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’t Hooft is searching, as Einstein once was, for a deterministic

theory to replace Quantum Mechanics.

He is also in favor of Einstein’s locality: no signal travels faster

than light.

I shall try to convince* you that his search cannot succeed.

Such theories can not explain Aspect’s 1982 experiment, in

which Bell’s famous inequality was broken.
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Dramatis personae

Discoverer of entanglement (Einstein-Podolsky-Rosen-correlation)



Discoverer of inequalities broken by EPR correlations

“If anyone ever uses this theory to send signals faster than light,

I hope he calls it the ’Bell Telegraph’.”



Alain Aspect, who performed the experiment



A deterministic theory at the Planck scale?



Definitions
A physical theory describes physical systems.

In a realistic physical theory a system is always in some

configuration λ, and the observables can be read off from λ.

Hence the observables of such a theory are given by functions

on the space Ω of all configurations.

(The events are functions A : Ω → {0, 1}.)

A realistic physical theory is called deterministic if, moreover,

the configuration λt at time t ∈ R is determined by the

configuration λs at any s ≤ t.

Hence

Deterministic =⇒ Realistic .
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Every physical theory must somehow deal with space and time.

A theory is called local if no causal influence travels faster

than light.

In local theories systems can be causally separated for a while.
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Stochastics

In a realistic theory very often the configuration λ is unknown

to us.

We take this ignorance into account by postulating a

probability measure P on Ω.

Events A : Ω → {0, 1} are now only predicted with some

probability:

P[A = 1] = E(A) = P
(
{λ ∈ Ω |A(λ) = 1}

)
=

∫
Ω

A(λ) P(dλ) .

Such theories are also called realistic, an in the dynamic case

they are still basically deterministic.
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The Question

Does there exist

a local deterministic theory

underlying Quantum Mechanics?



The Answer

NO!

Not even a local realistic theory

(stochastic or otherwise).

Such theories will not be able to explain Aspect’s experiment.



Aspect’s experiment

α β

CaA B

A(α) =

1 if A’s photon shows polarization α ∈ [0, π)

0 if A’s photon shows polarization ⊥ α
.

B(β) =

1 if B ’s photon shows polarization β ∈ [0, π)

0 if B ’s photon shows polarization ⊥ β
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A mathematical remark

P[A(α) = B(β)] = sin2(α− β) .

This is a strange formula!

In the first place, by putting α = β we see that

A(α) = 1− B(α) with probability 1. But then we must have

E(|A(α)− A(β)|) = P[A(α) 6= A(β)]

= P[A(α) = B(β)] = sin2(α− β) .

But the right hand side is not a metric on the semicircle [0, π),

since it does not satisfy the triangle inequality!

Bell’s inequality is a quadrangle inequality in the space of

events.
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Bell’s inequality

Theorem
For any four {0, 1}-valued functions A1,A2,B1,B2 on (Ω,P):

P[A1 = B1] ≤ P[A1 = B2] + P[B2 = A2] + P[A2 = B1] .

Proof.

Pointwise! For any λ ∈ Ω a round-trip around the square

A1(λ) − B1(λ)

| |
B2(λ) − A2(λ)

0 = 0

|| ||
0 = 0

0 = 0

||
/

||
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|| ||
/
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0 = 0
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/
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/

1 = 1

0 6= 1

|| ||
/

0 = 0

0 6= 1

||
/
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/

1 6= 0

0 6= 1

|| ||
0 6= 1

0 6= 1

||
/

||
1 = 1

meets an even number of equality signs.
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On the other hand, if we choose polarizer angles like this:

α

β

α
β1

2

2

1

and if in the experiment we measure A1 := A(α1),

A2 := A(α2), B1 := B(β1), and B2 := B(β2), we obtain the

probabilities

P[A1 = B1] = sin2(90◦) = 1

P[A1 = B2] = P[B2 = A2] = P[A2 = B1] = sin2(30◦) =
1

4
.

But of course

1 >
1

4
+

1

4
+

1

4
.
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How does Quantum Mechanics escape

from this argument?

A1 and A2 do not commute, neither do B1 and B2; hence they

have no joint values.

In the square

A1 − B1

| |
B2 − A2

0 = 0

| |
∗ − ∗

0 − ∗
||
/

|
1 − ∗

∗ − 0

| ||
/

∗ − 1

∗ − ∗
| |
1 = 1

0 6= 1

| |
∗ − ∗

∗ − 1

| ||
/

∗ − 0

∗ − ∗
| |
0 6= 1

0 − ∗
||
/

|
1 − ∗

in each measurement only one side is filled in.
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Where does the sin2 term come from?
The quantum calculation goes like this:

A(α) = P(α)⊗ I , B(β) = I ⊗ P(β) ,

P[A(α) = B(β)] = 2Pψ[A(α) = B(β) = 1]

= 〈ψ,P(α)⊗ P(β)ψ〉

=

∣∣∣∣∣
〈

1√
2
(0, 1,−1, 0),

(
cosα

sinα

)
⊗

(
cos β

sin β

)〉∣∣∣∣∣
2

= (cosα sin β − sinα cos β)2

= sin2(α− β) .



The Bell Game

11010011000110100100011

00110010011100101100101

0110101110010.......

00110011011010010110101

011101100111101001100001

110110001011101000111101

011010011001010111010010

110101010110011......

110001011.....

11010011010001101011110

01110010100101110101101

110100011011001101001101

000101110000100....

B

red

11 12

22

110000100101110000101001

100001000100101100101001

black

red

black

a a

21
a a

A



Rules:
The following protocol is repeated many times:

I Alice and Bob both get a card (red or black). No spying!

No talking!

I Dice are thrown

I Alice and Bob simultaneously say ‘”yes” or “no” (1 or 0).

I The cards are laid out. In the square of the board,

determined by the cards, a 1 is written if Alice and Bob

gave the same answer, a 0 otherwise.

Alice and Bob win the game if eventually they accumulate

more ones in the (red,red)-square than in the other three

together.



Theorem
Alice and Bob connot win the game “by classical means”.

Proof.
The only thing they can do, is agree on some, possibly random

strategy. A strategy is a specification what each of them will

say if he/she gets a red/black card.

However, none of these strategies wins the game, by the same

argument as above (even number of equaility signs).

Randomness does not help, since Bell’s inequality is linear.



But ........

if Alice and Bob buy a set of polarizers,

and replace the dice by calcium atoms,

which they make emit a photon pair in each round of the

game,

when they rotate their polarizers according to the color of

their cards,

and answer the question: “does my photon get through?”,

THEN THEY WIN!



Assumptions

The following assumptions suffice to derive Bell’s inequality for

the game.

I Locality: Alice and Bob don’t look into each other’s

cards.

I Realism: For every λ ∈ Ω there is a full strategy

A1,A2,B1,B2.

I Independence: There exists a deck of cards, statistically

independent of each other and of λ.



The Orsay Experiment



The Orsay experiment

From a calcium source pairs of photons were produced.

Photons in the right and left wing of the setup were identified

as belonging to the same pair by measuring their synchronicity.

In the 1982 experiment the polarization directions were

randomly chosen during the flight of the photons, so that the

measuring direction in one wing could not influence the

outcome in the other.

In later years the experiment was done with protons, kaons,

neutrons, cold atoms and atom-photon pairs. (Electrons are

on their way.)

All were significant by many standard deviations.



Four possible positions
From Bell:speakable and unspeakable in quantum mechanics:

I Quantum Mechanics is wrong: nature cannot win the

game.

I Nature wins the game by manipulating the cards: they

depend on λ themselves.

I Nature wins by spying: causal influences do go faster

than light.

I There is no definite reality behind the scene.

A fifth position is logically possible (Gill):

I Quantum Mechanics is right, but the game cannot be

won.
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Questions to ’t Hooft:

Is your theory going to win the Bell game?

What position would you choose in the light

of Bell’s four possibilities?


