The integer case of the plane Jacobian conjecture as a problem on integer points in plane curve

Nguyen Van Chau
Institute of Mathematics, Hanoi, Vietnam

Given $F=(P, Q) \in X[x, y]^{2}$, a polynomial map with integer coefficients. The mysterious Jacobian conjecture (JC), posed first by Keller in 1939 asserts that such a map F is invertible and has a polynomial inverse with integer coefficients if Jacobian $\left.J F:=P_{x} Q_{y}-P_{y} Q_{x}\right) \equiv 1$. It was observed in [Ann. Polon. Math. 88, Vol.1(2006), 53-58.] that If $J F \equiv 1$ and if the complex plane curve $P=0$ has infinitely many integer points, then such map F has a polynomial inverse with integer coefficients. This reduces the integer case of (JC) to a question on the number of integer points in a plane curve

Question 1 (Integer case of (JC)): Whether the Jacobian condition JF $\equiv 1$ ensures that the curve $P=0$ has infinite many integer points?

On the other words, the integer case of (JC) may be regards as a problem of the Algebra-Arithmetic Geometry. In view of Siegel's Theorem [Abh. Deutsch. Akad. Wiss. Berlin Kl. Phys.-Mat. 1929, no. 1], such a curve $P=0$ with infinite many integer points must be a rational curve.

Question 2 (Rational-Curve case of (JC)): Whether a polynomial map $f=(p, q) \in \mathbb{C}[x, y]^{2}$ with $J f \equiv c \in \mathbb{C}^{*}$ is invertible if the curve $p=0$ is a rational curve?

