Commuting derivations on UFDs

Stefan Maubach

January 2006

Most rings have no locally nilpotent derivations.

Most rings have no locally nilpotent derivations.

A polynomial ring has many Ind's.

Most rings have no locally nilpotent derivations.

A polynomial ring has many Ind's. A polynomial ring has many commuting Ind's.

Most rings have no locally nilpotent derivations.

A polynomial ring has many lnd's.

A polynomial ring has many commuting lnd's.

proposition: Let A is k-algebra, trdeg(A) = n + 1. Let D_1, \ldots, D_{n+1} be commuting Ind's on A which are linearly independent over A. Then

Most rings have no locally nilpotent derivations.

A polynomial ring has many lnd's.

A polynomial ring has many commuting lnd's.

proposition: Let A is k-algebra, trdeg(A) = n + 1. Let D_1, \ldots, D_{n+1} be commuting Ind's on A which are linearly independent over A. Then

(i). $A = k[s_1, \dots, s_{n+1}]$ a polynomial ring in n+1 variables over k.

Most rings have no locally nilpotent derivations.

A polynomial ring has many lnd's.

A polynomial ring has many commuting lnd's.

proposition: Let A is k-algebra, trdeg(A) = n + 1. Let D_1, \ldots, D_{n+1} be commuting Ind's on A which are linearly independent over A. Then

- (i). $A = k[s_1, \dots, s_{n+1}]$ a polynomial ring in n+1 variables over k.
- (ii). $D_i = \frac{\partial}{\partial s_i}$.

Let $A := k[X_1, ..., X_{n+1}],$

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

commuting,

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ▶ linearly independent over *A*.

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ▶ linearly independent over A.

Then $A^{D_1,...,D_n} = k[f]$ and f is a coordinate.

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ► linearly independent over A.

Then $A^{D_1,...,D_n} = k[f]$ and f is a coordinate.

Proven for n = 3.

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ► linearly independent over A.

Then $A^{D_1,...,D_n} = k[f]$ and f is a coordinate.

Proven for n = 3. n = 4 seems very far away...

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ► linearly independent over *A*.

Then $A^{D_1,\dots,D_n}=k[f]$ and f is a coordinate.

Proven for n = 3. n = 4 seems very far away...

Equivalent to the

Weak Abhyankar-Sataye Conjecture:

Let $A := k[X_1, \dots, X_{n+1}]$, and let $D_1, \dots, D_n \in LND(A)$ be

- commuting,
- ► linearly independent over A.

Then $A^{D_1,...,D_n} = k[f]$ and f is a coordinate.

Proven for n = 3. n = 4 seems very far away...

Equivalent to the

Weak Abhyankar-Sataye Conjecture: Let

 $A:=k[X_1,\ldots,X_{n+1}]$, and let $f\in A$ be such that $k(f)[X_1,\ldots,X_n]\cong_{k(f)}k(f)[Y_1,\ldots,Y_{n-1}]$. Then f is a coordinate in A.

$$A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$$

$$A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial z},$$

 $A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$ $D_1 := 2z \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial z},$

 $D_2 := 3t^2 \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial t}.$

$$A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z},$$

$$D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}.$$

$$D_1, D_2 \text{ commute}$$

```
egin{aligned} \overline{A} := \mathbb{C}[x,y,z,t] &= \mathbb{C}[X,Y,Z,T]/(X^2Y+X+Z^2+T^3), \ D_1 := 2zrac{\partial}{\partial y} - x^2rac{\partial}{\partial z}, \ D_2 := 3t^2rac{\partial}{\partial y} - x^2rac{\partial}{\partial t}. \ D_1,D_2 	ext{ commute} \ , \ A 	ext{ UFD}, \ trdeg(A) = 3 \end{aligned}
```

$$A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z},$$

$$D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}.$$

$$D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1, D_2} = \mathbb{C}[x]$$

$$\begin{split} A := \mathbb{C}[x,y,z,t] &= \mathbb{C}[X,Y,Z,T]/(X^2Y+X+Z^2+T^3),\\ D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z},\\ D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}.\\ D_1,D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1,D_2} = \mathbb{C}[x]\\ \text{Assume } A \cong \mathbb{C}^{[3]}, \text{ then } x \text{ coordinate.} \end{split}$$

$$\begin{split} A := \mathbb{C}[x,y,z,t] &= \mathbb{C}[X,Y,Z,T]/(X^2Y + X + Z^2 + T^3), \\ D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z}, \\ D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}. \\ D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1,D_2} = \mathbb{C}[x] \\ \text{Assume } A \cong \mathbb{C}^{[3]}, \text{ then } x \text{ coordinate. So:} \\ \mathbb{C}^{[2]} \cong A/(x) \end{split}$$

$$A := \mathbb{C}[x,y,z,t] = \mathbb{C}[X,Y,Z,T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial z},$$

$$D_2 := 3t^2 \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial t}.$$

$$D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1,D_2} = \mathbb{C}[x]$$
Assume $A \cong \mathbb{C}^{[3]}$, then $x \text{ coordinate. So:}$

$$\mathbb{C}^{[2]} \cong A/(x) = \mathbb{C}[Z,T,Y]/(Z^2 + T^3).$$
Contradiction, so $A \ncong \mathbb{C}^{[3]}$!

$$A := \mathbb{C}[x, y, z, t] = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z},$$

$$D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}.$$

$$D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1, D_2} = \mathbb{C}[x]$$

$$\begin{split} A := \mathbb{C}[x,y,z,t] &= \mathbb{C}[X,Y,Z,T]/(X^2Y+X+Z^2+T^3), \\ D_1 := 2z\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial z}, \\ D_2 := 3t^2\frac{\partial}{\partial y} - x^2\frac{\partial}{\partial t}. \\ D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1,D_2} = \mathbb{C}[x] \\ A/(x-\alpha) &\cong \mathbb{C}^{[2]} \text{ except case } \alpha = 0. \end{split}$$

 $A/(x-\alpha)$ except case $\alpha=0$.

$$A := \mathbb{C}[x,y,z,t] = \mathbb{C}[X,Y,Z,T]/(X^2Y + X + Z^2 + T^3),$$

$$D_1 := 2z \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial z},$$

$$D_2 := 3t^2 \frac{\partial}{\partial y} - x^2 \frac{\partial}{\partial t}.$$

$$D_1, D_2 \text{ commute }, A \text{ UFD, } trdeg(A) = 3, A^{D_1,D_2} = \mathbb{C}[x]$$

$$A/(x-\alpha) \cong \mathbb{C}^{[2]} \text{ except case } \alpha = 0.$$

$$D_1 \mod (x-\alpha), D_2 \mod (x-\alpha) \text{ are independent over}$$

▶ A is UFD over k,

- ▶ A is UFD over k,
- ▶ $trdeg_k Q(A) = n + 1 (\ge 1)$,

- ightharpoonup A is UFD over k,
- $\blacktriangleright trdeg_kQ(A) = n + 1 (\geq 1),$
- ► $A^* = k^*$,

- \blacktriangleright A is UFD over k,
- $\blacktriangleright trdeg_k Q(A) = n + 1 (\geq 1),$
- $A^* = k^*,$
- $\triangleright D_1, \ldots, D_n \in LND(A),$

- ▶ A is UFD over k,
- $\blacktriangleright trdeg_k Q(A) = n + 1 (\geq 1),$
- $A^* = k^*,$
- $ightharpoonup D_1, \ldots, D_n \in LND(A),$
- commuting,

- ightharpoonup A is UFD over k,
- $trdeg_k Q(A) = n + 1 (\geq 1)$,
- $A^* = k^*,$
- $ightharpoonup D_1, \ldots, D_n \in LND(A),$
- commuting,
- ► linearly independent over *A*.

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$,

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$,

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$,

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$,

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$, and

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$, and

1.

2.

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$, and

1. $D_1 \mod (f - \alpha), \dots, D_n \mod (f - \alpha)$ independent over $A/(f - \alpha)$ $\Rightarrow A/(f - \alpha) \cong \mathbb{C}^{[n]}$.

2.

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$, and

- 1. $D_1 \mod (f \alpha), \ldots, D_n \mod (f \alpha)$ independent over $A/(f - \alpha)$
 - $\Rightarrow A/(f-\alpha) \cong \mathbb{C}^{[n]}.$

There are only finitely many $\alpha \in \mathbb{C}$ for which D_1 mod $(f - \alpha), \ldots, D_n \mod (f - \alpha)$ are dependent over $A/(f - \alpha)$.

2.

Theorem: Now $A^{D_1,...,D_n} = k[f]$ for some $f \in A \setminus k$, and

- 1. $D_1 \mod (f \alpha), \ldots, D_n \mod (f \alpha)$ independent over $A/(f - \alpha)$ $\Rightarrow A/(f - \alpha) \cong \mathbb{C}^{[n]}$.
 - There are only finitely many $\alpha \in \mathbb{C}$ for which D_1 mod $(f \alpha), \ldots, D_n \mod (f \alpha)$ are dependent over $A/(f \alpha)$.
- 2. $D_1 \mod (f \alpha), \dots, D_n \mod (f \alpha)$ independent over $A/(f \alpha)$ for all $\alpha \in k$ $\Rightarrow A \cong \mathbb{C}^{[n+1]}, f \text{ coordinate}.$

 $\overline{\mathbf{Define:}}\ \overline{\mathcal{A}_i := \cap_{j \neq i} A^{D_j}},$

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Note: $A_i \cap A^{D_i} = k[f]$.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Note: $A_i \cap A^{D_i} = k[f]$.

 \mathcal{P}_i can be seen as the set of "preslices of D_i on \mathcal{A}_i ".

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma:

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree. Let $\tilde{p}_i \in \mathcal{P}_i$.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree.

Let
$$\tilde{p}_i \in \mathcal{P}_i$$
. $D_i(\tilde{p}_i) = h_i(f)q_i(f) + r_i(f)$, $deg(r_i) < deg(q_i)$.

Define: $A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree.

Let $\tilde{p}_i \in \mathcal{P}_i$. $D_i(\tilde{p}_i) = h_i(f)q_i(f) + r_i(f)$, $deg(r_i) < deg(q_i)$.

$$D_i(\tilde{p}_i - h_i(f)p_i) = r_i(f)$$

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree.

Let
$$\tilde{p}_i \in \mathcal{P}_i$$
. $D_i(\tilde{p}_i) = h_i(f)q_i(f) + r_i(f)$, $deg(r_i) < deg(q_i)$.

$$D_i(\tilde{p}_i - h_i(f)p_i) = r_i(f)$$
 so $r_i = 0$.

Define:
$$A_i := \bigcap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{p_i \in A_i \mid D_i(p_i) \in k[f]\}.$$

Lemma: (1) Exist $p_i \in \mathcal{P}_i$

Furthermore, $k[p_1, \ldots, p_n, f] \subseteq A$ is algebraic.

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i .

Taking p_i such that $D_i(p_i)$ is nonzero and of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

Proof.

(2) p_i such that $D_i(p_i) = q_i(f) \neq 0$ lowest possible degree.

Let $\tilde{p}_i \in \mathcal{P}_i$. $D_i(\tilde{p}_i) = h_i(f)q_i(f) + r_i(f)$, $deg(r_i) < deg(q_i)$.

$$D_i(\tilde{p}_i - h_i(f)p_i) = r_i(f)$$
 so $r_i = 0$. So $D_i(\tilde{p}_i) \in q_i(f)\mathbb{C}[f]$.

$$\mathcal{A}_i := \cap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{ p_i \in A_i \mid D_i(p_i) \in k[f] \}.$$

Lemma:

(2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i . Taking p_i such that $D_i(p_i)$ is of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.

$$\mathcal{A}_i := \cap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{ p_i \in A_i \mid D_i(p_i) \in k[f] \}.$$

Lemma:

- (2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i . Taking p_i such that $D_i(p_i)$ is of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.
- (3) The D_i are linearly dependent mod $(f \alpha)$ if and only if $q_i(\alpha) = 0$ for some i.

$$\mathcal{A}_i := \cap_{j \neq i} A^{D_j}, \mathcal{P}_i = \{ p_i \in A_i \mid D_i(p_i) \in k[f] \}.$$

Lemma:

- (2) $D_i(\mathcal{P}_i) = q_i(f)k[f]$ for some nonzero polynomial q_i . Taking p_i such that $D_i(p_i)$ is of lowest possible degree yields $D_i(p_i) \in kq_i(f)$.
- (3) The D_i are linearly dependent mod $(f \alpha)$ if and only if $q_i(\alpha) = 0$ for some i.

Proof.

(3) Elegant, but too long for a presentation.

Example:

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z].$ The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha \neq 0$.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z - \alpha$ as long as $\alpha \neq 0$. But linearly dependent modulo Z - 0.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z - \alpha$ as long as $\alpha \neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1 , D_2 :

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha\neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X, E_2 = \partial_Y$.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z - \alpha$ as long as $\alpha \neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X$, $E_2 = \partial_Y$. They commute,

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha\neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X$, $E_2 = \partial_Y$. They commute, their $\mathbb{C}[Z]$ -span contains D_1 , D_2

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha\neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X$, $E_2 = \partial_Y$. They commute, their $\mathbb{C}[Z]$ -span contains D_1 , D_2 and the E_i are linearly independent for more fibers $f - \alpha$.

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha\neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X$, $E_2 = \partial_Y$. They commute, their $\mathbb{C}[Z]$ -span contains D_1 , D_2 and the E_i are linearly independent for more fibers $f - \alpha$.

All the properties that D_1, D_2 have, + linearly independent modulo Z-0!

Example: Let $D_1 = Z\partial_X + \partial_Y$, $D_2 = \partial_Y$ on $A = \mathbb{C}[X, Y, Z]$.

Now $A^{D_1,D_2}=\mathbb{C}[Z]$. The D_1,D_2 are linearly independent modulo $Z-\alpha$ as long as $\alpha\neq 0$.

But linearly dependent modulo Z - 0.

But we can improve D_1, D_2 :

Take $E_1 = \partial_X$, $E_2 = \partial_Y$. They commute, their $\mathbb{C}[Z]$ -span contains D_1 , D_2 and the E_i are linearly independent for more fibers $f - \alpha$.

All the properties that D_1 , D_2 have, + linearly independent modulo Z-0!

Can we construct such $\overline{E_i}$, given D_i , which are optimal in some way?

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define
$$\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$$
.

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define
$$\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$$
.

Note: $\mathcal{M} \subset LND(A)$.

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$,

A is UFD over k, $trdeg_kQ(A)=n+1(\geq 1)$, $A^*=k^*$, $D_1,\ldots,D_n\in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A).

A is UFD over k, $trdeg_kQ(A)=n+1(\geq 1)$, $A^*=k^*$, $D_1,\ldots,D_n\in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

A is UFD over k, $trdeg_k Q(A) = n + 1 (\ge 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof.

A is UFD over k, $trdeg_kQ(A) = n + 1(\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof. (sketch) A is UFD over k, $trdeg_k Q(A) = n + 1 (\ge 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof.

(sketch) Comes down to studying $\varphi: \mathcal{M} \longrightarrow k[f]^n$ defined by $D \longrightarrow (D(p_1), \ldots, D(p_n))$.

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof.

(sketch) Comes down to studying $\varphi: \mathcal{M} \longrightarrow k[f]^n$ defined by $D \longrightarrow (D(p_1), \ldots, D(p_n))$. φ injective,

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof.

(sketch) Comes down to studying $\varphi: \mathcal{M} \longrightarrow k[f]^n$ defined by $D \longrightarrow (D(p_1), \dots, D(p_n))$. φ injective, thus \mathcal{M} free k[f]-module.

 $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Define $\mathcal{M} := k(f)D_1 + \ldots + k(f)D_n \cap \mathsf{DER}(A)$.

Note: $\mathcal{M} \subset LND(A)$. Even more, any two derivations of \mathcal{M} commute!

Lemma: $\mathcal{M} = k[f]E_1 \oplus \ldots \oplus k[f]E_n$ for some $E_i \in \mathcal{M}$, and the E_i have all the properties that the D_i have (i.e. commuting locally nilpotent, linearly independent over A). Furthermore, if the D_i are linearly independent modulo $(f - \alpha)$, then the E_i are too (but not necessary the other way around).

Proof.

(sketch) Comes down to studying $\varphi: \mathcal{M} \longrightarrow k[f]^n$ defined by $D \longrightarrow (D(p_1), \dots, D(p_n))$. φ injective, thus \mathcal{M} free k[f]-module. \longrightarrow we find E_1, \dots, E_n as required.

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Now assume D_1, \ldots, D_n are "optimal".

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Now assume D_1, \ldots, D_n are "optimal". I.e. assume $k[f]D_1 + \ldots + k[f]D_n = (k(f)D_1 + \ldots + k(f)D_n) \cap \mathsf{DER}(A)$.

A is UFD over k, $trdeg_kQ(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A.

Now assume D_1,\ldots,D_n are "optimal". I.e. assume $k[f]D_1+\ldots+k[f]D_n=(k(f)D_1+\ldots+k(f)D_n)\cap \mathsf{DER}(A).$ Is the set $\{\alpha\in\mathbb{C}\mid$

A is UFD over k, $trdeg_k Q(A) = n + 1 (\ge 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A

Now assume D_1,\ldots,D_n are "optimal". I.e. assume $k[f]D_1+\ldots+k[f]D_n=(k(f)D_1+\ldots+k(f)D_n)\cap \mathsf{DER}(A).$ Is the set

 $\{\alpha \in \mathbb{C} \mid D_1, \dots, D_n \text{ linearly dependent modulo } (f - \alpha)\}$

A is UFD over k, $trdeg_k Q(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A

Now assume D_1,\ldots,D_n are "optimal". I.e. assume $k[f]D_1+\ldots+k[f]D_n=(k(f)D_1+\ldots+k(f)D_n)\cap \mathsf{DER}(A).$ Is the set $\{\alpha\in\mathbb{C}\mid D_1,\ldots,D_n \text{ linearly dependent modulo } (f-\alpha)\}$ equal to the set $\{\alpha\in\mathbb{C}\mid D_1,\ldots,D_n \text{ linearly dependent modulo } (f-\alpha)\}$

A is UFD over k, $trdeg_k Q(A) = n + 1 (\ge 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A

Now assume D_1, \ldots, D_n are "optimal". I.e. assume $k[f]D_1 + \ldots + k[f]D_n = (k(f)D_1 + \ldots + k(f)D_n) \cap \mathsf{DER}(A)$. Is the set $\{\alpha \in \mathbb{C} \mid D_1, \ldots, D_n \text{ linearly dependent modulo } (f - \alpha)\}$ equal to the set $\{\alpha \in \mathbb{C} \mid A/(f - \alpha) \text{ is not a polynomial ring}\}$?

A is UFD over k, $trdeg_k Q(A) = n + 1 (\ge 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A

Now assume D_1,\ldots,D_n are "optimal". I.e. assume $k[f]D_1+\ldots+k[f]D_n=(k(f)D_1+\ldots+k(f)D_n)\cap \mathsf{DER}(A).$ Is the set $\{\alpha\in\mathbb{C}\mid D_1,\ldots,D_n \text{ linearly dependent modulo } (f-\alpha)\}$ equal to the set $\{\alpha\in\mathbb{C}\mid A/(f-\alpha) \text{ is not a polynomial ring}\}$? (One always has \supset .)

A is UFD over k, $trdeg_kQ(A) = n + 1 (\geq 1)$, $A^* = k^*$, $D_1, \ldots, D_n \in LND(A)$, commuting, linearly independent over A

Now assume D_1,\ldots,D_n are "optimal". I.e. assume $k[f]D_1+\ldots+k[f]D_n=(k(f)D_1+\ldots+k(f)D_n)\cap \mathsf{DER}(A).$ Is the set $\{\alpha\in\mathbb{C}\mid D_1,\ldots,D_n \text{ linearly dependent modulo } (f-\alpha)\}$ equal to the set $\{\alpha\in\mathbb{C}\mid A/(f-\alpha) \text{ is not a polynomial ring}\}$? (One always has \supseteq .)

Or, if this equality does not hold always, what type of rings *A* do have equality?

Final remark:

Commuting derivations may be the key to

distinguish polynomial rings from UFDs.

and of course...

THANK YOU

(for watching at 94 slides!)