

Smooth Representations

Milan Lopuhaä

September 19, 2014

1 Locally profinite groups

One of the two sets in the Weil correspondence for GL_2 is the set of equivalence classes of smooth representations of $\mathrm{GL}_2(F)$ for a nonarchimedean local field F . This talk will be about defining smooth representations and giving some properties. I start by defining a type of group of which $\mathrm{GL}_2(F)$ is an example.

Definition 1.1. A *locally profinite group* is a topological group G such that every open neighbourhood of the identity in G contains a compact open subgroup of G .

A locally profinite group is locally compact, and any compact open subgroup is profinite; this explains the terminology.

Example 1.2. Let F be a non-Archimedean local field with ring of integers \mathfrak{o} and prime ideal \mathfrak{p} ; furthermore, assume $\mathfrak{o}/\mathfrak{p}$ is finite with cardinality q . Let ω be a prime element, i.e. $\mathfrak{p} = (\omega)$. Then any open neighbourhood of 0 contains an ‘open sphere’

$$\{x \in F : \|x\| < q^{-n-1}\} = \mathfrak{p}^n = \omega^n \mathfrak{o},$$

which is a compact open subgroup of the additive group F . This shows that F is a locally profinite group.

Example 1.3. Similarly, the unit group F^\times is locally profinite, as the congruence unit groups $U_F^j = 1 + \mathfrak{p}^j$ are compact open. In general $\mathrm{GL}_n(F)$ has compact open subgroups $1 + \mathfrak{p}^j \mathrm{M}_n(\mathfrak{o})$ that form a fundamental system of open neighbourhoods of 1. This makes $\mathrm{GL}_n(F)$ a locally profinite group.

Definition 1.4. Let G be a locally profinite group. A *character* of G is a continuous homomorphism $G \rightarrow \mathbf{C}^\times$, where \mathbf{C}^\times is given the archimedean topology.

2 Smooth representations of locally profinite groups

Definition 2.1. Let G be a locally profinite group, and let (π, V) be a representation of G , i.e. a pair of a complex vector space V and a group homomorphism $\pi : G \rightarrow \mathrm{Aut}_{\mathbf{C}}(V)$. The representation (π, V) is called *smooth* if for every $v \in V$ there is a compact open subgroup K of G such that $\pi(K)v = v$.

A smooth representation (π, V) is called *admissible* if the space $V^K = \{v \in V : \pi(K)v = v\}$ is finite-dimensional for every compact open subgroup $K \subset G$. It is called irreducible if it has no G -stable subspaces other than 0 and V .

The category of smooth representations of G will abusively be denoted $\mathrm{Rep}(G)$; the category of ‘abstract’ representations of G will be denoted $\mathrm{ARep}(G)$ (and will occur much less in our seminar). Note that $\mathrm{Rep}(G)$ is abelian. There is a left exact functor $\cdot^\infty : \mathrm{ARep}(G) \rightarrow \mathrm{Rep}(G)$ defined as follows. Given $(\pi, V) \in \mathrm{ARep}(G)$ one may define

$$V^\infty = \bigcup_{K \subset G \text{ compact open}} V^K.$$

This is a G -stable subspace of V , which allows us to define $\pi^\infty(g) = \pi(g)|_{V^\infty}$. Then by definition (π^∞, V^∞) is a smooth representation of G . If (ρ, W) is another smooth representation, then any morphism of representations $W \rightarrow V$ factors through V^∞ .

Proposition 2.2. *Let G be a locally profinite group and let (π, V) be a smooth representation of G . Then the following are equivalent:*

1. V is the sum of its irreducible G -subspaces;
2. V is the direct sum of a family of irreducible G -subspaces;
3. any G -subspace of V has a G -complement in V .

A representation satisfying these properties is called *semisimple*.

Proof. See [1, 2.2]. □

Example 2.3. Let G be a profinite group, and let V be an irreducible presentation of G . Let $v \in V$, and let $K \subset G$ be compact open such that $v \in V^K$. Since G is compact, K is of finite index in G . Let X be a set of representatives of G over K ; then V is spanned by $\{gv : g \in X\}$, so V is pointwise stabilised by $\bigcap_{g \in X} gKg^{-1} = K'$, which is normal and open in G , hence of finite index. But then V is an irreducible representation of the finite discrete group G/K' , so it has finite dimension. In general, let G be locally profinite, let V be a representation of G , and let K be a compact open subgroup of G . Let $v \in V$. Then K is profinite, and as before there is a normal open subgroup $K' \subset K$ of finite index such that K' acts trivially on the K -subspace W of V generated by v . Then W is a finite-dimensional representation of K/K' , and as such is a direct sum of K -irreducible subspaces. The same then holds for V , so we have shown that V is *K -semisimple*.

Proposition 2.4. *Let V be a smooth representation of a locally profinite group G and let K be a compact open subgroup of G . Let \hat{K} be the set of equivalence classes of irreducible smooth representations of K , and for $\rho \in \hat{K}$, let V^ρ be the sum of all irreducible K -subspaces of V of class ρ .*

1. $V = \bigoplus_{\rho \in \hat{K}} V^\rho$.
2. Let W be another smooth representation of G . For any G -homomorphism $f : V \rightarrow W$ and for any $\rho \in \hat{K}$ we have $f(V^\rho) = W^\rho \cap f(V)$.

Proof. 1. By the above example we can compose V into a direct sum of irreducible K -subspaces; choose such a sum, and let $V(\rho)$ be the sum of all of the summands of type ρ . Then $V = \bigoplus_{\rho \in \hat{K}} V(\rho)$, and we need to show that $V(\rho) = V^\rho$. Suppose $W \subset V$ is an irreducible K -subspace of type ρ . If $W \not\subset V(\rho)$, there would be a an irreducible $U \subset V$ of type not equal to ρ in the summation such that the projection $W \rightarrow U$ is nontrivial, which is a contradiction.

2. This follows from the direct sum $V = \bigoplus_{\rho \in \hat{K}} V^\rho$ and the fact that any map $V^\rho \rightarrow W^\tau$ is trivial. □

This proposition has two important corollaries.

Corollary 2.5. *A short exact sequence of smooth representations $U \rightarrow V \rightarrow W$ is exact if and only if the induced sequence $U^K \rightarrow V^K \rightarrow W^K$ is exact for every compact open subgroup K of G .*

Corollary 2.6. *Let G be a locally profinite group, let K be a compact open subgroup of G , and let V be a smooth representation of G . Define $V(K)$ to be the linear subspace of V spanned by $\{v - kv : v \in V, k \in K\}$. Then*

$$V(K) = \bigoplus_{\rho \in \hat{K} \setminus \{1\}} V^\rho \text{ and } V = V^K \oplus V(K).$$

$V(K)$ is the unique K -complement of V^K in V .

Proof. \subset follows from the decomposition into V^ρ . For \supset note that for any irreducible U of class $\neq 1$ one has $U(K) = U$. In general, $V(K)$ is contained in the kernel of any G -morphism $V \rightarrow V^K$. \square

3 Induced representations

Let G be a locally profinite group, and let H be a closed subgroup of G . Then H itself is locally profinite, and restriction of scalars gives us a functor $R : \text{Rep}(G) \rightarrow \text{Rep}(H)$. The aim of this section is to find both a left adjoint and a right adjoint to this functor.

The right adjoint of R is constructed as follows. Let (σ, W) be a smooth representation of H . Let $I(\sigma)$ be the space of functions $f : G \rightarrow W$ such that $f(hg) = \sigma(h)f(g)$ for all $h \in H$ and $g \in G$. There is an action of G on $I(\sigma)$ by defining $(g \cdot f)(g') = f(g'g)$. This makes $I(\sigma)$ an abstract representation of G . We now define $\text{Ind}_H^G : H \rightarrow G$ as $\cdot^\infty \circ I$; we call $\text{Ind}_H^G(\sigma)$ the representation of G smoothly induced by σ .

Proposition 3.1. *Let G be a locally profinite group, and let H be a closed subgroup of G .*

1. $R \dashv \text{Ind}_H^G$.
2. Ind_H^G is additive and exact.

Proof. 1. For every $(\sigma, W) \in \text{Rep}(H)$, the map $a_\sigma : \text{Ind}_H^G(\sigma) \rightarrow W : f \mapsto f(1)$ is an H -morphism. To show that Ind_H^G is right adjoint to R it is enough to show that for every $(\pi, V) \in \text{Rep}(G)$ and for every H -morphism $F : V \rightarrow W$ there is a unique G -morphism F' such that $F' = a_\sigma F$. This is done by defining $F'(v) = (g \mapsto f(\pi(g)v))$.

2. Additivity follows from the additivity of I and \cdot^∞ . It is clear that I is exact and \cdot^∞ is left exact, so we need to show that Ind_H^G is right exact. So let $f : (\sigma, W) \rightarrow (\tau, U)$ be an H -surjection, and let $\varphi \in \text{Ind}_H^G(\tau)$. Let $K \subset G$ be a compact open subgroup fixing φ . Then the support of φ is a union of cosets of the form HgK ; let X be a set of representatives for such g . For $g \in X$, $\varphi(g)$ is fixed by $H \cap gKg^{-1}$. Applying corollary 2.5 we find that there is an $w_g \in W$, fixed by $H \cap gKg^{-1}$, such that $f(w_g) = \varphi(g)$. Now define $\Phi : G \rightarrow W$ as having the same support as φ and $\Phi(hgk) = \sigma(h)w_g$, for $h \in H$, $g \in X$, $k \in K$. Then Φ is fixed by K , so $\Phi \in \text{Ind}_H^G(\sigma)$, and $f_*(\Phi) = \varphi$. \square

If H is open we can construct a left adjoint to R . For $(\sigma, W) \in \text{Rep}(H)$, let $c\text{-Ind}_H^G(\sigma)$ be the subspace of $\text{Ind}_H^G(\sigma)$ consisting out of all functions $f : G \rightarrow W$ such that $\text{supp } f$ is compact in $H \setminus G$. This gives rise to a functor $c\text{-Ind}_H^G : \text{Rep}(H) \rightarrow \text{Rep}(G)$. Furthermore, define the H -homomorphism

$$\begin{aligned} \alpha_\sigma^c : W &\rightarrow c\text{-Ind}_H^G \sigma \\ w &\mapsto f_w \end{aligned}$$

Where f_w is supported in H and $f_w(h) = \sigma(h)w$. Notice that the space $c\text{-Ind}_H^G \sigma$ can be constructed for closed subgroups in general, but $\alpha_\sigma^c(w)$ will not be an element of $c\text{-Ind}_H^G \sigma$ unless H is open.

Proposition 3.2. *Let G be a locally profinite group and let H be an open subgroup.*

1. *$c\text{-Ind}_H^G$ is a left adjoint to R , i.e. for any $(W, \sigma) \in \text{Rep}(H)$, $(V, \pi) \in \text{Rep}(G)$ and any H -morphism $F : W \rightarrow V$ there is a G -morphism $F' : V \rightarrow c\text{-Ind}_H^G(\sigma)$ such that $F = F' \circ \alpha_\sigma^c$.*
2. *$c\text{-Ind}_H^G$ is additive and exact.*

Proof. See [1, 2.5]. □

4 Duality

Let G be a locally profinite group, and let (π, V) be a smooth representation of G . Let V^* be the dual vector space, and $\langle \cdot, \cdot \rangle : V \times V^* \rightarrow \mathbf{C}$ the canonical pairing. We can define a representation π^* of G on V^* by stating

$$\langle \pi^*(g)v^*, v \rangle = \langle v^*, \pi(g^{-1})v \rangle,$$

for all $g \in G$, $v^* \in V^*$, $v \in V$. Such a representation, however, is not always smooth. Therefore we define the *contragredient* or *smooth dual* of V to be $V^\vee = (V^*)^\infty$. Note that $(V^\vee)^K = (V^K)^*$ for all compact open $K \subset G$. We also get a canonical map $\delta : V \rightarrow (V^\vee)^\vee$, which is an isomorphism if and only if V is admissible, which can be seen by looking at the level of V^K 's. On this level one sees, by corollary 2.5, that the contravariant functor $V \rightarrow V^\vee$ is exact.

5 Haar Measures

Let G be a locally profinite group. We consider the complex vector space $C_c^\infty(G)$ of functions $f : G \rightarrow \mathbf{C}$ that are locally constant and of compact support. Let f be such a function. For every $x \in \mathbf{C}$ the preimage $f^{-1}(x)$ is open in G ; hence there are only finitely many x for which this is nonempty. Take such an x , then for every g in its preimage there is a compact open subgroup K_g such that $f(gK_g) = f(K_gg) = x$. Then $\{gK_g : g \in f^{-1}(x)\}$ is a cover of the compact set $f^{-1}(x)$. Taking a finite subcover and then taking the intersection of the corresponding compact open subgroups, we find a compact open subgroup K_x of G such that $f^{-1}(x)$ is closed under left and right multiplication of K_x . Doing this for all x and taking intersections, we find a compact open subgroup K of G such that f is a finite linear combination of characteristic functions of double cosets KgK .

G acts on $C_c^\infty(G)$ by left translation $((\lambda_g f)(x) = f(g^{-1}x))$ and right translation $((\rho_g f)(x) = f(xg))$, and both of these turn $C_c^\infty(G)$ into a smooth G -representation.

Definition 5.1. A *right Haar integral* on G is a non-zero right invariant linear functional $I : C_c^\infty(G) \rightarrow \mathbf{C}$ such that $I(f) \geq 0$ for any $f \geq 0$. A *left Haar integral* is defined analogously.

Proposition 5.2. *There exists a right Haar integral on G , which is unique up to multiplication by a positive real scalar.*

Proof. For any compact open subgroup K of G , let ${}^K C_c^\infty(G)$ be the subspace of $C_c^\infty(G)$ of $\lambda(K)$ -invariant functions; this is a G -subspace when $C_c^\infty(G)$, which we may regard as $c\text{-Ind}_K^G 1_K$. Then $\text{Hom}_G({}^K C_c^\infty(G), \mathbf{C}) = \text{Hom}_H(\mathbf{C}, \mathbf{C}) \cong \mathbf{C}$, which shows the uniqueness of a right Haar integral on ${}^K C_c^\infty(G)$. A \mathbf{C} -basis of ${}^K C_c^\infty(G)$ is given by the characteristic functions f_g of the cosets Kg . The functional $I_K : f_g \mapsto 1$ has the desired properties.

Now let $(K_n)_{n \geq 1}$ be a descending sequence of compact open subgroups of G such that $\bigcap_n K_n = 1$. Take $I_1 = I_{K_1}$ as above, and let I_n be the unique multiple of I_{K_n} such that K_n is mapped to $(K_1 : K_n)^{-1}$. Then $I_{n+1}|_{{}^{K_n} C_c^\infty} = I_n$, so taking the union over the I_n gives us the required functional I ; its uniqueness follows from the uniqueness of the I_n . □

Remark 5.3. The existence and uniqueness of left Haar integrals on G can be proven similarly. A left Haar integral is not necessarily a right Haar integral; if it is we call G *unimodular*. If Γ_S is the characteristic function of a compact open set S , then one may write $\mu_G(S) = I(\Gamma_S)$ to introduce the notion of measure, and this allows for the notations

$$I(f) = \int_G f(x) d\mu_G(x) \text{ and } \int_G f(x) \Gamma_S d\mu_G(x) = \int_S f(x) d\mu_G(x).$$

We can also integrate more general functions. Let f be a function on G invariant under left translation by a compact open subgroup K of G . Then for any $g \in K \setminus G$ the integral

$$\int_{K_g} f(x) d\mu_G(x)$$

is well-defined. If

$$\sum_{g \in K \setminus G} \int_{K_g} |f(x)| d\mu_G(x)$$

converges, then so does the series without absolute values, and we can set

$$\int_G f(x) d\mu_G(x) = \sum_{g \in K \setminus G} \int_{K_g} f(x) d\mu_G(x).$$

Now suppose μ_G is a left Haar measure on G (corresponding to a functional I). For $g \in G$, the functional

$$\begin{aligned} I_g : C_c^\infty(G) &\rightarrow \mathbf{C} \\ f &\mapsto \int_G f(xg) d\mu_G(x) \end{aligned}$$

is again a left Haar integral on G ; let $\delta_G(g) \in \mathbf{R}^+$ be such that $\delta_G(g)I_g = I$. This defines a homomorphism $\delta_G : G \rightarrow \mathbf{R}_{>0}$, which is trivial if G is abelian or, more generally, unimodular. δ_G is called the *module* of G . Note that δ_G is trivial on any open compact subgroup of G , and the functional

$$f \mapsto \int_G \delta_G(x)^{-1} f(x) d\mu_G(x)$$

is a right Haar integral on G .

Now let H be a closed subgroup with module δ_H , and let $\delta : H \rightarrow \mathbf{C}^\times$ be a character of G . Let $C_c^\infty(H \setminus G, \vartheta)$ be the space of functions $f : G \rightarrow \mathbf{C}$ which are compactly supported modulo H and which satisfy $f(hg) = \vartheta(h)f(g)$ for all $h \in H, g \in G$. Let G act on this space by right translation.

Proposition 5.4. *The following are equivalent:*

1. *There exists a non-zero right invariant linear functional $I_\vartheta : C_c^\infty(H \setminus G, \vartheta) \rightarrow \mathbf{C}$;*
2. $\vartheta \delta_H = \delta_G|_H$.

If these conditions hold, I_ϑ is determined up to a constant factor.

Proof. 1. \Rightarrow 2. Let μ_H and μ_G be left Haar measures. Define a G -morphism

$$\begin{aligned} Q : C_c^\infty(G) &\rightarrow C_c^\infty(H \setminus G, \vartheta) \\ f &\mapsto \int_H \vartheta(h) \delta_H(h)^{-1} f(hg) d\mu_H(h). \end{aligned}$$

Note that $Q(\lambda_k f) = \delta_H(k)\vartheta(k)^{-1}Q(f)$. Since 1 holds the induced map $I_\vartheta \circ Q : C_c^\infty(G) \rightarrow \mathbf{C}$ is a nontrivial G -homomorphism, hence it must be a scalar multiple of a right Haar integral. This also shows that I_ϑ is determined up to a constant factor.

Any function of the form $\lambda_h f - \delta_H(h)\vartheta(h)^{-1}f$, for $h \in H$, lies in the kernel of Q . Applying the right Haar integral to these functions we get

$$\begin{aligned} & \int_G (\lambda_h f(g) - \delta_H(h^{-1})\vartheta(h^{-1})f(g))\delta_G(g)^{-1}d\mu_G(g) \\ &= (\delta_G(h^{-1}) - \delta_H(h^{-1})\vartheta(h^{-1})) \int_G f(g)\delta_G(g)^{-1}d\mu_G(g), \end{aligned}$$

which vanishes for all f and h if and only if 2. holds.

2. \Rightarrow 1. Let K be a compact open subgroup of G . Then a coset of the form HgK supports at most a onedimensional space of functions in $C_c^\infty(H \setminus G, \vartheta)^K$, and these subspaces span $C_c^\infty(H \setminus G, \vartheta)^K$. The such a space lies in the image of Q , since it is the image of the charactersitic function of a coset gK . This shows that Q is surjective on K -fixed functions, hence it is surjective in general. To show 1. it is now sufficient to show that the right Haar integral factors through Q . So let $f \in C_c^\infty(G)$ be such that $Q(f) = 0$. We may assume that $\text{supp}(f) \subset HgK$ for some $g \in G$ and some compact open subgroup K of G . Then f is a finite linear combination of the characteristic function of cosets $h_i gK$, with h_i in H . For such a characteristic function we find

$$\begin{aligned} Q(\Gamma_{h_i gK})(g') &= \int_H \vartheta(h)\delta_H(h)^{-1}\Gamma_{h_i gK}(hg')d\mu_H(h) \\ &= \int_{H \cap h_i gK g^{-1}} \vartheta(h)\delta_H(h)^{-1}d\mu_H(h). \end{aligned}$$

However, $\vartheta\delta_H^{-1}$ is trivial on the compact subgroup $H \cap gKg^{-1}$ of H , so this is equal to $\mu_H(H \cap h_i gKg^{-1})\vartheta(h_i)\delta_H(h_i)^{-1} = \mu_H(H \cap gKg^{-1})\vartheta(h_i)\delta_H(h_i)^{-1}$. For f this means that for all $g \in G$ one has

$$\begin{aligned} 0 &= \mu_H(H \cap gKg^{-1})\sigma_i\vartheta(h_i)\delta_H(h_i)^{-1}f(h_i g) \\ &= \mu_H(H \cap gKg^{-1})\delta_G(h_i)^{-1}f(h_i g) \\ &= \frac{\mu_H(H \cap gKg^{-1})}{\mu_G(K)} \int_G f(x)\delta_G(x)^{-1}d\mu_G(x), \end{aligned}$$

which shows that $I(f) = 0$, as was to be shown. □

Remark 5.5. The character ϑ as found above is now uniquely determined and is denoted $\delta_{H \setminus G}$. The measure corresponding to ϑ is denoted $\mu_{H \setminus G}$ and is called *semi-invariant*.

Theorem 5.6. *Let μ be a positive semi-invariant measure on $H \setminus G$. Let (σ, W) be a smooth representation of H . There is a natural isomorphism*

$$(c\text{-}Ind_H^G \sigma)^\vee \cong Ind_H^G(\delta_{H \setminus G} \otimes \sigma^\vee)$$

induced by the G -invariant pairing

$$\begin{aligned} Ind_H^G(\delta_{H \setminus G} \otimes \sigma^\vee) \times c\text{-}Ind_H^G \sigma &\rightarrow \mathbf{C} \\ (\Phi, \varphi) &\mapsto \int_{H \setminus G} \langle \Phi(g), \varphi(g) \rangle d\mu(g). \end{aligned}$$

Proof. See [1, 3.5]. □

References

- [1] Colin J Bushnell and Guy Henniart. *The local Langlands conjecture for $GL(2)$* , volume 335. Springer, 2006.