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Abstract

An example is given of a UFD which has in�nitely generated Derksen
invariant. The ring is �almost rigid� meaning that the Derksen invariant
is equal to the Makar-Limanov invariant. Techniques to show that a ring
is (almost) rigid are discussed, among which is a generalization of Mason�s
abc-theorem.

1 Introduction and tools

The Derksen invariant and Makar-Limanov invariant are useful tools to distinguish
nonisomorphic algebras. They have been applied extensively in the context of a¢ ne
algebraic varieties. Both invariants rely on locally nilpotent derivations: for R a
commutative ring and A a commutative R-algebra, an R-linear mapping D : A! A
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is an R-derivation if D satis�es the Leibniz rule: D(ab) = aD(b) + bD(a). The
derivation D is locally nilpotent if for each a 2 A there is some n 2 N such that
Dn(a) = 0. When k is a �eld of characteristic 0 a locally nilpotent k-derivation D
of the k-algebra A gives rise to an algebraic action of the additive group of k; Ga(k);
on A via:

exp(tD)(a) �
1P
i=0

ti

i!
di(a):

for t 2 k; a 2 A: Conversely, an algebraic action � of Ga(k) on A yields a locally
nilpotent derivation via:

�(t; a)� a
t

jt=0:

In this case, the kernel ofD denoted byAD coincides with the ring ofGa(k) invariants
in A:
The Makar-Limanov invariant of the R-algebra A; denoted MLR(A); is de�ned

as the intersection of the kernels of all locally nilpotent R-derivations of A, while the
Derksen invariant, DR(A) is de�ned as the smallest algebra containing the kernels of
all nonzero locally nilpotent R-derivations of A. The subscript R will be suppressed
when it is clear from the context.
In [9] the question was posed of whether the Derksen invariant of a �nitely gen-

erated algebra over a �eld could be in�nitely generated. In [14] an example is given
of an in�nitely generated Derksen invariant of a �nitely generated C-algebra. In
fact, this example is of a form described in this paper as an �almost-rigid ring�: a
ring for which the Derksen invariant is equal to the Makar-Limanov invariant. De-
spite its simplicity and the simplicity of the argument, this example has a signi�cant
drawback in that it is not a UFD. In this paper we provide a UFD example having
in�nitely generated invariants (it is again an almost-rigid ring).
The paper is organized as follows. Section 1 consists of basic notions and exam-

ples associated with rigidity and almost rigidity. In section 2, the focus is on rigid
and almost rigid rings, with techniques to prove rigidity or almost rigidity. In section
3, certain rings are shown to be UFDs, and these are used in section 4 to give the
UFD examples having in�nitely generated Makar-Limanov and Derksen invariants.
Notations: If R is a ring, then R[n] denotes the polynomial ring in n variables

over R and R� denotes the group of units of R. The R module of R-derivations of
an R-algebra A is denoted by DerR(A) and the set of locally nilpotent R-derivations
by LNDR(A) (the R will be suppressed when it is clear from the context). We will
use the letter k for a �eld of characteristic zero, and K for an algebraic closure. The
symbol @X denotes the derivative with respect to X. When the context is clear,
x; y; z; : : : will represent residue classes of elements X; Y; Z; : : : modulo an ideal.
Let A be an R-algebra which is an integral domain. Well-known facts that we

need are included in the following:

Lemma 1.1. Let D 2 LNDR(A).
(1) Then D(A�) = 0.
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(2) If D(ab) = 0 where a; b are both nonzero, then D(a) = D(b) = 0.
(3) If ~D 2 DerR(A) and f 2 A satisfy f ~D 2 LNDR(A), then ~D 2 LNDR(A) and
f 2 A ~D.

2 (Almost) rigid rings

As de�ned in [8] page 196, [3], or [2], a rigid ring is a ring which has no locally
nilpotent derivations except the zero derivation. Examples include the rings R :=
C[X;Y; Z]=(Xa + Y b + Zc) with a; b; c � 2 and pairwise relatively prime [6], and
coordinate rings of Platonic C� �ber spaces [13]. We de�ne an almost rigid ring here
as a ring whose set of locally nilpotent derivations is, in some sense, one-dimensional.

De�nition 2.1. An R-algebra A is called almost-rigid if there is a nonzero D 2
LND(A) such that LND(A) = ADD.

For a �eld F any derivation D of F [X] has the form D = f(X)@X . Thus the
simplest almost-rigid algebra is F [X]. Other examples include the algebras

C[X; Y; Z; U; V ]=(Xa + Y b + Zc; XmV � Y nU � 1)

with a; b; c pairwise relatively prime given in [6] as counterexamples to a cancellation
problem. Clearly an almost-rigid algebra has its Derksen invariant equal to its
Makar-Limanov invariant. The following lemma is useful in determining rigidity.

Lemma 2.2. Let D be a nonzero locally nilpotent derivation on a domain A con-
taining Q. Then A embeds into K[S] where K is some algebraically closed �eld of
characteristic zero, in such a way that D = @S on K[S].

Proof. The proof uses some well-known facts about locally nilpotent derivations.
Since D 6= 0 is locally nilpotent, we can �nd an element p such that D2(p) =
0; D(p) 6= 0. Set q := D(p) (and thus q 2 AD) and observe that D extends uniquely
to a locally nilpotent derivation ~D of ~A := A[q�1]. Since ~D has the slice s := p=q (a
slice is an element s such that ~D(s) = 1) we have (see prop.1.3.21 in [5]) ~A = ~A

~D[s]

and ~D = @s. Denote by k the quotient �eld of ~A
@
@s (= quotient �eld of AD) noting

that D extends uniquely to k[s]. One can embed k into its algebraic closure K, and
the derivation @s on K[s], restricted to A � K[s], equals D.
As an application, we have

Example 2.3. Let R := C[x; y] = C[X; Y ]=(Xa + Y b + 1) where a; b � 2. Then R
is rigid.

Proof. Suppose D 2 LND(R), D 6= 0. Using lemma 2.2, we see D as @S on
K[S] � R. Now the following lemma (�mini-Mason�s�) shows that x; y both must
be constant polynomials in S. But that means D(x) = D(y) = 0, so D is the zero
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derivation, contradiction. So the only derivation on R is the zero derivation, i.e. R
is rigid.
Versions of the following lemma can be found as lemma 9.2 in [8], and lemma 2

in [11]. Here we give it the appellation �mini-Mason�s�as it can be seen as a very
special case of Mason�s very useful original theorem. (Note that Mason�s theorem
is the case n = 3 of theorem 2.5.)

Lemma 2.4. (Mini-Mason) Let f; g 2 K[S] where K is algebraically closed and of
characteristic zero. Suppose that fa + gb 2 K� where a; b � 2. Then f; g 2 K.

Proof. Note that gcd(f; g) = 1. Taking derivative with respect toNo S gives af 0a�1 =
�bg0b�1. So f divides gg0, so f divides g0. Same reason, g divides f 0. This can only
be if f 0 = g0 = 0.
Mason�s theorem provides a very useful technique in constructing rigid rings (see

[6] for an example). With appropriate care, a generalization of Mason�s theorem
provides more examples. In this paper, we will use [1, Theorem 2.1], which is a
corollary of a generalization of Mason�s theorem (see [1, Theorem 1.5]).

Theorem 2.5. Let f1; f2; : : : ; fn 2 K[S] where K is an algebraically closed �eld
containing Q. Assume

fd11 + fd22 + : : :+ fdnn = 0:

Additionally, assume that for every 1 � i1 < i2 < : : : < is � n,

f
di1
i1
+ f

di2
i2
+ : : :+ f

dis
is
= 0 �! gcdffi1 ; fi2 ; : : : ; fisg = 1:

Then
nX
i=1

1

di
� 1

n� 2

implies that all fi are constant.

Example 2.6. Let R := C[X1; X2; : : : ; Xn]=(X
d1
1 + Xd2

2 + : : : + Xdn
n ) where d

�1
1 +

d�12 + : : :+ d�1n � 1
n�2 . Then R is a rigid ring.

The proof will follow from the more general

Lemma 2.7. Let A be a �nitely generated Q domain: Consider a subset F =fF1; F2; : : : ; Fmg
of A and postive integers d1; : : : dn satisfying: 1) P := F

d1
1 + F d22 + : : : + F dmm is a

prime element of A and 2) No nontrivial subsum of F d11 ; F
d2
2 ; : : : ; F

dm
m lies in (P )

(e.g. the Fi are linearly independent): Additionally, assume that

d�11 + d�12 + : : :+ d�1n � 1

n� 2 :

Set R := A=(P ) and let D 2 LND(R): With fi 2 R equal to the residue class of Fi,
we have D(fi) = 0 for all 1 � i � n.
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Proof. Suppose D 2 LND(R) where D 6= 0. Using lemma 2.2 with K an algebraic
closure of the quotient �eld of RD , we realize D as @S on K[S] � R. In particular,
f1(S)

d1 + f2(S)
d2 + : : : + fm(S)

dm = 0. By hypothesis there cannot be a subsum
f
di1
i1
+ f

di2
i2
+ : : :+ f

dis
is
= 0. Applying the above theorem 2.5, we �nd that all fi are

constant.
This lemma also helps in constructing almost-rigid rings not of the form R[1]

with R rigid.

Example 2.8. [14] De�ne

R := C[a; b] = C[A;B]=(A3 �B2)

and
S := R[X; Y; Z]=(Z2 � a2(aX + bY )2 � 1):

Then LND(S) = SDD where D := b@X � a@Y .

The following is an example of a rigid unique factorization domain. The proof
of UFD property is deferred to the next section.

Example 2.9. Let n � 3, and in C[X1; X2; : : : ; Xn; Y1; Y2; : : : ; Yn] set

P := Xd1
1 +X

d2
2 + : : :+X

dn
n + Le22 + L

e3
3 + : : :+ L

en
n

where Li := XiY1 �X1Yi and

d�11 + d�12 + : : :+ d�1n + e�12 + e�13 + : : :+ e�1n � 1=(2n� 1� 2):

Let
R := C[X1; X2; : : : ; Xn; Y1; Y2; : : : ; Yn]=(P )

and denote by xi; yi;li the images of Xi; Yi;Li in R: Then R is an almost-rigid UFD,
and LND(R) = RDD where D(xi) = 0; D(yi) = xi:

Proof. An elementary argument shows that R is a domain: View

P 2 C[X1; X2; : : : ; Xn; Y1; Y2; : : : ; Yn�1][Yn]:

The residue of P modulo (Y1; Y2; : : : ; Yn�1) has the same degree in Yn as P and is
clearly irreducible.
That any 2n� 1 element subset of fxdii ; leii : 1 � i � ng is algebraically indepen-

dent over Q modulo (P ) is also elementary: Suppose that
Pn

i=1X
di
i +

Pn�1
i=1 L

ei
i is

divisible by P: Lemma 2.7 yields that for any E 2 LND(R) we have E(xi) = 0, and
E(li) = 0. So x1E(yi) = xiE(y1). Since R is a UFD, we can write E(yi) = �xi for
some � 2 R. So E = �D where D is as in the statement.
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3 Factoriality of Brieskorn-Catalan-Fermat rings
for n � 5

Because of their resemblance to rings arising in Fermat�s last theorem, the Catalan
conjecture, and to the coordinate rings of Brieskorn hypersurfaces, we will call the
rings C[X1; X2; : : :]=(X

d1
1 +X

d2
2 + : : :+X

dn
n ) Brieskorn-Catalan-Fermat (BCF) rings.

Our examples depend on the factoriality of certain BCF rings. While the next
observation is undoubtedly well known, a proof is included since we could not �nd
an explicit one in the literature.

Theorem 3.1. If n � 5 and di � 2 for all 1 � i � n, then C[X1; X2; : : :]=(X
d1
1 +

Xd2
2 + : : :+X

dn
n ) is a UFD.

The result follows from the next two theorems:

Theorem 3.2. (Corollary 10.3 of [7]) Let A = A0+A1+ : : : be a graded noetherian
Krull domain such that A0 is a �eld. Let m = A1+A2+ : : :. Then Cl(A) �= Cl(Am),
where Cl is the class group.

Theorem 3.3. ([10]) A local noetherian ring (A;m) with characteristic A=m = 0
and an isolated singularity is a UFD if its depth is � 3 and the embedding codimen-
sion is � dim(A)� 3.

Proof. (of theorem 3.1) Write

A : = C[x1; x2; : : : ; xn]
= C[X1; X2; : : :]=(X

d1
1 +X

d2
2 + : : :+X

dn
n ):

Note that by giving appropriate positive weights to the Xi, the ring A is graded,
and m := A1+A2+ : : : = (x1; x2; : : : ; xn); A0 = C. A now satis�es the requirements
of 3.2, so it is equivalent to show that Am is a UFD (note that �A ia a UFD� is
equivalent to �Cl(A) = f0g�). Now Am has only one singularity, namely at the
point m. The ring A is de�ned by one homogeneous equiation, and therefore, by
de�nition, a complete intersection. Being a complete intersection implies that the
ring A is Cohen-Macauley and that its depth is the same as its Krull dimension.
So, the depth of A is n � 1 which is � 3 since n � 5. Now, one can see A as a
subring of the polynomial ring localized at the maximal ideal (X1; X2; : : : ; Xn). A
has codimension 1 in this ring, so its embedding codimension is 1. dim(A)�3 = n�4,
so, if n � 5, we have that the embedding codimension of A equals 1 � dim(A)� 3.
So, if n � 5, the criteria of 3.3 are met, and Am is a UFD.
The following lemma of Nagata is a very useful tool in proving factoriality.

Lemma 3.4. (Nagata) Let A be a domain, and x 2 A is prime. If A[x�1] is a UFD,
then A is a UFD.

Lemma 3.5. R as in example 2.9 is a UFD.
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Proof. Note that Xd2
2 +Xd3

3 + : : : +Xdn
n + (X2Y1)

e2 + (X3Y1)
e3 + : : : + (XnY1)

en is
irreducible for any di � 1; ei � 1, so R=(x1) is a domain. Using 3.4 it is enough to
show that R[x�11 ] is a UFD. De�ne mi := yi � xi

x1
y1 for 2 � i � n, and

S := C[x1; x2; : : : ; xn;m2;m3; : : : ;mn]:

Then R[x�1] = S[x�11 ][Y1] where Y1 is algebraically independent over S[x
�1
1 ]. It is

now enough to prove that S is a UFD. But this follows from theorem 3.1 since n � 3.

4 A UFD having in�nitely generated invariants

4.1 De�nitions

De�nition 4.1. In C[7] = C[X; Y; Z; S; T; U; V ]; let L1 := Y 3S �X3T; L2 := Z
3S �

X3U;L3 := Y
2Z2S �XV . De�ne P := Xd1 + Y d2 + Zd3 + Ld41 + L

d5
2 + L

d6
3 where

the di � 2 are integers . Set

A := C[x; y; z; s; t; u; v] = C[X; Y; Z; S; T; U; V ]=(P );

and let R be the subring C[x; y; z]:

The elements s; t; u; v in A form a regular sequence; in particular they are alge-
braically independent:

De�nition 4.2.

E := X3@S + Y
3@T + Z

3@U +X
2Y 2Z2@V :

Note that E is locally nilpotent and P 2 ker(E): Thus E induces a well de�ned
element of LND(A) denoted by D.

4.2 The factoriality of A

For a 5-tuple of positive integers d = (d1; d2; : : : ; d5), de�ne Q(d) := Y d2 + Zd3 +
(Y 3S)d4 + (Z3S)d5 + (Y 2Z2S)d6

Proposition 4.3. If Q(d) is irreducible in C[Y; Z; S] then A is a UFD.

Proof. Assume thatQ(d) is irreducible. Note thatA=(x) �= C[Y; Z; S; T; U; V ]=(Q(d))
so that x is prime. By Nagata�s lemma 3.4, it is enough to show that A[x�1] is a
UFD. Now de�ne

M1 := T �
Y 3

X3
S;M2 := U �

Z3

X3
S;M3 := V �

Y 2Z2

X
S;
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write mi for the image of Mi in A[x�1], and let

B = C[x; y; z;m1;m2;m3][x
�1]:

Since D(s) = x3; s
x3
is a slice for the extension of D to A[x�1] = B[s]; with s

transcendental over B. Consider C := C[X; Y; Z;M1;M2;M3]=(X
d1 + Y d2 + Zd3 +

Md4
1 +Md5

2 +Md6
3 ). This ring is a UFD by theorem 3.1, so C[x�1] = B is also a

UFD, from which we deduce that B[s] = A[x�1] is a UFD.
The polynomial Q(d) is irreducible for in�nitely many positive integer choices

of the di; take for example gcd(d2; d3) = 1 and d2 � max(3d4; 2d6).

4.3 A is not �nitely generated

In this section, we assume that d1; : : : ; d6 are such that Q(d) is irreducible (i.e. A is
a UFD), and such that d1+ d2+ : : :+ d6 � 1

4
(note that by neccessity d1;d2; d3 � 4).

The following lemma shows that A is an almost-rigid ring.

Lemma 4.4. Any locally nilpotent derivation on A is a multiple of D.

Proof. Let4 be a nonzero LND on A. By lemma 2.7, since we assumed
P6

i=1 di � 1
4
,

we see that x; y; z; l1; l2; l3 must be in A4. So 4(l1) = 0, so x34(t) = y34(s), and
thus 4(S) = x3� for some � 2 A (since A is a UFD). Using 4(l1) = 4(l2) =
4(l3) = 0 this yields 4(T ) = y3�;4(U) = z3�;4(V ) = x2y2z2�, i.e.4 = �D.

Lemma 4.5. AD � (x; y; z)A+R.

Proof. Let

J : = (X3; Y 3; Z3; X2Y 2Z2)(X; Y; Z)C[7];
H : = (x; y; z)A � J := (x3; y3; z3; x2y2z2)H:

Both J and H are D stable ideals of A. Denote by �D the locally nilpotent derivation
induced by D on A := A=J;H := H=J; and R the image of R in A. Note that
�D(H) = 0. We will prove that �A �D � �H + �R, which will imply that AD + J �
H + J +R, and the required result then follows since J � H.
To that end assume there exists h 2 AD with h 62 �H+ �R. Note that since P 2 J

we have
A �= (C[7]=(P ))=(J =(P )) �= C[7]=J :

With x; y; z; s; t; u; v denoting as usual the images of S; T; U; V in A; we have A =
�R[s; t; u; v], a polynomial ring over R:
Assign degree 0 to elements of R, weights wt(v) >> wt(u) >> wt(t) >> wt(s);

and well order monomials satbucvd in A lexicographically. By assumption there
exists a monomial M of lowest order appearing in h which is not in �H + �R . Say
M := rsat

b
ucvd where r 2 �Rn �H.
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First assume d 6= 0. Since �D(h) = 0, the nonzero monomial dx2y2z2rsatbucvd�1
must appear in the �D-derivative of at least one other monomial N occurring in h.
Notice that then N must also have �R-coe¢ cient not in �H, as otherwise �D(N) = 0
(since �D( �H) = 0). Since �DN contains the monomial dx2y2z2rsat

b
ucvd�1, �DN

has degree a + b + c + d � 1. But the derivation �D decreases degree by exactly
one, so that N must have degree a + b + c + d. Since M was the lowest degree
polynomial with lowest possible lexicographic ordering, N then must have a higher
lexicographic ordering than satbucvd. But then all (four) terms in �D(N) will have
higher lexicographic ordering than satbucvd�1 . So, such a monomial N will not
exist, which is a contradiction for this case.
The cases where d = 0; c 6= 0, and d = c = 0; b 6= 0, and d = c = b = 0; a 6= 0

go similarly, leading to a contradiction. (d = c = b = a = 0 implies M 2 �R, which
we excluded). So, the assumption that h 62 �H + �R, was wrong. Thus h 2 �H + �R as
claimed.

Lemma 4.6. For each n 2 N, there exists Fn 2 AD which satis�es Fn = xV n + fn
where fn 2

Pn�1
i=0 R[s; t; u]v

i � A.

Proof. It is shown in several places, for example [12], [4], or page 231 of [5], that
already on C[7] there exist such ~Fn which are in the kernel of the derivation E (they
are key to the proof that the kernel of E is not �nitely generated as a C-algebra,
and therefore yields a counterexample to Hilbert�s 14th problem). By taking for Fn
the image of ~Fn in A we obtain the desired kernel elements.

Corollary 4.7. AD is not �nitely generated as a C-algebra.

Proof. Suppose AD = R[g1; : : : ; gs] for some gi 2 A. Since AD � R + (x; y; z) by
lemma 4.5, we can assume that all gi 2 (x; y; z). De�ne Fn(A) :=

Pn�1
i=0 R[S; T; U ]V

i

which is a subset of A. Choose n such that gi 2 Fn(A) for all 1 � i � s. Now
Fn 2 Fn(A) \ AD. Then Fn = P (g1; : : : ; gs) for some P 2 R[s]. Compute modulo
(x; y; z)2. Since each gi 2 (x; y; z), we have

P (g1; : : : ; gn) � r1g1 + : : :+ rngnmod(x; y; z)2

for some ri 2 R. So Fn 2 Rg1 + : : :+ Rgn + (x; y; z)2. In particular, Fn 2 Fn(A) +
(x; y; z)2. Notice that Fn�xV n 2 Fn(A) � Fn(A)+(x; y; z)2, so that xV n 2 Fn(A)+
(x; y; z)2. But this is obviously not the case, contradicting the the assumption that
�AD = R[g1; : : : ; gs] for some gi 62 R�. Thus AD is not �nitely generated as an
R-algebra, a fortiori as a C-algebra.
Using lemma 4.4 we know that there is only one kernel of a nontrivial LND on

A, so the following result is obvious.

Corollary 4.8. ML(A) = Der(A) = AD is not �nitely generated.
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