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Abstract

We consider two independent q-Gaussian random variables X0 and X1 and
a function γ chosen in such a way that γ(X0) and X0 have the same distri-
bution. For q ∈ (0, 1) we find that at least the fourth moments of X0 + X1

and γ(X0) + X1 are different. We conclude that no q-deformed convolution
product can exist for functions of independent q-Gaussian random variables.
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1 Introduction and Notation
In 1991 Bożejko and Speicher introduced a deformation of Brownian motion by a

parameter q ∈ [−1, 1] (cf. [1, 2]). Their construction is based on a q-deformation, Fq(H),
of the full Fock space over a separable Hilbert space H. Their random variables are given
by self-adjoint operators of the form

X(f) := a(f) + a(f)∗, f ∈ H,

where a(f) and a(f)∗ are the annihilation and creation operators associated to f satisfying
the q-deformed commutation relation,

a(f)a(g)∗ − qa(g)∗a(f) = 〈f, g〉1I. (1)

This commutation relation was first introduced by Greenberg in [4] and various aspects of
it are studied in a.o. [3, 5, 9].

The above construction was for some time considered a good candidate for a q-deformed
notion of the concept of independence itself. Indeed for q = 1 the random variables X(f)
and X(g) with f ⊥ g are independent Gaussian random variables in the classical sense, for
q = 0 they are freely independent in the sense of Voiculescu [10]. In both cases a convolution
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law holds for sums of functions of X(f) and X(g). For q = 1 the convolution is ordinary
convolution whereas for q = 0 the convolution is found to be an interesting operation
involving Gauchy transforms and inverted functions [7, 10]. In this paper we show, by a
simple example, that for q ∈ (0, 1) no such convolution law holds since the distributions of
functions of X(f) and X(g) do not determine the distribution of their sum.

The construction of the Fock representation for (1) is described in [1, 3] but for com-
pleteness we give the necessary details here. Operators a(f) and a(f)∗ are, for all f ∈ H,
defined on the full Fock space F := C ⊕ ⊕

∞

n=1
H⊗n by:

a(f)∗h1 ⊗ · · · ⊗ hn := f ⊗ h1 ⊗ · · · ⊗ hn, n ∈ N, h1, . . . , hn ∈ H

and

a(f)Ω := 0, (2)

a(f)h1 ⊗ · · · ⊗ hn :=
n∑

k=1

qk−1〈f, hk〉h1 ⊗ · · · ȟk · · · ⊗ hn, n ≥ 1

where the notation h1 ⊗ · · · ȟk · · · ⊗ hn stands for the tensor product h1 ⊗ · · · ⊗ hk−1 ⊗
hk+1 ⊗· · ·⊗hn and Ω = 1⊕ 0⊕ 0⊕· · · . In order to ensure that a(f)∗ is the adjoint of a(f)
for all f ∈ H, Bożejko and Speicher recursively define an inner product 〈·, ·〉q on F as:

〈g1 ⊗ · · · ⊗ gm, h1 ⊗ · · · ⊗ hn〉q := δn,m〈g2 ⊗ · · · ⊗ gm, a(g1)h1 ⊗ · · · ⊗ hn〉q

= δn,m

n∑

k=1

qk−1〈g1, hk〉〈g2 ⊗ · · · ⊗ gm, h1 ⊗ · · · ȟk · · · ⊗ hn〉q.

We denote the full Fock space F equipped with this inner product by Fq(H). By the GNS
construction there exists, up to unitary equivalence, only one cyclic representation of the
relations (1) and (2). For H = C the above construction reduces to Fq(C) ∼= l2(N, [n]q!),
where [n]q = (1 − qn)/(1 − q) and [n]q! =

∏n

j=1
[j]q with [0]q! = 1.

In [2, 9] the density of the q-Gaussian distribution, νq(dx), of the random variable
X0 = a(f0) + a(f0)

∗ with f0 ∈ H and ‖f0‖ = 1 is calculated. This density is a measure
on R, where it is supported on the interval [−2/

√
1 − q, 2/

√
1 − q]. If we denote the n-fold

product
∏n−1

k=0
(1− aqk) by (a; q)n and agree on (a1, . . . , am; q)n = (a1; q)n · · · (am; q)n, then

νq(dx) can be written as:

νq(dx) = ν ′q(x)dx =
1

π

√
1 − q sin θ(q, qv2, qv−2; q)∞ dx,

where 2 cos θ = x
√

1 − q and v = exp (iθ).
To state the main theorem of this paper we define X1 to be the random variable

a(f1) + a(f1)
∗ for some f1 ∈ H with ‖f1‖ = 1 and 〈f0, f1〉 = 0. Then X0 and X1 are

q-Gaussian random variables, independent in the sense of quantum probability ([1, 6]).

Theorem 1 There exists a function γ : R → R such that X0 and γ(X0) are identically

distributed but X0 +X1 and γ(X0) +X1 are not.
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The consequence of this theorem is that the distribution of the sum of two or more random
variables depends on the choice of random variables and not solely on the respective distri-
butions of these random variables. This means that a q-convolution paralleling the known
convolution for probability measures for the cases q = 0 (cf. [7, 10]) and q = 1 cannot exist.

In contrast to the above, Nica, in [8], constructs a convolution law for probability
distributions that interpolates between the known cases q = 0 and q = 1. Theorem 1
implies that this interpolation is incompatible with relation (1). In fact this can also be
seen by explicit calculation of the moments of the distribution of Xn

0 + Xm
1 , n,m ∈ N

using the convolution law Nica suggests and using the structure inherently present in
Fq(H). From the fourth moment onwards the moments differ for n,m ≥ 1, although they
are the same for the cases q = 0 and q = ±1, as they should be.

In the next section we will prove theorem 1 by constructing the function γ and showing
that the fourth moment of the distribution of γ(X0)+X1 is strictly smaller then the fourth
moment of the distribution of X0 +X1 for q ∈ (0, 1).

2 Construction of γ and proof of theorem
In [9] we construct the unitary operator U : Fq(C) → L2(R, νq) that diagonalizes the

operator X = a+ a∗ with a = a(1), such that UX = TU with T the operator of pointwise
multiplication on L2(R, νq) given by (Tf)(x) = xf(x) for f ∈ L2(R, νq).

Let γ be the transformation on [−2/
√

1 − q, 2/
√

1 − q] that changes the orientations
of [−2/

√
1 − q, 0] and [0, 2/

√
1 − q] in such a way that the distribution νq is preserved. For

this γ has to satisfy the differential equation:

ν ′q(x)dx+ ν ′q(γ(x))dγ(x) = 0, (3)

with γ(−2/
√

1 − q) = γ(2/
√

1 − q) = 0. Indeed, this leads to:

P (0 ≤ T ≤ x) = P (0 ≤ γ(T ) ≤ x) = P (γ−1(x) ≤ T ≤ 2/
√

1 − q)

as can be seen by differentiating both sides with respect to x. Note that the function γ is
its own inverse. Figure 1 shows a typical picture of the shape of the function γ.

Let Ŵ be the unitary operator on L2(R, νq) that implements γ:

(Ŵf)(x) = f(γ(x)) for f ∈ L2(R, νq).

This immediately implies that Ŵ 2 = 1I since γ ◦ γ = id. From the definition of Ŵ and
(3) it is clear that 〈Ŵf, g〉νq

= 〈f, Ŵ g〉νq
i.e. Ŵ is self-adjoint and unitary. If we define

W̃ := U∗ŴU it follows that:

γ(X) = γ(U∗TU) = U∗γ(T )U = U∗ŴTŴU = W̃XW̃ ,

so W̃ is a unitary and self-adjoint operator on Fq(C) that implements γ on X. On the

canonical basis (ej)j∈N of Fq(C) the operator W̃ can be written as:

W̃ en =
∞∑

k=0

wknek
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Figure 1: The function γ.

Now let us choose H = C2, f0 = (1, 0) and f1 = (0, 1) and let us denote a(f0) by a0

and a(f1) by a1. Recall from the introduction that X0 = a0 + a∗0 and X1 = a1 + a∗1. In
this setting we need a unitary operator W on Fq(C

2) that satisfies: γ(X) = WXW . To
this end we denote by K ⊂ Fq(C

2) the kernel of the operator a0 on Fq(C
2), then by

constructing an isomorphism V : Fq(C
2) → Fq(C) ⊗ K, the operator W̃ can be extended

to W = V (W̃ ⊗ 1I)V ∗.

Proposition 2 The space Fq(C
2) is canonically isomorphic to Fq(C) ⊗K.

Proof: For every n ∈ N we define a Hilbert space Kn := (a∗0)
nK, then, because

〈(a∗0)mϕ, (a∗0)
nξ〉q = 〈ϕ, (a0)

m(a∗0)
nξ〉q = 0

for all ϕ, ξ ∈ K and m > n, we have that Kn ⊥ Km for m 6= n.
Suppose we have a ψ ∈ Fq(C

2) that is perpendicular to Kn for all n ∈ N , then 0 =
〈(a∗0)nϕ, ψ〉q = 〈ϕ, an

0ψ〉q for all ϕ ∈ K. This implies an
0ψ ⊥ K for all n ∈ N , which in turn

implies
an

0ψ ∈ Ran a∗0 for all n ∈ N . (4)

¿From this we shall prove by induction that

ψ ∈ Ran(a∗0)
n for all n ∈ N . (5)

Since (5) is trivial for n = 0 by the choice made for ψ we suppose that for a certain ϕ ∈ K
we have ψ = (a∗0)

nϕ, then by using (4):

Ran a∗0 3 an
0ψ = an

0 (a∗0)
nϕ

= (P (a∗0a0) + [n]q!)ϕ (by using (1)),
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where P is a polynomial of degree n with P (0) = 0. This implies ϕ ∈ Ran a∗0 and therefore
ψ ∈ Ran(a∗0)

n+1, finishing the prove of (5). Because
⋂

∞

n=0
Ran(a∗0)

n = { 0 } we conclude
ψ = 0 and therefore that the Kn span Fq(C

2).
We can define an operator V : Fq(C) ⊗K → Fq(C

2) by:

V (en ⊗ ϕ) := (a∗0)
nϕ.

The operator V is an isomorphism since for all ϕ, ξ ∈ K:

〈V (en ⊗ ϕ), V (em ⊗ ξ)〉q = 〈(a∗0)nϕ, (a∗0)
mξ〉q

= δn,m〈ϕ, (P (a∗0a0) + [n]q!)ξ〉q
= δn,m[n]q!〈ϕ, ξ〉q
= 〈en ⊗ ϕ, em ⊗ ξ〉q,

with P as mentioned before. �

Lemma 3 The operator W has the following properties:

1. W is unitary and self adjoint,

2. γ(X0) = WX0W ,

3. Wϕ = ϕ for all ϕ ∈ K, in particular WΩ = Ω,

4. W (X0ϕ) =
∑

∞

k=1
wk1(a

∗

0)
kϕ for all ϕ ∈ K.

Proof: Property 1 is clear from the definition of W since W̃ is unitary and self adjoint.
Property 2 is proven as follows:

WX0W = WV (X ⊗ 1I)V ∗W

= V (W̃ ⊗ 1I)(X ⊗ 1I)(W̃ ⊗ 1I)V ∗

= V (γ(X) ⊗ 1I)V ∗

= V γ(X ⊗ 1I)V ∗ = γ(X0).

Property 3 is immediate from definitions:

Wϕ = V (W̃ ⊗ 1I)(e0 ⊗ ϕ) = V (e0 ⊗ ϕ) = ϕ,

for all ϕ ∈ K.
The proof of property 4 is also immediate from definitions:

W (X0ϕ) = W (a∗0ϕ) = V (W̃ ⊗ 1I)(e1 ⊗ 1I) = V (W̃ e1 ⊗ ϕ)

=
∞∑

k=1

wk1V (ek ⊗ ϕ) =
∞∑

k=1

wk1(a
∗

0)
kϕ.

�

We now turn to the proof of theorem 1.
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Proof: First we calculate the fourth moment of X0 +X1. Since X(f0 + f1) is q-Gaussian
with variance 2 we have:

〈Ω, (X0 +X1)
4Ω〉q = (

√
2)4〈Ω, X4

0Ω〉q = 4‖X2

0Ω‖2

q

= 4(‖Ω‖2

q + ‖f⊗2‖2

q) = 4(1 + [2]q)

= 8 + 4q,

a linear interpolation between 8 and 12 for q varying between 0 and 1. We now turn to the
calculation of the fourth moment of γ(X0) +X1:

〈Ω, (γ(X0) +X1)
4Ω〉q = ‖(γ(X0) +X1)

2Ω‖2

q.

For this we need the following:

γ(X0)
2Ω = WX2

0WΩ = Ω +Wf⊗2

0

X2

1Ω = Ω + f⊗2

1

γ(X0)X1Ω = WX0WX1Ω = WX0X1Ω =
∞∑

k=1

wk1f
⊗k
0 ⊗ f1

X1γ(X0)Ω = X1WX0WΩ =
∞∑

k=1

wk1f1 ⊗ f⊗k
0 ,

from which it is easy to deduce that:

‖(γ(X0) +X1)
2Ω‖2

q = ‖(γ(X0)
2 +X2

1 )Ω‖2

q + ‖(γ(X0)X1 +X1γ(X0))Ω‖2

q. (6)

The first term on the right hand side of (6) is found to be:

‖(γ(X0)
2 +X2

1 )Ω‖2

q = 4‖Ω‖2

q + ‖f⊗2

0 ‖2

q + ‖f⊗2

1 ‖2

q = 4 + 2[2]q = 6 + 2q.

The second term on the right hand side of (6) yields:

‖(γ(X0)X1 +X1γ(X0))Ω‖2

q =

∞∑

k=1

w2

k1‖(f⊗k
0 ⊗ f1 + f1 ⊗ f⊗k

0 )‖2

q

=
∞∑

k=1

w2

k1(2‖f⊗k
0 ⊗ f1‖2

q + 2〈f⊗k
0 ⊗ f1, f1 ⊗ f⊗k

0 〉q)

= 2
∞∑

k=1

w2

k1(1 + qk)[k]q!

= 2 + 2
∞∑

k=1

w2

k1q
k[k]q!.
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Figure 2: The fourth moment of X + Y and γ(X) + Y for q ∈ (0, 1).

To prove the theorem it remains to show that

∞∑

k=1

w2

k1q
k[k]q! < q for q ∈ (0, 1).

To this end note that qk < q for k ≥ 2 and q ∈ (0, 1), so:

∞∑

k=1

w2

k1(q
k − q)[k]q! < 0

from which it follows that:

∞∑

k=1

w2

k1q
k[k]q! < q

∞∑

k=1

w2

k1[k]q! = q.

We conclude that 〈Ω, (γ(X0) +X1)
4Ω〉q < 〈Ω, (X0 +X1)

4Ω〉q for q ∈ (0, 1). �

The content of theorem 1 is shown graphically in figure 2 where the fourth moment of
X0 +X1 and a numerical approximation of the fourth moment of γ(X0) +X1 are plotted.
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