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Mădălin Guţă (Nottingham)
Luc Bouten (Nijmegen)
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4. Protecting information by ignorance

5. Applications to feedback control

◮ Protection of an unknown state
◮ Stabilization of a given state
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A finite system is called classical if A is commutative.
Then there exists a finite set Ω such that

A ∼= { functions Ω → C} ;

ϕ(f ) =
∑

ω∈Ω

π(ω)f (ω) .

where π(ω) ≥ 0 and
∑

ω
π(ω) = 1.

Events are projections in A: p(ω) = 0 or 1, i.e.,

pA = 1A

for some subset A ⊂ Ω.
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A map T : B → A is called a quantum operation if

◮ T ⊗ id : B ⊗Mn → A⊗Mn preserves positivity for all n ∈ N

◮ T (1lB) = 1lA

The adjoint of such a completely positive unit preserving map sends states to
states; we write

T ∗ : S(A) → S(B) .

Theorem
(Cauchy-Schwarz) For any unit preserving completely positive map T : B → A
we have:

T (b∗b) ≥ T (b)∗T (b) .

with equality iff b is multiplicative, i.e., for all x ∈ B we have:

T (b∗x) = T (b)∗T (x) .

(This result already holds in the commutative case.)
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Operations on classical systems

In the classical case T is a transition matrix:

T = (tων)ων∈Ω .

T acts on observables:
(Tf )(ω) =

∑

ν∈Ω

tων f (ν) ;

T ∗ acts on distributions:

T ∗(π)(ω) =
∑

ν∈Ω

π(ν)tν,ω .

The first we call the Heisenberg picture, the second the Schrödinger picture.
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Preparation and destruction

If B = C (The trivial one-state system), we omit B and symbolize
T : C → A : z 7→ z · 1l by a cross:

A

If A = C, then T is a state, say ρ, a way of preparing the system B:

ρ
B

Interpretation: there are many ways to prepare a system, but only one way to
destroy (or just ignore) it.
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Quantum information cannot be copied.
C : A⊗A → A is a cocopier of A if for all a ∈ A:

C C

A

C(1l⊗ a) = C(a⊗ 1l) = a .

For example, if A is abelian, a cocopier is given by the product map

a⊗ b 7→ ab .

Or, when read from left to right, we obtain the copier

π 7→
∑

ω∈Ω

π(ω)δω ⊗ δω .

The product map a ⊗ b 7→ ab is not positive if A is noncommutative.
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A state ϕ on A is mapped to a probability distribution π on Ω.

M
A C = F(Ω)

M(f ) =
∑

ω∈Ω

f (ω)mω ;

mω ∈ A positive;
∑

ω∈Ω

mω = 1lA .

Positive Operator Valued Measure (POVM)
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Then the operation j : C → A is a *-homomorphism:
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)(
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=
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The connection with observables (random variables) is:
If pj is the event that a takes the value αj , then we can associate to the von
Neumann measurement the self-adjoint operator

a := α1p1 + α2p2 + . . .+ αkpk .

Every self-adjoint operator is of this form.
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4. Protecting information by ignorance

Definition
Let V : Mn → B(L) denote a compression to a subspace L ⊂ C

n

Let T : Mn → Mn be an arbitrary quantum channel.
We say that L is protected against the channel T if there exists a
reconstruction map D : B(L) → Mn such that

V ◦ T ◦ D = idB(L) .

Theorem (Knill-Laflamme)
A necessary and sufficient condition for the subspace L ⊂ C

n to be protected
against the operation

T : x 7→
k∑

i=1

a∗i xai

is that for some complex k × k matrix (λij):

pL a∗i aj pL = λij pL .
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The last line says that the space L is dark: no information leaks out and only
some random output λ results:

P ◦ V (1ln ⊗ y) = λ(y) · 1lL .
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We note that this is precisely the Knill-Laflamme condition:

LHS : P ◦ V (1ln ⊗ y) = p(a∗1 , · · · , a∗k )






y11 · 1l · · · y1k · 1l
...

...
yk1 · 1l · · · ykk · 1l











a1
...
ak




 p

=
k∑

i,j=1

pa∗i ajp · yij

RHS : p · λ(y) = p ·
k∑

i,j=1

λijyij

These must be equal for all y ∈ Mk :

pa∗i ajp = λji · p .
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By the Heisenberg principle, together with the existence of a copier for the
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The two conditions are actually equivalent.
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Left shift: σ : Ω → Ω : (σω)j := ωj+1 .
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Theorem
For any state ρ on A:

lim
n→∞

1

n

n−1∑

j=0

Θj = Θ∞ Pρ-a.s. ,

where the random variable Θ∞ takes values in the T-invariant states on A.
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Averaging over m yields: lim
n→∞
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n
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