Quantum information and stabilization of quantum states by feedback control

Hans Maassen

September 15, 2012.

Workshop on
The Statistical Physics of
Inference and Control Theory
Granada, September 12–16, 2012

Collaboration with:
Burkhard Kümmerer (Darmstadt)
Mădălin Guță (Nottingham)
Luc Bouten (Nijmegen)
Karol Życzkowski (Krakow)
Overview
Overview

1. Finite quantum systems
Overview

1. Finite quantum systems

2. Flow diagrams
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
 - The Heisenberg principle
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
 - The Heisenberg principle
 - (Entanglement)
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
 - The Heisenberg principle
 - (Entanglement)

4. Protecting information by ignorance
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
 - The Heisenberg principle
 - (Entanglement)

4. Protecting information by ignorance

5. Applications to feedback control
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 ▶ "No cloning"
 ▶ The Heisenberg principle
 ▶ (Entanglement)

4. Protecting information by ignorance

5. Applications to feedback control
 ▶ Protection of an unknown state
Overview

1. Finite quantum systems

2. Flow diagrams

3. What characterizes quantum information?
 - "No cloning"
 - The Heisenberg principle
 - (Entanglement)

4. Protecting information by ignorance

5. Applications to feedback control
 - Protection of an unknown state
 - Stabilization of a given state
1. Finite quantum systems
1. Finite quantum systems

- System
1. Finite quantum systems

- System
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).
1. Finite quantum systems

- System
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).
- State of the system
1. Finite quantum systems

- **System**

 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**

 Positive normalised linear functional $\varphi : \mathcal{A} \to \mathbb{C}$.
1. Finite quantum systems

- **System**
 *-Algebra \(\mathcal{A} \) of linear operators on a finite dimensional Hilbert space \(\mathcal{H} \) (matrix algebra).

- **State of the system**
 Positive normalised linear functional \(\varphi : \mathcal{A} \to \mathbb{C} \).

- **Event**
1. Finite quantum systems

- **System**
 *-*Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**
 Positive normalised linear functional $\varphi : \mathcal{A} \rightarrow \mathbb{C}$.

- **Event**
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).
1. Finite quantum systems

- System
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- State of the system
 Positive normalised linear functional $\varphi : \mathcal{A} \to \mathbb{C}$.

- Event
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).
 The probability that p occurs is $\varphi(p)$.
1. Finite quantum systems

- **System**
 - \(^\ast\)-Algebra \(\mathcal{A}\) of linear operators on a finite dimensional Hilbert space \(\mathcal{H}\) (\textit{matrix algebra}).
- **State of the system**
 - Positive normalised linear functional \(\varphi : \mathcal{A} \to \mathbb{C}\).
- **Event**
 - Orthogonal projection operator \(p \in \mathcal{A}\) (\(p^* = p = p^2\)).

The probability that \(p\) occurs is \(\varphi(p)\).

A finite system is called \textit{classical} if \(\mathcal{A}\) is \textit{commutative}.
1. Finite quantum systems

- **System**
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (*matrix algebra*).

- **State of the system**
 Positive normalised linear functional $\varphi : \mathcal{A} \to \mathbb{C}$.

- **Event**
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).
 The probability that p occurs is $\varphi(p)$.

A finite system is called *classical* if \mathcal{A} is commutative. Then there exists a finite set Ω such that
1. Finite quantum systems

- **System**
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**
 Positive normalised linear functional $\varphi : \mathcal{A} \rightarrow \mathbb{C}$.

- **Event**
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).

 The probability that p occurs is $\varphi(p)$.

A finite system is called *classical* if \mathcal{A} is commutative. Then there exists a finite set Ω such that

$$\mathcal{A} \cong \{ \text{functions } \Omega \rightarrow \mathbb{C} \};$$
1. Finite quantum systems

- **System**
 - *-Algebra \(\mathcal{A} \) of linear operators on a finite dimensional Hilbert space \(\mathcal{H} \) (\emph{matrix algebra}).

- **State of the system**
 - Positive normalised linear functional \(\varphi : \mathcal{A} \to \mathbb{C} \).

- **Event**
 - Orthogonal projection operator \(p \in \mathcal{A} \) (\(p^* = p = p^2 \)).
 - The probability that \(p \) occurs is \(\varphi(p) \).

A finite system is called \emph{classical} if \(\mathcal{A} \) is \emph{commutative}. Then there exists a finite set \(\Omega \) such that

\[
\mathcal{A} \cong \{ \text{functions } \Omega \to \mathbb{C} \} ;
\]

\[
\varphi(f) = \sum_{\omega \in \Omega} \pi(\omega)f(\omega) .
\]
1. Finite quantum systems

- **System**

 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**

 Positive normalised linear functional $\varphi : \mathcal{A} \rightarrow \mathbb{C}$.

- **Event**

 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).

 The probability that p occurs is $\varphi(p)$.

A finite system is called **classical** if \mathcal{A} is commutative. Then there exists a finite set Ω such that

\[
\mathcal{A} \cong \{ \text{functions } \Omega \rightarrow \mathbb{C} \};
\]

\[
\varphi(f) = \sum_{\omega \in \Omega} \pi(\omega)f(\omega).
\]

where $\pi(\omega) \geq 0$ and $\sum_{\omega} \pi(\omega) = 1.$
1. Finite quantum systems

- **System**
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**
 Positive normalised linear functional $\varphi : \mathcal{A} \rightarrow \mathbb{C}$.

- **Event**
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).

 The probability that p occurs is $\varphi(p)$.

A finite system is called *classical* if \mathcal{A} is commutative.

Then there exists a finite set Ω such that

$$\mathcal{A} \cong \{ \text{functions } \Omega \rightarrow \mathbb{C} \};$$

$$\varphi(f) = \sum_{\omega \in \Omega} \pi(\omega)f(\omega).$$

where $\pi(\omega) \geq 0$ and $\sum_{\omega} \pi(\omega) = 1$.

Events are projections in \mathcal{A}: $p(\omega) = 0$ or 1, i.e.,

$$p_A = 1_A$$
1. Finite quantum systems

- **System**
 *-Algebra \mathcal{A} of linear operators on a finite dimensional Hilbert space \mathcal{H} (matrix algebra).

- **State of the system**
 Positive normalised linear functional $\varphi : \mathcal{A} \to \mathbb{C}$.

- **Event**
 Orthogonal projection operator $p \in \mathcal{A}$ ($p^* = p = p^2$).
 The probability that p occurs is $\varphi(p)$.

A finite system is called *classical* if \mathcal{A} is commutative. Then there exists a finite set Ω such that

$$\mathcal{A} \cong \{ \text{functions } \Omega \to \mathbb{C} \};$$

$$\varphi(f) = \sum_{\omega \in \Omega} \pi(\omega)f(\omega).$$

where $\pi(\omega) \geq 0$ and $\sum_{\omega} \pi(\omega) = 1$.

Events are projections in \mathcal{A}: $p(\omega) = 0$ or 1, i.e.,

$$p_A = 1_A$$

for some subset $A \subset \Omega$.
Concrete realization
Concrete realization

Every matrix algebra is of the form
Concrete realization

Every matrix algebra is of the form

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]
Concrete realization

Every matrix algebra is of the form

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]

The system \(\mathcal{A} \) is classical iff it is composed of \(\mathbb{C} \)'s (\(\equiv \) \(M_1 \)'s) only:
Concrete realization

Every matrix algebra is of the form

\[\mathcal{A} = (C \oplus C \oplus \cdots \oplus C) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]

The system \(\mathcal{A} \) is **classical** iff it is composed of \(C \)'s (\(= M_1 \)'s) only:

\[\mathcal{A} = (C \oplus C \oplus \cdots \oplus C) =: C_m . \]
Concrete realization

Every matrix algebra is of the form

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]

The system \(\mathcal{A} \) is **classical** iff it is composed of \(\mathbb{C}'s \ (\equiv M_1's) \) only:

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) =: \mathcal{C}_m . \]

\(\mathcal{A} \) is **purely quantum** if

\[\mathcal{A} = M_n , \quad (n \geq 2) . \]
Every matrix algebra is of the form

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]

The system \(\mathcal{A} \) is classical iff it is composed of \(\mathbb{C}'s \) (\(= M_1's \)) only:

\[\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) =: \mathbb{C}_m . \]

\(\mathcal{A} \) is purely quantum if

\[\mathcal{A} = M_n , \quad (n \geq 2) . \]

The elementary matrix algebras are \(M_1, M_2, M_3, \ldots \).
Concrete realization

Every matrix algebra is of the form

$$A = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots$$

The system A is classical iff it is composed of \mathbb{C}'s ($= M_1$'s) only:

$$A = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) =: \mathbb{C}_m .$$

A is purely quantum if

$$A = M_n , \quad (n \geq 2) .$$

The elementary matrix algebras are M_1, M_2, M_3, \ldots.

All other matrix algebras are composed of these.
Concrete realization

Every matrix algebra is of the form

\[A = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots \]

The system \(A \) is classical iff it is composed of \(\mathbb{C}'s \) \((= M_1's)\) only:

\[A = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) =: C_m. \]

\(A \) is purely quantum if

\[A = M_n, \quad (n \geq 2). \]

The elementary matrix algebras are \(M_1, M_2, M_3, \ldots \).

All other matrix algebras are composed of these.

\(\mathcal{Z}(A) := A \cap A' \) is the center of \(A \), having \(\mathbb{C} \cdot \mathbb{I} \) in every component.
Concrete realization

Every matrix algebra is of the form

$$\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) \oplus (M_2 \oplus M_2 \oplus \cdots \oplus M_2) \oplus (M_3 \oplus M_3 \oplus \cdots \oplus M_3) \oplus \cdots$$

The system \mathcal{A} is classical iff it is composed of \mathbb{C}'s ($= M_1$'s) only:

$$\mathcal{A} = (\mathbb{C} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}) =: \mathcal{C}_m.$$

\mathcal{A} is purely quantum if

$$\mathcal{A} = M_n, \quad (n \geq 2).$$

The elementary matrix algebras are M_1, M_2, M_3, \ldots.
All other matrix algebras are composed of these.
$\mathcal{Z}(\mathcal{A}) := \mathcal{A} \cap \mathcal{A}'$ is the center of \mathcal{A}, having $\mathbb{C} \cdot \mathbb{I}$ in every component.
Operations on quantum systems
A map $T : B \to A$ is called a \textit{quantum operation} if
A map $T : B \to A$ is called a *quantum operation* if

$$T \otimes \text{id} : B \otimes M_n \to A \otimes M_n$$

preserves positivity for all $n \in \mathbb{N}$.

Operations on quantum systems
Operations on quantum systems

A map $T : B \to A$ is called a *quantum operation* if

- $T \otimes \text{id} : B \otimes M_n \to A \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
- $T(1_B) = 1_A$
A map $T : \mathcal{B} \rightarrow \mathcal{A}$ is called a \textit{quantum operation} if

\begin{itemize}
 \item $T \otimes \text{id} : \mathcal{B} \otimes M_n \rightarrow \mathcal{A} \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
 \item $T(\mathbb{1}_\mathcal{B}) = \mathbb{1}_\mathcal{A}$
\end{itemize}

The adjoint of such a \textit{completely positive unit preserving} map sends states to states; we write

$$T^* : S(\mathcal{A}) \rightarrow S(\mathcal{B}) .$$
A map $T : B \rightarrow A$ is called a \textit{quantum operation} if

\begin{itemize}
 \item $T \otimes \text{id} : B \otimes M_n \rightarrow A \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
 \item $T(\mathbb{1}_B) = \mathbb{1}_A$
\end{itemize}

The adjoint of such a \textit{completely positive unit preserving} map sends states to states; we write

$$T^* : S(A) \rightarrow S(B).$$

Theorem

\textbf{(Cauchy-Schwarz)} For any unit preserving completely positive map $T : B \rightarrow A$ we have:
Operations on quantum systems

A map $T : \mathcal{B} \rightarrow \mathcal{A}$ is called a *quantum operation* if

- $T \otimes \text{id} : \mathcal{B} \otimes M_n \rightarrow \mathcal{A} \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
- $T(\mathbbm{1}_\mathcal{B}) = \mathbbm{1}_\mathcal{A}$

The adjoint of such a *completely positive unit preserving* map sends states to states; we write

$$T^* : S(\mathcal{A}) \rightarrow S(\mathcal{B}) .$$

Theorem

(Cauchy-Schwarz) For any unit preserving completely positive map $T : \mathcal{B} \rightarrow \mathcal{A}$ we have:

$$T(b^* b) \geq T(b)^* T(b) .$$
A map $T : \mathcal{B} \to \mathcal{A}$ is called a *quantum operation* if

- $T \otimes \text{id} : \mathcal{B} \otimes M_n \to \mathcal{A} \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
- $T(1\mathcal{B}) = 1\mathcal{A}$

The adjoint of such a *completely positive unit preserving* map sends states to states; we write

$$T^* : S(\mathcal{A}) \to S(\mathcal{B}) .$$

Theorem *(Cauchy-Schwarz)* For any unit preserving completely positive map $T : \mathcal{B} \to \mathcal{A}$ we have:

$$T(b^* b) \geq T(b)^* T(b) .$$

with equality iff b is *multiplicative*, i.e., for all $x \in \mathcal{B}$ we have:
A map $T : \mathcal{B} \to \mathcal{A}$ is called a *quantum operation* if

- $T \otimes \text{id} : \mathcal{B} \otimes M_n \to \mathcal{A} \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
- $T(\mathbb{1}_\mathcal{B}) = \mathbb{1}_\mathcal{A}$

The adjoint of such a *completely positive unit preserving* map sends states to states; we write

$$T^* : S(\mathcal{A}) \to S(\mathcal{B}).$$

Theorem

(Cauchy-Schwarz) For any unit preserving completely positive map $T : \mathcal{B} \to \mathcal{A}$ we have:

$$T(b^* b) \geq T(b)^* T(b).$$

with equality iff b is *multiplicative*, i.e., for all $x \in \mathcal{B}$ we have:

$$T(b^* x) = T(b)^* T(x).$$
A map $T : \mathcal{B} \to \mathcal{A}$ is called a quantum operation if

1. $T \otimes \text{id} : \mathcal{B} \otimes M_n \to \mathcal{A} \otimes M_n$ preserves positivity for all $n \in \mathbb{N}$
2. $T(1_\mathcal{B}) = 1_\mathcal{A}$

The adjoint of such a completely positive unit preserving map sends states to states; we write

$$T^* : S(\mathcal{A}) \to S(\mathcal{B}).$$

Theorem

(Cauchy-Schwarz) For any unit preserving completely positive map $T : \mathcal{B} \to \mathcal{A}$ we have:

$$T(b^* b) \geq T(b)^* T(b).$$

with equality iff b is multiplicative, i.e., for all $x \in \mathcal{B}$ we have:

$$T(b^* x) = T(b)^* T(x).$$

(This result already holds in the commutative case.)
Operations on classical systems
Operations on classical systems

In the classical case T is a transition matrix:

$$T = (t_{\omega\nu})_{\omega\nu \in \Omega}.$$
In the classical case T is a transition matrix:

$$T = (t_{\omega \nu})_{\omega \nu \in \Omega}.$$

T acts on *observables*:

$$(Tf)(\omega) = \sum_{\nu \in \Omega} t_{\omega \nu} f(\nu);$$
Operations on classical systems

In the classical case T is a transition matrix:

$$T = (t_{\omega \nu})_{\nu \in \Omega}.$$

T acts on observables:

$$(Tf)(\omega) = \sum_{\nu \in \Omega} t_{\omega \nu} f(\nu);$$

T^* acts on distributions:

$$T^*(\pi)(\omega) = \sum_{\nu \in \Omega} \pi(\nu) t_{\nu, \omega}.$$
In the classical case T is a transition matrix:

$$T = (t_{\omega \nu})_{\omega \nu \in \Omega}.$$

T acts on observables:

$$(Tf)(\omega) = \sum_{\nu \in \Omega} t_{\omega \nu} f(\nu);$$

T^* acts on distributions:

$$T^*(\pi)(\omega) = \sum_{\nu \in \Omega} \pi(\nu) t_{\nu, \omega}.$$

The first we call the *Heisenberg picture*, the second the *Schrödinger picture*.
2. Flow diagrams
2. Flow diagrams

We denote a classical system by a straight line.
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[\mathcal{A} \]
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[\mathcal{A} \]

Quantum operations: \(T : B \rightarrow \mathcal{A} \) (or \(T^* : S(\mathcal{A}) \) to \(S(B) \)) is denoted by a box:
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[A \]

Quantum operations: \(T : B \rightarrow A \) (or \(T^* : S(A) \rightarrow S(B) \)) is denoted by a box:

\[A \quad \boxed{T} \quad B \]
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[A \]

Quantum operations: \(T : B \rightarrow A \) (or \(T^* : S(A) \) to \(S(B) \)) is denoted by a box:

\[A \rightarrow T \rightarrow B \]
2. Flow diagrams

We denote a **classical** system by a straight line.

\[C \]

A general system ("**quantum information**") is denoted by a wavy line:

\[\mathcal{A} \]

Quantum operations: \(T : \mathcal{B} \to \mathcal{A} \) (or \(T^* : S(\mathcal{A}) \to S(\mathcal{B}) \)) is denoted by a box:

\[\mathcal{A} \quad \begin{array}{c} T \\ \end{array} \quad \mathcal{B} \]

Information flows from left to right, but the map \(T \) goes from right to left!
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[A \]

Quantum operations: \(T : B \rightarrow A \) (or \(T^* : S(A) \rightarrow S(B) \)) is denoted by a box:

\[T \]

Information flows from left to right, but the map \(T \) goes from right to left!

The tensor product \(A \otimes B \) is denoted by parallel lines:
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[A \]

Quantum operations: \(T : B \rightarrow A \) (or \(T^* : S(A) \) to \(S(B) \)) is denoted by a box:

\[A \quad \boxed{T} \quad B \]

Information flows from left to right, but the map \(T \) goes from right to left!

The tensor product \(A \otimes B \) is denoted by parallel lines:

\[A \]

\[\sim \sim \sim \sim \sim \sim \sim \]

\[B \]
2. Flow diagrams

We denote a classical system by a straight line.

\[C \]

A general system ("quantum information") is denoted by a wavy line:

\[A \]

Quantum operations: \(T : B \rightarrow A \) (or \(T^* : S(A) \) to \(S(B) \)) is denoted by a box:

[Diagram of quantum operations]

Information flows from left to right, but the map \(T \) goes from right to left!

The tensor product \(A \otimes B \) is denoted by parallel lines:

\[A \]

\[B \]
Preparation and destruction
If $B = \mathbb{C}$ (The trivial one-state system), we omit B and symbolize $T : \mathbb{C} \rightarrow \mathcal{A} : z \mapsto z \cdot 1$ by a cross:
If $B = \mathbb{C}$ (The trivial one-state system), we omit B and symbolize $T : \mathbb{C} \to A : z \mapsto z \cdot 1$ by a cross:
Preparation and destruction

If \(B = \mathbb{C} \) (The trivial one-state system), we omit \(B \) and symbolize \(T : \mathbb{C} \rightarrow A : z \mapsto z \cdot 1 \) by a cross:

\[
\mathcal{A} \\
\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim\times
\]

If \(A = \mathbb{C} \), then \(T \) is a state, say \(\rho \), a way of preparing the system \(B \):
If $B = \mathbb{C}$ (The trivial one-state system), we omit B and symbolize $T : \mathbb{C} \rightarrow A : z \mapsto z \cdot 1$ by a cross:

$$A \quad \times$$

If $A = \mathbb{C}$, then T is a state, say ρ, a way of preparing the system B:

$$\rho \quad B$$
Preparation and destruction

If $B = \mathbb{C}$ (The trivial one-state system), we omit B and symbolize $T : \mathbb{C} \to \mathcal{A} : z \mapsto z \cdot 1$ by a cross:

$$
\mathcal{A} \\
\sim \sin
3. What characterizes quantum information?
3. What characterizes quantum information?

Quantum information cannot be copied.
Quantum information cannot be copied.

$C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is a cocopier of \mathcal{A} if for all $a \in \mathcal{A}$:
3. What characterizes quantum information?

Quantum information cannot be copied.

$C : A \otimes A \rightarrow A$ is a **cocopier** of A if for all $a \in A$:

$$C \times C = A$$
3. What characterizes quantum information?

Quantum information cannot be copied.

$C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is a cocopier of \mathcal{A} if for all $a \in \mathcal{A}$:

$C(\mathbb{1} \otimes a) = C(a \otimes \mathbb{1}) = a$.
3. What characterizes quantum information?

Quantum information cannot be copied.

$C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is a cocopier of \mathcal{A} if for all $a \in \mathcal{A}$:

\[
C(1 \otimes a) = C(a \otimes 1) = a.
\]

For example, if \mathcal{A} is abelian, a cocopier is given by the product map
3. What characterizes quantum information?

Quantum information cannot be copied.

$C : A \otimes A \rightarrow A$ is a cocopier of A if for all $a \in A$:

$$C(1 \otimes a) = C(a \otimes 1) = a.$$

For example, if A is abelian, a cocopier is given by the product map

$$a \otimes b \mapsto ab.$$
3. What characterizes quantum information?

Quantum information cannot be copied.

$C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ is a cocopier of \mathcal{A} if for all $a \in \mathcal{A}$:

$$C(1 \otimes a) = C(a \otimes 1) = a.$$

For example, if \mathcal{A} is abelian, a cocopier is given by the product map

$$a \otimes b \mapsto ab.$$

Or, when read from left to right, we obtain the copier
Quantum information cannot be copied.

$C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$ is a cocopier of \mathcal{A} if for all $a \in \mathcal{A}$:

$C(1 \otimes a) = C(a \otimes 1) = a$.

For example, if \mathcal{A} is abelian, a cocopier is given by the product map

$a \otimes b \mapsto ab$.

Or, when read from left to right, we obtain the copier

$\pi \mapsto \sum_{\omega \in \Omega} \pi(\omega)\delta_{\omega} \otimes \delta_{\omega}$.
3. What characterizes quantum information?

Quantum information cannot be copied. C : \(A \otimes A \rightarrow A \) is a cocopier of \(A \) if for all \(a \in A \):

\[
 C(\mathbb{1} \otimes a) = C(a \otimes \mathbb{1}) = a .
\]

For example, if \(A \) is abelian, a cocopier is given by the product map

\[
 a \otimes b \mapsto ab .
\]

Or, when read from left to right, we obtain the copier

\[
 \pi \mapsto \sum_{\omega \in \Omega} \pi(\omega)\delta_\omega \otimes \delta_\omega .
\]

The product map \(a \otimes b \mapsto ab \) is not positive if \(A \) is noncommutative.
The "no cloning" theorem
The "no cloning" theorem

\mathcal{A} possesses a cocopier iff \mathcal{A} is abelian.
The "no cloning" theorem

A possesses a cocopier iff A is abelian.

Proof.
The "no cloning" theorem

\mathcal{A} possesses a cocopier iff \mathcal{A} is abelian.

Proof.
Suppose \mathcal{A} is abelian.
The "no cloning" theorem

A possesses a cocopier iff A is abelian.

Proof.
Suppose A is abelian. Then the product map is a cocopier.
The ”no cloning” theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.

Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.

Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \) is a cocopier.
The "no cloning" theorem

\(\mathcal{A}\) possesses a cocopier iff \(\mathcal{A}\) is abelian.

Proof.
Suppose \(\mathcal{A}\) is abelian. Then the product map is a cocopier. Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}\) is a cocopier. Then for all \(a \in \mathcal{A}\):
The ”no cloning” theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.
Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[a^* \cdot a \]
The ”no cloning” theorem

\(\mathcal{A}\) possesses a cocopier iff \(\mathcal{A}\) is abelian.

Proof.
Suppose \(\mathcal{A}\) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}\) is a cocopier. Then for all \(a \in \mathcal{A}\):

\[a^* a = C(a^* \otimes \mathbb{1})C(a \otimes \mathbb{1})\]
The ”no cloning” theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.

Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.

Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^* a = C(a^* \otimes \mathbb{1})C(a \otimes \mathbb{1}) \leq C(a^* a \otimes \mathbb{1})
\]
The "no cloning" theorem

\[A \text{ possesses a cocopier iff } A \text{ is abelian.} \]

Proof.

Suppose \(A \) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : A \otimes A \to A \) is a cocopier. Then for all \(a \in A \):

\[
 a^* a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^* a \otimes 1) = a^* a .
\]
The "no cloning" theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.
Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^* a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^* a \otimes 1) = a^* a .
\]

So we have here equality in Cauchy-Schwarz.
The ”no cloning” theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.
Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^*a = C(a^* \otimes 1 \mathbb{I}) C(a \otimes 1 \mathbb{I}) \leq C(a^*a \otimes 1 \mathbb{I}) = a^*a.
\]

So we have here equality in Cauchy-Schwarz.
It follows that \(a \otimes 1 \mathbb{I} \) is multiplicative for \(C \).
\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.
Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier.
Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^* a = C(a^* \otimes \mathbb{1})C(a \otimes \mathbb{1}) \leq C(a^* a \otimes \mathbb{1}) = a^* a.
\]

So we have here equality in Cauchy-Schwarz.
It follows that \(a \otimes \mathbb{1} \) is multiplicative for \(C \).
Now, for all \(b \in \mathcal{A} \):
The "no cloning" theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.

Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier. Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^*a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^*a \otimes 1) = a^*a.
\]

So we have here equality in Cauchy-Schwarz. It follows that \(a \otimes 1 \) is multiplicative for \(C \).

Now, for all \(b \in \mathcal{A} \):

\[
(a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1)
\]
The “no cloning” theorem

A possesses a cocopier iff A is abelian.

Proof.
Suppose A is abelian. Then the product map is a cocopier.
Conversely suppose C : A \otimes A \to A is a cocopier. Then for all a ∈ A:

\[a^* a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^*a \otimes 1) = a^*a. \]

So we have here equality in Cauchy-Schwarz.
It follows that a \otimes 1 is multiplicative for C.
Now, for all b ∈ A:

\[(a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1), \]
\[C((a \otimes 1)(1 \otimes b)) = C((1 \otimes b)(a \otimes 1)). \]
The "no cloning" theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.

Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier. Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^*a = C(a^* \otimes \mathbb{1})C(a \otimes \mathbb{1}) \leq C(a^*a \otimes \mathbb{1}) = a^*a.
\]

So we have here equality in Cauchy-Schwarz. It follows that \(a \otimes \mathbb{1} \) is multiplicative for \(C \).

Now, for all \(b \in \mathcal{A} \):

\[
(a \otimes \mathbb{1})(\mathbb{1} \otimes b) = (\mathbb{1} \otimes b)(a \otimes \mathbb{1})
\]

\[
C((a \otimes \mathbb{1})(\mathbb{1} \otimes b)) = C((\mathbb{1} \otimes b)(a \otimes \mathbb{1}))
\]

by multiplicativity

\[
C(a \otimes \mathbb{1})C(\mathbb{1} \otimes b) = C(\mathbb{1} \otimes b)C(a \otimes \mathbb{1})
\]
The "no cloning" theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.
Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier. Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^* a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^* a \otimes 1) = a^* a .
\]

So we have here equality in Cauchy-Schwarz. It follows that \(a \otimes 1 \) is multiplicative for \(C \).
Now, for all \(b \in \mathcal{A} \):

\[
(a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1) \quad \text{by multiplicativity}
\]

\[
C((a \otimes 1)(1 \otimes b)) = C((1 \otimes b)(a \otimes 1))
\]

i.e.:

\[
ab = ba .
\]
The "no cloning" theorem

\(\mathcal{A} \) possesses a cocopier iff \(\mathcal{A} \) is abelian.

Proof.

Suppose \(\mathcal{A} \) is abelian. Then the product map is a cocopier. Conversely suppose \(C : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \) is a cocopier. Then for all \(a \in \mathcal{A} \):

\[
a^* a = C(a^* \otimes 1)C(a \otimes 1) \leq C(a^* a \otimes 1) = a^* a.
\]

So we have here equality in Cauchy-Schwarz. It follows that \(a \otimes 1 \) is multiplicatively for \(C \).

Now, for all \(b \in \mathcal{A} \):

\[
(a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1)
\]

\[
C((a \otimes 1)(1 \otimes b)) = C((1 \otimes b)(a \otimes 1))
\]

by multiplicativity

\[
C(a \otimes 1)C(1 \otimes b) = C(1 \otimes b)C(a \otimes 1)
\]

i.e.:

\[
ab = ba.
\]
General quantum measurement
General quantum measurement

An Ω-valued measurement
General quantum measurement

An Ω-valued measurement

$\varphi \xrightarrow{S(A)} M^* \xrightarrow{\pi} S(\Omega)$
General quantum measurement

An Ω-valued measurement

A state φ on A is mapped to a probability distribution π on Ω.
General quantum measurement

An Ω-valued measurement

A state φ on \mathcal{A} is mapped to a probability distribution π on Ω.

$$\varphi \quad S(\mathcal{A}) \quad M^* \quad S(\Omega) \quad \pi$$

$$\mathcal{A} \quad M \quad C = F(\Omega)$$
An Ω-valued measurement

A state φ on \mathcal{A} is mapped to a probability distribution π on Ω.

$M(f) = \sum_{\omega \in \Omega} f(\omega)m_\omega$;
General quantum measurement

An Ω-valued measurement

A state φ on \mathcal{A} is mapped to a probability distribution π on Ω.

$$M(f) = \sum_{\omega \in \Omega} f(\omega) m_\omega ;$$

$m_\omega \in \mathcal{A}$ positive; $\sum_{\omega \in \Omega} m_\omega = 1_\mathcal{A}$.

$$M^*$$

$S(\mathcal{A})$ π

$S(\Omega)$

$C = \mathcal{F}(\Omega)$

φ \mathcal{A}
General quantum measurement

An Ω-valued measurement

A state φ on \mathcal{A} is mapped to a probability distribution π on Ω.

Positive Operator Valued Measure (POVM)
von Neumann Measurement
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.

\[\mathcal{A} \quad \xrightarrow{j} \quad C \]
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.

Then the operation $j : \mathcal{C} \to \mathcal{A}$ is a *-homomorphism:

$$j(f)j(g) = \left(\sum_\omega f(\omega)p_\omega \right) \left(\sum_y g(y)p_y \right) = \sum_\omega f(\omega)g(\omega)p_\omega = j(fg).$$
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.

\[j : \mathcal{C} \to \mathcal{A} \]

Then the operation $j : \mathcal{C} \to \mathcal{A}$ is a \ast-homomorphism:

\[
j(f)j(g) = \left(\sum_\omega f(\omega)p_\omega \right) \left(\sum_y g(y)p_y \right) = \sum_\omega f(\omega)g(\omega)p_\omega = j(fg).
\]

The connection with observables (random variables) is:
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.

Then the operation $j : \mathcal{C} \to \mathcal{A}$ is a *-homomorphism:

$$j(f)j(g) = \left(\sum_\omega f(\omega)p_\omega \right) \left(\sum_y g(y)p_y \right) = \sum_\omega f(\omega)g(\omega)p_\omega = j(fg).$$

The connection with observables (random variables) is:
If p_j is the event that a takes the value α_j, then we can associate to the von Neumann measurement the self-adjoint operator
von Neumann Measurement

Suppose \(m_\omega = p_\omega \), mutually orthogonal projections in \(\mathcal{A} \).

Then the operation \(j : \mathcal{C} \to \mathcal{A} \) is a \(*\)-homomorphism:

\[
j(f)j(g) = \left(\sum_\omega f(\omega)p_\omega \right) \left(\sum_y g(y)p_y \right) = \sum_\omega f(\omega)g(\omega)p_\omega = j(fg) .
\]

The connection with observables (random variables) is:
If \(p_j \) is the event that \(a \) takes the value \(\alpha_j \), then we can associate to the von Neumann measurement the **self-adjoint operator**

\[
a := \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_k p_k .
\]
von Neumann Measurement

Suppose $m_\omega = p_\omega$, mutually orthogonal projections in \mathcal{A}.

Then the operation $j : \mathcal{C} \rightarrow \mathcal{A}$ is a *-homomorphism:

$$j(f)j(g) = \left(\sum_\omega f(\omega)p_\omega \right) \left(\sum_y g(y)p_y \right) = \sum_\omega f(\omega)g(\omega)p_\omega = j(fg).$$

The connection with observables (random variables) is:

If p_j is the event that a takes the value α_j, then we can associate to the von Neumann measurement the self-adjoint operator

$$a := \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_k p_k.$$

Every self-adjoint operator is of this form.
Quantum Instruments
We do not have to throw our original quantum system away when measuring.
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a) . \]
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a). \]

MARGINALS:
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a) . \]

MARGINALS:
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a) . \]

MARGINALS:

\[T : A \rightarrow A : \quad x \mapsto M(x \otimes 1) \]
We do not have to throw our original quantum system away when measuring.

\[
M : A \otimes C \to A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a) .
\]

MARGINALS:

\[
T : A \to A : \quad x \mapsto M(x \otimes 1) \quad \text{(Channel)}
\]
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \to A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a). \]

MARGINALS:

\[T : A \to A : \quad x \mapsto M(x \otimes 1) \quad \text{(Channel)} \]
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a). \]

MARGINALS:

\[T : A \rightarrow A : \quad x \mapsto M(x \otimes 1) \quad \text{(Channel)} \]

\[Q : C \rightarrow A : \quad f \mapsto M(1 \otimes f) \]
We do not have to throw our original quantum system away when measuring.

\[M : A \otimes C \rightarrow A : \quad M(a \otimes f) = \sum_{i=1}^{k} f(i) T_i(a) \]

MARGINALS:

\[T : A \rightarrow A : \quad x \mapsto M(x \otimes 1) \quad \text{(Channel)} \]

\[Q : C \rightarrow A : \quad f \mapsto M(1 \otimes f) \quad \text{(POVM)} \]
Opening up the environment
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \to M_n$ is of the form
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \rightarrow M_n$ is of the form

$$T(x) = V \circ (x \otimes 1)$$
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \rightarrow M_n$ is of the form

$$T(x) = V \circ (x \otimes 1)$$

for some $k \in \mathbb{N}$, and some compression $V : M_n \otimes M_k \rightarrow M_n$:
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \rightarrow M_n$ is of the form

$$T(x) = V \circ (x \otimes 1)$$

for some $k \in \mathbb{N}$, and some compression $V : M_n \otimes M_k \rightarrow M_n$:
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \rightarrow M_n$ *is of the form*

$$T(x) = V \circ (x \otimes 1)$$

for some $k \in \mathbb{N}$, *and some compression* $V : M_n \otimes M_k \rightarrow M_n$:

![Diagram](image)

An operation $V : M_n \rightarrow M_m$ ($n \geq m$) is called a **compression** if there exists an isometry $\mathbb{C}^m \rightarrow \mathbb{C}^n$ such that for all $x \in \mathbb{C}^m$:

$$V(x) = v^* x v .$$
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation \(T : M_n \rightarrow M_n \) *is of the form*

\[
T(x) = V \circ (x \otimes 1)
\]

for some \(k \in \mathbb{N} \), *and some compression* \(V : M_n \otimes M_k \rightarrow M_n \):

An operation \(V : M_n \rightarrow M_m \) (\(n \geq m \)) is called a **compression** if there exists an isometry \(\mathbb{C}^m \rightarrow \mathbb{C}^n \) such that for all \(x \in \mathbb{C}^m \):

\[
V(x) = v^* x v
\]

We shall denote compressions by triangular boxes:

\[
\begin{array}{c}
M_n \\
T \\
M_n
\end{array}
\]

\[
\begin{array}{c}
M_n \\
V \\
M_k
\end{array}
\]

\[
\begin{array}{c}
M_m \\
V \\
M_n
\end{array}
\]
Opening up the environment

Theorem (Stinespring, Kraus)

Every operation $T : M_n \rightarrow M_n$ *is of the form*

$$T(x) = V \circ (x \otimes 1)$$

for some $k \in \mathbb{N}$, *and some compression* $V : M_n \otimes M_k \rightarrow M_n$:

$$
\begin{array}{ccc}
M_n & T & M_n \\
\cdots & & \cdots \\
\end{array} =
\begin{array}{ccc}
M_n & V & M_n \\
\cdots & & M_k \\
\end{array}
$$

An operation $V : M_n \rightarrow M_m$ $(n \geq m)$ is called a **compression** if there exists an isometry $\mathbb{C}^m \rightarrow \mathbb{C}^n$ such that for all $x \in \mathbb{C}^m$:

$$V(x) = v^* xv .$$

We shall denote compressions by triangular boxes:

$$
\begin{array}{ccc}
M_m & V & M_n \\
\cdots & & \cdots \\
\end{array}
$$
Stinespring versus Kraus representation
Stinespring versus Kraus representation

\[T(x) \]
Stinespring versus Kraus representation

\[T(x) = \sum_{i=1}^{k} a_i^* x a_i \]
Stinespring versus Kraus representation

\[T(x) = \sum_{i=1}^{k} a_i^* x a_i \]

\[= (a_1^*, a_2^*, \cdots, a_k^*) \begin{pmatrix} x & x & 0 \\ x & & \\ 0 & x \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix} \]
Stinespring versus Kraus representation

\[T(x) = \sum_{i=1}^{k} a_i^* x a_i \]

\[= (a_1^*, a_2^*, \cdots, a_k^*) \begin{pmatrix} x & x & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & x \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix} \]

\[= v^* (x \otimes I_k) v \]
\[
T(x) = \sum_{i=1}^{k} a_i^* x a_i
\]

\[
= (a_1^*, a_2^*, \cdots, a_k^*) \begin{pmatrix}
 x & x & 0 \\
 & \ddots & \\
 0 & x & \ddots
\end{pmatrix}
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_k
\end{pmatrix}
\]

\[
= v^*(x \otimes 1_k) v
\]

\[
= V(x \otimes 1_k).
\]
The conjugate channel

\[T \quad M_n \quad M_n \quad = \quad V \quad M_n \quad M_n \quad M_k \quad \]

\[T^C \quad M_n \quad M_k \quad = \quad V \quad M_n \quad M_n \quad M_k \quad \]
The conjugate channel

Information leaking away into the environment.
The conjugate channel

\[T \quad M_n \quad M_n \quad = \quad V \quad M_n \quad M_k \]

\[T^C \quad M_n \quad M_k \quad = \quad V \quad M_n \quad M_k \]

Information leaking away into the environment.

Heisenberg’s Principle: Information that leaks away disappears from the channel.
The Heisenberg Principle:
No Information Extraction Without Perturbation
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \rightarrow \mathcal{A}$.
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \rightarrow \mathcal{A}$.

IF $\forall a \in \mathcal{A} : M(a \otimes 1) = a,$
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \to \mathcal{A}$.

IF $\forall a \in \mathcal{A} : M(a \otimes 1) = a$,

THEN $\forall f \in \mathcal{F}(\Omega) : M(1 \otimes f) \in \mathcal{Z}(\mathcal{A})$.
The Heisenberg Principle: No Information Extraction Without Perturbation

Let \(M : \mathcal{A} \otimes \mathcal{F}(\Omega) \rightarrow \mathcal{A} \).

IF \(\forall a \in \mathcal{A} : M(a \otimes 1) = a \),

THEN \(\forall f \in \mathcal{F}(\Omega) : M(1 \otimes f) \in \mathcal{Z}(\mathcal{A}) \).

In particular, if \(\mathcal{A} = M_n \), so that \(\mathcal{Z}(\mathcal{A}) = \mathbb{C} \cdot 1 \), then \(M(1 \otimes f) = (\int_{\Omega} f d\mu) \cdot 1 \)
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \to \mathcal{A}$.

IF $\forall a \in \mathcal{A} : M(a \otimes 1) = a$,

THEN $\forall f \in \mathcal{F}(\Omega) : M(1 \otimes f) \in \mathcal{Z}(\mathcal{A})$.

In particular, if $\mathcal{A} = M_n$, so that $\mathcal{Z}(\mathcal{A}) = \mathbb{C} \cdot 1$, then $M(1 \otimes f) = (\int_{\Omega} f d\mu) \cdot 1$
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \to \mathcal{A}$.

IF $\forall a \in \mathcal{A} : M(a \otimes 1) = a$,

THEN $\forall f \in \mathcal{F}(\Omega) : M(1 \otimes f) \in \mathcal{Z}(\mathcal{A})$.

In particular, if $\mathcal{A} = M_n$, so that $\mathcal{Z}(\mathcal{A}) = \mathbb{C} \cdot 1$, then $M(1 \otimes f) = (\int_{\Omega} f d\mu) \cdot 1$.
The Heisenberg Principle:
No Information Extraction Without Perturbation

Let $M : \mathcal{A} \otimes \mathcal{F}(\Omega) \rightarrow \mathcal{A}$.

IF $\forall a \in \mathcal{A} : M(a \otimes 1) = a$,

THEN $\forall f \in \mathcal{F}(\Omega) : M(\mathbb{1} \otimes f) \in \mathcal{Z}(\mathcal{A})$.

In particular, if $\mathcal{A} = M_n$, so that $\mathcal{Z}(\mathcal{A}) = \mathbb{C} \cdot \mathbb{1}$, then $M(\mathbb{1} \otimes f) = (\int_{\Omega} f d\mu) \cdot \mathbb{1}$
4. Protecting information by ignorance
4. Protecting information by ignorance

Definition
Let $V : M_n \rightarrow \mathcal{B}(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$.
4. Protecting information by ignorance

Definition
Let $V : M_n \rightarrow \mathcal{B}(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$
Let $T : M_n \rightarrow M_n$ be an arbitrary quantum channel.
4. Protecting information by ignorance

Definition

Let $V : M_n \to \mathcal{B}(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$

Let $T : M_n \to M_n$ be an arbitrary quantum channel.

We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D : \mathcal{B}(\mathcal{L}) \to M_n$ such that
4. Protecting information by ignorance

Definition
Let $V : M_n \to B(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$
Let $T : M_n \to M_n$ be an arbitrary quantum channel.
We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D : B(\mathcal{L}) \to M_n$ such that

$$V \circ T \circ D = \text{id}_{B(\mathcal{L})}.$$
4. Protecting information by ignorance

Definition
Let $V: \mathcal{M}_n \to \mathcal{B}(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$.
Let $T: \mathcal{M}_n \to \mathcal{M}_n$ be an arbitrary quantum channel.
We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D: \mathcal{B}(\mathcal{L}) \to \mathcal{M}_n$ such that

$$V \circ T \circ D = \text{id}_{\mathcal{B}(\mathcal{L})}.$$

Theorem (Knill-Laflamme)
4. Protecting information by ignorance

Definition
Let $V : M_n \to B(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$
Let $T : M_n \to M_n$ be an arbitrary quantum channel.
We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D : B(\mathcal{L}) \to M_n$ such that

$$V \circ T \circ D = \text{id}_{B(\mathcal{L})}.$$

Theorem (Knill-Laflamme)

A necessary and sufficient condition for the subspace $\mathcal{L} \subset \mathbb{C}^n$ to be protected against the operation
4. Protecting information by ignorance

Definition

Let $V : M_n \rightarrow \mathcal{B}(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$.

Let $T : M_n \rightarrow M_n$ be an arbitrary quantum channel.

We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D : \mathcal{B}(\mathcal{L}) \rightarrow M_n$ such that

$$V \circ T \circ D = \text{id}_{\mathcal{B}(\mathcal{L})}.$$

Theorem (Knill-Laflamme)

A necessary and sufficient condition for the subspace $\mathcal{L} \subset \mathbb{C}^n$ to be protected against the operation

$$T : x \mapsto \sum_{i=1}^{k} a_i^* x a_i$$
4. Protecting information by ignorance

Definition
Let $V : M_n \to B(\mathcal{L})$ denote a compression to a subspace $\mathcal{L} \subset \mathbb{C}^n$.
Let $T : M_n \to M_n$ be an arbitrary quantum channel.
We say that \mathcal{L} is protected against the channel T if there exists a reconstruction map $D : B(\mathcal{L}) \to M_n$ such that

$$V \circ T \circ D = \text{id}_{B(\mathcal{L})}.$$

Theorem (Knill-Laflamme)
A necessary and sufficient condition for the subspace $\mathcal{L} \subset \mathbb{C}^n$ to be protected against the operation

$$T : x \mapsto \sum_{i=1}^{k} a_i^* x a_i$$

is that for some complex $k \times k$ matrix (λ_{ij}):

$$p_{\mathcal{L}} a_i^* a_j p_{\mathcal{L}} = \lambda_{ij} p_{\mathcal{L}}.$$
Proof of necessity of Knill-Laflamme condition by diagrams
Proof of necessity of Knill-Laflamme condition by diagrams
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \backslash P \quad M_n \quad T \quad M_n \]
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \rightarrow P \rightarrow M_n \rightarrow T \rightarrow M_n \]
Proof of necessity of Knill-Laflamme condition by diagrams
Proof of necessity of Knill-Laflamme condition by diagrams
Proof of necessity of Knill-Laflamme condition by diagrams

$B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{T} M_n \xrightarrow{\exists D} B(\mathcal{L}) \quad \equiv \quad B(\mathcal{L})$

STINESPRING!
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{T} M_n \xrightarrow{\exists D} B(\mathcal{L}) = B(\mathcal{L}) \]

STINESPRING!
Proof of necessity of Knill-Laflamme condition by diagrams

\[\exists D \]

\[\exists \text{STINESPRING !} \]
Proof of necessity of Knill-Laflamme condition by diagrams

$B(\mathcal{L})$ P M_n T M_n $\exists D$ $B(\mathcal{L})$ $= B(\mathcal{L})$

$B(\mathcal{L})$ P M_n V M_n \times

STINESPRING!
Proof of necessity of Knill-Laflamme condition by diagrams

\[\mathcal{B}(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{T} M_n \xrightarrow{\exists D} \mathcal{B}(\mathcal{L}) = \mathcal{B}(\mathcal{L}) \]

\[\mathcal{B}(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{V} M_n \xrightarrow{\exists D} \mathcal{B}(\mathcal{L}) \]

STINESPRING!
Proof of necessity of Knill-Laflamme condition by diagrams
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{T} M_n \xrightarrow{\exists D} B(\mathcal{L}) = \]

\[B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{V} M_n \xrightarrow{\exists D} B(\mathcal{L}) = \]

STINESPRING!

HEISENBERG!
Proof of necessity of Knill-Laflamme condition by diagrams

\[\mathcal{B}(\mathcal{L}) \overset{\mathcal{P}}{\longrightarrow} M_n \overset{T}{\longrightarrow} M_n \overset{\exists D}{\longrightarrow} \mathcal{B}(\mathcal{L}) \]

STINESPRING !

\[\mathcal{B}(\mathcal{L}) \overset{\mathcal{P}}{\longrightarrow} M_n \overset{\mathcal{V}}{\longrightarrow} M_n \overset{\exists D}{\longrightarrow} \mathcal{B}(\mathcal{L}) \]

HEISENBERG !

\[\mathcal{B}(\mathcal{L}) \overset{\mathcal{P}}{\longrightarrow} M_n \]
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{T} M_n \xrightarrow{\exists D} B(\mathcal{L}) \]

\[\exists D_B(\mathcal{L}) \]

STINESPRING!

\[B(\mathcal{L}) \xrightarrow{P} M_n \xrightarrow{V} \] HEISENBERG!

\[B(\mathcal{L}) \]

\[B(\mathcal{L}) \]
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \quad P \quad M_n \quad T \quad M_n \quad \exists D \quad B(\mathcal{L}) = \]

\[B(\mathcal{L}) \]

\[B(\mathcal{L}) \quad P \quad M_n \quad V \quad M_n \quad \exists D \quad B(\mathcal{L}) = \]

\[B(\mathcal{L}) \]

STINESPRING!

\[B(\mathcal{L}) \quad P \quad M_n \quad V \quad \]
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \]
\[\xrightarrow{P} \]
\[M_n \]
\[\xrightarrow{T} \]
\[M_n \]
\[\exists D \]
\[B(\mathcal{L}) \]

\[\cong \]
\[B(\mathcal{L}) \]

\[B(\mathcal{L}) \]
\[\xrightarrow{P} \]
\[M_n \]
\[\xrightarrow{V} \]
\[M_n \]
\[\exists D \]
\[B(\mathcal{L}) \]

\[\cong \]
\[B(\mathcal{L}) \]

\[B(\mathcal{L}) \]
\[\xrightarrow{P} \]
\[M_n \]
\[\xrightarrow{V} \]
\[\times \]
\[\cong \]
\[B(\mathcal{L}) \]

\[STINESPRING ! \]

\[HEISENBERG ! \]
Proof of necessity of Knill-Laflamme condition by diagrams

\[B(\mathcal{L}) \] \[P \] \[M_n \] \[T \] \[M_n \] \[\exists D \] \[B(\mathcal{L}) \] \[= \] \[B(\mathcal{L}) \]

STINESPRING !

\[B(\mathcal{L}) \] \[P \] \[M_n \] \[V \] \[\times \] \[\exists D \] \[B(\mathcal{L}) \] \[= \] \[B(\mathcal{L}) \]

HEISENBERG !

\[B(\mathcal{L}) \] \[P \] \[M_n \] \[V \] \[\times \] \[= \] \[B(\mathcal{L}) \] \[\times \] \[\lambda \] \[M_k \]
Proof of necessity of Knill-Laflamme condition by diagrams

The last line says that the space L is dark: no information leaks out and only some random output λ results:
Proof of necessity of Knill-Laflamme condition by diagrams

The last line says that the space \mathcal{L} is dark: no information leaks out and only some random output λ results:

$$P \circ V(\mathbb{1}_n \otimes y) = \lambda(y) \cdot \mathbb{1}_\mathcal{L}.$$
Translating the darkness condition back
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:

\[
LHS: \quad P \circ V(\mathbb{1}_n \otimes y)
\]
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:

\[\text{LHS} : \quad P \circ V(1_n \otimes y) = p(a_1^*, \cdots, a_k^*) \begin{pmatrix} y_{11} \cdot 1 & \cdots & y_{1k} \cdot 1 \\ \vdots & & \vdots \\ y_{k1} \cdot 1 & \cdots & y_{kk} \cdot 1 \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} \]
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:

\[\text{LHS: } P \circ V(\mathbb{1}_n \otimes y) = p(a_1^*, \cdots, a_k^*) \begin{pmatrix} y_{11} \cdot \mathbb{1} & \cdots & y_{1k} \cdot \mathbb{1} \\ \vdots & \ddots & \vdots \\ y_{k1} \cdot \mathbb{1} & \cdots & y_{kk} \cdot \mathbb{1} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} = \sum_{i,j=1}^{k} p a_i^* a_j p \cdot y_{ij} \]
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:

\[\text{LHS} : \quad P \circ V(\mathbb{1}_n \otimes y) = p(a_1^*, \cdots, a_k^*) \begin{pmatrix} y_{11} \cdot \mathbb{1} & \cdots & y_{1k} \cdot \mathbb{1} \\ \vdots & \ddots & \vdots \\ y_{k1} \cdot \mathbb{1} & \cdots & y_{kk} \cdot \mathbb{1} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} \]

\[= \sum_{i,j=1}^{k} p a_i^* a_j p \cdot y_{ij} \]

\[\text{RHS} : \quad p \cdot \lambda(y) = p \cdot \sum_{i,j=1}^{k} \lambda_{ij} y_{ij} \]
Translating the darkness condition back

We note that this is precisely the Knill-Laflamme condition:

\[
LHS : \quad P \circ V(\mathbb{1}_n \otimes y) = p(a_1^*, \ldots, a_k^*) \begin{pmatrix} y_{11} \cdot \mathbb{1} & \cdots & y_{1k} \cdot \mathbb{1} \\ \vdots & \ddots & \vdots \\ y_{k1} \cdot \mathbb{1} & \cdots & y_{kk} \cdot \mathbb{1} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} \]

\[
= \sum_{i,j=1}^k p a_i^* a_j p \cdot y_{ij}
\]

\[
RHS : \quad p \cdot \lambda(y) = p \cdot \sum_{i,j=1}^k \lambda_{ij} y_{ij}
\]

These must be equal for all \(y \in M_k \):

\[
p a_i^* a_j p = \lambda_{ji} \cdot p.
\]
5. Partial darkness and protection by feedback
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

$B(\mathcal{D}) \xrightarrow{P} M_n$
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

\[B(\mathcal{D}) \quad P \quad M_n \quad V \quad j \quad M_n \]
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

\[
\begin{align*}
B(\mathcal{D}) & \quad P & \quad M_n & \quad V & \quad j & \quad M_n & \quad \times \\
\end{align*}
\]
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$pa_i^*a_ip = \lambda_ip$$
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$pa_i^* a_ip = \lambda_ip$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$pa_i^* a_{ip} = \lambda_{ip}$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property:
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$p_i a^*_i p = \lambda_i p$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker \textit{darkness property} is a necessary condition for this weaker \textit{protection property}: the existence of a \textit{decoding} operation D_ω such that:

$$B(\mathcal{D}) \xrightarrow{P} \mathcal{M}_n \xrightarrow{V} \mathcal{M}_n \xrightarrow{\lambda} \mathbb{C}^k$$
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

\[\begin{array}{c}
\mathcal{B}(\mathcal{D}) \\
\text{P} \\
\text{M}_n \\
\text{V} \\
\text{j} \\
\end{array} \quad \begin{array}{c}
\mathcal{B}(\mathcal{D}) \\
\text{X} \\
\mathcal{C}^k \\
\end{array} \]

This darkness property reads:

\[p\bar{a}_i a_i p = \lambda_i p \]

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker *darkness property* is a necessary condition for this weaker *protection property*: the existence of a *decoding* operation D_ω such that:

\[\begin{array}{c}
\mathcal{B}(\mathcal{D}) \\
\text{P} \\
\text{M}_n \\
\end{array} \]
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$pa_i^*a_ip = \lambda_ip$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker \textit{darkness property} is a necessary condition for this weaker \textit{protection property}: the existence of a decoding operation D_ω such that:
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$ pa_i^* a_i p = \lambda_i p $$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property: the existence of a decoding operation D_ω such that:

$$ B(\mathcal{D}) \xrightarrow{P} M_n \xrightarrow{V} M_n \xrightarrow{D_\omega} B(\mathcal{D}) \xrightarrow{\lambda} \mathbb{C}^k $$
5. Partial darkness and protection by feedback

Sometimes the subspace \(\mathcal{D} \) is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \(\mathcal{D} \).

\[
P_a^* a_i p = \lambda_i p
\]

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property: the existence of a decoding operation \(D_\omega \) such that:

\[
B(\mathcal{D}) \xrightarrow{\mathcal{U}} M_n \xrightarrow{\lambda} \mathbb{C}^k
\]
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$pa^*_i a_ip = \lambda_ip$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property: the existence of a decoding operation D_ω such that:

$$B(\mathcal{D}) \xrightarrow{P, V} B(\mathcal{D}) \xrightarrow{D_\omega} B(\mathcal{D})$$
5. Partial darkness and protection by feedback

Sometimes the subspace D is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in D.

This darkness property reads:

$$pa_i^*a_ip = \lambda_ip$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property: the existence of a decoding operation D_ω such that:

$$B(D) \overset{P}{\xrightarrow{M_n}} V \overset{M_n}{\xrightarrow{j}} B(D) \overset{\lambda}{\xrightarrow{\mathbb{C}^k}}$$

$$B(D) \overset{D_\omega}{\xrightarrow{B(D)}} B(D) \overset{\mathbb{C}^k}{\xrightarrow{\lambda}}$$
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

$$B(\mathcal{D}) P M_n V j = B(\mathcal{D}) \lambda \mathbb{C}^k$$

This darkness property reads:

$$p a_i^* a_i p = \lambda_i p$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker darkness property is a necessary condition for this weaker protection property: the existence of a decoding operation D_ω such that:

$$B(\mathcal{D}) P M_n V j D_\omega = B(\mathcal{D})$$
5. Partial darkness and protection by feedback

Sometimes the subspace \mathcal{D} is not completely dark, but yet a certain measurement on the conjugate channel reveals nothing about the state in \mathcal{D}.

This darkness property reads:

$$p a_i^* a_i p = \lambda_i p$$

In that case the subspace may still be protected, but now the measurement outcome has to be fed back into the system.

By the Heisenberg principle, together with the existence of a copier for the straight line, the weaker *darkness property* is a necessary condition for this weaker *protection property*: the existence of a decoding operation D_ω such that:

The two conditions are actually equivalent.
State stabilisation by feedback control
State stabilisation by feedback control

Theorem
State stabilisation by feedback control

Theorem
Let $T : M_n \rightarrow M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1_l) = v^*(x \otimes 1_l)v ,$$
State stabilisation by feedback control

Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes \mathbb{1}) = v^*(x \otimes \mathbb{1})v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric.
State stabilisation by feedback control

Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank } 1.$$
Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = \nu^*(x \otimes 1)\nu,$$

with $\nu : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map
Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1.}$$

Then there exists an actuator map

$$w : \Omega \to \text{unitaries in } M_n$$

such that
State stabilisation by feedback control

Theorem

Let $T : M_n \rightarrow M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \rightarrow \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \rightarrow M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank } 1.$$

Then there exists an actuator map

$$w : \Omega \rightarrow \text{ unitaries in } M_n$$

such that

\[\rho\]
State stabilisation by feedback control

Theorem

Let $T : M_n \rightarrow M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \rightarrow \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \rightarrow M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map

$$w : \Omega \rightarrow \text{unitaries in } M_n$$

such that

\[\rho \rightarrow V \rightarrow \cdots\]
State stabilisation by feedback control

Theorem

Let $T : M_n \rightarrow M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \rightarrow \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \rightarrow M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \ m(\omega) := M(\delta_\omega) \text{ has rank } 1.$$

Then there exists an actuator map

$$w : \Omega \rightarrow \text{unitaries in } M_n$$

such that
Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map

$$w : \Omega \to \text{unitaries in } M_n$$

such that

\[\rho \xrightarrow{V} W. \]
State stabilisation by feedback control

Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^* (x \otimes 1) v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map

$$w : \Omega \to \text{unitaries in } M_n$$

such that
Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^*(x \otimes 1)v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map

$$w : \Omega \to \text{unitaries in } M_n$$

such that

\[
\rho \xrightarrow{V} W \xrightarrow{w} \rho
\]
Theorem

Let $T : M_n \to M_n$ have Stinespring decomposition

$$T(x) = V(x \otimes 1) = v^* (x \otimes 1) v,$$

with $v : \mathbb{C}^n \to \mathbb{C}^n \otimes \mathbb{C}^k$ isometric. Let $M : \mathcal{F}(\Omega) \to M_k$ be a POVM, satisfying

$$\forall \omega \in \Omega : \quad m(\omega) := M(\delta_\omega) \text{ has rank 1}.$$

Then there exists an actuator map

$$w : \Omega \to \text{unitaries in } M_n$$

such that
Proof.
Proof.

Let

\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)}\lambda_j(\omega); \]
Proof.
Let
\[m_{ij}(\omega) := \lambda_i(\omega)\lambda_j(\omega) \; ; \]
\[v := (a_1, a_2, \ldots, a_k)^T \; ; \]
Proof.

Let

\[m_{ij}(\omega) := \lambda_i(\omega)\lambda_j(\omega); \]
\[v := (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega)a_i \) gives a decomposition of \(T \):
Proof.

Let \(m_{ij}(\omega) := \lambda_i(\omega)\lambda_j(\omega) \); \n\[\nu := (a_1, a_2, \ldots, a_k)^T;\]

Then \(b(\omega) := \sum_i \lambda_i(\omega)a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^*xb(\omega), \] hence
Proof.

Let

\[m_{ij}(\omega) := \lambda_i(\omega)\lambda_j(\omega); \]
\[\nu := (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega)a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^*_xb(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^*b(\omega) = \mathbb{1}. \]
Proof.

Let

\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)} \lambda_j(\omega) ; \]
\[v =: (a_1, a_2, \ldots, a_k)^T ; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition
Proof.

Let

\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)}\lambda_j(\omega) ; \]
\[\nu =: (a_1, a_2, \ldots, a_k)^T ; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* xb(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1 \mathbb{I}. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition

\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega)\sqrt{\rho}|. \]
Proof.

Let

\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)} \lambda_j(\omega); \]
\[v =: (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1 \mathbb{1}. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition

\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega) \sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):
Proof.
Let
\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)} \lambda_j(\omega) ; \]
\[\nu =: (a_1, a_2, \ldots, a_k)^T ; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):
\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega) , \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = \mathbb{I} . \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition
\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega) \sqrt{\rho}| . \]

Then we obtain for all \(x \in M_n \):
\[\rho \circ V \circ (\text{id} \otimes M) \circ W(x) \]
Proof.

Let

\[m_{ij}(\omega) := \overline{\lambda_i(\omega)} \lambda_j(\omega); \]
\[v := (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition

\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega)\sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):

\[\rho \circ V \circ \left(\text{id} \otimes M \right) \circ W(x) = \sum_\omega \sum_{ij} \rho \left(a_i^* w(\omega)^* x w(\omega) a_j \right) m_{ij}(\omega). \]
Proof.

Let
\[m_{ij}(\omega) =: \overline{\lambda_i(\omega)} \lambda_j(\omega); \]
\[v =: (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega)a_i \) gives a decomposition of \(T \):
\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* xb(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = \mathbb{1}. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition
\[b(\omega)\sqrt{\rho} = w(\omega)^{-1}|b(\omega)\sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):
\[
\rho \circ V \circ \left(\text{id} \otimes M \right) \circ W(x) = \sum_{\omega} \sum_{ij} \rho \left(a_i^* w(\omega)^* x w(\omega) a_j \right) m_{ij}(\omega)
\]
\[
= \sum_{\omega} \rho \left(b(\omega)^* w(\omega)^* x w(\omega) b(\omega) \right)
\]
Proof.

Let

\[m_{ij}(\omega) := \overline{\lambda_i(\omega)} \lambda_j(\omega); \]
\[\nu := (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* xb(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition

\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega)\sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):

\[\rho \circ V \circ \left(\text{id} \otimes M \right) \circ W(x) = \sum_{\omega} \sum_{ij} \rho \left(a_i^* w(\omega)^* x w(\omega) a_j \right) m_{ij}(\omega) \]
\[= \sum_{\omega} \rho \left(b(\omega)^* w(\omega)^* x w(\omega) b(\omega) \right) = \sum_{\omega} \text{tr} \left(x |b(\omega)\sqrt{\rho}|^2 \right) \]
Proof.

Let

\[m_{ij}(\omega) := \overline{\lambda_i(\omega)} \lambda_j(\omega); \]

\[\nu =: (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):

\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = 1. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition

\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega)\sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):

\[
\begin{align*}
\rho \circ V \circ \left(\text{id} \otimes M \right) \circ W(x) &= \sum_{\omega} \sum_{ij} \rho \left(a_i^* w(\omega)^* x w(\omega) a_j \right) m_{ij}(\omega) \\
&= \sum_{\omega} \rho \left(b(\omega)^* w(\omega)^* x w(\omega) b(\omega) \right) \\
&= \sum_{\omega} \text{tr} \left(x \sqrt{\rho} b(\omega)^* b(\omega) \sqrt{\rho} \right) \\
&= \sum_{\omega} \text{tr} \left(x b(\omega)^* b(\omega) \sqrt{\rho} \right)
\end{align*}
\]
Proof.
Let
\[m_{ij}(\omega) := \overline{\lambda_i(\omega)} \lambda_j(\omega); \]
\[\nu =: (a_1, a_2, \ldots, a_k)^T; \]

Then \(b(\omega) := \sum_i \lambda_i(\omega) a_i \) gives a decomposition of \(T \):
\[T(x) = \sum_{\omega \in \Omega} b(\omega)^* x b(\omega), \quad \text{hence} \quad \sum_{\omega \in \Omega} b(\omega)^* b(\omega) = \mathbb{1}. \]

Now define unitaries \(w(\omega) \in M_n \) by the polar decomposition
\[b(\omega) \sqrt{\rho} = w(\omega)^{-1} |b(\omega) \sqrt{\rho}|. \]

Then we obtain for all \(x \in M_n \):
\[
\rho \circ V \circ \left(\text{id} \otimes M \right) \circ W(x) = \sum_{\omega} \sum_{ij} \rho \left(a_i^* w(\omega)^* x w(\omega) a_j \right) m_{ij}(\omega)
\quad = \sum_{\omega} \rho \left(b(\omega)^* w(\omega)^* x w(\omega) b(\omega) \right)
\quad = \sum_{\omega} \text{tr} \left(x |b(\omega) \sqrt{\rho}|^2 \right)
\quad = \sum_{\omega} \text{tr} \left(x \sqrt{\rho} b(\omega)^* b(\omega) \sqrt{\rho} \right)
\quad = \text{tr}(x \rho).
\]
Repeated Instruments
Repeated Instruments

\[\rho \]
Repeated Instruments

\[
\rho \quad M \quad i_1
\]
Repeated Instruments

\[\rho \rightarrow M \rightarrow M \rightarrow i_2 \]

\[i_1 \]
Repeated Instruments

\[\rho M_1 M_2 M_3 \ldots \]

\[\vdots \]

\[i_3 \]

\[i_2 \]

\[i_1 \]
Repeated Instruments

\[\rho, M_1, M_2, M_3, \ldots \]

\[\Omega := \{1, 2, \ldots, k\}^N ; \]
Repeated Instruments

\[\Omega := \{1, 2, \ldots, k\}^N ; \]

\(\Sigma_m \) generated by cilinder sets:
Repeated Instruments

$\Omega := \{1, 2, \ldots, k\}^\mathbb{N}$;

Σ_m generated by cylinder sets:

$\Lambda_{i_1, \ldots, i_m} := \{\omega \in \Omega | \omega_1 = i_1, \ldots, \omega_m = i_m\}$.
Repeated Instruments

\[\Omega := \{1, 2, \ldots, k\}^N ; \]

\[\Sigma_m \text{ generated by cylinder sets : } \Lambda_{i_1, \ldots, i_m} := \{\omega \in \Omega | \omega_1 = i_1, \ldots, \omega_m = i_m\} . \]

POVM:
Repeated Instruments

\[\Omega := \{1, 2, \ldots, k\}^N ; \]

\[\Sigma_m \text{ generated by cylinder sets : } \Lambda_{i_1, \ldots, i_m} := \{\omega \in \Omega | \omega_1 = i_1, \ldots, \omega_m = i_m\} . \]

POVM: \[Q_m(\Lambda_{i_1, \ldots, i_m}) := T_{i_1} \circ T_{i_2} \circ \cdots \circ T_{i_m}(\mathbb{I}) . \]
Repeated Instruments

\[\Omega := \{1, 2, \ldots, k\}^N ; \]

\[\Sigma_m \text{ generated by cilinder sets : } \Lambda_{i_1, \ldots, i_m} := \{\omega \in \Omega | \omega_1 = i_1, \ldots, \omega_m = i_m\} . \]

POVM: \[Q_m (\Lambda_{i_1, \ldots, i_m}) := T_{i_1} \circ T_{i_2} \circ \cdots \circ T_{i_m}(\mathbb{1}) . \]

\[\mathbb{P}_\rho := \rho \circ Q_\infty . \]
Repeated Instruments

\[\Omega := \{1, 2, \ldots, k\}^N ; \]

\(\Sigma_m \) generated by cylinder sets:

\[\Lambda_{i_1, \ldots, i_m} := \{\omega \in \Omega | \omega_1 = i_1, \ldots, \omega_m = i_m\} . \]

POVM:

\[Q_m(\Lambda_{i_1, \ldots, i_m}) := T_{i_1} \circ T_{i_2} \circ \cdots \circ T_{i_m}(\mathbb{1}) . \]

\[\mathbb{P}_\rho := \rho \circ Q_\infty . \]

Left shift:

\[\sigma : \Omega \rightarrow \Omega : (\sigma \omega)_j := \omega_{j+1} . \]
Quantum Trajectories
Quantum Trajectories

\[\rho \xrightarrow{\Theta_0} \]
Quantum Trajectories

\[\rho \rightarrow M \rightarrow i_1 \]
Quantum Trajectories
Quantum Trajectories
Quantum Trajectories

$\Theta_n : \Omega \rightarrow S(A) : \Theta_n(\omega) : x \mapsto \frac{\rho(T_{\omega_1} \circ \cdots \circ T_{\omega_n}(x))}{\rho(T_{\omega_1} \circ \cdots \circ T_{\omega_n}(\mathbb{I}))}$.
Theorem

For any state ρ on \mathcal{A}:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \Theta_j = \Theta_\infty \quad \mathbb{P}_\rho\text{-a.s.},$$

where the random variable Θ_∞ takes values in the T-invariant states on \mathcal{A}.

$$\Theta_n : \Omega \to S(\mathcal{A}) : \Theta_n(\omega) : x \mapsto \frac{\rho(T_{\omega_1} \circ \cdots \circ T_{\omega_n}(x))}{\rho(T_{\omega_1} \circ \cdots \circ T_{\omega_n}(\mathbb{I}))}.$$
Proof.
Proof.
First note that for all $x \in A$:

□
Proof.
First note that for all $x \in \mathcal{A}$:

$$\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n)$$
Proof.
First note that for all $x \in A$:

$$\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1})$$
Proof.
First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))}
$$
Proof.
First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i 1) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(1))} = \Theta_n(T(x)).
$$
Proof.
First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho (\Theta_{n+1}(x) | \Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)) .
$$

Let $P : \mathcal{A} \to \mathcal{A}$ denote the (ergodic) projection of T.

\[\square \]
Proof.
First note that for all $x \in \mathcal{A}$:

$$\mathbb{E}_\rho(\Theta_{n+1}(x) | \Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)).$$

Let $P : \mathcal{A} \to \mathcal{A}$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n \in \mathbb{N}}$ is a \mathbb{P}_ρ-martingale.

□
Proof. First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)).
$$

Let $P : \mathcal{A} \to \mathcal{A}$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n \in \mathbb{N}}$ is a \mathbb{P}_ρ-martingale since $\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x))$.

\hfill \Box
Proof.
First note that for all \(x \in \mathcal{A} \):

\[
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i\mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)) .
\]

Let \(P : \mathcal{A} \rightarrow \mathcal{A} \) denote the (ergodic) projection of \(T \). Then \((\Theta_n(Px))_{n \in \mathbb{N}} \) is a \(\mathbb{P}_\rho \)-martingale since \(\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x)) \).

Say \(\Theta_n(Px) \rightarrow \Theta_{\infty}(x) \) as \(n \rightarrow \infty \).
Proof.

First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i(1)) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(1))} = \Theta_n(T(x)) .
$$

Let $P : \mathcal{A} \rightarrow \mathcal{A}$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n \in \mathbb{N}}$ is a \mathbb{P}_ρ-martingale since $\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x))$.

Say $\Theta_n(Px) \rightarrow \Theta_\infty(x)$ as $n \rightarrow \infty$.

But also the innovations $V_n(x) := \Theta_{n+1}(x) - \Theta(Tx)$ form a martingale $Y_n(x)$ by weighted addition:

$$
Y_n(x) := \sum_{j=1}^{n} \frac{1}{j} V_j \quad \text{with} \quad \mathbb{E}_\rho(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6} .
$$
Proof.
First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^k \Theta_n(T_i \mathbb{I}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{I}))} = \Theta_n(T(x)).
$$

Let $P : \mathcal{A} \rightarrow \mathcal{A}$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n \in \mathbb{N}}$ is a \mathbb{P}_ρ-martingale since $\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x))$.

Say $\Theta_n(Px) \longrightarrow \Theta_\infty(x)$ as $n \longrightarrow \infty$.

But also the innovations $V_n(x) := \Theta_{n+1}(x) - \Theta(Tx)$ form a martingale $Y_n(x)$ by weighted addition:

$$
Y_n(x) := \sum_{j=1}^n \frac{1}{j} V_j \quad \text{with} \quad \mathbb{E}_\rho(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6}.
$$

Say $Y_n(x) \longrightarrow Y_\infty(x)$,
Proof.
First note that for all \(x \in \mathcal{A} \):

\[
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{I}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{I}))} = \Theta_n(T(x)).
\]

Let \(P : \mathcal{A} \to \mathcal{A} \) denote the (ergodic) projection of \(T \). Then \((\Theta_n(Px))_{n \in \mathbb{N}}\) is a \(\mathbb{P}_\rho \)-martingale since \(\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x)) \).

Say \(\Theta_n(Px) \to \Theta_\infty(x) \) as \(n \to \infty \).

But also the innovations \(V_n(x) := \Theta_{n+1}(x) - \Theta(Tx) \) form a martingale \(Y_n(x) \) by weighted addition:

\[
Y_n(x) := \sum_{j=1}^{n} \frac{1}{j} V_j \quad \text{with} \quad \mathbb{E}_\rho(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6}.
\]

Say \(Y_n(x) \to Y_\infty(x) \), then by Kronecker’s Lemma,
Proof.
First note that for all $x \in \mathcal{A}$:

$$
\mathbb{E}_{\rho}(\Theta_{n+1}(x) | \Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)).
$$

Let $P : \mathcal{A} \to \mathcal{A}$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n \in \mathbb{N}}$ is a \mathbb{P}_ρ-martingale since $\mathbb{E}_{\rho}(\Theta_{n+1}(P(x)) | \Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x))$.

Say $\Theta_n(Px) \to \Theta_\infty(x)$ as $n \to \infty$.

But also the innovations $V_n(x) := \Theta_{n+1}(x) - \Theta(Tx)$ form a martingale $Y_n(x)$ by weighted addition:

$$
Y_n(x) := \sum_{j=1}^{n} \frac{1}{j} V_j \quad \text{with} \quad \mathbb{E}_{\rho}(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6}.
$$

Say $Y_n(x) \to Y_\infty(x)$, then by Kronecker’s Lemma,

$$
\frac{1}{n} \sum_{j=0}^{n-1} (\Theta_{j+1}(x) - \Theta_j(Tx)) \to 0
$$
Proof.
First note that for all \(x \in A \):
\[
\mathbb{E}_\rho(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i \mathbb{1}) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(\mathbb{1}))} = \Theta_n(T(x)).
\]

Let \(P : A \rightarrow A \) denote the (ergodic) projection of \(T \). Then \((\Theta_n(Px))_{n \in \mathbb{N}}\) is a \(\mathbb{P}_{\rho} \)-martingale since \(\mathbb{E}_\rho(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x)) \).
Say \(\Theta_n(Px) \rightarrow \Theta_\infty(x) \) as \(n \rightarrow \infty \).
But also the innovations \(V_n(x) := \Theta_{n+1}(x) - \Theta(Tx) \) form a martingale \(Y_n(x) \) by weighted addition:
\[
Y_n(x) := \sum_{j=1}^{n} \frac{1}{j} V_j \quad \text{with} \quad \mathbb{E}_\rho(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6}.
\]

Say \(Y_n(x) \rightarrow Y_\infty(x) \), then by Kronecker’s Lemma,
\[
\frac{1}{n} \sum_{j=0}^{n-1} (\Theta_{j+1}(x) - \Theta_j(Tx)) \rightarrow 0 \quad \text{and also} \quad \forall m : \frac{1}{n} \sum_{j=0}^{n-1} (\Theta_j(x) - \Theta_j(T^m x)) \rightarrow 0
\]
Proof.
First note that for all $x \in A$:

$$E_{\rho}(\Theta_{n+1}(x)|\Sigma_n) = \sum_{i=1}^{k} \Theta_n(T_i 1) \cdot \frac{\Theta_n(T_i(x))}{\Theta_n(T_i(1))} = \Theta_n(T(x)).$$

Let $P : A \rightarrow A$ denote the (ergodic) projection of T. Then $(\Theta_n(Px))_{n\in\mathbb{N}}$ is a P_{ρ}-martingale since $E_{\rho}(\Theta_{n+1}(P(x))|\Sigma_n) = \Theta_n(TP(x)) = \Theta_n(P(x))$.

Say $\Theta_n(Px) \rightarrow \Theta_\infty(x)$ as $n \rightarrow \infty$.
But also the innovations $V_n(x) := \Theta_{n+1}(x) - \Theta(Tx)$ form a martingale $Y_n(x)$ by weighted addition:

$$Y_n(x) := \sum_{j=1}^{n} \frac{1}{j} V_j \quad \text{with} \quad E_{\rho}(|Y_n(x)|^2) \leq 4\|x\|^2 \frac{\pi^2}{6}.$$

Say $Y_n(x) \rightarrow Y_\infty(x)$, then by Kronecker’s Lemma,

$$\frac{1}{n} \sum_{j=0}^{n-1} (\Theta_{j+1}(x) - \Theta_j(Tx)) \rightarrow 0 \quad \text{and also} \quad \forall m : \frac{1}{n} \sum_{j=0}^{n-1} (\Theta_j(x) - \Theta_j(T^m x)) \rightarrow 0$$

Averaging over m yields: $\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} (\Theta_j(x) - \Theta_j(Px)) \rightarrow 0$.

\boxed{\square}