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1986:

Jos met Karl Kraus, mentioning that we had a proof.

Karl Kraus: “Publish!”

Sequel

We wrote down the result in a Phys. Rev. Letter. (1988)

(Impact factor 7.4.)

Jos elaborated the result in his Ph. D. thesis.

I published in Quantum Probability and Applications V (1990)

(Impact factor ε > 0.)

The Letter still is, for both of us, by far the most cited item on our publication

lists.

The inequality has been applied in quantum key distribution, entanglement

distillation, has been improved upon in special cases, and is generally

well-known in quantum information.
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What are we talking about?

H : complex Hilbert space of dimension d ;

ψ : unit vector in H .

Two orthonormal bases in H:

e1, e2, . . . , ed ; ê1, ê2, . . . , êd .

From the above we form:

Two probability distributions:

πj := |〈ej , ψ〉|2 ; π̂k := |〈êk , ψ〉|2 .

Largest scalar product:

c := max
i,j
|〈êi , ej〉| .
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Largest scalar product:

c := max
i,j
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The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



The discrete entropic uncertainty relation

Definition
The entropy H(π) of a discrete probability distribution π = (π1, π2, . . . , πd) is

defined as

H(π) := −
d∑

j=1

πj log πj .

This is the expected amount of information which the measurement will give, or

equivalently, the amount of uncertainty which we have before the measurement.

Theorem (1)

The sum of the two uncertainties satisfies:

H(π) + H(π̂) ≥ log
1

c2
.



Extreme cases:

I e1 = ê1: Then c = 1 and the inequality becomes vacuous:

H(π) + H(π̂) ≥ 0 .

In fact, equality can be reached by putting ψ = e1 = ê1.

Both outcomes are completely certain.

I Mutually Unbiased Bases:

|〈ej , êk〉|2 =
1

d
: c =

1√
d
.

Then we obtain Karl Kraus’s conjecture:

H(π) + H(π̂) ≥ log d .

Again equality can be reached by putting ψ = e1. Then π = δ1 and π̂ is

the uniform distribution.

One outcome is certain, the other completely uncertain.
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I e1 = ê1: Then c = 1 and the inequality becomes vacuous:

H(π) + H(π̂) ≥ 0 .

In fact, equality can be reached by putting ψ = e1 = ê1.
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|〈ej , êk〉|2 =
1

d
: c =

1√
d
.

Then we obtain Karl Kraus’s conjecture:

H(π) + H(π̂) ≥ log d .

Again equality can be reached by putting ψ = e1. Then π = δ1 and π̂ is

the uniform distribution.

One outcome is certain, the other completely uncertain.



Extreme cases:
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Rényi entropies

Let π = (π1, . . . , πd) be a probability distribution. For α > 0 let Hα denote the

Rényi entropy

Hα(π) :=
1

1− α log
d∑

j=1

παj .

In particular:

H1(π) := lim
α→1

Hα(π) = H(π) .

This can be calculated as follows:

lim
α→1

Hα(π) = − lim
α→1

log
d∑

j=1

παj − log
d∑

j=1

π1
j

α− 1

= − d

dα
log

d∑
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παj
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πj log πj = H(π) .
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Properties of the Rényi entropies

For a fixed probability distribution π = (π1, . . . , πd) the function α 7→ Hα(π)

has the following properties.

I H0(π) := lim
α→0

Hα(π) = log #
(
supp (π)

)
.

I H∞(π) := lim
α→∞

Hα(π) = − log ‖π‖∞.

I H0(π) ≥ H∞(π).In fact, note that #(supp (π)) · ‖π‖∞ ≥ 1,

with equality iff π is constant on its support.

I More generally: α 7→ Hα(π) is decreasing.

In fact, the derivative has a meaning: it is −(1− α)−2 times the relative

entropy of the normalised power distribution πα with respect to π.
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Generalized entropic uncertainty relations

Actually in our 1988 Phys. Rev. Letter Jos proved the inequality for all the

Rényi entropies:

Theorem (2)

Let α, α̂ ∈ [0,∞] be such that 1
α

+ 1
α̂

= 2. Then

Hα(π) + Hα̂(π̂) ≥ log
1

c2
.

Of course, taking α→ 1 we obtain the ordinary entropic uncertainty relation.

Also, since α 7→ Hα(π) is decreasing, we have for all α ≤ 1:

Hα(π) + Hα(π̂) ≥ log
1

c2
.
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Notation

We shall indicate the components of ψ in the two bases by

ψk := 〈ek , ψ〉 ;

ψ̂j := 〈êj , ψ〉 .

If we define the unitary matrix U = (ujk)dj,k=1 by

ujk := 〈êj , ek〉 ,

then we may write

ψ̂j = 〈êj , ψ〉 =
d∑

k=1

〈êj , ek〉〈ek , ψ〉 =
d∑

k=1

ujkψk .

So our raw data are now a unitary d × d matrix U and a unit vector ψ ∈ Cn,

and we have ψ̂ = Uψ.
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〈êj , ek〉〈ek , ψ〉 =
d∑

k=1

ujkψk .

So our raw data are now a unitary d × d matrix U and a unit vector ψ ∈ Cn,

and we have ψ̂ = Uψ.



Notation

We shall indicate the components of ψ in the two bases by

ψk := 〈ek , ψ〉 ;

ψ̂j := 〈êj , ψ〉 .
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Our 1988 proof

Theorem (Marcel Riesz 1928)

For 1 ≤ p ≤ 2 ≤ p̂ ≤ ∞ with 1
p

+ 1
p̂

= 1:

(
c

d∑
j=1

|ψ̂j |p̂
)1/p̂

≤

(
c

d∑
j=1

|ψk |p
)1/p

.

More briefly this can be stated as follows:

c1/p̂‖ψ̂‖p̂ ≤ c1/p‖ψ‖p .

Equivalently:

log ‖ψ‖p − log ‖ψ̂‖p̂ ≥
(

1

p̂
− 1

p

)
log c .
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Proof.
(of the uncertainty relation)

From here it is just a few steps to the entropic uncertainty relation:

Hα(π) + Hα̂(π̂) =
α

1− α log ‖π‖α +
α̂

1− α̂ log ‖π̂‖α̂

=
2α

1− α log
(
‖ψ‖2α − log ‖ψ̂‖2α̂

)
≥ 2α

1− α

(
1

2α̂
− 1

2α

)
log c

= −2 log c .

Taking α→ 1 we also obtain the ordinary entropic uncertainty relation.

� ���I proved the entropic uncertainty relation!
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Riesz-Thorin interpolation

The above theorem of Riesz is a special case of the following.

For p, q ∈ [1,∞] and a d × d-matrix T , let ‖T‖p→q denote the norm of T

seen as an operator from Cd with p-norm to Cd wit h q-norm:

‖T‖p→q := max
‖ψ‖p=1

‖Tψ‖q .

Theorem (Riesz-Thorin)

For all d × d-matrices T the function

[0, 1]× [0, 1]→ R :

(
1

p
,

1

q

)
7→ log ‖T‖p→q

is convex.
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Entropic uncertainty by interpolation

Let U be a unitary d × d-matrix, ψ ∈ Cd a vector of unit 2-norm: ‖ψ‖2 = 1,

and let c := maxj,k |〈êj , ek〉|. Then we have

‖U‖2→2 = 1 since U is unitary;

‖U‖1→∞ = c since |(Uψ)j | =

∣∣∣∣∣
d∑

k=1

ujkψk

∣∣∣∣∣ ≤ c
d∑

k=1

|ψk | .

According to the Riesz-Thorin interpolation theorem the function

fU : [0, 1]→ [0, 1] :
1

p
7→ log ‖U‖p→p̂

is convex.

Since fU
(
1
2

)
= log ‖U‖2→2 = 0 and fU(1) = log ‖U‖1→∞ = log c, we conclude

that

f ′
(

1

2

)
≤

f (1)− f ( 1
2
)

1− 1
2

≤ 2 log c .



Entropic uncertainty by interpolation

Let U be a unitary d × d-matrix, ψ ∈ Cd a vector of unit 2-norm: ‖ψ‖2 = 1,

and let c := maxj,k |〈êj , ek〉|.
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On the other hand, for all ψ ∈ Cd and p ∈ [0, ,∞]:

fU

(
1

p

)
= log ‖U‖p→p̂ ≥ log ‖Uψ‖p̂ − log ‖ψ‖p .

Since we have equality at 1
p

= 1
2
, we may differentiate the above inequality:

f ′U

(
1

2

)
≥ −H(|ψ̂|2)− H(|ψ|2) .

Since f ′U( 1
2
) ≤ 2 log c, it follows that H(|ψ̂|2) + H(|ψ|2) ≥ log(1/c2).
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Riesz convexity and functions on the strip.

The source of the Riesz-Thorin convexity result, the secret weapon of Riesz’

brilliant student Thorin, is the study of analytic functions on a strip in the

complex plane. We now give a direct proof of the entropic uncertainty relation

using this secret weapon.

It starts from the following result in function theory.

Let S denote the strip { z ∈ C | 0 ≤ Re z ≤ 1 }.

Theorem (Phragmén-Lindelöf)

Let F be a bounded holomorphic function on S such that |F (z)| ≤ 1 on the

boundary of S. Then |F (z)| ≤ 1 on all of S.



Riesz convexity and functions on the strip.

The source of the Riesz-Thorin convexity result, the secret weapon of Riesz’

brilliant student Thorin, is the study of analytic functions on a strip in the

complex plane.

We now give a direct proof of the entropic uncertainty relation

using this secret weapon.

It starts from the following result in function theory.

Let S denote the strip { z ∈ C | 0 ≤ Re z ≤ 1 }.

Theorem (Phragmén-Lindelöf)
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Let S denote the strip { z ∈ C | 0 ≤ Re z ≤ 1 }.

Theorem (Phragmén-Lindelöf)

Let F be a bounded holomorphic function on S such that |F (z)| ≤ 1 on the

boundary of S. Then |F (z)| ≤ 1 on all of S.



Thorin’s MAGIC FUNCT ION

F (z) := c−z
d∑

j=1

d∑
k=1

ψ̂j |ψ̂j |z · ujk · ψk |ψk |z .

I F is bounded: |F (z)| ≤ c−1∑
jk |ψ̂j | · |ψk | = c−1‖ψ̂‖1 · ‖ψ‖1.

I F (0) = 1: F (0) = 〈ψ̂,Uψ〉 = ‖ψ̂‖
2

2 = 1.

I |F (iy)| ≤ 1: F (iy) = c−iy 〈ϕ,Uχ〉,

where ϕj := |ψ̂j |iy ψ̂j and χk := |ψk |iyψk are unit vectors;

I |F (1 + iy)| ≤ 1: |F (1 + iy)| ≤ 1
c

∑
jk |ψ̂j |2 · |ujk | · |ψk |2.

It follows that |F (z)| ≤ 1 for all z ∈ S . In particular: ReF ′(0) ≤ 0, but. . .

F ′(0) = − log c −
d∑

j=1

log |ψ̂j |ψ̂j(Uψ)j −
d∑

k=1

log |ψk |(U∗ψ̂)kψk

= − log c − 1

2

(
H(|ψ̂|2 + H(|ψ|2)

)
.

The statement follows.
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The theorem of Frank and Lieb

In 2011 Rupert Frank and Elliott Lieb proved an extended version of the

entropic uncertainty relation, of which we here shall treat only the finite

dimensional case.

Let H and its bases e1, . . . , ed and ê1, . . . , êd be as before, but let ψ be

replaced by a density matrix ρ.

Let

πj := 〈ej , ρej〉 and π̂j := 〈êj , ρêj〉

Theorem (3)

H(π) + H(π̂) ≥ log
1

c2
+ H(ρ) ,

where H(ρ) is the von Neumann entropy of ρ.
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Theorem (3)

H(π) + H(π̂) ≥ log
1

c2
+ H(ρ) ,

where H(ρ) is the von Neumann entropy of ρ.



The theorem of Frank and Lieb

In 2011 Rupert Frank and Elliott Lieb proved an extended version of the

entropic uncertainty relation, of which we here shall treat only the finite

dimensional case.

Let H and its bases e1, . . . , ed and ê1, . . . , êd be as before, but let ψ be
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The proof by Frank and Lieb

The proof is based on two pillars of quantum information theory:

Lemma (positivity of relative entropy)

For all pairs of density matrices ρ, σ we have

tr ρ log σ ≤ tr ρ log ρ .

Lemma (Golden-Thompson inequality)

For all self-adjoint d × d-matrices A and B we have

tr
(

eA+B
)
≤ tr

(
eAeB

)
.
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The proof by Frank and Lieb

Fix a state ρ and define negative definite matrices A and Â by

A :=
d∑

i=1

log πi |ei 〉〈ei | and Â :=
d∑

i=1

log π̂i |êi 〉〈êi | .

Let σ be the ’Gibbs state’ σ :=
eA+Â

tr eA+Â
.

Then we have

H(π) + H(π̂) = −tr ρ(A + Â)

= −tr ρ log σ − log tr
(
eA+Â)

≥ −tr ρ log ρ− log tr
(
eAeÂ)

But the trace in the last term can be written as

tr
(

eAeÂ
)

=
d∑

i,j=1

πi π̂jtr
(
|ei 〉〈ei |êj〉〈êj |

)
=

d∑
i,j=1

πi π̂j |uij |2 ≤ c2 .

The statement follows.
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≥ −tr ρ log ρ− log tr
(
eAeÂ)
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Let σ be the ’Gibbs state’ σ :=
eA+Â
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= −tr ρ log σ − log tr
(
eA+Â)
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= −tr ρ log σ − log tr
(
eA+Â)
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= −tr ρ log σ − log tr
(
eA+Â)
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When is de inequality sharp?

The ’magic function’ lends itself most easily to spotting equality in the

uncertainty relation.

We can have H(π) + H(π̂) = log(1/c2), (which means that F ′(0) = 0),

only if

F (z) = 1 everywhere on the strip!

(This is Hopf’s theorem.)

From this we deduce:

Theorem
We have equality in the discrete entropic uncertainty relation if and only if π

and π̂ are constant on their supports, say D and D̂ respectively, and moreover:

#D ·#D̂ =
1

c2
.

In particular, #D ·#D̂ ≤ d :the supports are small!
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Examples of saturation

I Suppose d = nn̂, and we have conjugate bases: 〈êj , ek〉 =
1√
d

e
2πi
d

jk .

Then we can take the pure state vector given by

ψk =
1√
n

if k is divisible by n̂; 0 otherwise;

ψ̂j =
1√
n̂

if j is divisible by n; 0 otherwise.

II But there are many others examples.

For instance

U =


1√
2

1
2

1
2

1√
2
− 1

2
− 1

2

0 1√
2
− 1√

2

 ; ψ =


1

0

0

 ; ψ̂ =
1√
2


1

1

0

 .
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Proof of saturation theorem

Sufficiency:

H(π) + H(π̂) = log(#D) + log(#D̂) = log(#D ·#D̂) = log 1
c2

.

Necessity:

F ′(0) = 0 implies F (z) = 1 for all z ∈ S :

c−z
∑
j,k

ψ̂j |ψ̂j |z ujk ψk |ψk |z = 1 .

In particular for z = 1, writing ψk = |ψk | · e iθk and the same for ψ̂:∑
j,k

|ψ̂j |2 · |ψk |2 ·
(

e−i θ̂j · e iθk · 1

c
ujk

)
︸ ︷︷ ︸

=1!

= 1 .

Let D, D̂ denote the supports of ψ and ψ̂. Then we have for j ∈ D̂, k ∈ D:

ujk = c · e i(θ̂j−θk ) .

Hence for j ∈ D̂: ψ̂j =
∑
k∈D

ujkψk = ce i θ̂j
∑
k∈D

e−iθkψk = ce i θ̂j
∑
k

|ψk |.

So |ψ̂| is constant on its support.

The same holds for ψ.
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Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) logµ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Entropies and algebras

In 2010 Berta, Christandl, Colbeck, Renes, and Renner proved an uncertainty

relation concerning conditional entropies.

For a clean formulation I think it is profitable to use the language of *-algebras.

If (X , µ) is a probability space, then the entropy H(α) of a finite partition α of

X is

H(α) := −
∑
A∈α

µ(A) log µ(A) .

This translates to a finite abelian subalgebra C of L∞(X , µ) as follows:

Hϕ(C) := sup {−
k∑

i=1

ϕ(pi ) logϕ(pi ) | p1, . . . , pk partition of unity in C } .

And then to general finite-dimensional *-algebras as follows:

Hϕ(A) := inf {Hϕ(C) | C ⊂ A maximal abelian } .



Conditional entropies and algebras

Let A and B be finite dimensional *-subalgebras of Mn, and let ϕ be a state on

Mn.

We define

Hϕ(A|B) := Hϕ(A ∨ B)− Hϕ(B) .

Horodecki 1996:Negative conditional entropies can occur in case of

entanglement.

Example:

A = Mn ⊗ 1l, B := 1l⊗Mn, and ϕ(x) := 〈ψ, xψ〉 for ψ = 1√
n

∑n
i=1 |ei 〉〈ei |.

then

Hϕ(A ∨ B) = Hϕ(Mn ⊗Mn) = 0

and

Hϕ(B) = log n .

The difference being

Hϕ(A|B) = − log n .
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A conditional entropic uncertainty relation

Theorem (Berta et al. 2010)

Let A := Mn ⊗ 1l and B := 1l⊗Mm.

Let C and Ĉ be maximal abelian subalgebras of A.

Then for all states ρ on Mn ⊗Mm:

Hρ(C|B) + Hρ(Ĉ|B) ≥ log
1

c2
+ Hρ(A|B) .
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1

c2
+ Hρ(A|B) .



A conditional entropic uncertainty relation

Theorem (Berta et al. 2010)

Let A := Mn ⊗ 1l and B := 1l⊗Mm.
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