Some open problems on k-forms of the algebraic tori and a conjecture of T. Oda

Tac Kambayashi *
Department of Mathematical Sciences
Tokyo Denki University
Saitama 350-0394 JAPAN

The multiplicative group \mathbb{C}^{*} of the complex numbers as a complex Lie group has two "real forms", namely the real Lie groups $\mathbb{R}_{>0}^{*}$ and $\mathrm{SO}(2)$. (Each of the latter groups becomes isomorphic to \mathbb{C}^{*} through base-field extension from \mathbb{R} to \mathbb{C}, hence the name.) On the other hand, the underlying variety of \mathbb{C}^{*} may be identified as the hyperbola ($X Y=1$ in \mathbb{C}^{2}), and this has three real forms, i.e., the hyperbola, the real circle $\left(X^{2}+Y^{2}=1\right)$ and the imaginary circle $\left(X^{2}+Y^{2}=-1\right)$, all considered as affine varieties defined over \mathbb{R}. All this is classical and elementary knowledge.

In a recent work [1] (a gist of which was offered in the Hanoi Conference 2006) we expanded this knowledge to higher dimensions and to general separably algebraic base-field extensions. In the present short note, we wish to present a few open questions arising from that paper and to relate these questions to a conjecture communicated to us by Tadao Oda in June, 2006. In this process, we will focus on the forms of n-dimensional algebraic tori $\left(\mathbb{G}_{m}\right)^{n}$ defined over a base field k of characteristic $\neq 2$ that split under a quadratic extension Q of k. That is, we will look at affine k-group schemes X such that, under a quadratic extension $Q=k[\sqrt{d}] \supset k, d \in k, d \notin k^{2}$, a Q-isomorphism

$$
\begin{equation*}
X \times_{k} Q \cong_{Q}\left(\mathbb{G}_{m} \times_{k} Q\right)^{n}=\left(\left(\mathbb{G}_{m}\right)_{Q}\right)^{n} \tag{1}
\end{equation*}
$$

[^0]is realized. Ultimately, our aim is to find and classify all such X 's.
From our work [1] let us extract and list up all known facts relevant to this aim:
(Dimension 1) All k-forms of \mathbb{G}_{m} split at a quadratic extension of k, and there are exactly two 1-dimensional k-group schemes up to k-isomorphisms that split at a given $Q=k[\sqrt{d}]$: the trivial one \mathbb{G}_{m} and the affine k-group-scheme
\[

$$
\begin{equation*}
\mathbb{T}_{1}:=\operatorname{Spec}\left(k[X, Y] /\left\langle X^{2}-d^{-1} Y^{2}-1\right\rangle\right), \tag{2}
\end{equation*}
$$

\]

whose group operation $*$ is given by

$$
\begin{equation*}
(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}+d^{-1} y y^{\prime}, x y^{\prime}+y x^{\prime}\right) \tag{3}
\end{equation*}
$$

for any k-algebra R and any R-valued points $(x, y),\left(x^{\prime}, y^{\prime}\right) \in$ $\mathbb{T}_{1}(R)$. The neutral point of this group-scheme is (1,0), and $(x, y)^{-1}=(x,-y)$ for any $(x, y) \in \mathbb{T}(R)$.
(Dimension 2) The k-isomorphism classes of nontrivial (Q / k) forms of $\left(\mathbb{G}_{m}\right)^{2}$ correspond to the conjugacy classes of involutions $P \in \mathrm{GL}(2, \mathbb{Z})$ (i.e., integral (2×2)-matrix $P \neq I_{2}$ such that $P^{2}=I_{2}$), and there are exactly 3 such conjugacy classes. So, all in all, There are $4 k$-isomorphism classes of (Q / k)-forms of $\left(\mathbb{G}_{m}\right)^{2}$, each represented by: (a) the trivial form $\left(\mathbb{G}_{m}\right)^{2}$; (b) $\mathbb{T}_{1} \times_{k} \mathbb{T}_{1} ;$ (c) $\mathbb{G}_{m} \times_{k} \mathbb{T}_{1} ;$ (d) \mathbb{T}_{2}, whose description follows just below.

As an affine k-scheme, $\mathbb{T}_{2}:=\operatorname{Spec}\left(B_{2}\right)$, where

$$
\begin{equation*}
B_{2}:=k\left[X, Y, Z, Z^{-1}\right] /\left\langle X^{2}-d Y^{2}-Z\right\rangle=k\left[x, y, z, z^{-1}\right] . \tag{4}
\end{equation*}
$$

One can easily check that $Q \otimes_{k} B_{2} \cong k\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}\right]$, so that the underlying scheme of \mathbb{T}_{2} is a (Q / k)-form of that of $\left(\mathbb{G}_{m}\right)^{2}$. As for the group structure, for any k-algebra R and R-valued points $\left(x, y, z, z^{-1}\right),\left(x^{\prime}, y^{\prime}, z^{\prime}, z^{\prime-1}\right) \in \mathbb{T}_{2}(R)$, the group multiplication is
to be given by

$$
\begin{equation*}
\left(x, y, z, z^{-1}\right) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, z^{\prime-1}\right)=\left(x x^{\prime}+d y y^{\prime}, x y^{\prime}+x^{\prime} y, z z^{\prime},\left(z z^{\prime}\right)^{-1}\right) . \tag{5}
\end{equation*}
$$

The neutral point is $(1,0,1,1)$ and $\left(x, y, z, z^{-1}\right)^{-1}=\left(z^{-1} x,-z^{-1} y\right.$, z, z^{-1}).

The results as outlined above are obtained by the classical method of Galois cohomology as detailed in Serre's book [3]. According to this theory, the (K / k)-forms of $\left(\mathbb{G}_{m}\right)^{n}$ for any finite Galois extension with $G=\operatorname{Gal}(K / k)$ is parametrized by $\mathrm{H}^{1}\left(G, \operatorname{Aut}_{K}\left(\left(\mathbb{G}_{m}\right)^{n}\right)\right)$. Since $\operatorname{Aut}_{K}\left(\left(\mathbb{G}_{m}\right)^{n}\right)=\mathrm{GL}(n, \mathbb{Z})$ regardless of K and G operates trivially on $\mathrm{GL}(n, \mathbb{Z})$, we have

$$
\mathrm{H}^{1}\left(G, \operatorname{Aut}_{K}\left(\left(\mathbb{G}_{m}\right)^{n}\right)\right)=\operatorname{Hom}(G, \operatorname{GL}(n, \mathbb{Z})) / \approx,
$$

where \approx denotes the conjugacy relation. This led us to study the finite subgroups of $\operatorname{SL}(2, \mathbb{Z})$ and $\mathrm{GL}(2, \mathbb{Z})$, and aided by the elementary part of modular group theory we were able to reach results as above.

Going up to the next stage at dimension 3 level, let us present our main question:

Problem 1 Let $Q=k[\theta]$ be a quadratic extension of k. Find, up to k-isomorphisms, all (Q / k)-forms of $\left(\mathbb{G}_{m}\right)^{3}$.

If one is to employ the orthodox technique of Galois cohomology as done in [1], then it is natural to solve the next problem first before embarking on Problem 1, namely

Problem 2 Determine all involutions in $\mathrm{GL}(3, \mathbb{Z})$ up to conjugacy.

Once Problem 2 is settled, one can then proceed to find the invariant k-subalgebra of the action of Galois group $\mathbb{Z} / 2 \mathbb{Z}$ on $Q\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}, T_{3}, T_{3}^{-1}\right]$ twisted by each involution. We would then get closer to the solution of our main Problem 1. This 'clas-
sical' approach, however, is easier said than done, since Problem 2 appears to be rather difficult.

It may well be that an alternative approach suggested by Tadao Oda could be more effective. This goes as follows: Let $\mathbb{Z}[\epsilon]:=\mathbb{Z} \oplus$ $\mathbb{Z} \epsilon, \epsilon^{2}=1$. By studying finitely-generated $\mathbb{Z}[\epsilon]$-modules free over \mathbb{Z}, Oda formulated a conjecture to the effect that such a module would be a direct sum of $\mathbb{Z}[\epsilon], \mathbb{Z}[\epsilon] / \mathbb{Z}(1-\epsilon)$ and $\mathbb{Z}[\epsilon] /(1+\epsilon)$.

Problem 3 Settle Oda's Conjecture as above stated.
One can show that, if the conjecture is established as true, each (Q / k)-form of $\left(\mathbb{G}_{m}\right)^{3}$ is a direct product of $\mathbb{G}_{m}, \mathbb{T}_{1}$, and \mathbb{T}_{2}. This would mean that, at dimension 3 , no essentially new (Q / k)-forms of $\left(\mathbb{G}_{m}\right)^{3}$ should occur, which may be somewhat too optimistic.

References

[1] T. Kambayashi, On forms of the Laurent polynomial rings and algebraic tori in dimensions 1 and 2, PREPRINT 2007
[2] J.-P. Serre, Local Fields, Grad. Texts in Math. No.67, Springer-Verlag, New York 1975
[3] J.-P. Serre, Cohomologie Galoisienne, Lect. Notes in Math. No. 5, 5^{e} éd, SpringerVerlag 1994

[^0]: * E-Mail: tac@r.dendai.ac.jp

