
1. Moduli of sheaves

1.1. Families. In this talk I will give an overview of moduli of sheaves mostly
following Huybrechts-Lehn. Throughout (X,OX(1)) is a projective k-scheme
with very ample line bundle.1 The goal is to consider the collection M of
isomorphism classes [F ], where F is a coherent sheaf on X and make this set
into a scheme “in a natural way”. This means that the scheme structure on
M should be well-behaved with respect to families of coherent sheaves.

Definition 1.1. Let B be any base scheme. A flat family of coherent sheaves
over B is a coherent sheaf on X ×B which is B-flat.

Since M is huge, we want to fix some “topological data” which does not
change in flat families. For each coherent sheaf E on X

PE(t) := χ(E(t)) =
d∑
i=0

αi(E)

i!
ti ∈ Q[t], αd(E) 6= 0

is known as the Hilbert polynomial of E . Moreover, pE(t) := PE(t)/αd(E) is
known as the reduced Hilbert polynomial. One way to see polynomiality is by
Hirzebruch-Riemann-Roch (overkill). Facts:

• d = dim(E) := dim(Supp(E)) and rk(E) := αd(E)
αd(OX)

,

• for any family F over B: if F is B-flat then PFb
(t) is locally constant

on B.

Flat families form a contravariant functor under pull-back: for any P (t) ∈ Q[t],
we define MP (B) to be the collection of isomorphism classes of B-flat families
F such that

PFb
(t) = P (t), ∀b ∈ B.

It is convenient to work with a slightly more general equivalence relation on
families: we identify two B-flat families F ,F ′ whenever F ∼= F ′ ⊗ p∗BL, where
L is a line bundle on B and pB denotes projection. Then

MP (−) : (Sch/k)o −→ Sets,

defines a contravariant functor known as the moduli functor. Note: MP (Spec k)
is the set we are originally interested in.

1All schemes in this talk are k-schemes of finite type, where k is an algebraically closed
field.
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1.2. Deformations. Before considering arbitrary flat families, it is natural to
study flat families over B = Spec A, where A is a “thickened point”, or more
formally “a local Artinian k-algebra with residue field k”. For a fixed sheaf E
on X, the restriction

(Artin/k) −→ Sets, A 7→ {[F ] ∈MP (Spec A) : F|X×Spec (k) ∼= E}

is called the deformation functor of E . Here Spec k ↪→ Spec A is induced by
the map to the residue field.

The first non-trivial local Artinian ring is D := k[ε]/(ε2) known as the ring
of dual numbers. Deformations over the dual numbers are known as first or-
der deformations. I will now explain why Ext1X(E , E) is the set of first order
deformations. We have a natural short exact sequence

(1) 0→ (ε)→ D → k → 0.

Given a first order deformation F of E . Then F ⊗D k ∼= E . Using flatness, we
get an induced sequence of coherent OX ⊗D-modules

0→ F ⊗D (ε)→ F → E → 0.

As D-modules, (ε) ∼= k and F ⊗D (ε) ∼= F ⊗D k ∼= E . We obtain an element
of Ext1X(E , E). Conversely, for an extension 0→ E → F → E → 0 of coherent
OX-modules, we define multiplication by ε on F by

ε· : F → E → F .

Inductively, having a deformation F of E over k[ε]/(εk−1), one can consider

0→ (εk−1)→ k[ε]/(εk)→ k[ε]/(εk−1)→ 0

and ask to classify deformations of E over k[ε]/(εk), which pull-back to F .
More generally, given any short exact sequence 0 → a → A′ → A → 0 in
Artin/k with a a principal ideal satisfying a · m′ = 0 and a flat family F
over A, one can ask to classify the lifts. The answer is more complicated.
Suppose E is simple, i.e. End(E) = C. Then it turns out that the set of lifts
forms an Ext1X(E , E) ⊗k a-torsor. This means: the set of lifts may be empty,
but if not then there is a fully faithful transitive action of Ext1(E , E) ⊗k a on
the set of lifts. I will mention at the end how this fact follows for E stable
using the construction of the moduli space, Luna’s Étale Slice Theorem, and
Schlessinger’s Criterion (which I will not discuss). A direct proof can be found
in Hartshorne’s book on deformation theory.
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1.3. Obstructions. The following approach is taken from Artamkin. Given a
setup 0→ a→ A′ → A→ 0 as above, a flat family F over A with E ∼= F ⊗A k
simple. We claim there exists a natural class ob ∈ Ext2(E , E) ⊗k a such that
ob = 0 if and only if lifts exist. Consider the short exact sequences

0→ m→ A→ k → 0

0→ a→ m′ → m→ 0.

The key observation is that the latter can be seen as a short exact sequence of
A-modules using the fact that a ·m′ = 0. Applying F ⊗A − and using flatness
gives short exact sequences

0→ F ⊗A m→ F → E → 0

0→ E ⊗k a→ F ⊗A m′ → F ⊗A m→ 0,

where we use F ⊗A a ∼= E ⊗k a. We call the second extension ξ and use the
first extension to obtain a long exact sequence:

· · · → Ext1X(F , E ⊗k a)→ Ext1X(F ⊗A m, E ⊗k a)→ Ext2X(E , E ⊗k a)→ · · ·
Denoting the image of ξ in Ext2(E , E ⊗k a) by ob, we see that ob = 0 if and
only if ξ comes from an extension

0→ E ⊗k a→ F ′ → F → 0.

Working out the details you will find that F ′ exactly produces the lift (this
requires work: you need to construct an A′-module structure on F ′). See
Artamkin’s paper for details.

Coarse/fine moduli spaces. Suppose M is a moduli functor (such as MP

above). The best you may wish for is:

Definition 1.2. We say M is representable by a scheme M if there exists a
natural isomorphism Φ : M ⇒ Hom(−,M).

In the above setting, M is called a fine moduli space. Moreover, the identity
map M → M in Hom(M,M) produces an element U ∈ M(M) known as the
universal family. Exercise: Show that for any family F ∈ M(B) we have
ΦB(F)∗ U = F . Here are some famous examples of fine moduli spaces:

• For V an n-dimensional vector space and r > 0, the Grassmannian
Gr(r, V ). Here a family over B is a quotient V ⊗k OB � Q, where Q
is locally free with fibres of dimension n− r.
• For E a coherent sheaf on X and P (t) ∈ Q[t], Grothendieck’s Quot

scheme Quot(E , P ). Here a family over B is a quotient E ⊗k OB � Q,
where Q is a B-flat coherent sheaf on X × B and PQb

(t) = P (t) for
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all b ∈ B. If X is projective (which we assumed), then Quot(E , P )
is a projective k-scheme, which may have singular and non-reduced
components. In the case E = OX this reduces to the Hilbert scheme
Hilb(X,P ) of closed subschemes Z ↪→ X with Hilbert polynomial P (t).

The construction of Quot schemes uses the construction of Grassmannians. In
turn, the construction of moduli spaces of stable sheaves uses Quot schemes.

The bad news is that we cannot expect a fine moduli space for our functor
of sheaves MP . The reason is simple. Take X = Spec k and P = r > 1.
Suppose MP is representable, i.e. we have a natural isomorphism Φ : MP ⇒
Hom(−,M). Clearly M has a unique closed point corresponding to the vector
space k⊕r. Now just take any variety B with locally free sheaf F of rank r
on B, which does not decompose as a sum of line bundles. Then ΦO⊕r

B
factors

through the closed point, whereas ΦF does not (O⊕rB , F are different families).
However, since F trivializes over an open cover Uα of B, the restriction of ΦF
to each Uα factors through the closed point; contradiction.

Therefore, we content ourselves with a weaker notion of moduli space:

Definition 1.3. We say M is co-representable by a scheme M if there exists
a smallest natural transformation Φ : M ⇒ Hom(−,M) (i.e. any other such
natural transformation factors through it).

In the above setting we call M a coarse moduli space. Exercise: Show M is
unique up to isomorphism.

Typically in applications, we also want Φk to be a bijection so that we are
indeed classifying the objects of interest. However, even this is problematic.
Indeed, suppose we have a non-trivial extension of a coherent sheaf E on X

0→ E ′ → E → E ′′ → 0.

The affine line A1 ⊂ Ext1(E ′′, E ′) through 0 and the extension produces a flat
family F over A1 such that

Fb ∼= E , ∀b ∈ A1 \ {0},
F0
∼= E ′ ⊕ E ′′.

So if MP were representable by a fine moduli space MP (with P := PE), we get
a morphism A1 → MP which is constant on A1 \ {0}. But then it is constant
on A1 and E ∼= E ′ ⊕ E ′′, contradiction. This example also shows that, at our
current level of generality, we cannot expect to have a natural transformation
MP ⇒ Hom(−,MP ), which is a bijection on B = Spec k!

Conclusion: we need to use coarse instead of fine moduli spaces and we need
to restrict the class of objects that we consider.
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Geometric Invariant Theory. In moduli theory we typically want to build
a moduli space of isomorphism classes of objects on X. The idea is to define

a big scheme M̃ who’s elements are the objects and define a group action G

on M̃ such that the orbits M̃/G are the isomorphism classes.
Quotients in algebraic geometry are subtle and form the subject of GIT. The

weakest notion of quotient is the following:

Definition 1.4. Let G be an affine algebraic group acting on a scheme X. A
scheme Y is called a categorical quotient if it co-represents the functor

(Sch/k)o → Sets, B 7→ Hom(B,X)/Hom(B,G),

where the quotient is set theoretic.

In the above definition, the identity morphism X → X provides an induced
morphism π : X → Y .

From now on we restrict attention to reductive groups (e.g. GL(n, k), SL(n, k),
PGL(n, k), Gn

m). The reason is that if G is reductive and X = Spec R is affine,
then the ring of invariants RG is finitely generated (Nagata). This gives an
induced morphism π : X → Y , where Y = Spec RG is of finite type. One can
show that Y is a categorical quotient. In practise one often wants more:

Definition 1.5. Let G be an affine algebraic group acting on a scheme X.
A morphism of schemes π : X → Y is called a geometric quotient if it is
categorical (+ some extra properties I do not want you to know) and the fibres
of closed points of Y are exactly the G-orbits of closed points of X.

The local affine construction can be globalized as follows. Let G be a reduc-
tive group acting on a scheme X with G-equivariant line bundle L. Then x ∈ X
is called semistable w.r.t. L if there exists a G-invariant section σ ∈ Γ(X,L⊗n)
for some n, such that Xσ := {σ 6= 0} is affine and contains x. Moreover x ∈ X
is called stable w.r.t. L if in addition the the stabilizer Gx is finite and the
orbits of G in Xσ are closed. The collections of such points are denoted by

Xs(L) ⊂ Xss(L) ⊂ X

and are Zariski open but potentially empty.

Theorem 1.6 (Mumford-Fogarty-Kirwan). There exists a categorical quotient
π : Xss(L)→ Y , where Y is a quasi-projective scheme. Moreover, there exists
an open subset V ⊂ Y such that π−1(V ) = Xs(L) and π : Xs(L) → V is a
geometric quotient.

In this context we write Xss(L)//G := Y and Xs(L)/G := V . The scheme
Xss(L)//G in this theorem is patched together from the local pieces Xσ//G.
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Also if X is projective, then Xss(L)//G is projective. It is a corollary of Luna’s

Étale Slice Theorem, that if x ∈ Xss(L) has trivial stabilizer, then π : Xss(L)→
Xss(L)//G is a principal G-bundle in a neighborhood of π(x) (in the étale
topology).

1.4. The construction.
Step 1: Introduce stability of sheaves. A coherent sheaf E on X is (Gieseker)
(semi)-stable w.r.t. OX(1) if pG(t)(≤)pE(t) for all 0 6= G ( E and t� 0.

Step 2: By Serre vanishing: for each semistable sheaf E on X with Hilbert
polynomial P , there exists an m� 0 such that E(m) is globally generated and
H>0(E(m)) = 0. The Boundedness Theorem for semistable sheaves states that
the first two quantors can be reversed.

Step 3: Define V := k⊕P (m) and H = OX(−m) ⊗k V . Then for any E as
before, there exists a surjection

[H� E ] ∈ Quot(H, P ) =: Q.

Semi-stability is an open condition, so we get open subsets Rs ⊂ Rss ⊂ Q of
quotients for which F is (semi-)stable. The natural action of G = PGL(V ) on
V induces actions on Q (and Rs, Rss). Observation: set theoretically Rss/G
and Rs/G are the collections of isomorphism classes of (semi)stable sheaves on
X with Hilbert polynomial P !

Step 4: Let F be the universal quotient on Q×X and consider

L := det(pQ∗(F(`))).

For ` � 0 this is a very ample line bundle. Fact: there exists a natural G-
equivariant structure on L such that Qss(L) = Rss and Qs(L) = Rs.2 From
GIT we get a categorical quotient Rss//G =: M ss

P and a geometric quotient
Rs/G =: M s

P .

Theorem 1.7 (Gieseker, Maruyama, Simpson,...). We have a projective k-
scheme M ss

P corepresenting M ss
P and an open subset M s

P corepresenting M s
P .

The hard part is Steps 2 and 4. The rest is fairly standard. Remarks:

• In this notation I am suppressing the dependence on OX(1). Studying
this dependence is very interesting and leads to so-called wall-crossing
phenomena.

2Maybe Q must be replaced by R?
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• The closed points of M s
P are exactly the isomorphism classes of stable

sheaves on X with Hilbert polynomial P . However, the closed points
of M ss

P are more difficult to interpret. They are so-called S-equivalence
classes of semistable sheaves on X with Hilbert polynomial P .
• By Luna’s Étale Slice Theorem, Rs → M s

P is a principal G-bundle (in
the étale topology). Although M s

P in general does not have a universal
family, étale locally it does. Moreover, the moduli functor induces
isomorphisms M s

P (Spec A) ∼= Hom(Spec A,M s
P ) for A ∈ Artin/k.

• Combining the previous observation with Schlessinger’s Criterion gives
the earlier description of deformations. We have seen that first order
deformations of [E ] ∈M s

P are given by Ext1X(E , E). By the previous ob-
servation, the first order deformations of E are also given by morphisms

Hom(Spec k[ε]/(ε2),M s
P ),

for which the point maps to [E ]. The latter is nothing but the Zariski
tangent space at [E ] (Exercise). Hence dimM s

P ≤ dim Ext1X(E , E). Fact
from deformation theory:

dimM s
P ≥ dim Ext1X(E , E)− dim Ext2X(E , E).

We deduce that M s
P is smooth at [E ] if dim Ext2X(E , E) = 0.

It is often easier to work in situations, where there are no strictly semistable
sheaves. Given P (t) =

∑d
i=0

αi

i!
ti, recall that rk := αd/αd(OX) and deg :=

αd−1− rk ·αd−1(OX). Exercise: prove that if gcd(rk, deg) = 1, then M ss
P = M s

P .
In this case one may also replace Gieseker stability by the easier notion of slope
(a.k.a. Mumford-Takemoto) stability.


