DO THERE EXIST ODD POLYNOMIAL AUTOMORPHISMS OVER $\mathbb{F}_{4}, F_{8}, \ldots$?

STEFAN MAUBACH

Write \mathbb{F}_{q} for the field with $q=p^{m}$ elements. Given a polynomial automorphism F of $\mathbb{F}_{q}^{[n]}$, we get a bijection $B_{F}: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$. Note that, contrary to infinite fields, an endomorphism of $\mathbb{F}_{q}^{[n]}$ can be noninvertible but induce a bijective map $B_{F}: \mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$ (like the map X^{3} on $\mathbb{F}^{[1]}$).
What was done in the paper [1] is compute which bijections of \mathbb{F}_{q}^{n} can be made by tame automorphisms of $\mathbb{F}_{q}^{[n]}$. It turned out that

- if q is odd, or if $q=2$, one can make any bijection.
- If $q=2^{m}$ where $m \geq 2$, then one can only make half of the bijection: any tame automorphism of $\mathbb{F}_{q}^{[n]}$, seen as a bijection $\mathbb{F}_{q}^{n} \longrightarrow \mathbb{F}_{q}^{n}$ will induce an even permutation of the symmetric group with q^{n} elements.

The question is thus:
Conjecture: If $q=2^{m}$ where $m \geq 2$, then any polynomial automorphism of $\mathbb{F}_{q}^{[n]}$ induces an even bijection $\mathbb{F}_{1}^{n} \longrightarrow \mathbb{F}_{q}^{n}$.

Note that answering this question in the negative would imply that one has found a non-tame automorphism, with trivial proof that it is non-tame.

References

[1] [Mau] S. Maubach,, Polynomial automorphisms over finite fields. Serdica Math. J. 27 (2001), no. 4, 343-350.

