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1 Ilpokeyouéva

After a semester of hard work, we have now come to the Local Langlands
correspondence for GLg for odd p (the characteristic of the local field). The
proof of the theorem, however, is a rather technical affair that relies on many
properties of L-functions and e-factors that have not been discussed in this
seminar so far, and doing so today would cost us far more time. Therefore
we will have to content ourselves with a proof of the non-cuspidal case, and
the construction in the cuspidal case.

The main statement is as follows. Let F' be a local field, and let Go(F')
be the set of equivalence classes of two-dimensional semisimple Deligne rep-
resentations of the Weil group Wp. Also, let As(F’) be the set of equivalence
classes of irreducible smooth representations of G = GLa(F'). Also, we iden-
tify a character x of F'* with both yoar (on the Galois side) and with yodet
(on the automorphic side), where ap : Wi —— F* is the isomorphism from
local class field theory. For convenience, we write R = (pr, Vr,ng) for an
element of Go(F'), and we denote x ® R for (x ® pr, Vr,nR).

Theorem 1.1 (Langlands Correspondence). Let ) € F\{1} be given. Then
there is a unique map
7 Go(F) — Aa(F)

such that for all R € Go(F') and all x € F* one has

L(xm(R),s) = L(x®R,s),
e(xT(R),s,9) = e(x® R, s, ).

This map is a bijection and independent of the choice of 1.



Note that the L-function and the e-factor of a Weil-Deligne represen-
tation R have so far not been defined in our seminar; they are defined as
follows (see 31.3'). From the definition of a Deligne representation R one
can see that kerng is itself a semisimple smooth representation op of Wpg.
We define

L(R,s) = L(og,s),

] Lpj1=5) Lions)
6(R787/¢}) - E(PR737¢) L(pR,S) L(O’RV, 1 - S).
Recall from Johan's talk that RY = (p},, V¥, —n"). Note also that in general

the L-function and e-factor of R is not the same as those of the underlying
smooth representation pg!

Now for the proof of the theorem we start off with some preliminary
remarks. First, the uniqueness of the map is guaranteed by theorem 27.2,
which states that elements of A(F') are uniquely determined by their L-
functions and e-factors. Second, we have a natural partition of Go(F') into
G1(F) and GY(F), consisting of the Deligne representations R for which pg
is respectively irreducible and reducible. Similarly, we can partition As(F)
into AJ(F), the cuspidal representations, and A9(F'), the non-cuspidal rep-
resentations. The use of these partitions is made clear by the following
proposition.

Proposition 1.2. Let R € Go(F). Then R € GY(F) if and only if L(x ®
R,s) =1 for all characters x of F*. Furthermore, let T € Ay(F). Then
7€ AY(F) if and only if L(x ® 7,s) = 1 for all characters x of F*.

Proof. The automorphic statement is precisely proposition 27.2. On the
Galois side, we know that R is irreducible if and only if x ® R is irreducible,
and L(R,s) = 1 by definition for irreducible R (see 29.3). On the other
hand, if R = x1 @ x2 for some characters xi, x2 of F'*, then L(x ® R,s) =
L(x ® x1,$)L(x ® X2, s), which shows that we may choose x such that this
is not equal to 0.

The proposition shows that we in fact have to construct maps 7° :
GYF) — AY(F) and 7! : GI(F) — ALF. We start with the second

one as it is considerably easier.

LAll references are, of course, to [1].



2 The noncuspidal correspondence

Theorem 2.1. There is a unique map
71 GH(F) — AL(F)
such that for all R € G3(F) and all characters x of F* one has
L(x® 7' (R),s) = L(x ® R, s).
This map is bijective and satisfies
m(x®R) = x®7'(R)
(m(R),s,9) = e(R,5,9)
for all R € GL(F), x € F*, and ¢ € F\ {1}.

Before we start the proof, it is useful to recall the classification of both
sides of the map.

Proposition 2.2. Let R € G3(F). Then R can be written in one of the two
following forms:

0
L(R’ S) /:\L(Xlas)L(X2as) and 6(R33771Z)) = €(X1»83¢)6(X2a57¢) fO’f’
all € F.

1
cro ([ e OI,F%(01> for some ¢ € FX. In
0 oll-l 00

this case L(R, s) = L(p, s + 3) and €(R, 5,9) = —€e(p, 5,9).

e R = << X1 )? >,F2,0) for some x1,x2 € F/’\X In this case
2

Furthermore, this is unique up to the permutation of x1 and xo in the first
option.

Proof. The L-functions and e-factors can be calculated via the definitions
in 31.3 and 29.3, although it is more complicated than the book suggests.
As for the rest, since pg is reducible, we may write pr = x1 @ x2 for some
characters x1,x2 of F'x. Since kernp is a subrepresentation of pg, it is
either x1 @ x2 (hence ng = 0) or yo, so that after scaling we may assume

n= < 01 ) If we check for the property of ng, we see

0 0
1
pr(z)nppr(z) ™" = ( 8 X1X20 (=) ) ,



which shows that x1x5'(2) = ||z||, or equivalently, there exists a ¢ € F*
1 1
such that x1 = || - ||z and x2 = e[ - [|7=.

To classify the non-cuspidal irreducible representations of GLa(F'), let
us first recall some notation. For a character x = x1 ® x2 of T' (hence of B),

_1 —
we write 1§ (x) for Ind%(6,° ® x). Also, for ¢ € F*, we write ¢ - Stg (the
twisted Steinberg representation) for the quotient fitting in the following
short exact sequence:

O—)wg—)lndgng—Mp'Stg—)O
By theorems 9.11 and 26.1 we now have the following classification.

Proposition 2.3. Let 7 € AY(F). Then 7 can be written in one of the three
following forms:

1
o T = Lgx for a character x = x1 ® x2 of T such that x # ¢ - 5;2 for
any character ¢ of F*. In this case, L(t,s) = L(x1,$)L(x2,s) and

—~

e(7,5,9) = e(x1, 5, ¥)e(x2, 5, ¢) for all p € F*.

e 7 = podet for some character ¢ of F*. In this case L(T,s) =
L(p. s+ 3)L(p. s — 5) and €(1,5,9) = e(p,s — 5,9)e(p, s + 3,%) for

—

all ¢ € FX.

e 7 = - Stg for some character ¢ of F*. In this case L(t,s) =
L(p, s+ 3) and (1, 5,9) = —€(p, 5,9).

Furthermore, this is unique up to the permutation of x1 and xo in the first
option.

Proof of 2.1. The proof of the theorem is now rather obvious. Let R be a
Deligne representation with ng = 0. If xy1x5 " # || - ||}, we set 7L(R) =
1%(x1 ® x2), which is irreducible. Otherwise, let ¢ be such that {x1,x2} =
{¢l|- Hi%}, and set mL(R) = podet. Finally, if we are in the second option,
we take mh(R) = ¢ - Stg. It is now easily verified that this map indeed
a bijection and retains L-functions and e-factors. Furthermore by 27.3 a
non-cuspidal representation is uniquely determined by its L-function.

3 The unramified correspondence

In this section, we will define the correspondence between unramified Deligne
representations and unramified automorphic representations. This proves



the Langlands correspondence for p # 2, as in that case all representations
are unramified; to finish the proof for p = 2 we would need another semester.

Again, we start with some preliminary remarks. By 27.2 every irre-
ducible smooth representation of G is uniquely determined by its L-function
and e-factor. Therefore, if a map 7¥ exists, it is automatically unique. Also,
the way to express €(p, s, at)) in terms of €(p, s,) is the same on both sides
see (29.4(2) and 24.3). Therefore, if a map suffices for a single v, it suffices
for all v. Therefore, we may take 1) to be of level 1, which makes calculations
slightly easier. Of course, we will not actually perform these calculations.

A representation 7 € AJ(F) is called unramified if there exists an un-

ramified character ¢ € F* \ {1} such that ¢ ® 7 = 7. We denote the set of
unramified representations by A3 (F'). Completely analogous we can define

G3' (F).

Recall from Gert's talk that we have the set of admissible pairs Po(F),
consisting of pairs (E/F, x) such that F/F is a tamely ramified quadratic
field extension, and x is a character of E* such that x does not factor
through the norm map Ng/p and if x|U Pl; does factor through Ng/p, then
E/F is unramified. The use for this set is given by the following theorem.

Theorem 3.1. There is a bijection

[:Py(F) — AY forp=2,
Po(F) — A5 forp#2.

This suggests that we want to find a bijection Po(F) — Gy (F). There
is a straightforward choice for such a bijection:

Theorem 3.2. The map = : (E/F, x) — Indxg x induces a bijection

E:Py(F) — GY forp=2,
Py(F) > Y forp#2.

This gives us a bijection ToZ~! : GY(F) — AJ(F) for odd p. However,
this map does not retain e-factors! We need to twist every admissible pair
(E/F,x) by a character A, of E* to ensure this. The definition of this
character is easy if E/F is unramified; we then define A, to be the unique
unramified character of E* of order 2.



To define this character for a totally ramified extension, first note that
N p(£*) is of order 2 in F'*, so there is a unique non-trivial character
kg p of F* that is trivial on Ng/p(E*). Let ur be the group of roots of
unity in F' with order prime to p, let w be a prime element of F, and let 8 be
any element of £*. We know that Up = ,uEUé = MFUé. As a consequence,
there is a unique root of unity ¢(8,w) € pup such that fw 2¥) = ¢(8,w)
mod Uj. Recall that an admissible pair (E/F,x) is minimal if x|U% does
not factor through Ng,p, where n is the level of x. Any admissible pair can
be gained from tensoring a minimal pair with a character of F'*. Also, recall
the definition of the Langlands constant (independent of s by 30.4)

e(Ind)y 1, 5,1))
E(lEa S, wE')

We now have the notation to state the following proposition:

Ap/r(Y) =

Proposition 3.3. The following statements hold, which we use as the defi-
nition of a character A, of E*:

e Let (E/F,x) be a minimal pair such that E/F is totally ramified. Let
n be the level of x and let a € p" satisfy x(1 + z) = Yp(ax) for all
x € pfh. Also, let ¢ be a character of F*. Then there is a unique
character A, of E* such that the following hold:

AX’Ué = 1,
AX‘FX = KE/F;
Ay(w) = KE/F(C(%W))/\E/F(#J)"?

for any prime element w of E. Furthermore, A, is independent of v
and c.

e Let (E/F,x) be any totally ramified admissible pair. Write x = X' ®&R
for a minimal pair (E/F,x') and a character & of F'. Then Ay = Ay
is independent of the decomposition x = X' ® £g.

This character A, has the following useful property.

Lemma 3.4. The map

A:PQ(F) — PQ(F)
(E/F,x) = (BE/F,Ayx)

s a bijection.



Proof. The reason for this is that Ax, , = Ay, as can be proven from the
definition. Also, one can prove that the Langlands constant is a (not nec-
essarily primitive) fourth power root of unity, so Ai = 1 for all x. This
together shows that the map is a bijection.

This finally gives us the map we need for the tame Langlands corre-
spondence. Unfortunately, the proof relies on quite some technical details
of the previous chapters that were not discussed in their respective talks.
Therefore I will omit the proof.

Theorem 3.5 (Tame Langlands correspondence). The maps

™ = ToAoZ1:Gy¥(F) — AY(F) forp=2,
™ = ToAoZ':GYF)— AYF) forp+2,

are the unique maps with the property that for all characters x € F/'\X,¢ €
F\ {1} one has

e(xm™(R),8,7) = e(x®R,s,9) forp=2,
€(X7TO(R)7 s, ) = €e(x®R,s,) forp#2.

nr

Furthermore, ™ and ©° are bijections and preserve duals and twisting

by characters of F*.

As was mentioned before, this completes the local Langlands correspon-
dence for odd p.

4 The [-adic Langlands correspondence

Although in this seminar we have only worked with representations over
C, it would be nice to have a Langlands correspondence for representations
over other fields as well. In this section we will discuss the Langlands cor-
respondence for representations over Q; (The assumption [ # p is irrelevant
at this point), assuming we know its existence over the field C. Let us use
the notations Go(F, Q;) and Ax(F,Q,) for the relevant sets of Deligne and
automorphic representations, respectively. Since algebraically closed fields
of the same characteristic and infinite transcendence degree are isomorphic,
one may non-canonically pick an isomorphism ¢ : C — Q. This induces
isomorphisms ¢4 : Go(F) — Go(F,Q;) and 1y : A2(F) — As(F,Q,). By
the Langlands correspondence this gives a bijection

b g2(Fan) — Az(Fan)-



However, this bijection is not canonical, in the sense that it is not equivariant
under the action of AutQ,; on both sides. So ideally, we would want a
bijection 7; between Go(F, Q;) and As(F,Q;) with the following (not well-
defined) properties:

e 7 is equivariant under the action of Aut Q;

e 7; should preserve some information in terms of L-functions and e-
factors;

e 1; should be unique with respect to the previous two properties.

Since L-functions and e-factors are only defined for representations over
C, we will first construct an isomorphism Ilg : Go(F) — Az(F) that
is equivariant under the action of Aut C and which will have some nice
properties with respect to L-functions and e-factors. The construction is as
follows. For R € Go(F), let R = (prl| - ||"2, Vi, ng).

Proposition 4.1. The map
g : Go(F) — Ag(F)

R — 7(R)
is an isomorphism of Aut C-sets. Furthermore, it is the unique map Go(F) —
Ao (F) satisfying
L(xIIc(R),s) = L(x®R,s—3),
e(XUc(R),s,9) = e(x®R,s—3,9)
For all characters x of F* and nontrivial characters ¢ of F.

Sketch of proof. The properties with respect to the L-functions and e-factors
follow from the properties of the map 7; this also shows the unicity and the
bijectivity. Also, since on both sides representations are uniquely determined
by the L-functions and e-factors of their twists, it is enough to know the
action of Aut C on this level. By diving into the definitions of these one can
show that on the Galois side one has

L("R,s) = "L(R,s)
e("R,s,no¢)) = "e(R,s,m01))

for all R € Go(F), n € Aut C and ¢ € F'\ {1}, whereas on the automorphic
side one has

L("r,s—3) = "L(t,s—3)

e("r,s = g.mow) = Te(r,s—3,m0)



for all 7 € A3(F), n € Aut C and ¢ € F'\ {1}. This shows that the map II¢
is Aut C-equivariant, which completes the "proof".

The l-adic analogon to the Langlands correspondence is now an easy

consequence. Of course such an analogon holds for any field isomorphic to
C.

Theorem 4.2. Let K be an algebraically closed field of transcendence degree
280 Then there is a unique bijection

g : Go(F,K) = As(F, K)

with the property that I (‘R) = ‘Ilc(R) for all R € Go(F) and all 1 : C
K.
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