PROBLEM 2 EMBEDDING OF \mathbb{R} IN \mathbb{C} .

TADEUSZ KRASIŃSKI

It is known that we have the following relations

$$\mathbb{R} \subset \mathbb{C},$$

 $\mathbb{R} \neq \mathbb{C},$
 $\mathbb{R}[i] = \mathbb{C}.$

Problem 1. Is \mathbb{R} the unique subfield of \mathbb{C} having the above properties?

Answer. No.

This answer was found during the Hanoi Conference in collaboration with Furter and M. Koras.

An explicit example.

Consider the splitting field $K \subset \mathbb{C}$ of the polynomial $x^3 - 2$ defined over \mathbb{Q} (it is $K = \mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$). Since $x^3 - 2$ is irreducible over \mathbb{Q} there exists an automorphism A of K over \mathbb{Q} which sends the root $\sqrt[3]{2}$ of $x^3 - 2$ into another $\sqrt[3]{2}e^{2\pi i/3}$ i.e. $A(\sqrt[3]{2}) = \sqrt[3]{2}e^{2\pi i/3}$. Next we extend the automorphism A to an automorphism \mathbb{A} of the whole field \mathbb{C} . We define

$$\mathbb{\tilde{R}} := \mathbb{A}(\mathbb{R}).$$

Then

$$\widetilde{\mathbb{R}} \neq \mathbb{R},$$

 $\widetilde{\mathbb{R}} \subset \mathbb{C},$
 $\widetilde{\mathbb{R}} \neq \mathbb{C},$
 $\widetilde{\mathbb{R}}[i] = \mathbb{C}.$

Remark 1. Notice the following Artin Theorem, which explains the structure of finite extensions \mathbb{C} : K

Theorem 1. If \mathbb{K} is algebraically closed field and $K \subset \mathbb{K}$ is a finite extension (i.e. $[\mathbb{K}:K] < \infty$) then char $\mathbb{K} = 0$ and $\mathbb{K} = K[i]$ (i is a root of $x^2 + 1 = 0$ in \mathbb{K}).

FACULTY OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ, 90-238 ŁÓDŹ, BANACHA 22, *E-mail address:* krasinsk@uni.lodz.pl

Date: December 27, 2006.