Let V be the hypersurface in \mathbb{C}^4 given by $x + x^2y + z^2 + u^3 = 0$. V is diffeomorphic to \mathbb{C}^3 but not isomorphic to \mathbb{C}^3 (the Makar-Limanow invariant of V equals $\mathbb{C}[x]$). On V we have a \mathbb{C}^* -action given by $t(x, y, z, u) = (t^6x, t^{-6}, t^3z, t^2u)$. The fixed point set of the cyclic subgroup $\mathbb{Z}_6 \subset \mathbb{C}^*$ is disconnected. Problem:

Is $V \times \mathbb{C}^1$ isomorphic to \mathbb{C}^4 ?

If the answer is *yes* than we obtain an example of nonlinearizable \mathbb{C}^* -action on \mathbb{C}^4 and also an example of nonlinearizable $\mathbb{C}^* \times \mathbb{C}^*$ -action on \mathbb{C}^4 . If the answer is *no* than we are able (more or less) to prove that all $\mathbb{C}^* \times \mathbb{C}^*$ -actions on \mathbb{C}^4 are linearizable.