 has a finite (say N) number of pixels of

finite (non-zero) dimension. These properties require a discretization of the analytical

formulation, Eq. (13). Since the pixels have a finite dimension, they already integrate

the signal over a finite region of xout. All integrals over space therefore become a sum

over the sub-integrals, i.e. the pixel values. The discretized version of Eq. (13) thus

reads

Tnout =
∑
nin

Rnout−Ms(nin+nin,0) × Gnin
+ Nnout , (A1)

where the indices nout and nin denote discrete positions (or, equivalently, pixel num-

bers) and replace the continuous parameters xout and xin, respectively. This discretiza-

tion implies that not only the output signal at the exit port is discretized, but also

the input signal at the entrance slit. Thus, the aim will be to estimate the signal G as

a function of pixel number (discretized position). The index [nout −Ms(nin +nin,0)] of

the spectral reference function R labels the (discretized) wavelength. It is expressed in

terms of both the discrete positions nin and nout, and need not be an integer because

it contains the magnification Ms ∈ R. From Eq. (6), however, we know that for every

wavelength λ, any specific Msnin (or Msxin) may be converted into a specific nout

(or xout), where the indices nin and nout both denote pixel numbers. Therefore, the

reference to ‘in’ and ‘out’ can be omitted and the indices can simply be any integer

counter without reference to the specific planes (input or output).

Another consequence of the CCD chip having only a finite number of pixels, is

that T and R can only be recorded for a finite number of points. The experimental
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settings must, of course, be such that this finite segment is representative for the

complete signal, so that this representative part can be put into the convolution.

When assuming periodic boundary conditions (period N), the discretized convolution

in direct space (Eq. (A1)) becomes

Tm =

N−1∑
n=0

Rm−n+n0 × Gn + Nm . (A2)

All subsequent summations and products over indices will be from 0 through N − 1.

The discretized form of the Fourier transform and its inverse are32

F̃k =

N−1∑
n=0

Fn exp(−2πikn

N
) and Fn =

1

N

N−1∑
k=0

F̃k exp(
2πikn

N
) , (A3)

respectively. Like m and n, the index k is merely a counter, which denotes the recipro-

cal space component of a Fourier transformed signal. The discrete Fourier transforms

are implemented in a computer program as Fast Fourier Transforms (FFT’s) on 512

(= 29) data points. The discretized analogue of Eq. (15) is

T̃k = R̃k,n0 × G̃k + Ñk with R̃k,n0

def
= R̃k exp(

2πik n0

N
) , (A4)

and the relation for the discretized deconvolved signal in reciprocal space (Eq. (16))

becomes

G̃k =
T̃k − Ñk

R̃k,n0

. (A5)

Since the phase factor exp(2πikn0/N) will always appear in combination with R̃k,

it is absorbed in the latter for notational brevity; this is indicated by the additional

subscript n0 to R̃k,n0. The pixel values in direct space are

Gn = FT−1
[
G̃k

]
= FT−1

[
T̃k − Ñk

R̃k,n0

]
=

1

N

N−1∑
k=0

[
T̃k − Ñk

R̃k,n0

]
exp(

2πikn

N
) ,

(A6)
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where the index n numbers the pixels (formally in the entrance slit plane). Since the

Fourier algorithm is essentially just a mathematical trick, the physical information

should be contained only in the real part of the FT−1. The imaginary part ought to

vanish. The program that performed the deconvolution, Eq. (A6), was tested success-

fully on computer generated data (not shown). The average power33 in the imaginary

part was always found to be about 25 orders of magnitude smaller than the average

power in the real part, being zero indeed within the limit of computational accuracy.
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Figure 1. Schematic representation of the diffraction of light by a grating.
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Figure 2. Cross section of a spectrograph including a first order ray trace

for bichromatic light. The heights of entrance slit and exit port as well as

the grooves of the grating are perpendicular to the plane of the picture. Also

indicated in the figure are the coordinates xin and xout that appear in the

formalism of section 2.
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[a]

Figure 3. Three OMAgraphs recorded with different widths of the entrance slit

of the spectrograph, as indicated in the images. The horizontal axes contain

both spectral and spatial information, and the vertical axes are purely spatial.

(a) Imaged object, a 5.0×5.0 mm2 grid printed on white paper with a line width

of 0.5 mm; (b) spectrum of the light source (a Hg(Ar) calibration lamp; λ (nm)

indicated), recorded by reflection off white paper; (c) and (d) OMAgraphs of

the object shown in (a) under illumination with the same source as in (b).

The graphs on top of the images are single-strip cross sections of the images at

the position of the arrows, cutting the lower circles of the ‘68’ on the grid. All

images are scaled individually. The curvature of the images and the horizontal

extrusion of the grid are artifacts of the spectrograph.
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Figure 4. Strip-by-strip deconvolution of Fig. 3(d) with the spectrum of

Fig. 3(b) via the unfiltered Fourier transformation algorithm, Eq. (A6). The

purely spatial images (a) and (c) show data in direct space, the corre-

sponding power spectra are shown in (b) and (d), respectively (first half

of the k-components only). (a,b): direct deconvolution; note the large high

k-components in (b). (c,d): ditto, but with two-pixel binning; the high k-

components partly cancel (d). On top: single-strip cross sections at the posi-

tion of the arrows. (Zero baseline indicated in (a,c); left ordinates omitted in

(b,d) to emphasize the low k-components.)
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Figure 5. Power spectra (single strips at the location of the arrows in Fig. 3).

(a) Fourier transformed spectral reference function R̃k of Fig. 3(b); (b) non-

filtered deconvolution function; (c) filtering of (b) (note logarithmic scale); and

(d) linear Bayesian filtered deconvolution function. The power of the filtering

function (c) is the pre-factor ‘filter’ of Eq. (34). (c) and (d) are calculated for

σ/τ = 6 count−1.
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Figure 6. Strip-by-strip linear Bayesian deconvolution of Fig. 3(d) with the

spectrum of Fig. 3(b). From right to left are the results for three ratios σ/τ ,

ranging from (a) ‘too low’ (σ/τ = 1 count−1) via (b) ‘best’ (σ/τ = 6 count−1)

to (c) ‘too high’ (σ/τ = 800 count−1). Above the images are the single-strip

cross sections (similar to those in Figs. 3 and 4), and on top are their power

spectra for the first half of k-components. The images are scaled individually,

but the graphs are all on the same linear grey scale. The (left) ordinates of

the power spectra are omitted to show the similarity of the hardly filtered, low

k-components.
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Figure 7. Contrast (defined in the text) as a function of σ/τ . The maximum

in the curve is taken as the best σ/τ for the deconvolution as it minimises the

relative power in the physically dark region. The corresponding value for the

non-filtered results (Fig. 4(a)) is: 〈P (in)〉/〈P (out)〉 = 1.35.
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Figure 8. The re-convolved image of the data that were obtained with a decon-

volution for σ/τ = 6 count−1 (solid curve) and its difference with the original,

measured data (residual; grey curve). The difference is 0.04 count on average

and has a standard deviation of over 7 kcount.
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