A discrete entropic uncertainty relation

H. Maassen*
University of Nijmegen,the Netherlands

Recently [MaU] a new class of ‘generalised entropic’ uncertainty relations
for the probability distributions of non-commuting random variables was
proved as a simple consequence of the Riesz-Thorin interpolation theorem.
Here we shall give a quite explicit proof of the central inequality of this class,
an ‘entropic’ uncertainty relation, which has been conjectured by Kraus
[Kra).

We consider the following situation, not uncommon in quantum mechan-
ics. Two observables of a physical system are represented by symmetric com-
plex n x n matrices A and B, which we shall assume to have non-degenerate
spectra. We can write A and B in the form

n n
A=) P, and B=) [iQ;
i=1 i=1
where Py, ---, P, and Q1,- - -, @y are sequences of mutually orthogonal one-
dimensional projections, and the sequences aq,- - -, a, and f1, - - -, 8, consist
of distinct real numbers, to be interpreted as the values which the observables
can take. Each state w on the algebra M, of all complex n X n matrices
then induces probability distributions on the spectra of A and B: w(F;) (or
w(Q;)) is the probability to find the value «; (or (3;) when measuring the
observable A (or B). One now defines the uncertainty H(A,w) of A in the
state w as the Shannon entropy of this probability distribution:
n
H(4,w) = - 3 w(P) logw(P).
i=1
The question was raised ([BBM], [Deu], [Kra]), what can be said about
H(A,w) + H(B,w), more in particular about its lower bound

d(4,B) = inf (H(A,w) + H(B,w)).
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One may regard this infimum as a ”degree of incompatibility” of the observ-
ables A and B.

As a first reduction, let us note that H(A,w) does not depend on the
real numbers aq,-- -, a,, but only on the projections P, ---, P,, which are
the minimal projections in the maximal abelian von Neumann algebra A
generated by A. Let us therefore write H(A,w), H(B,w) and d(.A, B) in what
follows. When viewed in this way, d becomes a natural distance function
between maximal abelian von Neumann algebras, comparable to the distance
of point sets (not of points) in geometry: d(A,B) = 0 if and only if A and
B have a minimal projection in common.

The latter observation suggests to consider the following easily com-
putable functional on pairs of abelian von Neumann algebras in M,,:

m(A, B) = max{trPQ|P € A, Q € B minimal projections}.
This definition amounts to

2
m(A,B) = lggéntr(BQj) = max |<ei, fi>%,

where e; and f; are unit vectors in the ranges of F; and @, respectively.
Note that
m(A,B) <1,

with equality if and only if d(A, B) = 0. On the other hand, since for all j

n

D tr(PQj) = trQ; =1,

=1
we have

m(A, B) >

S

It was observed by Kraus [Kra] that this lower bound is reached for ‘com-
plementary’ observables A and B, which corresponds to e; and f; of the
form

(ej)x = 1if j =k, 0 otherwise;

1 2mije
(fj)k = %6 "

Note that the algebras A and B then take the form:

A={X € M,|X diagonal},



B= {X € Mn|Xi+k:,j+lc = Xi,j for all 4, j, k},

where the addition of indices is taken modulo n.
Kraus went on to conjecture that for such complementary observables
(or algebras in our terminology)

d(A, B) = logn.
Indeed, the inequality d(A, B) < logn is easily established: choose w( ) =
<ey, Xey>, sothat (w(Py), -, w(Py)) = (1,0,---,0) and (w(Q1), -+, w(Qp)) =
(1,1 1) then H(A,w) = O and
H(B,w) ——Zn:llo 1 = logn
) - pat n g n - gn.

Kraus’ conjecture is therefore a consequence of the following theorem.

Theorem 1 For all mazimal abelian von Neumann subalgebras A and B of
M, one has
d(A,B) > —logm(A, B).

Proof. Let {Py,---,P,} and {Q1,---,Q,} be complete sets of minimal pro-
jections in A and B respectively, and let e; and f; be unit vectors in the
ranges of P; and @; respectively (j = 1,---,n). We may assume that
{e;} is the canonical basis of C". From the concavity of the function
n:[0,1] = [0,00) : z — —zlogz (with n(0) := 0) it follows that the
minimum of H(A,w) + H(B,w) = 3271 (n(w(F)) + n(w(Q;))) is taken in a
vector state w(X) = <1, X1p> on M,,. It therefore suffices to prove that for
allp € C™

n

Z (I<ej, p>1%) +77(|<fj,1/)>|2))2—10gngz;X|<ei,fj>l2- (1)

Now let m = m(A, B) = max; j |<e;, f;>|* and let a unitary map 7' : C" —
C™ be defined by T'f; = e;. Then 1h; = <e;, > and (T); = <e;, Tp> =
<T~lej, > = <fi,yp>. If we now write h(3) for 37, n(|t;|*), then the
inequality takes the form

h(¥) + h(T¢) > —logm. (2)



For n € N and p € [1, 0] let IP(n) denote the Banach space C"with norm

I, = { (S, [il)P i1 <p <o

maxi<i<n | if p = oo.
We now make the following observation.

Lemma 2 For all unit vectors 1 in C"

d
F||¢||p|p:2 = h(y).

Proof. First we note that

_||w||pp 2 = Z|¢J| |p 2=

D il log [l = =3 > n(lv;1?) = —3h(®).

j=1 j=1

Therefore, since ||| = 1,

1

d d -
FH"M'IJ';D:Q = F(Iliﬁllg)” lp=2 =

dp

log 415+ (Iw1p)> - 205

||¢||p|p 2

O

Let ||T||, denote the norm of the linear map 7' : C" — C", viewed as an
operator IP(n) — 19(n), where %—I—% = 1. (Here we make the usual convention
1 _
vm.

= MaxX; g |<fj, €k>| =

Theorem 3 (Riesz-Thorin interpolation) For a linear map T : C" —
C" the function

1
fr:[0,1] - R: p = log [|T|p

18 conver.



Proof: [Riel; see also [HLP]. O
It follows that fr has a right derivative f}.(3) at 3, and that, since
fr(3) =log||T|lz = 0 and fr(1) = log||T|; = 5 logm, we have

fr(1) - fr(3)

fr(}) < T = logm.
2

On the other hand, by the definition of the operator norm ||7°||,, we have
for all p € [1,00] and all unit vectors ¢ € C™:

log |T'|l, > log || T4llq — log [|4l[,

where % + % = 1. Equality holds here for p = 2, hence we may differentiate
1.
5.

11(3) 2 =h(T) = h(4).
It follows that h(T%) + h(¢p) > —logm. O

i 1 1_
with respect to pat o=

The equality (2) is optimal if |T;;| = 1 for some pair (7,5) and in the
case of complementary observables, when

1  2rijk
Tjk:%e noo.

In general however, fr will be strictly convex, so that f’T(%) < logm and no
1) exists reaching equality in (2).
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