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1 Locally profinite groups

One of the two sets in the Weil correspondence for GL2 is the set of equivalence classes of smooth
representations of GL2(F ) for a nonarchimedean local field F . This talk will be about defining
smooth representations and giving some properties. I start by defining a type of group of which
GL2(F ) is an example.

Definition 1.1. A locally profinite group is a topological group G such that every open neigh-
bourhood of the identity in G contains a compact open subgroup of G.

A locally profinite group is locally compact, and any compact open subgroup is profinite; this
explains the terminology.

Example 1.2. Let F be a non-Archimedean local field with ring of integers o and prime ideal p;
furthermore, assume o/p is finite with cardinality q. Let ω be a prime element, i.e. p = (ω). Then
any open neighbourhood of 0 contains an ‘open sphere’

{x ∈ F : ||x|| < q−n−1} = pn = ωno,

which is a compact open subgroup of the additive group F . This shows that F is a locally
profinite group.

Example 1.3. Similarly, the unit group F× is locally profinite, as the congruence unit groups
U jF = 1+pj are compact open. In general GLn(F ) has compact open subgroups 1+pj Mn(o) that
form a fundamental system of open neighbourhoods of 1. This makes GLn(F ) a locally profinite
group.

Definition 1.4. Let G be a locally profinite group. A character of G is a continuous homomor-
phism G→ C×, where C× is given the archimedean topology.

2 Smooth representations of locally profinite groups

Definition 2.1. Let G be a locally profinite group, and let (π, V ) be a representation of G,
i.e. a pair of a complex vector space V and a group homomorphism π : G → AutC(V ). The
representation (π, V ) is called smooth if for every v ∈ V there is a compact open subgroup K of
G such that π(K)v = v.

A smooth representation (π, V ) is called admissible if the space V K = {v ∈ V : π(K)v = v}
is finite-dimensional for every compact open subgroup K ⊂ G. It is called irreducible if it has no
G-stable subspaces other than 0 and V .

The category of smooth representations of G will abusively be denoted Rep(G); the category of
‘abstract’ representations of G will be denoted ARep(G) (and will occur much less in our seminar).
Note that Rep(G) is abelian. There is a left exact functor ·∞ : ARep(G) → Rep(G) defined as
follows. Given (π, V ) ∈ ARep(G) one may define
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V∞ =
⋃

K⊂G compact open

V K .

This is a G-stable subspace of V , which allows us to define π∞(g) = π(g)|V∞ . Then by
definition (π∞, V∞) is a smooth representation of G. If (ρ,W ) is another smooth representation,
then any morphism of representations W → V factors through V∞.

Proposition 2.2. Let G be a locally profinite group and let (π, V ) be a smooth representation of
G. Then the following are equivalent:

1. V is the sum of its irreducible G-subspaces;

2. V is the direct sum of a family of irreducible G-subspaces;

3. any G-subspace of V has a G-complement in V .

A representation satisfying these properties is called semisimple.

Proof. See [1, 2.2].

Example 2.3. Let G be a profinite group, and let V be an irreducible presentation of G. Let
v ∈ V , and let K ⊂ G be compact open such that v ∈ V K . Since G is compact, K is of finite
index in G. Let X be a set of representatives of G over K; then V is spanned by {gv : g ∈ X},
so V is pointwise stabilised by

⋂
g∈X gKg

−1 = K ′, which is normal and open in G, hence of finite
index. But then V is an irreducible representation of the finite discrete group G/K ′, so it has
finite dimension. in general, let G be locally profinite, let V be a representation of G, and let
K be a compact open subgroup of G. Let v ∈ V . Then K is profinite, and as before there is a
normal open subgroup K ′ ⊂ K of finite index such that K ′ acts trivially on the K-subspace W
of V generated by v. Then W is a finite-dimensional representation of K/K ′, and as such is a
direct sum of K-irreducible subspaces. The same then holds for V , so we have shown that V is
K-semisimple.

Proposition 2.4. Let V be a smooth representation of a locally profinite group G and let K
be a compact open subgroup of G. Let K̂ be the set of equivalence classes of irreducible smooth
representations of K, and for ρ ∈ K̂, let V ρ be the sum of all irreducible K-subspaces of V of class
ρ.

1. V =
⊕

ρ∈K̂ V
ρ.

2. Let W be another smooth representation of G. For any G-homomorphism f : V → W and
for any ρ ∈ K̂ we have f(V ρ) = W ρ ∩ f(V ).

Proof. 1. By the above example we can compose V into a direct sum of irreducible K-subspaces;
choose such a sum, and let V (ρ) be the sum of all of the summands of type ρ. Then
V =

⊕
ρ∈K̂ V (ρ), and we need to show that V (ρ) = V ρ. Suppose W ⊂ V is an irreducible

K-subspace of type ρ. If W 6⊂ V (ρ), there would be a an irreducible U ⊂ V of type not
equal to ρ in the summation such that the projection W → U is nontrivial, which is a
contradiction.

2. This follows from the direct sum V =
⊕

ρ∈K̂ V
ρ and the fact that any map V ρ → W τ is

trivial.

This proposition has two important corrolaries.

Corollary 2.5. A short exact sequence of smooth representations U → V → W is exact if and
only if the induced sequence UK → V K →WK is exact for every compact open subgroup K of G.
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Corollary 2.6. Let G be a locally profinite group, let K be a compact open subgroup of G, and
let V be a smooth representation of G. Define V (K) to be the linear subspace of V spanned by
{v − kv : v ∈ V, k ∈ K}. Then

V (K) =
⊕

ρ∈K̂\{1}

V ρandV = V K ⊕ V (K).

V (K) is the unique K-complement of V K in V .

Proof. ⊂ follows from the decomposition into V ρ. For ⊃ note that for any irreducible U of class 6= 1
one has U(K) = U . In general, V (K) is contained in the kernel of any G-morphism V → V K .

3 Induced representations

Let G be a locally profinite group, and let H be a closed subgroup of G. Then H itself is locally
profinite, and restriction of scalars gives us a functor R : Rep(G) → Rep(H). The aim of this
section is to find both a left adjoint and a right adjoint to this functor.

The right adjoint of R is constructed as follows. Let (σ,W ) be a smooth representation of
H. Let I(σ) be the space of functions f : G → W such that f(hg) = σ(h)f(g) for all h ∈ H
and g ∈ G. There is an action of G on I(σ) by defining (g · f)(g′) = f(g′g). This makes I(σ)
an abstract representation of G. We now define IndGH : H → G as ·∞ ◦ I; we call IndGH(σ) the
representation of G smoothly induced by σ.

Proposition 3.1. Let G be a locally profinite group, and let H be a closed subgroup of G.

1. R a IndGH .

2. IndGH is additive and exact.

Proof. 1. For every (σ,W ) ∈ Rep(H), the map aσ : IndGH(σ) → W : f 7→ f(1) is an H-
morphism. To show that IndGH is right adjoint to R it is enough to show that for every
(π, V ) ∈ Rep(G) and for every H-morphism F : V → W there is a unique G-morphism F ′

such that F ′ = aσF . This is done by defining F ′(v) = (g 7→ f(π(g)v)).

2. Additivity follows from the additivity of I and ·∞. It is clear that I is exact and ·∞ is
left exact, so we need to show that IndGH is right exact. So let f : (σ,W ) → (τ, U) be an
H-surjection, and let ϕ ∈ IndGH(τ). Let K ⊂ G be a compact open subgroup fixing ϕ. Then
the support of ϕ is a union of cosets of the form HgK; let X be a set of representatives for
such g. For g ∈ X, ϕ(g) is fixed by H ∩ gKg−1. Applying corollary 2.5 we find that there
is an wg ∈ W , fixed by H ∩ gKg−1, such that f(wg) = ϕ(g). Now define Φ : G → W as
having the same support as ϕ and Φ(hgk) = σ(h)wg, for h ∈ H, g ∈ X, k ∈ K. Then Φ is

fixed by K, so Φ ∈ IndGH(σ), and f∗(Φ) = ϕ.

If H is open we can construct a left adjoint to R. For (σ,W ) ∈ Rep(H), let c-IndGH(σ) be
the subspace of IndGH(σ) consisting out of all functions f : G → W such that supp f is compact
in H\G. This gives rise to a functor c-IndGH : Rep(H) → Rep(G). Furthermore, define the
H-homomorphism

αcσ : W → c-IndGHσ

w 7→ fw

Where fw is supported in H and fw(h) = σ(h)w. Notice that the space c-IndGHσ can be constructed
for closed subgroups in general, but αcσ(w) will not be an element of c-IndGHσ unless H is open.
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Proposition 3.2. Let G be a locally profinite group and let H be an open subgroup.

1. c-IndGH is a left adjoint to R, i.e. for any, (W,σ) ∈ Rep(H), (V, π) ∈ Rep(G) and any
H-morphism F : W → V there is a G-morphism F ′ : V → c-IndGH(σ) such that F = F ′ ◦αcσ.

2. c-IndGH is additive and exact.

Proof. See [1, 2.5].

4 Duality

Let G be a locally profinite group, and let (π, V ) be a smooth representation of G. Let V ∗ be the
dual vector space, and 〈·, ·〉 : V × V ∗ → C the canonical pairing. We can define a representation
π∗ of G on V ∗ by stating

〈π∗(g)v∗, v〉 = 〈v∗, π(g−1)v〉,

for all g ∈ G, v∗ ∈ V ∗, v ∈ V . Such a representation, however, is not always smooth. Therefore we
define the contragredient or smooth dual of V to be V ∨ = (V ∗)∞. Note that (V ∨)K = (V K)∗ for
all compact open K ⊂ G. We also get a canonical map δ : V → (V ∨)∨, which is an isomorphism
if and only if V is admissible, which can be seen by looking at the level of V K ’s. On this level one
sees, by corollary 2.5, that the contravariant functor V → V ∨ is exact.

5 Haar Measures

Let G be a locally profinite group. We consider the complex vector space C∞c (G) of functions
f : G→ C that are locally constant and of compact support. Let f be such a function. For every
x ∈ C the preimage f−1(x) is open in G; hence there are only finitely many x for which this is
nonempty. Take such an x, then for every g in its preimage there is a compact open subgroup
Kg such that f(gKg) = f(Kgg) = x. Then {gKg : g ∈ f−1(x)} is a cover of the compact set
f−1(x). Taking a finite subcover and then taking the intersection of the corresponding compact
open subgroups, we find a compact open subgroup Kx of G such that f−1(x) is closed under left
and right multiplication of Kx. Doing this for all x and taking intersections, we find a compact
open subgroup K of G such that f is a finite linear combination of characteristic functions of
double cosets KgK.

G acts on C∞c (G) be left translation ((λgf)(x) = f(g−1x) and right translation ((ρgf)(x)) =
f(xg)), and both of these turn C∞c (G) into a smooth G-representation.

Definition 5.1. A right Haar integral on G is a non-zero right invariant linear functional I :
C∞c (G)→ C such that I(f) ≥ 0 for any f ≥ 0. A left Haar integral is defined analogously.

Proposition 5.2. There exists a right Haar integral on G, which is unique up to multiplication
by a positive real scalar.

Proof. For any compact open subgroup K of G, let KC∞c (G) be the subspace of C∞c (G) of λ(K)-
invariant functions; this is a G-subspace when C∞c (G), which we may regard as c-IndGK1K . Then
HomG(KC∞c (G),C) = HomH(C,C) ∼= C, which shows the uniqueness of a right Haar integral on
KC∞c (G). A C-basis of KC∞c (G) is given by the characteristic functions fg of the cosets Kg. The
functional IK : fg 7→ 1 has the desired properties.

Now let (Kn)n≥1 be a descending sequence of compact open subgroups of G such that
⋂
nKn =

1. Take I1 = IK1 as above, and let In be the unique multiple of IKn such that Kn is mapped
to (K1 : Kn)−1. Then In+1|KnC∞c

= In, so taking the union over the In gives us the required
functional I; its uniqueness follows from the uniqueness of the In.
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Remark 5.3. The existence and uniqueness of left Haar integrals on G can be proven similarly.
A left Haar integral is not necessarily a right Haar integral; if it is we call G unimodular. If ΓS
is the characteristic function of a compact open set S, then one may write µG(S) = I(ΓS) to
introduce the notion of measure, and this allows for the notations

I(f) =

∫
G

f(x)dµG(x) and

∫
G

f(x)ΓSdµG(x) =

∫
S

f(x)dµG(x).

We can also integrate more general functions. Let f be a function on G invariant under left
translation by a compact open subgroup K of G. Then for any g ∈ K \G the integral∫

Kg

f(x)dµG(x)

is well-defined. If ∑
g∈K\G

∫
Kg

|f(x)|dµG(x)

converges, then so does the series without absolute values, and we can set∫
G

f(x)dµG(x) =
∑

g∈K\G

∫
Kg

f(x)dµG(x).

Now suppose µG is a left Haar measure on G (corresponding to a functional I). For g ∈ G,
the functional

Ig : C∞c (G) → C

f 7→
∫
G

f(xg)dµG(x)

is again a left Haar integral on G; let δG(g) ∈ R+ be such that δG(g)Ig = I. This defines a
homomorphism δG : G→ R>0, which is trivial if G is abelian or, more generally, unimodular. δG
is called the module of G. Note that δG is trivial on any open compact subgroup of G, and the
functional

f 7→
∫
G

δG(x)−1f(x)dµG(x)

is a right Haar integral on G.

Now let H be a closed subgroup with module δH , and let δ : H → C× be a character of G. Let
C∞c (H \G,ϑ) be the space of functions f : G→ C which are compactly supported modulo H and
which satisfy f(hg) = ϑ(h)f(g) for all h ∈ H, g ∈ G. Let G act on this space by right translation.

Proposition 5.4. The following are equivalent:

1. There exists a non-zero right invariant linear functional Iϑ : C∞c (H \G,ϑ)→ C;

2. ϑδH = δG|H .

If these conditions hold, Iϑ is determined up to a constant factor.

Proof. 1. ⇒ 2. Let µH and µG be left Haar measures. Define a G-morphism

Q : C∞c (G) → C∞c (H \G,ϑ)

f 7→
∫
H

ϑ(h)δH(h)−1f(hg)dµH(h).
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Note that Q(λkf) = δH(k)ϑ(k)−1Q(f). Since 1 holds the induced map Iϑ ◦Q : C∞c (G)→ C
is a nontrivial G-homomorphism, hence it must be a scalar multiple of a right Haar integral.
This also shows that Iϑ is determined up to a constant factor.

Any function of the form λhf − δH(h)ϑ(h)−1f , for h ∈ H, lies in the kernel of Q. Applying
the right Haar integral to these functions we get∫

G

(λhf(g)− δH(h−1)ϑ(h−1)f(g))δG(g)−1dµG(g)

= (δG(h−1)− δH(h−1)ϑ(h−1))

∫
G

f(g)δG(g)−1dµG(g),

which vanishes for all f and h if and only if 2. holds.

2. ⇒ 1. Let K be a compact open subgroup of G. Then a coset of the form HgK supports
at most a onedimensional space of functions in C∞c (H \ G,ϑ)K , and these subspaces span
C∞c (H \ G,ϑ)K . The such a space lies in the image of Q, since it is the image of the
charactersitic function of a coset gK. This shows that Q is surjective on K-fixed functions,
hence it is surjective in general. To show 1. it is now sufficient to show that the right Haar
integral factors through Q. So let f ∈ C∞c (G) be such that Q(f) = 0. We may assume that
supp(f) ⊂ HgK for some g ∈ G and some compact open subgroup K of G. Then f is a
finite linear combination of the characteristic function of cosets higK, with hi in H. For
such a characteristic function we find

Q(ΓhigK)(g′) =

∫
H

ϑ(h)δH(h)−1ΓhigK(hg′)dµH(h)

=

∫
H∩higKg−1

ϑ(h)δH(h)−1dµH(h).

However, ϑδ−1H is trivial on the compact subgroup H ∩ gKg−1 of H, so this is equal to
µH(H ∩ higKg−1)ϑ(hi)δH(hi)

−1 = µH(H ∩ gKg−1)ϑ(hi)δH(hi)
−1. For f this means that

for all g ∈ G one has

0 = µH(H ∩ gKg−1)σiϑ(hi)δH(hi)
−1f(hig)

= µH(H ∩ gKg−1)δG(hi)
−1f(hig)

=
µH(H ∩ gKg−1)

µG(K)

∫
G

f(x)δG(x)−1dµG(x),

which shows that I(f) = 0, as was to be shown.

Remark 5.5. The character ϑ as found above is now uniquely determined and is denoted δH\G.
The measure corresponding to ϑ is denoted µH\G and is called semi-invariant.

Theorem 5.6. Let µ be a positive semi-invariant measure on H \ G. Let (σ,W ) be a smooth
representation of H. There is a natural isomorphism

(c-IndGHσ)∨ ∼= IndGH(δH\G ⊗ σ∨)

induced by the G-invariant pairing

IndGH(δH\G ⊗ σ∨)× c-IndGHσ → C

(Φ, ϕ) 7→
∫
H\G
〈Φ(g), ϕ(g)〉dµ(g).

Proof. See [1, 3.5].
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