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Todays goal is twofold: I want to tell you why you would want to study stacks in the first place, and
I want to define what a stack is. This is a purely category theoretical concept; the main objects of study
for this seminar will be algebraic stacks, which will be defined by a volunteer next week.

1 Why should you care?
Algebraic stacks can be thought of as a suitable generalisation of schemes. As one may expect, they
arise in situations where the object one would like to study turns out not be a scheme, but still has some
'geometric' properties. This section is dedicated to describing such a situation.
Definition 1.1. LetS be a scheme. An elliptic curve overS is a smooth projective connected group scheme
over S of relative dimension 1.

You have probably already seen elliptic curves over fields at some point in your life. There are two
properties of elliptic curves that will be relevant in the following discussion:

1. All elliptic curves are commutative group schemes.

2. Over a field of characteristic 0, an elliptic curve is a curve in the projective plane given by the
equation y2 = x3 + ax+ b for some (not necessarily unique) constants a and b.

If S → S′ is a morphism of schemes, and E′ is an elliptic curve over S′, then the pullback E′ ×S′ S

is an elliptic curve over S. Hence we can consider the functor

F : Schmopp → Set
S 7→ {Ell. curves/S}/ ∼= .

One may wonder if this functor is representable, i.e. whether there exists a schemeM such that F ∼=
Hom(−,M) as functors Schmopp → Set; such a scheme is called a moduli space1. If this were true, this

1Often called fine moduli spaces to distinguish them from the coarse moduli spaces that will pop up soon.
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would make studying elliptic curves a bit easier: The identity idM ∈ Hom(M,M) would correspond to
a unique isomorphism class of elliptic curves E/M . This

would then be called the universal elliptic curve, and it would have the property that for every scheme S
and for every elliptic curveE/S, there would be a uniquemorphism f : S →M such thatE ∼= E×M,f S

as elliptic curves over S.

Unfortunately, such anM cannot exist for this specific functor. There are two reasons for this (which
are actually instances of the same reason):

1. LetE be an elliptic curve overC. SinceE is commutative, the inverse map−1: E → E is an auto-
morphismofE as a group variety overC. It turns out that this automorphism is nontrivial (in other
words,E does not have exponent 2). Nowwe consider an elliptic curveE overS = SpecC[X,X−1],
that we may describe analytically as follows. We know S(C) = C×, and π1(C×, 1) ∼= Z. Now let E
be the elliptic curve over S such that the fibre over every point is equal toE, but such that walking
along a cycle that winds once around the origin induces the automorphism −1 on a fibre. This is
just an analytic construction, but by using the étale fundamental group one can do the same con-
struction algebraically, to actually get a group scheme E over S.

Now suppose F can be represented by a scheme M ; then E corresponds to a unique morphism
S → M . Similarly, E corresponds to a unique x ∈ M(C); hence the map S → M maps every
C-point of S to x. Hence this map is constant; but this corresponds to the constant elliptic curve
E ×C S over S, rather than E .

2. Let k be a non-algebraically closed field, andE an elliptic curve over k given by the equation y2 =

x3+ax+b. Let d ∈ k2\k, and letEd be the twist ofE given by the equation y2 = x3+d2ax+d3b.
Over k, these elliptic curves are nonisomorphic, but they become isomorphic over k(√d), via the
transformation (x, y) 7→ (d−1x, d−

3
2 y). If F were represented by a scheme M , then E and Ed

would correspond to two different points inM(k), that map to the same point inM(k(
√
d); but

sinceM is a scheme, the mapM(k) →M(k(
√
d)) is injective, which is a contradiction.

This example is actually related to the previous one in the following sense. To give a form of E
over k is to give the elliptic curve Ek̄, together with an action of Gal(k̄/k) on E(k̄). If Ek̄ has
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automorphisms, one can 'twist' the Galois action onE(k̄) to get a different curve over k that is the
same over k̄. The examples are even more similar when you realise that π1

ét(Speck) = Gal(k̄/k).
From these two examples we see that the fact that elliptic curves have nontrivial automorphisms is

an obstruction to the existence to a moduli space. There are three ways to solve this problem:
1. One can decorate the elliptic curves with additional data, so that they no longer have nontrivial

automorphisms. For example, for a fixed scheme S one can look at isomorphism classes of pairs
(E,P ), whereE is an elliptic curve overS andP ∈ E(S) is a global section of a fixed orderN ≥ 3.
It turns out if restrict ourselves to schemes over Z[N−1], these pairs have no nontrivial automor-
phisms, and we get a moduli space over Z[N−1], along with a universal curve over it.

2. If F is not representable, one can hope for the existence of a 'best possible approximation', i.e.
a scheme M such that there is a natural transformation F → Hom(−,M), and such that M is
universal with respect to this property. Such a schemeM is called a coarse moduli space. In the ex-
ample where F (S) is the set of isomorphism classes of elliptic curves over S, such a coarse moduli
space exists; it is the 'j-line'M = SpecZ[j], and the map F → Hom(−,M) is given by sending
an elliptic curve over S to its j-invariant. Of course, this object does not have the nice properties
that a moduli space would have: for example, there is no universal elliptic curve overM . We will
discuss coarse moduli spaces in more detail in the talk about Deligne-Mumford stacks.

3. The third solution is to somehow incorporate these automorphisms intoF . Instead of lettingF (S)
be the set of isomorphism classes of elliptic curves, we can consider the groupoid F(S), whose
objects are elliptic curves over S, and whose morphisms are isomorphisms. It turns out that the
morphism

F : Schm → Grpd
is not 'represented by a scheme' in any sensible way, but it still has quite a few algebro-geometrical
properties.

The F from the last point is an example of an algebraic stack, whichwill be themain objects of study for
this seminar. Before we can define them as algebro-geometrical objects, we first need to develop some
category theory.

2 What are stacks?
It is best to think of a stack as a "sheaf of categories over a category". We emphasize that this is not
a definition! The next sections will be devoted to defining increasingly category-theoretic notions of
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presheaves and sheaves.

2.1 Sites—"sheaves of sets on a category"

A site is to be thought of as a generalisation of a topological space. To a topological space X one can
associate the category X whose objects are opens U ⊂ X , and whose morphisms are inclusion maps.
Then a presheaf F on X is a functor F : Xop → Set. For F to be a sheaf, the following property has to
hold: for every U ∈ X and every covering (Ui ↪→ U)i∈I , the canonical map

F (U) →

{
(fi)i ∈

∏
i∈I

F (Ui) : fi|Ui∩Uj = fj |Ui∩Uj

}

is bijective. We can rewrite this slightly to make it more 'categorical'. First note thatUi∩Uj = Ui×U Uj

in the category X. There are two maps∏i∈I F (Ui) →
∏

i,j∈I F (Ui ×U Uj), induced by the projections
to the first and second coordinate, respectively. To say thatF is a sheaf is exactly to say that the sequence

F (U) →
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×U Uj)

is exact, i.e. every element of∏i∈I F (Ui) that has the same image under bothmaps, comes froma unique
element of F (U).

If we want to define sheaves on a general category, we can make sense of the last statement, provided
that we know what a covering is. Since there is no canonical candidate for this, the solution is to make
the coverings part of the data.

Definition 2.1. Let C be a category. A Grothendieck topology on C consists of a set Cov(X) of collections
of morphisms {Xi → X}i∈I for every objectX ∈ C such that the following hold:

1. IfX ′ ∼→ X is an isomorphism, then {X ′ ∼→ X} ∈ Cov(X).
2. If {Xi → X}i∈I ∈ Cov(X), and Y → X is any morphism, then the products Yi := Xi ×X Y exist and

{Yi → Y }i∈I ∈ Cov(Y ).
3. If {Xi → X}i∈I ∈ Cov(X) and {Vi,j → Xi}j∈Ji ∈ Cov(Xi) for each i ∈ I , then

{Vi,i → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A category C together with a Grothendieck topology on C is called a site.

Definition 2.2. Let C be a site.

1. A presheaf on C is a functor C → Set.
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2. A presheaf on C is called separated if for every X ∈ C and every {Xi → X}i∈I ∈ Cov(X) the map
F (X) →

∏
i F (Xi) is injective.

3. A presheaf on C is called a sheaf if for every X ∈ C and every {Xi → X}i∈I ∈ Cov(X) the following
sequence is exact:

F (X) →
∏
i∈I

F (Xi) ⇒
∏
i,j∈I

F (Xi ×X Xj).

Example 2.3.

1. Consider the category X associated with a topological spaceX . For every open U ⊂ X , we let Cov(U)

be the set of open coverings ofU (in the subspace topology), which we can consider as a set of collections
of morphisms in X. This defines a Grothendieck topology on X, and sheaves on the site X coincide with
sheaves on the topological spaceX .

2. Let C be any category, and for anyX ∈ C, letCov(X) = {{X ′ ∼→ X} : X ′ ∼= X}, i.e. the only coverings
are isomorphisms. This is a Grothendieck topology on C. On this site all presheaves are sheaves.

3. Let X be a scheme, and consider the category SchmX . We can put a Grothendieck topology on this
category as follows: for every X-scheme U , the set Cov(U) is the set of collections {Ui → U}i∈I of
morphisms ofX-schemes such that each Ui → U is étale and the map∐i∈I Ui → U is surjective. Since
étale morphisms are stable under base change and composition, this is indeed a Grothendieck topology.
The resulting site is called the big étale site over X . Of course, one can replace the adjective étale with
several others to get different sites from the same category. In particular, when we use the adjective
étale, we mean that each Ui → U is an open immersion.

4. Let C be a site, and letX ∈ C. Let C/X be the category whose objects are morphisms Y → X in C, and
whose morphisms are commutative triangles

Y Y ′

X

For an Y ∈ C/X , define Cov(Y → X) to be the set of collections ofX-morphisms {Yi → Y }i∈I such
that the same collection is a covering of Y in C. This turns C/X into a site.

2.2 Filtered categories—"presheaves of categories on a category"

Definition 2.4.

1. Let C be a category. A category over C is a pair (F, p) of a category F and a functor p : F → C. For any
object U ∈ C, we write F(U) for the subcategory of F whose objects are u ∈ F such that p(u) = U , and
whose morphisms are ϕ : u→ u′ in F such that p(ϕ) = idU .
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2. A morphism ϕ : u→ v in F is called cartesian if for every ψ : w → v in F and a factorisation

p(w)
h→ p(u)

p(ϕ)→ p(v)

of p(ψ), there exists a unique λ : w → u such that ϕ ◦ λ = ψ and p(λ) = h.
3. A fibred category over C is a category p : F → C over C such that for every f : U → V in C and v ∈ F(V ),

there is a cartesian morphism ϕ : u→ v such that p(ϕ) = f .
4. Let p : F → C and q : G → C be two fibred categories over C. A morphism of fibred categories g : F → G

is a functor g : F → G such that
(a) qg = p;

(b) g sends cartesian morphisms in F to cartesian morphisms in G.
5. Let g, g′ : F → G be two morphisms of fibred categories over C. A base preserving natural transformation
α : g → g′ is a natural transformation such that for everyu ∈ F themorphismαu : g(u) → g′(u)projects
to the identity morphism in C.

6. We denote by HOMC(F,G) the category whose objects are morphisms of fibred categories and whose
morphisms are base preserving natural transformations.
Remark 2.5. Let p : F → C be a category over C, and let f : U → V be a morphism in C, let v ∈ F be
a lift of V , and let ϕ : u → v be a cartesian lift of f . Then u is called a pullback of v along f , and lives in
F(U). The cartesian property tells us that if ϕ : u→ v and ϕ′ : u′ → v, then there is a unique λ : u ∼→ u′

in F(U) such that ϕ′λ = ϕ. If we choose, for every object v ∈ F(V ), a pullback f∗v in F(U), this gives us
a functor

f∗ : F(U) → F(V ).

The functor itself depends on the choice of the pullbacks, but different choices give a unique transforma-
tion from one pullback functor to the other.
Example 2.6. Let C be a category, and let F : Cop → Set be a presheaf. We can turn F into a fibred
category F as follows. We let the objects of F be pairs (X,x), whereX ∈ C and x ∈ F (X). A morphism
(X,x) → (Y, y) is a morphism f : X → Y in C such that f∗y = x. Then the natural forgetful functor
F → C turns F into a fibred category over C. For an object X the category F(X) has as objects the
elements of the set F (X), and only identities as morphisms.
Example 2.7. Let f : X → Y be a morphism of schemes. For any Y -scheme T one can consider the
fibre product T ×Y X . However, this is only defined up to unique isomorphism. Usually this is not a
problem, but it presents a technical obstacle when developing the theory of stacks. The solution lies in
fibred categories. Fix f : X → Y as above, and let C be the category of Y -schemes. Let F be the category
of cartesian diagrams
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P X

T Y

b

a f

t

with the obvious notion of morphism. Then we get a forgetful functor p : F → C by sending the
diagram above to the Y -scheme T , and this makes F a fibred category over C (the axiom of a fibred
category comes down to the existence of fibre products). Furthermore, for anyY -schemeT , the category
F(T ) consists of all 'fibre products' of T andX over Y . Any two objects are uniquely isomorphic.

Definition 2.8. Let p : F → C be a fibred category over C. We say that F is fibred in groupoids if for every
U ∈ C the category F(U) is a groupoid.

Let p : F → C be a category fibred in groupoids, and letX ∈ C. Let x, x′ ∈ F(X). We can then define
a presheaf Isom(x, x′) : (C/X)opp → Set as follows. For any morphism f : Y → X , choose pullbacks
f∗x, f∗x′ ∈ F(Y ); we set

Isom(x, x′)(f : Y → X) := IsomF(Y )(f
∗x, f∗x′).

If we have a composition
Z

g→ Y
f→ X,

then (fg)∗x and (fg)∗x′ are pullbacks of f∗x and f∗x′ along g, and as such we get a canonical map

g∗ : Isom(x, x′)(f : Y → X) → Isom(x, x′)(fg : Z → X).

The presheaf Isom(x, x′) is independent of the choices of pullbacks, up to canonical isomorphism.

2.3 Descent—"the sheaf property for presheaves of categories"

Let p : F → C be a fibred category. Let {Xi → Y }i∈I be a collection of morphisms in C. We define a
category F({Xi → Y }i∈I) as follows:

• The objects are collections of data ({Ei}i∈I , {σi,j}i,j∈I) where Ei ∈ F(Xi), and σi,j : pr∗1Ei → pr∗2Ej

is an isomorphism in F(Xi ×Y Xj) such that the following diagram in F(Xi ×Y Xj ×Y Xk) commutes
for all i, j, k ∈ I :

pr∗12pr∗1Ei pr∗12pr∗2Ej pr∗23pr∗1Ej

pr∗13pr∗1Ei pr∗13pr∗2Ek pr∗23pr∗2Ek

pr∗12σij

pr∗23σjk

pr∗13σik

7



• The morphisms are collections of morphisms {gi : Ei → E′
i}i∈I such that σ′

ijpr∗1gi = pr∗2gjσij .

The commutativity condition on theσij is to be interpreted as follows: there are twoways to compare
the pullbacks of Ei and Ek in F(Xi ×Y Xj ×Y Xk), namely via σik, or via σij and σjk, and these two
ways should give the same result. The collection {σij}i,j∈I is sometimes referred to as descent data on the
{Ei}i∈I . There is a natural functor F(Y ) → F({Xi

fi→ Y }i∈I) given by sending an object E ∈ F(Y ) to
({f∗i E}i∈I , {σij}i,j inI) where the σij : pr∗1f∗i E → pr∗2f∗j E are the unique morphisms induced by the
fact that both pr∗1f∗i E and pr∗2f∗j E are pullbacks ofE along the morphismXi ×Y Xj → Y .
Definition 2.9. The collection of morphisms {Xi → Y }i∈I is of effective descent for F if the functor
F(Y ) → F({Xi → Y }i∈I) is an equivalence of categories.
Definition 2.10. For an object ({Ei}i∈I , {σi,j}i,j∈I) ∈ F({Xi → Y }i∈I) we say that the descent data
{σij}i,j∈I is effective if ({Ei}i∈I , {σi,j}i,j∈I) is in the essential image of the functor

F(Y ) → F({Xi → Y }i∈I).

Example 2.11. Let C be a site, and let F be a presheaf on C. Let F → C be the associated fibred category
over C. Then F is a sheaf if and only if for every Y ∈ C, every covering of Y is of effective descent for F.
Note that in this example the commutation relation on the σij is vacuous, since the only isomorphisms
are identities.

2.4 Stacks

Definition 2.12. Let C be a site. A category F fibred in groupoids over C is a stack if for everyX ∈ C and
every covering {Xi → X}i∈I ofX the functor

F(X) → F({Xi → X}i∈I).

is an equivalence of categories.
The following result is straightforward:

Proposition 2.13. Let F be a category fibred in groupoids over C. Then F is a stack if and only if the following two
conditions hold:

1. For anyX ∈ C and x, y ∈ F(X), the presheaf Isom(x, y) on C/X is a sheaf.
2. For any covering {Xi → X} of an objectX ∈ C, any descent data with respect to this covering is effective.

Example 2.14. Let C be the category of schemes, regarded as the big Zariski site over SpecZ as before;
hence a covering of a schemeX is simply a collection of open immersions {Xi ↪→ X}i∈I whose images
coverX . Let F be the category whose objects are pairs (X,E) of a schemeX and an elliptic curveE over
X , and whose morphisms are cartesian diagrams
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E E′

X X ′

Then the forgetful functorF → C sending (X,E) toX turnsF into afibred category overC (the existence
of pullbacks is again just the existence of pullbacks of elliptic curves). Also, any morphism in F between
(X,E) and (X,E′) that is the identity onX is an isomorphism, so F is fibred in groupoids. Finally F is a
stack: to show this with the proposition above we have to show the following two things:

1. For any schemeX , any two elliptic curves E,E′ overX , any covering {Xi ↪→ X} ofX , and any 'com-
patible' collection of isomorphisms

E ×X Xi
∼→ E′ ×X Xi

there is a unique isomorphismE
∼
E

′
of elliptic curves overX gluing these data.

2. For any covering {Xi ↪→ X}i∈I of a schemeX , any collection of elliptic curvesEi/Xi, and any compat-
ible collection of isomorphisms

Ei ×Xi (Xi ×X Xj)
∼→ Ej ×Xj (Xi ×X Xj)

there is aE/X gluing these data.

This is algebraic geometry however, and since this talk was just about category theory we will leave this
problem be for now.

To finish this talk we present the following theorem without proof.

Theorem 2.15. Let F be a category fibred in groupoids over C. Then there exists a 'unique' stack over Fa over C,
called the stackification of F, and a morphism of fibred categories q : F → Fa such that for any stack G over C the
induced functor

HOMC(Fa,G) → HOMC(F,G)

is an equivalence of categories.

Remark 2.16. The word unique in the theorem is to be interpreted as follows. If (Fa′, q′) also satisfies the
conditions of the theorem, there is a unique pair (h, η), where h : Fa′ → Fa is an equivalence of fibred
categories, and η : hq′ ∼= q is an isomorphism in HOMC(F,Fa).

9


	Why should you care?
	What are stacks?
	Sites �"sheaves of sets on a category"
	Filtered categories �"presheaves of categories on a category"
	Descent �"the sheaf property for presheaves of categories"
	Stacks


