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Todays goal is twofold: I want to tell you why you would want to study stacks in the first place, and
[ want to define what a stack is. This is a purely category theoretical concept; the main objects of study
for this seminar will be algebraic stacks, which will be defined by a volunteer next week.

1 Why should you care?

Algebraic stacks can be thought of as a suitable generalisation of schemes. As one may expect, they
arise in situations where the object one would like to study turns out not be a scheme, but still has some
'geometric' properties. This section is dedicated to describing such a situation.

Definition 1.1. Let S be a scheme. An elliptic curve over S is a smooth projective connected group scheme

over S of relative dimension 1.

You have probably already seen elliptic curves over fields at some point in your life. There are two
properties of elliptic curves that will be relevant in the following discussion:

1. All elliptic curves are commutative group schemes.

2. Over a field of characteristic 0, an elliptic curve is a curve in the projective plane given by the

equation y? = 2% + ax + b for some (not necessarily unique) constants a and b.

If S — S’ is a morphism of schemes, and E’ is an elliptic curve over S’, then the pullback £’ x ¢/ S

is an elliptic curve over S. Hence we can consider the functor

F:Schm™ —  Set
S +— {Ell. curves/S}/ =.

One may wonder if this functor is representable, i.e. whether there exists a scheme M such that F &
Hom(—, M) as functors Schm®® — Set; such a scheme is called a moduli spaceﬂ. If this were true, this

10ften called fine moduli spaces to distinguish them from the coarse moduli spaces that will pop up soon.



would make studying elliptic curves a bit easier: The identity idy; € Hom (M, M) would correspond to
a unique isomorphism class of elliptic curves £ /M. This

would then be called the universal elliptic curve, and it would have the property that for every scheme S
and for every elliptic curve E//S, there would be a unique morphism f: S — M suchthat E = € x5 ¢ S
as elliptic curves over S.

Unfortunately, such an M cannot exist for this specific functor. There are two reasons for this (which
are actually instances of the same reason):

1. Let E be an elliptic curve over C. Since F is commutative, the inverse map —1: E — E is an auto-
morphism of E as a group variety over C. It turns out that this automorphism is nontrivial (in other
words, E does not have exponent 2). Now we consider an elliptic curve € over S = SpecC[X, X 1],
that we may describe analytically as follows. We know S(C) = C*, and 71 (C*, 1) & Z. Now let £
be the elliptic curve over S such that the fibre over every point is equal to E, but such that walking
along a cycle that winds once around the origin induces the automorphism —1 on a fibre. This is
just an analytic construction, but by using the étale fundamental group one can do the same con-
struction algebraically, to actually get a group scheme & over S.

Now suppose F can be represented by a scheme M; then £ corresponds to a unique morphism
S — M. Similarly, FE corresponds to a unique x € M (C); hence the map S — M maps every
C-point of S to x. Hence this map is constant; but this corresponds to the constant elliptic curve
E x¢ S over S, rather than £.

2. Let k be a non-algebraically closed field, and F an elliptic curve over k given by the equation y? =
23 +ax+b. Letd € k*\k,and let E,; be the twist of E given by the equation y? = 23 + d?ax + d>b.
Over k, these elliptic curves are nonisomorphic, but they become isomorphic over k(+/d), via the
transformation (z,y) — (d~'z,d~2y). If F were represented by a scheme M, then E and E,
would correspond to two different points in M (k), that map to the same point in M (k(1/d); but
since M is a scheme, the map M (k) — M (k(+/d)) is injective, which is a contradiction.

This example is actually related to the previous one in the following sense. To give a form of F
over k is to give the elliptic curve Ef, together with an action of Gal(k/k) on E(k). If E} has



automorphisms, one can 'twist' the Galois action on E (k) to get a different curve over k that is the
same over k. The examples are even more similar when you realise that 7}, (Speck) = Gal(k/k).

From these two examples we see that the fact that elliptic curves have nontrivial automorphisms is

an obstruction to the existence to a moduli space. There are three ways to solve this problem:

1. One can decorate the elliptic curves with additional data, so that they no longer have nontrivial
automorphisms. For example, for a fixed scheme S one can look at isomorphism classes of pairs
(E, P),where F is an elliptic curve over S and P € E(S) is a global section of a fixed order N > 3.
It turns out if restrict ourselves to schemes over Z[N 1], these pairs have no nontrivial automor-

phisms, and we get a moduli space over Z[N 1], along with a universal curve over it.

2. If F is not representable, one can hope for the existence of a 'best possible approximation', i.e.
a scheme M such that there is a natural transformation ' — Hom(—, M), and such that M is
universal with respect to this property. Such a scheme M is called a coarse moduli space. In the ex-
ample where F'(S) is the set of isomorphism classes of elliptic curves over S, such a coarse moduli
space exists; it is the 'j-line' M = SpecZ]j], and the map F — Hom(—, M) is given by sending
an elliptic curve over S to its j-invariant. Of course, this object does not have the nice properties
that a moduli space would have: for example, there is no universal elliptic curve over M. We will

discuss coarse moduli spaces in more detail in the talk about Deligne-Mumford stacks.

3. The third solution is to somehow incorporate these automorphisms into F'. Instead of letting F'(.S)
be the set of isomorphism classes of elliptic curves, we can consider the groupoid F(S), whose
objects are elliptic curves over S, and whose morphisms are isomorphisms. It turns out that the
morphism

F: Schm — Grpd

is not 'represented by a scheme' in any sensible way, but it still has quite a few algebro-geometrical
properties.

The F from the last point is an example of an algebraic stack, which will be the main objects of study for
this seminar. Before we can define them as algebro-geometrical objects, we first need to develop some
category theory.

2 What are stacks?

It is best to think of a stack as a "sheaf of categories over a category". We emphasize that this is not
a definition! The next sections will be devoted to defining increasingly category-theoretic notions of
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presheaves and sheaves.

2.1 Sites —"sheaves of sets on a category"

A site is to be thought of as a generalisation of a topological space. To a topological space X one can
associate the category X whose objects are opens U C X, and whose morphisms are inclusion maps.
Then a presheaf F on X is a functor F': X°® — Set. For F to be a sheaf, the following property has to
hold: for every U € X and every covering (U; < U);cr, the canonical map

UiﬂUj fj

F(U)%{(fi)iEHF(Ui)ifi = UmUj}
il

is bijective. We can rewrite this slightly to make it more 'categorical'. First note that U; NU; = U; Xy U
in the category X. There are two maps [ [, ; F(U;) — [, jo; (Ui xv Uj), induced by the projections
to the first and second coordinate, respectively. To say that ' is a sheaf is exactly to say that the sequence

FU) = [[Fw) = [[ Fs xv U;)
iel ijel
isexact, i.e. every element of [ [, _; F'(U;) that has the same image under both maps, comes from a unique
element of F(U).

If we want to define sheaves on a general category, we can make sense of the last statement, provided
that we know what a covering is. Since there is no canonical candidate for this, the solution is to make
the coverings part of the data.

Definition 2.1. Let C be a category. A Grothendieck topology on C consists of a set Cov(X) of collections
of morphisms {X; — X },¢; for every object X € C such that the following hold:

~

. If X’ 5 X is an isomorphism, then { X’ = X} € Cov(X).

. If{X; = Xt}ier € Cov(X),and Y — X is any morphism, then the products ¥; := X; x x Y exist and
{Y; = Y}ier € Cov(Y).

CIf{X; = X}ier € Cov(X) and {V; ; — X;}jes, € Cov(X;) foreachi € I, then
{Vii = Xs = X}ierjes, € Cov(X).
A category C together with a Grothendieck topology on C is called a site.
Definition 2.2. Let C be a site.

. A presheaf on C is a functor C — Set.



. A presheaf on C is called separated if for every X € C and every {X; — X}ier € Cov(X) the map
F(X) — I[, F(X;) is injective.
. A presheaf on C is called a sheaf if for every X € Cand every {X; — X}icr € Cov(X) the following
sequerice is exact:
F(X) = [[Fx) = [ F(Xi xx X))
iel ijel

Example 2.3.

. Consider the category X associated with a topological space X. For every open U C X, we let Cov(U)
be the set of open coverings of U (in the subspace topology), which we can consider as a set of collections
of morphisms in X. This defines a Grothendieck topology on X, and sheaves on the site X coincide with

sheaves on the topological space X.

~

. Let Cbe any category, and forany X € C,let Cov(X) = {{X’ = X} : X' = X}, i.e. the only coverings
are isomorphisms. This is a Grothendieck topology on C. On this site all presheaves are sheaves.

. Let X be a scheme, and consider the category Schmx. We can put a Grothendieck topology on this
category as follows: for every X-scheme U, the set Cov(U) is the set of collections {U; — U};cr of
morphisms of X -schemes such that each U; — U is étale and the map [ [, ; U; — U is surjective. Since
étale morphisms are stable under base change and composition, this is indeed a Grothendieck topology.
The resulting site is called the big étale site over X. Of course, one can replace the adjective étale with
several others to get different sites from the same category. In particular, when we use the adjective

étale, we mean that each U; — U is an open immersion.

. Let Cbe asite, and let X € C. Let C/X be the category whose objects are morphisms Y — X in C, and

whose morphisms are commutative triangles
Y ——M Y’

N

ForanY € C/X, define Cov(Y — X) to be the set of collections of X-morphisms {Y; — Y}, such

that the same collection is a covering of Y in C. This turns C/X into a site.

2.2 Filtered categories —"presheaves of categories on a category"
Definition 2.4.

. Let C be a category. A category over C is a pair (F, p) of a category F and a functor p: F — C. For any
object U € C, we write F(U) for the subcategory of F whose objects are u € F such that p(u) = U, and
whose morphisms are ¢: v — u’ in F such that p(¢) = idy.



. Amorphism ¢: u — v in F is called cartesian if for every ¢: w — v in F and a factorisation

p(w) 2 p(u) 8 p(o)

of p(1)), there exists a unique A\: w — w such that p o A = ¢ and p(\) = h.

. A fibred category over C is a category p: F — C over C such that for every f: U — Vin C andv € F(V),
there is a cartesian morphism ¢: u — v such that p(¢) = f.

. Letp: F = Cand q: G — C be two fibred categories over C. A morphism of fibred categories g: F — G
is a functor g: F — G such that

@ qg9 =p;
(b) g sends cartesian morphisms in F to cartesian morphisms in G.

. Let g,¢': F — G be two morphisms of fibred categories over C. A base preserving natural transformation
a: g — ¢'isanatural transformation such that for every u € F the morphism o, : g(u) — ¢’'(u) projects
to the identity morphism in C.

. We denote by HOMc(F, G) the category whose objects are morphisms of fibred categories and whose

morphisms are base preserving natural transformations.

Remark 2.5. Let p: F — Cbe a category over C, and let f: U — V be a morphism in C, let v € F be
alift of V, and let ¢: uw — v be a cartesian lift of f. Then w is called a pullback of v along f, and lives in
F(U). The cartesian property tells us that if o: « — vand ¢': 4’ — v, then there is a unique \: u = u’
in F(U) such that ¢’ A = . If we choose, for every object v € F(V'), a pullback f*v in F(U), this gives us
a functor

2 FU) = F(V).

The functor itself depends on the choice of the pullbacks, but different choices give a unique transforma-
tion from one pullback functor to the other.

Example 2.6. Let C be a category, and let F': C®® — Set be a presheaf. We can turn F into a fibred
category F as follows. We let the objects of F be pairs (X, ), where X € Cand x € F(X). A morphism
(X,z) = (Y,y) is amorphism f: X — Y in C such that f*y = z. Then the natural forgetful functor
F — C turns F into a fibred category over C. For an object X the category F(X) has as objects the
elements of the set F/(X), and only identities as morphisms.

Example 2.7. Let f: X — Y be a morphism of schemes. For any Y-scheme T" one can consider the
fibre product T' xy X. However, this is only defined up to unique isomorphism. Usually this is not a
problem, but it presents a technical obstacle when developing the theory of stacks. The solution lies in
fibred categories. Fix f: X — Y as above, and let C be the category of Y -schemes. Let F be the category

of cartesian diagrams



P-—t. X

[

T —t5Y

with the obvious notion of morphism. Then we get a forgetful functor p: F — C by sending the
diagram above to the Y-scheme T, and this makes F a fibred category over C (the axiom of a fibred
category comes down to the existence of fibre products). Furthermore, for any Y -scheme T', the category
F(T) consists of all 'fibre products' of T and X over Y. Any two objects are uniquely isomorphic.

Definition 2.8. Let p: F — Cbe a fibred category over C. We say that F is fibred in groupoids if for every
U € C the category F(U) is a groupoid.

Letp: F — Cbe a category fibred in groupoids, and let X € C. Let z, 2’ € F(X). We can then define
a presheaf Isom(x,z’): (C/X)°PP — Set as follows. For any morphism f: Y — X, choose pullbacks
frx, f*x’ € F(Y); we set

Isom(z,2')(f: Y = X) := Isomgyy (f @, f*2').

If we have a composition
z5%y 4 x,

then (fg)*x and (fg)*z’ are pullbacks of f*x and f*z’ along g, and as such we get a canonical map
g : Isom(z,2')(f: Y = X) — Isom(z,2')(fg: Z = X).

The presheaf Isom(z, 2’) is independent of the choices of pullbacks, up to canonical isomorphism.

2.3 Descent —"the sheaf property for presheaves of categories"

Let p: F — Cbe a fibred category. Let {X; — Y };c; be a collection of morphisms in C. We define a
category F({X; — Y }ier) as follows:

The objects are collections of data ({E;}icr, {04, }i,jer) where E; € F(X;),and 0, ;: priE; — priE;
is an isomorphism in F(X; xy X;) such that the following diagram in F(X; xy X; Xy X}) commutes
foralli,j, k € I:

pr,{ggi'
* * * * * *
prispriE; —— priopry Bj = prigprik;
H lprésffjk
PYI;;UL')C
* * * * * *
prisprill; —— prispry By =——= prysprs by



e The morphisms are collections of morphisms {g;: E; — E{};c; such that o};prig; = pr3g;oi;.

The commutativity condition on the o is to be interpreted as follows: there are two ways to compare
the pullbacks of E; and Ej, in F(X; xy X; xy X}), namely via oy, or via 0;; and o, and these two
ways should give the same result. The collection {o;;}; jer is sometimes referred to as descent data on the
{E;}ic1. There is a natural functor F(Y) — F({X; EL Y }ier) given by sending an object E € F(Y') to
({fi EYicr,{0ij}i j in1) where the o;;: pri fi E — pr3 f E are the unique morphisms induced by the
fact that both pry f;* £ and pr3 f1 E are pullbacks of E along the morphism X; xy X; — Y.

Definition 2.9. The collection of morphisms {X; — Y };c; is of effective descent for F if the functor
F(Y) — F({X; — Y}ier) is an equivalence of categories.

Definition 2.10. For an object ({F;}icr,{0i ;}ijer) € F{Xi — Y}icr) we say that the descent data

{0ij}ijeris effectiveif ({E;}icr, {04 ;}ijer) is in the essential image of the functor

F(Y) = F{X; = Yt}ier).
Example 2.11. Let Cbe asite, and let F' be a presheaf on C. Let F — C be the associated fibred category
over C. Then F is a sheaf if and only if for every Y € C, every covering of Y is of effective descent for F.

Note that in this example the commutation relation on the o;; is vacuous, since the only isomorphisms
are identities.

2.4 Stacks

Definition 2.12. Let C be a site. A category F fibred in groupoids over C is a stack if for every X € C and
every covering {X; — X };c; of X the functor

F(X) = F({Xi = X}ier)-
is an equivalence of categories.
The following result is straightforward:

Proposition 2.13. Let F be a category fibred in groupoids over C. Then F is a stack if and only if the following two
conditions hold:

1. Forany X € Cand z,y € F(X), the presheaf Isom(x,y) on C/X is a shedf.

2. Forany covering { X; — X} of an object X € C, any descent data with respect to this covering is effective.

Example 2.14. Let C be the category of schemes, regarded as the big Zariski site over SpecZ as before;
hence a covering of a scheme X is simply a collection of open immersions { X; < X };c;r whose images
cover X. Let F be the category whose objects are pairs (X, E') of a scheme X and an elliptic curve E over
X, and whose morphisms are cartesian diagrams



E——F

|

X — X

Then the forgetful functor F — Csending (X, F) to X turns F into a fibred category over C (the existence
of pullbacks is again just the existence of pullbacks of elliptic curves). Also, any morphism in F between
(X, E) and (X, E') that is the identity on X is an isomorphism, so F is fibred in groupoids. Finally F is a
stack: to show this with the proposition above we have to show the following two things:

. For any scheme X, any two elliptic curves E, E’ over X, any covering {X; < X} of X, and any 'com-
patible' collection of isomorphisms

EXXXi:)E/XXXi

~/!
there is a unique isomorphism E E of elliptic curves over X gluing these data.
. For any covering { X; < X },cr of a scheme X, any collection of elliptic curves E;/X;, and any compat-
ible collection of isomorphisms
Ei X X; (Xz Xij) :>EJ XXJ- (Xz Xij)
there is a £/ X gluing these data.

This is algebraic geometry however, and since this talk was just about category theory we will leave this
problem be for now.

To finish this talk we present the following theorem without proof.

Theorem 2.15. Let F be a category fibred in groupoids over C. Then there exists a 'unique' stack over F* over C,
called the stackification of F, and a morphism of fibred categories g: F — F“ such that for any stack G over C the
induced functor

HOM¢(F? G) — HOM¢(F, G)

is an equivalence of categories.

Remark 2.16. The word unique in the theorem is to be interpreted as follows. If (F", ¢’) also satisfies the
conditions of the theorem, there is a unique pair (h, n), where h: F* — F* is an equivalence of fibred

categories, and 7: hq' & ¢ is an isomorphism in HOMc¢(F, F*).
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