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Abstract

We give an explicit proof of the pair partitions formula for the moments of the g-harmonic
oscillator, and of the claim made by G. Parisi that the ¢-deformed lattice Laplacian on the
d-dimensional lattice tends to the g-harmonic oscillator in distribution for d — oc.

1 Introduction

In 1994 G. Parisi published his paper “D-dimensional arrays of Josephson junctions, spin
glasses and g-deformed harmonic oscillators” ([9]). It describes a lattice model (to be called
“Parisi model” here) that shows a connection with the g-harmonic oscillator. We prove some
of the claims and conjectures made by Parisi after setting the stage for them in some detail.

We shall work within the framework of non-commutative probability theory or “quan-
tum probability” (see for example [4, 5, 7, 8, 10]), to be described briefly in section 2. A
fine example of non-commutative probability is free probability theory as discovered by
Voiculescu.

Here we are concerned with an interpolation between the classical Gaussian dis-
tribution and the “free Gaussian” distribution: Wigner’s semicircle law. This is done by
g-deforming the quantum mechanical harmonic oscillator. In section 3 we show how the
g-deformed Fock space, as introduced by Bozejko and Speicher in [1, 2], can be constructed
in an algebraic way starting from the g-deformed commutation relations. It is shown that
the moments of the ground state distribution of the g-harmonic oscillator can be calculated
as a sum over pair partitions interpolating nicely between the well-known moment formulae
of the Gauss and Wigner distributions.

In section 4 we prepare for the Parisi model by introducing the d-dimensional lattice,
T(N,d), and its boundary and coboundary operators. The Parisi model itself is introduced
in section 5. Section 6 shows how we can use pair partitions to describe the walks on 7T (IV, d)
that turn out to be relevant for the Parisi model. Using the possibility of describing walks



in terms of partitions we show in section 7 that the position operator of a g-harmonic
oscillator has the same distribution as the normalized ¢-deformed lattice Laplacian in the
Parisi model if we let d — oo.

In section 8 we show that in fact sequences of independent ¢g-Gaussians are present in
the Parisi model, although on the grounds of [6] we hesitate to call them “g-independent”.

2 Non-commutative probability and independence

In this section we shall give a brief outline of non-commutative probability theory and the
free probabilistic example.

We shall first describe the transition from classical to non-commutative probabil-
ity theory [7, 5]. This transition follows much the same recipe as the search for “non-
commutative versions” of mathematical objects as initiated by Connes [3]. A classical
probability space will be, following the axiomatic approach outlined by Kolmogorov, a
triple (2, X, P), where € is a state space, X is a o-algebra of events and P is a probability
measure on Y. The transition of classical probability to non-commutative probability the-
ory is preceded by a replacement of functions by multiplication operators: on (2, ¥, P) we
can construct a commutative algebra of functions together with a state that contains the
same information as (€2, X, P) itself. Problems defined on the space can then be translated
to algebraic problems and worked out in the commutative algebra of functions. Then we
drop the commutativity requirement on the algebra. The non-commutative algebra can no
longer be identified with a space, but it still represents some kind of probability theory.

DEFINITION 1 A general probability space is a unital von Neumann algebra, A, together
with a normal state .

The events in a general probability space are the projections p = p* = p? in A, and
the probability that p occurs is ¢(p). A self-adjoint element X € A will be called a random
variable and ¢(X) its expectation. The distribution, px, of a random variable X € A4 will
be a linear functional on the ring of complex polynomials in one variable, px: Clz] — C,
that satisfies: ux(f) = @(f(X)) for every f € Clz]. Such a linear functional uniquely
determines a probability measure with compact support on the real line, which is also
denoted by px.

As an illustration we shall reconstruct the classical probability space from a commuta-
tive general probability space (A, ¢). First, if (€2, 3, P) is a classical probability space, then
the associated general probability space (A, ¢) is: A := L®(Q,3,P) and ¢(f) := [ fdP,
the expectation of f with respect to IP. Now, we can reconstruct the events in ¥ by consid-
ering all projections p € A, which are of the form p = 15 for some S € X.. Up to equivalence
we can then reconstruct the concrete realization of {2 we had.

In this paper we choose to extend the classical definition of independence in the
following way:



DEFINITION 2 (INDEPENDENCE) Random variables X1, ..., Xy, in a general probability
space (A, ¢) are called independent if for all n < m and polynomials f, ..., f, we have:

o(f1(X) - fa(Xkmy)) = 0(F1(Xrw)) - 0 (fo (X)), (1)

provided k € {1,...,m}" has all components k(i), 1 < i < n, different from each other.

A completely non-commutative notion paralleling the idea of independence is the
concept of free independence of random variables.

DEeFINITION 3 (FREE INDEPENDENCE) Random variables X1, ..., X, in a general prob-
ability space (A, @) are called freely independent if for alln € N and polynomials f1, ..., fn
we have:

Vi<n:o(fiXew)) =0 = o(fi(Xiq)) - fa(Xiw)) =0,
provided k € {1,...,m}" satisfies: k(1) # k(2) # k(3) # --- # k(n).

PROPOSITION 4 Free independence implies independence.

PROOF: Suppose Xi,...,X,, are freely independent. Note that (1) is valid for n = 1.
Suppose that (1) is valid for all polynomials fi,..., f, 1 and different indices £(1),...,
k(n—1). Now let f1,..., f, be given polynomials and k(1), ..., k(n) be different indices. By
g; we denote the difference between f; and the constant cp(fj (Xk(j))) so that gp(gj (Xk(j))) =
0. Then free independence implies:

©(91(Xr) 9 (Xp(m))) = 0.

Writing out this product we find:

o(fi(Xrw) - X)) == (=) # (H Sﬁ(fi(Xk(i))))‘P(H fj(Xk(j))>-

Ye{1n} igy JEY

Since <y contains less than n elements, the expectation of [ e [i(Xk(j) factorizes by the
induction hypothesis. So all the terms in the sum are equal apart from their sign. Since
the sum of these signs is 1, the result follows. (|

3 g-Harmonic oscillators and the g-deformed Fock space

In this section we show how the g-deformed Fock space, as introduced in the papers of
Bozejko & Speicher [1, 2], is found naturally starting from the commutation relation. We
show how the moments of the g-harmonic oscillator can be expressed in terms of pair
partitions.



*

We start from the operators 1 and a4, as,...,a,, generating a
satisfying:

-algebra A, and

a;a; — qaza; =0, ;1 g€ (-1,1). (2)
On A, we introduce a linear functional ¢, that we require to satisfy:

@ (1) =1, @g(aiag) =0, @q(aga;) =0, (3)

fori,je{l,....m} ke{l,...,m}*", neNande € {1,%}" ie. asequence with length
n of 1’s and #’s. So, by aj, we mean the ordered product:

n (i) = 1
ap = H i where \; = af(z) Tf S(Z) _ ’
Pl apey if (i) = *.

Next we show the connection between pair partitions and ¢, (az). Let S = {1,...,
n }, for some n € N. A sequence

IT={ (a1, 51), (@2, B2),- -, (ans2, Bn2) }  for m even,

such that U?:/f{ a;, B; } = S, will be called a pair partition of S. A pair partition will be
ordered in the sense that oy < ; for all i € {1,...,n/2} and oy < --- < ay/2. The
collection of all such pair partitions of the set S will be denoted by Py(S) or Py(n). For
n odd this is just the empty set. A crossing in II is a subset of II with two elements,
{ (04, Bi), (o, B;) }, that satisfies either oy < oj < f3; < B or aj < o; < f; < B;. The set of

all crossings of a partition II can be conveniently labeled by:
cIl) :={(4,7) |1 <i<j<n/2,{(, B), (e, 5;) } is a crossing } .

LEMMA 5 Forallne N, n>1,ee€{1,«}", and h € {1,...,m}" we have:

ala) = > O [ aldgas): @
H€P2(7L) (ZJ)EH

Note that in this notation (7,j) can stand for an element of IT or for a pair of elements.
The context will make clear which is meant.

A pair partition IT € Py(n) is compatible with ¢, denoted I ~ ¢, if pairs (o, 3;) € 11
are such that e(o;) = 1 and ¢(8;) = = for all s € {1,...,n/2}. Compatibility of IT with
h means that for each pair (o;,3;) € II we have h(a;) = h(f;). Using this notion of
compatibility we can rewrite relation (4) as follows:

e (ay) = Z g (5)
IIeP2(n)
T~e,h

We shall now prove lemma 5.



PROOF: Suppose that ¢ € {1,%}" can be written as (0,1, *,0), where 0 € {1,%}*
and o € {1,*}! with K+ 1+ 2 = n. Suppose furthermore that 7 € {1,...,m}* and
je{1,...,m} with (h(1),...,h(n)) = (i(1),...,i(k),h(k + 1), h(k + 2),5(1),...,5(0)).
Then the following holds: - -

o
2

@y (a ) wy(a7ay h(k+1) Z(HQ)C@

= Op(k+1)h(kt2)%a (07 05) + 404 (0F Ok 1 2) Op(r41)05)-

This relation together with (3) determines the left hand side of (4), and therefore ¢,
completely.

We shall refer to the right hand side of (5) as F'(a}) putting F'(I) = 1, and shall
show that F satisfies the same recursion relation. Let I € Py(n). Then, for every pair

(i,7) € TI we have goq(ah(( a;((]])) # 0 if and only if £(z) = 1 and &(j) = * and h(i) = h(j).
There are now two p0s51b111t1es (k+1,k+2)elor (k+1,k+2) ¢ Il In the first case
':=T\{(k+1,k+2)}is a partition of {1,...,k, k+3,...,n} with #c(IT) = #c(IT').
In the second case there must be i < k+ 1 and j > k + 2 such that (i,k+2) and (k+1,7)
are crossing pairs in II. It is then possible to remove the crossing and construct:

"= I\ { (i, k+2), (k+1,5) ) U{(Gk+1),(k+2,5)}

for which #c(IT") = #c(IT) — 1. Now we have [1" ~ (o, *,1,0),h", where " = (i, h(k +

2),h(k+1), 7). Note that conversely every pair partition of n, compatible with € and h but
not containing (k + 1,k + 2), can be found in Py(n) as an element with a crossing between
the two pairs that contain k£ + 1 and £ 4 2. We find:

Z q#C(H)

IIEPa(n)
II~e,h
= Y gy § g
II€P2(n) II€Pa(n)
II~(0,1,%,0),h II~(o,1,%,0),h
(k+1,k+2)€ll (k+1,k+2)¢11
Iy ' +1
IR IED DR A D DI
' eP2(n—2) " ePa(n)
H’N(J,g),(i,z) H”N(U7*7179)7ﬁ”

= On(ks1) nka2) (05 0F) + aF (0] a9y O 41y 05)-

Relation (5) now follows because the right hand side of F'(aj) satisfies the same recursion
relation as ¢(aj) with the boundary conditions (3). O

Since the position operator of a harmonic oscillator is usually represented by an
operator of the form:

o — *
Xi=a; +a;,



we define X; to be the position of a ¢g-harmonic oscillator and show that its moments under
¢, can be calculated as a sum over partitions. The operators X;, i € {1,...,m }, generate
the *-algebra 3, C A,. We shall refer to %, as the g-harmonic oscillator algebra. Let p,
denote the restriction of ¢, to B,.

THEOREM 6 Forallh € {1,...,m}", n €N, we have:

p(Xp) = > ¢ T Snnim):-

IePa(n) (I,m)en

Proor: This follows from lemma 5 by summation over all € € { 1, % }". [l

COROLLARY 7 The linear functional p, satisfies:
1. Forallje{1l,...,m} and n € N we have:

p(XD) = Z g#em.

IIeP2(n)
2. Forie {1,...,m}" and a cyclic permutation T € S,, we have:
P(Xicr) - Xirmy)) = A(Xiqr) -+ Xiw)-
PROOF OF 1: Put A(1) =--- = h(n) = j in theorem 6. O

Before proving 2 we first give some considerations concerning pair partitions.

The usual way to visualize a partition, IT € Py(S), would be to draw the elements
of S on a straight line and connect every two points belonging to the same pair in II
with an arc above the line in such a way that two different lines cross at most once and
no three lines intersect in one point. As an example, in figure 1 we draw the partition
I =1{(1,5),(2,6),(3,7),(4,8) }. We will refer to this method of visualization as the line
representation of a pair partition.

Another way to visualize a pair partition is its circle representation. This consists in
drawing the points of S on a circle and connecting them by lines inside the circle, subject
to the same restrictions. An example is given in figure 2. We note that this can be done in
more than one way.

To make the circle representation of pair partitions explicit we regard the circle as
the unit circle in C and we make the map:

T: 5= C: s 2ils=n/n,
This map converts every pair (o, 3) € II to a pair (f, g) on the unit circle in C.

DEFINITION 8 Two pairs (f, g) and (f’,g') of different points on the unit circle in C are
said to be separated if and only if the straight line from f to g crosses the straight line
from f' to ¢' inside the unit circle.



(See figure 3.) It is obvious that two pairs (o, 3;) and («;, §;) in a partition II are crossing
if and only if the pairs (CT(oy), T(6;)) and (T(a;), T(B;)) are separated. Let 7 € S, be
a cyclic permutation and II € Py(n) any pair partition. By 7(II) we denote the rotated
partition:

T(I) = { (r(), 7(61)), - - - (T(ans2), 7(Bns2)) }-

Since separated pairs on the unit circle remain separated under rotation we have:

#c(Il) = #c(r(ID)). (6)
We now turn to the proof of the second part of corollary 7.

PRrROOF OF 2: The essence of the proof that p, has this cyclic property is the fact that the
circle representation of a partition II € Py(n) also has this cyclic property. This is shown
in figure 4.

More formally, fori € {1,...,m}" and 7 € S,, cyclic we have the following:

pQ(XZ(T(l))XE(T(n))): Z q#C(H) H 51(T(l )),i(7(m))

II€P2(n) (I,m)ell

= Y M I Siwiim

IIePa(n) (I,m)er(I)

= Z q#c(T (1)) H 81 i(m

IIeP2(n) (I,m)ell
= p(Xiq) -+ Xign))-

0

We shall represent the pair (A, ¢,) on a Hilbert space K with inner product (-, -), in
which a unit vector ¥, from now on referred to as vacuum vector, is singled out. To make
this representation explicit, let £ be a Hilbert space with dim# = m and orthonormal
basis { ei, ..., en }. Because of (3) we require that for alli € {1,...,m}:

ai\Il =0.
If now we put forall k € {1,...,m}™
(1) Q(2) "~ O ¥ = €k(1) @+ @ ki),

then we see that for IC we can take the full Fock space over £, denoted F():

H) = éﬁ)@”', H% .= C



with vacuum vector U =1@ 0@ 0@ - --. We define a bilinear form (-, ), on K as follows:

(ex(1) ® * @ €xim)s €1(1) @ *** ® €ymry)q = (A1)~ Ay ¥ A1) * ** Ay g

= () - @( 10y ‘a*w))
= Z «(m H 90(1 )) ))
H€7’2(n+n’) (p,q)€ll

for i € {1,....m}", n' €N, h = (k(n),....k(1),1(1),...,1(n)) € {1,...,m}"*™ and
g€ {1,%}" such that (1) =---=¢(n) and e(n + 1) = --- = g(n + n') = *. Bozejko &
Speicher in [1] show positivity of the bilinear form (:,:), by proving positive definiteness
of the function S, — C: o +— ¢#?). Here the set i(o) is the set of inversions of the
permutation o € S,,:

ilo) ={(,m)|1<l<m<n,o()>c(m)}.

Because of its positivity, the bilinear form (-,-), can be regarded as an inner product on
IC, so we conclude that the linear functional ¢, is in fact a state. Therefore the second part
of corollary 7 implies that p, is a trace state.

Since goq(ah((p)) 6(('51))) only yields something different from 0 for e(p) = 1 and (q) = *,
we know that (-, -), # 0 only in case n = n’, and that the partitions IT € P,(2n) contributing
to this inner product have to be compatible with . This only happens for partitions where,
foralli € {1,...n}, we have 1 < o; < n and n+ 1 < 3 < 2n. There are exactly n! of

these partitions in P(2n), to be labeled by permutations o of {1,...,n }. We find:

(GZ) = On Z q H 5h(P ),h(q)

eP2(2n) (p,q)€ll
Il~e
- 5n n' Z q#z U)éh h(o(1)) 5h(n (o(n))-
ogESy

Repeated use of the commutation relations (2) and the fact that a; U = 0 for all
i€ {l,...,m} yields, for all h € {1,...,m }", the following action of a;:

a;ep1) ® - - ®€hn)—zq 0in(j)€n(1) @~ €n(j) -~ ® €n(n);

where by ep1)®- - - €x(j) * - - ®en(n) We mean the tensor product ep)®- - -Qep(j—1)Rep(j+1) @
" ® enn)-

4  The discrete lattice T (N, d)

For d, N € N we will define the Parisi model on a discrete d-dimensional lattice:

T(N,d):={—-N,...,0,..., N}



Define the set of h-dimensional, h € N, elementary facets (i.e. points, edges, planes, etc.)
in T(N,d) as follows:

X :={(v,7) € T(N,d) xPu({1,...,d}) | j€y=0() # N},

where 9, ({1,...,d}) is the collection of all subsets of { 1,...,d} which contain exactly h
elements. In this notation (v, ) stands for the elementary facet which has v € T (N, d) as
its lowest vertex, and whose spatial orientation is defined by the set of spatial directions
v C {1,2,...,d}. Then A} stands for the set 7 (N, d) of vertices itself, X; is the set of
edges in T (N, d), and X is the set of 2-dimensional planes in 7 (N, d), from now on referred
to as plaquettes. By G, we shall mean the set of all functions from A}, to Z:

gh = ZXh,
and by 2, the set of all functions from &), to C:
Qh = (CXh .

Then €2, is the set of “forms” on A},. They are a discrete analogue of the differential forms
of Cartan. The set Q of all differential forms will be denoted by Q := @5 ;. Similarly
we define: G := ;2 Gx. Note that #(X},) = dimG), = dimQ, = ({)(2N)"(2N + 1)%".
An element of G; will be called a curve (on 7(V,d)) and an element of G, will be called a
surface (on 7 (N, d)). The mapping

L: G = N: 1= ) [i(j)]

JEXL

associates to a curve its length, and the mapping

A: Gy N ke Y |k(j)]

JEX,

sends a surface to its area. By a walk of length n € N on T (N, d) we shall mean a series
of consecutively neighboring points (ay, ..., ay) in T(N,d) that trace out a curve | € G;.
This curve [ assigns to every edge x € X}, the number of times the walk (a4, ..., q,) runs
through x in positive direction minus the number of times this walk runs through z in
negative direction. So a curve is thought of as just any configuration of edges equipped
with a direction and a multiplicity. A surface is conceived of analogously. A walk will be
called closed if oy = a,.
We define the integral of an h-form w € €}, over some element k € G, as follows:

DEFINITION 9 /w = (k,w) = Z k(z)w(z).

k $€Xh



We define the boundary and coboundary operators 0,: G, — Gr_1 and 0p: Q —
Qp41 as follows:

09)(v,7) = D26, (900 = e, U {5}) = 96,7 U {3 }) h>1
Jgy
@) (w.7) = 3 eG N\ D (F@+er\ () = Fo\ (5D) k20

where ¢(j, 0) := (—1)#{*€<i} and e;, j € {1,...,d}, denotes the unit vector in the j-th
direction in T (N, d). We define the operator § on 2 as ¢y, for a differential form in €, so
On = 0|q,- The operator § can be considered the discrete version of the derivative operator
on h-forms. The operator 0 on G, defined as 0), = 0|g,, will be referred to as the boundary
operator, since it yields the (h — 1)-dimensional boundary of an h-dimensional object for
h > 1. Stokes’ theorem is the statement that § and 0 are each others adjoints.

THEOREM 10 (STOKES) For w € Qy, and k € Gy, we have:

/&u:/ w.
K ok

Proof: By 1,,) we denote the characteristic function of (v,vy) € &;. Then to prove this
theorem it suffices to show that (01, ,),w) = (1), 0w) for every (v,7) € A4y and
w € Qp:

(Olom,w) = D (Olwm)(w, Qw(w, o)

(’U),Q)EXh

= > D el o)(pnw—e;,0U{5}) = Luy(w,eU{j})ww, o)

(wig)exh JQQ

= fo(jﬁ\{j})(w(v+€j7’y\{j}) —w(v, 7\ {i})
= (5(*))(”’7) = <1(v,’y)a(5w)- O
THEOREM 11 6% = 0.

PROOF: For w € Q, and i < j we have for all (v,7) € Ao

(Gn10nw) (v, 7) = D (6, 1) (Enw (v + e, 7\ {7 }) = daw(v, 7\ {}))

1€y

= Z F(i, 5)G(i, 5),

i#£j

where
F(i,j) =e(i,7)e(G, 7\ {i})

10



and
G(i,j) =wv+te+e,7\{1,7}) —wlv+e,7\{ij})
—w(v+e; v\ {47} twlo,y\{ij}).

Note that G is symmetric and F' is antisymmetric:

F(i, 5)F(5,1) = e(t, M)e(l, v\ {1 el ety \ {7 })
= (—1)#tkerlk<i}_q)#ikenli}ik<s}_q)#lkerlb<i}(_q)#{ken{itk<i}

=—1.

Therefore 8y 10pw =Y, ... F(i,7)G(i,7) = 0 for all w € Q. O

Because 0 = §*, viewed as (#A&)) X (#Xh41)-matrices, it immediately follows that:

1,J €Y

COROLLARY 12 0% = 0.

DEFINITION 13 An element p € G, is called closed if 0y (p) = 0.

We shall call a closed curve a loop. The boundary of a surface k is always a loop
since 0%k = 0. We shall say that 9,k spans k. With every loop | we can associate a class
of surfaces I'; := { k € Gy | 02k = [ }, the class of surfaces spanned by [. A surface p € T
will be called minimal, with respect to [, if its area A(p) is minimal in A(L).

DEFINITION 14 By the area A(l) of a loop we shall mean the area of a surface that is
minimal with respect to .

A closed walk traces out a loop. By the area of a closed walk (aq,...,q, = aq) we
shall mean the area of the loop traced out by this walk, and denote it by: A((al, . an)).

5 The Parisi model

In the description of the Parisi model we try to stay as close as possible to the notation
used in [9].

Consider T (N, d) and put on every plaquette a magnetic field, i.e. we define a 2-form
B € Q, with strength B € [0, 7], the sign of which will be chosen independently for every
pair of spatial directions:

B(v,{i,7}) = Staz) B,

where S{; ;1 is a random variable depending on the pair { ¢, j }. The random variable S; ;3
is a coin toss, i.e. the value of Sy; ;3 is chosen from { —1,1} with distribution {1/2,1/2}.
It is obvious that, for any of the 2%¢~1/2 choices for S, the constant field B on T (N, d) is
divergence free: B = 0. We put ¢ := cos B, then ¢ € [—1,1].

11



By ®(k) we denote the magnetic flux through some surface & € Gy. This flux is
simply the sum of the fluxes through the plaquettes in k£, which, by definition 9, equals:

— Y k(@)B(z) = /kB.

TEX>

We define the magnetic flux enclosed by a loop [ € G; as the flux ®(k) for some & spanned
by [, and denote it by ®(I). Since the field B is divergence free there must exist some
A € Q for which ;A = B. Indeed, if, for £ € {1,...,d} we choose any Cy,...,Cq € R,
and put:

k-1

A(w, {k}) = Co+ Y (C; + w(5)S(jx)B),

j=1
then the requirement §; A = B is fulfilled as can be checked easily by calculating (§;4)(v,
{1, }) explicitly. By Stokes’ theorem we find for ®(/):

/5A / =Y lz)A

rEX]

for all k£ € I';. So ®(l) is well-defined and does not depend on the choice of k.

Let the magnetic field B on 7 (N, d) induce a deformation of the nearest-neighbor
(2N + 1)¢ x (2N + 1)%interaction matrix or lattice Laplacian, leading to the deformed
lattice Laplacian A,. This matrix (Ag), wene is defined by:

[(Ag)y,

1 if jv —w|=1, for v,w € Xy
0 otherwise,

where the phases are determined by the field:

(Aq)vy’u“l‘ek = €ZA(U’{k})
(Ag)vtepw = e~ 1AW {k})

for all (v,{k}) € A;. From this definition it is clear that (Aq)q,,w = (Ay)wp- Now let

W _ ez@(l H ezl(z

T€ X

be the product of the A,’s along a loop [. W (I) is known as the “Wilson loop” although
W (1) itself is not a loop but a complex number assigned to the loop [. For a closed walk
I' that traces out a loop | € G; we have that the product of the A;’s along I’ equals the
product of the A,’s along I, hence W (I') = W (I).

We define an operator X as follows:
X =

Agy (7)

1
V2d

12



where the hat symbolizes dependence on /N and d. Then X is an element in the algebra A
of matrix-valued functions

{-1,+1 }(;l) — Moni1y, (8)

where { —1,+1 }(g) is the space of outcomes of the coin tosses and Mgy 1)« denotes the
(2N + 1) x (2N +1)* matrices with complex entries. On M,y 1)« We have a normalized
trace tr = (1/(2N + 1)%) Tr, where Tr is the standard trace on My 1ya. Since we have
here a trace that satisfies tr(I) = 1, its expectation can serve as a generalized probability
measure (a state) @ on A and it is therefore possible to calculate generalized expectations
of elements of A:

1 ~

P(X") = E(tr(X™) = CIEN T E(Tr(A7))  forallne€ N

Here E yields the expectation value with respect to the d(d — 1)/2 coin tosses. The stan-
dardization factor 1/4/2d in (7) ensures that X has variance 1 in the limit N — oo. It
remains to show that indeed $(X") can be interpreted as a sum over walks on 7 (N, d):

> 1

P(X™) = WE(TT()?H))
N L .
S0 sl (D DI DS S RS ©)

HET(Nd)  in€T(N,d)

The product )?il,iz ce )?,n“ in the right hand side of this equation yields something different
from 0 if and only if

|i1_i2|:|i2_i3|:"':|in—1_7;n|:|in_i1|:15

(11,179,173, ..,0n,11) is a closed walk on T(N,d) that starts from i; and returns to i; and
hence describes a loop in G;. If the walk crosses some point in 7 (N, d) more than once,
then there is more than one walk yielding the same loop. Therefore the sum over walks in
(9) cannot be reduced to a sum over loops easily. However, we shall see that in the limit
d — oo only a narrow class of walks survive.

6 Pair partitions, walks and loops

In this section we shall describe the connection between pair partitions as described in the
introduction, closed walks on 7 (N, d), and loops in Gj.

Suppose we have some II € Py(S) consisting of n pairs (aq, 31),. .., (an, B,) for
S ={1,...,2n}. To every pair (o, 3;), 7 € {1,...,n}, we assign the unit vector in the
1-th direction, e;. Now for every element s € S, starting with 1, we make a step in the
lattice in the direction assigned to the pair in II to which this number belongs. If s is the

13



first element of such a pair, then the step will be taken in the positive direction. If s is the
second element of such a pair, then the step will be taken in the negative direction. If we
choose the origin as a starting point for our walks, then we always get a loop on { 0,1 }",
the corners of the unit cube in n dimensions.

For fixed II, define a mapping oy;: S — {1,...,n } that indicates to what pair s € S
belongs: on(s) =7 if s € (ay, ;). Furthermore define a mapping ¥y;: S — { —1,+1 } that
indicates whether it is the first or the second element of this pair: ¥y (s) =1 if s = a; and
In(s) = —1if s = G;. To keep track of our walk we define a mapping v: S — A& as follows:

v(s) == Zﬁn(j)egnm with v(0) := 0.
j=1

To fix the starting point and direction of every edge in the walk we need the following
mapping:

w: S — Xp: i min(v(i — 1), v(7)),

where min(v(i — 1),v(4)) is the component wise minimum of v(¢ — 1) and v(z). Now, let
7v1: Pa(S) — Gy associate to II the loop in G; traced out by the walk (0,v(1),v(2),...,
v(2n —1),0):

2n
() =Y In(j) Lw){ ont) -
j=1

Then one easily checks that 7 (IT) is indeed a loop, i.e. 917 (IT) = 0.

Apart from ~; we shall also need an injective mapping y,: P2(S) — G that maps a
partition to a surface spanned by 7 (IT). To this end let us regard the pair partition in the
circle representation as a planar graph with a closed outer edge. For every planar graph
we can construct a dual by regarding every sector inside the outer edge of the graph as a
vertex in the dual graph. The vertices in the dual graph are then connected by edges when
the corresponding sectors have an edge in common.

DEFINITION 15 The dual graph of a pair partition is the dual of the planar graph generated
by its circle representation.

Figure 5 shows the construction of the dual graph of the partition II = {(1,5),(2,6),
(3,7),(4,8) }. To construct 7,, consider the planar graph, H, given by the circle represen-
tation of a pair partition II € Py(S). The disc sectors in this graph represent elements
of Xy, as is clear from the construction of the circle representation. Namely, we assign to
sectors in H a vertex in space as follows: denote by Ay the sector in H that has an edge
in common with the circle segment between 1 and 2n. Then to every sector A in H we
associate a vertex y = (y(1),...,y(n)) according to the rule:

(i) {0 if A and Ay lie on the same side of the connecting line with index 7,
yir) =

1 otherwise.
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As a consequence, to Ay is associated 0 € { 0,1 }™. This procedure is illustrated in figure 6,
which shows a picture of the partition IT = { (1,5), (2,4), (3,6) } with the corner points in
every sector as an element of {0,1}3. Since two sectors in the graph that have an edge
in common can be associated to points in A} that differ only one step in the direction
corresponding to the shared edge, we can connect two such points by an edge in the dual
graph, H', of II, corresponding to an edge in X;. This way the sectors in H' point at
plaquettes in A5, since every crossing of connecting lines in H has four sectors in H that
share that point. Since any two lines cross at most once, the number of plaquettes enclosed
by H' is equal to #c(II), the number of crossings of II. In fact, H' contains a plaquette,
based upon the minimum of its four corner points, u;;, for every pair (¢, j) € ¢(II). We can
now define:

Yo(IT) := Z Lo gigh)-

(,5)€c(l)

Note that every plaquette in ,(IT) receives positive orientation in this definition.

THEOREM 16 For every I € Py(2n) we have 0y (I1) = ~(II).

The content of this theorem becomes apparent if one realizes that the outer edge of the
dual graph of the pair partition II represents the walk (v(0),v(1),...,v(2n)) as shown in
figure 5. It is immediately clear that non-crossing partitions II € Py(2n) yield vo(II) = 0,
so we have 0y75(I1) = 0. This agrees with ~; (II) = 0: every step that is taken is retraced
later. This, however, will be a special case of the proof we shall give.

ProoOF: Let H be the planar graph given by the circle representation of Il. Fix an edge
(v,{4}) in the dual graph, H', of II. This edge crosses a segment, r, of the i*! connecting
line in H. There are now three possibilities:

1. the segment & is the i*" connecting line itself, i.e. the i*" connecting line crosses no

other connecting lines in H,

2. the segment x connects the edge of the circle to a crossing with the ;' connecting
line in H, and
3. the segment x connects 2 crossings, say with the ji* and the ji® connecting line.

In the first case the connecting line in the circle representation corresponding to e;
splits the circle into two separate parts connected by one edge, ¢, in H’. The i*® con-
necting line therefore crosses no other connecting lines. This means that there exist no
k € {1,...,n} such that (i,k) € c(II), therefore vo(II)(v, {7 }) = 0. Since the walk that
traces out i (IT) is closed, it has to visit ¢ twice, once in the positive direction and once in
the negative direction, so vy, (II)(¢) also vanishes.

In the second case the edge (v,{¢}) is in the boundary of the plaquette (u;;,{¢,7}),
SO

(@292() (v, {i}) = (i, {7 H Qusyres tip (0 {3 H) = Ly i (0, {0 }))- (10)

First suppose 7 < j, then the crossing pairs (a;, ;) and (oj, 8;) in II satisfy oy < @ <
B; < B;. Now if v = u;;, meaning that v and wu;; lie on the same side of the " and j*™

15



connecting line as 0, then the walk that traces out 7;(II) reaches v before crossing the ;%
connecting line. Therefore the step this walk takes from v onwards corresponds to «; so
1 (II)(v,{3}) = 1. From (10) we see that also (0272(II))(v, {7 }) = 1. If, on the other hand,
v = u;;+e; then v and u;; lie on the same side of the it" connecting line but not on the same
side of the 5" connecting line. This means that the walk that traces out -y, (II) has to cross
the j*® connecting line before it can reach v. But this means that a step in the " direction
has also been taken. Therefore we know that the step in the i*" direction corresponds to 3;
so y1(IT)(v, {7 }) = —1. From (10) we see that also (02y2(II))(v,{i}) = —1. Now suppose
i > j, then the crossing pairs (o, ;) and (o, 3;) in I satisfy o < oy < B; < f3;. The same
type of argument as used for the case 7 < j yields:

v =y = B (v, {i}) = n(M (v, {i}) = —1
v =y + ey = (B(D)(v, {i}) = (M, {i}) = 1.

In the third case (v,{i}) is in the boundary of two plaquettes; p; = 1(y,; (i, }) and
P2 = L(u, {ij»})- Since we are free to choose j; < ja, we can distinguish three cases:
a. 1 < j1 <Jg,
b. 71 <1 < jg, and
c. Jj1 < jg <.
To prove case a we note that in this case we have w;;, = u;;, + €5 and v = u;;,. Now
calculate:

(@op1) (v, {i}) = (51, {3 }) (Luigy #esy (i (W {0 ) = Ly tan (v, {33)) = —1
(Bap2) (0, {7 }) = (2, {1 }) (Luizy+esp fi ) (0 {0 }) = Lgusy, in (v, {0 3)) = 1.

Therefore we have that (02(p1 +p2))(v, {7 }) = (O2y2(II))(v, {4 }) = 0. Since (v, {7 }) is not
an outer edge of H' we also have that ~;(IT)(v, {i }) = 0. The reader can now easily verify
cases b and c, since the method of proof for these cases is the same as for case a.

Finally there are the edges in &) that are not part of the dual graph of II. We have
Y2 (IT)(u1) = 0 for every u; € Xy not corresponding to a plaquette in H'. For every such u;
we have Oy(72(II)(u1)) = 0. Furthermore, we have ;(II)(u2) = 0 for every us not in the
walk { (w(1),{onu(1)}),..., (w(2n),{on(2n) }) }, so on the edges that are not in the dual
graph of II we have that 0y, (II) = 7 (II) = 0, since every us € { (w(1),{on(1)}),...,
(w(2n),{on(2n) }) } is represented in the dual graph of II. O

7

THEOREM 17 For every II € Py(2n) the surface v,(II) is minimal in ' ).

PROOF: In case n = 1 the loop v;(II) cannot enclose a plaquette. It follows from the
definition of 7,(IT) that in this case v,(II) = 0, so the theorem holds for n = 1. In the
following we assume n > 2 and i < j foré,5 € {1,...,n}.

On the unit vectors { ey, ..., e, } we introduce the following projection operator:

Qijek = 1{i,j } (k)Ek.
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Then the element 7,(II) will be minimal in I'y ) if for every pair i, € {1,...,n} the
projection of the closed walk that traces out 7y (II) is a closed walk around (0,{ 4,7 }) € &>
provided that (i, 7) € ¢(IT). We now introduce

2n

Ty = (J{Quv(s) ),

s=1

the set of elements in X the projection to the {4, j }-plane of the walk that traces out

71 (IT) visits, and note that the proof is finished if we show: (7, j) € ¢(II) = #7T;; = 4.
Suppose (i, j) € c(II), then (o, ;) and («;, B;) are crossing pairs in II, so ; < @ <

ﬂi < ﬁj. This means that Tz'j = {0, €, € + €j,€; }, SO #T” =4. Ul

COROLLARY 18 For all Il € Py(2n) we have that A(y(I1)) = A(y1(IT)) = #c(I1).

7 The Parisi model and the g-harmonic oscillator

To show the connection between the g-harmonic oscillator and the Parisi model we prove
that, for d — oo and N — oo, the moments of X converge to the moments of X =a +a".
In short, X converges in distribution to X.

THEOREM 19 Let ¢, be the vacuum state on the g-harmonic oscillator algebra generated
by X = a+ a*. Then for all n € N the following holds:

@ (X™) = lim lim $(X").

d—oc N—o0

Corollary 7 states how the moments of the g-harmonic oscillator can be calculated
as a sum over pair partitions. Therefore, here it suffices to show:

lim lim §(X") = Y g*.

d—oo N—>oxo
IIePs (n)

PROOF: From equation (9) we know that $(X™) can be interpreted as a sum over closed
walks in 7 (N, d). The theorem then is trivial for n odd since an odd number has no
pair partitions and a closed walk cannot return to its starting point in an odd number of
steps.XS So we may assume n = 2r, r € N, in the following.

We define a sub-lattice 7' (N, d) of T (N, d) as follows:

T(Nod) = { =N+ (0 + 1,0, N = (4 1)}

The set of all walks that start from some x € 7'(N,d) and have length n will be defined
as:

W(:U,n) ::{(xajla"'ajn—lax) |j1""aj’n—1 € T(Na d):
=il =1 —jel == ljn1—2[=1}
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Note that we have:
#W(x,n) =2"d(d—1)---(d—r+1).

To every walk w € W(x,n) we can assign some surface s € I, the set of minimal surfaces
s that have the closed walk w as a boundary. We can then choose a set S(x, n) that contains
exactly one surface s € ['y, for every w € W(z,n), i.e. #8(z,n) = #W(z,n). Every surface
s € 8(z,n) has to be minimal with respect to its corresponding walk w € W(z, n) in order
for the surface to have the corner points of the plaquettes in this surface in 7 (V, d).

With the use of these definitions we can rewrite the sum over i; in equation (9) as
follows:

@()?”)zm Z IE( Z Z )?il,ig)?ig,ig"')?in,il)

HWET'(Nd)  2€T(N,d)  ineT(N,d)

+m Z IE( Z Z )?il,m)?iz),i;.;“')?in,il), (11)

WeT(Nd)  i2€T(Nd)  in€T(N,d)
i1€7"(N,d)

and calculate:

A ~ 1 ~
E(Xiy iy - Xinyin) = @d)? Z E(W(w))
weW(z,n)

_ Z Iﬁ(ei Yex w(p)A(p))
weW(z,n)

where we used Stokes theorem. A walk that starts in 7'(N, d) can never reach the boundary
of T(N,d), so we can identify every walk w € W(z,n) with a walk w' € W(y,n), for
z,y € T'(N,d), via:

w = (-’E,jg,--- 7jn7m) — (y7j2 - (SC - y)7 :]n - (-/LI _y)vy) = wl'

From the fact that B is constant it follows that the magnetic flux through s € S(z,n),
corresponding to w, is equal to the magnetic flux through s’ € S(y,n), corresponding to
w', for z,y € T'(N,d). This implies that we have:

Y BN = Y BEh?).
s€S(z,n) s€S8(y,n)
We can therefore perform the first sum over ¢; in (11) yielding:

QO EDG( 5 o S Ry R K.

d
(2N +1) i2€T(N,d)  in€T(N,d)
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Since for every point in 7 (N, d) \ T7'(N,d) we have at most as many loops as for points in
T'(N,d) we can estimate an upper bound for the second sum over #; in (11):

2(N—(r+1))+1)%— (2N +1)¢
(2N +1)d

#W(0,n).

This term tends to 0 for N — oo, so we find:

J\}I—IgOQOXH E(Z ZXOM 1223"')?in,0)-

i9€Z9 in€Z4

We now turn to the limit d — oco. There are exactly #P2(n) (f) 2" walks that start
in 0, have length n and go through r different spatial directions. The number of closed
walks that go through less than r, say r’, spatial directions is less than (r’)"(f,), so the

contribution of these walks vanishes in the limit d — oo due to the standardization of X.
The closed walks that go through r spatial directions take a step in each direction exactly
twice, and therefore correspond to a pair partition IT € P,(2r). The expectation value of
the magnetic flux through the area of the loop 7 (IT) such a walk traces out, is given by:

E(W(12(1D)) = E(J] emW@s@

TEX]

— H lﬁ(em(ﬂ)(z)B(z))
zEX)

= ¢A0)

where X := { (v,7) € Z?xW,({1,...,d}) } with the same conventions we have for X,. In
the above calculation the expectation of the product over X, is interpreted as a product of
expectations. To justify this we note that ,(IT) has at most 1 plaquette for every pair of
spatial directions and that the sign of the magnetic field B for a pair of spatial directions is
independent of that for every other pair of directions. This implies that the fluxes through
different plaquettes in y,(IT) are independent. It is now possible to write $(X?") as a sum
over partitions in the limit d, N — oo:

Jim Ji %) = i o 3 3 E((Boho++(A))

in€Zd jop €Z4

— Z q A(ri(11))

IIePa(2r)

= Y g

IIePa(2r)

where we used corollary 18. O
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8 Non-commutative independence in the Parisi model

Until now we concerned ourselves with only one ¢-Gaussian random variable. In order to
illustrate the concept of g-independence in this model we shall have to define more, say
N € N, ¢-Gaussian random variables. The Parisi model allows for such an extension in a

straightforward way.
If d is divisible by N, the lattice T(N,d) can be decomposed as a product of N
sub-lattices as follows:

T(N,d):Mlngx---xMN,

where dimM; = d/N for j € {1,...,N'}. We can now use the g-deformed lattice Lapla-

cian A, defined in section 5 to define N g-Gaussian random variables X Tyeee, X N € A as
follows:

()?) = %(Aq)”,w ifv—weM,
, 0 otherwise

In this way )?i, i € {1,...,N'}, is the standardized deformed lattice Laplacian on M.
From the previous section we can deduce that the operators )?1, ... ,)? v defined in this
way converge, in distribution, to the g-Gaussian random variables X; = a; + a} for d = oo
and N — co. Now fix NV =2and let X = X, and ¥ = X>.

THEOREM 20 (INDEPENDENCE) For n,m € N we have that

lim $(X"Y™) = lim 3(Y™X"™) = lim 3(X™)p(Y™).

N—oo N—xo N—o0

PrOOF: Write out (’ﬁ()?"?m) to find:

@(yn?m) = (2N+ ( Z Z URCI Znﬁ?}l J2”'i>jm7i1)'

’Ll, ,Zn .....

€T(N,d) GT(N d)
Now, obviously the nonvanishing terms all satisfy
(i1 —dg) + -+ (in — 1) + (J1 — Jo) + -+ (Jm —01) = 0.
The first n differences all lie in M, and the last m differences all lie in My, therefore
(i1 —dg) + -+ (in — 1) = (J1 — Jo) + -+ + (Jm — 1) = 0,

and it follows that 71 = j;. With reference to the proof of theorem 19 we can choose
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11 = j1 = 0, so we find:

lim go(X"Ym = (Z Z XOzg" zn,OYO,Jz "}/}jm,())

N—o00
12500yt J25eeesJm
€z¢  ezd
ZE( > Xos, Xin,0>E< > Yo me,O)
ZQ,...,in j2’ »Jm
VA €Z
= lim GEXMBE™)
N—oo
Since @ is a trace state, we have that: @()?"?m) = (ﬁ(}?m)?”) d

The same type of proof shows that, for general N, we have:
@(X:(l) X/?(N)) @(Xg(ll)) : @(X;L(A/(f))a
provided the values k(1),...,k(N) are all different.
We conclude that in the sense of definition 2, the X; tend to independent random

variables in the limit N — oo, and to independent ¢-Gaussians in the limit N — oo,
d — o0.
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Figure 1: The line representation of the partition II = { (1, 5), (2,6), (3,7), (4, 8) }.
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Figure 2: A circle representation of the partition IT = { (1, 5), (2,6), (3,7), (4,8) }.
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Figure 3: Two separated and two non-separated pairs.
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Figure 4: The linear functional p, satisfies a cyclic property.
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Figure 5: The dual graph of the pair partition II = { (1, 5), (2,6), (3,7), (4, 8) }. The orien-
tation of the walk that traces out + (II) is indicated by arrows.
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Figure 6: The corner points of the surface generated by the partition II

(2,4),(3,6) }.
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