Algebraic spaces & algebraic stacks

Goal: arrive at/outline a definition of algebraic stack

The def of alg stack fits into a pattern of defining "spaces" by gluing local models.

Part 1: explain how this works for schemes, rather than stacks.
Part 2: explain how the stack constructions can be marginalized within stacks.

§1: Algebraic spaces

Let me start with a simple question:

\[\text{Aff} = \text{Ring}^{\text{op}} \subseteq \text{Sch} \quad \text{with } \mathcal{X} \text{ a sheaf topology.} \]

Then \(\text{Sh}(\text{Sch}) \xrightarrow{\text{Sh}(\text{Aff})} \to \text{Sch} \subseteq \text{Sh}(\text{Aff}) \) fully faithful.

Q: when is a stack \(X: \text{Aff} \to \text{Sch} \) repre. by a scheme?

express this purely in terms of affines & schemes.

Let \(S := \text{class of Zariski open immersions } U: \text{Spec}(A) \to \text{Spec}(B) = V. \)

Def. A stack \(X \) is \((-1)-representable\) if \(X = \text{Spec}(A) \).

- A map \(f: X \to Y \) is \((-1)-representable\) if for all

 \[U = \text{Spec}(A) \to Y, \text{ the pullback } X \times_Y U \text{ is } (-2)-representable. \]

- \(f \) is of class \((-1)-P\) if furthermore the map of affines \(X \times_Y U \to U \) is \(P. \)

Proceed inductively:

Def. For \(n \geq -2 \):

- \(X \) is \(n \)-representable if there exist a map \(p: \coprod U_i \to X \) (all \(U_i \) are affines) such that:
 1. \(p \) a surjective family of schemes.
 2. Each \(U_i = \text{Spec}(A_i) \) affine and \(U_i \to X \) is of class \((n-1)-P.\)

- \(f: X \to Y \) is \(n \)-representable if for all \(U = \text{Spec}(A) \to Y, \)

 \[U \times_Y X \text{ is } n \text{-representable.} \]

- \(f \) is of class \(n-P \) if furthermore
 1. for an affine \(U: \text{Spec}(B) \to U \times_Y X \), each composite

 \[\text{Spec}(B) \to U \times_Y X \to U = \text{Spec}(A) \text{ is } P. \]
 2. \(f \) is mono.

Formal properties: \(n \)-representable and \(n-P \) maps stable under base change

- any map between \(n \)-representable is \(n \)-representable
Formal properties:
- n-representable and n-transitive stable under base change
- Any map between n-representable is n-representable
- n-reps stable under pull.
- For m ≥ n, if n-reps + m-reps = n-reps, then m-reps.
- Def: say that g; X → Y is of class P if g; X is n-reps for some n.

Let g; X → Y and \(\bigcup Y_i \rightarrow Y \) surjective, each \(Y_i \rightarrow Y \) is P.

Then g is n-reps (n-P) iff each \(X \times X, Y_i \rightarrow Y \) is P.

(i.e., these properties are “tame locally” on the target).

Similarly “tame locally” on domain.

Lem: If X is n-representable, then X is o-representable

(\(\Rightarrow \) for \(n \geq o \): all notions coincide).

Proof: Let \(\bigcup U_i \rightarrow X \) an atlas, \(U_i = \text{Spec}(A_i) \rightarrow X \) class \((n-1)\)-rep.

To show: \(U_i \rightarrow X \) is \((n-2)\)-rep.

Take \(V = \text{Spec}(B) \rightarrow X \), then \(U_i \times X V \) is \((n-1)\)-rep.

Let \(\bigcup V_i = \bigcup \text{Spec}(B_i) \rightarrow \bigcup U_i \times X V \) an atlas.

To show: \(V_i \rightarrow \bigcup U_i \times X V \) is \((n-2)\)-rep.

Pick \(W = \text{Spec}(C) \rightarrow \bigcup U_i \times X V \). Then

\[V_{ij} \times X W \cong V_{ij} \times X V \] is a pullback of objects, hence affine! \(\rightarrow \)

Example/Proposition: \(X \) \((n-2)\)-rep \(\iff \) X represents by affine scheme.

\(X \) \((n-1)\)-rep \(\iff \) X represents by a scheme with affine diagonal.

Proof: \(\Rightarrow \) Take \(\bigcup U_i \rightarrow X \) an affine open cover of the scheme X.

Then \(\bigcup U_i \rightarrow X \) is surj. and for all affine \(W: U_i \times X W \rightarrow U_i \times X W \) is affine, so \(U_i \times X W \rightarrow W \) is affine open subcover.

\(\Rightarrow \) Take \(\bigcup U_i \rightarrow X \) atlas, consider

\(\bigcup U_i \times X U_j \rightarrow \bigcup U_i \rightarrow X \) each \(U_i \rightarrow X \) each \(U_i \rightarrow X \).

Each \(U_i \times X U_j \rightarrow U_i \) affine open subcover

The scheme obtained by gluing the \(U_i \) along these open subcovers represents X.

\(X \) \(o\)-rep \(\iff \) X represents by a scheme.

A map between schemes \(X \rightarrow Y \) is of class P \(\iff \) open imm. in usual sense.
Observe: The above definition also make sense when
\[P = \text{etale maps} \]
(\text{or } P = \text{small maps})

and without the condition that maps in \((n-P)\) are monic!
(Otherwise, more etale \(= \text{open immersion} \).

\[\Rightarrow \text{get notion of } n\text{-representable sheaf more general than a scheme.} \]

All of the above results remain true, with one (important) exception:

Lemma: Let \(\phi : X \to Y \) suppose \(\forall i \to Y \) any surjection of schemes.

If \(\phi \) and \(X \times_Y Y_i \to Y_i \) is \(n\text{-representable } (n-P) \), then \(\phi \) is too.

In other words, it is etale local on the target.

Proof: Representability only by sections on \(n \).

\(n \geq 2 \): Let \(U = \text{Spec}(A) \) affine, \(U \to Y \).

There is an etale cover \(U_i = \text{Spec}(A_i) \to U \) at \(\text{Spec}(A) \to Y \).

We get
\[
\begin{array}{c}
\begin{array}{ccc}
U_i \times_Y X \to U_i \times_Y Y_i \\
\downarrow \\
U_{i\to Y}\end{array}
\end{array}
\]

\(\Rightarrow \text{etale } \to U \)

By assumption, the right two maps are affine maps.

Since affine maps surjective etale descent, the claim \(U \times_Y X \to U \) is also affine.

For \(n \geq 2 \): Exactly the same: \(\begin{array}{c}
\begin{array}{ccc}
U_i \times_Y X \to U \times_Y X \end{array}
\end{array} \) is \((1)\). The map
\(\text{is } n\text{-representable } \text{descent} \).

Then an etale \(\phi \) is also an etale \(\phi \).

Case: \(\text{Let } R \to X \times X \) be an equivalence relation on \(X \) (internal to schemes)

and let \(R \times X \to X \times X \) be the quotient sheaf.

If \(R \times X \) is \(n\text{-representable} \) and the maps \(R \to X \) are etale, then \(X / R \) is \(0\text{-representable} \).

Proof: It suffices to show that \(X / R \) is \(n\text{-representable } (\geq 0\text{-rep}) \).

Let \(U = \text{Spec}(A) \to X \) be an etale and \(\hat{R} = \text{Spec}(A \times_{X \times X} X \times X) \) the induced
equivalence relation. Then the map \(U / \hat{R} \to X / R \) is an isomorphism of stalks.

If \(U = \text{Spec}(A) \) satisfies the conditions as well, one may assume \(X \) an isoprost of affine.

In that case, \(X \to X / R \) is etale \((\geq 0\text{-rep}) \).

Indeed, pulling back along \(X / R \), we get \(X \times_X X \), which is etale \(\geq 0\text{-rep} \).
Ref.: In other works, the o-rup sheaves form the smallest class of sheaves containing affine \mathbb{A}_k-bundles under $\{\mid f\}$-sheaf equivalence relations.

Thm.: For a sheaf X, TFAE:

1. X is o-rup for P-sheaf (or P-small)
2. There is a map $\eta: U \rightarrow X$ such that:
 a. P-ary of sheaves
 b. U is a sheaf and for any $V \in \pi(\mathcal{B}) \rightarrow X$,
 $UX \rightarrow V$ is an o-rup map of sheaves.
 c. The diagonal $\Delta: X \rightarrow XX$ is representable by sheaves.

Def.: An algebraic space is a sheaf $X \in \mathcal{X}(\mathbb{A}_k(\text{Aff}) \cap \mathbf{Sht}(\text{Sch}))$ satisfying (1) in the above.

Def.: Variety: $\mathcal{X}(\mathbb{A}_k(\text{Aff}) \cap \mathbf{Sht}(\text{Sch}))$ also requires $UX \eta \rightarrow UX \eta$ quasi-finite.

[Sketch of proof:

1. X is an o-rup sheaf
 (like a quotient by $\mathcal{E}(\text{Sch} \cap \mathbf{07FL})$)

"Ideal proof": (1) \Rightarrow (i) shows: sheaves are definitely o-rup, o-rup closed under o-rup equivalence.

(i) \Rightarrow (ii) Suffices to show that algebraic spaces are also closed
under quotient of sheaf equivalence. $P = X \rightarrow X/R$
This is quite complicated [Springer 0455, L-MB Prop. 1.6].

Step 1 (final) can reduce to X a sheaf.

Step 2: $R = X \times X$ and $R \rightarrow X$ sheaf $\Rightarrow R$ is also a sheaf

Step 3: Quotient of sheaves by sheaf equivalence are algebraic spaces

[Sketch of proof 0455]

Examples:

S a sheaf, $G \times S$ free action by a finite group

Then the quotient S/G is an algebraic space.

- $G = \text{GL}_r$: \mathbb{A}^k, $G \times S = S$ as sheaf.

- $G = \text{GL}_k$, $U = \mathbb{A}^k$, $U \times S = S$ as sheaf.

Then $UX \eta = \text{Spec} \mathcal{O}(\mathbb{A}^k(\text{Aff}) \cap \mathbf{Sht}(\text{Sch})) = \Delta(U) + \Delta^*(U)$

(see Δ^*)
Then $U \times U = \text{spec}(\mathcal{O}_R(U \times U)) = \text{spec}(\mathcal{O}_R(U) \otimes \mathcal{O}_R(U))$.

where $\Delta^R = (\Delta^R_U) : U \to U \times U$.

Let $R = \Delta^R(U) \otimes \mathcal{O}_R(U) \otimes \mathcal{O}_R(U)$.

Then $R \subset U \times U$ defines an equivalence relation \sim on $X = U/R$ on algebraic space over S.

Proposition:

1. $X \to S$ is over S-isom.
2. $X \to S$ is smooth $U \to S$ is.
3. U is open over S.
4. $\Delta^R_U = \text{spec} \mathcal{O}_R(U)$.
5. X is not a scheme: otherwise $G_{X/P}$ would be a local ring with fraction field $\text{field}(x)$, residue field $\text{field}(x)$.
6. $X \times U \cong U$, Δ^R_U is a scheme (the origin, double origin).

What can you do with them? Any sort of map which is local on source and target induces a lift of map between \mathcal{S}.

$X \to x \times x$,

the open-aff, sheaves.

§ 2: Algebraic stacks.

Now: interpret Definition 1 not in schemes over Aff, but stacks over Aff.

Def: An algebraic stack is a stack X over Aff (or S) such that

is 1-representable in the sense of Definition 1, where $P = \text{small}$ maps.

Equivalently: X is an algebraic stack if

(i) $X \to x \times x$ representable by algebraic spaces

(ii) there is a scheme U, a surjection of stacks $p : U \to X$ which is representable by algebraic spaces and smooth.

Category theory of stacks

Restricting then $\text{fun}(\text{stacks } C) \to \text{Psh}(C)$.

There is an alternate of U-construction:

Stacked construction: Suppose $F : C \to \text{Set}$ to a (stack) diagram of groupoids: $F(a) \to F(c)$ for $a \to c$.

Define a stack \mathcal{S}_F on F objects (c, x) along $C \in C$, $x \in F(c)$.

maps $\Delta^C : (c, x) \to (x, \Delta^C(x), (\Delta^C(x))_d) : a \to c \to d \in C$

$\Delta^C : (c, x) \to (x, \Delta^C(x), (\Delta^C(x))_d) : a \to c \to d \in C$

Then the structures $\mathcal{S}_F \to C$ is fibrad in groupoids, fibers are $F(c)'s$.
Inverse: \(p: \mathcal{D} \to \mathcal{C} \) filtered in groupoids.

\[
\text{St}(p): \mathcal{C} \to \text{Grpd}: \mathcal{C} \to \text{groupoid of functors } \mathcal{C}/_{/x} \rightarrow \mathcal{D}
\]

proving criterion maps.

For \(x: c \to d \), \(x^*: \text{St}(p)(x) \to \text{St}(p)(c) \) restricts along \(\mathcal{C}/c \to \mathcal{C}/d \)

\((x \to c) \mapsto (x \to c \cong d) \).

Then \(\text{St}(p)(c) \xrightarrow{a_0(c,x)} p^*(c) \) an iso of cats.

For: These two constructions are mutually inverse, \(p \to (\text{natural}) \) equivalence.

So a stack is really just a certain presheaf of groupoids. In particular, it determines a sheaf \(\tilde{\mathcal{F}}_o(X) \): \(\mathcal{C} \to \text{Set} \), the associated sheaf of the presheaf \(c \mapsto \mathcal{O}_c(X(c))/_{/i_0} \).

Def. A map of stacks \(X \to Y \) is a surjection iff the map

\(\tilde{\mathcal{F}}_o(X) \to \tilde{\mathcal{F}}_o(Y) \) is a surjection.

Weak limit of stacks

let \(C: I \to \text{Cat} \) a diagram of categories: \(C \xrightarrow{\alpha: c \mapsto C_0} \) for \(x \in I \).

The pseudo-limit \(\lim C \) \(\mathcal{C} \) is the following category:

- objects: tuples \((x, c, h, h_0) \) for \(x \in I \)

The composition of \((x, c, h, h_0) \) \(\xrightarrow{\alpha} \tilde{\mathcal{C}}_1 \) \((y, d, h', h_1) \) is given by

\[
(\alpha^{-1}(x,y), c \to d, h_0 \circ \alpha_0, h' \
\]

is universal among cones of the form

\[
\begin{array}{ccc}
C_i & \xrightarrow{h_i} & C_j \\
\downarrow \alpha_i & & \downarrow \alpha_j \\
C_k & \xrightarrow{h_k} & C_l
\end{array}
\]

Ex: \(G \) a group, \(B(G) = \{ d \in \text{Aut}(x) \mid G \} \). Then \(\times x H \times \cong G \).

For: \(X: C^o \to \text{Grpd} \), \(\{ U_i \to X \} \) a cover in \(C \).

\[
\text{diagram } X(u_i) \xrightarrow{\Delta} \times X(u_i) \xrightarrow{\Delta} \times X(u_i, u_j, u_k) \xrightarrow{\Delta} \times X(u_i, u_j, u_k, u_
l)
\]

Then \(\text{Desc}(U, X) \equiv \text{holim of the simplicial diagram, } i.e. \)

\(X \) is a stack if \(\Delta \) is a holim diagram.

Homotopy limit of stacks: In terms of factors \(C^o \to \text{Grpd} \): compute holim of gods.

In terms of fibered categories: compute the holim over \(\mathcal{C} \).

(For pullbacks, it does not matter.)

Ex: \(\text{Vec}^o: C^o \to \text{Grpd} \) is an algebraic stack.
Ex: $\text{Vect}^P : C^p \to \text{Grp}$ is an adjoint stack.

An also is given by $x \mapsto \text{Vec}^x$ taking the trivial vector bundle.