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1 Introduction

A central object of study in algebraic geometry is the abelian variety, which has the structures of
both an abelian group and an algebraic variety. Its one-dimensional examples are precisely elliptic
curves, so one may regard abelian varieties as the generalisation of the concept of elliptic curves
to higher dimensions.

Because of the double structure of abelian varieties, it is natural to ask questions that combine
these two structures. One of these questions is the following statement, posed independently by
Manin and Mumford and proven by Raynaud [35], [36]:

Theorem 1.1 (Raynaud). Let A be an abelian variety over C and let Ay, denote its torsion
subgroup. Let Z C A be an irreducible closed algebraic subvariety such that Z N Aoy is Zariski
dense in Z. Then Z is a translate of an abelian subvariety of A.

This conjecture has now been proven (in various ways, see chapter E), as well as its gener-
alisation to a wider class of commutative group varieties called semiabelian varieties. Still, its
generalisation to families of semiabelian varieties, which is a group scheme X /S over a VarietyEI
such that every fibre is a semiabelian variety, leads to the following conjecture:

Conjecture 1.2. Let X — S be a family of semiabelian varieties, and let Xo = |J,cg X tor be
the union of the torsion subgroups of the fibres of X — S. Let Z C X be an irreducible closed
algebraic subvariety such that Z N Xy is Zariski dense in Z. Then Z is contained in a proper
closed subgroup schemdl of X/S.

This is stated, in a more general way, in [33]. In this article, Pink claims to prove this conjec-
ture from another conjecture regarding the connected mixed Shimura subvarieties (usually named
special subvarieties) of connected mixed Shimura varieties, stated in chapter E The definition of
these is quite abstract and complicated, but its importance lies in the fact that one of the main
examples is that of a universal abelian variety, which has all abelian varieties with some extra
given data as subvarieties in a ‘natural’ way. Therefore, theorems about connected mixed Shimura
varieties may give us information about families of abelian and semiabelian varieties.

However, conjecture D is not true, as a counterexample was found by Bertrand [5]. Neverthe-
less it is not a counterexample to Pink’s general conjecture; the reason for this is that there is a
mistake in Pink’s proof of conjecture @ from his more general conjecture. In this thesis, I explain
the theory on abelian varieties and mixed Shimura varieties necessary to formulate Pink’s general
conjecture. Furthermore, I explain Bertrand’s counterexample, and I classify for which abelian
varieties these counterexamples may occur. In order to do so, I classify the special subvarieties of
universal abelian varieties.

1By a wariety over a field k I mean, in this thesis, a seperated, geometrically integral k-scheme of finite type.
2Le. a closed subvariety X’ of X such that X/ is a closed subgroup of X, for every s € im X'.



2 Definitions

Before I can make any meaningful statements about Shimura varieties, I have to define them first.
The definition of these is a rather complicated affair that requires the theory of Hodge structures,
that also arise in the cohomology of Kéhler manifolds, and linear algebraic groups. Before I come
to Shimura varieties, I will first define, and give some essential properties of, Hodge structures and
linear algebraic groups.

2.1 Hodge structures

Let V be a finite-dimensional vector space over R. By GL(V) I denote the covariant functor
Algp — Grp given by GL(V)(B) = Autp_mod(B ®r V). This is represented by an R-scheme,
which T also abusively denote as GL(V).

Let S denote Resc/r Gin,c, the Weil restriction from C to R of the multiplicative group over
C. In terms of the functor of points, for every R-algebra B the set S(B) is equal to (B ®g C)*.
Then S = Spec Rla, b, (a®+b%)71], so S is an affine group scheme over R. One has that S(R) = C*
and for any C-algebra B, one has S(B) & B* x B* via the isomorphism

(B@r C)* — B* x B*
a®z +— (az,aZ).

The induced map C* = S(R) — S(C) = C* x C* is given by z + (z, z). Furthermore, there
is a natural injective morphism G,, g — S coming from the inclusion map R — C.

Definition 2.1. Let V be a finite-dimensional R-vector space. A (mized) Hodge structure on V
is a morphism h : S — GL(V) of group schemes over RO

Another way to regard these Hodge structures is given in the following proposition.

Theorem 2.2. Let V be a finite-dimensional R-vector space. Let H be the set of Hodge structures
on'V, and let H be the set of decompositions of Vg into C-subspaces VP9 indexed by Z? such
that VP4 = V9P, Then for any (VP),, € H, the map C* — GL(Ve), through which z acts as
2Pz~ on VP4, comes from a Hodge structure on V. This gives a bijection H = H.

Proof. Take the action of C* on V¢ as above. For any v € VP4 one has that Z-v = z7Pz 9y =
z79Z7Py = z - v, since v € VPP, This shows that the action commutes with complex conju-
gation, so it comes from an action C* — GL(V). For a basis of eigenvectors of V¢ for this
action, the action of a 4 bi is given by a diagonal matrix whose diagonal entries are of the form
(a + bi)~P(a — bi)~9, which are algebraic in a, b and (a? + b2)~L. This is still true if one changes
to a basis of Vi which is also a basis of V. This shows that this map actually comes from a map
S = SpecRJa, b, (a? + b?) "] — GL(V).

3This notion is more split than the usual definition of a mixed Hodge structure as described, for example, in [12], but
this does not matter for our purposes.



Conversely, consider a Hodge structure h : S — GL(V). The identification S(C) = C* x C*
comes from an isomorphism of algebraic groups S¢ = an’c; hence h gives us a morphism
G%LC — GL(V¢) of algebraic groups over C. This corresponds to a bigrading of Vg, i.e. a

decomposition Vo = @, , V77, such that (a,b) acts on V77 as a™Pb™1%.

Now let B be a C-algebra, and let a € B, z € C be such that a ® z € S(B). Suppose (a, 2)
corresponds to (x,y) € B* x B*, i.e. (az,az) = (z,y); then (a, z) corresponds to (az,az) = (g, ).
This shows that complex conjugation on S¢ corresponds to complex conjugation and a coordinate
swap on an,c. The map anvc — GL(V¢) must be invariant under complex conjugation. This
means that for any v € V7 and any (z,y) € B* x B* for any B, one has that

(y7£f)'6 = (f,y)‘v
r—Py—9v

= g,

which shows that 7 € V9P; in other words, the decomposition (V:7), , is an element of H. The

composition S(R) — S(C) N GL(V¢) lets z € C* act as 277z~ % on VP9, as was to be
shown. 0

Example 2.3. Let V be a complex vector space. If we regard V as a real vector space, we have a
map C — Endg(V). For every R-algebra B, this induces a map B ® C — Endg(B ® V), and
this in turn induces a map (B ® C)* — Autp(B ® V). Hence we get a morphism of real linear
algebraic groups S — GL(V), so this defines a Hodge structure on V. Its decomposition into
VP11 is obtained as follows: let I be the R-linear automorphism of V corresponding to complex
multiplication by 4. Its minimum polynomial is X2 + 1 € R[X]. This splits into (X + i)(X — i)
in C[X]. As this has distinct roots, I is diagonalisable; then V10 C V is the eigenspace for the
eigenvalue 4, and V%~ is the eigenspace of eigenvalue —i. Conversely, if V has a Hodge structure
h so that Vg = V%1 @ V=10, then, for any 2,20 € C* with 21 + 25 # 0, the endomorphism
h(z1) + h(z2) acts the same as h(z; + 22) on both V=1 and V=19 so h extends to a ring
homomorphism C — Endg(V'), which gives V' the structure of a complex vector space.

For a Hodge structure h : S — GL(V), I write W,,(Vc) = @, ,<,, VP9; this is called the
weight filtration on V. The Hodge type of V' is the set of (p,q) such that VP9 is nonzero. If for
some n it holds that Wy (V) =0 for all k < n and Wi (V) =V for all k > n, then V is said to be
of pure weight n.

A rational Hodge structure is a rational vector space V with a Hodge structure on Vg such
that the weight filtration is defined over Q. One writes Q(n) for the one-dimensional rational
vector space (27i)"Q C C with the Hodge structure given by Ve = V(== similarly we define
integral Hodge structures and Z(n). A polarisation of a pure Hodge structure V' of weight n is a
morphism of rational Hodge structures

Y: VeV — Q(—n)



such that the induced map

’l/)c:VRXVR — R
(z,y) = Yz, h(i)y)

is symmetric and positive definite. As ¥y is a morphism of Hodge structures one sees that for
every x,y € Vg one has

Y(x,y) = w(h(i)z, h(i)y)
= Y(y, h(i)’x)
= Py, (=1)" "),

which means that v is symmetric if n is even and antisymmetric if n is odd.

2.2 Linear algebraic groups

In this section I will review some theory on linear algebraic groups. A more thorough treatment,
along with definitions and proofs of the various statements, can be found in [{].

Let k be a field of characteristic zero. A linear algebraic group over k is an affine group scheme
over k of finite type. As in ‘ordinary’ group theory, a linear algebraic group P is called solvable if
there exists a chain 0 = Py C P, C ... C P, = P of normal algebraic subgroups such that every
P;+1/P; is commutative.

An important example of a linear algebraic group is the multiplicative group Gy, , over k. In
general, a linear algebraic group P over k is called a torus if there exists a finite separable field
extension k C [ such that P, = G, for some integer n; P is then said to be split over I. An
example is of the Deligne torus S over R, which is split over C but not over R.

Let P be a linear algebraic group over k, let B be a k-algebra, and let g € P(B). Then g can
be regarded as an endomorphism of the B-module B ®; Op(P). One can prove that Op(P) has
a finite-dimensional P-stable k-linear subspace V that generates Op(P) as a k-algebra, such that
the induced map P — GL(V) is injective. Any g € P(B) is called unipotent if g —id is nilpotent
as an endomorphism of B ®; V; this does not depend on the choice of V. P is called unipotent
if for every B, and every g € P(B), the element ¢ is unipotent. Every linear algebraic group has
a maximal normal unipotent subgroup, called the unipotent radical. A linear algebraic group is
called reductive if it is connected and its unipotent radical is trivial.

For a linear algebraic group P, its adjoint group P*! is the linear algebraic group P*! =
P/Z(P). Tts derived group P is the linear algebraic group [P, P].

The tangent space of P at the origin is denoted Lie P; this has the structure of a Lie algebra.
For any k-algebra B, any g € P(B) acts by conjugation on P(B). This fixes the identity, so
by transport of structure one obtains an action of P(A) on Lie P(B). This induces a morphism
P — GL(Lie P), called the adjoint action of P. This map factors through the adjoint group of P.



Now suppose k = R, and let 7 be an involution of P, i.e. an endomorphism of P such that
72 =1id. 7 is called a Cartan involution if the set

PT(R) ={g € P(C):7(9) = g}

is compact in the analytic topology.

Now suppose k = Q. A congruence subgroup of P(Q) is a subgroup of the form P(Q) N K,
where K is an open compact subgroup of P(Af)a. If P is a subgroup of GL,, q that is defined
over Z, then any subgroup of P(Z) containing the kernel of the map P(Z) — P(Z/NZ) for some
N € Z- is a congruence subgroup.

Now I have set up the required terminology to define Shimura varieties.

2.3 Shimura varieties

In this section, I define the notion of connected mixed Shimura varieties as defined in [32]. These
are the connected components of usual mixed Shimura varieties, which are defined in [31]; I omit
this generalisation here in order to avoid the language of adéles. In order to proceed, I first need
the notion of a connected mixed Shimura datum. First note that if P is a linear algebraic group
over Q, that P(C) acts on Pc by conjugation, so it also acts on Hom(S¢, Pc). Furthermore, we
say that a linear algebraic group G is an almost direct product of two linear algebraic groups A
and B if G has normal subgroups A’ and B’ such that A’ = A and B’ = B, such that A’- B’ = G,
A’ and B’ commute and A’ N B’ is finite.

Definition 2.4. A connected mized Shimura datum is a pair (P, X 7) consisting of a linear algebraic
group P over Q and a subset X C Hom(S¢, Pc) with the following properties:

e There exists an algebraic subgroup Up of the unipotent radical Wp of P, such that Up
is normal in P, and X% is a connected component of an orbit under the action of P(R) -
Up(C) C P(C), where Hom(Sc, Pc) is given the analytic topology;

e The following conditions hold for an z € X (or, equivalently, for all z € X):

1. The composite homomorphism S¢ —— Pc — (P/Up)c is defined over R;

2. The adjoint representation of S¢ on Lie Pc induces a rational Hodge structure whose
type is a subset of

{(17 _1)7 (070)’ (_1’ 1)’ (07 _1)7 (_1,())7 (_1, _1)};

3. The weight filtration of Lie P coming from the Hodge structure above is given by

0, ifn < —2;
LieUp, ifn=-2;
LieWp, ifn=-1;
Lie P, if n > 0;

W, (Lie P) =

4Here A f denotes the finite adéles over Q.



4. The conjugation 7 by z(i) induces a Cartan involution on (P/Wp)il;

5. P/P%" is an almost direct product of a Q-split torus with a torus 7' of compact type
defined over Q, i.e. T(R) is compact when given the analytic topology;

6. P possesses no proper normal subgroup P’ defined over Q such that = factors through
P(IJ C Pc.

Because of condition E and the connectedness of P, which follows from condition 6, the subgroup
Up is uniquely determined. If Wp = 0, I call (P, X ") a connected pure Shimura datum or simply a
connected Shimura datum. The notation X+ comes from the convention to denote by X an orbit
of Hom(Sc¢, Pc) under the action of P(R) - Up(C). The long list of conditions is there to ensure
the truth of the following proposition.

Proposition 2.5. Let (P, X ™) be a connected mized Shimura datum.

1. Xt has a unique structure of a complex manifold such that for every representation p of Po
on a complex vector space the Hodge filtration determined by p o x wvaries holomorphically
with x € X™T.

2. Define P(R)™ C P(R) as the stabiliser of X. Then every sufficiently small congruence
subgroup G C P(R)Y works freely on X, so that X+ — G\ X is an unramified covering
of complex manifolds.

3. G\ X7 possesses a natural structure of a quasiprojective algebraic variety over C.
Proof. See [39, Facts 2.3]. O

I now have enough to define the notion of a connected mixed Shimura variety. Once again, let
(P, X*) be a connected mixed Shimura datum, and fix a model Pz of P over Z.

Definition 2.6. Let P, X, G be as above, then G \ X is the connected mized Shimura variety
associated with (P, X1, G). If (P, X 1) is a connected pure Shimura datum, then G\ X is called
a (pure) Shimura variety.

Our next aim is to define morphisms between connected mixed Shimura varieties. For this, I
first need to define morphisms between connected mixed Shimura data.

Definition 2.7. A morphism of connected mized Shimura data (P,X*) — (P’, X'") is a mor-
phism of linear algebraic groups ¢ : P — P’ such that the map Hom(S¢, Pc) — Hom(Sc, P{) :
T+ poz maps X into X'T.

Definition 2.8. Let S and S’ be connected mixed Shimura varieties associated with (P, X+, G)
and (P', X'+, G’) respectively. A morphism of connected mized Shimura varieties is a map S — S’
induced from a morphism of connected mixed Shimura data ¢ : (P, X*) — (P’, X'") such that
»(G) C G.

Proposition 2.9. Let ¢ : S — S’ be a morphism of connected mized Shimura varieties. Then ¢
is holomorphic and algebraic with respect to the structure in @E, and its image is clsoed in S'.



Proof. See [32, Facts 2.6]. O

Now I want to define a certain kind of subvarieties of connected mixed Shimura varieties, rather
generically named special subvarieties. Much of this thesis will be dedicated to classifying these
for certain connected mixed Shimura varieties.

Definition 2.10. A subvariety Z C G\ X is called special if it is the image of a morphism of
connected mixed Shimura varieties.

The following proposition greatly aids in classifying special subvarieties of connected mixed
Shimura varieties.

Proposition 2.11. Let Z C G\ X be a special subvariety. Then there is a morphism of connected
mized Shimura varieties o : (P, X'T,G") — (P, X+, G) such that the induced map P' — P is
an immersion of linear algebraic groups, hence a closed immersion.

Proof. See [39, Proposition 4.3]. O

In order to greatly simplify the statements of propositions later, the notion of a Hecke corre-
spondence is needed.

Definition 2.12. Let (P, X ") be a connected mixed Shimura datum, and let G, G’ and G” be
congruence subgroups of P, with corresponding connected mixed Shimura varieties S, S’ and S”.
A Hecke correspondencea is a pair of morphisms of connected mixed Shimura varieties (¢ : S” —
S, 8" — 8’) for which there exists an automorphism « of P, inducing an automorphism of
X+, such that a7 1(G) NG' = G”, and ¢ and ¢’ are the maps S’ &g \ Xt %5 S induced by
« and the identity, respectively.

Given P, X+, G and G’ as above, one says that a closed subvariety Z C S is said to be equal
to another closed subvariety Z’ C S’ up to Hecke correspondence if there is an « as above such
that Z is a connected component of ¢(¢'~1(Z)). Despite the terminology this is not in general an
equivalence relation. The significance of this definition is shown by the following proposition.

Proposition 2.13. Let P, X+ G, G’ be as above. Suppose that Z C G\ X+ and Z' C G'\ X be
irreducible closed algebraic subsets such that Z is equal to Z' up to Hecke correspondence. Then:

1. 7' is equal to Z up to Hecke correspondence;
2. if Z' is a special subvariety of S’, then Z is a special subvariety of S.

Proof.

5 Actually, this is a generalisation of what is referred to as a generalised Hecke correspondence by [B2]. In the terminology
used there, a generalised Hecke correspondence must satisfy G = G’, whereas an ordinary Hecke correspondence requires
a to be a conjugation by an element of P(Q).



1. Suppose that Z is equal to Z’ up to Hecke correspondence via an automorphism «. Consider
the following commutative diagram:

(GNaG)\ X+

—1

Here ¢’ and 1 are induced by quotient maps on the level of congruence subgroups, ¢ is
induced by a and v is induced by a~!. Since Z is irreducible and ¢ is finite, one sees that
every irreducible component of o ~!(Z) maps surjectively to Z. Furthermore, there is such a
component ¢ such that ¢'({) = Z’. Because ¢’ is finite, this means that ¢ is an irreducible
component of ¢'—1(Z"). Then a~!( is an irreducible component of (GNaG’)\ Xt such that
Y(a™1) = Z and ¥'(a"1¢) = Z'. As 1)’ is a finite map, one has that a~1( is an irreducible
component of ¢'~1(Z"), so Z = 1(a~1() is an irreducible component of ¥ (¢'~1(Z")).

2. Let (Q,Y ™) be a connected mixed Shimura datum, H a congruence subgroup of @ inducing
a connected mixed Shimura variety T = H\Y ™+, and ¢ : (Q,Y ") — (P, XT) a morphism of
connected mixed Shimura data inducing a morphism of Shimura varieties T — S’ such that
Z' is the image of T.. Furthermore, let ¢ C (a=*G' N G’)\ X* be an irreducible component
of ¢'~1(Z') that maps to Z. Again, the image ¢’({) must be an irreducible component of
7', and ¢’ : ( — Z is surjective.

The morphism 1 induces a morphism of connected mixed Shimura varieties
(Hny Yo '@)\ YT — (a7 'GNnG)\ XT.
Now the following diagram commutes:

(Hno—(a"1G)\ Y+ —= (oG NG\ X+

’

@

T S’

This means that the image K of the top arrow is also an irreducible subset of ¢'~1(Z’) that
maps surjectively to Z’; again, the finiteness of ¢’ implies that K is an irreducible component

10



of ¢'=1(Z’). The right action of G’ on Xt induces a transitive right action of G’ on the
irreducible components of ¢'~1(Z’), so there is a v € G’ such that yK = (. Since the map
¢ trivialises the G’-action, the following diagram is again commutative:

(Hny o T\ Y — " (alane)\ X+

N

77T — > 9

Furthermore, the image of the composite map ¢ o (y - ) is Z, so this establishes Z as a
special subvariety of S.

O

2.4 The Siegel upper half space

This section is devoted to a special example of Shimura varieties that will be of great importance

for the rest of this thesis. Let g > 0 be an integer, and let J be the matrix 01 10’] > One
g

defines the algebraic group of symplectic similitudes Py = GSp,, q as follows, for any Q-algebra
B:
Py(B) = {(A € GLyy(B) | I € B* : ATJA=AJ}.

For any a,b € B one has (a+ bJ)(a —bJ) = a® + b2, so a + bJ is invertible in GLy,(B) if a® + b?
is invertible in B. If this is the case, then

(a+b1)TJ(a+bJ) = (a—bJ)J(a+bJ) = (a®+b*)J,

which shows that a + bJ € Py(B). As J? = —1, the map

ho :S — P07R

a+bi — a+bJ
is an injective morphism of linear algebraic groups over R. As a differential manifold, the space
Py(R) has two connected components; the identity component Py(R)™ consists of the elements
with positive multiplier character A. Now consider X; = Py(R)* - hg C Hom(S, Py r). We show

that (P, Xg) is a connected pure Shimura datum, by checking the different conditions of .4 voor
hol

1. By definition the map ho.c : S¢ — Fo,c is defined over R.

2. It is known that Lie GLyg q is equal to Mag q, with the adjoint action of GLgyg q given by
conjugation. As such, Lie Py is a subspace of My, q. Since hg gives a Hodge structure of type

11



{(0,-1),(—1,0)} on R?9, this conjugation gives a Lie structure whose type is a subset of
{(1,-1),(0,0),(—1,1)}. Asthescalarsin GLy, q are contained in Py, the scalars in My, q are
contained in Lie Py. These commute with any other matrix, in particular with elements ho(z),

which shows that (Lie Py(C))%° is nonzero. Now consider A = ( % 1517 ) € Py(C); one
g g

has that A2 = 0, so that exp(A) =1+ A = < ?9 ég ), which is an element of Py(C); this

g9 Yy

shows that A € Lie Py(C). On the other hand, for z = a + bi € C* one has

1 a b 1 1 ag —b
-1 L g Vg g g g 9
ho(2) Aho(2) a2+ b2 ( —by ag > ( g —lg ) < by ay >

1 (a? — b + 2abi),  (—2ab+ (a® —b?)i),
a2+ b2\ (=2ab+ (a®> = b%)i), (—a® +b* — 2abi),

z
= jA’
z

which shows that Lie Py(C)(~11) (hence also Lie Py(C)(:~1)) must be nonzero, as was to be
shown.

. From the above we find that U = W = 0, so (P, X) is indeed a pure Shimura variety.

. It is known that the center of GSpy, o consists of just the scalars, which we may identify with
G,q; its quotient is denoted PGSp,, . Now for any A € GSp,, g, let d(A) € G,y q be such
that ATJA = d(A)J. Then the kernel of the morphism d : GSpy, g — Gm,q : A — d(A) is
denoted Spy, q, the symplectic group over Q of dimension 2g. This is a normal subgroup of
GSpy, q; and the quotient is Gy, q. The intersection Spy, o NGy q consists of the scalars
with square 1, which we may identify with 2 . One defines Spy, o = PSpy, q /H24.q-

Over B = C we see that the natural injective map PSp,,(C) — PGSp,,(C) is also surjec-

tive, because for every A € GSp,,(C) the matrices A and \/(11(7)14 € Spy,(C) have the same

image in PGSp,,(C); hence PSp,,(C) = PGSp,,(C). By definition 7 = inn(ho(i)) = inn(J)
gives a Cartan involution if and only if Pgd’T (R), the R-points of the twist of P3¢ = PGSpy, g
over C by 7, is compact. The involution 7 comes from the involution 7 on Sp,, g given by
7(G) = JGJ~!. In this particular instance, we see, from the fact that G = JGT>~1J~! for
G € Spy,(C) and that J? = —1, that

(@) = JGJ!
= JJGT gyt
Gl

This gives us, for G € Spy,(C) that 7(G) = G if and only if GG = idy,. In other
words, Sp;g(R) is a closed subgroup of the compact subgroup Usy(C) C GL2y(C) of unitary
matrices. Furthermore, the preimage K of PSpj (R) in Spy,(C) consists of all G such that

7(G) = ¢G for some ¢ € py(C) = {#1}; hence K/ Spgg(R) has at most 2 elements, which

12



means that K is compact as well. This implies that PSpgg(R), as the image of a compact
set, is compact as well.

5. For any Q-algebra B, any commutator of GSp,, o (B) lies in Spy, o(B) as it acts trivially on

J, and by scaling we may assume that it is of the form [A, A'], for some A, A" € Spy, o(B).
However, Spy, q is a perfect group, so [Spy, q,SPay.q) = SPay.q; hence GSp,, ¢ / GSpSZﬁQ =

GSpay,q / SP2y,q = Gim,q, Which is a split torus over Q.

6. Suppose P’ is a normal subgroup of Py containing ho(S). Then P’ properly contains the
scalars, so the quotient map Py — P/Py factors through PGSp,, q and its image there is
nontrivial. However, this is a simple linear algebraic group, so this means it must be all of
it; hence P’ = P.

Now define the Siegel upper half plane H, as the set of g x g symmetric complex matrices
with positive definite imaginary part. It comes with a transitive action of Py(R)T as follows:

For A € Py(R)T, write A = a b with a,b,¢,d € My(R); then for 7 € H,, one has
c d

A-7 = (ar +b)(ct +d)~!. As is shown by the following proposition, this action comes naturally
from the action of P(R)* on X, .

Proposition 2.14. There is a unique isomorphism ¢ of compler manifolds XS' — Hgy that is
equivariant under the Po(R) -action such that p(hg) = i.

Proof. Let h € X, and write h = Inn(A) o hg for some A € Py(R)*. Let Vj be the Hodge
structure on R29 induced by h. Then VC*,}L’O = AV&}L;)O. As V(;}IL;O = {(Z’) :y € CY9}, we see that

VIt = {(EZ;“S;?) ye cg} _ {((az‘+b)(cyi+d)‘1y> e Cg}.

This shows that there is an injective map ¢ : X — GL,(C), sending h € X to the unique
element A € GL,(C) such that V&}Z’O = {(‘?;’) :y € C9}. As above, if h = Inn(A) o hg, then
@(h) = (ai +b)(ci +d)~! = A-i. Now, for any A; € Py(R)* and any h = Ay - hg € X one has

o(A1-h) = @(A1Az - ho)
= AyAy-i
= Ai(p(h)),

so the action is equivariant under the action of Py(R). As p(hg) € Hg4, the group Py(R)™ works
transitively on both H, and Xgr the map ¢ is a bijection. It is also an isomorphism of smooth real
manifolds. As the complex structure on XO+ is unique, ¢ must also be an isomorphism of complex
manifolds. O

For a sufficiently small congruence subgroup Gy C Py(Z)" = GLa(Z) N Py(R)™ we now have
a connected Shimura variety Sy = Go \ Hy. A point 7 € H, induces an isomorphism of R-vector
spaces t, : C9 — R, defined by t,(re;) = fi, t-(€;) = fitg, where e1,..., e, is the standard
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basis for C9, and fi,..., fa, is the standard basis for R?9. The morphism h, € X corresponding
to 7 is on R-points the composite map

C* — Autg(C9) = Autg(R?Y) = GLy,(R).
For suitable choices of Gg, the connected Shimura variety Sy becomes a Siegel modular variety,

parametrising principally polarised abelian varieties with some level structure, as we will see in
chapter E
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3 Abelian and semiabelian varieties

Before continuing with more examples of Shimura varieties, I first introduce the notion of two
specific kinds of group varieties, namely abelian and semiabelian varieties, starting with the former.

3.1 Abelian varieties

For a thorough treatment of abelian varieties in general, including proofs of the statements in this
section, I refer to [17]. We begin, straightforwardly enough, with a definition.

Definition 3.1. Let k£ be a field. An abelian variety over k is a complete group variety.

The terminology comes from the fact that any such a group variety is automatically a com-
mutative group variety. However, not every commutative group variety is an abelian variety; a
counterexample is the group variety G, ;. An elliptic curve over k is a one-dimensional abelian
variety over k. In fact, one can prove that every one-dimensional abelian variety is an elliptic curve.

The notion of an abelian variety can also be extended to a more scheme-theoretic definition.

Definition 3.2. Let S be a scheme. An abelian scheme X /S is a proper smooth group scheme
m: X — S, whose fibres are geometrically connected.

An equivalent definition of an abelian scheme is then a smooth group scheme X /S whose fibres
are abelian varieties. If S is itself a variety over a field k, we call X /S a family of abelian varieties.
An abelian scheme of relative dimension 1 is the same as an elliptic curve over a scheme as defined
in [21].

Now let X be an abelian variety, and let T be another variety over k. A rigidified line bundle
on X x T is a pair (£,«) of a line bundle, i.e. an invertible Oxxr-bundle, £ on X x T and
an isomorphism « : Op — 0%L of line bundles on 7. A morphism between two rigidified line
bundles (£1,a1) and (Lo, @s) on X x T is a morphism of line bundles ¢ : £ — L5 such that
(0*p) 0 a1 = a3. We can now define the following functor:

PX : SCh/k — Set
T +— {isomorphism classes of rigidified line bundles on X x T'}

One can show that Px is representable by a k-scheme Y. As the tensor product of two rigidified
line bundles is again rigidified, Y obtains the structure of a group variety. One can prove that its
identity component XV is again an abelian variety, called the dual abelian variety of X. The line
bundles on X coming from XV (k) are said to be algebraically equivalent to 0; in the case that X is
a curve, this coincides with the usual definition of degree. The identity on X induces a rigidified
line bundle (P, v) on X x XV, called the Poincaré bundle, which has the following universal prop-
erty: if T' is a scheme over k and (£, «) is a rigidified line bundle on X x T then there is a unique
morphism g : T — XV such that (idx x ¢g)*P and £ are naturally isomorphic as line bundles
over X x XV, and such that (idx x g)*v = a. Because P is rigidified, we have an isomorphism
Oxv = Ploxxv of line bundles on XV. On the other hand, the map 0 : Spec k — XV corresponds
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to the identity element of Px (Speck), so we find that Ox = P|xxo as line bundles on X. Further-
more, one can prove that (XV)V = X and Px = Pxv as line bundles over X x XV = (XV)V x XV.
Also, a morphism of abelian varieties f : X — Y induces a pullback morphism fv :YV — XV
called the dual morphism of f.

In the case of an abelian scheme X /S, the notion of a dual abelian scheme XV /S can be
defined as well, but the proof of representability is more complicated; it can be found in [14, I].

Now let X be an abelian variety over a field k, and let € X (k). For any k-scheme T, there
is a map

t(T): X(T) — X(T)
y = y+u,

and this is functorial in 7', so it defines a morphism of varieties ¢, : X — X. Now let £ be a line
bundle on X. Then £ induces the following morphism of abelian varieties:

(pg:X — XV
r = tLeLlL!

If £ is ample, then ¢, is an isogeny. An isogeny X — XV coming from an ample line bundle is
called a polarisation; a polarisation that is an isomorphism is called a principal polarisation.

Now let X be an elliptic curve, and for any point = € X, let D, be the line bundle corresponding
to the divisor [z]. Then one can take £ to be the line bundle Dy corresponding to the divisor [0];
this gives an isomorphism X — XV that is defined on k-points by sending z to D_, ® Dy B
Dy @Dt e PicO(X ); elliptic curves hence are canonically isomorphic to their dual. For general
abelian varieties, however, this is not the case. Still, it can be proven that every abelian variety is
projective, and an embedding of an abelian variety into a projective space defines an ample line
bundle, hence a polarisation, so every abelian variety is isogenous to its dual.

3.2 Complex abelian varieties

We call a complex abelian variety X simple if X has precisely two abelian subvarieties, namely
0 and X itself. Furthermore, we define the category Q ® AbVarc of complex varieties up to
isogeny to have as objects complex abelian varieties, denoted Q ® X, while the sets of morphisms
between two abelian varieties X and X’ is defined to be Q ®z Homapvare (X, X'), also denoted
Hom(Q ® X,Q ® X’). The terminology comes from the fact that for every isogeny f: X — X’
there is an isogeny g : X’ — X such that gf € Z~¢ C End(X); this means that every isogeny
is an isomorphism in Q ® AbVarc. The advantage of using this category lies in the following
theorem.

Theorem 3.3 (Poincaré’s Complete Reducibility Theorem). The category Q ® AbVarc is
semisimple, i.e. every complex abelian variety X is isogemous to a product of simple varieties
that are uniquely determined up to permutation and isogeny.
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Proof. See [0, 5.3.7] O

Now let X be a complex abelian variety. The associated complex analytic manifold X®" can
be regarded as a real analytic manifold, which makes it a Lie group. Since A is a commutative
complete group variety, X*" is a compact commutative connected Lie group. By the classification
of Lie groupst, this means that X*" is a complex torus; let us write X** = V /A, where V is a
complex vector space and A a lattice in V. Then A = m1(X) = Hy(X,Z). The complex structure
on V =R ® A gives H1(X,Z) a Z-Hodge structure of type {(0,—1),(—1,0)}. Now let X’ be
another complex abelian variety, and write X’*® = V'//A’. A morphism X — X’ of complex
abelian varieties corresponds to a C-linear map ¢ : V. — V’ such that ¢(A) C A’. In other
words, ¢ is a map A — A’ preserving the complex structure on R ® A; but this is exactly the
same as a morphism of Z-Hodge structures. We thus have a fully faithful functor

AbVarc — Z — Hodge
A — H, (147 Z)

An isogeny from A to itself leaves the Q-Hodge structure invariant, so we get a commutative
diagram of functors

AbVarc Z — Hodge

| |

Q ® AbVarc —— Q — Hodge

However, not every such a V' /A gives a complex manifold that comes from an abelian vari-
ety. Before giving a necessary and sufficient condition for this, we first have to explain some theory.

A line bundle on a complex analytic torus 7 = V'/A is represented by an element of H' (T, O).
The exact sequence of sheaves on T

0— Z(1)r — Op 250X —0

induces a group homomorphism H'(T,0)) — H*(T,Z(1)). The image of a line bundle £ is
called the first Chern class of L, written ¢;(£). One can prove (see [6, 2.1.2]) that H?(T,Z(1)) is
canonically isomorphic to Alt*(A, Z(1)), the set of Z-bilinear maps ¢ : A x A — Z(1) satisfying
o(x,y) = —p(y,z). Under this identification the image of a line bundle £ will be an alternating
form ¢1(£) : A@ A — Z(1) that is a morphism of Hodge structures. The following theorem shows
the importance of these definitions.

Theorem 3.4 (Lefschetz). Let T =V /A be a complex analytic torus, and let L be a line bundle
onT. Then the space of holomorphic sections of L™ defines a closed embedding as a closed complex
submanifold of T into a projective space for each n > 3 if and only if c1(L) is a polarisation of the
Z-Hodge structure A.

6See [B, 6.1].
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Proof. See [§, 1.18]. O

This theorem has the following important corollary, which completely classifies which complex
tori come from algebraic varieties.

Corollary 3.5. Let T =V /A be a complex torus. Then T is the analytic space corresponding to
a complex algebraic variety if and only if A is polarisable. Therefore the functor AbVarc —
{polarisable Z-Hodge structures of type {(0,—1),(—1,0)}} is an equivalence of categories.

Proof. See [§, 1.20]. O

As is shown in [6, 2.4], for a complex abelian variety X with X*" = V' /A, the complex analytic
variety corresponding to XV is equal to /A, where

Q={f:V — C antilinear}

and .
A={feQ:Imf(A) C Z}.

Its Hodge structure is stated in the following proposition.

Proposition 3.6. Let A* = Hom(A,Z(1)). The map A — A* sending a functional f to 2milm f
is an isomorphism of Z-Hodge structures.

Proof. An inverse map can be given by h — (z — 55 (ih(2) — h(iz))), so the map is a bijection.
Now A and A* are both Z-Hodge structures of type {(0,—1),(—1,0)}, so it suffices to show that
the complex structure on Q = R ® A is preserved by the bijection. For every a € C, every
f € Q and every z € V one has Im(af(az)) = |a*Im f(z). On the other hand, for every a € C,
heV*=R®A* and z € V one has (a - h)(az) = |a|?z, which shows that the two real vector
spaces have the same complex structure. O

Under this identification, the polarisations of the complex analytic abelian variety V /A corre-
spond to the polarisations of the Z-Hodge structure A, as is shown in [6, 2.5.5].

Consider the universal covering V = R ® H;(A) with its complex structure, and let Oy be
the sheaf of nowhere zero holomorphic functions on V. The free group H;(A) acts on H*(V,05)
by translations, which allows us to define the group of 1-cocycles Z* (Hy (A), HO(V, Op)). Such a
cocycle is a function f: Hj(A) x V — C, and it defines a line bundle by quotienting out V' x C
by the action of Hy(A) given by vg - (v,t) = (v + vo, f(vo, v)t). As is shown in [, B], this actually
defines a group homomorphism

Z'(Hy(A),H(V,05)) — Pic A.
It is surjective, and its kernel is B! (H; (A), H(V, Oy})), so that we might consider it as an isomor-

phism
H'(H; (A),H(V,05)) = Hy(A,0%) = Pic A.
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Any polarisation ¥ : A ® A — Z(1) induces an isomorphism ¥V — V* If ¢ is an
endomorphism of X in Q ® AbVarc, then let Ry () be v lopYore End(Q ® X). The map
R, is an involution of End(Q ® X)) called the Rosati involution induced by 1. Now let o’ be the
transpose of ¢ with respect to 1. For every v € V, one has

Ry(p)(v) = (" opY od)(v)
= (W7 opY)(wr Y(v,w))
! wa p(w)))
= (p" (v),w))

o
= ¢ H(w
o" (v),

so Ry () is the transpose of ¢ with respect to 1.

3.3 Semiabelian varieties
We begin, straightforwardly enough, with a definition.

Definition 3.7. Let k£ be an algebraically closed field. A semiabelian variety over k is a commu-
tative group variety GG over k which fits in a short exact sequence of linear algebraic groups

0—T —G—A—0,

where T is a torus and A is an abelian variety.

Analogously, we can define a semiabelian scheme, and a family of semiabelian varieties.

Example 3.8. Let X be an abelian variety, and let £ € XV be a degree zero line bundle
on X. For any k-scheme T, let G(L)(T) be the set of pairs (z,¢), where x € X(T) and
¢ : Ly — t3Lp is an isomorphism. The set G(L£)(T) carries an abelian group structure by
the operation (1, 1) - (2, p2) = (21 + T2, 1,01 0 ¥2), and this is functorial in T', so this defines
a group functor G(£) : Sch/, — Grp; see [17, VIII] for more details. One can show that G(L) is
representable by L7, the geometric line bundle corresponding to £ with its zero section removed.
The isomorphism is defined as follows: The rigidification 77 : Gy, 7 — L o7 defines a point
P =r(1) € Lz o(T) for every k-scheme T'; then any (z,¢) € G(£)(T) induces an isomorphism
¢o:Lep = L. 7 that makes the following diagram commute:

@
Ly —— Ler

||

X——X

Then (z,¢) corresponds to the point ¢(7') € Lz (T). Now L7 fits into a short exact sequence of
commutative group varieties

K

1— G S L5 X — 1,
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where 7 is the projection morphism. This shows that L} is a semiabelian variety. One can even
prove that every extension of X by Gy, ; is of this form.

Example 3.9. Let X be an abelian variety over a field k, and let P be the Poincaré bundle
over X x XV. Let ¢ € XV be a point, and let £ be the corresponding line bundle on X. Then
there is a canonical isomorphism of line bundles 71.Px gy = £. This isomorphism preserves
the rigidification, so this isomorphism induces an isomorphism L; e L} of commutative group
scheme extensions of X. This shows that L; g isa semiabelian variety, and we can regard Lé as a
semiabelian scheme over the basis X¥. On the other hand, we can also regard L} as a semiabelian
scheme over X. Now, if we denote the group law on L7X,7 X x{q} by +4 for every point ¢ € XV, and
the group law on L;’ (P} XV by +, for every p € X, then the two semiabelian scheme structures on
L} are compatible in the sense that for every pi,ps € X and ¢1,¢2 € XV and for every quadruple
(9ij)ije{1,2y with g € Lf,’(m’qj) one has

(911 +py 912) F7T% (921 +p, g22) = (911 +7 g21) +pi4ps (912 +% go2).

For this reason L is called a biextension of X and XV; see [19, VII| for a more thorough treatment
of this notion.
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4 Classification of connected mixed Shimura varieties over
Siegel modular varieties

Fix (P, X)) = (GSpyy,qs Hg) as in section R.4. In this section, I classify all Shimura varieties
S (associated with a triple (P, X, G)) for which P/Wp = Py, such that the morphism of linear
algebraic groups P — P, induces a morphism of Shimura data (P, X+) — (P, X;); these are
called Shimura varieties over a Siegel modular variety. If Up is the subgroup defined by point
E of definition @, then the morphism P — P, factors through the quotient map = : P —
P = P/Up. Write X't = 7m(X™*), then (P, X'") is again a Shimura datum, and the map
(P,X*) — (Py, Xy) factors through (P’, X'*). For this reason, I first classify all such (P, X)
such that Up = 0.

4.1 Unipotent extensions of GSp,, o of weight —1

Our next objective is to classify all mixed Shimura data (P;, X;") such that Up, = 0 (in other words,
Lie Wp, is of pure Hodge weight —1) and P;/Wp, = GSpy, o, with a morphism (P, X;") —
(Py, X§7) by quotienting out by Wp,, such that X~ maps surjectively to X;". For such a (P, X",
we have the following exact sequence:

1—Wp — P —F —1

Since Pj is an algebraic group over Q, and Q has characteristic 0, it admits a Levi decomposition,
i.e. there is a subgroup M C P; such that Py &2 M x Wp,; see [23] for more details. By quotienting
out Wp,, we see that M = Py, so we may write P, = Py X Wp,. Now let x : S¢ — P¢c be an
element of X;~. By point [ of definition R.4 we know that z is defined over R. Now let z; € X+ be

the composite map S —— Py — P;; then z; gives a Hodge structure of type {(0, —1), (—1,0)} via
the adjoint representation on Lie Wp,. For any R-algebra B, the action of A € B* on Lie Wp, (B)
coming from the map G,, r — S, is multiplication by A. The following lemma then shows that
Wp, is abelian.

Lemma 4.1. Let V be a connected algebraic group over R, and suppose that there exists a positive
integer k and an action of G r on 'V through which, for any R-algebra B, any element A € B*
acts as \F on LieV(B). Then V is abelian.

Proof. The given group acts through Lie algebra automorphisms. This means that for every
v,w € LieV(B) and A € B* the following holds:

/\k[vv ’LU] = 30()‘)['07 w]

[p(Mv, p(Mw]
[)\kv, )\kw]

= Ay, w).

This shows that [v, w] = 0, so Lie V' is abelian; since V' is connected, it must be abelian as well. 0O
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This shows us that Wp, g is abelian, so Wp, itself must be abelian as well. Since Wp, is
unipotent and Q has characteristic 0, we know that there exists an n such that Wp, = G o. Let
GL(Wp, ) be the linear algebraic group for which the B-points, for any Q-algebra B, is the set

GL(Wp,)(B) = Autg(Wp,(B)).
Then the semidirect product P, = Py x Wp, comes from a map Py, — GL(Wp,).

Lemma 4.2. Let V be a finite-dimensional representation of GSpy, q such that for some h € X5
the induced Hodge structure is of type {(—=1,0),(0,—1)}. Then V is a direct product of copies of
the standard representation G29 .

Proof. Let us write Ly = ng for the standard representation of Py, and L(w) = G, q for the
representation of G, q with the action of z given by multiplication by z%. Finally, let L’ be the
representation G, q of Py, with the action given by multiplication by the multiplier character.
First we determine all irreducible representations of Py. Since Py(C) is simply connected, we
simply need to find all irreducible representations of Lie Py = gsp,,. As a Lie algebra, this is
equal to spy, X Gg,q, where the factor G, q comes from the scalar matrices. By [15, 9.17] an
irreducible representation of gsp,, is the tensor product of an irreducible representation of sp,,
with a one-dimensional representation of G4 q. By [L5, 17.5] the irreducible representations of
5Py, are as follows: for nonnegative integers a1, az, ..., a4, let Vo, 4, be the subrepresentation of

g k
&) Sym™ (/\ Lo)
k=1

generated as a Lie algebra module by e ® (e1 Ae2)™ ®@...® (e1 A... Aeg)®. Then Vg, 4, is
irreducible, and every irreducible representation is of this form.

Now let us look at C-points. The map

P 8pyy(C) x € —  GSpyy(C)
(A,z) — €A

is surjective, and its kernel is generated by (eﬂ?i, —%) Hence any irreducible representation of
GSp,,(C) is of the form Vi, o, ® L(w) for some ai,...,a, and w, such that the action of
(e, —%) € Spy,(C) x C is trivial. A straightforward calculation shows that (e's, —%) acts by
scalar multiplication by exp(%(zj jaj —w)); hence w = ., ja; + 2kg for some k € Z. But
then Vi, .4, ® L(w) = Va,,....a,(C) ® L'(C)®F as representations of GSp,, (C); this can be seen
because the actions of both Sp2g(C) and the diagonal matrices are the same. In particular, this
means that every irreducible representation of GSp,,  is of the form Vg, . ., ® L'®% and every
such representation indeed is irreducible.

Under the map ho from section @ the real vector space L(R) gets a Hodge structure of
type {(0,—1),(—1,0)}; a basis for L(C)™"Y is {e; +iegy; : 1 < j < g}. Since the matrix
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1, 0 . . .
( 9 19 ) € SpQQ(C) maps e; to v; = e;j + ieg4;, we see that in the induced Hodge structure
tg g

_ - ja;,0
on Vo, .a,(R), the vector v{" ® ... ® (v1 A ... Avg)® is an element of Va(l,;;&gjaj ); hence
Vas,....a, (R) ® L' (R)®* has a Hodge weight (—2k — > jaj, —2k). However, the difference between
the two terms must be 1, so Zj jaj = 1; hence a; = 1 and a; = 0 for all j > 1. This also implies
that k =0, s0 Vg, 4, ® L'®F = Lg, as was to be shown. Since every representation is a direct
sum of irreducible representations, this shows that any representations is a direct sum of copies of
Lyg. O

From this lemma it follows that Wp, is the direct sum of a number of copies of the standard
representation. Let us now write P, = Py x Wp,. Let h; be the composite map

h
S =% Pyr — Pir,

and let X; be the orbit of h; in Hom(S, P; g) under the action of P;(R). Let X" be the connected
component of X; containing hy; then (P, X f‘ ) is a connected mixed Shimura datum, as we can
check for hy € X;:

1. Again by definition we know that h; ¢ : S¢ — P ¢ is defined over R.

2. Here Lie P;(R) = gsp,,(R) x R?9" as vector spaces, and the action of A € ho(C*) is given
by conjugation on gsp,, (R) and left multiplication on the copies R29", which gives us the
desired Hodge structure type, i.e. gsp,,(R) has weights {(—1,1),(0,0)(1,—1)} and R*" has
weights {(—1,0), (0,—1)}.

3. We see that Lie Wp, = ngg = W_1(Lie P), as was to be shown.

4. Since P;/Wp, = Py, this was already shown in section 2.4,

5. Since P{" = Spy, q sz‘?& we get that Py /P = Py/ P = G, q-

6. Using the composite map hy : S — Pir — FPyr, we see that any normal subgroup
P’ C Py for which P} contains ho(S) must map surjectively to Pp, so it is of the form
P’ = Py x V for some linear subspace V' C Wp, stable under the Py-action. Let us prove
that this inclusion is actual an equality. Writing Wp, = Q" ®q Gif’Q as Py-modules, with
the group acting on the right half of the product, one sees that V = V' ®q¢, , Gi’gQ for some
Q-linear subspace V' C Q. Now the image of P/ in G = Py x (W//V' ® Gng) is normal in
G. This image is Py x 0, but this is normal only if V/ = W', which was to be proven.

As a set, H, x Wp,(R) = X, with the map given by (7,v) — Inn(v) o h,. The action
of P/(R)* is then given by (A,v)(r,v") = (47, Av' + v), where 47 denotes the usual action of
GSpy, (R)™ on H,.

As a Z-model for P; we take GSpy, x G2"; a congruence subgroup G of Pi(Z) in the classical
sense of the wordll is then a subgroup of G x A C Spy,(Z) x Z*", where G is a congruence

Ti.e. it contains the kernel of the map Spg, (Z) x Z29" — Spy (Z/NZ) x (Z/NZ)?9" for some N € Z»1.
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subgroup of Spy,(Z), and A a maximal sublattice of Z? fixed by G. For G sufficiently small, we
get a connected mixed Shimura variety S; = G1 \ X 1+ , that comes with a surjective morphism
of connected mixed Shimura varieties S; — G\ X¢. The result of this section is the following
theorem.

Theorem 4.3. Let S be a connected mized Shimura variety associated to (P, X", G), with unipo-
tent radical Wp C P, such that Up = 0 (in point [ of definition 2.}), P/Wp = GSpy, q, and
the morphism P — GLg,q induces a morphism of connected mized Shimura data (P, X*) —

(GSpyy.q,Hg)-  Then there is an n such that Wp = GZ?S’ and P = GSpy, q xWp, X+ =

Hy x R%"™. Conversely, every such (P, X, G') defines a connected mized Shimura variety S.

4.2 General unipotent extensions of GSp,, q

Again we take P, X, as above. Let us now look for extensions f : P, — Py by some U such that,
for W' = f~1(Wp,), we have a connected mixed Shimura datum (P, X5 ) with unipotent radical
W' and such that the Hodge structure on Lie U induced by any h € X, is of type {(—1,—1)}.
This means that for any R-algebra B, any A € B* acts on LieU(B) as A2, so by Lemma é]
U = G’;’Q for some k. Furthermore, the Levi decomposition of Ps is then P, = Py x W’. Since

U is normal in P, there is an action of the subgroup P, of P, on U. for any h € XS', we see that
any h(z) acts as 2z = d(h(z)) on U. As the images of the different h generate Py, the action of
Py on U must be by multiplication through d.

The possible extensions are given in lemma [L.§. As in section .4, let d : GSpyg.q — Gm,q be

the morphism of linear algebraic groups defined by AT JA = d(A)J, where J = ( iOd 1((1)9 ),
—1dg
and A € GSp,,(B) for some Q-algebra B.

Lemma 4.4. Let V, H, I be rational vector spaces, regarded as algebraic groups over Q. Let P
be a linear algebraic subgroup of GL(V), and let p : P — GL(H) and o : P — GL(I) be
representations of P. Furthermore, let 8 : H x H — I be a bilinear map under which the
P-action is invariant. Define the following map:

B:PxH — H'®I
(A,w) — (v — Bw, Aw"))

Then the morphism of varieties

9:PxHxI — GLV&HGI®G,q)
A 0 0 0

0 o(4) B(4w) wu

(A,w,u)  +— 0 0 oA w

0 0 0 1
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is injective. Furthermore, let v : I — Px H x I :uw (1,0,u) and m: Px HxI — Px H
denote the inclusion and projection map, respectively. Then the sequence

TOY

oL 1
1 —I155oPxHXxI)™ PxH-—1

is a short exact sequence of linear algebraic groups over Q.

I omit the proof, which is a straightforward verification. An alternative way to describe this
group law on P x H x I is by the formula

(A, w,u) (A w' u') = (AA, Aw' + w, v’ +u + B(w, Aw')).

Note that the matrices of the form (1, w,u) for w € H and u € I form a normal subgroup of this
group. Now, if we take P = Py, H = Wp, and I = U, we get the following corollary.

Corollary 4.5. Let Py and W' be as above, and let U = GZ,Q for some integer k. Let (§ :

Wp, x Wp, — U be a morphism of linear algebraic groups over Q such that for every Q-algebra

B, the induced map Wp,(B) x Wp,(B) — U(B) is B-bilinear, and for every A € Py(B) and

v,w € Wp,(B) one has that f(Av, Aw) = d(A)B(Av, Aw). Then for every Q-algebra B, the set
P, 3(B) = Py(B) x Wp,(B) x U(B)

has a group structure given by

(A, w,u)(A" W' u') = (AL, Aw' + w, d(A)u’ + u + B(w, Aw')).

This defines a linear algebraic group P> g, which is an extension of Py by U. Furthermore, if
X;:B = X" xU(C), then (Pg)ﬁ,X;:B) is a connected mized Shimura datum via the identification
XS xW(®R)xU(C) — Hom(Sc, P2.c)

(hy,w,u) +— Inn(l,w,u)oh.

For any x € X;B, the induced Hodge weight filtration on Lie P> g is given by

0, ifn < —2;
Lie U, ifn=-2;
LieW', ifn=-1;
Lie Py, ifn > 0.

Wy (Lie Py g) =

As the following lemma shows every ‘suitable’ extension of P; is of this form.

Lemma 4.6. Let P and W' be as above, and let U = G';’Q. Let Py be an extension of Py by U
such that Py is part of a connected mized Shimura datum (PQ,X;') such that, for some x € X, ,
the induced Hodge weight structure on Lie Py is given by

0, ifn < —2;
LieU, ifn=—2;
LieW’, ifn=-1;
Lie P, ifn>0.

Wn(Lle PQ) =
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Then Py = Po g for a unique 8 : Wp, x Wp, — U such that for every Q-algebra B, the induced
map Wp, (B) X Wp,(B) — U(B) is B-bilinear, and for every A € Py(B) and v,w € Wp, (B) one
has that B(Av, Aw) = d(A)B(Av, Aw).

Proof. Let us write W = Wp,. The short exact sequence of algebraic groups over Q
1—U—W —W-—1
induces a short exact sequence of Lie algebras
0 — LieU — LieW' — LieW — 0.

Now take a morphism = € X, . As 2 : S¢ — (P»/U)c is defined over R, so is the composite
morphism
S¢c — (PQ/U)C — Po)c — Pz)c — GL(Lie W/)C;

now consider the weight structure on Lie W given by the map ¢ : S — GL(Lie W§). The Lie
bracket is an isomorphism of Hodge structures

Lie W§ ® Lie Wg — Lie W§.

By looking at weights, we find that [Lie Wg, Lie Ug] = [Lie Ur, Lie Ugr] = 0 and [Lie Wg, Lie Wg] C
LieUgr. In terms of the algebraic groups themselves, this means that Ug is abelian, elements of
Ur and Wgr commute, and for two w, w’ € Wr, one has that (w,0)- (w’,0) = (w+w'+ Br(w,w"))
for some bilinear map Or : Wr X Wr — Ugr. The group law on W4 in general is then given by
(w,u)(w',uv") = (w4 w,u+u + Br(w,w’)). Since this must be defined over Q, this implies that
Or comes from a bilinear form §: W x W — U.

In the same manner we may write, as algebraic varieties, Py & GSpy, o xW x U. We know
that P, is isomorphic to the semidirect product P, = GSpy g x W’ (this is again the Levi de-
composition). The action of GSp, g is given by matrix multiplication on W. For any map
x:S — P, g and for any R-algebra B, the action of z = a+bi € S(B) on U(B) is multiplication
by a? +b* = d(x(z)). Since GSp, g is is generated by the images of the various z, we see that the
action of some A € GSp,,(B) on U is just given by multiplication by d(B). Using this, and the
group law we have on W', we can determine the group law of P:

(Ayw,u) - (A w' v = (Lw,u)-(4,0,0)- (1w, ) - (4,0,0)
(1,w,u) - A(1,w',u) - (4,0,0) - (4",0,0)

= (Lw,u)- (1, Aw’,d(A)u) - (AA’,0,0)
(

AA Aw' 4+ w, d(A)u + u + B(w, Aw')).

Tt is easy to see that (1,0,0) is a unit element and that
1
1 _ (-1 g1, L _
(A, w,u)™" = (A ,—A T w, a0A) (B(w,w) u)) .
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If this is indeed to be a group law, it has to be associative, so for every Q-algebra B and for every
A € Py(B) and v,w € W(B) the following must hold:

(A, Aw + Av, B(Av, Aw)) = (4, Av,0)(1,u/,0)

(
((4,0,0)(1,v,0))(1, ', 0)
(4,0,0)((1,v,0)(1,,0))

=

(

A,0,0)(1,v +1w,0)
A, Aw + Av, d(A)B(v, w)),

Which is easily seen to be true if and only if S(Av, Aw) = d(A)B(v,w) for all A,v,w. As every
choice of g gives a different group law on the variety Py x W x U, the actual 8 corresponding to
P is unique. U

Now take a P, satisfying the conditions of Lemma @ By taking a connected component X,
of the orbit of the map ho : S¢ — Po.c : z — (ho(2),0,0) under the action of P,(R) - U(C), one
can show that (P, X5) is a connected mixed Shimura datum, where X5 can be identified with
H x R?9" x CF under the action given by (4, v, 2)(1,v',2') = (A7, Av' +v,d(A)z' + B(v, Av') + 2).
The complex structure above a point 7 € H, is given by identifying R?9 with TRY + RY.

A congruence subgroup Gs of P, is a subgroup of P»(Z)", which we may write, as a set, as
Gy = G x A X A C Spyy(Z) x Z*™ x Z*. Here G is a congruence subgroup of Sp,,(Z), A is a
lattice in Z2" fixed by G, and A is a lattice in Z* such that (A, A) C A. If G is sufficiently small
this induces a connected mixed Shimura variety Sy = I's \ X2+ , which comes with a surjective
morphism of connected mixed Shimura varieties So — (G x A)\ X;". Again, I state the result of
this section in the following theorem. Note that it is a strengthening of a special case of [31,, 2.16]

Theorem 4.7. Let S be a connected mized Shimura variety associated to (P, X", G), with unipo-
tent radical Wp C P, such that P/Wp = GSpyy q and the morphism P — GSpy,  induces a
morphism of connected mized Shimura data (P, Xt) — (GSpy, o, Hg). Then there exist integers
n, k such that Up = G’;Q, Wp/Up = Gi?g, and P/Up = GSpy, q X(Wp/Up). For any Q-algebra
B, the group P(B) is as a set equal to GSpy,(B) X B2?9" x B¥ and the group law is given by

(A, w,u) - (A0 o) = (AA', Aw’ + w, d(A)’ +u + B(w, Aw),

for some bilinear map S : Gz?g X Gif’g — Up satisfying B(Aw, Aw') = d(A)B(w,w") for all
A,w,w'.  Furthermore, X+ = H, x R%" x C¥, and G is a congruence subgroup of P(Q)*.
Conversely, every such (P, X, G) defines a connected mized Shimura variety S.
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5 Special subvarieties of extensions of Siegel modular va-
rieties

In this chapter we classify the special subvarieties of the connected mixed Shimura varieties de-
scribed in the last chapter. Hence we take Py = GSp,, q and Xar = H4. Furthermore, let

Go C Py(Z) be a congruence subgroup; then we consider the Shimura varieties So = Go \ X

For a subgroup @ of P, let Zg be the subset of morphisms S¢ — Fy ¢ in X factoring
through @Q¢. By Lemma , a special subvariety arises from an injective morphism of connected
mixed Shimura data (Q,Y ") — (PO7XSr ), so we may regard @ as a linear algebraic subgroup
of Py, and Y as a connected component of Zg. However, not every subgroup of Py is part of a
connected mixed Shimura datum (Q, Y ™) for some Y T; let us call those that do special. Although
I will not give an explicit classification of special subgroups of Py, we will discuss specific examples
of these connected mixed Shimura subdata in chapter E Suppose @ is a special subgroup of Fp;
then (Q,Y™,Go N Q(Q)) defines a special subvariety ¢ y+ of Sp.

5.1 Special subvarieties of 5,

I keep the notation from section @, so I consider the connected mixed Shimura datum (P, X;"),
where P is the linear algebraic group Py x W, where W = Wp, is a product of n distinct copies of
the standard Py-module Gng. As before, we can identify X, with HqxR?9™. For G a congruence

subgroup of Py and A a maximal sublattice of Z29" fixed by G, I consider the Shimura variety
Sy corresponding to (Py, X;7, G x A). The following proposition classifies the subgroups @ of P;
for which there exists a connected subset Y+ C Hom(Sc, Q) N X for which (Q,Y T, P(Z) N G)
defines a Shimura subvariety of S;. In order to do this, we first need the following lemma from
group cohomology.

Lemma 5.1. Let k be a field of characteristic 0, B a subgroup of GLy, (k) containing the scalars,
and let V' be a k-vector space that is a B-module, on which the scalars act by multiplication. Then
HY(B,V') = 0.

Proof. Let s : B— V' be a cocycle. Then for all A € B one has that
2s(A) + s(2) = s(2A4) = As(2) + s(4),
so s(A) = (A —1)s(2), so s is a coboundary. O

Proposition 5.2. Let Q C Py = Py x W be a special algebraic subgroup. Then up to conjugation
Q 1is of the form Q' x W', where Q' is a special subgroup of Py, and W' is a sub-Q'-module
of W, and the section implicitly induced by the semidirect product is a restriction of the section
Py — P.

Proof. The image of the special subvariety ¥ in Sy is again a special subvariety, so the image Q’
of Q in Py is a special subgroup. Let Q™! be the reductive part of @ in the Levi decomposition.
Then the map Q — Py factors through @™. On the other hand, since @ is a subgroup of Py,
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Q™! can be considered as a subgroup of Py, so Q' = Q*4. Now let W’ C W be the kernel of the
map Q — Fp; it is the unipotent radical of (). Furthermore, by definition @ is a subgroup of
Q' x W, where the semidirect product is induced from the semidirect product of P, = Py x W.
We therefore have a morphism @Q — Q' x W /W’ that respects the morphisms to Q. The image
of @ in Q' x W/W’ is isomorphic to @’, so it comes from a cocycle Q) — W /W', By lemma EI
this is a coboundary, so the image of ) is up to conjugation equal to @’ x 0. Therefore Q is up
to conjugation contained in Q' x W’  where the semidirect product is induced by the semidirect
product P; = Py x W. Since the dimensions of the unipotent radical have to be the same, we find
that @ must actually equal Q' x W’ up to conjugation, as was to be shown. O

From this classification of subgroups I can now derive a classification of the special subvari-
eties of S;. In order to keep the classification simple, I list the subvarieties only up to Hecke
correspondence, which is justified by proposition .

Proposition 5.3. Let Z be a special subvariety of S1. Then up to Hecke correspondence Z is
of the form Y w y+ for some special Q" C Py and some sub-Q'-module W' of W, and some
connected component Y+ of Hom(Sc, Q' x W') N X"

Proof. Suppose Z corresponds to a connected mixed Shimura datum (Q,Y ™). As we have seen
above, we know that @ is a subgroup of Py that is a conjugate of a subgroup of the form
Q' x W'. Without loss of generality, we may assume that this conjugations is by some ele-
ment w € W/(Q). If 7 : P, — P, is the projection map, and Y'* = 7w o Y+ one now has that
Yt =Y"*x (W(R)+w) CH, x WR) =X

Now let G’ C Q(Z) N G; be small enough, so that the inverse image of Z under the map
G'\YT — G\ X{ = 8 is of the form Y, y+; we may assume without loss of generality that
G’ =T x A, where I is a congruence subgroup of Q'(Z), and A is a lattice in W’. Now let m € Zs,
be such that mw € A, and consider the Hecke correspondence

1
(F[><— \X+<—G’\X+ S (GNQE(Z))\ XT.
Then Z is an irreducible component of ¢(¢'~*(Zg y+)), as was to be shown. O

5.2 Special subvarieties of S,

In this section, I classify the special subvarieties of Ss, keeping the notation from section @
Thus we let Py, P, W, Xi",G A be as above, and we let U = G’C for some integer k, and
B W><W—)UablhnearmapsothatB(Av Aw) = d(A)B(v,w) forallAePO and v, wEW
We then let P, be the extension of P; by U as in corollary , and X2 =X/ + x CF. Choose some
lattice A C Z* so that (A, A) C A; then S, is the connected mixed Shlmura variety G’ \ X5
where G’ is the congruence subgroup of Py corresponding to the set G x A x A. Again, 1 start
with classifying the special algebraic subgroups of Ps.

29



Lemma 5.4. Let Q C P» be a special algebraic subgroup. Then up to conjugation Q is as a variety
of the form Q' x W' x U’, where Q' is a special subgroup of Py, W' is a sub-P’'-module of W, and
U’ is a linear subspace of U such that the induced bilinear form W' x W' — U /U’ is symmetric.

Proof. Look at the kernel of @ — Py; this will be a linear subspace U’ of U. Now Q/U’ is
the image of a section Q' x W/ — P,/U’. We may assume that the image of Q' in P, equals
Q' x W' for some special subgroup Q’ of Py and a sub-Q’-module W’ of W, as any other special
subgroup may be obtained by conjugating. Denote this section by (A,v) — (A4, v,24,); then one
has zaar avqo = d(A)zar . + B(v, AV") + 24,. In particular one has 21, + 21, + B(V/,v) =
21040 = #10 + 21,00 + B(v,v"), which shows that 8 must be symmetric on W’ x W’. If this is the
case, then the map given by z4 , = % B(v,v) gives us a section. Any other section can be obtained
from this one by conjugating. O

Again, the classification of special subgroups allows us to find the special subvarieties of S5.

Theorem 5.5. Let Z be a special subvariety of So. Then up to Hecke correspondence Z is of the
form X prywryxurn),y+ for some P', W', U" such that P is a special subgroup of Py, W' is a sub-P’-
module of W, and U’ is a linear subspace of U such that the induced bilinear form W' x W' — U’
is symmetric, and some connected component Y of X7 N Hom(Sc, (P’ x W') x U").

Proof. The proof of this proposition is analogous to that of Proposition @ O
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6 Special subvarieties of modular curves and universal el-
liptic curves

This section is devoted to a specific example of the connected mixed Shimura varieties Sy, S7 and
Sy as described above. First, let us take g = 1, and write Py = GSp, = GL2 q and XO+ = H;.
For a suitable choice of the congruence subgroup Gy C Sp,(Z) = SL2(Z), the curve Sy = Go \ X
is a moduli space for elliptic curves over C with some level structure; this means in this case that
there is a ‘natural’ one-to-one correspondence between C-points of Gy \ Xar and elliptic curves
over C with a point of given order. This notion of naturality will be properly defined in the next
chapter. A point 7 € X C C corresponds to the map h, : S — GL2(R) obtained by taking the
R-basis (7, 1) for C. By a slight abuse of notation, I will still write 7 for the image of 7 € X in Sp.

As g = 1, the variety Sy is a one-dimensional quasiprojective complex variety, so a special
subvariety of Sy is either all of Sy or a special point. The latter are classified by the following
proposition.

Proposition 6.1. Let 7 € Hy C C be a point. Let E; be the elliptic curve C/(Z -1+ Z). Then
the image of T in Sy is special if and only if E; has complexr multiplication.

Proof. Suppose E. has complex multiplication; then Q(7) is an imaginary quadratic extension of
Q, so Q7 + Q is closed under multiplication by 7. By choosing (7, 1) as a basis for Q(7), we get
an injective morphism of algebraic groups f : Resq(r)/q Gm,q(-) — GL2,q = GSpy q; let T be
its image. The base-change of f to R is the morphism h; : S — GSp, g. It is easy to verify that
(T, {7}) is a connected mixed Shimura subdatum, defining the special subvariety 7 € S.

Conversely, if 7 in Sy is special, then the image h,(S) has to be contained in an algebraic
subgroup of Py g defined over Q. Let 1> be the smallest of these algebraic subgroups defined over
Q. Then, as T fixes 7, this subgroup must be commutative. However, h,(S) is a maximal abelian
subgroup of GLa g, so h(S) = T-r. Now T-(Q) is a subgroup of C* that fixes the set Q7 + Q.
Now suppose that T-(Q) is contained in R* C C*; then T,-(R) is contained in R*. However, we
know that T5-(R) = C*, which is a contradiction. Therefore there is a z € C\ R fixing Q7 + Q.
By multiplying z with a sufficiently large integer we may assume that z fixes Z7 + Z; but then z
is an endomorphism of F, that is not in Z, which shows that F, has complex multiplication. [

6.1 Universal elliptic curves and their dual

Fix a suitably small congruence subgroup Gy C SL2(Z), and let Py, XS' , S be as in the preceding
paragraph. Now I take P, = Py X GZ,Q' As was discussed in section @, this gives rise to a
connected mixed Shimura datum (Py, X;7), where X is the complex manifold X;* = H; x R?,
where the complex structure above a 7 € H; is determined by regarding R? as RT+R = C. Now
we can take the quotient with the congruence subgroup Gy x Z? to obtain the connected mixed
Shimura variety S, which comes with a projection morphism S; — Sy. Above every T € Sy one
finds that S; - is isomorphic to the elliptic curve C/(Z7 + Z). Conversely, every complex elliptic
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curve is of this form; for this reason, we call S; the universal elliptic curve over Sy. In the next
chapter we will formalise this notion. The following classification of special subvarieties of .57 is a
direct corollary of proposition @

Corollary 6.2. Let Z be a special subvariety of S1. Then up to Hecke correspondence Z is of one
of the following forms:

Z = {1} x 0 for some special T;

e 7 = E, above a special T;

Z =Gy \ (H1x0);
o 7/ =275].

Note that this corollary implies that the special points of S; are exactly the torsion points of
E. above a special 7 € 5.

Let GQV be the linear algebraic group over Q defined for any Q-algebra B as G2, ( ) =
HomB(B2 B). We equip it with a left action of Py, by having a A € Py(B) act on some
¢ e G2 ( )as A- & = (det A)¢ o A7L. The induced Hodge structure on G2 is of type

{(0, 71) ( 1,0)}, so by Lemma [.9 it should be isomorphic to G2 2.q; indeed there exists the
isomorphism of Py-modules

2 2V
:G,q — Gy

(0) = (i)

Now consider the connected mixed Shumura datum
Pl X!) = (Pyx (G2 5 x G2Y,), X x R? x R?Y),
1) %1 a,Q a,Q 0

and let G = Go x (Z% x Z?V); I denote by S} the connected mixed Shimura variety G \ X].
Above every T € Sy, the fibre of S| — Sy is E, x EY, where EY is the dual of the elliptic curve
EY, ie. EY =R?V/Z?', with the complex structure given by

hy: C* — GL(R?Y) : z = (€ = |he(2)[€ 0 he(2) D).

My next aim is to classify the special subvarieties of S7. For a special 7 € H; and A € Q(7)*, we
denote V;  for the sub-Tr-module of G2 o x G2\, given by V; »(B) = {(z,y) € B>x B*" : ®(x )
Ay} for every Q-algebra B. Again, the followmg classification follows directly from proposition
@}. By picking a different set of 2 generators for Gi’ as a GLy-module, we see that the special
subvarieties {7} x E, x 0, {7} x0x EY and {7} x V,; \(R)/(V, »(R)NZ2 x Z2V) for some A € Q(7)*
are all equal up to Hecke correspondence, an analogous statement holds for the case that the special
subvariety maps surjectively to Sy. We therefore get the following classification.
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Corollary 6.3. Let Z be a special subvariety of S1. Then up to Hecke correspondence Z is of one
of the following forms:

o 7 ={1} x 0, where T is special;

o 7 ={7} x E; x0, where T is special;

Z={r}x E; x EY;

Z:GO\Hlxo;

° Z:(GOD((ZQXO))\(HlXRQXO);

Z=5.

6.2 The Poincaré bundle

Now we follow the construction in section @ We take P, to be the extension of P| by U = Gy q,
given by the bilinear map

B:(GlqxGig) x (G2gxGlg) — Gagq
((0,6), (@, €) = &),

where the action of a matrix A € Py on U is given by multiplication. This gives us a connected
mixed Shimura datum (P, X;), where X, can be identified with # x R? x R2Y x C. For any
r € X the induced Hodge structure of U(R) is of type {(—1,—1)}, so we may identify U(Q)
with Q(1) through multiplication with 27i.

We can divide out by a subgroup of the set-theoretic form Gy x Z? x Z2V x Z to get a
connected mixed Shimura variety S;. Over a point (r,v,£) € S], we may identify the fibre
So,(rw,e) = U(C)/U(Z) = C(1)/Z(1) with C* via the exponential map. This connected mixed
Shimura variety is then the geometric object corresponding to the Poincaré bundle over S] with
the zero section removed, as can be shown by using the methods of [, 2.5.1]. The two group laws
on Sy from its biextension structure as in example are now as follows. For any (7,v,&,2) €
H x R? x R?Y x C, let (7,v,§, 2) be its image in Sy. The group laws are then given by

(T’Uvélvzl) +T,U (7-7’07§2a22) = (7'71),51 +627251 + 22)

and

(rov1,& 21) +78 (1,02, &, 22) = (1,01 + 02, &, 21 + 22),

as one can check using the formulation of the group law in example @

There are several equivalent ways of describing P». First, we can use the isomorphism ® to
write Py(B) = GL2(B) x B% x B? x B, with multiplication given by (A,v,w,z)(A’,v',w’,2") =
(AA", Av' + v, Aw' + w, Al + (Av',w) + z), where (_,_) : G2 o X G2 o — Gua,q is given by

(v,w) = ®(w)(v). The Poincaré bundle is symmetric, which is reflected in the fact that there is
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an automorphism of P given by (A,v,w, z) — (A, w, v,z — (v,w)), which is its own inverse.

Alternatively, one can identify (A4, v,&, z) with the 4 x 4 matrix

detA £0A =z
0 A v |,
0 0 1

where £ o A is a row vector and v is a column vector. Let f : So — S} denote the morphism
of Shimura varieties induced by the projection morphism

Py — GLy g X(GJ g x G2Yg)-
The following results now follow straightforwardly from theorem @

Corollary 6.4. Let Z be a special subvariety of So. Then up to Hecke correspondence Z is of one
of the following forms, where groups are written in set-theoretic form, with the multiplication as
m m understood:

o 7 = f7YZ"), where Z' is a special subvariety of S ;
e Z=7x0x0x0, for some special T;

o Z={1} X E. x0x0, for some special T;

e 7 =(Gyx0x0x0))\(H1x0x0x0);

o 7 =(GyxZ?>*x0x0)\Hi xR2x0x0;

o Z={r}x{(v,2): (v,) € V;A(R),22 = &(v)} C {1} x R?/Z? xR?V /Z?Y x C/Z for some
A € Q(T)* NiR (regarded as a subset of T-(Q)).

Proof. Using theorem @, the only nontrivial cases that need to be checked is for which V and V;
the induced map of connected mixed Shimura varieties f=1(Vy) — Vi (or f=1 (Vo) — V)
admits a section. First consider V, ) as before for some A € Q(7)*. Then the fact that 5 is
symmetric implies that (\y,vy’) = (\y/,y) for all y,y’ C B2, for any Q(7)-algebra B. From the
definition of the bilinear map one has that

(N, 9"y = [\ y)
(Ay, Ay')
—(\y, Ay)
= (=\yy).
Since the bilinear form is degenerate, this implies that || = —A2, so ¢ is symmetric on V; ) x

Vr.a if and only if A is purely imaginary. For such a A, the section T X V; x — 1> x V5 X G4 q
given by (A4,v) — (A,v,3(v,v)) gives us the special subvariety Z’. If we now consider Vj, the
same calculation shows us that A must be purely imaginary, but this is a contradiction with the
fact that A € Q*. O
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7 A moduli interpretation of the results

In this section, I interpret the connected mixed Shimura varieties discussed in the previous chapters
within the theory of moduli spaces of principally polarised abelian varieties and their associated
universal abelian varieties. I start with the pure Shimura variety Sy as discussed in section @

7.1 Siegel modular varieties

Let S be a scheme, and let g be a positive integer. By AbSchg 41 I denote the category whose
objects are pairs (A/T, @), where T is an S-scheme, A/T is an abelian scheme of relative dimension
g, and ¢ : A — AV is a principal polarisation. Its morphisms are cartesian diagrams

A
T SN T
where ¢ is a morphism of S-schemes such that 1 4v oy’ = ¢ a0p, and ¥*04,p = 04/ 7 € A'(T").

Now to continue we need the following lemma.

Lemma 7.1. Let X/S, Y /S be abelian schemes of relative dimension g, and let a: X — Y be
an isogeny with dual isogeny oV : YV — XV. Then there is a canonical perfect pairing

ker a x ker o — Gy, 5.

Proof. See |18, 2.1.5]. O]

Now let S be a scheme over C and let A/S be a principally polarised abelian scheme, and
let N > 1 be an integer. By A[N] I denote the kernel of the multiplication map N : A — A.
Through the principal polarisation, we may consider A as its own dual, and NV = N under this
identification. The image of the perfect pairing A[N] x A[N] — Gy, s lies in uy,s. By fixing a
N-th unit root (v € C we can consider this as a pairing with values in the constant group scheme
(Z/NZ)s.

The constant group scheme (Z/N Z)?gg comes with a natural symplectic pairing (Z/N Z)?gg X
(Z/NZ)%Q — (Z/NZ)s induced by the matrix ( Oi’ (l)g ) Therefore we can define the

g g
following functor

Byin:AbSchc,, —> Set
(4/8,¢) = lsom((Z/NZ)§, A[N]),

where the isomorphisms are to be understood as isomorphisms of symplectic modules over S.
This in turn induces a contravariant functor

35



-Ag,l,N :Sche¢ — Set
S = {(4/8,¢,a): (A/S,¢) € AbSchc g1, a € Byan(A/S)}/ ~

where ~ denotes ‘up to isomorphism’; a morphism (A/S,p,a) — (A'/S,¢’,a’) is a morphism
C:(A/S, ) — (A'/S,¢") such that By 1 n(¢)(¢) = a. In other words, Ay 1 n sends a C-scheme
S to the set of isomorphy classes of abelian schemes A of relative dimension g over S, together
with a principal polarisation ¢ : A —~+ AV and a given symplectic basis of the N-torsion. This
functor connects with the rest of this thesis by the following proposition.

Proposition 7.2. Let N > 3 and g > 1 be integers, and let I'(N) = ker(Spy,(Z) — Spy,(Z/NZ)).
Then the functor Ay 1 n is represented by the pure Shimura variety corresponding to (GSpag, Hg, T'(NV)).

Proof. See [28, 7.3]. O

Hence, for Go = T'(IV), the connected Shimura variety Sy parametrises principally polarised
abelian schemes with a given basis for the N-torsion. In particular, the set of C-points So(C) is
the set of principally polarised abelian varieties over C with a given basis for the N-torsion with a
certain symplectic structure. In fact, a point 7 € Sy corresponds to the abelian variety R29/Z29,
with the complex structure induced by 7. The basis for the N-torsion is (%61, R %629), where
e1,...,ez, is the standard basis for Z29.

7.2 The universal abelian variety

Again we take Sy = Go \ Hy, where Gy = I'(N) for N > 3. We have seen that Sy represents
the functor A4 1§ : Sche — Set. In particular, the identity map Sy — Sp corresponds to
an abelian variety £/Sy. Furthermore, if A/T is an element of AbSchc 41, then the morphism
@ : T — Sy to which it corresponds can be decomposed as id o ; this induces a cartesian diagram
of abelian schemes A/T — £/Sp, so we see that A is the pullback of £ under the morphism ¢. For
this reason, £ is called the universal abelian variety. It can be shown that £ = S; = (GoxZ29)\ X;.
Above a point 7 € Sy, the equality comes from the fact that S; ., = C9/(7-Z9+Z), which is indeed
the complex abelian variety corresponding to 7, see section R.4. If ¢ = 1, we get the connected
mixed Shimura variety S; from section [6.1l.

For any C-scheme S, we know that Sy(S) equals the set of principally polarised abelian va-
rieties over S with a given dimension g and with a given symplectic basis of the N-torsion, up
to isomorphy. For a given morphism f : S — Sy, the abelian variety that it represents is
(S1 Xg, 5)/S. Now let w : S; — Sp be the structure morphism, and let h : S — S; be such
that m o h = f. Then h induces an element of (S; xg, S)(S), the abelian variety induced by f.
Therefore Sy represents the functor

®(N):Sche — Set
. A/S p.p. ab. schemes of relative dimension g,
s o {wsems o . h e A [

36



Now I wish to describe the special subvarieties of Sy in the light of this moduli interpretation.
For simplicity, I assume that g = 1, so that I may take the classification these special subvarieties
from section E Above a special point 7, there are only two possible special subvarieties, namely a
torsion point and all of E; these are the elliptic curves with complex multiplication. The special
subvarieties mapping surjectively to Sy are more interesting.

Proposition 7.3. Let Z be a special subvariety of S1 = (I'(N) x Z2) \ X", not equal to S,
that maps surjectively to Sy. Then there exists a multiple N' of N and integers a,b such that Z
represents the image of the natural transformation of functors

A171)N/ — @(N)
Aian(8) — B(N)(9)
N' N’
(E/S,P,Q) +— (E/S,—=P,—Q;aP +bQ).
N ' N
Proof. A connected component Z’ of the inverse image of Z of Sy in X, is of the form H; x {v},
for some v € Q2. Now let N’ be such that N | N’ and N'v € Z?; then there exist a,b € Z/N'Z
such that v = a5 + b£2 in Q?/Z?, where (1, €2) is the standard basis of Z?. Now consider the
quotient map 7 : X; — (['(N') x Z%)\ X;; then K = 7(Z’) equals (I'(N’) \ H1) x {v}. This is
the image of a morphism of connected mixed Shimura varieties

I(NY\H1 — (I(N)xZ*\ (H1 x R?)

T = (1)

Now, for any C-scheme S, an element of (I'(N') \ H)(S) corresponds to an elliptic curve E/S
with two given sections P, @ € E[N’](S) that generate E[N’]. Over a C-point x of S mapping to
7€ T(N')\ H, we see that E, =2 C/(Z + Z7), and P = %’7’, Q = ﬁ; therefore, v = aP + bQ
in F,. The morphism above can therefore be represented in terms of contravariant functors on
AbSchc as follows:

.A171,N(N’) — @(N/)
A n(N)(S) — B(N')(S)
(E/S,P,Q) — (FE/S,P,Q;aP +bQ).

The inclusion T'(N’) C T'(N) induces a morphism (I'(N') x Z2?)\ X;* — S;. In terms of con-
travariant functors on AbSchg, this morphism is defined as follows:

B(N') — &(N)
B(N)(S) — B(N)(9)
(E/S,P,Q;R) (E/S,P,Q,%P,%Q;R).

Under this morphism, the image of K is Z. In other words, we can interpret Z as the image of
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the natural transformation of functors

I'(N') — @&(N)
L(N)(S) — B(N)(9)
(E/S,P,Q) + (E/S,%P,NWQ;aPerQ),

as was to be shown. O

In the same way S} = (I'(N) x (Z2 x Z2V)) \ (H1 x R? x R?V) represents the contravariant
functor

&'(N):Sche — Set
S = {(E/S,P,Q;R,R): P,Q generate F(S)[N],R,R € E(S)}/ ~ .

Again, we wish to regard the special subvarieties of S} as the images of natural transformations
of functors. In order to simplify notation, I use the identification Sj = Go x Z*\ H; x R*.

Let Z C S| be a special subvariety such that, for the map 7= : S| — Sp, the image 7(Z2) is
a special point 7 € Sy. If Z is zero-dimensional, we see that Z is a torsion point on E, x E,,
and if Z is two-dimensional, we see that Z = E, x E.. Now suppose Gy = I'(N) for some N,
and that Z C Si is a one-dimensional special subvariety mapping to some 7 € Sy. Then the
preimage Z’ of Z in {7} x R* & (R®q Q(7))? is a translate of a one-dimensional Q(7)-linear sub-
space V of Q(7)? by an element of Q(7). Because V is defined over Q(7), the free abelian group
A= (Z+Z7)>NV CV is of maximal rank, so Vg /A is an abelian subvariety of C?/(Z + Z7)?.
Also, every one-dimensional subvariety of C2/(Z + Z)? corresponds to such a V. Combining this
with the zero-dimensional and two-dimensional cases, we see that the special subvarieties above
some T € Sy are exactly the translates of abelian subvarieties by torsion points.

Again, the case that Z maps surjectively to Sy allows for a nicer description. Here too the
cases that Z — Sy has zero-dimensional or two-dimensional fibres are not interesting.

Proposition 7.4. Let Z be a special subvariety of S} = (T'(N) x Z*)\ (H1 x R*) such that the
projection morphism Z — Sy is surjective and has one-dimensional fibres. Then there exists a
multiple N’ of N, integers a, b, ¢ and d, and coprime integers p and q such that Z represents the
image of the natural transformation of functors

B(N) — o&'(N)
B(N')(S) — &' (N)(9)
N/

N/
(E/S,P,Q;R) +~ (E/S,WP,WQ;aP—FbQ—FpR,cP—FdQ—FqR).

Proof. Let Z' be an irreducible component of the inverse image of Z in H; x R*; then Z’' = vy + Vg
for some vy € Q* and some sub-GL3(Q)-module V of Q2 x Q2. We may write V = {(z,y) € Q2 x
Q? : qy = pa} for some coprime integers p,q € Z. Then the map Q?> — V : v + (pv, qv) induces
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an isomorphism Q?/Z2? — V/(V NZ*). As before, let N’ be such that N | N’ and N'vy = 0.
Then the image of Z’ in (I'(N') x Z*)\ X" is of the form (I'(N’)\ X)) x (Vi/(VR N Z*) + vy).
This is the image of the morphism of connected mixed Shimura varieties

(CIN) x ZH\ X7 — (T(N') x 2%\ X{*
(r,v) +—  (7,(pv,qv) + vy).

Now let vy = %el + %eg + ﬁeg—i— %64 for some integers a, b, ¢, d; then this morphism corresponds
to the natural transformation of functors

B(N) — &' ()
B(N')(S) — &'(N')(S)
(E/S,P,Q;R) +— (E/S,P,Q;aP +bQ +pR,cP+dQ + qR).

Furthermore, the morphism of connected mixed Shimura varieties (I'(N') x Z*) \ X" corresponds
to the following natural transformation of functors:

O'(N) — &'(N)
&' (N')(S) — &'(N)(S)
(B/S,P,Q:R.R)) — (E/S, NWP, %Q; R.R).

Composing these two functors gives us the desired result. O

7.3 The Poincaré bundle

In this section, we look at the connected mixed Shimura variety So as defined, for elliptic curves,
in section @ The construction for general dimensions is as follows. Let V' be the GSpy, o-
module Gi% , where for every Q-algebra B, the action of a matrix A € GSp,,(B) on a functional
¢ € V(B) is given by 4¢ = d(A)¢ 0 A=, Now any h € X gives V a Hodge structure of type
{(0,-1),(=1,0)}. By lemma [.2, there is an isomorphism ® : V — Gi?Q of GSp,, g-modules.
In the case that g = 1, we have explicitly given this isomorphism in section [.2. In general, we
may define ® by means of the symplectic form J used to define GSpy, . By a base change on
cither side we may assume that ®(Z29) = Z29V. Now, in the notation of corollary .7, we take
U=Gguq, Wp, = Gi?Q X Gi%, and the bilinear map

B:Wp xWp, — U
((v,6),(0,&)) = &)

We then take G to be the congruence subgroup of P, corresponding to the set I'(IV) x Z2 x Z?" x Z,
and we take So = G\ H, x R* x C. Again, as in [6, 2.5.1], one can prove that Sy as defined in
this way is the geometric object corresponding to the Poincaré bundle over S| = 51 xg, SY with
the zero section removed. Now denote by Cg the category of commutative group schemes over S.
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One can prove that Sy represents the following functor:

®5(N):Sche — Set
A/S p.p. ab. schemes of relative dimension g,
S = {(A/S,0,G;R): ¢:(Z/NZ)Y =5 A[N], /~.
G an extension of A by Gy, s, R € G(S)

On C-points the correspondence works as follows. Let = be a point in S3(C), and let 7 be its
image in Sy, and £ its image in AY = SIV’T. Then L corresponds to an extension G of A, by G,,,
and this extension is S2 xg; L; therefore x corresponds to a point R € G(C). Furthermore, the
isomorphism of GSp,, g-modules & : Gi’gQ — V induces, when viewed as S-modules via h,, an
isomorphism of Z-Hodge structures Z29 —s Z29V(1); this yields an isomorphism ¢ : A, — AY.
In this notation, 2 € So(C) corresponds to (A, ¢, G; R) € &2(N).

Now let us look at the special subvarieties of Sy for the case g = 1. Following section @, we
can categorize them into three types:

e inverse images of special subvarieties of S};

e sections of the Poincaré bundle above special subvarieties of S] above which this bundle is
trivial;

o Z={r}x{(v,£2): (v,6) € Vo A(R),22 =&(v)} C {7} xR?/Z? x R?/Z?" x R/Z for some
A € Q(r)* NiR (regarded as a subset of T-(Q)), up to Hecke correspondence.

Of these, only the last one is interesting to describe. For a Z of the last kind, the map Z —
V' = (v,8) + Vo a(R) C E; x EY is either a double or a single covering, depending on whether
the image of V; \(R) N Z? x Z*" under the canonical map

72 x7® — 7

lies in 2Z C Z or not. If we write P for the Poincaré bundle on E, x EY, and regard Z as a
subset of L, then the map L — L3, defined by the morphism of line bundles P — P @ P

defined by z — 22 on local sections, maps Z into the image of the section (v, &) + (v, &, exp(£(v)))

of L7X3®P‘V/ — V. This shows that the line bundle P ® P is trivial over V’; hence P|y- is of

order 2 or 1 in PicO(V’ ). And vice versa, from section @ it follows that every special subvariety
V' of S| above which P is of order one or two is of the form (v,§) + V- A (R).
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8 Pink’s conjecture on semiabelian varieties

As Pink in [B2], I start by listing the history of various conjectures.

8.1 Introduction

The following theorem, before being proven by Faltings [L3] in 1983, was conjectured by Mordell
[27].

Theorem 8.1 (Faltings). For any geometrically irreducible smooth projective algebraic curve Z
of genus > 2 over a number field K, the set of rational points Z(K) is finite.

One can translate this into a question about abelian varieties by embedding Z into its Jacobian
variety J (see [25]), so that Z(K) = J(K)NZ . Since J(K) is finitely generated by the Mordell-Weil
theorem, it is sufficient to prove that for every abelian variety A over a field of of characteristic
zero, any finitely generated subgroup A C A and any irreducible curve Z C A of genus > 2,
the intersection Z N A is finite. This is true, although the only known proof of this is from the
above conjecture. Still, considering objects similar to Z N A led to other conjectures, such as the
following statement, first conjectured independently by Manin and Mumford before proven by
Raynaud [35],[36]:

Theorem 8.2 (Raynaud). Let A be an abelian variety over C and let Ay, denote its subgroup of
all torsion points. Let Z C A be an irreducible closed algebraic subvariety such that Z 0 Ay 18
Zariski dense in Z. Then Z is a translate of an abelian subvariety of A.

There are also other proofs, see [32] for details. The following theorem, due to McQuillan [24],
implies the two above:

Theorem 8.3 (McQuillan). Let A be a semiabelian variety over C, let Ay be a finitely generated
subgroup of A, and let
A={acA:Ine€Zsy:nac A}

be the division group of Ag. Let Z C A be an irreducible closed algebraic subvariety such that ZNA
is Zariski dense in Z. Then Z is a translate of a semiabelian subvariety of A.

The analogous (and weaker) statement regarding abelian varieties is called the Mordell-Lang
conjecture, and has been proven by the combined work of Faltings [13], Raynaud [34], Vojta [37]
and Hindry [20].

On the other hand, there are Shimura varieties which act as universal polarised abelian varieties
with a given dimension and level structure, as we have seen in chapter ﬂ Also, from Proposition
@, it follows that above special points of such a Siegel modular variety, the torsion points of
these abelian varieties are exactly the special points of these varieties as Shimura varieties. This
suggests the following analog of the previous conjecture, posed independently by André [2] and
Oort [29]:
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Conjecture 8.4 (André-Oort). Let S be a pure Shimura variety over C and let A C S denote
the set of all its special points. Let Z C S be an irreducible closed algebraic subvariety such that
Z N A is Zariski dense in Z. Then Z is a special subvariety of S.

Although special cases of this conjecture, mostly under additional assumptions, have been
proven by Moonen [26], André [1], Edixhoven [9], [10], Edixhoven-Yafaev [11],Yafaev [3§], [BY],
Pila-Tsimerman [30] and Gao [L6], this conjecture remains open. It should be noted, however,
that it has recently been solved under the assumption of the Generalised Riemann Hypothesis by
Klingler-Yafaev [22] for pure Shimura varieties.

The conjectures of Mordell-Lang and André-Oort were combined by Pink [32] into a conjecture
about Shimura varieties.

Conjecture 8.5 (Pink). Consider a mized Shimura variety S over C and an irreducible closed
subvariety Z, and let Sz be the smallest special subvariety of S containing Z. Then the intersection
of Z with the union of all special subvarieties of S of dimension < dim Sz — dim Z s not Zariski
dense in Z.

In [B2], Pink showed how the conjectures of André-Oort and Mordell-Lang follow from this
conjecture. He also claimed to prove the following conjecture concerning families of abelian vari-
eties under the assumption of conjecture @ In order to state the conjecture, we first need some
notation. Suppose B — X is a family of semiabelian varieties, and let x € X be a point. For any
integer d, let Bg[fd] be the set of points of the semiabelian variety B, contained in an algebraic
subgroup of codimension > d. Furthermore, we set

B[>d] _ U BL>d].
zeX

Conjecture 8.6 (Pink). Consider an algebraic family of semiabelian varieties B — X over C
and an irreducible closed subvariety Y C B of dimension d that is not contained in any proper
closed subgroup scheme of B — X. Then'Y N B> is not Zariski dense in'Y .

A counterexample to this conjecture was found by Bertrand [5]. However, this counterexample
does not disprove conjecture B.5. There is a mistake in Pink’s proof of the implication B.5 = B.4.
In section @, I will explain the counterexample found by Bertrand.

8.2 Bertrand's counterexample

In [B], Bertrand gives a counterexample to conjecture @ This counterexample can be constructed
as a special subvariety of the mixed Shimura variety S as defined in section @, in the following
way. Let 7 € Hy be a point, with corresponding elliptic curve £ = E,. As in example @, the
geometric line bundle L with the zero section removed corresponding to the Poincaré bundle P
on E x E =FE x EV can be regarded as a family of semiabelian varieties over EV, as every point
of EVY corresponds to an extension of E by Gy, c.
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Theorem 8.7. Suppose T € H is such that Q(7) is imaginary quadratic over Q, and let A € Q(7)*
be totally imaginary. Let Gy be the image of the set

Va={(z,y) € C*: 2 = Ny}

in (C/(Z+7Z))* = E x E, and suppose that the pairing (,) : (Z + 7Z)?> — Z(1) induced by the
identification E = EY maps VAN (Z +71Z)? to 2Z(1) C Z(1). Then there is a special subvariety T
of L; that projects one-to-one to Gy, such that T is not contained in any proper closed subgroup
scheme of Ly, but T' contains infinitely many torsion points on fibres.

Proof. As we have seen in section [.3, the map Vy — C : (v,w) (v, w) induces a map
s: Gy — C/Z, which is a section of L7X?,9A — G,

Now Z = s(G) is a one-dimensional subvariety of L. Furthermore, it is not contained in any
proper closed subgroup scheme. One way to see this is as follows. Suppose Z is contained in a
closed subgroup scheme H C L3; as Z is connected, we may assume without loss of generality
that H is connected. As Z maps surjectively to EV, the same must hold for H. Now let H’ be the
image of H in E x EV. Suppose the fibre H' is a proper closed subgroup scheme of (E x EY)/EV.
As E is one-dimensional, its proper closed subgroups are finite; therefore H' — EV is a finite
morphism. This means that above every ¢ € EV, the fibre H, é C F consists of torsion points only.
However, Z¢ € E is a nontorsion point if ¢ is nontorsion. This is a contradiction, so H' = E x EV.

Now consider the kernel K of the map H — E x EV, which is a closed subgroup scheme
of G, pv. Again, as Gy, pv is one-dimensional over EV, K is either finite or all of G,,. Let k
be an integer such that (k,\k) € (Z + 7Z)?, denote m = (k,\k) in Z(1), and let p be a prime
number not dividing 57=. Let z € E be the image of % in C/(Zt+Z). The image of (z, Ax) under

X
P,(x,Ax)"

of the semiabelian variety L;,M, then p - s(x, Az) is the point (0, Az,exp(5(x, Az))), which is
annihilated by p, and is nontrivial, so s(x, Az) has order p? in the semiabelian variety L;} \g- This
gets arbitrarily large as p increases, so it follows that K = G, gv, so H = P*. However, this also
shows that s(G,) contains infinitely many torsion points. O

the section s is the point (z, Az, exp(3(z, Az))) € L If we regard s(x, Az) as an element

According to Pink’s conjecture @, the intersection Gy N L;bl} is not Zariski dense in Gy. As

L; is of relative dimension 2 over EV, P*[>1] is the set of torsion points in the fibres of L3, so
conjecture @ would predict that set of points of Gy that are torsion in their fibre are not Zariski
dense in G,. However, we have seen before, the image of a torsion point £ of EV is a torsion point
of LE| Ex{¢}; this section thus gives a counterexample to conjecture B.6.

On the other hand, it is not a counterexample to conjecture @, because G, is a special
subvariety of L. This apparent contradiction stems from the fact that there is a mistake in Pink’s
proof of the implication @ = @ The mistake of the proof lies in the fact that Pink claims that
any special subvariety of Ss is a translate of a semiabelian subgroup scheme by a torsion point;
in particular it is contained in a closed subgroup scheme. He uses this to translate a statement
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about mixed Shimura varieties into one about semiabelian schemes. However, this claim is false.
In our example, the subvariety Gy is special, but not contained in any closed subgroup scheme
of L5 — EY. In the next subsections we will classify over which abelian varieties Bertrand’s
construction can be generalised.

8.3 Abelian subvarieties of A x AY over which the Poincaré bundle is
trivial

In this section, I classify the complex abelian varieties over which Bertrand's construction from
section @ works, so, for an abelian variety A, subvarieties X C A x AY such that the Poincaré
bundle restricted to X is trivial. In the terminology of [4], these are called isotropic. I start by
classifying, for a simple abelian variety A, the set of abelian subvarieties of A x AV over which the
square of the Poincaré bundle is trivial. As the Poincaré bundle is birigidified, it is trivial over the
abelian subvarieties 0, A x 0 and 0 x AY of A x AV; the following proposition classifies the other
cases. As in section B.3, for V a (rational, integral) Hodge structure of type {(0,—1),(—1,0)}, I
denote with V* the Hodge structure Hom(V, R(1)) (or Hom(V, Q(1)), Hom(V, Z(1)), respectively).

Theorem 8.8. Let A= Ar/A be a simple complex abelian variety with dual variety AV and let P
be the Poincaré bundle on A x AY. Suppose that ¢ € Isom(AqQAg) is such that ¢(v)(w) = p(w)(v)
for allv,w € Q® A. Let X be the image of the graph of pr : Ax — Ak in A x AY. Then X is
an abelian subvariety of A x AV such that P?|x is trivial. Conversely, every abelian subvariety X
of A x AV such that P?|x is trivial and X ¢ {0, A x 0,0 x AV} is of this form.

Proof. First, suppose that X is an abelian subvariety of A x AV such that P?|x is trivial, and
X ¢ {0,A % 0,0 x AV}. Now the first Chern class of the Poincaré bundle is an element of

H?(Ax AY,Q(1)) = Alt’(Aq @ Ay Q1))

One can calculate (using, for instance, [6, 2.1.2]) that the class of the Poincaré bundle is the
alternating bilinear form

F:(Aq®Ay)? — Q1)
((v1,&1), (v2,&2)) = &(v2) — & (v).

Now X corresponds to a sub-Q-Hodge structure V" of Aq EBAa, with projection maps 71 : V —
Aqandmy : V —» AE}' Because A and AY are both simple, and the Poincaré bundle, or its square,
is not trivial over Ax AV, we get that V is the graph of the Q-linear map ¢ = 7o 071'1_1 tAq — Ag
This map is induced by some element of ¢ € Hom(Q ® A, Q ® AY) such that X is the graph of ¢.
We may write V =T,(Aq), with

ry: AQ — AQ S5 Aa
v (v,0(0)).
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This induces the pullback map T}, : H*(A x AY, Q) — H?*(A, Q), which we can regard as a map
Alt*(Aq @ A) — Alt>(Aq)(1). The fact that P?|x is trivial implies that the image of 2F
under this map is trivial, so the image of F' must be as well. But I'_F' is the bilinear map

F:;F : AQ X AQ — Q(l)
(v,w) = p(v)(w) = p(w)(v),

so the fact that this map is trivial implies that ¢(v)(w) = p(w)(v) for all v,w € Aq.

Conversely, suppose that ¢ is of this form. Regarding Ar & A} as V @ Q again as in section
@, we find that P is represented by the 1-cocycle
ap AXAXxVxQ — CX
(vo, &0, v1,61) = exp(m(&o(vo) + & (vo) + Eo(v1))

in H'(A@ AV, H (V@ Q, O} o). In particular on I'y (V) this is of the form

ap|x (vo, 9(v0), v1, p(v1)) = exp(m(w(vo)(vo) + ¢(v1)(vo) + ¢(vo)(v1))),

for every vy € A such that ¢(vg) € A. In this terminology, we know that Imp(vo)(vi) =
Im ¢(v1)(vo). This means that we can write this as

ap|x (o, (o), v1,¢(v1)) = exp(mp(vo)(vo)) - exp(2m Re p(vo)(v1)))-

Now exp (27 Re ¢(v0)(v1))) only takes real values. The only way this can be holomorphic in vy, for
a fixed (vg,¢(vg)), is if it is constant; call this constant value f(vg, p(vg)); by substituting 0 for
vy one sees that f(vg, p(vo)) = exp(me(vg)(ve)). Because Im ¢(vg)(vo) € Z, the complex number
f(vo, p(vg)) is actually real. Furthermore, as the action of V' N (A & A) on the set of constant
functions on V’ is trivial, one sees that

f(vo +wo, p(vo +wo)) = ap|y(vo+ wo,p(vo + wo),0,¢(0))
= ap|x (o, p(v0),0,9(0)) - ((vo, p(v0)) - ap|x (wo, p(wo),0,¥(0)))

= ap|x (’Uo, 90(00)7 03 30(0)) Cap|x (w07 QP(wO)a 0, @(0))
= f(vo,¢(vo)) - f(wo, p(wo)),

sof:V'N(A®A) — R*: (v,p(v)) is a group homomorphism. This means that we have
exp(dmp(v)(v)) = f(2v,p(20))

= f(v,0(v))?
= exp(2mp(v)(v)),

which shows that f(v, p(v))2 = 1 for all (v, p(v)) € V'N(A®A). But this means that a%‘x = ap2|,
is trivial, so P?|x is trivial. O
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Corollary 8.9. Let A be a complex abelian variety with dual variety AV, and let ¢ : Q ® H1(A) x
Q® Hi(A) — Q(1) be a polarisation. Let ¢ € Aut(Q ® A), and let X be the graph of ¥ o ¢ in
A x AV. Then P?|x is trivial if and only if Ry(p) = —.

Proof. From the previous theorem we see that P2|x is trivial if and only if (¢ o ¢)(v)(w) =

(1 o @)(w)(v) for all v,w € Hy(A). This equation can also be written as (¢ (v),w) = ¥ (p(w), v).
As 1) is alternating, this is true if and only if the transpose of ¢ with respect to 9 is equal to —;
but this transpose is equal to Ry (). O

In general, to find endomorphisms ¢ of A such that Ry(¢) = —¢, the following classification
of endomorphism algebras of abelian varieties up to isogeny is very useful.

Lemma 8.10. Let A be a simple abelian variety, and let b be a polarisation of A. Let D =
End(Q® A), K = Z(D), T = Ry, and Ko = {z € K : 27 = z}. Then (D,) is of one of the
following four types:

1. D =K = K is a totally real number field, and * = idp.

2. Ko = K is a totally real number field, and D is a quaternion algebra over K with D®g R =
My(R) for every embedding o : K — R. There is an a € D. such that d' = ad*a™" for all
d € D, where * is the quaternion conjugation.

3. Ko = K is a totally real number field, and D is a quaternion algebra over K with D®k R =
H for every embedding o : K — R. 1 is the normal quaternion conjugation.

4. Ko is a totally real number field, K is a totally imaginary quadratic field extension of K,
and D 1is a central simple algebra over K such that

(a) for every finite place v of K with v = U one has that inv,(D) = 0, where ~ denotes
complex conjugation on K;

(b) For every place of K one has inv, (D) + invg(D) =0 in Q/Z.

Ifm is the degree of D as a K -algebra, there is an isomorphism D@qR — [[,.x, ,c Mm(C)
such that ¥ on D ®q R corresponds to the involution (Ay, ..., A;) — (ET, . ,ET).

Proof. See [L7, XII]. O

As is remarked in [p], for non-simple A, there are generally many isotropic X C A x AV. In
fact, the only case when they do not exist (except for the trivial ones 0 x A and AY x 0) is when A
is simple and there are restrictions on its endomorphism algebra, as is reflected in the proposition
below.

Proposition 8.11. Let A be an abelian variety. Then there exist isotropic abelian subvarieties X
of A x AV, not subvarieties of A x 0 or 0 x AV, if and only if End(Q ® A) is not a totally real
number field.
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Proof. Suppose no such X exist; we may ignore isogenies and work in the category Q ® AbVarc.
If A is not simple, say via an isomorphism A = B x C, then Bx 0 x 0 x CV C A x AV is an
abelian subvariety over which P is trivial, which is a contradiction, so A is simple. Since the
image of every endomorphism of A must either be 0 or all of A, one has that every element of
End(Q x A)\ {0} is invertible, so it has the structure of a division ring. Now fix a polarisation ¢ of
A and its Rosati involution Ry,. If there is an element of ¢ in End(Q x A) such that Ry () = —o,
let then N € Z~( be such that x(§) := Ny o 1/;*1(5) € 2A for all £ € A. If X is the graph of y
with corresponding subspace V C W @ Q, then the element of H'(V N (AN A), Oy) corresponding
to P|x is of the form

ap|x (X(&0), &0, X (1), &1) = exp(m&o(x(60)))-

As was shown in the proof of @, this map factors through {4-1}; but the choice of N ensures that
this map is trivial, so P|x is trivial. We thus have a contradiction, so no such ¢ exists; lemma
now implies that End(Q x A) is a totally real number field.

Conversely, suppose A is an abelian variety such that End(Q x A) is a totally real number
field. Fix a polarisation 1) of A, and write A =[], A;"", where the A; are pairwise nonisomorphic
simple abelian varieties. Then if D; = End(Q ® A;), one has that End(Q ® A) = [[, M, (D;).
This is only a field if ¢ =1 and ny = 1, and then (A4, Ry) is of type 1 in lemma . By corollary
@, the only subvarieties of A x AV over which P is trivial are 0,4 x 0 and 0 x AV. O
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