PROBLEM 1 THE ŁOJASIEWICZ EXPONENTS OF NONDEGENERATE SINGULARITIES AND POLYNOMIAL FUNCTIONS

TADEUSZ KRASIŃSKI

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic function germ with isolated critical point at 0 i.e. the mapping $\operatorname{grad} f=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ has an isolated zero at 0 (as usual we identify a function-germ with its representatives). In this case f is called a singularity. One of interesting invariants of the singularity f is the Łojasiewicz exponent $\mathcal{L}_{0}(f)$ of f at 0 which is defined by

$$
\mathcal{L}_{0}(f)=\inf \left\{\theta:|\operatorname{grad} f(z)| \geqslant C|z|^{\theta} \text { in a ngh. of } 0 \text { for some constant } C>0\right\} .
$$

There are many known properties and effective formulas for $\mathcal{L}_{0}(F)$ (see [CK], [L-JT], [L1], [P]). The basic property of $\mathcal{L}_{0}(F)$ is that it is a rational positive number

The simplest among singularities are non-degenerate singularities. They are defined via Newton polyhedrons - a combinatorial object connected with f. Let us define it. For simplicity we consider the case $n=2$ (in the general case definitions are similar).

Let

$$
f(x, y)=\sum_{\alpha, \beta} a_{\alpha, \beta} x^{\alpha} y^{\beta}
$$

be the expansion of f in a neighbourhood of $0 \in \mathbb{C}^{2}$ in a convergent Taylor series. We put

$$
\operatorname{supp} f:=\left\{(\alpha, \beta) \in \mathbb{N}_{0}^{2}: a_{\alpha, \beta} \neq 0\right\}
$$

The Newton diagram $\Gamma_{+}(f)$ of f is the convex hull of $(\operatorname{supp} f)+\mathbb{R}_{+}^{2}\left(\right.$ where $\mathbb{R}_{+}^{2}:=$ $\left.\left\{(x, y) \in \mathbb{R}^{2}: x \geqslant 0, y \geqslant 0\right\}\right)$. The boundary of $\Gamma_{+}(f)$ is the union of two half-lines and a finite number of compact and pairwise non-parallel segments. The Newton polygon $\Gamma(f)$ is the set of these compact segments (in 2-dimensional case "Newton

[^0]polyhedron" $=$ "Newton polygon") .

For each segment $S \in \Gamma(f)$ we define:

1. $x(S)$ - the abscissa of the point, when the line determined by S intersects the horizontal axis,
2. $y(S)$ - the ordinate of the point, when the line determined by S intersects the vertical axis,

3. $\operatorname{in}(S)=\sum_{(\alpha, \beta) \in S} a_{\alpha, \beta} x^{\alpha} y^{\beta}$.

The reduced Newton polygon $\Gamma(f)^{*}$ is obtained from $\Gamma(f)$ by omitting the exceptional segments according to the rule:
(a) we omit the first segment if abscissas of their ends lie on the lines $x=0$ and $x=1$, respectively,
(b) we omit the last segment if ordinates of their ends lie on the lines $y=0$ and $y=1$, respectively.

In other words exceptional segments are segments in $\Gamma(f)$ which lie in the walls of thickness 1 around the axes.

Remark 1. Since we assume that f has an isolated critical point at $0 \in \mathbb{C}^{2}$, then it is easy to show that $\Gamma(f)^{*}=\emptyset$ if and only if in an appropriate linear system of coordinates in \mathbb{C}^{2}

$$
f(x, y)=x y+\sum_{\substack{\alpha, \beta \\ \alpha+\beta \geqslant 3}} h_{\alpha, \beta} x^{\alpha} y^{\beta} .
$$

For such f we have $\mathcal{L}_{0}(f)=1$. Then, in the sequel, the assumption that $\Gamma(f)^{*} \neq \emptyset$ is not very restrictive.

We say f is nondegenerate (in the Kouchnirenko's sense) [K] if for every $S \in \Gamma(f)$ (equivalently for every $\left.S \in \Gamma(f)^{*}\right)$ the system of equations

$$
\begin{aligned}
\frac{\partial}{\partial x} \operatorname{in}(S) & =0 \\
\frac{\partial}{\partial y} \operatorname{in}(S) & =0
\end{aligned}
$$

has no solutions in $\mathbb{C}^{*} \times \mathbb{C}^{*}$.
Theorem 1. ([L1], Thm 2.1) If f is a nondegenerate singularity at $0 \in \mathbb{C}^{2}$ and $\Gamma(f)^{*} \neq \emptyset$, then

$$
\begin{equation*}
\mathcal{L}_{0}(f)=\max _{S \in \Gamma(f)^{*}}(x(S), y(S))-1 \tag{0.1}
\end{equation*}
$$

By this theorem if f is nondegenerate and $\Gamma(f)^{*} \neq \emptyset$ then $\mathcal{L}_{0}(f)$ can be read of its Newton diagram.

In n-dimensional case one can analogously define the above notions for a singularity $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$. Namely,

1. $\mathcal{L}_{0}(f)$,
2. $\operatorname{supp} f$,
3. $\Gamma_{+}(f), \Gamma(f)$,
4. $z_{1}(S), \ldots, z_{n}(S)$ for each face $S \in \Gamma(f)$, where $\left(z_{1}, \ldots, z_{n}\right)$ are coordinates in \mathbb{C}^{n}.
5. nondegeneratness of f.

Now, we may pose the problem
Problem 1. Define appropriately exceptional faces of $\Gamma(f)$ such that

$$
\mathcal{L}_{0}(f)=\max _{S \in \Gamma(f)^{*}}\left(z_{1}(S), \ldots, z_{n}(S)\right)-1
$$

If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is a polynomial one can similarly define the Eojasiewicz exponent $\mathcal{L}_{\infty}(f)$ at infinity of f at 0 which is defined by
$\mathcal{L}_{\infty}(f)=\sup \left\{\theta:|\operatorname{grad} f(z)| \geqslant C|z|^{\theta} \quad\right.$ in a ngh. of infinity for some constant $\left.C>0\right\}$ and similar notions connected with the Newton polyhedron of f at infinity.

Problem 2. Find effective formulas for $\mathcal{L}_{\infty}(f)$ in nondegerate case in n-dimensional case.

Remark 2. As in local case the 2-dimensional case at infinity is completely solved [L2].

References

[CK] Chądzyński, J. and Krasiński, T.: The Lojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero. In: Singularities, Banach Center Publ. 20, PWN, Warszawa 1988, 139-146.
[K] Kouchnirenko, A. G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32 (1976), 1-31.
[L-JT] Lejeune-Jalabert, M. and Teissier, B.: Cloture integrale des idéaux et equisingularité. École Polytechnique 1974.
[L1] Lenarcik, A.: On the Lojasiewicz exponent of the gradient of a holomorphic function. In: Singularities Symposium-Łojasiewicz 70. Banach Center Publ. 44, PWN, Warszawa 1998, 149-166.
[L2] Lenarcik A.: On the Eojasiewicz exponent of the gradient of a polynomial function, Ann. Polon. Math. 71 (1999), 211-239.
[P] Płoski, A.: Multiplicity and the Eojasiewicz exponent. In: Singularities, Banach Center Publ. 20, PWN, Warszawa 1988, 353-364.

Faculty of Mathematics, University of Łódź, 90-238 Łódź, Banacha 22,
E-mail address: krasinsk@uni.lodz.pl

[^0]: Date: December 27, 2006.

