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A polynomial ring has many commuting Ind’s.

proposition: Let A is k-algebra, trdeg(A) = n+ 1. Let
Dy, ...,D,i1 be commuting Ind’s on A which are linearly

independent over A. Then

(i). A=K[s1,...,Sn11] @ polynomial ring in n+ 1 variables
over k.
(ii). Di= 7.
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Commuting Derivations Conjecture:
Let A= k[X1,...,X,41], and let Dy, ..., D, € LND(A) be

» commuting,

» linearly independent over A.

Then APv-Dr = k[f] and f is a coordinate.

Proven for n = 3. n = 4 seems very far away. ..
Equivalent to the

Weak Abhyankar-Sataye Conjecture: Let

A= k[Xi,...,X,11], and let f € A be such that
k(F)[ X1, Xa] Sy kK(F)[Ya, ..., Yo-1]. Then fisa

coordinate in A.
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A:=Clx,y,2,t] = CIX, Y, Z. T/(X?Y + X + Z° + T°),
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Dy, D2 commute , A UFD, trdeg(A) = 3, APvD2 = C[x]
A/(x — a) =2 CP except case a = 0.
D; mod (x — «), D, mod (x — «) are independent over

A/(x — a) except case av = 0.
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= A~ CI't f coordinate.
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A; = ﬂﬁg,‘ADj,P,’ = {p; €A | Di(pi) S k[f]}

Lemma:

(2) Di(P;) = qi(f)k[f] for some nonzero polynomial g;.
Taking p; such that D;(p;) is of lowest possible degree yields
Di(pi) € kqi(f).

(3) The D; are linearly dependent mod (f — «) if and only if

gi(a) = 0 for some i.

Proof.

(3) Elegant, but too long for a presentation.
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Look at the following phenomenon:

Example: Let D; = Z0x + dy, D, = 0y on A= C[X, Y, Z].
Now APvD2 = C[Z]. The Dy, D; are linearly independent
modulo Z — « as long as a # 0.

But linearly dependent modulo Z — 0.

But we can improve Dy, D;:

Take E; = Ox, E, = Oy. They commute, their C[Z]-span
contains Dy, D, and the E; are linearly independent for more
fibers f — a.

All the properties that Dy, D, have, + linearly independent
modulo Z — 0!

Can we construct such E;, given D;, which are optimal in some

way?
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Or, if this equality does not hold always, what type of rings A
do have equality?
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Final remark:
Commuting derivations may be the key to

distinguish polynomial rings from UF Ds.



and of course...



THANK YOU

(for watching at 94 slides!)



