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Abstract

A direct proof is given of Voiculescu’s addition theorem for freely independent
real-valued random variables, using resolvents of self-adjoint operators. In con-
trast to the original proof, no assumption is made on the existence of moments
above the second.



§0. Introduction

The concept of independent random variables lies at the heart of classical proba-
bility. Via independent sequences it leads to the Gauss and Poisson distributions,
and via independent increments of a process to stochastic calculus. Classical,
commutative independence of random variables amounts to a factorisation prop-
erty of probability spaces. Algebraically this corresponds to a tensor product
decomposition of function algebras.

At the opposite, non-commutative extreme Voiculescu discovered in 1983
the notion of ‘free independence’ of random variables, which corresponds to a
free product of von Neumann algebras [Voi 1]. He showed that this notion leads
naturally to analogues of the Gauss and Poisson distributions, very different in
form from the classical ones [Voi 1], [Voi 5]. For instance the free analogue of the
Gauss curve is a semi-ellipse. He also showed that n × n-matrices whose entries
are independent Gaussian random variables become freely independent in the
limit of large n [Voi 4]. This explains the older result ([Wig 1,2], [Arn 1,2], [Wac],
[Jon]) that the eigenvalue distributions of such random matrices with probability
1 tend to the semi-ellipse form as n→∞.

The relevance of free independence for non-commutative probability theory
was realised by Kümmerer, who, with Speicher, developed a stochastic calculus
based on free independence [KSp], [Spe 1,2].

In this paper we consider the addition problem: Which is the probability
distribution µ of the sum X1 + X2 of two freely independent random variables,
given the distributions µ1 and µ2 of the summands ? This problem was solved
by Voiculescu himself in 1986 for the case of bounded, not necessarily self-adjoint
random variables, relying on the existence of all the moments of the probability
distributions µ1 and µ2 [Voi 2]. The result is an explicit calculation procedure for
the ‘free convolution product’ of two probability distributions. In this procedure
a central role is played by the Cauchy transform G(z) of a distribution µ, which
equals the expectation of the resolvent of the associated operator X. If we take
X self-adjoint, µ is a probability measure on R and we may write:

G(z) :=
∫ ∞

−∞

µ(dx)
z − x

= E
(
(z −X)−1

)
.

This formula points at a direct way to find the free convolution product of µ1

and µ2: calculate the expectation of the resolvent of X1 + X2. In the present
paper we follow this approach, which indeed leads to quite a direct proof. As a
bonus— since we may lean on the classical results on resolvents of unbounded
self-adjoint operators— our result extends beyond the measures of finite support.
For technical reasons we had to assume finite variance.

A drawback of the method is that it does not work for the multiplication
problem— also solved by Voiculescu [Voi 3]— since the product X1X2 of two
self-adjoint, freely independent random variables can be self-adjoint only if one
of them is a constant.

The assumption of finite variance can possibly be weakened. It would be of
some interest to do so, since all self-similar distributions apart from the semi-
ellipse and the point measures have infinite variance.

As to the complex analysis of the addition problem, it turns out to be ad-
vantageous to consider instead of G(z) the reciprocal F (z) = 1/G(z). One may



thus exploit some good properties of F ; e.g., F increases the imaginary part, and
collapses to the identity function for X = 0.

Consideration of unbounded supports leads to the following difficulty. Voi-
culescu’s free convolution involves the inverse of G (or F ) with respect to com-
position of functions. However, invertibility of G cannot be assumed. (In fact, it
is equivalent to infinite divisibility of the distribution µ ([Voi 2]; see also Theo-
rem 6.1).) Hence Voiculescu found himself obliged to consider G−1 only on some
neighbourhood of 0 (corresponding to F−1 on some neighbourhood of ∞). Now,
for bounded random variables this presents no problem. But for unbounded ones
F need not be invertible on any neighbourhood of ∞. For this reason we formu-
late the addition theorem entirely in terms of F itself, avoiding to mention its
inverse.

The addition theorem leads to a central limit theorem for freely independent,
identically distributed random variables of finite variance. (For bounded support
this theorem was proved in [Voi 1]; cf. also [Voi 5].)

Finally, as in [Voi 2] and [Voi 5] infinitely divisible distributions are con-
sidered and a free Lévy-Khinchin formula proved. The conclusion is that every
infinitely divisible random variable (of finite variance) is composed of a ‘semi-
ellipse’ part and a combination of ‘free Poisson’ parts. These free Poisson distri-
butions can be readily calculated, as was done in [Voi 5]. They were first found
in 1967 by Marchenko and Pastur [MaP] in the context of random matrices, and
rediscovered in the West ten years later [GrS], [Wac].

This paper consists of six sections. The first contains some preliminaries on
free independence, confined to the self-adjoint case, and gives the ‘standard’ cyclic
representation of a pair of freely independent random variables. In the second we
gather some facts about Cauchy transforms. In Section 3 we construct the free
convolution product F1 + F2 of the reciprocal Cauchy transforms F1 and F2 of
probability measures µ1 and µ2 of finite variance. In Section 4 it is shown that
F1 + F2(z) = E((z − (X1 +X2))−1)−1, where X1 and X2 are freely independent
random variables with distributions µ1 and µ2 respectively, and the bar denotes
operator closure. Section 5 contains the central limit theorem and Section 6 the
free Lévy-Khinchin formula.

§1. Free independence of random variables and free products of von
Neumann algebras

To fix terminology, we recall in this section some definitions and results from
[Voi 1], in an adapted form.

By a (real-valued) random variable we shall mean a self-adjoint operator X
on a Hilbert space H in which a particular unit vector ξ has been singled out.
Via the functional calculus of spectral theory such an operator determines an
embedding ιX of the commutative C*-algebra C(R) of continuous functions on
the one-point compactification R = R ∪ {∞} of R to the bounded operators on
H:

ιX(f) = f(X).

We shall consider the spectral measure µ of X, which is determined by

〈ξ, ιX(f)ξ〉 =
∫ ∞

−∞
f(x)µ(dx), (f ∈ C(R)),



as the probability distribution of X, and we shall think of 〈ξ, ιX(f)ξ〉 as the expec-
tation value of the (complex-valued) ‘random variable’ f(X), which is a bounded
normal operator on H. (Note that we do not suppose X itself to be bounded.)
The embedding ιX naturally extends from C(R) to the commutative von Neu-
mann algebra AX = L∞(R, µ), on which µ determines a faithful normal trace
f 7→

∫
fdµ.

Two real-valued random variables X1 and X2 are said to be independent if
for all f1, f2 ∈ C(R)

〈ξ, fj(Xj)ξ〉 = 0, (j = 1, 2) =⇒ 〈ξ, f1(X1)f2(X2)ξ〉 = 0.

Now let us consider the von Neumann algebraA generated by ι1(A1) := ιX1(AX1)
and ι2(A2) := ιX2(AX2). We may assume that ξ is cyclic for A; we discard an
irrelevant subspace if necessary:

H = Aξ.
If X1 and X2 commute, then A is isomorphic to L∞(R2, µ1 ⊗ µ2),i.e.:

A ' A1 ⊗A2.

In this sense commutative independence is related to tensor products of von
Neumann algebras.

Voiculescu’s notion of free independence [Voi 1] is much stronger than clas-
sical independence, and incompatible with commutativity. The random variables
X1 and X2 on (H, ξ) are said to be freely independent if for all n ∈ N and all
alternating sequences i1, i2, · · · , in of 1’s and 2’s, i.e.,

i1 6= i2 6= i3 6= · · · 6= in,

and for all fk ∈ C(R), (k = 1, · · · , n), one has

〈ξ, fk(Xik
)ξ〉 = 0, (k = 1, · · · , n) =⇒ 〈ξ, f1(Xi1)f2(Xi2) · · · fn(Xin

)ξ〉 = 0.

The main point of this section is that for freely independentX1 andX2 the algebra
A is isomorphic to Ching’s free product of A1 and A2 [Chi], both endowed with
the cyclic trace vector 1 ∈ C(R):

A ' A1 ?A2.

We shall introduce this free product in an explicit standard form [Voi 1]. Let

Kj = L2(R, µj); K0
j = 1⊥ =

{
f ∈ Kj

∣∣ ∫ fdµj = 0
}
.

H = C⊕
(
K0

1⊕K0
2

)
⊕
(
(K0

1⊗K0
2)⊕ (K0

2⊗K0
1)
)
⊕
(
(K0

1⊗K0
2⊗K0

1)⊕ (K0
2⊗K0

1⊗K0
2)
)
⊕· · · .

ξ = 1⊕ 0⊕ 0⊕ · · · .
ιj(f)ξ = (

∫
fdµj)ξ ⊕ (f − (

∫
fdµj) · 1);

ιj(f)fi1 ⊗ · · · ⊗ fin ={
(
∫
fdµj) · fi1 ⊗ · · · ⊗ fin

⊕ (f −
∫
fdµj)⊗ fi1 ⊗ · · · ⊗ fin

, if j 6= i1;
(
∫
ffjdµj) · fi2 ⊗ · · · ⊗ fin

⊕ (ffj −
∫
ffjdµj)⊗ fi2 ⊗ · · · ⊗ fin

, if j = i1.

Let us also define embeddings ι′1 and ι′2 in the same way as above, except that
the operations act from the right instead of the left. Let A be the von Neumann
algebra generated by ι1(A1) and ι2(A2), and let A′ be generated by ι′1(A1) and
ι′2(A2). Then A and A′ are each other’s commutant, and ξ is a cyclic trace vector
for both of them. For the sake of clarity we shall now give a proof of Voiculescu’s
observation that every pair of freely independent random variables gives rise to
the above structure [Voi 1].



Proposition 1.1. Let freely independent random variables X1 and X2 on some
Hilbert space H̃ with cyclic vector ξ̃ have probability distributions µ1 and µ2

respectively. Then there exists a unitary map U : H → H̃ with the properties

Uιj(f) = f(Xj)U, (f ∈ C(R)),

and

Uξ = ξ̃.

Proof. For n ∈ N and any alternating sequence i1, · · · , in of 1’s and 2’s, and for
fk ∈ C(R), (k = 1, · · · , n), with

∫
fkdµik

= 0, define U0ξ = ξ̃ and

U0

(
f1 ⊗ f2 ⊗ · · · ⊗ fn

)
= f1(Xi1)f2(Xi2) · · · fn(Xin)ξ̃.

Then U0 extends in a unique way to a unitary map U : H → H̃. Indeed, for
alternating sequences i1, · · · , in and j1, · · · , jm and functions fk ∈ C(R), gl ∈
C(R) with

∫
fkdµik

= 0,
∫
gldµjl

= 0, (k = 1, · · · , n; l = 1, · · · ,m), we have

〈U0f1 ⊗ · · · ⊗ fn, U0g1 ⊗ · · · ⊗ gm〉 = 〈f1(Xi1) · · · fn(Xin
)ξ̃, g1(Xj1) · · · gm(Xjm

)ξ̃〉

= 〈ξ̃, fn(Xin
)∗ · · · f1(Xi1)

∗g1(Xj1) · · · gm(Xjm
)ξ̃〉.

If i1 6= j1, then the sequence in, · · · , i1, j1, · · · , jm is alternating, so that the inner
product is zero. If i1 = j1, we write

f1g1 = h1 + 〈f1, g1〉 · 1,

so that
∫
h1dµi1 = 0. Upon substitution, the term with h1(Xi1) yields zero, since

the sequence in, · · · , i1, j2, · · · , jm is alternating. With the other term we proceed
inductively, to find that the inner product is zero unless n = m and i1 = j1, in
which case

〈U0f1 ⊗ · · · ,⊗fn, U0g1 ⊗ · · · ⊗ gm〉 = 〈f1, g1〉 · · · 〈fn, gn〉 = 〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉.

The stated properties of U are now easy to verify.

§2. The reciprocal Cauchy transform

In the context of free independence it turns out to be natural to consider the
expectation values of functions fz ∈ C(R) of the form

fz(x) =
1

z − x
, (Im z > 0).

In particular they play a key role in the addition of freely independent random
variables, in much the same way as do the expectation values of x 7→ eitx, (t ∈ R),
in the addition of independent commuting random variables.

Let C+ (C−) denote the open upper (lower) half of the complex plane. If µ
is a finite positive measure on R, then its Cauchy transform

G(z) =
∫ ∞

−∞

µ(dx)
z − x

, (Im z > 0),



is a holomorphic function C+ → C− with the property

lim sup
y→∞

y|G(iy)| <∞. (2.1)

Conversely every holomorphic function C+ → C− with this property is the
Cauchy transform of some finite positive measure on R, and the lim sup in (2.1)
equals µ(R). (Theorem 3 in Chapter VI of [AkG]). The inverse correspondence
is given by Stieltjes’ inversion formula:

µ(B) = − 1
π

lim
ε↓0

∫
B

ImG(x+ iε)dx,

valid for all Borel sets B ∈ R for which µ(∂B) = 0 ([AkG]).
We shall be mainly interested in the reciprocal Cauchy transform

F (z) =
1

G(z)
.

If µ is the point measure δ0 at 0, then F is the identity map z 7→ z. If µ = δa,
(a ∈ R), then F (z) = z−a, whereas F (z) = z+ ib corresponds to the probability
measure with density x 7→ b/π(x2 + b2), a measure with infinite variance.

Basic properties

The remainder of this section contains some facts about the Cauchy transform
and its reciprocal which we shall need, and which are not easily available in the
literature.
For a ∈ R, let C+

a and C−
a denote the open half-planes

C+
a =

{
z ∈ C

∣∣ Im z > a
}

and C−
a =

{
z ∈ C

∣∣ Im z < a
}
.

We shall denote their closures by C+
a and C−

a .
By P we shall denote the class of all probability measures on R; by P2 the class
of probability measures with finite variance and by P2

0 those of finite variance
and zero mean. The corresponding classes of reciprocal Cauchy transforms will
be denoted by F , F2 and F2

0 respectively.
Our first proposition characterises the class F .

Proposition 2.1. Let F be holomorphic C+ → C+. A necessary and sufficient
condition for F to be the reciprocal Cauchy transform of some probability measure
µ on R is that

inf
z∈C+

ImF (z)
Im z

= 1. (2.2)

In particular every F ∈ F increases the imaginary part:

ImF (z) ≥ Im z.

As will be clear from the proof, equality is reached in some point z ∈ C+ if and
only if µ is a point measure.

Proof of necessity. Let F be the reciprocal Cauchy transform of some probability
measure µ on R. Fix z ∈ C+, and consider fz : z 7→ 1/(z − x) as a vector in the
Hilbert space L2(R, µ). Then we may write G(z) = 〈1, fz〉, and the equality

Im
1

z − x
= − Im z

|z − x|2
, (x ∈ R),



implies that ImG(z) = −Im z · ‖fz‖2. Therefore

ImF (z)
Im z

=
1

Im z
· −ImG(z)
|G(z)|2

=
‖fz‖2

|〈1, fz〉|2
. (2.3)

By the Cauchy-Schwartz inequality it follows that ImF (z)/Im z only takes values
≥ 1. To show that values arbitrarily close to 1 are actually assumed, observe that
for y > 0,

iy〈1, fiy〉 = iyG(iy) =
∫ ∞

−∞

iy

iy − x
µ(dx),

and

y2‖fiy‖2 =
∫ ∞

−∞

y2

x2 + y2
µ(dx).

If we take y →∞, both integrals tend to 1, and so does the quotient

y2‖fiy‖2

|iy〈1, fiy〉|2
=

‖fiy‖2

|〈1, fiy〉|2
=

ImF (iy)
y

.

This proves (2.2).

From (2.3) one sees that ImF (z) = Im z for some z ∈ C+if and only if fz is
constant almost everywhere with respect to µ, that is if µ is a point measure.

Proof of sufficiency. Let F : C+ → C+ be holomorphic and suppose that (2.2)
holds. Then ImF (z) ≥ Im z, and also |F (z)| ≥ Im z. So G := 1/F takes values
in C− and satisfies: |G(z)| ≤ 1/Im z. Hence

lim sup
y→∞

y|G(iy)| ≤ 1,

and it follows (cf. (2.1)) that G is the Cauchy transform of some positive measure
µ on R with µ(R) ≤ 1. Since G is nonzero, we have µ(R) > 0. But then µ/µ(R)
is a probability measure , and the ‘necessity’ proof above shows that

inf
z∈C+

ImF (z)
Im z

=
1

µ(R)
.

By assumption, this infimum is 1, and µ is a probability measure .

The next proposition characterises the class F2
0 .

Proposition 2.2. Let F be a holomorphic function C+ → C+. Then the fol-
lowing statements are equivalent.

(a) F is the reciprocal Cauchy transform of a probability measure on R with
finite variance and zero mean:∫ ∞

−∞
x2µ(dx) <∞ and

∫ ∞

−∞
xµ(dx) = 0 ;

(b) There exists a finite positive measure ρ on R such that for all z ∈ C+:

F (z) = z +
∫ ∞

−∞

ρ(dx)
x− z

;



(c) There exists a positive number C such that for all z ∈ C+:

|F (z)− z| ≤ C

Im z
.

Moreover, the variance σ2 of µ in (a), the total weight ρ(R) of ρ in (b) and
the (smallest possible) constant C in (c) are all equal.

For the proof it is useful to introduce the function

CF : (0,∞) → C : y 7→ y2

(
1

F (iy)
− 1
iy

)
=

iy

F (iy)
(F (iy)− iy).

In case F is the reciprocal Cauchy transform of some probability measure µ on
R, the limiting behaviour of CF (y) as y →∞ gives information on the integrals∫
x2µ(dx) and xµ(dx). Indeed one has

CF (y) = y2

∫ ∞

−∞

(
1

iy − x
− 1
iy

)
µ(dx) =

∫ ∞

−∞

−xy2 + ix2y

x2 + y2
µ(dx).

In particular the function y 7→ yImCF (y) is nondecreasing and

sup
y>0

y ImCF (y) = lim
y→∞

y ImCF (y) = lim
y→∞

∫ ∞

−∞

y2

x2 + y2
x2µ(dx) =

∫ ∞

−∞
x2µ(dx). (2.4)

Here we allow the value ∞ on both sides. Furthermore, if
∫∞
−∞ x2µ(dx) < ∞,

then by the dominated convergence theorem,∫ ∞

−∞
xµ(dx) = lim

y→∞

∫ ∞

−∞

y2

x2 + y2
xµ(dx) = − lim

y→∞
ReCF (y). (2.5)

Proof of Proposition 2.2. (a)=⇒(b). If F ∈ F2
0 , then by (2.4) and (2.5)

both the real and the imaginary part of CF (y) tend to zero as y → ∞. Since
|CF (y)| = y

∣∣∣ iy
F (iy) − 1

∣∣∣, it follows that

lim
y→∞

F (iy)
iy

= 1.

Therefore

σ2 = lim
y→∞

y|CF (y)| = lim
y→∞

y

∣∣∣∣ iy

F (iy)

∣∣∣∣ · |F (iy)− iy| = lim
y→∞

y|F (iy)− iy|. (2.6)

This equation says that the function z 7→ F (z)− z satisfies (2.1), and is therefore
the Cauchy transform of some finite positive measure ρ on R with ρ(R) = σ2.
This proves (b).
(b)=⇒(c). If F is of the form (b), then

|F (z)− z| ≤
∫ ∞

−∞

ρ(dx)
|z − x|

≤ ρ(R)
Im z

.

(c)=⇒(a). Since F is holomorphic C+ → C+, it can be written in Nevanlinna’s
integral form [AkG]:

F (z) = a+ bz +
∫ ∞

−∞

1 + xz

x− z
τ(dx), (2.7)



where a, b ∈ R with b ≥ 0 and τ is a finite positive measure. Putting z = iy, (y >
0) we find that

y Im
(
F (iy)− iy

)
= y2

(
(b− 1) +

∫ ∞

−∞

x2 + 1
x2 + y2

τ(dx)
)
.

As y →∞, the integral tends to zero. By the assumption (c), the whole expression
must remain bounded, which can only be the case if b = 1. But then by (2.7) F
must increase the imaginary part:

ImF (z) ≥ Im z.

Moreover, (c) implies that F (z) and z can be brought arbitrarily close together,
so by Proposition 2.1 F is the reciprocal Cauchy transform of some probability
measure µ on R.
Again by (c) this measure µ must have the properties∫ ∞

−∞
x2µ(dx) ≤ lim sup

y→∞
y|CF (y)| = lim sup

y→∞
y|F (iy)− iy| ≤ C,

and ∫ ∞

−∞
xµ(dx) = − lim

y→∞
ReCF (y) = 0.

Finally it is clear from the above that

σ2 ≥ ρ(R) ≥ C ≥ σ2,

so that these three numbers must be equal.

We now prove two lemmas about invertibility of reciprocal Cauchy trans-
forms of measures and certain related functions, to be called ϕ-functions (cf.
Section 3). The lemmas act in opposite directions: from reciprocal Cauchy trans-
forms of probability measures to ϕ-functions, and vice versa.

Lemma 2.3. Let C > 0 and let ϕ : C+ → C− be analytic with

|ϕ(z)| ≤ C

Im z
.

Then the function K : C+ → C : u 7→ u+ϕ(u) takes every value in C+ precisely
once. The inverse K−1 : C+ → C+ thus defined is of class F2

0 with variance
σ2 ≤ C.

Proof. Fix z ∈ C+and put r = C/Im z. Let Γ1 denote the semicircle in the half-
plane C+

Im z with centre z and radius r. Let Γ2 be some smooth curve connecting
z− r to z+ r inside the strip

{
u ∈ C

∣∣ 0 < Imu < Im z
}
. Then the closed curve

Γ composed of Γ1 and Γ2 encircles the point z once. If we let u run through Γ,
then on Γ1 its image K(u) stays close to u itself:

|K(u)− u| = |ϕ(u)| ≤ C

Imu
<

C

Im z
= r,

and on Γ2 it lies below z. Hence K(u) winds around z once, and it follows that inside
the curve Γ there is a unique point u0 with K(u0) = z. Outside Γ there is no such
point by the same inequality. This proves the first statement of the lemma.



Putting F (z) = u0 defines an analytic function F : C+ → C+ satisfying

|F (z)− z| = |u0 − z| < r =
C

Im z
.

So F is of class F2
0 , (σ2 ≤ C) by Prop. 2.2.

Lemma 2.4. Let µ be a probability measure on R with mean 0, variance σ2 and
reciprocal Cauchy transform F . Then the restriction of F to C+

σ takes every value in
C+

2σ precisely once. The inverse function F−1 : C+
2σ → C+

σ thus defined satisfies

|F−1(u)− u|
(
=: |ϕ(u)|

)
≤ 2σ2

Imu
.

Proof. Fix u ∈ C+
2σ, and consider the circle Γ with centre u and radius r satisfying

r +
σ2

r
< Imu. (2.7)

Let H be the half-plane Cσ2/r =
{
z
∣∣ Im z > σ2/r

}
. By (2.7) Γ lies entirely inside

H, and by Prop. 2.2 one has for all z ∈ H,

|F (z)− z| ≤ σ2

Im z
< r.

So precisely as in the foregoing proof, when z runs through Γ, its image F (z) drags
along, and winds once around u as well. The function F , being analytic, must assume
the value u in precisely one point z0 inside Γ. Outside Γ, but in H, the value u is not
taken. We may draw two conclusions.
By putting r = σ, so that H = C+

σ , we obtain the first statement in the lemma.
By putting r = 2σ2/Imu, we obtain the second:

|F−1(u)− u| = |z0 − u| < r =
2σ2

Imu
.

(Note that, in the latter case, r < σ < 1
2 Imu, so that indeed (2.7) holds.)

Finally we prove a continuity theorem for the Cauchy transform.

Theorem 2.5. Let µ and µ1, µ2, µ3 · · · be probability measures on R with Cauchy
transforms G and G1, G2, G3, · · ·. Then µn → µ weakly as n→∞ if and only if there
exists y > 0 such that

∀x∈R: lim
n→∞

ImGn(x+ iy) = ImG(x+ iy). (2.8)

Proof. Adapting Theorem 7.6 in [Bil] to the Cauchy transform, we must prove the
following two statements.
(i) For each positive value of y the function x 7→ ImG(x+iy) determines the measure

µ uniquely;
(ii) if for some y > 0 (2.8) holds, then the sequence (µn) is tight.

(i): For each y > 0 the function gy : x 7→ −(1/π)ImG(x+ iy) is the convolution
of µ with the function hy : x 7→ (1/π)y/(x2 + y2). Since the Fourier transform ĥy :
t 7→ exp(−2y|t|) of hy is nowhere zero, convolution with hy is an injective mapping.



(ii): Fix y > 0, and let γ and γn be the probability measures on R with densities
gy and gn,y : x 7→ −(1/π)ImGn(x + iy) respectively. We can express γ and γn in
terms of the primitive function Hy(x) = (1/π)arctg (x/y) of hy. By Fubini’s theorem
we have for a ≤ b:

γ[a, b] = − 1
π

∫ b

a

ImG(u+ iy)du = − 1
π

∫ b

a

∫ ∞

−∞
Im

µ(dx)
u+ iy − x

du

=
1
π

∫ ∞

−∞

(∫ b

a

ydu

(u− x)2 + y2

)
µ(dx) =

∫ ∞

−∞
(Hy(x− a)−Hy(x− b))µ(dx),

and the same for γn and µn.
Now for ε > 0 let us choose L so large that

|x| > L =⇒ |Hy(x)− 1
2 | <

1
2ε.

By choosing K large we can make µ[−K,K] larger than 1− ε. Then

γ[−K − L,K + L] = 1
2

∫ ∞

−∞
(Hy(x−K − L)−Hy(x+K + L))µ(dx)

≥ (1− ε)µ[−K,K] > (1− ε)2.

By bounded convergence we can choose N large enough that γn[−K − L,K + L] >
(1− ε)3 for all n ≥ N . Finally, putting M = K + 2L,

1− γn[−K − L,K + L] =
∫ ∞

−∞

(
1− 1

2 (Hy(x−K − L)−Hy(x+K + L))
)
µn(dx)

≥
∫
R\[−M,M ]

(1− ε)µn(dx) = (1− ε)(1− µn[−M,M ]).

Therefore we have (with M independent of N),

1− µn[−M,M ] ≤ 1− (1− ε)3

1− ε
,

which can be made arbitrarily small. Hence (µn) is tight and the continuity theorem
is proved.

§3. The free convolution product

In this section we shall establish a binary operation ‘ + ’ on the space P2 of all
probability measures on R with finite variance and on the space F2 of their reciprocal
Cauchy transforms . This operation will later turn out to play the role of a convo-
lution product with respect to the addition of free random variables. It generalises
Voiculescu’s free convolution product from the measures of bounded support to those
of finite variance.

Definition 3.1. Let F1, F2 ∈ F2 and z ∈ C+. A quadruple (z, u; z1, z2) of points in
C+ will be called a paralellogram for the pair (F1, F2) if

z + u = z1 + z2, and F1(z1) = F2(z2) = u.

Note that Imu ≥ Im z1, Im z2 ≥ Im z, since F1 and F2 increase imaginary parts
(Lemma 2.1). For this reason we shall say that the above paralellogram is based on z.



Theorem 3.2. Let µ1 and µ2 be probability measures on the real line with finite
variances σ2

1 and σ2
2 and reciprocal Cauchy transforms F1 and F2. Then for all z ∈

C+there exists a unique paralellogram for the pair (F1, F2) based on z. Moreover
the map z 7→ u defines a third function F ∈ F2, reciprocal Cauchy transform of a
probability measure µ on R with variance

σ2 = σ2
1 + σ2

2 .

We shall call F the free convolution product of F1 and F2, and apply the same termi-
nology to the corresponding probability measures . Notation:

F = F1 + F2; µ = µ1 + µ2.

By Lemma 2.4 it makes sense to define for Imu > 2σ:

ϕ(u) = F−1(u)− u and ϕj(u) = F−1
j (u)− u, (j = 1, 2).

Corollary 3.3. In the situation of Theorem 3.2 we have for all u ∈ C+
2σ:

ϕ(u) = ϕ1(u) + ϕ2(u). (3.1)

Proof. Take u ∈ C+
2σ. Then by Lemma 2.4 there are unique points z ∈ C+

σ , z1 ∈ C+
σ1

and z2 ∈ C+
σ2

such that F (z) = F1(z1) = F2(z2) = u. Now, some paralellogram based
on z must exist. This can only be (z, u; z1, z2), therefore

z + u = z1 + z2,

or equivalently

ϕ(u) = F−1(u)− u = z − u = (z1 − u) + (z2 − u) = ϕ1(u) + ϕ2(u).

One may say that for the free convolution product F plays the role of a charac-
teristic function and ϕ that of its logarithm. In the case that µ has compact support,
the expansion of ϕ(u) in terms of u−1 is Voiculescu’s R-series, [Voi 2].

If µ is the point measure in 0, then F = id and ϕ = 0. If µ is the point measure
at a ∈ R, then free convolution by µ (or F ) is translation over a in the real direction,
and ϕ = a.

Proof of the theorem. First suppose that F1, F2 ∈ F2
0 and for j = 1, 2 let F̃j be

obtained from Fj by translation over aj ∈ R: F̃j(z) = Fj(z − aj). Then (z, u; z1, z2)
is a paralellogram for (F1, F2) if and only if the quadruple

(z + a1 + a2, u; z1 + a1, z2 + a2)

is a paralellogram for the pair (F̃1, F̃2). Since all functions in F2 can be obtained
by translation from a function in F2

0 , and since the variance
∫
x2dµ − (

∫
xdµ)2 of a

measure µ does not change under translation, it suffices therefore to prove the theorem
for F ∈ F2

0 .
So let F1, F2 ∈ F2

0 . For ε ≥ 0 let Rε denote the Riemann surface

Rε =
{

(z1, z2) ∈ (C+
ε )2

∣∣ F1(z1) = F2(z2)
}
.

Define
ϑ:R0 → C: (z1, z2) 7→ z1 + z2 − F1(z1).



Let ϑε denote the restriction of ϑ to Rε. For ε > 0, the map ϑε is analytic on a
neighbourhood of Rε and maps its boundary ∂Rε entirely into C−

ε ; indeed

Im z1 = ε =⇒ Imϑ(z1, z2) = ε+ (Im z2 − ImF2(z2)) ≤ ε;

Im z2 = ε =⇒ Imϑ(z1, z2) = ε+ (Im z1 − ImF1(z1)) ≤ ε.

Now let nε(z) denote the number of times that ϑε takes the value z (counted with
multiplicity). It is a well-known property of holomorphic mappings between Riemann
surfaces that such a number can only change its value on the image of the domain’s
boundary, i.e. on ϑε(∂Rε) ⊂ C−

ε . Hence nε is constant on C+
ε . This result is

independent of ε, so ϑ takes every value in C+ a constant number of times. We shall
show that this constant number is 1.

Choose z well above the real line, say Im z > M := 4 max(σ1, σ2). Then any
solution (z1, z2) ∈ R0 of the equation

ϑ(z1, z2) = z (3.2)

must lie in C+
M ×C+

M since it must satisfy

Im z1 = Im
(
ϑ(z1, z2)− (z2 − F2(z2))

)
= Im z + ImF2(z2)− Im z2 ≥ Im z,

and the same for Im z2. By Lemma 2.4 the solution (z1, z2) is therefore uniquely
determined by the single complex number u := F1(z1) = F2(z2). It suffices now to
show that the equation (3.2), which can be written as

F−1
1 (u) + F−1

2 (u) = z + u (3.3)

has a unique solution for u ∈ C+
M .

We write (3.3) as

u− z + (F−1
1 (u)− u) + (F−1

2 (u)− u) = 0. (3.4)

Now let Γ denote the circle with centre z and radius M/2. By Lemma 2.4 we have
for Imu > M/2,

|F−1
j (u)− u| ≤

2σ2
j

Imu
<

4σ2
j

M
≤ 1

4
M. (j = 1, 2). (3.5)

Then, as u runs through Γ, the left hand side of (3.4) winds around 0 once; so it must
take the value 0 once inside Γ. Outside Γ, but in C+

M/2 it cannot become 0 by (3.5).
Hence (3.3) has a single solution u in C+

M .
We have now proved existence and uniqueness of the paralellogram (z, u; z1, z2)

for all z ∈ C+.
Putting F (z) = u defines an analytic function F : C+ → C+. We shall show

that F ∈ F2
0 . By Prop. 2.2

|F (z)− z| = |u− z| ≤ |u− z1|+ |u− z2| = |F (z1)− z1|+ |F (z2)− z2|

≤ σ2
1

Im z1
+

σ2
2

Im z2
≤ σ2

1 + σ2
2

Im z
.

Hence F ∈ F2
0 and µ has variance σ2 ≤ σ2

1 + σ2
2 .

To see that actually σ2 is equal to σ2
1+σ2

2 , we consider the integral representations
of F1, F2 and F in terms of finite positive measures ρ1, ρ2 and ρ which exist by Prop.



2.2. Multiplication by −z of both sides of the paralellogram relation u − z = (u −
z1) + (u− z2) leads to∫ ∞

−∞

z

z − x
ρ(dx) =

∫ ∞

−∞

z

z1 − x
ρ1(dx) +

∫ ∞

−∞

z

z2 − x
ρ2(dx).

Now put z = iη and let η go to ∞. Then by Prop. 2.2(c) the paralellogram shrinks
to zero in size, so that in the above equation all three integrands tend to 1 pointwise
in x. By bounded convergence it follows that

ρ(R) = ρ1(R) + ρ2(R) and hence σ2 = σ2
1 + σ2

2 .

§4. The addition theorem

We now formulate the main theorem of this paper.

Theorem 4.1. Let X1 and X2 be freely independent random variables on some
Hilbert space H with distinguished vector ξ, cyclic for X1 and X2. Suppose that X1

and X2 have distributions µ1 and µ2 with variances σ2
1 and σ2

2 . Then the closure of
the operator

X = X1 +X2

defined on Dom (X1) ∩ Dom (X2) is self-adjoint and its probability distribution µ on
(H, ξ) is given by

µ = µ1 + µ2.

In particular in the region
{
z ∈ C

∣∣ Im z > 2
√
σ2

1 + σ2
2

}
the ϕ-functions related to µ,

µ1 and µ2 satisfy
ϕ = ϕ1 + ϕ2.

In view of theorem (1.1) we may assume that (H, ξ) is the standard representation
space described in Section 1.

Since the variances ofX1 andX2 are finite, for f ∈ C(R) the function xf is square
integrable with respect to µ1 and µ2, so that we meet no difficulties in applying the
defining expressions for ιj in Section 1 to the function x 7→ x. We thus have explicit
expressions at our disposal for the operators X1 and X2 on the dense subspace D of H
consisting of all finite linear combinations of alternating tensor products of functions
in C(R).

By adding appropriate constants to X1 and X2 we may reduce to the situation
that

〈ξ,X1ξ〉 = 〈ξ,X2ξ〉 = 0.

We shall prove the theorem by showing that D is a core for X and that the closure
X of X satisfies

〈ξ, (z −X)−1ξ〉−1 = (F1 + F2)(z). (4.1)

We fix z ∈ C+, and we set out to find the vector (z −X)−1ξ explicitly.
Consider the paralellogram (z, u; z1, z2) based on z for the pair (F1, F2) of recip-

rocal Cauchy transforms of µ1 and µ2. Define functions f1 and f2 in C(R) by

fj(x) =
u

zj − x
− 1, (j = 1, 2).

In what follows, we consider fj as a vector in Kj := L2(R, µj).



Lemma 4.2. The functions f1 and f2 have the properties

f1, f2 ⊥ 1, and ‖f1‖ · ‖f2‖ < 1.

Proof. We have

〈1, fj〉 =
∫ ∞

−∞
fj(x)µj(dx) = u ·

∫ ∞

−∞

µj(dx)
zj − x

− 1 =
u

Fj(zj)
− 1 = 0, (j = 1, 2).

So fj ⊥ 1. By relation (2.3) it follows that

‖fj + 1‖2 = |u|2 ·
∫ ∞

−∞

µj(dx)
|zj − x|2

= |u|2 ·
(

1
|Fj(zj)|2

· ImFj(zj)
Im zj

)
=

Imu

Im zj
.

By Pythagoras’ law we thus have

‖fj‖2 = ‖fj + 1‖2 − 1 =
Imu− Im zj

Im zj
.

Therefore ‖f1‖ · ‖f2‖ < 1 holds if and only if

(Imu− Im z1)(Imu− Im z2) < Im z1 · Im z2.

The latter relation can be written in the form

Imu · Im (z1 + z2 − u) > 0,

in which it is ostensibly valid, since both u and z1 + z2 − u = z lie in C+.

Let (an)∞n=1 be the alternating sequence of 1’s and 2’s starting with a1 = 1. Let
us denote by a bar the tranposition 1 7→ 2, 2 7→ 1 on the set {1, 2}: 1 = 2 and 2 = 1.
We define, still for our fixed z ∈ C+and the functions f1 and f2 related to it:

π1(0) = π2(0) = ξ,

and for n ≥ 1:
π1(n) = f1 ⊗ f2 ⊗ f1 ⊗ · · · ⊗ fan

,

π2(n) = f2 ⊗ f1 ⊗ f2 ⊗ · · · ⊗ fan
.

Let P1 be the orthogonal projection in H onto the subspace of those vectors which
‘start in K0

1’:

C⊕K0
1 ⊕

(
K0

1 ⊗K0
2

)
⊕
(
K0

1 ⊗K0
2 ⊗K0

1

)
⊕
(
K0

1 ⊗K0
2 ⊗K0

1 ⊗K0
2

)
⊕ · · · · · · ,

and let P2 be the same, with 1’s and 2’s interchanged.
Let us furthermore define vectors ψN (z) ∈ D by

ψN (z) =
1
u

(
ξ ⊕

N⊕
n=1

(
π1(n)⊕ π2(n)

))
.

By Lemma 4.2 we have ‖f1⊗ f2‖ < 1, so that ψN (z) tends to a finite limit ψ(z) as N
tends to infinity.



Lemma 4.3. For j = 1, 2 we have

lim
N→∞

(zj −Xj − uP)ψN (z) = 0.

Proof. Since for x ∈ R,

(zj − x)fj(x) = (zj − x)
(

u

zj − x
− 1
)

= u− zj + x,

we have for n = 0, 1, 2, · · · (cf. Section 1):

(zj −Xj)πj(n+ 1) = (zj −Xj)fj ⊗ π(n)
= (u− zj)π(n) + (x)j ⊗ π(n)

.

On the other hand,

(zj −Xj)π(n) = zjπ(n) + (−x)j ⊗ π(n),

so that

(zj −Xj)(πj(n+ 1)⊕ π(n)) = uπ(n) = uP(πj(n+ 1)⊕ π(n)).

Summation over n from 0 to N yields

(zj −Xj − uP)
(
uψN (z) + πj(N + 1)

)
= 0.

Therefore, again by the same calculation,

(zj −Xj − uP)ψN (z) = −zj −Xj

u
πj(N + 1) = −u− zj

u
π(N)− (x)j ⊗ π(N).

Since limN→∞ π(N) = 0, the result follows.

Proposition 4.4. The operator X is essentially self-adjoint on D. The vector ψ(z)
lies in the domain of its closure X and satisfies

(z −X)ψ(z) = ξ. (4.2)

Proof. First we note that X, being a symmetric operator defined on a dense domain,
is closable. Further, since (P1 + P2) = 1 + |ξ〉〈ξ|, Lemma 4.3 yields

(z −X)ψN (z) = ((z1 + z2 − u)− (X1 +X2))ψN (z)

=
(
(z1 −X1 − uP1) + (z2 −X2 − uP2)

)
ψN (z) + ξ −→ ξ, (N →∞).

So ψ(z) lies in the domain of X, and (4.2) holds.
To prove that X is self-adjoint, is suffices to show that the range of z−X is dense

for all z ∈ C \ R. As X commutes with complex conjugation, we may restrict our
attention to z ∈ C+. Now, any vector in H can be approximated by elements of the
form A′ξ, where A′ is a finite sum of products of operators ι′j(g) with j = 1, 2 and
g ∈ C(R) (cf. Section 1). Such a vector A′ξ lies in D and satisfies

A′ξ = A′
(
(z −X)ψ(z)

)
= (z −X)A′ψ(z).

Hence A′ξ lies in the range of z −X. We conclude that the latter is dense in H, and
that X is self-adjoint.



We now finish the proof of theorem 4.1. Let F be the reciprocal Cauchy transform
of the probability distribution of X. Then for z ∈ C+

1
F (z)

= 〈ξ, (z −X)−1ξ〉 = 〈ξ, ψ(z)〉 =
1
u
.

By its definition, the number u is F1 + F2(z). Hence

F (z) = F1 + F2(z),

and the same holds (by the definition of + ) for the associated measures. The
statement about the ϕ-functions follows by Corollary 3.3.

§5. A free central limit theorem

Sums of large numbers of freely independent random variables of finite variance tend
to take a semiellipse distribution. The semiellipse distribution was first encountered
by Wigner [Wig] when he was studying spectra of large random matrices. The Wigner
distribution ωσ with standard deviation σ is defined by

ωσ(dx) = wσ(x)dx,

where

wσ(x) =
{

1
2πσ2

√
4σ2 − x2 if |x| ≤ 2σ;

0 if |x| > 2σ.

Lemma 5.1. The Wigner distribution ωσ has the following ϕ-function:

ϕ(u) =
σ2

u
. (5.1)

Proof. The inverse of the function Kσ : C+ → C+ : u 7→ u+
σ2

u
is easily seen to be

Fσ = K−1
σ : C+ → C+ : z 7→ 2σ2

z −
√
z2 − 4σ2

,

where we take the square root to be C+-valued. But this is the reciprocal Cauchy
transform of ωσ by Stieltjes’ inversion formula. Indeed Fσ ∈ F and

lim
ε↓0

− 1
π

Im
1

Fσ(x+ iε)
= wσ(x).

We now formulate the free central limit theorem. For a probability measure µ on
R we denote by Dλµ its dilation by a factor λ :

Dλµ(A) = µ(λ−1A), (A ⊂ R measurable).

Theorem 5.2. Let µ be a probability measure on R with mean 0 and variance σ2,
and for n ∈ N let

µn = D1/
√

n µ + · · · + D1/
√

n µ, (n times).

Then
weak- lim

n→∞
µn = ωσ.



Remarks. 1. In this paper we do not consider more than two freely independent
random variables at a time. But actually this theorem can be read to refer to a se-
quence X1, X2, X3, · · · of freely independent random variables, all having distribution
µ. Then µn is the distribution of

Sn :=
1√
n

(X1 + · · ·+Xn).

2. Although the proof following below is a bit technical, the reason why the above
central limit theorem holds is simple. First note that every ϕ-function goes like σ2/u
high above the real line. Indeed we have z := F−1(u) ∼ u and by Prop. 2.2(b),

ϕ(u) = F−1(u)− u = z − F (z) ∼ σ2

z
∼ σ2

u
.

Now, due to the scaling law ϕDλµ(u) = λϕ(λ−1u) , ϕµn
picks out precisely this

asymptotic part:

ϕµn
(u) = nϕD1/

√
n
(u) =

√
nϕ(

√
nu) −→ σ2

u
, (n→∞).

Proof of Theorem 5.2.. Let F , F̃n and Fn denote the reciprocal Cauchy transforms
of µ, D1/

√
n µ and µn respectively. Denote the associated ϕ-functions by ϕ, ϕ̃n and

ϕn. Let, as in the proof of Lemma 5.1, Fσ denote the reciprocal Cauchy transform of
ωσ. By the continuity theorem 2.5 it suffices to show that for some M > 0 and all
z ∈ C+

M :
lim

n→∞
Fn(z) = Fσ(z).

Since for M large enough the inverse Kσ : u 7→ u + σ2/u has a derivative close to 1
on C+

M , the above is equivalent with

lim
n→∞

Kσ ◦ Fn(z) = z. (5.2)

Now, fix z ∈ C+
M and (for n > 4σ2/M2) put un = Fn(z) and zn = F̃−1

n (un). Then
z−un = ϕn(un) and zn−un = ϕ̃n(un). Hence by an n-fold application of the addition
theorem 4.1,

z − un = n(zn − un).

Note that also

|z − un| ≤
σ2

M
, and Imun > M.

Therefore, by the scaling property FDλµ(z) = λF (λ−1z) and the integral representa-
tion Prop. 2.2(b) of F ,

z − un = n(zn − F̃n(zn)) = n(zn −
1√
n
F (
√
nzn))

=
√
n(
√
nzn − F (

√
nzn)) =

√
n ·
∫ ∞

−∞

ρ(dx)√
nzn − x

=

=
∫ ∞

−∞

ρ(dx)
zn − x/

√
n
.



Hence

|z −Kσ ◦ Fn(z)| = |z −Kσ(un)| = |z − un −
σ2

un
|

≤
∫ ∞

−∞

∣∣∣∣ 1
zn − x/

√
n
− 1
un

∣∣∣∣ ρ(dx) =
1
|un|

∫ ∞

−∞

|un − zn + x/
√
n|

|zn − x/
√
n|

ρ(dx).

The integrand on the right hand side is uniformly bounded and tends to zero pointwise
as n tends to infinity. So (5.2) follows by the bounded convergence theorem, and the
theorem is proved.

The following result puts the Wigner distribution in perspective. It has been
known for some time already [Voi 1], but we are now in a position to give an easy
proof.

Consider the left shift S on the Hilbert space l2(N) with distinguished unit vector

δ:n 7→
{

1 if n = 1,
0 if n > 1,

and consider the bounded self-adjoint operator Wσ := σ(S + S∗).

Lemma 5.3. For σ > 0 the probability distribution of Wσ on (l2(N), δ) is the Wigner
distribution ωσ.

Proof. We shall prove this for W := S+S∗, which is clearly sufficient. Fix z ∈ C+and
put u = K−1

1 (z). Then u is the solution of the equation u + u−1 = z with Imu > 0,
hence |u| > 1. Consider the vector ψ ∈ l2 given by

ψn = u−n.

One has (
(z −W )ψ

)
1

=
((
z − (S + S∗)

)
ψ
)
1

= zψ1 − ψ2

= zu−1 − u−2 = u−1(z − u−1) = u−1u = 1,

and for n > 1,(
(z −W )ψ

)
n

= zψn − (ψn+1 + ψn−1) = zu−n(z − u− u−1) = 0.

So (z −W )ψ = δ. Therefore

F (z) := 〈δ, (z −W )−1δ〉−1 = 〈δ, ψ〉−1 =
1
ψ1

= u = K−1
1 (z).

So F−1(u)−u = K1(u)−u =
1
u

. By Lemma 5.1, F is the reciprocal Cauchy transform
of ω1.



The sum S + S∗ is a free analogue of the position operator a + a∗ of the harmonic
oscillator, a Gaussian random variable on (l2, δ).
An infinite free product of copies of (l2, δ) with shifts on them forms a natural frame-
work for a free counterpart to the theory of Brownian motion [Voi 1]. This point of
view has been elaborated by Kümmerer and Speicher [KSp], [Spe 1,2].

§6. Infinite divisibility

A probability measure µ on R will be called (freely) infinitely divisible if for all n ∈ N
there exists µ1/n such that

µ = µ1/n + · · · + µ1/n, (n times). (6.1)

The following theorem gives a complete characterisation. (Cf. also [Voi 2]).

Theorem 6.1. Every holomorphic function ϕ:C+ → C− with the property that for
some a ∈ R and C > 0,

|ϕ(z)− a| ≤ C

Im z
, (z ∈ C+), (6.2)

is the ϕ-function of an infinitely divisible distribution with variance not greater than
C. Conversely, if a probability measure µ of variance σ2 is infinitely divisible, then
the associated ϕ-function C+

2σ → C− extends to a holomorphic function C+ → C−

satisfying (6.2) with C = σ2.

Proof. If ϕ:C+ → C− satisfies (6.2), then the same holds for ϕ1/n := (1/n)ϕ (with
a constant C/n). Lemma 2.3 associates functions F and F1/n to them, reciprocal
Cauchy transforms of probability measures µ and µ1/n with variances σ2 ≤ C and
σ2/n ≤ C/n respectively, which satisfy (6.1) because of the additivity of ϕ-functions.

Conversely, let µ with variance σ2 be infinitely divisible. Let its n-th free convo-
lution root µ1/n have the ϕ-function ϕ1/n. Since these ϕ-functions may be added, we
have for Imu > 2σ:

ϕ(u) = nϕ1/n(u).

However, since µ1/n has variance σ2/n, ϕ1/n is analytic on C+
2σ/

√
n
. Therefore the

above equation defines an analytic extension of ϕ to

∞⋃
n=1

C+
2σ/

√
n

= C+.

The inequality (6.2) with C = σ2 follows from Lemma 2.2.

Via Nevalinna’s integral representation the simple characterisation given above,
leads to an explicit formula, a free analogue of the classical Lévy-Khinchin formula.

Theorem 6.2. Let µ be an infinitely divisible probability measure in the free sense,
with variance σ2. Then the associated ϕ-function C+ → C− is of the form

ϕ(u) = a+
∫ ∞

−∞

ν(dx)
u− x

, (6.3)



where ν is a positive (‘Lévy’-) measure on R with total weight ν(R) = σ2.

Moreover, there exists a weakly continuous free convolution semigroup µt, (t ≥ 0)
with µ0 = δ and µ1 = µ. One has

ν(dx) = weak- lim
t↓0

1
t
x2µt(dx). (6.4)

Proof. The first statement (except the specification of ν(R)) follows from Theorem 6.1
and the integral representation formula for analytic functions C+ → C− (cf. Section
2, in particular around relation (2.1)).

The free convolution semigroup (µt) is obtained from the additive semigroup
(tϕ)t≥0 by the procedure in Lemma 2.3. Weak continuity of t 7→ µt follows from the
pointwise continuity of t 7→ Ft (Lemma 2.5). Since the total weight ν(R) = σ2 of ν
can be found from (6.4), it remains to prove the latter.

By Lemma 2.5, (6.4) is equivalent with

Im
∫ ∞

−∞

ν(dx)
z − x

= lim
t↓0

Im
1
t

∫ ∞

−∞

x2µt(dx)
z − x

. (6.5)

Now consider the defining identity for Ft:

Ft(z) + tϕ(Ft(z)) = z. (6.6)

From the continuity of t 7→ Ft(z) it follows that t 7→ Ft(z) = z− tϕ(Ft(z)) is differen-
tiable at t = 0. Then, differentiating (6.6) we find that

ϕ(z) = − ∂

∂t
Ft(z)

∣∣∣
t=0

.

Denoting the Cauchy transform of µt by Gt (so that Ft = 1/Gt), we proceed as follows:∫ ∞

−∞

ν(dx)
z − x

= ϕ(z) = − ∂

∂t

(
1

Gt(z)

) ∣∣∣
t=0

=
1

G0(z)2
∂

∂t
Gt(z)

∣∣∣
t=0

= z2 lim
t↓0

1
t

(
Gt(z)−G0(z)

)
.

(6.7)

Now observe that

Im z2
(
Gt(z)−G0(z)

)
= Im

∫ ∞

−∞

z2

z − x

(
µt(dx)− µ0(dx)

)

= Im
∫ ∞

−∞

x2

z − x
µt(dx)− Im

∫ ∞

−∞

x2

z − x
µ0(dx) + Im

∫ ∞

−∞

z2 − x2

z − x

(
µt(dx)− µ0(dx)

)
.

In the right hand side the second term is zero since µ0 = δ. The third vanishes as
well, since (z2 − x2)/(z − x) = z + x, Imx = 0 and µt(R) = µ0(R) = 1. Substitution
of the first term into (6.7) yields (6.5).



Interpretation of the Lévy-measure
The additive semigroup (tϕ)t≥0 determines a free convolution semigroup (µt)t≥0,

which may then be used to construct a free stochastic process. Examples of such
processes have now been given by several workers [Voi 1], [KSp], [Spe 2]. We shall
now describe the role of a and ν in (6.3) in terms of this process.

The real constant a describes the drift of the process. Indeed,∫ ∞

−∞
xµt(dx) = ta,

since addition of a constant to ϕ acts as a shift on F and on µ, whereas without the
constant µ has mean zero.

The weight ν({0}) put in the origin describes the Wigner component of the pro-
cess. Indeed, a = 0 and ν = σ2δ0 leads to ϕ(u) = σ2/u, and hence to the Wigner
distribution ωσ. In view of the central limit theorem in Section 5, we may consider
(ω√t)t≥0 as the distribution of free Brownian motion [KSp], [GSS].

In analogy with the classical Lévy-Khinchin formula, we now interpret the con-
tribution of ν on R\{0} as a free Poisson process: if ν = δb, (b 6= 0), then µt describes
a (compensated) Poisson process of jump size b and intensity 1/b2.

We finish this section with a calculation of the distribution semigroup of the
(uncompensated) free Poisson process.

Put ν = δb and a = b−1, and substitute this into (6.3):

ϕ(u) =
1
b

+
1

u− b
=

u

b(u− b)
.

The reciprocal Cauchy transform Ft of µt is obtained by inverting the function

u 7→ u+ tϕ(u) =
bu2 − b2u+ tu

b(u− b)
;

i.e. by solving the quadratic equation

zu− bz = bu2 − b2u+ tu

for u under the condition Imu > 0. If we solve for u−1 we obtain Gt(z) = 1/Ft(z):

Gt(z) =
1
2z

1− t

b2
+ zb− 1

b

√(
z − (b−

√
t)2

b

)(
z − (b−

√
t)2

b

) .

Applying Stieltjes’ inversion formula we obtain

µt = f(t)δ0 + µabs.cont.
t ,

where

f(t) =
{

1− t
b2 if t < b2;

0 if t ≥ b2;

and
µabs.cont.

t (dx) = ht(x)dx,

with

ht(x) =

{
1

2πbx

√
−
(
x− (b−

√
t)2

b

)(
x− (b−

√
t)2

b

)
if (b−

√
t)2 ≤ bx ≤ (b+

√
t)2;

0 otherwise.
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