Let k[X] be the polynomial ring in n variables over a field k for some $n \in \mathbb{N}$, and k(X) the field of fractions of k[X]. Then, *Hilbert's Fourteenth Problem* asks whether the k-algebra $L \cap k[X]$ is finitely generated whenever L is a subfield of k(X) containing k. In 1958, Nagata solved this problem by giving a counterexample, where k(X) is transcendental over L. In the case where k(X) is algebraic over L, we gave a counterexample of extension degree [k(X) : L] = d for each $d \geq 3$ when $n \geq 3$, and for each $d \geq 2$ when $n \geq 4$. On the other hand, $L \cap k[X]$ is always finitely generated if $n \leq 2$ due to Zariski. Clearly, $L \cap k[X] = k[X]$ if [k(X) : L] = 1, i.e., L = k(X). However, the following problem remains open.

Problem Assume that n = 3, and L is a subfield of k(X) containing k. Is the k-algebra $L \cap k[X]$ finitely generated if [k(X) : L] = 2?