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No Ω!

Σ: set of events. Full set of projections on some Hilbert space H.
P: Probability measure: function Σ→ [0, 1] satisfying

(1) p ⊥ q ⇒ P(p + q) = P(p) + P(q);

(2) p1 ≤ p2 ≤ p3 ≤ . . . ⇒ P

(
lim
i→∞

pi
)
= lim

i→∞
P(pi).

(3) P(1l) = 1.

This is indeed a generalization since the multiplication operators by 1A with
A ∈ Σ are a full set of projections on L2(Ω,Σ, P).
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Let A := Σ′′, the von Neumann algebra generated by Σ.

Theorem
(Gleason, Yeadon) Unless A ∼= M2, the function P : Σ→ [0, 1] can be
extended to a normal linear functional φ : A → C.

φ is a quantum state.

So the qubit algebra M2 is an exception here!
However, in practice qubits are always part of a larger whole, and any
probability measure on the whole comes from a quantum state; which by
restriction is a quantum state on the qubit.

Hence we may call a pair
(A, φ)

A quantum probability space, where

◮ A is a von Neumann algebra;

◮ φ is a normal state on A.
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Main reason: Quantum mechanics, a sucessful physical theory, has this
structure.

Basic necessity: Certain phenomena do not fit in any classical framework.

Indeed: in L1(Ω,Σ, P) we have the triangle inequality

‖f − h‖ ≤ ‖f − g‖+ ‖g − h‖ ,

which is not valid in L1(A, φ), unless ϕ is a trace.

It can be experimentally falsified.
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1 0
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.

Then pαqβ = qβpα is a one-dimensional projection; let [pα = qβ] denote the
event pαqβ + (1l− pα)(1l− qβ). Then

Pφ[pα = qβ] = sin2(α− β) .
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Let (A, ϕ) be a commutative probability space.
Then for any four events p1, p2, q1, q2 we have:

ϕ[p1 = q1] ≤ ϕ[p1 = q2] + ϕ[q2 = p2] + ϕ[p2 = q1] .

Proof.
Taking complements of q1, q2, we obtain a ”quadrangle inequality”.
It can also be seen pointwise: For any ω ∈ Ω a round-trip around the square

p1(ω) − q1(ω)
| |

q2(ω) − p2(ω)

meets an even number of equality signs.
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However, in the noncommutative probability space (M2⊗M2, ϕ) we may choose

p1 := p0◦ ; p2 := p60◦ q1 := q90◦ q2 := q30◦ ,

and we obtain the probabilities

ϕ[p1 = q1] = sin2(90◦) = 1

and

ϕ[p1 = q2] = ϕ[q2 = p2] = ϕ[p2 = q1] = sin2(30◦) =
1

4
.

Clearly

1 >
1

4
+

1

4
+

1

4
.

So in this case:

ϕ[p1 = q1] > ϕ[p1 = q2] + ϕ[q2 = p2] + ϕ[p2 = q1] .
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make the score

Zn :=
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systematically positive.
Gill has shown that, for classical computers O,X , and Y:
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[
max
n≤N

Zn ≥ k
√
n

]
≤ e−

1
2
k2
.

Using quantum devices, however,

A −→ X ⇐= O =⇒ Y ←− B

the following has been obtained experimentally*:

E(Zn) =
n

4
(
√
2− 1) ≈ 10.4% of n .
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A real-valued random variable or observable is an element a ∈ A of the form

a = α1 · p1 + . . .+ αk · pk ,

where α1, . . . , αk are real numbers and p1, . . . , pk ∈ A are mutually orthogonal
projections summing up to 1l.
Interpretation: pj is the event that a takes he value αj .
Performing a von Neumann measurement is finding out which of the events pj
is the case.
Note that, by Gleason’s theorem, under ϕ the expectation of the observable is

Eϕ(a) =
k∑

j=1

αjPϕ[a takes value αj ] =
k∑

j=1

αjϕ(pj ) = ϕ

(
k∑

j=1

αjpj

)

= ϕ(a) .
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Uncertainty

In a non-commutative probability space (A, ϕ) there exists no state such that
all observables are sharply determined.
This can be expressed in terms of variances by the Heisenberg uncertainty
relation √

Varϕ(a)Varϕ(b) ≥ 1

2
|ϕ(ab − ba)|

(Robertson, 1929),
or in terms of the Shannon entropies

H(a) + H(b) ≥ log
1

c2
,

(Maassen, Uffink, 1988)
where a and b are (nondegenerate) observables with spectral projections pi and
qj , and c2 := maxi,j tr(piqj).
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The Quantum probability category: QProb= (*-Alg)op

We obtain the category *-Alg of (finite dimensional) unital *-algebras with
completely positive unit preserving maps.

◮ Objects: A *-algebra with unit 1lA;

◮ Morphisms: T : B → A completely positive with T (1lB) = 1lA.

◮ Initial morphism: ıA : C→ A : z 7→ z · 1lA.

Elementary objects: M2, M3, M4, . . . , where Mn is the *-algebra of all complex
n × n matrices.

QProb is the opposite category of *-Alg:

◮ Objects: S(A) state space of the *-algebra A;
◮ Morphisms: T ∗ : ρ 7→ ρ ◦ T .

◮ Terminal morphism: ρ 7→ ρ(1lA) = 1.
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A =
(
C⊕ C⊕ · · · ⊕ C

)
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m×

=: Cm .

A is purely quantum iff only one n(l) 6= 0:

A = Mn , (n ≥ 2) .

The elementary objects are M1,M2,M3, . . ..
All other objects are composed of these.
Z(A) := A ∩A′ is the center of A, having C · 1l in every component.
A morphism T : B → A is central if its range is included in Z(A).
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Preparation and destruction

If B = M1 = C (terminal object of QProb), we omit B and replace T by a
cross:

A

If B = M1 = C, then T is a state ρ, a way of preparing the system B:

ρ
B

Interpretation: there are many ways to prepare a system, but only one way to
destroy (or just ignore) it.
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Interpretation of quantum information

The objects in QProb are quite literally physical objects.
The morphisms are what we can do to them.

A classical object is a thing carrying public information, which can be read off,
copied, published . . . .

A quantum object is a thing carrying private information.
Since the information concerns incompatible observables simultaneously, it
cannot be copied (as we shall see).
By the Kochen-Specker theorem there is not even a consistent way to answer
all the questions that can be asked about them.

Yet every bit of it can (possibly) be checked with information elsewhere (in
case of entanglement.)
In this case ANY, but not ALL questions can be answered.
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The Cauchy-Schwarz inequality

Theorem
For any unit preserving completely positive map T : B → A we have:

T (b∗b) ≥ T (b)∗T (b) .

Theorem
(Multiplication Theorem)If Cauchy-Schwartz holds with equality, then b is
multiplicative: i.e., for all x ∈ B we have:

T (b∗x) = T (b)∗T (x) .

(These results already hold in the commutative case.)
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Theorem
A possesses a cocopier iff A is abelian.
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Suppose mx = px , mutually orthogonal projections in A.
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@@j
A C

Then the operation j : C → A is a *-homomorphism:

j(f )j(g) =

(
∑

x

f (x)px

)(
∑

y

g(y)py

)
=
∑

x

f (x)g(x)px = j(fg) .

We conclude that a von Neumann measurement is a right-invertible morphism
in QProb from an arbitrary object to an abelian object.
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Â −→̂
Tt

Â
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Here ÂI denotes the von Neumann algebra generated by T̂t ◦ i(A), t ∈ I , and
E(a|AI ) the associated conditional expectation.
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Interpretation

The semigroup (Tt)t≥0 describes some irreversible dynamics on the physical
object A.
This object is part of an environment Â, which evolves in a reversible way.

In this manner dissipative motion can be incorporated into quantum mechanics.

Quantum information is lost by moving into the environment.

One of the effects can be decoherence.

Definition
A quantum Markov process is called essentially commutative if

Â = A⊗ C ,

where C is commutative.

I.e., a quantum system in a classical environment.
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Theorem
Let Tt = etL : Mn → Mn, t ≥ 0, be a semigroup of completely positive maps.
Then the following conditions are equivalent.

(i) There exists an essentially commutative Markov dilation of Tt .

(ii) For all t ≥ 0, Tt lies in the convex hull of the automorphisms of Mn.

(iii) The infinitesimal generator L is of the form

L(x) = i [h, x] +

k∑

j=1

(
ajxaj − 1

2
(a2j x + xa2j )

)
+

l∑
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κi (u
∗
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where h and a1, a2, . . . , ak are self-adjoint, and u1, u2, . . . , ul unitary
elements of Mn, and κ1, κ2, . . . , κl are positive numbers.
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Meaning and consequences

In a classical environment, under the Markov condition, the reduced behaviour
of a quantum system described by Mn is given by a diffusion or jump process
(or both) on the automorphism group of Mn.
In particular, since every automorphism preserves the trace state, so does their
average, the dynamical semigroup.
Hence any other semigroup, such as relaxation to a non-tracial state, cannot be
realized in a classical environmment.

A curiosity:
if the generator L is given by

L(x) := c∗xc − 1

2
(c∗cx + xc∗c) , (x ∈ Mn),

with c ∈ Mn, then etL has an essentially commutative dilation iff c is a normal
matrix (i.e.: c∗c = cc∗), and its spectrum lies on a circle or on a straight line.
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Quantum stochastic calculus

In close analogy with the classical diffusions, solutions of Itô’s stochastic
differential equation

dXt = Gtdt + HtdBt ,

where the Wiener process Bt satisfies the formal equality

dB2
t = dt ,

a quantum stochastic calculus has been developed (Hudson, Parthasarathy),
replacing Bt by At + A∗

t , where the annihilation and creation processesAt and
A∗

t satisfy
dAtdA

∗
t = dt ; dA∗

t dAt = 0 .

The solutions are Markov dilations of irreversible quantum evolutions.
An important example is resonance fluorescence, the solutions of which can be
explicitly given in terms of sum-integral kernels (Maassen 1985).
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Ω := {1, 2, . . . , k}N ;

Σm generated by cilinder sets : Λi1,...,im := {ω ∈ Ω|ω1 = i1, . . . , ωm = im} .

POVM: Qm (Λi1,...,im ) := Ti1 ◦ Ti2 ◦ · · · ◦ Tim (1l) .

Pρ := ρ ◦Q∞ .

Left shift: σ : Ω→ Ω : (σω)j := ωj+1 .
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Corollary
If ρ is the unique invariant state, then the sequence of measurement outcomes
is ergodic under Pρ.
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Theorem
For any state ρ on A:

lim
n→∞

1

n

n−1∑

j=0

Θj = Θ∞ Pρ-a.s. ,

where the random variable Θ∞ takes values in the T-invariant states on A.
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We consider a quantum system consisting of n identical, but distinguishable
subsystems (”particles”) described by Hilbert spaces of dimension d .

A state on such a system is called completely symmetric if it is symmetric both
for the global rotation of all the individual Hilbert spaces together (”Werner
state”) and for permutations of the particles.

The state is called entangled if it can not be written as a convex combination
of product states.

For a given completely symmetric state, we want to find out if it is entangled
or not, and, if so, to quantify how entangled it is.
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Entanglement is a central issue in quantum information theory.

The study of n party-entanglement is considered difficult. It is complicated by
the fact that the state space of n systems of size d has a large dimension:
d2n − 1.

The number of parameters is greatly reduced by requiring the state to be
completely symmetric. The dimension d drops out entirely, and the number of
parameters becomes (one less than) the number of possible partitions of the n
particles.

For example, for 2 quantum identical systems of arbitrary size d there is only
one parameter.

An advantage of this restraint is that we can lean on a vast body of results
from classical mathematics: the representation theory of Sn and SU(d), as
pioneered by Frobenius, Schur, Weyl, Littlewood, . . . .

But also some recent work in pure mathematics turns out to be surprisingly
relevant to our question.
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there are representations of two groups: Sn and SU(d):

Sn ∋ σ : π(σ)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := ψσ−1(1) ⊗ ψσ−1(2) ⊗ · · · ⊗ ψσ−1(n)

SU(d) ∋ u : π
′(u)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := uψ1 ⊗ uψ2 ⊗ · · · ⊗ uψn

The classical Schur-Weyl duality theorem states that these two group actions
do not only commute, but the algebras they generate are actually each other’s
commutant. In particular they have the same center:

Z := Z(n, d) := π(Sn)
′ ∩ π′(SU(d))′ .

The minimal projections in this center cut both group representations into
their irreducible components, and they are labeled by Young diagrams.

For example

3⊗ 3⊗ 3 = (10⊗ 1+)⊕ (8⊗ 2)⊕ (1⊗ 1−) .

= ⊕ ⊕ .
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Let An denote the group algebra of Sn:

f : Sn → C to be viewed as
∑

σ∈Sn

f (σ)σ .

Multiplication inAn is convolution:

(f ∗ g)(σ) =
∑

τ∈Sn

f (τ )g(τ−1
σ) .

The unit is δe , where e is the identity element of Sn.
Adjoint operation:

f ∗(σ) = f (σ−1) .

Every unitary representation of Sn automatically extends to a representation of
An.
In our case

π(f ) : ψ1 ⊗ . . .⊗ ψn 7→
∑

σ∈Sn

f (σ)ψσ−1(1) ⊗ . . .⊗ ψσ−1n .
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We let f ∈ An act on the Hilbert space l2(Sn) by convolution on the left:

h 7→ f ∗ h .

The trace on this ”Hilbert space” is of a particularly simple form:

trreg(f ) :=
∑

σ∈Sn

〈δσ , f ∗ δσ〉 =
∑

σ∈Sn

(f ∗ δσ)(σ) = n! · f (e) ,

and will be called the regular trace.

The normalized version τreg := 1
n!
trreg is the regular trace state.
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n .

We have f ∈ Zn if and only if for all σ, τ ∈ Sn: f (στ ) = f (τσ):
The center consists of the class functions. Hence

dimZn = #(conjugacy classes of Sn)

= #(partitions of n) =: P(n) .

On the other hand, since Zn is an abelian matrix algebra, it must be of the
form

Zn =

P(n)⊕

i=1

Cpi

for some orthogonal set of minimal projections pi in the center.
The states on the center form a simplex with extreme points ρi given by

ρi(pj) = δij .



minimal projections, characters, and irreducible

representations



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)∑

i=1

pi = δe .



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)∑

i=1

pi = δe .

They cut the algebra A = An into factors piA:

A =

P(n)⊕

i=1

piA ≃
P(n)⊕

i=1

Md(i) .



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)∑

i=1

pi = δe .

They cut the algebra A = An into factors piA:

A =

P(n)⊕

i=1

piA ≃
P(n)⊕

i=1

Md(i) .

Hence
d(i)2 = tr(pi ) = n! · pi (e) .



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)∑

i=1

pi = δe .

They cut the algebra A = An into factors piA:

A =

P(n)⊕

i=1

piA ≃
P(n)⊕

i=1

Md(i) .

Hence
d(i)2 = tr(pi ) = n! · pi (e) .

Now define the character χi : Sn → C by:

χi(σ) :=
n!

d(i)
pi(σ) .



minimal projections, characters, and irreducible

representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)∑

i=1

pi = δe .

They cut the algebra A = An into factors piA:

A =

P(n)⊕

i=1

piA ≃
P(n)⊕

i=1

Md(i) .

Hence
d(i)2 = tr(pi ) = n! · pi (e) .

Now define the character χi : Sn → C by:

χi(σ) :=
n!

d(i)
pi(σ) .

The character χi (σ) is the trace of σ in its irreducible representation labelled
by i .
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Young frames

The irreducible representations of Sn (and hence also the minimal central
projections and the characters) are labelled by Young frames with n boxes:

Y = .

(Hook length rule)

d(Y ) =
n!∏

hook lengths
.

For example:

d

( )
=

5!

4× 3× 2
= 5 hook lengths: 4 3 1

2 1
.
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An exclusion principle

Theorem
Let n, d ∈ N. Let Y denote a Young frame with n boxes and height h(Y ).
Then

πn,d(pY ) = 0 iff h(Y ) > d .

For example, the symmetric subspace, having Young frame , is nonzero in
(Cd)⊗4 for every one-particle dimension d ,
but, according to Pauli’s exclusion principle, the antisymmetric subspace, with

Young frame , needs d ≥ 4.

Hence the above theorem generalizes this exclusion principle.
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Observables (operators) on H := C
d ⊗ . . .⊗ C

d can be ‘twirled’ and averaged:

Ta :=

∫

SU(d)

(u ⊗ . . .⊗ u)∗ a (u ⊗ . . .⊗ u) du ;

Ma :=
1

n!

∑

σ∈Sn

π(σ) aπ(σ) .

Clearly, Ta ∈ π′(SU(d))′, and in the same way Ma ∈ π(Sn)
′.

Hence P := TM = MT projects onto the center π(Zn),
Dually P∗ takes a state ϑ, restricts it to the center, and then extends it to a
completely symmetric state on B(H):

(P∗
ϑ)(a) := ϑ(Pa) .

Theorem (Separability of completely symmetric states)
Let ϑ be a completely symmetric state on B

(
(Cd)⊗n

)
. Then ϑ is separable iff

its restriction to Z lies in the convex hull of the restricted product states.
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Proof.
If ϑ is separable, then it is a convex combination of product states, so its
restriction to Z is a convex combination of such restrictions.
Conversely, if for all z ∈ Z we have

ϑ(z) =
∑

i

µi 〈ψi , zψi 〉 ,

for some positive weights µi with sum 1 and unit product vectors ψi , then
since ϑ is completely symmetric, we have for all x ∈ B(H),

ϑ(x) = ϑ(Px) =
∑

i

µi 〈ψi ,Pxψi 〉

=
1

n!

∑

i

∑

σ∈Sn

∫

SU(d)

µi

〈
π(σ)(u ⊗ . . .⊗ u)ψi , x π(σ)(u ⊗ . . .⊗ u)ψi

〉
du ,

which is a convex inegral of product states, hence separable.
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The trace state

Theorem
The strace state moves towards the regular trace as d →∞.

Proof.
First we calculate:

tr
⊗n
d (π(σ)) =

d∑

i1=1

· · ·
d∑

in=1

〈ei1 ⊗ · · · ⊗ ein , π(σ) ei1 ⊗ · · · ⊗ ein〉

=

d∑

i1=1

· · ·
d∑

in=1

δi1 i
σ
−1(1)
· · · δin i

σ
−1(n)

.

= d#(cycles of σ)
.

since for every cycle one summation variable remains. Hence:

τ
⊗n
d (py ) =

d(Y )

n!

∑

σ∈Sn

χY (σ)
1

dn
tr

⊗n
d (π(σ))→ d(Y )2

n!
, (d →∞) .
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The shadow of the product states

The state space S(Z) of the center Z is a simplex whose corners are the states

ρY : pY ′ 7→ δYY ′ .

The product states throw their shadow on this simplex:
the affine components of the product state ψ1 ⊗ . . .⊗ ψn are the weights

wψ(Y ) := 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉 .

We note that the the regular trace has the following weights:

wreg(Y ) := τreg(pY ) =
d(Y )2

n!
.

Now here’s our basic connection between entanglement and classical
mathematics:

Theorem
The density of a product state ψ1 ⊗ . . .⊗ψn with respect to the regular trace is
the normalized immanant of the Gram matrix of ψ1, ψ2, . . . , ψn.
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Let A be an n × n matrix, and let Y be a Young frame with n boxes.
Then the immanant ImmY (A) of this matrix associated to Y is defined as

ImmY (A) :=
∑

σ∈Sn

χY (σ) a1σ(1)a2σ(2) · · · anσ(n) .

The normalized immanant ĨmmY (A) is defined so as to have Ĩmm(1l) = 1:

ĨmmY (A) :=
ImmY (A)

d(Y )
.

Note the following well-known special cases:

Imm (A) = det(A) and Imm (A) = per(A) .

We mention the following inequalities: for all positive definite matrices A and
all Young frames Y :

det(A) ≤ ĨmmY (A) ≤ per(A) .

The first inequality was proved by Schur in 1918, the second was conjectured
by Elliott Lieb in 1967, and is still open!



The weight formula

Proof.



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , π(σ)ψ1 ⊗ . . .⊗ ψn〉



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , π(σ)ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n)〉



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , π(σ)ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n)〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)

n∏

j=1

〈ψj , ψσ−1(j)〉



The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn , π(pY )ψ1 ⊗ . . .⊗ ψn〉

=
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∑
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=
d(Y )
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∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn , ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n)〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)

n∏

j=1

〈ψj , ψσ−1(j)〉

=
d(Y )

n!
ImmY (G(ψ)) =

d(Y )2

n!
ĨmmY (G(ψ)) .
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Optimal Bell inequalities for n = 3

For n = 3 the separable region is a polytope, having a finite number (3) of
extreme points.
We need only two linear (‘Bell’) inequalities in order to distinguish the
separable from the entangled completely symmetric states.

ρ(p+ + 5p−) ≥ 1 ;

ρ(4p+ + p−) ≥ 1 .

They correspond to the green lines in the figure.

Questions:

◮ Is the separable completely symmetric region (the ‘shadow’) always a
polytope?

◮ What is the general shape of this region?

◮ Does is grow or shrink with increasing n?



The Schur and Lieb inequalities

We have 2P(n)− 3 inequalities, which divide the state space S(Zn) into
compartments, and claim the the shadow of the product states falls into one of
them.

Schur’s 1918 inequality states that for all separables states ρ and all Young
frames Y 6= {−}:

ρ(pY ) ≥ d(Y )2 ρ(p−) .

Lieb’s 1967 conjecture hopes that for all separable ρ and all Young frames

Y 6= {+}:
ρ(pY ) ≤ d(Y )2 ρ(p+) .

The last trivial inequality says that for all separable ρ:

ρ(p−) ≤ ρ(p+) .

These are all Bell inequalities.
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Lieb

trivial

These are all Bell inequalities, but not all optimal.
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Hope crashed at n = 5

Our hope was, to prove that for all n ∈ N the separable completely symmetric
states would form a polytope.
However, this hope breaks down at n = 5:

Theorem (Barrett, Hall, Loewy (1999) translated)
The set of all completely symmetric separable states on B

(
(Cd)⊗5

)
has an

infinite number of extremal points.

In 1999 they showed that, already in the five qubit situation, the set of
separable states on the center possesses a part that is bulging outward.
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linear functionals on B(H) of the form

x 7→ 〈ψ1 ⊗ . . .⊗ ψn , x ϑ1 ⊗ . . .⊗ ϑn〉 ,

where ψ1, ψ2, . . . , ψn, ϑ1, ϑ2, . . . , ϑn are unit vectors in C
d .

Then a norm on the dual of B(H), is define by

‖ω‖V := inf

{
k∑

i=1

λi

∣∣∣∣ω =

k∑

i=1

λiνi , k ∈ N, λ1, λ2, . . . , λk > 0, ν1, ν2, . . . , νk ∈ V

}

;

When ρ is a state on B(H), we define its entanglement E(ρ) by

E(ρ) := ‖ρ‖V .
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Properties

The maximal tensor norm has all the required properties of an entanglement
measure:

◮ E(ρ) ≥ 1 for all ρ; E(ρ) = 1 iff ρ is separable;

◮ E((T1 ⊗ . . .⊗ Tn)ρ) ≤ E(ρ) for all quantum operations T1,T2, . . . ,Tn on
B(Cd );

◮ E(ρ⊗ ϑ) ≤ E(ρ) · E(ϑ).
(Here we would actually prefer equality!)
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Theorem
Let n, d ∈ N, and let Y denote an n-block Young frame with height ≤ d. The
entanglement of the completely symmetric state ρY satisfies

n!

d(Y ) · ImmY (G(ψmax))
≤ E(ρY ) ≤

∑
σ∈Sn
|χY (σ)|

ImmY (G(ψmax))
,

where ψmax is that n-tuple of unit vectors in C
d for which ImmY (G(ψ)) is

maximal.

In particular, the antisymmetric state has entanglement

E(ρ−) = n! .
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Like in classical probability a probability distribution cannot be measured on a
single system, but can only be estimated on an ensemble sequence of
identically prepared systems.
In fact, determining the state of a quantum system in one go would contradict
the no-cloning principle. For pure states an optimal procedure is known, but
not for mixed states.
However, if lwe are only interested in the spectrum of the density matrix ρ, it
turns out that an interesting way opens up.

Consider n particles with Hilbert space C
d , prepared independently in the state

ρ.
Then it is clear that the total state is permutation symmetric.
On the other hand, the spectrum of ρ is a rotation invariant property!
We may therefore expect an completely symmetric estimation procedure for
this spectrum.
Indeed: the projections pY in the center S(Zn) are mutually orthogonal and
sum up to 1l.
Hence they define a von Neumann measurement on the system of n particles
with Hilbert space C

d .
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This measurement turns out to lead to an asymptotically exact estimate of the
spectrum of ρ:

r̂ :=
1

n
Y .

This is the content of the following theorem byKeyl and Werner (2008):

Theorem
Let Σ denote the space of spectra, i.e.

Σ :=

{

s ∈ [0, 1]d
∣∣∣∣ s1 ≥ s2 ≥ . . . ≥ sd ,

d∑

j=1

sj = 1

}

.

Then for all ∆ ⊂ Σ we have, asymptotically as n →∞:

∑

Y : 1
n
Y∈∆

tr(ρnpY ) ≈ exp

(
−n inf

s∈∆
I (s)

)
,

where

I (s) :=
d∑

j=1

sj (log sj − log rj ) .


