

The perverse t -structure

Milan Lopuhaä

March 15, 2017

1 The perverse t -structure

The goal of today is to define the perverse t -structure and perverse sheaves, and to show some properties of both. In his talk Ben already defined $D_c^b(X, \mathbb{Q}_l)$, where X is separated of finite type over a field k in which l is invertible. We also want to consider a similar category over the complex numbers.

Definition 1.1. Let X be a complex algebraic variety. The category $D_c^b(X^{\text{an}}, \mathbb{Q})$ is the full subcategory of $K \in D(X^{\text{an}}, \mathbb{Q})$ that are bounded and are locally constant with respect to some algebraic stratification of X , i.e. there is some finite decomposition $X = \bigsqcup_i X_i$ of X into locally closed subschemes of X such that for every i and every integer n the sheaf $j_i^* \mathcal{H}^n K$ is locally constant, where $j_i: X_i \hookrightarrow X$ is the inclusion morphism.

Throughout this talk, X is either of the type of Bens's talk, or a complex algebraic variety.

Definition 1.2. Let X be as before. Then a complex $K \in D_c^b$ is in ${}^p D_c^{b, \leq 0}$ if for every point $x \in X$ with inclusion $i_x: \text{Spec}(\kappa(x)) \hookrightarrow X$ and every $j > -\dim(x)$ we have $\mathcal{H}^j(i_x^* K) = 0$. Similarly, a complex $K \in D_c^b$ is in ${}^p D_c^{b, \geq 0}$ if for every point $x \in X$ with inclusion $i_x: \text{Spec}(\kappa(x)) \hookrightarrow X$ and every $j < -\dim(x)$ we have $\mathcal{H}^j(i_x^! K) = 0$.

Remark 1.3. Another way to formulate the perverse t -structure is:

$$B \in {}^p D_c^{b, \geq 0} \Leftrightarrow \dim \text{supp} \mathcal{H}^{-i} B \leq i \ \forall i,$$

$$B \in {}^p D_c^{b, \geq 0} \Leftrightarrow \dim \text{supp} \mathcal{H}^{-i} \mathcal{D} B \leq i \ \forall i,$$

where \mathcal{D} is the Verdier duality.

Remark 1.4. Let $K \in D_c^b$, and let $U \xrightarrow{j} X$ be an open subset of X . Let $F \xrightarrow{i} X$ be its complement. Then

$$K \in {}^p D_c^{b, \leq 0} \Leftrightarrow j^* K \in {}^p D_c^{b, \leq 0} \text{ and } i^* X \in {}^p D_c^{b, \leq 0};$$

$$K \in {}^p D_c^{b, \geq 0} \Leftrightarrow j^! K \in {}^p D_c^{b, \geq 0} \text{ and } i^! X \in {}^p D_c^{b, \geq 0}.$$

If U is dense and universally smooth (i.e., $(U_{\bar{k}})_{\text{red}}$ is smooth over \bar{k}), then this simplifies to

$$K \in {}^p D_c^{b, \leq 0} \Leftrightarrow j^* K \in D_c^{b, \leq -\dim(U)} \text{ and } i^* X \in {}^p D_c^{b, \leq 0};$$

$$K \in {}^p D_c^{b, \geq 0} \Leftrightarrow j^! K \in D_c^{b, \geq -\dim(U)} \text{ and } i^! X \in {}^p D_c^{b, \geq 0}.$$

Theorem 1.5. Let X be as above. Then $({}^p D_c^{b,\leq 0}, {}^p D_c^{b,\geq 0})$ is a t -structure on D_c^b .

Remark 1.6. This definition depends on the so-called *middle perversity*, i.e. the function $X \rightarrow \mathbb{Z}$ given by $x \mapsto \dim(x)$. Another such a function satisfying some conditions is called a *perversity*, and different perversities give rise to different t -structures. In this seminar we will only discuss the middle perversity.

Proof of Theorem 1.5. We check the three properties of t -structures:

1. If $K \in {}^p D_c^{b,\leq 0}$ and $L \in {}^p D_c^{b,>0}$, then $\text{Hom}(K, L) = 0$: We prove this by induction on $\dim(X)$. It is clear for X zero-dimensional. Suppose X is of dimension n and that the statement has been proven for all dimensions smaller than n . From the distinguished triangle $j_! j^! K \rightarrow K \rightarrow i_* i^* K$ we get an exact sequence

$$\text{Hom}(i_* i^* K, L) \rightarrow \text{Hom}(K, L) \rightarrow \text{Hom}(j_! j^! K, L).$$

By the adjunctions we know, the first term is isomorphic to $\text{Hom}(i^* K, i^! L)$, which is zero because of the induction hypothesis. Also, the last term in the sequence is isomorphic to $\text{Hom}(j^* B, j^! C)$, which again is zero, because $j^* B \in D_c^{b,\leq -\dim(U)}$ and $j^! C \in D_c^{b,> -\dim(U)}$.

2. ${}^p D_c^{b,\leq 0} \subset {}^p D_c^{b,\leq 1}, {}^p D_c^{b,\geq 1} \subset {}^p D_c^{b,\geq 0}$: this is clear.

3. There exists a distinguished triangle $A \rightarrow K \rightarrow B$ with $A \in {}^p D_c^{b,\leq 0}$ and $B \in {}^p D_c^{b,>0}$: again we proceed by induction on $\dim(X)$. If $\dim(X) = 0$, the proposition is clear. Now assume X has dimension d and that the statement has been proven for all schemes of dimension $< d$. Let K be a complex in D_c^b , and let U be an essentially smooth (i.e. $(U_{\bar{k}})_{\text{red}}$ is smooth over \bar{k}) dense open subscheme of X on which the $H^n K$ are locally constant. Then $\tau_{\leq -\dim(U)} K|_U \in {}^p D_c^{b,\leq 0}(U)$ and $\tau_{> -\dim(U)} K|_U \in {}^p D_c^{b,>0}(U)$, so

$$\tau_{\leq -\dim(U)} K|_U \rightarrow K|_U \tau_{> -\dim(U)} K|_U$$

is a distinguished triangle on U that defines the required distinguished triangle on U . Let F be the complement of U ; then $\dim(F) < \dim(X)$, so by the induction hypothesis the perverse t -structure is indeed a t -structure on F , and there exists a distinguished triangle

$${}^p \tau_{\leq 0} K|_F \rightarrow K|_F {}^p \tau_{> 0} K|_F$$

that is our required distinguished triangle on F . Now, by what we know of recollements, we can glue the standard t -structure on U and the perverse t -structure on F to find a t -structure on D_c^b , and in this t -structure a triangle

$$A \rightarrow K \rightarrow B$$

that lifts the two triangles mentioned before. Although the t -structure we get in this way is not the perverse t -structure, the triangle is still distinguished, and in fact $A \in {}^p D_c^{b,\leq 0}$ and $B \in {}^p D_c^{b,>0}$ by Remark 1.4

□

Definition 1.7. The abelian category of perverse sheaves $\text{Perv}(X)$ is the heart of the perverse t -structure.

2 t -exact functors

Definition 2.1. Let \mathcal{D}_1 and \mathcal{D}_2 be two t -structured categories with hearts \mathcal{C}_1 and \mathcal{C}_2 , and let $f: \mathcal{C} \rightarrow \mathcal{D}$ be a morphism of categories; then we denote ${}^p f = H^0 \circ f \circ \epsilon$. Here $H^0 = \tau_{\geq 0} \tau_{\leq 0}$.

Definition 2.2. Let \mathcal{D}_1 and \mathcal{D}_2 be two t -structured categories with hearts \mathcal{C}_1 and \mathcal{C}_2 , and let $f: \mathcal{C} \rightarrow \mathcal{D}$ be an amorphism of triangulated abelian categories. We say that f is *left t -exact* if $f(\mathcal{D}_1^{\geq 0}) \subset \mathcal{D}_2^{\geq 0}$, *right t -exact* if $f(\mathcal{D}_1^{\leq 0}) \subset \mathcal{D}_2^{\leq 0}$, and *t -exact* if both are true.

Lemma 2.3. Let \mathcal{D}_1 and \mathcal{D}_2 be two t -structured categories with hearts \mathcal{C}_1 and \mathcal{C}_2 , and let $f: \mathcal{C} \rightarrow \mathcal{D}$ be a morphism of categories.

1. If f is (left, right) t -exact, then ${}^p f$ is (left, right) exact.
2. If f is left (right) t -exact and K is an element of $\mathcal{D}_1^{\geq 0}$, then ${}^p f H^0 K \xrightarrow{\sim} H^0 f K$.
3. Suppose f has a left adjoint $g: \mathcal{D}_2 \rightarrow \mathcal{D}_1$. Then g is right t -exact if and only if f is left t -exact, and in this case $({}^p g, {}^p f)$ form an adjoint pair.
4. If both f and some $h: \mathcal{D}_2 \rightarrow \mathcal{D}_3$ are (left, right) t -exact, then $h \circ f$ is as well, and ${}^p(h \circ f) = {}^p h \circ f$.

Proof.

1. Let $0 \rightarrow X \rightarrow Y \rightarrow Z$ be a short exact sequence in \mathcal{C}_1 ; then $fX, fY, fZ \in \mathcal{D}_2 \geq 0$, so the long exact cohomology sequence gives

$$0 \rightarrow H^0 fX \rightarrow H^0 fY \rightarrow H^0 fZ.$$

The statement on right exactness is dual to this one.

2. If $K \in \mathcal{D}_1^{\geq 0}$, then $H^0 K \rightarrow K \rightarrow \tau_{>0} K$ is a distinguished triangle, hence so is $fH^0 K \rightarrow fK \rightarrow f\tau_{>0} K$. Since $f\tau_{>0} K$ is an element of $\mathcal{D}_2^{\geq 0}$, the long exact sequence gives an isomorphism $H^0 fH^0 K \xrightarrow{\sim} H^0 fK$.
3. Suppose f is left t -exact, and let $U \in \mathcal{D}_1^{\geq 0}$ and $V \in \mathcal{D}_2^{\leq 0}$. Then $\text{Hom}(gV, U) = \text{Hom}(V, fU) = 0$. Since this is true for all U , one has $\tau_{>0} gV = 0$, hence $gV \in \mathcal{D}_1^{\leq 0}$, so g is right t -exact. For $A \in \mathcal{C}_1$ and $B \in \mathcal{C}_2$, we find $H^0 gB = \tau_{\leq 0} gB$ and $H^0 fA = \tau_{\geq 0} fA$; this gives a functorial isomorphism

$$\text{Hom}(H^0 gB, A) = \text{Hom}(gB, A) = \text{Hom}(B, fA) = \text{Hom}(B, H^0 fA).$$

4. The first point is trivial; furthermore for every $A \in \mathcal{C}_1$ one has

$${}^p(h \circ f)A = H^0 h f A = H^0 h H^0 f A$$

by point 2. □

3 t -exactness in the geometric setting

Proposition 3.1. *Let X be as before, let $U \xrightarrow{j} X$ be a Zariski open on X , and let $F \xrightarrow{i} X$ be its closed complement. Consider the perverse t -structure on all schemes.*

1. $j_!$ and i^* are right t -exact, j_* and $i^!$ are left t -exact, and $j^* (= j^!)$ and i_* ($= i_!$) are t -exact.
2. There are adjunctions $(^p i^*, ^p i_*)$, $(^p i_!, ^p i^!)$, $(^p j_!, ^p j^!)$, $(^p j^*, ^p j_*)$.
3. The compositions $^p j^* \circ ^p i_*$, $^p i^* p j_!$, $^p i^! p j_*$ are zero.
4. For $A \in \text{Perv}(F)$ and $B \in \text{Perv}(U)$ one has

$$\text{Hom}({}^p j_! B, {}^p i_* A) = \text{Hom}({}^p i_* A, {}^p j_* B) = 0.$$

5. For $A \in \text{Perv}(X)$ the sequences

$${}^p j_! {}^p j^* A \rightarrow A \rightarrow {}^p i_* {}^p i^* A \rightarrow 0$$

and

$$0 \rightarrow {}^p i_* {}^p i^! A \rightarrow A \rightarrow {}^p j_* {}^p j^* A$$

are exact.

6. ${}^p i_*$, ${}^p j_!$ and ${}^p j_*$ are fully faithful, i.e. the natural transformations ${}^p i^* p i_* \rightarrow \text{id} \rightarrow {}^p i^! p i_*$ and ${}^p j^* p j_* \rightarrow \text{id} \rightarrow {}^p j^* p j_!$ are isomorphisms.

Proof. 1. By definition of the perverse t -structure, $j^* = j^!$ is t -exact, i^* is right t -exact, and $i^!$ is left t -exact. By Lemma 2.3.3 i_* ($= i_!$) is t -exact, $j_!$ is right t -exact, and $i^!$ is left t -exact. The result now follows from Lemma 2.3.1.

2. This now follows directly from Lemma 2.3.3.
3. This follows from $j^* i_* = 0$ (etc).
4. This is a direct consequence of the former statement.
5. This follows from the fact that

$$j_! j^* A \rightarrow A \rightarrow i_* i^* A$$

and

$$i_* i^! A \rightarrow A \rightarrow j_* j^* A$$

are distinguished.

6. This follows from the fact that these are isomorphisms without the p .

□

Proposition 3.2. *Let $f: X \rightarrow Y$ be a quasifinite morphism. Then $f_!$ and f^* are right t -exact, and $f^!$ are f_* are left t -exact.*

Proof. Let $K \in D_c^b(X)$. One has that $K \in D_c^{b,\leq 0}(X)$ if and only if $\dim \text{Supp } H^i K \geq i$. $f_!$ is exact on sheaves, so $H^i R f_! K = f_! H^i K$, so $\text{Supp } H^i f_! K = f_! (\text{Supp } H^i K)$ and $\dim \text{Supp } H^i f_! K = \dim \text{Supp } H^i K$, which proves that $f_!$ is right t -exact. The proof for f^* is similar, and the result for $f^!$ and f_* follow by adjunction. \square

Theorem 3.3. *Let X and Y be separated schemes of finite type over k , and let l be a prime invertible in k . If $f: X \rightarrow Y$ is an affine morphism, the functor $f_*: D_c^b(X, \bar{\mathbb{Q}}_l) \rightarrow D_c^b(Y, \bar{\mathbb{Q}}_l)$ is right t -exact.*

Proof. Let F be a constructible sheaf (on X or Y), and let $d(F)$ be the smallest integer such that $F \in {}^p D_c^{\leq d(F)}$. If K is an object in the derived category, then we define $d(K) = \sup(i + d(H^i K))$; then again $d(K)$ is the smallest d such that $K \in {}^p D_c^{\leq d(K)}$; hence $K \in {}^p D_c^{\leq 0}$ if and only if all the $H^i K[-i]$ are. Hence we need to show that if F is a sheaf such that $d(F) \leq d$, then $d(R^i f_* F) \leq d - i$; but this is proven in (SGA4, XIV 3.1). \square

Corollary 3.4. *With the notation as above, $f_!$ is left t -exact.*

Proof. This follows from Verdier duality. \square

Corollary 3.5. *If $f: X \rightarrow Y$ is quasi-finite and affine, the functors $f_!$ and f_* are t -exact.*