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Affine algebraic groups

Let k be a field. All k-algebras are commutative and unital.

Definition
A affine algebraic group over k is a quadruple G = (A,∆, η, ι) consisting of

a k-algebra A;
a morphism ∆: A→ A⊗k A ‘comultiplication’,
a morphism η : A→ k ‘counit’,
a morphism ι : A→ A ‘coinversion’,

satisfying ’some axioms’.
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Affine algebraic groups

If G = (A,∆, η, ι) is an affine algebraic group, and R is a k-algebra, set
G(R) := Hom(A,R). Then we get:

A binary operator ‘multiplication’
G(R)× G(R) ∼= Hom(A⊗ A,R) ∆∗

→ Hom(A,R) = G(R);

A distinguished ‘unit element’ 1 ∈ G(R) given by the composition
A η→ k→ R;
A map ‘inversion’ G(R)→ G(R) given by Hom(A,R) ι∗→ Hom(A,R).

For a right choice of ‘some axioms’ this turns G(R) into a group.

Definition
The order of G is dimk(A).
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Examples

Γ abstract group: take
A =

⊕
γ∈Γ k · eγ ;

∆(eγ) =
∑

γ′γ′′=γ eγ′ ⊗ eγ′′ ;
η = projection onto k · e1 ∼= k;
ι(eγ) = eγ−1 .

Then G(k′) = Γ for every field ext. k′/k, and the order of G is #Γ.
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Examples

take A = k[X], then G(R) = R: additive group Ga.

take A = k[X,Y]/(XY− 1), then G(R) = R×: multiplicative group
Gm.
take A = k[X]/(Xn − 1), then G(R) = {r ∈ R : rn = 1}: nth roots of
unity µn.

In the last example, ord(µn) = n, but in general #µn(k) ≤ n.
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Abelian varieties

Definition
An abelian variety over k is a connected smooth projective group variety
over k.

Proposition
The group structure on an abelian variety is commutative.

Proposition
If A is an abelian variety of dimension g, then its p-kernel A[p] is a
commutative affine algebraic group of order p2g and exponent p.

Question: Can we classify all possible A[p]?
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Classifying A[p]

Suppose k = k̄.
If char(k) ̸= p, then only one group scheme of order p2g and exponent
p: the group scheme corresponding to (Z/pZ)2g.

If char(k) = p more possibilities: consider µp.
I µp(k) = 1
I take R = k[ε]/(ϵ2); then µp(R) = 1 + kε.
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Dieudonné theory

A commutative group scheme of order pn and exponent p over k
corresponds to a Dieudonné module of dimension g, i.e. a triple (D,F,V)
consisting of

A k-vector space D of dimension g;
Two additive maps F,V : D→ D such that for all λ ∈ k×

FV = VF = 0,Fλ = λpF,Vλp = λV.

Proposition
If (D,F,V) corresponds to A[p] for some abelian variety A, then
im(F) = ker(V) (hence im(V) = ker(F)).
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Classifying Dieudonné modules

So next two questions:
1 Can we classify Dieudonné modules of dimension n over k with

im(F) = ker(V)?
2 Which of these correspond to A[p] for some A?

For the remainder of this talk we focus on the first question.
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The stack Dn

For a Fp-algebra R, set Dn(R) := category of Dieudonné modules of
dimension n over R. Then

Dn : AlgFp → Cat

is a stack ≈ categorical construction with some ‘geometric structure’.

We
can count the ‘points’ of Dg by means of the zeta function:

Z(Dn, t) = exp

∑
v≥1

tv

v
∑

D∈[Dn(Fpv )]

1

#Aut(D)

 ∈ Q[[t]]

with [Dn(Fpv)] := Ob(Dn(Fpv))/ ∼=.
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Main result (for now)

Theorem
There exist a finite set I and a function d : I → Z≥0 that can explicitely
be described, such that

Z(Dn, t) =
∏
i∈I

1

1− pd(i)t .

Next: sketch of how to obtain this result.
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Canonical filtration

Let D ∈ Dn(k). Then the canonical filtration on D is the coarsest filtration
0 = D0 ⊂ D1 ⊂ ... ⊂ Dr = D such that for every i, F(Di) = Dj and
V−1(Di) = Dj′ for some j, j′ ≤ n.

Set Bi := Di/Di−1; then for every i two options:
∃τ(i) such that F induces a Frp-semilinear Bi

∼→ Bτ(i);
∃τ(i) such that V induces a Frp-semilinear Bi

∼← Bτ(i);
and τ ∈ Sr.
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Graph of a Dieudonné module

1B6

2B5

1B4

1B3

2B2

1B1
1

2

1

1

2

1

F, V, dim(Bi).

Theorem
(Kraft 1975) Over k = k̄, two
Dieudonné modules with the same
graph are isomorphic.

Hence there are only finitely many
Dieudonné modules of dimension n
over F̄p, and we can describe them
explicitely.
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Automorphism group

Over F̄p, we may assume that
Any automorphism has to fix the canonical filtration, so Aut(D) is a
subgroup of 

GL(Bn) 0 · · · 0
∗ GL(Bn−1) · · · 0
... ... . . . ...
∗ ∗ · · · GL(B1)



Lemma
The image H of Aut(D) in

∏
i GL(Bi) is finite.
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Over Fq

Which Dieudonné modules over Fq correspond to a given graph?
Take one (D,F,V); then D defines a semilinear isomorphism
Frq : DF̄p → DF̄p .

Vice versa, D = {d ∈ DF̄p : Frq(d) = d}.
Any other Dieudonné module with the same graph is obtained by
’twisting’ the Frobenius action: F̃rq = γ ◦ Frq for some γ ∈ Aut(DF̄p).
γ ∼ γ′ give isomorphic D ⇔ ∃δ ∈ Aut(DF̄p) : γ

′ = δγ′Frq(δ)−1.
Set H1(Fq,Aut(DF̄p)) = Aut(DF̄p)/ ∼;
Then H1(Fq,Aut(DF̄p))

∼= H1(Fq,H), and this can be explicitely
calculated.
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Take one (D,F,V); then D defines a semilinear isomorphism
Frq : DF̄p → DF̄p .
Vice versa, D = {d ∈ DF̄p : Frq(d) = d}.
Any other Dieudonné module with the same graph is obtained by
’twisting’ the Frobenius action: F̃rq = γ ◦ Frq for some γ ∈ Aut(DF̄p).

γ ∼ γ′ give isomorphic D ⇔ ∃δ ∈ Aut(DF̄p) : γ
′ = δγ′Frq(δ)−1.

Set H1(Fq,Aut(DF̄p)) = Aut(DF̄p)/ ∼;
Then H1(Fq,Aut(DF̄p))

∼= H1(Fq,H), and this can be explicitely
calculated.
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We can also calculate the automorphism group of the Dieudonné module
corresponding to γ, and this allows us to calculate the Zeta function.

Research in progress:
Zeta function for arbitrary G-zips;
Look at A[p2] rather than A[p].
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