Open Problems for 2006 Hanoi Conference Proceedings

David Wright

Let $R=k^{[n]}$, the polynomial ring in n variables over a field k. Let $\operatorname{GA}_{2}(R)$ denote the automorphisms of \mathbb{A}_{R}^{2}.
Problem 1. Are all elements of $G A_{2}(R)$ stably tame?
Remark. The length of an element of $\mathrm{GA}_{2}(R)$ is defined the minimal number of elementary automorphisms in a factorization of it in $\mathrm{GA}_{2}(K)$, where K is the field of fractions of R. This question is answered affirmatively for elements of length ≤ 3 in [1]. Sooraj Kuttykrishnan has now resolved the length 4 case. These results assume only that R be a UFD, with Kutttykrishnan's result requiring a further mild condition.

Problem 2. What is the structure of $G A_{2}(R)$?
Remark. Actually it is proved in [2] and [3] that $\mathrm{GA}_{2}(R)$ has the structure of an amalgamated free product

$$
\operatorname{Af}_{2}(k) *_{\mathrm{Bf}_{2}(k)} W
$$

Where $\mathrm{Af}_{2}(k)$ is the affine group over $k, \mathrm{Bf}_{2}(k)$ is the lower triangular affine group, and W is an obscure group which is a bit difficult to define (see Theorem 1 of [2]). We would like to have a better understanding of W.

References

[1] E. Edo, Totally stably tame variables, J. Algebra 287 (2005) 15-31.
[2] D. Wright, The amalgamated free product structure of $\mathrm{GL}_{2}(k[X, Y])$ and the weak Jacobian theorem for two variables, J. of Pure and Applied Algebra 12, (1978), 235-251.
[3] D. Wright, Normal forms and the Jacobian conjecture, Automorphisms of Affine Spaces (A. van den Essen, ed.), Kluwer Academic Publishers, The Netherlands, (1995), 145-156.

Author's address:
Department of Mathematics
Washington University in St. Louis
St. Louis, MO 63130
USA

