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Abstract:
In the operator algebraic formulation of probability theory Markov pro-
cesses typically appear as perturbations of Bernoulli processes. We de-
velop a scattering theory for this situation. This theory applies to the
isomorphism problem between Markov processes and Bernoulli shifts as
well as to the description of open quantum systems.



Introduction.

The need to extend classical probability theory in order to include quantum me-
chanical phenomena has led to an operator algebraic formulation of probability
theory ([AFL], [Par], [Mey], [Küm1,3], [KüMa], [Bia]). Here stationary stochas-
tic processes appear as groups of automorphisms of von Neumann algebras with
faithful normal states. It has turned out that stationary Markov processes are
typically perturbations of Bernoulli processes (Cf. the ‘quantum Feynman-Kac
formula’ of [Acc] or the ‘coupling representation’, of [Küm2,3,4], [KüMa]). It is
therefore natural to compare the Markov evolution and the Bernoulli shift, i.e., to
develop a scattering theory in the spirit of [LPh]. The aim of the present paper is
to start such an investigation. We find manageable criteria for scattering opera-
tors to exist. They lead to embeddings of Markov processes into Bernoulli shifts,
in good cases to conjugacy, as studied in [KeS] and [FrO]. These embeddings can
be viewed as algebraic versions of moving average representations. On the phys-
ical side this scattering theory generalises the so-called ‘input-output formalism’
of quantum optics ([WaM]), and makes it possible to describe in stochastic terms,
for example, the ‘dynamical Stark effect’ in two-level atoms ([RoM]).
This paper is organised as follows. Sections 1 and 2 give the necessary background.
Sections 3 and 4 develop criteria for the existence of scattering operators. They
are applied to various situations in Sections 5, 6 and 7.

§1. Probability spaces and stochastic processes.

By a non-commutative probability space we shall mean a pair (A, ϕ) consisting of
a von Neumann algebra A equipped with a faithful normal state ϕ. In the case
that A is commutative it can be represented in the form A = L∞(Ω,Σ, µ) for
some probability space (Ω,Σ, µ), where ϕ : A → C sends f ∈ L∞(Ω,Σ, µ) to its
expectation

∫
Ω
fdµ. The space (A, ϕ) becomes a pre-Hilbert space when equipped

with the inner product 〈x, y〉ϕ := ϕ(x∗y); the topology on A induced by the norm
‖x‖2ϕ := ϕ(x∗x), agrees on bounded sets of A with the strong operator topology.
By an operator T : (A, ϕ) → (B, ψ) we shall always mean a completely positive
linear operator T : A → B mapping 1A to 1B and respecting expectations, i.e.,
ψ◦T = ϕ. (We note that all operators on (A, ϕ) are contractions in the norm ‖·‖ϕ.)
In particular, an automorphism S of (A, ϕ) is a *-automorphism of A leaving the
state ϕ invariant. In the commutative case, an automorphism S is induced by a
measure-preserving transformation σ of (Ω,Σ, µ): S(f)(x) = f(σx). An operator
P : (A, ϕ) → (A, ϕ) satisfying P 2 = P is called a conditional expectation onto its
range PA, which is automatically a von Neumann subalgebra of A (cf. [Küm1]).
With respect to the pre-Hilbert space structure it is an orthogonal projection.
A stochastic process with values in some probability space (A, ϕ) is a family of
*-homomorphisms (‘random variables’) it : (A, ϕ) → (Â, ϕ̂), (t ∈ T), of the prob-
ability space onto a larger one. Such a process is called stationary if it = T̂t ◦ i0
for some group of automorphisms (T̂t)t∈T of (Â, ϕ̂). Writing i := i0 we assume
in addition that i admits a left inverse P : (Â, ϕ̂) → (A, ϕ), i.e., P ◦ i = Id, so
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i ◦ P : (Â, ϕ̂)→ (Â, ϕ̂) is the conditional expectation from (Â, ϕ̂) onto the subal-
gebra i(A). We shall denote such a stationary stochastic process by the quadruple
(Â, ϕ̂, T̂t; i). For a more detailed exposition of the general setting we refer to [AFL]
and [Küm3].

For a stationary process (Â, ϕ̂, T̂t; i) over (A, ϕ) we can form for any time interval
I ⊂ T the von Neumann subalgebraAI which is generated by the algebras T̂t◦i(A),
(t ∈ I). If the algebras are commutative, then AI is the algebra of functions
which are measurable with respect to the σ-subalgebra generated by the random
variables for times t ∈ I. It follows from the above definitions that the conditional
expectation PI : (Â, ϕ̂)→ AI exists ([Küm1]).
The stationary process (Â, ϕ̂, T̂t; i) is a Markov process if for all x ∈ A[0,∞) we have
P(−∞,0](x) = P{0}(x). If Â is commutative, this reduces to the standard notion of
a Markov process.

Finally, for a stationary process (Â, ϕ̂, T̂t; i) over (A, ϕ) one can form the transition
operators Tt := P ◦ T̂t ◦ i: (A, ϕ) → (A, ϕ). In the case of a Markov process they
form a semigroup ([AFL], [Küm1]).

§2. Coupling representations.

The following class of Markov processes has been introduced in [Küm1]. It will
be the typical example of a coupling representation to be defined below. Given
(A, ϕ), any other probability space (B, ω), and an automorphism C of the tensor
product (A ⊗ B, ϕ ⊗ ω), we construct a Markov process over (A, ϕ) as follows.
Define (C, ψ) as the infinite von Neumann tensor product

⊗
Z(B, ω) with respect

to the infinite tensor product state
⊗

Z ω and S0 as the tensor right shift on it.
Put (Â, ϕ̂) := (A⊗C, ϕ⊗ψ). On Â define S := IdA⊗S0 as the trivial extension of
S0 to Â, and C1 as the trivial extension of C to Â when we identify A⊗B with the
subalgebra of Â generated by A⊗1 and the 0-th component in 1⊗C = 1⊗

(⊗
Z B

)
(being the identity on all other factors in 1⊗

(⊗
Z B

)
).

The above situation is conveniently described by the following picture.

(A, ϕ)
⊗

· · · ⊗ (B, ω) ⊗ (B, ω)

C1

⊗ (B, ω) ⊗ · · ·

S−→

We put T̂ := C1 ◦ S, T̂n := T̂n, (n ∈ Z), and i : (A, ϕ) → (Â, ϕ̂) : x 7→ x ⊗ 1,
P (x⊗y) := ψ(y)·x, (x ∈ A, y ∈ C); then (Â, ϕ̂, T̂t; i) is a Markov process ([Küm1]).
It is easy to see that every classical Markov chain can be obtained in this way. In
Section 5 we shall discuss an example explicitly.

The above construction can be viewed as a coupling between the probability space
(A, ϕ) and a kind of generalised Bernoulli scheme. This is a special case of a
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representation of a Markov process by coupling to white noise, which we are now
going to define.
For this definition the notion of independence is crucial. Given (A, ϕ) and two von
Neumann subalgebras A1 and A2, we say that A1 and A2 are independent (under
ϕ), if ϕ(x1x2) = ϕ(x1)ϕ(x2) for any elements x1 ∈ A1, x2 ∈ A2 and if there exist
conditional expectations P1 and P2 onto A1 and A2. A typical example is given
by (A, ϕ) = (A1 ⊗A2, ϕ1 ⊗ ϕ2); then A1 ⊗ 1 and 1⊗A2 are independent.
By A ∨ B we always denote the von Neumann algebra generated by A and B.

Definition. ([Küm4]). By a (non-commutative) white noise in time T = Z or
T = R, we mean a probability space (C, ψ), equipped with a (weak*-continuous)
automorphism group (St)t∈T (‘shift’) and a filtration

{
C[s,t]

∣∣ −∞ ≤ s ≤ t ≤ ∞}
of von Neumann subalgebras compatible with St in the sense that St(C[u,v]) =
C[u+t,v+t] and such that
(i) C = CR,
(ii) C[s,t] = C[s,u] ∨ C[u,t] if −∞ ≤ s ≤ u ≤ t ≤ ∞,
(iii) C[s,t] and C[u,v] are independent subalgebras of (C, ψ) whenever the intervals

[s, t] and [u, v] are disjoint.
Examples of white noise come from Bernoulli schemes and their non-commutative
generalisation (tensor shifts) indicated above, Gaussian white noise, and Bose/Fermi
noise on the CCR/CAR algebras in quantum theory. Yet other examples exist,
e.g., [Voi1,2], [BSp], [BKS].

Definition. We say that a stationary process (Â, ϕ̂, T̂t; i) with values in (A, ϕ)
has a coupling representation if the following holds. There exists a von Neumann
subalgebra C of Â and a (weak*-continuous) group of automorphisms (St)t∈T of
(Â, ϕ̂) such that the restriction of St to C is a white noise with filtration

{
C[s,t]

∣∣ −
∞ ≤ s ≤ t ≤ ∞

}
such that

(i) Â is generated by i(A) and C;
(ii) i(A) and C are independent subalgebras of Â under ϕ̂;
(iii) St|i(A) is the identity;
(iv) For all t ≥ 0, T̂t coincides with St on C[0,∞) and on C(−∞,−t], whereas T̂t maps

i(A) ∨ C[−t,0] onto i(A) ∨ C[0,t];
(v) A[0,t] ⊂ i(A) ∨ C[0,t].
There is a Hilbert space analogue of this: the ‘coupling structure of a unitary
dilation’, which has been established and studied in [KüS].
Whenever a stationary process has a coupling representation as defined above,
it is a Markov process ([Küm2]). Conversely, if A = Mn, Markov processes are
typically of this type ([Küm2,3,4], [KüMa]).
In such a situation we define the coupling operators Ct := T̂t ◦ S−t, (t ≥ 0). So
T̂t = Ct ◦St and (Ct)t≥0 can be extended to a cocycle of the automorphism group
St. We consider (T̂t)t∈T as a perturbation of (St)t∈T. From our requirements we
have Ct|C[t,∞) = Id and Ct|C(−∞,0] = Id for t ≥ 0.
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There is a physical interpretation of the above coupling structure, which provides
an important motivation for its study. The subalgebra i(A) of (Â, ϕ̂) may be
interpreted as a sytem, e.g., a radiating atom, and C as the surroundings (the
electromagnetic field), with which it interacts. Then St naturally describes the free
(uncoupled) evolution of these surroundings, and T̂t that of the coupled system.
An explicit example is described in Section 6.

§3. Scattering.

Let us from now on assume that a Markov process (Â, ϕ̂, T̂t; i) has a coupling
representation to the noise (C, ψ) as above. We are interested in the question, under
what conditions every element of Â eventually ends up in the future noise algebra
C[0,∞). In scattering theory, this property is called asymptotic completeness.
In the above physical interpretation of quantum optics this means that any ob-
servable of the atom or molecule can eventually be measured by observing the
emitted radiation (cf. Section 6).

We start by defining the von Neumann subalgebra Aout of those elements in Â
which do eventually end up in C[0,∞) (Here and in the following, closures of convex
sets are always taken in the ϕ̂-norm, equivalently in the weak* topology):

Aout :=
⋃
t≥0

T̂−t(C[0,∞)).

Let Q denote the conditional expectation onto the future noise algebra C[0,∞).

Lemma 3.1. For x ∈ Â the following conditions are equivalent.
(a) x ∈ Aout.

(b) lim
t→∞

‖QT̂t(x)‖ϕ̂ = ‖x‖
ϕ̂
.

(c) ‖ · ‖ϕ̂ - lim
t→∞

S−t ◦ T̂t(x) exists and lies in C.

The limit in (c) defines an isometric *-homomorphism Φ− : Aout → C.

Proof. (a)=⇒(b): Choose a sequence (xn)n∈N approximating x with xn ∈ T̂−nC[0,∞).
Since QT̂nxn = T̂nxn, we have

‖QT̂n(x)− T̂n(x)‖ϕ̂ ≤ ‖QT̂n(x)−QT̂n(xn)‖ϕ̂ + ‖T̂n(xn)− T̂n(x)‖ϕ̂
≤ 2‖x− xn‖ϕ̂ −→ 0.

Since Q is an orthogonal projection, we have

‖x‖2
ϕ̂
− ‖QT̂t(x)‖2ϕ̂ = ‖T̂t(x)‖2ϕ̂ − ‖QT̂t(x)‖

2

ϕ̂
= ‖T̂t(x)−QT̂t(x)‖2ϕ̂,

so that statement (b) follows.
(b)=⇒(a): From (b) it follows as above that ‖T̂−tQT̂t(x) − x‖2

ϕ̂
= ‖QT̂t(x) −

T̂t(x)‖2
ϕ̂

= ‖x‖2
ϕ̂
− ‖QT̂t(x)‖2

ϕ̂
−→ 0 as t −→∞, and hence that

x = ‖ · ‖
ϕ̂

- lim
t→∞

T̂−tQT̂t(x) ∈ Aout.
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(a)=⇒(c): Let us write A◦out :=
⋃
t≥0 T̂−tC[0,∞), hence Aout is the closure of A◦out.

Then for x ∈ A◦out, say x ∈ T̂−uC[0,∞), (u ≥ 0), we have, putting t = u+ s,

lim
t→∞

S−tT̂t(x) = lim
s→∞

S−uS−sT̂sT̂u(x) = S−uT̂u(x) ∈ S−u(C[0,∞)) = C[−u,∞),

since T̂s coincides with Ss on C[0,∞) for s ≥ 0. Thus an isometric *-homomorphism
Φ− : A◦out → C is defined. By an ε/3-argument we prove that the limit in (c) exists
for all x ∈ Aout. As C is strongly closed, and on bounded sets the ‖ · ‖

ϕ̂
-topology

coincides with the strong operator topology, it follows that Φ−(Aout) ⊂ C.
(c)=⇒(a): Given x ∈ Â with Φ−(x) ∈ C, choose a sequence (yn)n∈N with yn ∈
C[−n,∞) and ‖ · ‖

ϕ̂
- lim
n→∞

yn = Φ−(x). Since Φ−(x) = limn→∞ S−nT̂n(x), we have

0 = lim
n→∞

‖yn − S−nT̂n(x)‖ϕ̂ = lim
n→∞

‖T̂−nSn(yn)− x‖ϕ̂.

Since yn ∈ C[−n,∞) we have Sn(yn) ∈ C[0,∞), and
(
T̂−nSn(yn)

)
n∈N is a sequence

in A◦out with limit x.

Lemma 3.2. For all x ∈ C the limit ‖ · ‖
ϕ̂

- limt→∞ T̂−t ◦ St(x) =: Ω−(x) exists

and Φ−Ω− = IdC . In particular, Φ− : Aout → C is an isomorphism.

Proof. Again the statement follows from the fact that for x ∈ C[−u,∞), and any
t ≥ u, t = u+ s, T̂−tSt(x) = T̂−uT̂−sSsSu(x) = T̂−uSu(x).

In scattering theory the operators Ω− and Φ−, and the related operators Ω+ :=
limt→∞ T̂t ◦S−t and Φ+ := limt→∞ St ◦ T̂−t (taken as strong operator limits in the
‖ · ‖

ϕ̂
- norm) are known as the Møller operators or wave operators ([LPh], [Rob])

associated to the evolutions St and T̂t.

Theorem 3.3. For a stationary process in a coupling representation the following
conditions are equivalent.
(a) Â = Aout.

(b) For all x ∈ A we have limt→∞ ‖QT̂ti(x)‖ϕ̂ = ‖x‖ϕ.
(c) The process has an outgoing translation representation, i.e. there exists an

isomorphism j: (Â, ϕ̂)→ (C, ψ) with j|C[0,∞) = Id such that St ◦ j = j ◦ T̂t.

A coupling represention satisfying these equivalent conditions is called asymptot-
ically complete. In probabilistic terms condition (c) is an algebraic version of the
moving average representation.

Proof. The implication (a)=⇒(b) follows immediately from Lemma 3.1. Con-
versely, suppose that (b) holds. Then by Lemma 3.1 we have that i(A) ⊂ Aout.
Hence it suffices to show that

Â =
⋃
t∈T

T̂−t
(
i(A) ∨ C[0,∞)

)
.
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From the properties of the coupling representation we have for t ≥ 0

T̂t
(
i(A) ∨ C[−t,∞)

)
= T̂t

((
i(A) ∨ C[−t,0]

)
∨ C[0,∞)

)
=

(
i(A) ∨ C[0,t]

)
∨ C[t,∞)

= i(A) ∨ C[0,∞),

and therefore
T̂−t

(
i(A) ∨ C[0,∞)

)
= i(A) ∨ C[−t,∞).

The right hand side clearly generates Â as t runs through T.
(a)=⇒(c): Put j := Φ−, then by Lemma 3.2 we have j(Â) = C. Moreover,

St ◦ j = St lim
s→∞

S−sT̂s

= St lim
u→∞

S−tS−uT̂uT̂t for s = t+ u, (u ≥ 0)

= lim
u→∞

S−uT̂uT̂t

= j ◦ T̂t,

and for x ∈ C[0,∞) we have

j(x) = lim
t→∞

S−tT̂t(x) = x.

(c)=⇒(a): Conversely, we obtain

Â = j−1(C) = j−1

⋃
t≥0

S−t
(
C[0,∞)

)
=

⋃
t≥0

j−1S−t
(
C[0,∞)

)
=

⋃
t≥0

T̂−tj−1
(
C[0,∞)

)
=

⋃
t≥0

T̂−t
(
C[0,∞)

)
= Aout.

§4. Criteria for asymptotic completeness.

In this section we shall formulate concrete criteria for the asymptotic completeness.
We restrict ourselves to the simplest case: a finite dimensional algebra A and a
coupling of tensor type, i.e., (Â, ϕ̂) = (A⊗ C, ϕ⊗ ψ).
As before, let Q denote the conditional expectation onto the future noise algebra
C[0,∞), and let Q⊥ := Id −Q. For t ≥ 0, let Zt denote the compression Q⊥T̂tQ

⊥

of the coupled evolution to the ϕ̂-orthogonal complement of the future noise.
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Lemma 4.1.
(i) (Zt)t≥0 is a semigroup, i.e., for all s, t ≥ 0,

Zs+t = Zs ◦ Zt.

(ii) The coupling representation is asymptotically complete if and only if for all
a ∈ A

‖Zti(a)‖ϕ̂ −→ 0 as t −→∞ .

Proof. (i). Since T̂t concides with St on the future noise, we have T̂tC[0,∞) ⊂ C[0,∞)

for t ≥ 0. It follows that T̂tQ = QT̂tQ, and therefore

Q⊥T̂tQ
⊥ = (Id−Q)T̂t(Id−Q) = T̂t −QT̂t − T̂tQ+QT̂tQ

= T̂t −QT̂t = Q⊥T̂t.

So, for s, t ≥ 0,
ZsZt = Q⊥T̂sQ

⊥T̂tQ
⊥ = Q⊥T̂sT̂tQ

⊥

= Q⊥T̂s+tQ
⊥ = Zs+t.

(ii). For a ∈ A we have

Zti(a) = Q⊥T̂tQ
⊥i(a) = Q⊥T̂t

(
i(a)− ϕ(a) · 1

)
= Q⊥T̂ti(a),

so that by Pythagoras’ theorem

‖Zti(a)‖2ϕ̂ = ‖a‖2ϕ − ‖QT̂ti(a)‖2ϕ̂.

Hence, by Theorem 3.3. the statement follows.

Theorem 4.2. Let (Â, ϕ̂, T̂t; i) be a Markov process with values in a finite di-
mensional probability space (A, ϕ), which is given in a coupling representation
of tensor type to a white noise. Let Q⊥ and Zt be as described above, and let
e1, e2, · · · , en be a basis of A. Then the following conditions are equivalent.

(a) The coupling representation is asymptotically complete.
(b) for all nonzero a ∈ A there exists t ≥ 0 such that ‖Zti(a)‖ϕ̂ < ‖a‖ϕ.

(c) for some t ≥ 0, the n-tuple
{
QT̂ti(ej)

∣∣ j = 1, 2, · · ·n
}

is linearly independent,

i.e., QT̂ti(A) has dimension n.
(d) for some ε ≥ 0, t ≥ 0, and all x ∈ A[0,∞),

‖Ztx‖ϕ̂ ≤ (1− ε)‖x‖
ϕ̂
.

Proof. By Lemma 4.1. condition (a) obviously implies (b).
(b)=⇒(c): By the semigroup property of Zt, the function t 7→ ‖Zti(a)‖ϕ̂ is de-
creasing for all a ∈ A, in particular for all a in the unit sphere of A. And since
the unit sphere is compact, in condition (b) t can be chosen uniformly in a.
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Now, suppose that
{
QT̂ti(ej)

∣∣ j = 1, 2, · · · , n
}

is linearly dependent, i.e., for some
λ1, λ2, · · · , λn ∈ C:

n∑
j=1

λjQT̂ti(ej) = 0.

Then we would have an a ∈ A, namely a :=
∑n
j=1 λjej for which QT̂ti(a) = 0 so

that
‖Zti(a)‖2ϕ̂ = 1− ‖QT̂ti(a)‖2ϕ̂ = 1 = ‖a‖ϕ,

contradicting (b). This proves the linear independence in (c).
(c)=⇒(d): We may assume that the vectors e1, · · · , en form a ϕ-orthonormal basis
of (A, ϕ), and since the coupling is of a tensor type, we may put QT̂ti(ej) =: 1⊗gj
with gj ∈ C[0,∞). Let G denote the n × n matrix with entries Gij := ψ(g∗i gj).
Then G is a positive matrix; let ε denote its smallest eigenvalue. By the linear
independence of the vectors g1, g2, · · · , gn, we have ε > 0. Now consider x ∈ A[0,∞).
Write

x =
n∑
j=1

ej ⊗ fj , with fj ∈ C[0,∞).

We calculate:

QT̂t(x) =
n∑
j=1

Q
(
T̂t(ej ⊗ 1)T̂t(1⊗ fj)

)
=

n∑
j=1

(
QT̂ti(ej)

)
·
(
1⊗ Stfj

)

=
n∑
j=1

1⊗ (gj · Stfj).

Now, since gj ∈ C[0,t] and Stfj ∈ C[t,∞), we find

‖QT̂t(x)‖2ϕ̂ = ‖
n∑
j=1

gj · Stfj‖2ψ

=
n∑
j=1

n∑
k=1

〈gj · Stfj , gk · Stfk〉ψ

=
n∑
j=1

n∑
k=1

〈gj , gk〉ψ〈fj , fk〉ψ

≥ ε
n∑
j=1

‖fj‖2ψ

= ε‖x‖2
ϕ̂
.

So
‖Zt(x)‖2ϕ̂ ≤ ‖Q

⊥T̂t(x)‖2ϕ̂ ≤ (1− ε)‖x‖2
ϕ̂
.
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(d)=⇒(a): By the semigroup property of Zt, we have

‖Zntx‖2ϕ̂ ≤ (1− ε)n‖x‖2
ϕ̂
.

As s 7→ ‖Zsx‖ϕ̂ is decreasing, it follows that limt→∞ ‖Ztx‖ϕ̂ = 0 for all x ∈ A[0,∞),
in particular for x = i(a), a ∈ A. The assertion follows by Lemma 4.1.

§5. Example: a classical Markov chain.

Consider the stationary Markov chain with state space X := {0, 1, 2} and transi-
tion probability matrix

T :=


1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

 .

This chain has the unique equilibrium distribution µ := ( 1
3 ,

1
3 ,

1
3 ).

We shall represent this Markov chain by coupling (X,µ) to a Bernoulli shift. Let
(Y, ν) denote the probability space ({0, 1}, ( 1

2 ,
1
2 )), and let a coupling between

(X,µ) and (Y, ν)Z be effected by the permutation γ : X × Y → X × Y described
by the diagram

γ :

(0, 1) −→ (1, 1) −→ (2, 1)x y
(0, 0) ←− (1, 0) ←− (2, 0)

.

We shall denote the components of γ as follows:

γ(ξ, η) =
(
γX(ξ, η), γY (ξ, η)

)
∈ X × Y, (ξ ∈ X = {0, 1, 2}, η ∈ Y = {0, 1}).

Clearly γ preserves the product measure µ⊗ ν on X × Y . Now define

Ω := X × Y Z,

µ̂ := µ⊗

⊗
Z
ν

 .

We shall refer to the elements of Ω using the following suggestive notation:

(ξ; η) =
(

ξ
· · · , η−2, η−1, η0, η1, η2, · · ·

)
We define the transformation γ̂ and the shift σ by

γ̂(ξ; η) :=
(

γX(ξ, η0)
· · · , η−2, η−1, γY (ξ, η0), η1, η2, · · ·

)
,

σ(ξ; η) :=
(

ξ
· · · , η−1, η0, η1, η2, η3, · · ·

)
.
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Put
τ̂ := σ ◦ γ̂.

In the language of Section 1 we now have a stationary Markov process with tran-
sition operators Tn, (n ∈ N), on the space (A, ϕ) given by

A = C3, ϕ(f) := 1
3 (f(0) + f(1) + f(2)) =

∫
X

fdµ.

Indeed, put Â := L∞(Ω, µ̂) and ϕ̂(g) :=
∫
Ω
gdµ̂, (g ∈ Â). Let

i : A → Â : i(f)(ξ; η) = f(ξ);

P : Â → A : (Pg)(ξ) :=
∫
YZ

g(ξ; η)νZ(dη);

T̂ : Â → Â : T̂ (g) := g ◦ τ̂ .

Then by an easy calculation one finds that

(P ◦ T̂ ◦ i)(f)(ξ) = (Tf)(ξ),

where T is viewed as a linear map C3 → C3.
We shall show that this coupling representation is asymptotically complete, by
applying our criterion of Theorem 4.2(c).
Take t = 2 in Theorem 4.2(c), and let ej , j = 0, 1, 2, denote the canonical basis of
A = C3. We calculate the vectors hj := Q ◦ T̂ 2 ◦ i(ej) ∈ C = L∞(Y Z, νZ):

hj(η) = Q ◦ T̂ 2 ◦ i(ej)(η)

=
∫
X

i(ej)
(
τ̂2(ξ; η)

)
µ(dξ)

=
∫
X

i(ej)
(
γ̂ ◦ σ ◦ γ̂(ξ; η)

)
µ(dξ)

= 1
3#

{
ξ ∈ X

∣∣ γX(γX(ξ, η0), η1) = j
}
.

Since the hj(η), (j = 0, 1, 2) depend only on η0 and η1, we can express them as
vectors in C4:

h0 = 1
3 (3, 1, 0, 0), h1 = 1

3 (0, 2, 2, 0), h2 = 1
3 (0, 0, 1, 3).

Clearly, these vectors are linearly independent. Hence by Theorem 4.2 the coupling
representation is asymptotically complete.
Next we shall calculate the scattering operator Φ−. Writing γn for the map which
applies γ to X× (the n-th component of Y Z), we may write

Φ−g = lim
n→∞

S−n ◦ T̂ng

= lim
n→∞

g ◦ (σγ̂)n ◦ σ−n

= lim
n→∞

g ◦ γ−1 ◦ γ−2 ◦ · · · ◦ γ−n.
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Now let x0 ∈ Â be the function (ξ; η) 7→ ξ and let yk : (ξ; η) 7→ ηk. Note that x0

and yk, (k ∈ Z) generate Â. Furthermore, let bin (η) for η ∈ {0, 1}Z denote the
number whose binary expansion is given by the negative part of η:

bin (η) :=
∞∑
k=1

η−k2−k.

Let [r] denote the integer part of the real number r.

Proposition 5.1. The scattering operator Φ− on an element of Â is determined
almost everywhere by

Φ−(x0)(η) = [3bin (η)] =


0, if bin (η) ∈ [0, 1

3 );
1, if bin (η) ∈ ( 1

3 ,
2
3 );

2, if bin (η) ∈ ( 2
3 , 1].

Φ−(yk) = yk for k ≥ 0, and for k < 0 :

Φ−(yk)(η) =


0, if (2kbin (η)mod 1) ∈ [0, 1

3 );
ηk, if (2kbin (η)mod 1) ∈ ( 1

3 ,
2
3 );

1, if (2kbin (η)mod 1) ∈ ( 2
3 , 1].

Proof. First note that S−n ◦ T̂n(yk) = yk for all n, k ≥ 0, so that Φ(yk) = yk.
Second, for all n ≥ 0 we have

S−n ◦ T̂n(x0)(ξ; η) = x0 ◦ γ−1 ◦ γ−2 ◦ · · · ◦ γ−n(ξ; η)
= γX(γX(· · · (γX(ξ; η−n), η−n+1 · · ·), η−2), η−1).

The right hand side becomes constant as a function of ξ and of n as soon as
two neighbouring components of (η−n, η−n+1, · · · , η−2, η−1) are equal, since for all
ξ ∈ {0, 1, 2}:

γX(γX(ξ, 0), 0) = 0 and γX(γX(ξ, 1), 1) = 2.

In particular, if n ≥M(η) := min
{
m ≥ 0

∣∣ η−m = η−m−1

}
:

x0

(
γ−1 ◦ γ−2 ◦ · · · ◦ γ−n(ξ; η)

)
= x0

(
γ−1 ◦ γ−2 ◦ · · · ◦ γ−M(η)+1(ξ̃, η)

)
,

where

ξ̃ :=
{

0, if η−M(η) = 0;
2, if η−M(η) = 1.

Since µ̂[M(η) < ∞] = 1, it follows that eventually S−n ◦ T̂n(x0)(ξ; η) becomes
independent of n and of ξ with probability 1. The convergence in L2(Ω, µ̂) follows
by the dominated convergence theorem. Finally, since η−1, η−2, · · · , η−M(η) is an
alternating sequence of 0’s and 1’s, the value of the limit is for almost all η given
by

Φ−(x0)(η) =


0, if η−1 = 0 and η−M(η) = 0,
1, if η−1 = 0 and η−M(η) = 1,
1, if η−1 = 1 and η−M(η) = 0,
2, if η−1 = 1 and η−M(η) = 1.

This is equal to the value of Φ−(x0)(η) claimed in the theorem. Third, by a similar
argument one proves the expression for Φ−(yk).
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We have now obtained a translation representation (Y Z, νZ, S; j = Φ−) of
the full Markov chain in the noise algebra, as one can check explicitly.

§6. Asymptotic completeness in quantum stochastic calculus.

As another application of Theorem 4.2 we consider the coupling of a finite dimen-
sional matrix algebra to Bose noise. This is quite a satisfactory physical model for
an atom or molecule in the electromagnetic field, provided that the widths of its
spectral lines are small compared with the frequencies of the radiation the particle
is exposed to. In [RoM] the result of the present paper was applied to this model,
which was used to calculate the nontrivial physical phenomenon known as the ‘dy-
namical Stark effect’, namely the splitting of a fluorescence line into three parts
with specified height and width ratios, when the atom is subjected to extremely
strong, almost resonant radiation. The results agreed with those in the physics
literature, both theoretical [Mol] and experimental [SSH]. A different result on the
existence of scattering operators in the context of quantum stochastic calculus is
found in [FaS].
The model mentioned above falls in the class of continuous time Markov processes
over a finite state space driven by Bose noise, as described briefly below. In this
section, we cast the criterion Theorem 4.2(c) for asymptotic completeness into a
manageable form for these Markov processes.

For A we take the algebra Mn of all complex n× n matrices, on which a faithful
state ϕ is given by

ϕ(x) := tr (ρx).

Here ρ is a diagonal matrix with strictly positive diagonal elements, summing up
to 1. The modular group of (A, ϕ) is given by

σt(x) := ρ−itxρit.

The eigenvalues of the operator σt are of the form e±itβj , for some positive numbers
βj , 1 ≤ j ≤ m. We shall couple the system (A, ϕ) to Bose noise (Cf. [Par], [LiM]).
Let C denote the Weyl algebra over an m-fold direct sum

⊕
m L

2(R). It is linearly
generated by the Weyl operators, on which the state ψ is given by

ψ(W (f1 ⊕ f2 ⊕ · · · ⊕ fm)) := exp

− 1
2

m∑
j=1

coth( 1
2βj)‖fj‖

2

 .

A time evolution St on C is induced by the right shift on the functions f1, f2, · · · , fm ∈
L2(R).
In physical terms the dynamical system (C, ψ, St) describes a noise source con-
sisting of m channels which contain thermal radiation at inverse temperatures
β1, β2, · · · , βm.
On the GNS representation of (C, ψ) we have canonical annihilation operators
Aj(t), (j = 1, · · · ,m), (cf. [Par]).
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In [LiM], Section 9, Markov processes (Â, ϕ̂, T̂t; i) over (A, ϕ) are constructed
by coupling to these Bose noise channels. They are of the following form.

Â := A⊗ C with i(a) := a⊗ 1;
ϕ̂ := ϕ⊗ ψ with P (x⊗ y) := ψ(y)x;

T̂t(a) := u∗t (id ⊗ St)(a)ut, (t ≥ 0); T̂t := (T̂−t)−1, (t < 0),

Here ut is the solution of the quantum stochastic differential equation

dut = m∑
j=1

(
vj ⊗ dA∗j (t)− v∗j ⊗ dAj(t)− 1

2 (c+j v
∗
j vj + c−j vjv

∗
j )⊗ 1 · dt

)
+ (ih⊗ 1) · dt

ut,

with initial condition u0 = 1, where

c+j :=

√
eβj

eβj + 1
, c−j :=

√
1

eβj + 1
,

and vj ∈ A = Mn are eigenvectors of the modular group σt of (A, ϕ) and h is fixed
under σt.
The semigroup Tt = e−tL of transition operators on (A, ϕ) associated to this
Markov process is obtained as Tt := P ◦ T̂t ◦ i, and has the infinitesimal generator
L : A → A given by

L(a) = i[h, a]− 1
2

m∑
j=1

(
c+j (v∗j vja− 2v∗j avj + av∗j vj) + c−j (vjv∗j a− 2vjav∗j + avjv

∗
j )

)
.

Now, the key observation in [LiM] and [RoM] which we need here is the following.
Let v+1

j := vj and v−1
j := v∗j . Let L±1

j be the operator x 7→ [v±1
j , x] on A.

Observation 6.1. If Q is the projection onto the future noise algebra C[0,∞), then

‖QT̂t(x⊗ 1)‖2 =
∞∑
k=0

∑
j∈{1,···,m}k

∑
ε∈{−1,+1}k

c
ε(1)
j(1) · · · c

ε(k)
j(k)∫

0≤s1≤···≤sk≤t

∣∣∣ϕ(
Tt−sk

L
ε(k)
j(k)Tsk−sk−1 · · ·Ts2−s1L

ε(1)
j(1)Ts1(x)

)∣∣∣2 ds1 · · · dsk.
Together with Theorem 4.2 this leads to the following results concerning asymp-
totic completeness.

Proposition 6.2. The system (Â, ϕ̂, T̂t; i) described above is asymptotically com-
plete if and only if for all nonzero x ∈Mn there are t > 0, k ∈ N, and s1, s2, · · · , sk
satisfying 0 ≤ s1 ≤ · · · ≤ sk ≤ t, j(1), · · · , j(k) ∈ {1, · · ·m} and ε ∈ {−1, 1}m such
that

ϕ
(
Tt−sk

L
ε(k)
j(k) · · ·Ts2−s1L

ε(1)
j(1)Ts1(x)

)
6= 0.
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In particular, if ϕ is a trace, i.e. ρ = 1
n1 in the above, then ϕ ◦ Tt = ϕ and

ϕ ◦ Lεj = 0, so that the system can never be asymptotically complete for n ≥ 2.
This agrees with the general idea that a trace state ϕ should correspond to noise
at infinite temperature, i.e. classical noise [KüMa]. Obviously, if C is commutative
there can be no isomorphism j between C and C ⊗Mn.

Proof. The proposition follows immediately from Theorem 4.2(b), Observation 6.1
and the continuity in s1, s2, · · · , sk of the integrand therein.

Corollary 6.3. A sufficient condition for (Â, ϕ̂, T̂t; i) to be asymptotically com-
plete is that for all x ∈ Mn there exists k ∈ N, j ∈ {1, 2, · · · ,m}k, and ε ∈
{−1,+1}k such that

ϕ
(
L
ε(k)
j(k) · · ·L

ε(1)
j(1)(x)

)
6= 0.

In particular, the Wigner-Weisskopf atom as treated in [RoM], which is the case
n = 2, m = 1,

v = v1 =
(

0 0
1 0

)
; ρ =

1
eβ + 1

(
eβ 0
0 1

)
.

is asymptotically complete.
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