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How this talk is organised:

v

What is affine algebraic geometry?

v

What are its big problems?
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— Polynomial automorphism group
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What is affine algebraic geometry?

Subfield of Algebraic Geometry (duh!).
Typical objects:

k" o kX, X
V = O(V):=k[Xy,...,X,]/I(V)

Geometrically sometimes “more difficult” than projective
geometry (affine spaces are rarely compact).

Algebraically, more simple! (There's always a ring.)
Subtopic - but of fundamental importance to the whole of
Algebraic geometry.

We do all kinds of advanced things with algebraic geometry,

but still we don't understand affine n-space k" !



A Very Brief History

“Originally”: geometry and algebra different things.

Zariski — Grothendieck — etc.: algebraic geometry.
-+- 1970: What if we apply algebraic geometry to the original
simple objects, like C”, or C[X1, Xz, ..., X,]?

(“Birth” of the field and many of its current questions.)
Since then: steady growth of the field.

(2000: separate AMS classification.)
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k' o kX, X
V e O(V) = k[Xi,.... X]/1(V)

Objects, hence morphisms!

Fok? — k"
polynomial map if F = (Fy,..., F,), Fi € k[X1,..., Xy].
Example: F = (X + Y?2,Y) is polynomial map C? — C2,

Set of polynomial automorphisms of k”:
Aut,(k), also denoted by GA,(k) - similarly to GL,(k) !



A topic is defined by its problems.

Many problems in AAG: inspired by linear algebra!
(In some sense: AAG most “natural generalization of linear

algebra”. . .)
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Problems in AAG: Jacobian Conjecture

char(k) =0

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*
F € GA,(k) invertible < det(Jac(F)) € k*

Jacobian Conjecture:

F € GA,(k)invertible —> det(Jac(F)) € k*



“Visual” version of Jacobian Conjecture

Volume-preserving polynomial maps are invertible.
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Figure: Image of raster under (X + 2Y2, Y + (X + 3 Y?)?).



Jacobian Conjecture very particular for polynomials:

F:(x,y) — (e ye7)

x 0
Jac(F) = ( € B )
—ye X g=X

det(Jac(F)) =1



Jacobian Conjecture in char(k) = p:

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*

F € GA,(k) invertible = det(Jac(F)) € k*



Jacobian Conjecture in char(k) = p:

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*

F € GA,(k) invertible = det(Jac(F)) € k*
Fiokl—s K
X — X —XP

Jac(F) =1 but F(0) = F(1) =0.



Jacobian Conjecture in char(k) = p:

L linear map;
L € GL,(k) invertible <= det(L) = det(Jac(L)) € k*
F € GA,(k) invertible = det(Jac(F)) € k*
Fiokl—s K
X — X—-XP

Jac(F) =1 but F(0) = F(1) = 0.
Jacobian Conjecture in char(k) = p: Suppose
det(Jac(F)) =1 and p f[k(X1,..., X,) : k(F1,...,F,)]. Then

F is an automorphism.



Jacobian Conjecture in char(k) = p:

char(k) =0:
F= (X + 31X2 + 32XY + 33Y2, Y + b1X2 + bQXY -+ b3Y2)

1 = det(Jac(F))
— 1+
2a1 + b)) X+
ay+2b3)Y+
2a1by + 2ayby ) X3+
2byay + 4a1bs + 4azh )XY +
(2a2b3 + 2a3b,) Y?

(
(
(
(

In char(k)=2 : (parts of) equations vanish. Question: What
are the right equations in char(k) =27 (or p?)



Enough about the Jacobian Problem! Another problem:

Cancellation problem
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V, W vector spaces, if V x k= W x k then V = W.

V vector space, then V x k = k"1 implies V = k".

V., W varieties, if V x k= W x k then V = W?
Cancellation problem: V variety. V x k = k"1 is V = k"?
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Cancellation V x k= W x k

counterexamples

1972(?): Hoechster: over R

1986(?): Danielewski: V :xz+y?+1=0, W:x?z+y?+1
(over C)

(Not a UFD)

2008: Finston & M. : "Best” counterexamples so far (UFD,

over C, lowest possible dimension):

Vom = {(x,y,z,u,v) | *+y* +2z" =0,x"u—y"v—1=0}

Still looking for an example where V = k" |
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Understanding polynomial automorphisms
A map F : k" — k" given by n polynomials:
F=(F(Xt,.... %), ..., Fa( X1, ..., Xi)).

Example: F = (X + Y2 Y).

Various ways of looking at polynomial maps:
» A map k" — k".
» A list of n polynomials: F € (k[X1,...,X;])".

» A ring automorphism of k[Xi, ..., X,] sending
g(Xy,..., X,) to g(Fu,...,Fn).
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Understanding polynomial automorphisms

A polynomial map F is a polynomial automorphism if there is
a polynomial map G such that F(G) = (X,...,X,).
Example: (X + Y2, Y) has inverse (X — Y2, Y).

(X+Y2Y)o(X=Y2Y)= ([X-YI+[Y][Y])
(X =Y?+Y2Y)
= (X,Y).

(XP,Y):F2 — FF3 is not a polynomial automorphism, even
though it induces a bijection of [, !

(X3,Y) : R? — R? is not a polynomial automorphism, even
though it induces a bijection of R!



Understanding polynomial automorphisms

Remark: If k is algebraically closed, then a polynomial

endomorphism k" — k" which is a bijection, is an invertible

polynomial map.

(XP,Y):F2 — FF3 is not a polynomial automorphism, even
though it induces a bijection of [, !
(X3,Y) : R? — R? is not a polynomial automorphism, even

though it induces a bijection of R!
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The Automorphism Group

(This whole talk: n > 2)
GL,(k) is generated by

» Permutations X; «— X;
» Map (aX; + bXj, Xz,..., X,) (a € k*,b € k)

GA, (k) is generated by 777
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Elementary map: (X; + f(Xa, ..., X,), Xo, ..., X»),

invertible with inverse

(Xo = F(Xoy o, Xo)s Xos oo, Xo).
Triangular map: (X +f(Y,Z),Y +g(Z),Z+ ¢)

= (X, Y, Z+ )X, Y +g(2), 2)(X+£(X,Y),Y,2)
Jn(k):= set of triangular maps.
Aff,(k):= set of compositions of invertible linear maps and

translations.
TA, (k) =< J,(k), Aff,(k) >
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In dimension 1: we understand the automorphism group.
(They are linear.)
In dimension 2: famous Jung-van der Kulk-theorem:

GAL(K) = TAy(K) = Affo(K)x Jo(K)

Jung-van der Kulk is the reason that we can do a lot in

dimension 2 |
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What about dimension 37 Stupid idea: everything will be
tame?

1972: Nagata: “l cannot tame the following map:”
N:=(X—-2YA—-ZA% Y +ZA,Z) where A = XZ + Y2,
Nagata's map is the historically most important map for
polynomial automorphisms. It is a very elegant but
complicated map.

AMAZING result: Umirbaev-Shestakov (2004)

N is not tamel!! ... in characteristic ZERO. ..

(Difficult and technical proof. ) (2007 AMS Moore paper

award.)



AMS E.H. Moore Research Article Prize

lvan Shestakov
(center) and Ualbai Umirbaev (right) with Jim Arthur.
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How did Nagata make Nagata's map?

Study maps over k[z,z71]:

(X =z Y2 X)X, Y + 22X)(X +z71Y2Y)
= (X =2(Xz+ Y)Y — (Xz+ Y?)2z, Y + (Xz + Y?)z)

Thus: N is tame over k[z,z7], i.e. N in TAx(k[z,z71]).
Nagata proved: N is NOT tame over k[z], i.e. N not in
TAx(k[z]).
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Stably tameness

N tame in one dimension higher:
N:=(X-2YA—-ZA2 Y+ ZA,Z, W) where A = XZ + Y?.

X +2YW — ZW? Y — ZW,Z, W)o
X,Y,Z,W — 1A

X —2YW — ZW? Y + ZW,Z, W)o
X, Y, Z,W+1n)

=N

(
(
(
(
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Intermezzo 1: public key crytography by

tame automorphisms

(By T.T. Moh - called it Tame Transformation Method, or
TTM...)

Secret key: decomposition

(elementary) x (affine) x (elementary) x ... x (elementary)
= (complicated map) «— Public key.

Nice idea - basic idea still uncracked, but: a lot of attacks on
implementations (Goubin, Courtois, etc.)

(End intermezzo 1.)



Intermezzo 2: why characteristic p?

The “characteristic p case” has been neglected mostly - up
until recently!

What are reasons to study especially ;7



Intermezzo 2: why characteristic p?

The “characteristic p case” has been neglected mostly - up
until recently!

What are reasons to study especially ;7

» Reduction-mod-p techniques (recent work of

Belov-Kontsevich).



Intermezzo 2: why characteristic p?

The “characteristic p case” has been neglected mostly - up
until recently!

What are reasons to study especially ;7
» Reduction-mod-p techniques (recent work of

Belov-Kontsevich).

» Many new connections: finite Group Theory, Number

Theory!



Intermezzo 2: why characteristic p?

The “characteristic p case” has been neglected mostly - up
until recently!
What are reasons to study especially ;7

» Reduction-mod-p techniques (recent work of

Belov-Kontsevich).

» Many new connections: finite Group Theory, Number

Theory!

» Almost virgin research subject! (Brainstorming 30

minutes — new accessible problem!)



Intermezzo 2: why characteristic p?

The “characteristic p case” has been neglected mostly - up
until recently!

What are reasons to study especially ;7

» Reduction-mod-p techniques (recent work of

Belov-Kontsevich).

» Many new connections: finite Group Theory, Number

Theory!

» Almost virgin research subject! (Brainstorming 30

minutes — new accessible problem!)

» Applications? (Cryptography)



Intermezzo 2: why characteristic p?

The

“characteristic p case” has been neglected mostly - up

until recently!

What are reasons to study especially ;7

>

Reduction-mod-p techniques (recent work of

Belov-Kontsevich).

Many new connections: finite Group Theory, Number

Theory!

Almost virgin research subject! (Brainstorming 30

minutes — new accessible problem!)
Applications? (Cryptography)

Quite accessible for students.
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What about TA,(k) C GA,(k) if k =T, is a finite field?
Denote Bij,(IF,) as set of bijections on Fy. We have a natural
map

GA,(Fq) = Bij,(Fy).

What is 74(GA,(FF4))? Can we make every bijection on F{ as
an invertible polynomial map?

Simpler question: what is 74(TA,(F))?

Why simpler? Because we have a set of generators!
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Question: what is 7,(TA,(Fq))?
See Bij,(FF,) as Sym(q").

TA,(Fy) =< GL,(FFy), o > where f runs over F [X;, ...

and of .= (Xl + f,Xg, ce ,Xn).
We make finite subset S C Fy[Xz, ..., X,] and define

G =< GL,(F,),0¢; fES>

such that
71'q(T'A‘n(IFq)) = 71'q(g)'

, Xo]
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Answer: if g =2 or g = odd, then 7m,(TA,(F4)) = Sym(q").

If g =4,8,16,... we don't succeed to find a 2-cycle. In fact-
all generators of TA,(IF,) turn out to be even, i.e.

7o TAA(E,)) € Alt(q")!

But: there's another theorem:

Theorem: H < Sym(m) Primitive + 3-cycle — H = Alt(m)
or H = Sym(m).

We find a 3-cycle!

Hence, if g = 4,8,16,... then my( T,(Fq)) = Alt(m)!



Question: what is m4( T,(FF,))?

Answer: if g =2 or g = odd, then 7,(TA,(F4)) = Sym(q").
Answer: if g =4,8,16,32,... then m4(TA,(F,)) = Alt(q").
Suppose F € GA,(FF4) such that 7(F) odd permutation, then
m(F) & m(TAn(FF4)), so GAn(IF4) # TA,(FF4) !



Question: what is m4( T,(FF,))?

Answer: if g =2 or g = odd, then 7,(TA,(F4)) = Sym(q").
Answer: if g =4,8,16,32,... then m4(TA,(F,)) = Alt(q").
Suppose F € GA,(FF4) such that 7(F) odd permutation, then
m(F) & m(TAn(FF4)), so GAn(IF4) # TA,(FF4) !

So: Start looking for an odd automorphism!!! (Or prove they

don't exist)



Question: what is m4( T,(F,))?
Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,?



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z

...drumroll. ..



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z

...drumroll... Nagata is EVEN if and only if ¢ = 4,8, 16, ...

and ODD otherwise. . .



Question: what is m4( T,(F,))?

Answer: if g =2 or g = odd, then 74(T,(IF;)) = Sym(q").
Answer: if g =4,8,16,32,... then m,( T,(Fq)) = Alt(g").
Problem: Do there exist “odd” polynomial automorphisms

over [F,7 Exciting! Let's try Nagata!

X =2(XZ+ Y)Y —(XZ+ Y?)?Z,
N = Y +(XZ+ Y?)Z,
Z

...drumroll... Nagata is EVEN if and only if ¢ = 4,8, 16, ...

and ODD otherwise. .. so far: no odd example found!



Different approach?

Is there perhaps a combinatorial reason why 7(GA,(F4) has

only even permutations??
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Losing less information: embedding I,

Into qu.

GAL(Fy) C GA,(Fgm) 2 sym(g™).
GA,(F,;) — mgm(GAL(F,)) C sym(g™)
Ul Ul
TAN(Fg)  — mgn(TAN(Fg))  C sym(q™)
(1) Compute mgm(TAL(Fy)),
(2) check if mgn(N) & mgn(TAL(F,)),
and hop, (3) TA,(F,) # GA,(F,) and immortal fame!

However:
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Mimicking Nagata's map:

Theorem: (M) [ - general stuff - |

Corollary: For every extension [Fym of g, there exists
T € TA3(Fym) such that T, "mimicks” N, i.e.

gn(Tm) = mqn(N).

Theorem states: for practical purposes, tame is almost always

enough!
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Nagata can be mimicked by a tame map for every g = p™ -

i.e. exists F € TA;3(F,) such that m,N = 7,F. Proof is easy
once you realize where to look. .. Remember Nagata's way of

making Nagata map?

(X —z972Y2 Y)(X, Y + 22X), (X + z2972Y2Y)
= (X —2AY — A%z, Y + Az)
Do the Big Trick, since for z € [F, we have z9 = z:
This almost works - a bit more wiggling necessary (And for the

general case, even more work.)
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Another idea: define MA9(k) := {F € MA,(k) |deg(F) < d}.
If k =g, then this is finite. Now compute

GAY(F,) := GA,(F,) N MA4(F,) by checking all F € MA9(k)!
We find ALL automorphisms of degree < d. Will we find new
ones we didn’'t know before?

Let's not be too ambitious: n=3. And g = 2,3,4,5.
Computable is (R. Willems):

GA3(Fy345) and main part of GA3(Fy). Surprisingly, results
seem to be intersting!

(Work in progress. Also bijective endomorphisms are

interesting.)
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Another topic: additive group actions

G group, acting on C" means:

g € GAL(C) such that ¢ 0 = @i (in @ “continuous
way").

Special example: G =< C,+ >. Denoted by G,.

Example: t € G, — o, = (X1 + £, X5, ..., X,).

Define D : C[Xy, ..., X,] — C[Xi,..., X,] as the ‘log’ of the
action:

D(P) = - o(P)co

Example:

%P(Xl —f— t,XQ, e ,Xn)|t:0
= 06K X)
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Additive group actions
Define D : C[Xy, ..., Xs] — C[Xi,..., X,] as the ‘log’ of the

action: 5
D('D) = E@r(P)h:o
Example:
ZP(Xi+t, X, ..., Xn)| =0
= g—)’Z(Xl,XQ, ooy Xn)
0
D:=—
00Xy
and indeed:

eXp(tD)(P) = P(Xl + t, X27 s 7Xn)



Additive group actions
D is a locally nilpotent derivation:
D(fg) = fD(g) + D(f)g, D(f + g) = D(f) + D(g)
(derivation)
For all f, there exists an my¢ such that D™ (f) = 0. (locally

nilpotent)
Example:
ZP(Xi+t, X0, ..., Xn)| =0
= g—)’;(Xl,XQ, ooy Xn)
)
D:=—
0X1
and indeed:

exp(tD)(P) = P(X1 + t, X5,..., X,)
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Another example:

0 0
0= _2Y8_X + ZW
is locally nilpotent derivation.
I(XZ)= 6(X)Z+Xo(Z)=-2Y-Z.

5(Y?) = 2Y5§(Y)=2Y.Z

S(XZ+Y?) = 0



Another example:

0 0
0= _2Y8_X + ZW
is locally nilpotent derivation.
5(XZ) = 8(X)Z +X8(Z) = —2Y - Z.
5(Y?) = 2Y§(Y)=2Y-Z Hence,
S(XZ+Y?) = 0
§(A) = 0 where A = XZ + Y2




Another example:

0 0
0= _2Y8_X+ZW

is locally nilpotent derivation.

I(XZ)= 6(X)Z+Xo(Z)=-2Y-Z.

5(Y?) = 2Y§(Y)=2Y-Z Hence,

S(XZ+Y?)= 0

§(A) = 0 where A = XZ + Y2
Hence: D := AJ is also an LND:
D3(X)=D*(A--2Y)=A--2-D*(Y)=A--2-D(Z)=0
etc.
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o) o)
§ = —2YW + Za_y’
D:=NA5, A:=XZ+Y?

Now compute:
pr = exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))
exp(tD)(X) = X + tD(X) + %t2D2(X)

exp(tD)(Y) =Y + tD(Y)
exp(tD)(Z2) =Z
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0 0
6= =2 o + 7o
D:=A5, A:=XZ+Y?

Now compute:

e 1= exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))

exp(tD)(X) = X + t(—2YA) + %tz(—2ZA2)
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z



0 0
6= =2 o + 7o
D:=A5, A:=XZ+Y?

Now compute:

e 1= exp(tD) := (exp(tD)(X), exp(tD)(Y), exp(tD)(Z))
exp(tD)(X) = X — 2tAY — t?A?2)
exp(tD)(Y) = Y + tAZ
exp(tD)(Z) = Z
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exp(tD)(X) = X — 2tAY — t?A?Z
exp(tD)(Y) =Y + tAZ
exp(tD)(Z2) =Z

Examine t = 1:



exp(D)(X) = X —2AY — A?Z)
exp(D)(Y)=Y + AZ
exp(D)(2) = Z

Examine t = 1;



exp(D)(X) = X —2AY — A?Z)
exp(D)(Y)=Y + AZ
exp(D)(2) = Z

Examine t = 1: Nagata's automorphism!
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:=< exp(D) | D locally finite derivation >



LF,.(k) =< F € GA,(k) | deg(F™) bounded >

ELFD,(k) :=<exp(D) | D locally finite derivation >

GLIN,(k)  := normal closure of GL,(k)
2U)7?
TA,(k)



=< F € GA,(k) | deg(F™) bounded >
:=< exp(D) | D locally finite derivation >
:= normal closure of TA,(k)

:= normal closure of GL,(k)
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Where in these groups is Nagata?

No conjugate of Nagata is in GL,(k) for any field k !
Theorem: (M., Poloni) Nagata is shifted linearizable: choose
s € k such that s #0,1, —1.

D)(s exp(D)) exp(——2; D)

1—3s2

exp(



Where in these groups is Nagata?

No conjugate of Nagata is in GL,(k) for any field k !
Theorem: (M., Poloni) Nagata is shifted linearizable: choose
s € k such that s #0,1, —1.
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Where in these groups is Nagata?

No conjugate of Nagata is in GL,(k) for any field k !
Theorem: (M., Poloni) Nagata is shifted linearizable: choose
s € k such that s #0,1, —1.

2 2

— 5 D)(sexp(D)) exp(;—

exp( D) = sl

Hence: Nagata map is in GLIN3(k) ! - If k # F,,[F3, that is !



How does GLIN,(k) compare to GTAM,(k)?



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(Xz2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xa], then GLIN,(k) = GTAM, (k).



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(Xz2), Xz, ..., X,) € GLIN,(k) for any
f € k[X3], then GLIN,(k) = GTAM,(k). Choose some a # 0:



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(Xz2), Xz, ..., X,) € GLIN,(k) for any
f € k[X3], then GLIN,(k) = GTAM,(k). Choose some a # 0:

(aX,Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(Xz2), Xz, ..., X,) € GLIN,(k) for any
f € k[X3], then GLIN,(k) = GTAM,(k). Choose some a # 0:

(X = bf(Y),Y)(aX,Y) X+ bf(Y),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(Xz2), Xz, ..., X,) € GLIN,(k) for any
f € k[X3], then GLIN,(k) = GTAM,(k). Choose some a # 0:

(a71X, Y)(X — bE(Y), Y)(aX, Y)(X + bf(Y), Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xy], then GLIN,(k) = GTAM, (k). Choose some a # 0:

(a7 X, Y)(X = bF(Y), Y)(a(X + bf(Y)),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xy], then GLIN,(k) = GTAM, (k). Choose some a # 0:

(271X, Y)(X = bf(Y), Y)(aX + abf(Y),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xy], then GLIN,(k) = GTAM, (k). Choose some a # 0:

(a71X, Y)(aX + abf(Y) — bF(Y),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xy], then GLIN,(k) = GTAM, (k). Choose some a # 0:

(X + bF(Y) — aLbf(Y),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xy], then GLIN,(k) = GTAM, (k). Choose some a # 0:

(X +b(1 —a H)f(Y),Y)



How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xz], then GLIN,(k) = GTAM,(k). Choose some a # 0

(X +b(1—a H)f(Y),Y)
Choose b= (1— a7 1)L
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As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xz], then GLIN,(k) = GTAM,(k). Choose some a # 0

a#l

(X +b(1—a H)f(Y),Y)
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How does GLIN,(k) compare to GTAM,(k)?
As soon as (Xi + f(X2), Xz, ..., X,) € GLIN,(k) for any
f € k[Xz], then GLIN,(k) = GTAM,(k). Choose some a # 0

a#l

(X +b(1—ab)f(Y),Y)

Choose b= (1 —a )"t Then (X + f(Y), Y)) in GLINy(k)!
o if k£ T
Question: How does GLIN,(F,) and GTAM,(F,) relate?
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Theorem:

GLIN,(F2)&GTAM,(F>).

Proof. Remember, m,( TA,(F,)) = Sym(2"), as F, was the
exception to the exception.

Now, notice that if n > 3, then any element of GL,(F,) is
even. Hence m(GLIN,(F3)) C Alt(2"). If n =2, then

(X 4+ Y,Y)is odd, unfortunately. However, in dimension 2 we
understand the automorphism group, and can do a computer
calculation to see that

#7’(’4(GL|N2(F2))
#7T4(GTAM2(]F2))

= 2.

End proof.
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Affine Algebraic Geometry!

THANK YOU

(for enduring 189 slides. . . )



