Open Problems for 2006 Hanoi Conference Proceedings

David Wright

Let $R = k^{[n]}$, the polynomial ring in *n* variables over a field *k*. Let $GA_2(R)$ denote the automorphisms of \mathbb{A}^2_R .

Problem 1. Are all elements of $GA_2(R)$ stably tame?

Remark. The *length* of an element of $GA_2(R)$ is defined the minimal number of elementary automorphisms in a factorization of it in $GA_2(K)$, where K is the field of fractions of R. This question is answered affirmatively for elements of length ≤ 3 in [1]. Sooraj Kuttykrishnan has now resolved the length 4 case. These results assume only that R be a UFD, with Kuttykrishnan's result requiring a further mild condition.

Problem 2. What is the structure of $GA_2(R)$?

Remark. Actually it is proved in [2] and [3] that $GA_2(R)$ has the structure of an amalgamated free product

 $\operatorname{Af}_{2}(k) *_{\operatorname{Bf}_{2}(k)} W$

Where $Af_2(k)$ is the affine group over k, $Bf_2(k)$ is the lower triangular affine group, and W is an obscure group which is a bit difficult to define (see Theorem 1 of [2]). We would like to have a better understanding of W.

References

- [1] E. Edo, Totally stably tame variables, J. Algebra 287 (2005) 15-31.
- [2] D. Wright, The amalgamated free product structure of $GL_2(k[X,Y])$ and the weak Jacobian theorem for two variables, J. of Pure and Applied Algebra 12, (1978), 235-251.

[3] D. Wright, Normal forms and the Jacobian conjecture, Automorphisms of Affine Spaces (A. van den Essen, ed.), Kluwer Academic Publishers, The Netherlands, (1995), 145-156.

Author's address: Department of Mathematics Washington University in St. Louis St. Louis, MO 63130 USA