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Chapter 0

General introduction

This dissertation focuses on two unrelated questions about group-theoretical invariants as-
sociated to abelian varieties: one concerning complex abelian varieties, and one concerning
abelian varieties over finite fields. It turns out that both questions are best framed in the
context of moduli spaces and stacks associated to abelian varieties. We can then answer
these questions by studying these moduli spaces and stacks in the language of linear alge-
braic groups. For expository convenience, we discuss the two parts of this thesis in opposite
order.

II: Integral Mumford–Tate groups of complex abelian vari-
eties

Let A be a principally polarised complex abelian variety of dimension g. Let Λ be the in-
tegral Betti homology group H1(Aan,Z); this is a free abelian group of rank 2g, and the
polarisation induces a perfect pairing ψ on Λ. From Hodge theory, we know that Λ natu-
rally is a polarised integral Hodge structure, i.e. there is a natural group homomorphism
h : C× → GSp(ΛR, ψR). The Zariski closure MT(A) of im(h) in the integral group scheme
GSp(Λ, ψ) is called the (integral) Mumford–Tate group of A; it is a flat group scheme over Z.
Its generic fibre MT(A)Q is a connected reductive algebraic group over Q, and it is known
to contain important information about A; for example, MT(A)Q is a torus if and only if A
is a CM abelian variety. An advantage of looking at the generic fibre is that we have a well-
developed theory of reductive algebraic groups and their representations, which makes it
easier to study A via MT(A)Q. A disadvantage of looking at only this generic fibre, how-
ever, is that it is invariant under isogenies; as such we can only obtain information about
the isogeny class of A. In part II, we study how much ‘extra’ information we can obtain by
taking additional integral information into account:
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Question. LetA be a complex abelian variety. Towhat extent does the integral group schemeMT(A)
uniquely determineA?
In general, the group scheme MT(A) does not determine A uniquely. We can see this by
looking at a moduli space of g-dimensional abelian varieties: this is the complex schemeAg
such that for every complex scheme S, there is a natural bijection

Hom(S,Ag) ∼=
{
g-dim. princ. pol. abelian schemesX/S + extra data

}
/ ∼=;

The extra data is needed to ensure thatAg exists as a quasiprojective complex variety. We
can deform the abelian variety A by conjugating the Hodge structure morphism h with an
element x ∈ GSp(ΛR, ψR). Let G = MT(A); then the abelian varieties obtained by conjuga-
ting h by elements ofG (R) define a complex subvariety ofAg . The irreducible components
of the subvarieties obtained in this way are called special subvarieties. they often admit a
moduli interpretation; for instance, the subvariety of Ag parametrising abelian varieties
with an action of a given ring R is a special subvariety. If Y ⊂ Ag is a special subvariety
obtained from A as above, then a sufficiently generic point y′ ∈ Y (C) corresponds to a
complex abelian variety A′ satisfying MT(A′) ∼= G ; as such we call G the generic Mumford–
Tate group of Y , denoted GMT(Y ). The question then becomes to what extent G uniquely
determines Y . We answer this question in chapter 8:
Answer. (Theorem 8.1) Let G be a group scheme over Z. Then there are at most finitely many
special subvarieties Y ofAg such that GMT(Y ) ∼= G .
In general, this is the best we can hope for, since in general a class group-like obstruction
will prevent G from corresponding to a single special subvariety. As might be expected
from this short discussion, the main ingredient in the proof of theorem 8.1 is the theory of
linear algebraic groups and their representations. In chapter 7, we prove a theorem (7.1)
concerning the integral group schemes that appear in the context of representations of
linear algebraic groups. In chapter 8 we use this result to prove theorem 8.1. We also study
the consequences of this theorem in the context of the Mumford–Tate conjecture, a well-
known conjecture concerning the compatibility between the singular and étale cohomology
of an abelian variety.

I: Torsion subgroups of abelian varieties over finite fields

Let p be a prime number, let n be a positive integer, and let A be an abelian variety over a
field k. Let A[pn] be the pn-torsion subgroup of A, considered as a commutative group
scheme over k. If char(k) ̸= p, then after replacing k by its algebraic closure we find
A[pn] ∼= (Z/pnZ)2·dim(A)

k . If char(k) = p, we find a different behaviour: the group scheme
A[pn] will no longer be smooth, and even over algebraically closed fields there are multi-
ple nonisomorphic possibilities for how the infinitesimal structure manifests. For elliptic
curves and n = 1, this gives us the distinction between supersingular and ordinary elliptic
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curves. If k is a finite field, then there are only finitely many options for A[pn], provided
we fix dim(A). This leads to the following question:
Question. Let k be a finite field of characteristic p, and let g and n be positive integers. How many
options are there for the k-group schemeA[pn], whereA ranges over the abelian varieties over k of
dimension g?
Such a group A[pn] is called a truncated Barsotti–Tate group of level n, or BTn for short; for a
given Fp-scheme S, the BTn over S with some given numerical invariants (such as its order
2g) form a category BTn(S). One way to answer the question above is to look at moduli
stacks of BTn. The theory of algebraic stacks is quite involved, but naïvely one should think
of a moduli stack BTn as a categorical construction such that for every Fp-scheme S, we
get a ‘natural’ geometrical structure on the categoryBTn(S) (as opposed to amoduli space,
where we get a geometrical structure on the set of isomorphism classes [BTn(S)]). Moduli
stacks often appear in cases where moduli spaces fail to exist. For a given finite field k, we
define the point count of BTn over k to be

#BTn(k) :=
∑

x∈[BT1(k)]

1

#Aut(x) ,

where [BTn(k)] is the set of isomorphismclasses in the categoryBTn(k); in otherwords, we
count the isomorphism classes of BTn, but we count an object x with weight (#Aut(x))−1.
This choice is motivated by the fact that this definition of point counts has the same rela-
tion to the cohomology of the stack BTn as what we would expect from the cohomology
of schemes (see theorem 2.2). Because of this, we want to answer the question above by
calculating #BTn(k). In chapter 2, we study the point counts of stacks as well as their zeta
functions, which are rational power series that contain information about all point counts
over finite fields. We develop methods to calculate the point counts and zeta functions of
quotient stacks, which are stacks [G\X] that are algebro-geometric avatars of the quotient of
a varietyX by the action of a linear algebraic groupG. In chapter 3, we apply these meth-
ods to stacks of the form BTn, by studying how BTn over finite fields can be described via
linear algebraic groups, and how this relates the stack BTn to quotient stacks. This allows
us to answer the question above:
Answer. (Theorem 3.33) Let BTn be a moduli stack of BTn. Then we can find direct formulas for
the point counts and zeta functions of BTn.
We also apply these methods to two generalisations of the stack BT1. In chapter 4 we con-
sider flags of group schemes that can appear as flags in a BT1. Although we cannot give a
direct formula for the point counts and zeta functions of moduli stacks X of such flags, we
will give an algorithm that finds a polynomial R ∈ Z[X,X−1] such that #X(Fq) = R(q)

for all powers q of p. In chapter 5 we consider stacks of BT1 with some additional struc-
ture, such as a polarisation or a given endomorphism algebra; previous research ([55], [56])
has formalised these to so-calledG-zips, which are objects in the theory of linear algebraic
groups. Using the description of stacks ofG-zips in [56], and our results on the point counts
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and zeta functions of quotient stacks, we are able to find a direct formula for both the point
counts and the zeta functions of stacks ofG-zips.

About the cover

The cover of this dissertation is adapted from plate XIII in [28]. It is a schematic depiction
of the rock relief on Bīsotūn mountain (بیستون ) in Iran. The relief depicts the Persian king
Darius along with representatives of various conquered peoples. The relief is accompanied
by a description of Darius’ empire and his reign in the three languages Old Persian, Elamite,
and Akkadian; the first lines of the Old Persian text form the motto of this dissertation.
Transliterated and translated the text reads as follows:

Adam Dārayavauš, xšāyaθiya vazraka, xšāyaθiya xšāyaθiyā-
nām, xšāyaθiya Pārsaiy, xšāyathiya dahyūnām, Vištā-

spahyā puça, Aršāmahyā napā, Haxāmanišiya.
‘I am Darius, the great king, king of kings, the king of Persia, the king of countries, the son
of Hystaspes, the grandson of Arsames, the Achaemenid.’
I have chosen this cover for two reasons. The first reason concerns the title ‘king of kings’,
i.e. xšāyaθiya xšāyaθiyānām. In the Achaemenid empire, and especially in the Median and
Assyrian empires before that, this title was to be taken literally: a king was the ruler of a city
or province, and the ruler of the entire empire had the same relation to these kings as a king
had to its subjects.1 In algebraic geometry, the position of king of kings is held by a (fine)
moduli space, which can be considered a ‘space of spaces’: for example, an abelian variety
can (somewhat naïvely) be considered as a set of points enrichedwith a geometric structure.
In the same way a moduli space of abelian varieties enriches a set of abelian varieties with
a geometric structure. As such the relation between a moduli space and abelian varieties is
the same as the relation between an abelian variety and its points.
The second reason concerns the importance of this inscription for the decipherment of
cuneiform. Cuneiform was used to write a wide variety of Near Eastern languages since
3100 BC. After it fell into disuse in the first century AD, the script remained undeciphered
for a long time. The first cuneiform language to be deciphered was Old Persian in the 1830s,
which could be deciphered due to the fact that it used an alphabetic system with only 50
signs, and because it was related to Modern Persian and Sanskrit, two languages already
known to orientalists. Most cuneiform languages, however, used variants of the far more
complicated Sumerian cuneiform, which had hundreds of signs. The key to deciphering
this system was the inscription at Bīsotūn, which played the same role as the Rosetta stone
did for the decipherment of Egyptian hieroglyphs: the fact that the Old Persian text could

1In the Achaemenid empire the satrapies were ruled by satraps (viceroys) rather than actual kings, and the
king of kings was officially also king of each of the individual satrapies. Aside from terminological differences the
same principle applied, however.
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be read allowed for the decipherment of the Akkadian text, which was discovered to be a
Semitic language. This provided a starting point for the translation of the vast amount of
literature in Akkadian, and from there the decipherment of the other languages written in
Sumerian cuneiform.
The theme of translation and decipherment plays a large role in this dissertation. In this
analogy, the role of Akkadian is played bymoduli spaces of abelian varieties, whose geomet-
ric structure we wish to understand. The role of Old Persian is played by linear algebraic
groups: while to the layman these are as magical2 as the moduli spaces themselves, alge-
braic geometers have extensively studied their structure and classification. By describing
moduli spaces of abelian varieties in terms of linear algebraic groups we are given more
tools to work with in order to understand these moduli spaces.

2The reader will be delighted to know that the English word magic is derived from the Old Persian word maguš
‘Zoroastrian priest’, which is attested in the Bīsotūn inscription.
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Chapter 1

Introduction

Throughout this part we fix a prime number p. Let k be a field of characteristic p. A trun-
cated Barsotti–Tate group of level 1 (henceforth BT1) of height h is a finite group scheme of
order ph over k of exponent p that can be realised as the p-torsion of a p-divisible group
or Barsotti–Tate group (see definition 3.1). The motivating example for BT1 comes from
abelian varieties: if A is an abelian variety over k, then its p-torsionA[p] is a BT1 of height
2 · dim(A). The BT1 over an algebraically closed field k were first classified in [32]. These
results were used in [52] to obtain the so-called Ekedahl–Oort stratification on the moduli
space of abelian varieties in characteristic p. We can describe this stratification in terms
of algebraic stacks: BT1 of a given height (plus some other numerical invariants) form an
algebraic stack of finite type BT1 over Fp (see [70]). If Ag,N is the moduli space of princi-
pally polarised abelian varieties of dimension g with full levelN structure in characteristic
p, then there exists a smooth, surjective morphism of Fp-stacks Ag,N → BT1 (see [71]).
The fibres of this morphism form the strata of the Ekedahl–Oort stratification.
The goal of this chapter is to study the stack BT1 and several related stacks, via their point
counts and their zeta functions. For a power q of p and an algebraic stack X over Fp one can
define the point count of the categoryX(Fq) (definition 2.1); by this wemean that we count
the isomorphism classes in X(Fq), where the class of an object x is given the weight 1

#Aut(x) .
As is the case for schemes this point count is in fact related to the ℓ-adic cohomology of
X (theorem 2.2). The point counts #X(Fq) for varying q are organised in the zeta function
Z(X, t) ∈ QJtK (definition 2.22). The zeta function represents a meromorphic function
that is defined on all ofC. Furthermore, if a stack is a Deligne–Mumford stack, then its zeta
function is a rational function.
Via Dieudonné theory there is a one-to-one correspondence between BT1 over a perfect
field k of characteristic p and level 1 Dieudonné modules over k; these are k-vector spaces
with some semilinear data (definition 3.4). In terms of algebraic stacks, we find a moduli
stack D1 of level 1 Dieudonné modules (with some numerical invariants), together with a
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morphism of stacks
BT1 → D1

that is an equivalence of categories on perfect fields. As the zeta function of a stack only
depends on its values on finite fields we find Z(BT1, t) = Z(D1, t). The advantage of this
approach is that we can describe the stack D1 via quotient stacks [G\X], where G is an
algebraic group overFp acting on a varietyX . In chapter 2 we developmethods to calculate
the point counts and zeta functions of quotient stacks. We apply these methods to three
generalisations of moduli stacks of BT1:

1. Instead of looking at BT1 we may look at BTn for n ≥ 1, i.e. truncated Barsotti–Tate
groups of level n ≥ 1. The main examples of these are pn-torsion kernels A[pn] of
abelian varieties A over a field k. Via Dieudonné theory these correspond to free
modules overWn(k), the n-th truncatedWitt vector ring of k, along with some semi-
linear data. Over an algebraically closed field the BTn+1 extending a given BTn were
classified via orbits under the action of an algebraic group on an affine space in [69]
and [19]. By interpreting these results in a ‘stacky’ way we can use our results on zeta
functions on quotient stacks to determine the zeta function of moduli stacks of BTns
(see theorem 3.33).

2. Instead of looking at BT1, we look at ‘flags’ of k-group schemes of the form G1 ⊂
G2 ⊂ · · · ⊂ Gr , whereGr is a BT1. On the level of abelian varieties this corresponds
to the reduction of a moduli space with partial level n structure rather than full level
n structure. If BTFlag is a moduli stack of such flags, then we provide an algorithm
(4.24) to calculate a polynomial R ∈ Z[X,X−1] such that #BTFlag(Fq) = R(q) for
all powers q of p. This also gives us an expression for the zeta function Z(BTFlag, t).

3. We can generalise the concept of BT1 to that of BT1 with some additional structure,
such as the action of a given ring of endomorphisms, or a polarisation. For instance, in
the study of abelian varieties such objects arise if we replaceAg with the reduction of
a Shimura variety of PEL type (see [70]). Over an algebraically closed field these were
first classified in [43], in terms of the Weyl group of an associated reductive groupG
over Fp. The underlying semilinear algebra objects were later generalised in [47] to
so-called F -zips. The classification of F -zips, as well as the classification of F -zips
with additional structure, could again be stated in terms of the Weyl group of a re-
ductive group G. These F -zips were again generalised in [55] and [56] to so-called
G-zips, where the reductive groupG is the primordial object. In [56] moduli stacks of
G-zips are realised as quotient stacks. We use this description, along with (a general-
isation of) the description of the automorphism schemes of G-zips, to calculate the
zeta functions of moduli stacks ofG-zips (see theorem 5.25).

The structure of this part is as follows. In chapter 2 we define point counts and zeta func-
tions, and we develop some methods to calculate them in the case of quotient stacks. In
chapter 3 we discuss the relation between BTn and Dieudonné modules, and we calculate
the zeta function of moduli stacks of BTn. In chapter 4 we find an algorithm to calculate the
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zeta function of moduli stacks of BT1-flags. In chapter 5 we introduceG-zips as defined in
[56], and we calculate the zeta function of moduli stacks ofG-zips.
Parts of this part of the dissertation, namely section 3.4 and chapter 5, are taken from [37],
albeit slightly modified. Parts of section 2.1, in particular proposition 2.15 and the results
leading up to it, are also present in this preprint.
As mentioned before we fix a prime number p. Furthermore, we will use the notationHom,
Aut, Stab, etc. for homomorphism sets (or abelian groups), automorphism groups, and
stabiliser groups, while wewill use Hom, Aut, Stab, etc. for the underlying schemes, if these
exist. For a power q of p we write Frq for the q-th power Frobenius map.
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Chapter 2

Point counts and zeta functions
of quotient stacks

In this chapter we develop some tools for determining the point counts and zeta functions
of quotient stacks over finite fields. We will use these methods in the following chapters
to calculate the zeta functions of moduli stacks related to truncated Barsotti–Tate groups.
The main results of this chapter (propositions 2.15, 2.20, and 2.21, and theorem 2.27) are
unfortunately quite technical in nature, but we need them in this form in order to apply
them in the following chapters.

2.1 Point counts on torsion stacks

Throughout this section we let k be a finite field. In this section we study the point counts
of categories, in particular those associated to quotient stacks. If C is an (essentially small)
category, we write [C] for its set of isomorphism classes.
Definition 2.1. LetC be a category. ThenC is essentially finite if it is equivalent to a category
with finitely many objects and morphisms. If C is essentially finite, we define its point count
to be

#C :=
∑
x∈[C]

1

#Aut(x) .

If X is an algebraic stack of finite type over k, then for every finite extension k′ of k the
category X(k′) is essentially finite. The following theorem relates the point count of an
algebraic stack to its cohomology.
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Theorem2.2. (See [63, 1.1]) LetXbe an algebraic stack of finite type overk. LetF be the geometric
Frobenius onX. Let ℓ be a prime number different from the characteristic of k, and let ι : Q̄ℓ ∼−→ C be
an isomorphism of fields. For an integer n, letHnc (X, Q̄ℓ) be the cohomology with compact support
of the constant sheaf Q̄ℓ on X as in [35, 3.1]. Then the infinite sum∑

n∈Z

(−1)nTr(F,Hnc (Xk̄, Q̄ℓ))

converges to #X(k) when considered as a complex series via ι.
This theorem generalises the Lefschetz trace formula for separated schemes of finite type.
As such, this theorem motivates our definition of point count. It also shows the relation
between the point count of a stack and its geometry. In the rest of this section we develop
methods to calculate the point counts of quotient stacks.
LetG be a smooth algebraic group over k. LetX be a variety over k, bywhichwemean in this
thesis a reduced k-scheme of finite type. SupposeX has a left action of G. Recall that the
quotient stack [G\X] is defined as follows: IfS is a k-scheme, then the objects of the category
[G\X](S) are pairs (T, f), where T is a left G-torsor over S in the étale topology, and
f : T → XS is a GS-equivariant morphism of S-schemes. A morphism (T, f) → (T ′, f ′)

in [G\X](S) is an isomorphism of G-torsors φ : T ∼−→ T ′ such that f = f ′φ. In order to
calculate point counts we first need to set up a bit of notation.
Notation 2.3. Suppose G is a smooth algebraic group over k, and let z be a cocycle in
Z1(k,G). Recall that this means that z is a continuous map z : Gal(k̄/k) → G(k̄) (where
the right hand side has the discrete topology) for which the following equation is satisfied
for all π, π′ ∈ Gal(k̄/k):

z(ππ′) = z(π) · πz(π′) (2.4)

LetX be a k-variety with a left action ofG, and let z be a cocycle in Z1(k,G). We define the
twisted schemeXz as follows: LetXz,k̄ be isomorphic toXk̄ as k̄-schemeswith aGk̄-action
via an isomorphism φz : Xz,k̄

∼−→ Xk̄. We define the Galois action onXz,k̄ by taking
πx := φ−1

z (z(π) · πφz(x))

for all x ∈ Xz,k̄(k̄) and all π ∈ Gal(k̄/k); this defines a varietyXz over k. Its isomorphism
class only depends on the class of z inH1(k,G). Two cases deserve special mention:

• We letG act on itself on the left by defining g ·x := xg−1. ThenGz is a leftG-torsor,
andH1(k,G) classifies the leftG-torsors in this way.

• We letG act on itself on the left by inner automorphisms. The corresponding twisted
group is denoted Gin(z). If X is a k-variety with a left G-action, then Xz naturally
has a leftGin(z)-action.

This terminology enables us to formulate the following proposition.
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Proposition 2.5. Let k′ be a finite extension of k. LetG be a smooth algebraic group over k, and
letX be a k-variety equipped with a left action ofG. Then

#[G\X](k′) =
∑

z∈H1(k′,G)

#Xz(k
′)

#Gin(z)(k′)
.

Proof. It suffices to show this fork′ = k. LetT be a leftG-torsor overk′, and let z ∈ Z1(k,G)

be such thatT ∼= Gz . Then the automorphism group scheme ofT as a leftG-torsor isGin(z),
which acts by right multiplication on Gz . As such, we may consider T as a (G,Gin(z))-
bitorsor. If we look at the left G-action, we can define a variety Tz as in notation 2.3. This
naturally has the structure of a (Gin(z), Gin(z))-bitorsor; in fact, it is easily verified that it is
a trivial bitorsor. If f : T → Xk is a (left)G-equivariant map, then the map fk̄ : Tk̄ → Xk̄

is defined over k when considered as a map Tz,k̄ → Xz,k̄, and we denote the resulting
map Tz → Xz by fz ; it is (left)Gin(z)-equivariant. This gives a one-to-one correspondence
between HomG(T,X) and HomGin(z)(Tz, Xz). Let t0 be an element of Tz(k), which exists
since Tz is a trivialGin(z)-torsor. Wemay identify the setsHomGin(z)(Tz, Xz) andXz(k) by
identifying amapwith its image of t0, and twomaps fz, f ′z ∈ HomGin(z)(Tz, Xz) correspond
to isomorphic objects (T, f), (T, f ′) in [G\X](k) if and only if fz(t0) and f ′z(t0) are in the
same Gin(z)(k)-orbit in Xz(k). On the other hand, the automorphism group of (T, f) is
identified with StabGin(z)(k)(fz(t0)). From the orbit-stabiliser formula we find∑

(T ′,f ′)∈[[G\X](k)],
T ′∼=T

1

#Aut(T ′, f ′)
=

∑
x∈Gin(z)(k)\Xz(k)

1

#StabGin(z)(k)(x)

=
#Xz(k)

#Gin(z)(k)
.

Summing over all cohomology classes inH1(k,G) now proves the proposition.
While proposition 2.5 gives a direct formula for the point count of a quotient stack over a
given field extension k′ of k, it is not as useful in a context where k′ varies, as it is a priori
unclear howH1(k′, G) varieswith it. In propositions 2.15, 2.20 and 2.21we give formulas for
the point counts [G\X](k′) that do not involve determining the cohomology setH1(k′, G),
under some (quite technical) conditions onG andX . We first set up some notation.
Notation 2.6. As before letG be a smooth algebraic group over k, and let π ∈ Gal(k̄/k) be
the #k-th power Frobenius. We letG(k̄) act on itself on the left by defining

g · x := gx(πg)−1. (2.7)
Its set of orbits is denoted Conjk(G).
Lemma 2.8. Let G be a smooth algebraic group over k. Let π ∈ Gal(k̄/k) be the #k-th power
Frobenius. Then the map

Z1(k,G) → G(k̄)

z 7→ z(π)
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is a bijection, and it induces a bijectionH1(k,G) ∼−→ Conjk(G).
Proof. Let Π be the Galois group Gal(k̄/k). Since ⟨π⟩ ⊂ Π is a dense subgroup, the map is
certainly injective. To show that it is surjective, fix a g ∈ G(k̄), and define a map z : ⟨π⟩ →
G(k̄) by

z(πn) =

{
g · (πg) · · · (πn−1

g), if n ≥ 0;

(π
−1

g−1) · · · (πn

g−1) if n < 0.

This satisfies the cocycle condition (2.4) on ⟨π⟩. Let e be the unit element of G(k̄). To
show that we can extend z continuously to Π, we claim that there is an integer n such
that z(πN ) = e for all N ∈ nZ. To see this, let k′ be a finite extension of k such that
g ∈ G(k′). Then from the definition of the map z we see that z maps ⟨π⟩ to G(k′). The
latter is a finite group, and hence there must be two nonnegative integers m < m′ such
that z(πm) = z(πm

′
). Set n = m′ −m. From the definition of z we see that

z(πm
′
) = z(πm) · (π

m

g) · · · (π
m′−1

g),

hence (π
m

g) · · · (πm′−1

g) = e; but the left hand side of this is equal to πm

z(πn), hence
z(πn) = e. The cocycle condition (2.4) now tells us that z(πN ) = e for every multipleN of
n; furthermore, we see that for general f ∈ Z the value z(πf ) only depends on f̄ ∈ Z/nZ.
Hence we can extend z to all ofΠ via the composite map

Π � Π/nΠ ∼−→ ⟨π⟩/⟨πn⟩ z−→ G(k̄),

and this is an element ofZ1(k,G) that sendsπ to g; hence themap in the lemma is surjective,
as was to be shown. This map is alsoG(k̄)-equivariant with respect to the actions that give
rise to the quotients H1(k,G) and Conjk(G), which proves the second statement of the
lemma.
Recall that the classifying stack of an algebraic groupG is defined to beB(G) := [G\∗], where
∗ = Spec(k) (with the trivialG-action).
Lemma 2.9. LetG be a finite étale group scheme over k. Then for every finite extension k′ of k we
have #B(G)(k′) = 1.
Proof. It suffices to show this for k = k′. The categoryB(G)(k) is the category ofG-torsors
over k; its objects are classified by H1(k,G). Let π ∈ Gal(k̄/k) be the #k-th power Frobe-
nius, and let z ∈ H1(k,G). Then the automorphism group (as an abstract group) of the
torsorGz is equal toGin(z)(k), which equals

Gin(z)(k) ∼=
{
g ∈ G(k̄) : g = z(π) · πg · z(π)−1

}
=
{
g ∈ G(k̄) : z(π) = g · z(π) · (πg)−1

}
= StabG(k̄)(z(π)),
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where the action of G(k̄) on itself in the last line is the one in (2.7). For every orbit C ∈
Conjk(G) choose an elementxC ∈ C ; then the orbit-stabiliser formula and lemma 2.8 yield∑

z∈H1(k,G)

1

#Aut(Gz) =
∑

C∈Conjk(G)

1

#StabG(k̄)(xC)

=
∑

C∈Conjk(G)

#C
#G(k̄)

= 1.

Lemma 2.10. Let 1 → A → B → C → 1 be a short exact sequence of smooth algebraic groups
over k. Suppose thatA is connected.

1. The natural mapH1(k,B)→ H1(k,C) is bijective.
2. For z ∈ H1(k,B) = H1(k,C), letAz be the twist ofA induced by the image of z under the

natural mapH1(k,B)→ H1(k,Aut(Ak̄)). Then
#Bin(z)(k) = #Az(k) · #Cin(z)(k).

Proof. The short exact sequence of algebraic groups over k
1→ A→ B → C → 1

induces an exact sequence of pointed cohomology sets
1→ A(k)→ B(k)→ C(k)→ H1(k,A)→ H1(k,B)→ H1(k,C).

From Lang’s theorem we know that H1(k,A) is trivial. By [60, III.2.4.2] the last map is sur-
jective, so by exactness it is bijective, which proves the first statement. Furthermore for a
z ∈ H1(k,B) the inclusion mapAz(k̄)→ Bin(z)(k̄) is Galois-equivariant, and the quotient
of Bin(z)(k̄) by the image of this map is isomorphic to Cin(z)(k̄). This shows that we get a
twisted short exact sequence

1→ Az → Bin(z) → Cin(z) → 1.

Since Az is connected, we find H1(k,Az) = 1, and then a long exact sequence analogous
to the one above proves the second statement.
Definition 2.11. Let X be an algebraic stack over a field k. Let k′ ⊂ k′′ be two field exten-
sions of k, and let X ∈ X(k′′). Then a model ofX over k′ is an object Y ∈ X(k′) such that
Yk′′ ∼= X .
Lemma 2.12. LetG be a smooth algebraic group over k, and letX be a variety over k.

1. The isomorphism classes of [G\X](k̄) are classified by the quotient setG(k̄)\X(k̄).
2. Let k′ be a finite extension of k, and let C be an element ofG(k̄)\X(k̄), corresponding to a
(T, f) ∈ [G\X](k̄). Then (T, f) has amodel over k′ if and only ifC is fixed under the action
ofGal(k̄/k′) onG(k̄)\X(k̄).
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Proof.

1. Over k̄ every torsor is trivial, and a G-equivariant map f : Gk̄ → Xk̄ is determined
by its image of the unit element e ∈ G(k̄). Furthermore, two maps f, f ′ : Gk̄ → Xk̄

yield isomorphic elements (Gk̄, f), (Gk̄, f ′) of [G\X](k̄) if and only if f(e) and f ′(e)
lie in the sameG(k̄)-orbit. Since f(G(k̄)) is aG(k̄)-orbit inX(k̄), we get a bijection

[[G\X](k̄)]→ G(k̄)\X(k̄)

(Gk̄, f) 7→ f(G(k̄)).

2. Let (T, f)be an element of [G\X](k′). Thenf : T (k̄)→ X(k̄) isGal(k̄/k′)-equivariant.
Hence f(T (k̄)) is an element of G(k̄)\X(k̄) that is invariant under the action of
Gal(k̄/k′); this proves one direction. For the other direction, let π ∈ Gal(k̄/k′) be
the #k′-th power Frobenius. Let x ∈ C ; then there exists a g ∈ G(k̄) such that
g ·π(x) = x. Let z ∈ Z1(k′, G) be the unique cocycle such that z(π) = g as in lemma
2.8. Then theG-equivariant map

Gk̄ → Xk̄

g 7→ g · x

descends to a G-equivariant map of k′-varieties Gz → Xk′ (where we identify Gz,k̄
withGk̄ via φz as in notation 2.3).

Remark 2.13. LetC be aG(k̄)-orbit inX(k̄), and let x be an element ofC . Then the auto-
morphism group of the object of [G\X](k̄) corresponding toC by lemma 2.12 is isomorphic
to StabGk̄

(x). In particular its isomorphism class does not depend on the choice of x in C .
We denote A(C) for the algebraic group StabGk̄

(x) over k̄.

The next theorem is a classical result:

Theorem 2.14. (See [58, Thm. 5]) Let U be a connected unipotent group over k. Then U is iso-
morphic toAdim(U)

k as k-varieties.

Whatmakes this theorem so useful for us is that it shows that the point count of a unipotent
group remains the same under twisting. Under suitable conditions onX andG this allows
us to simplify the expression in proposition 2.5.

Proposition 2.15. Let G be an algebraic group over k. Let X be a k-variety with an action of
G, such that for every C ∈ G(k̄)\X(k̄) the identity component of the algebraic group A(C)red is
unipotent. Let k′ be a finite field extension of k. Then

#[G\X](k′) =
∑

C∈(G(k̄)\X(k̄))Gal(k̄/k′)

(#k′)−dim(A(C)).
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Proof. As before it suffices to show this for k = k′. For C ∈ (G(k̄)\X(k̄)), letm(C) be the
isomorphism class in [G\X](k̄) corresponding to C . We may then define the full subcate-
gory S(C) of [G\X](k), the isomorphism classes of whose objects form the set{

x ∈ [[G\X](k)] : xk̄ ∈ m(C)
}
.

By lemma 2.12 this category is nonempty if and only ifC ∈ (G(k̄)\X(k̄))Gal(k̄/k). Suppose
this is true for C , and let x0 be an object of S(C). Then the algebraic group Aut(x0) is a
k-form of A(C). By [20, Thm. III.2.5.1] S(C) is equivalent to the categoryB(Aut(x0))(k); its
elements are classified byH1(k, Aut(x0)) = H1(k, Aut(x0)red). Write L := Aut(x0)red; we
now find for the point count

#S(C) =
∑

z∈H1(k,L)

1

#Lin(z)(k)
. (2.16)

Let L0 be the identity component of L; this is a connected unipotent group of dimension
dim(A(C)). Let π0(L) be the component group of L. By lemma 2.10, applied to the short
exact sequence

1→ L0 → L→ π0(L)→ 1,

we see that the natural mapH1(k, L)→ H1(k, π0(L)) is a bijection. On the other hand, let
z ∈ H1(k, L); then the same lemma tells us that

#Lin(z)(k) = (#L0
in(z)(k)) · (#π0(Lin(z))(k)). (2.17)

By theorem 2.14 we get an equality

#L0
in(z)(k) = (#k)dim(A(C)) (2.18)

and this does not depend on the choice of z. Furthermore, if we identify H1(k, L) and
H1(k, π0(L)) as above, we find π0(Lin(z)) ∼= π0(L)in(z). Applying lemma 2.9 to the finite
étale group scheme π0(L) yields∑

z∈H1(k,π0(L))

1

#π0(L)in(z)(k) = #B(π0(L)) = 1. (2.19)

Combining (2.16), (2.17), (2.18), and (2.18) now gives us

#S(C) =
∑

z∈H1(k,L)

1

#Lin(z)(k)

=
∑

z∈H1(k,π0(L))

1

#π0(L)in(z)(k) · (#k)dim(A(C))

= (#k)−dim(A(C)).

Summing over all C ∈ (G(k̄)\X(k̄))Gal(k̄/k) now proves the proposition.
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Proposition 2.20. LetG be a smooth algebraic group over k, and letX be a k-variety with a left
action of G. Suppose G ∼= H n U , where U is connected and unipotent. Let k′ be a finite field
extension of k. Then

#[G\X](k′) = #[H\X](k′) · (#k′)−dim(U).

Proof. For a z ∈ H1(k′, G), let Uin(z) be the twist of U induced by the conjugation action
ofG on U . A straightforward computation using proposition 2.5, lemma 2.10, and theorem
2.14 shows

#[G\X](k′) =
∑

z∈H1(k′,G)

#Xz(k
′)

#Gin(z)(k′)

=
∑

z∈H1(k′,H)

#Xz(k
′)

#Hin(z)(k′) · #Uin(z)(k′)

= #[H\X](k′) · (#k′)−dim(U).

Proposition 2.21. LetG be a smooth algebraic group over k of the formG ∼= (F×H)nU , where
F has a unipotent identity component,H is connected, andU is connected and unipotent. LetX be
a variety over k of the form E × V , where E is finite and V ∼= Ank for some nonnegative integer
n. Suppose that G acts onX in such a way that there is an action of F on E and V such that the
induced action of F on X is the product of these. Suppose furthermore that the action of F on V
factors through the action of a connected algebraic group. Let k′ be a finite field extension of k. Then

#[G\X](k′) = (F (k̄)\E(k̄))Gal(k̄/k
′) · (#k

′)dim(V )−dim(U)−dim(F )

#H(k′)
.

Proof. It suffices to prove this for k′ = k. Since themap π0(F )→ π0(G) is an isomorphism,
by lemma 2.10 we find that the natural map H1(k, π0(F )) → H1(k,G) is an isomorphism
as well. The same lemma also tells us thatH1(k, π0(F )) = H1(k, F ). By proposition 2.5 we
get

[G\X](k) =
∑

z∈H1(k,F )

#(E × V )z(k)

#Gin(z)(k)
.

Let z ∈ H1(k, F ). Since X ∼= E × V not just as k-varieties, but as k-varieties with an
action of F , we find (E × V )z ∼= Ez × Vz . Furthermore, let F̃ be a connected algebraic
group acting on V such that the action ofF on V factors through F̃ . Then the inducedmap
H1(k, F ) → H1(k,Aut(V )) factors through H1(k, F̃ ), which is trivial by Lang’s theorem;
hence we find Vz ∼= V . Now considerGin(z). SinceG ∼= H n (F n U), we may write

Gin(z) ∼= H n (Fin(z) n Uin(z)).

Then Uin(z) is a connected unipotent group of dimension dim(U). Applying theorem 2.14,
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we get

[G\X](k) =
∑

z∈H1(k,F )

#(E × V )z(k)

#Gin(z)(k)

=
∑

z∈H1(k,F )

#(Ez)(k) · #(Vz)(k)
#H(k) · #Fin(z)(k) · #Uin(z)(k)

=
∑

z∈H1(k,F )

#(Ez)(k)
#Fin(z)(k) ·

(#k)dim(V )−dim(U)

#H(k)

= #[F\E](k) · (#k)
dim(V )−dim(U)

#H(k)
.

= (F (k̄)\E(k̄))Gal(k̄/k) · (#k)
dim(V )−dim(U)−dim(F )

#H(k)
,

where the last equality follows from proposition 2.15.

2.2 Zeta functions of algebraic stacks

In this section we define the zeta function of an algebraic stack over a finite field, and we
discuss a few of its properties. The main result is theorem 2.27.
Definition 2.22. Let q be a power of p. Let X be an algebraic stack of finite type over Fq .
Then the zeta function of X is defined to be the element ofQJtK given by

Z(X, t) := exp

∑
v≥1

tv

v
#X(Fqv )

 .

In the case thatX is sufficiently nice the zeta functionwill satisfy some nice properties itself:
Theorem 2.23. (see [63, Thm 1.3]) Let X be an algebraic stack of finite type over a finite field Fq .
Then Z(X, t) defines a meromorphic function that is defined on all of C. If X is a Deligne-Mumford
stack, thenZ(X, t) is rational.
This theorem shows that there is some ‘structure’ in the point counts #X(Fqv ) for varying
v. Our main goal is to prove theorem 2.27, which contains two statements that will be im-
portant for us when calculating zeta functions of various moduli stacks. First, if #X(Fqv )
is given by an integral polynomial in qv , we have a direct expression for Z(X, t). Second,
if #X(Fqv ) is given by a rational function R in qv of a certain form, and the zeta function
Z(X, t) is rational, then R is actually an integral polynomial, and we may apply the first
statement. This theorem rests on two lemmas, the proof of the first of which is a straight-
forward calculation and therefore omitted.
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Lemma 2.24. LetR ∈ Z[X,X−1], and writeR =
∑
n∈Z rnX

n. Let q > 1 be an integer. Then

exp

∑
v≥1

tv

v
R(qv)

 =
∏
n∈Z

(1− qnt)−rn

as rational power series in t.
Lemma 2.25. Let q > 1 be an integer. LetR be the subring ofQ(X) given by

R = Z
[
{X,X−1} ∪

{
1

Xn − 1
: n ≥ 1

}]
. (2.26)

SupposeR ∈ R is such that the rational power series

Z(t) := exp

∑
v≥1

tv

v
R(qv)


defines a meromorphic function that is defined on all ofC, and suppose that this meromorphic func-
tion is rational. ThenR ∈ Z[X,X−1].
Proof. Using the identity 1

Xn−1 = X−n +X−2n +X−3n + · · · inQ((X)) we may regard
R as an element of Z[X]JX−1K. Write R =

∑
n∈Z rnX

n, with all rn ∈ Z and rn = 0 for
n ≫ 0. First I claim that rn ≤ O((−n)k) for some k ∈ Z≥0 as n → −∞. To see this,
note that it suffices to prove this claim forR =

∏m
i=1(X

ni − 1)−1, wherem and the ni are
positive integers. In this case,

rn = #
{
(c1, . . . , cm) ∈ Zm>0 :

∑
i

cini = −n

}
,

and we see that rn ≤ O((−n)m) as n → −∞. It follows that for every v ≥ 1 the sum∑
n∈Z rnq

nv converges absolutely and is equal to R(qv). For any integer m, define the
following elements of RJtK (these are actually elements of QJtK, but we are taking infinite
sums inQ using the Archimedean topology):

L≥m(t) =
∑
v≥1

(∑
n≥m rnq

nv

v
tv
)
;

L<m(t) =
∑
v≥1

(∑
n<m rnq

nv

v
tv
)
;

Z≥m(t) = exp(L≥m(t));

Z<m(t) = exp(L<m(t)).

Since∑n∈Z rnq
nv converges absolutely toR(qv), we find the following equality in RJtK:∑

v≥1

tv

v
R(qv) = L≥m(t) + L<m(t).
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It follows that Z(t) = Z≥m(t) · Z<m(t). Furthermore, Z≥m(t) =
∏
n≥m(1 − qnt)−rn .

As such Z≥m(t) and Z<m(t) are both rational functions. Now consider the value of Z at
t = t0 := q−m for some integerm. If rm < 0, then t0 is a root of Z≥m, while it is a pole
of Z≥m if rm > 0. On the other hand, from the fact that rn grows polynomially in (−n) as
n→ −∞, we find that the infinite sum

L<m(t0) =
∑
v≥1

∑
n<m

rn(q
n−m)v

v

converges absolutely in R in the archimedean topology. We conclude that Z<m(t0) =

eL<m(t0) ∈ R>0. This shows that t0 is neither a root nor a pole of Z<m. We conclude
that t0 = q−m is a root or a pole of Z if and only if rm ̸= 0. Since Z is rational by as-
sumption, this means that only finitely many rm may be nonzero; henceR is an element of
Z[X,X−1].
The following theorem is now a direct consequence of the previous two lemmas.
Theorem 2.27. Let X be an algebraic stack of finite type over a finite field Fq . Suppose there exists
anR ∈ Q(X) such that for every v ∈ Z≥1 we have thatR(qv) is defined and is equal to #X(Fqv ).

1. SupposeR ∈ Z[X,X−1], and writeR =
∑
n∈Z rnX

n. Then

Z(X, t) =
∏
n∈Z

(1− qnt)−rn .

2. SupposeZ(X, t) is a rational function and thatR is an element of the ringR from (2.26). Then
R ∈ Z[X,X−1], and the previous point applies.
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Chapter 3

Stacks of truncated Barsotti–Tate
groups

The aim of this chapter is threefold. First we introduce truncated Barsotti–Tate groups,
Dieudonné modules, and the relation between the two. The second goal is to state the
classification of BT1 over algebraically closed fields and to determine their automorphism
schemes. We do this in two ways: we give the classification in terms of graph theory as
developed in [32], and the classification in terms of the Weyl group of an algebraic group as
developed in [43]. The second classification can be statedmore succinctly, especially the de-
scription of the automorphism schemes, but the first classification has the advantage that
it also gives us the classification of general p-groups over algebraically closed fields; we will
need this in chapter 4. The third goal is to calculate the zeta function of moduli stacks of
BTn; the exact result is stated in theorem 3.33. The first two sections contain only ‘classical’
material, and only the sections from section 3.3 onwards contain new material.

3.1 Dieudonné modules

In this chapter we will define (truncated) Barsotti–Tate groups, and how they are classified
by Dieudonné crystals. Although the general setting is quite involved, for our purposes we
only need to describe this relation over finite fields. For the general setting the reader is
referred to [2].

Definition 3.1. Let S be a scheme of characteristic p. A Barsotti–Tate group of height h overS,
or a p-divisible group over S, is a sequence (Gi)i≥1 of finite commutative group schemes of
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order pih over S, together with inclusions ιi : Gi ↪→ Gi+1, such that the induced sequence

1→ Gi
ιi→ Gi+1

pi→ Gi+1

is exact. A truncated Barsotti–Tate group of level n and height h over S, or BTn for short, is a
commutative group scheme G over S such that there exists a Barsotti–Tate group (Gi)i≥1

of height h over S such thatG ∼= Gn. As an abuse of notation we will sometimes refer to a
Barsotti–Tate group as a truncated Barsotti–Tate group of level∞.
Remark 3.2. There is also a direct definition of a truncated Barsotti–Tate group that de-
pends on intrinsic properties of the group schemeG, rather than on the existence of a lift;
see [23, Def. II.3.2].
Example 3.3. Let A be an abelian scheme over S. Then A[pn] is a commutative group
scheme of order p2n·dim(A) over S. The sequence (A[pn])n≥1 is a Barsotti–Tate group of
height 2 · dim(A) over S.
Let S be a scheme of characteristic p, and let n ∈ Z≥1∪{∞}. LetBTh,dn (S) be the category
of truncated Barsotti–Tate groups of level n, height h and dimension d (see [12, II.7 Def.]).
Together with the obvious notion of pullback these form an algebraic stack BTh,dn over Fp,
which is of finite type if n <∞ (see [70, Prop. 1.8]). LetCrysh,dn be the Fp-stack of truncated
Dieudonné crystals D of level n that are locally of rank h, for which the Frobenius map
F : D → D(p) has rank d locally (see [27, Rem. 2.4.10]; again we use the convention that
truncated crystals of level ∞ are just untruncated crystals). Then covariant Dieudonné
theory (see [56, §9.3] and [2, 3.3.6 & 3.3.10]) tells us that there is a morphism of stacks over
Fp

Dn : BTh,dn → Crysh,dn
that is an equivalence over perfect fields. This implies #BTh,dn (Fq) = #Crysh,dn (Fq) for all
powers q of p, and Z(BTh,dn , t) = Z(Crysh,dn , t). Since point counts and zeta functions are
ourmain objects of interest, we will study Barsotti–Tate groupsmainly via their connection
to Dieudonné crystals. In the case that we are working over finite fields we can describe
categories of Dieudonné crystals more explicitely, but first we need some more notation.
Definition 3.4. Let k be a perfect field of characteristic p, and let n ∈ Z≥1 ∪ {∞}. Denote
byWn(k) the ring of truncated Witt vectors of length n over k (truncated Witt vectors of
length∞ are just untruncated Witt vectors). Let σ ∈ Aut(Wn(k)) be the automorphism
induced by the p-power Frobenius on k.

1. A level n Dieudonné module over k of height h is a triple (D,F, V ), where D is a free
Wn(k)-module of rank h and F : D → D and V : D → D are σ- and σ−1-semilinear
maps, respectively, satisfying FV = V F = p. We will often omit F and V from the
notation if there is no danger of confusion.

2. A level 1 Dieudonné module is called exact if ker(F ) = im(V ) (or ker(V ) = im(F ),
which is equivalent).
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3. The dimension of a Dieudonné module (D,F, V ) is the k-dimension of the image of
the induced map F : D/pD → D/pD.

4. If n > 1, then category of level n Dieudonné modules over k of height h and dimen-
sion d is denoted Dh,dn (k). The category of exact level 1 Dieudonné modules of height
h and dimension d is denoted Dh,d1 (k); the category of level 1 Dieudonné modules
over k of height h is denoted Dh,d1,nex(k) (here ‘nex’ stands for ‘non-exact’). In both
cases the morphisms are isomorphisms of Dieudonné modules (i.e. isomorphisms of
Wn(k)-modules that commute with F and V ).

Remark 3.5. If n > 1 and (D,F, V ) is a level n Dieudonné module, then the level 1 Dieu-
donné module (D/pD,F, V ) is always exact. This is why in definition 3.4.4 we take exact
level 1 Dieudonnémodules to be the ‘correct’ analogue of level n Dieudonnémodules. How-
ever, we are also interested in non-exact level 1 Dieudonné modules, because of the role
they will play in chapter 4.

Remark 3.6. Dieudonné modules and p-groups can also be defined over general schemes
of characteristic p (see [27, Def. 2.3.4]). This gives rise to algebraic stacks Dh,dn and Dh,d1,nex
over Fp. The latter is of finite type, and the first one is of finite type if n <∞.

Definition 3.7. Let S be a scheme of characteristic p. A p-group over S is a finite commu-
tative group scheme over S of exponent p. The category of p-groups over S of order ph is
denoted p-Grph(S).

The following facts show us that for the purposes of point counts and zeta functions we are
only concerned with Dieudonné modules. For proofs the reader is referred to [12] and [3].

Fact 3.8. Let k be a perfect field of characteristic p. Let h and d be nonnegative integers,
and let n be an element of Z≥1 ∪ {∞}.

1. Let n > 1. There is a natural equivalence of categories

Φn : Crysh,dn (k) ∼−→ Dh,dn (k).

2. Let p-Grph(k) be the category of p-groups over k of order ph. Then there are natural
equivalences Φ1,Ψ that fit into the following commutative diagram:

BTh,d1 (k) Crysh,d1 (k) Dh,d1 (k)

p-Grph(k) Dh1,nex(k)

D1(k)

∼
Φ1

∼

Ψ
∼
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3.2 Classification of p-groups

In this section we discuss the classification of p-groups (or, to be more precise, level 1 Dieu-
donné modules) over an algebraically closed field k of characteristic p. There are two ap-
proaches to this: The formulation of the first classification (proposition 3.26) is compact
and can be generalised to Dieudonné modules with extra structure, but it only classifies ex-
act level 1 Dieudonné modules. The second approach (theorem 3.23) is more involved and
requires some combinatorial notation, but the advantage is that it also classifies the non-
exact level 1 Dieudonnémodules. We will only need the first classification to determine the
zeta function ofmoduli stacks of the formBTh,dn ; the second classification is needed in chap-
ter 4. We start by defining so-called Kraft types, which form the basis of the classification
introduced in [32].

Notation 3.9. IfX is a set, we denote byW(X) the set of (possibly infinitely long) words
W1W2W3 · · · , where eachWi is an element ofX .

Definition 3.10. Let∆ be a finite directed graph, in which every edge is coloured with one
of two colours F (fuchsia) or V (vermilion). We call∆ a primitive Kraft graph if it is of one of
the following two types:

Type ‘T’ LetW = W1 · · ·Wk be a finite, possibly empty word inW({F, V −1}). Then the
associated primitive Kraft graph of type T has {v0, v1, . . . , vk} as its set of vertices,
and for every integer i an edge vi−1

F−→vi ifWi = F , and an edge vi−1
V←−vi ifWi =

V −1.

Type ‘Z’ Let W = W1 · · ·Wk be a finite nonempty word in W({F, V −1}) that is nonre-
peating, i.e. there is no wordW ′ such thatW is a concatenation of multiple copies
ofW ′. Then the associated primitive Kraft graph of type Z has as its set of vertices
{vi : i ∈ Z/kZ}, and for every i ∈ Z/kZ an edge vi−1

F−→vi ifWi = F , and an edge
vi−1

V←−vi ifWi = V −1.

Notation 3.11. The set of primitiveKraft graphs of typeT is denotedPT, the set of primitive
Kraft graphs of type Z is denoted PZ, and we define P := PT ⊔ PZ. If ∆ is a primitive
Kraft graph, then we define the length of∆, denoted ℓ(∆), to be the number of vertices of
∆. Furthermore, we let ℓF (∆) be the number of F -edges in ∆, and we let ℓV (∆) be the
number of V -edges in∆; note that ℓ(∆) ≥ ℓF (∆) + ℓV (∆) for all∆.

Example 3.12. Consider the word W = F 2V −2F := FFV −1V −1F . Then the Kraft
graphs of types T and Z corresponding toW , are depicted below. Thefigure should illustrate
why the types are denoted T (ostensibly from German Treppe ‘stairs’) and Z (from German
Zyklus ‘cycle’) (in this picture v, v′, w andw′ are marked because they will be mentioned in
later examples).
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Remark 3.13. We see that a primitive Kraft graph of type T uniquely determines its corre-
sponding word. For a primitive Kraft graph of type Z this is true only up to cyclic permuta-
tion of the letters in the word.

Definition 3.14. A Kraft type is a formal sumK =
∑

∆∈P K(∆) ·∆, where eachK(∆) is
a nonnegative integer, only finitely many of which are allowed to be nonzero. For such aK
we define its set of vertices |K| to be ⊔∆:K(∆)>0 |∆|, where |∆| denotes the set of vertices
in∆. For a v ∈ |K| we furthermore defineK(v) := K(∆), where∆ is the primitive Kraft
graph containing v. The set of Kraft types is denotedK.

Definition 3.15. LetK =
∑

∆∈P K(∆) ·∆ be a Kraft type. We define:

• The height ofK to be∑∆∈P K(∆) · ℓ(∆);

• The F -height ofK to be∑∆∈P K(∆) · ℓF (∆);

• The V -height ofK to be∑∆∈P K(∆) · ℓV (∆).

For a nonnegative integer h, we letK(h) denote the set of Kraft types of height h. If a and b
are nonnegative integers satisfying a ≥ b, then we denote byK(a, b) the set of Kraft types
of height a, F -height b and V -height a − b. Note that this is only possible if all primitive
Kraft graphs in such a Kraft type are of type Z.

We need a little more notation on Kraft types in order to describe their homomorphism
and automorphism schemes in section 3.3. Let K be a Kraft type, and let v ∈ |K| be a
vertex. We now define twowords associatedwith v: TheF -route of v, denotedRF (v), which
is a (possibly infinitely long) word inW({F, V −1}), and the V -route of v, denoted RV (v),
which is a (possibly infinitely long) word in W({V, F−1}). They are defined as follows:
suppose v lies on a primitive Kraft graph∆ of type T, and letW = W1 · · ·Wk be the word
corresponding to∆. There is a unique integer 0 ≤ i such that v corresponds to the vertex
vi in∆ in the description of definition 3.10; then set

RF (v) :=Wi+1 · · ·Wk,

RV (v) :=W−1
i W−1

i−1 · · ·W
−1
1 ,

with (V −1)−1 := V . Suppose v lies on a primive Kraft graph∆ of type Z. There is a unique
wordW = W1 · · ·Wk such that ∆ corresponds to the wordW and v corresponds to the
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vertex v0 in the description of definition 3.10; then set

RF (v) := (W1 · · ·Wk)
N,

RV (v) := (W−1
k W−1

k−1 · · ·W
−1
1 )N,

where WN stands for ‘W repeated infinitely often’. We order the sets W(F, V −1) and
W(V, F−1) lexicographically by taking V −1 < ∅ < F and F−1 < ∅ < V .
Notation 3.16. IfK andK ′ are Kraft types with vertices v ∈ |K| and v′ ∈ |K ′|, then we
write v ≽ v′ if RF (v) ≥ RF (v

′) and RV (v) ≥ RV (v
′). If v ≽ v′ and v′ ≽ v, we write

v ≈ v′.
Example 3.17. Let v and v′ be as in example 3.12. Then

RF (v) = V −2F, RF (v
′) = (F 2V −2F )N,

RV (v) = F−2, RV (v
′) = (F−1V 2F−2)N.

As such we seeRF (v′) > RF (v),RV (v′) > RV (v), hence v′ ≽ v but v ̸≽ v′.
Note that in notation 3.16 we have v ≈ v′ precisely if there is an isomorphism between the
primitive Kraft graphs containing v and v′ that maps v to v′. Because of this we get the
following result:
Lemma 3.18. LetK be a Kraft type. Then≽ is a partial order on |K|.
Definition 3.19. LetK andK ′ be two Kraft types. For (v, v′) and (w,w′) ∈ |K| × |K ′| we
write (v, v′) ∼F (w,w′) if v andw lie on the same primitive Kraft graph∆, v′ andw′ lie on
the same primitive Kraft graph∆′, and either of the following sets of edges exist in∆ and
∆′:

• v F−→w and v′ F−→w′;
• v V←−w and v′ V←−w′.

Similarly, we write (v, v′) ∼V (w,w′) if either of the following sets of edges exist in∆ and
∆′:

• v F←−w and v′ F←−w′;
• v V−→w and v′ V−→w′.

We say that (v, v′) and (w,w′) are equivalent if they are equivalent under theminimal equiv-
alence relation on |K| × |K ′| containing ∼F (or, equivalently, ∼V ); this equivalence rela-
tion is denoted∼.
Example 3.20. In example 3.12 we have (v, v′) ∼V (w,w′), and (w,w′) ∼F (v, v′).
Remark 3.21. Note that if (v, v′) ∼ (w,w′), then v ≽ v′ if and only if w ≽ w′.
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Let K be a Kraft type, and let k be a perfect field of characteristic p. Then to K we can
associate a level 1DieudonnémoduleStk(K), called its standardDieudonnémodule, as follows:
a k-basis of Stk(K) is given by the set{

ev,j : v ∈ |K|, 1 ≤ j ≤ K(v)
}
, (3.22)

where K(v) is as in definition 3.14. Furthermore, we define F : Stk(K) → Stk(K) to be
theFrp-semilinear map given as follows: for each vertex v ∈ |K| on a primitive Kraft graph
∆, if there exists an edge v F−→v′ in ∆, then v′ is unique and K(v) = K(v′). If such an i′
exists, we set F (ev,j) = ev′,j for all j ≤ K(v); otherwise, we set F (ev,j) = 0. Similarly,
V : Stk(∆)→ Stk(∆) is the Fr−1

p -semilinear map that for each vertex v ∈ |K| on a primi-
tive Kraft graph∆ satisfies V (ev,j) = ev′,j if there exists an edge v V−→v′ in∆ (such a v′ is
then necessarily unique), and V (ev,j) = 0 otherwise.
Theorem 3.23. (See [32, §5]) Let k be an algebraically closed field of characteristic p.

1. Stk gives a bijection between the set of isomorphismclasses of types, and the set of isomorphism
classes of level 1 Dieudonné modules over k;

2. Dieudonné modules of height h correspond to Kraft types of height h;
3. Dieudonné modules of dimension d correspond to Kraft types of F -height d;
4. Indecomposable Dieudonné modules correspond to primitive Kraft graphs;
5. Exact Dieudonnémodules correspond to Kraft types whose primitive Kraft graphs are all of type

Z.
Notation 3.24. If D is a level 1 Dieudonné module over a field k of characteristic p, then
we define the type ofD to be the Kraft typeK such that Stk̄(K) ∼= Dk̄.
The exact level 1 Dieudonné modules over an algebraically closed field k can also be classi-
fied more explicitely by means of abstract group theory (that in chapter 5 will turn out to
be algebraic group theory).
Notation 3.25. Let n and d be nonnegative integers such that d ≤ n. For an integer
h, consider the Coxeter system (W,S), where W = Sh, and S is the set of generators
{(1 2), . . . , (h − 1 h)}. Let d ≤ h, and let I = S \ {(d d + 1)}. LetWI ⊂ W be the
subgroup generated by I , and let IW be the subset ofW of all elements w that are of mini-
mal length ℓ(w) in their cosetWIw (see subsection 5.1.1). For a w ∈ IW , we can consider
the Kraft type Kw , which is constructed as follows. Consider the directed graph Γw with
{F , V }-coloured edges whose vertices are v1 . . . , vn, and where we have an edge vi F−→vw(i)

if i ≤ d, and an edge vi V←−vw(i) if i > d. Then the undirected connected components of Γw
are primitive Kraft graphs of type Z. For a primitive Kraft graph∆, letm(∆) be the number
of copies of∆ in Γw ; then we defineKw by takingKw(∆) = m(∆) for all∆ ∈ PZ.
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Proposition 3.26. Let k be an algebraically closed field of characteristic p, and let h, d, and IW
be as in notation 3.25. Then the map w 7→ Stk(Kw) is a bijection between IW and the set of
isomorphism classes of exact level 1 Dieudonné modules of height h and dimension d.
Proof. This is proven in [43, Thm. 4.7]. Alternatively, this follows from applying proposition
5.13 to example 5.11.

3.3 Morphism and automorphism schemes

LetK1 andK2 be two Kraft types, and let k be a perfect field of characteristic p. The aim of
this section is to give explicit descriptions for the algebraic groupsHom(Stk(K1), Stk(K2))

red

and Aut(Stk(K1))
red. These results are stated in propositions 3.28 and 3.29. There is amore

compact description of the automorphism group in the case thatK1 only has summands of
type Z (i.e. Stk(K1) is an exact Dieudonné module); this is given in proposition 3.32.
Notation 3.27. Let K and PT again denote the set of Kraft types and the set of primitive
Kraft graphs of type T, respectively. LetA be the set

A =
{
(v1, v2) ∈ |K1| × |K2| : v1 ≻ v2

}
/ ∼ .

We define two maps d, e : K ×K → Z≥0 given by
d(K1,K2) :=

∑
(v1,v2)∈A

K1(v1) ·K2(v2),

e(K1,K2) :=
∑

∆∈PT

K1(∆) ·K2(∆).

Furthermore, we define d(K) := d(K,K).
In the next two propositions, we considerMata×b(Fpc) andGLa(Fpc) (for integers a, b, c >
0) as finite étale group schemes over Fp by having them be the abstract group of F̄p-points
of these group schemes, along with the action ofGal(F̄p/Fp).
Proposition 3.28. LetK1 andK2 be two Kraft types, and let k be a perfect field of characteristic
p. Then as additive group schemes Hom(Stk(K1), Stk(K2))

red is isomorphic to( ∏
∆∈PZ

MatK2(∆)×K1(∆)(Fpℓ(∆))

)
×Gd(K1,K2)+e(K1,K2)

a,k .

Proposition 3.29. LetK be a Kraft diagram, and let k be perfect a field of characteristic p. Then
Aut(K)red ∼= (F ×H)n U , whereU is unipotent of dimension d(K) and

F ∼=
∏

∆∈PZ

GLK(∆)(Fpℓ(∆)),

H ∼=
∏

∆∈PT

GLK(∆),k.
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We start by proving proposition 3.28. Choose bases (e1,v,j)v,j and (e2,v,j)v,j for Stk(K1)

and Stk(K2) respectively, as in (3.22). From this basis we see that the scheme of linear
maps between Stk(K1) and Stk(K2) can be given as a commutative group scheme as

Link(Stk(K1), Stk(K2)) =
⊕

v∈|K1|,
v′∈|K2|

MatK2(v′)×K1(v),k.

Our goal is to determine its subgroup scheme of morphisms of Dieudonné modules. For an
element x ∈ Link̄(Stk̄(K1), Stk̄(K2)) we write x = (xv,v′)v∈|K1|,v′∈|K2| according to the
decomposition above. For positive integers m,n and a matrix g ∈ Matm×n(k̄) we write
g(p) for the matrix where every entry is of the form (g(p))i,j = (gi,j)

p. The following
two lemmas are straightforward consequences of the fact that morphisms of Dieudonné
modules have to commute with F and V .
Lemma 3.30. Let x ∈ Hom(Stk̄(K1), Stk̄(K2)) ⊂ Link̄(Stk̄(K1), Stk̄(K2)). Let v, w be
two elements of |K1| and let v′, w′ be two elements of |K2|. If (v, v′) ∼F (w,w′), then xw,w′ =

x
(p)
v,v′ .

Lemma 3.31. Let x ∈ Hom(Stk̄(K1), Stk̄(K2)) ⊂ Link̄(Stk̄(K1), Stk̄(K2)). Then following
two statements hold (also for V−→ instead of F−→):

• Let v′, w′ ∈ |K2| be on the same primitive Kraft graph such that there exists an edge v′ F−→w′

in the primitive Kraft graph containing them, and let v ∈ |K1| be such that that there is no
v
F−→w in the primitive Kraft graph containing v. Then xv,v′ = 0.

• Let v, w ∈ |K1| be on the same primitive Kraft graph such that there exists an edge w F−→v
in the primitive Kraft graph containing them, and let v′ ∈ |K2| be such that that there is no
w′ F−→v′ in the primitive Kraft graph containingw. Then xv,v′ = 0.

Proof of proposition 3.28. Since we are only interested in the reduced scheme, it suffices to
determine the subset

Hom(Stk(K1), Stk(K2))(k̄) = Hom(Stk̄(K1), Stk̄(K2)) ⊂ Link̄(Stk̄(K1), Stk̄(K2)).

LetX ⊂ |K1|×|K2| be a set of representatives for∼. By lemma 3.30we see that an element
g ∈ Hom(Stk̄(K1), Stk̄(K2)) is determined by (gv,v′)(v,v′)∈X . Now let (v, v′) ∈ X be such
that v ̸≽ v′. Let∆1 and∆2 be the primitive Kraft graphs such that v ∈ ∆1, v′ ∈ ∆2. Then
there exists a pair (w,w′) ∈ |∆1| × |∆2| equivalent to (v, v′) that satisfies at least one of
the following conditions:

• there exists a w′ F−→u′ in∆2 but no w F−→u in∆1;
• there exists a w V←−u in∆1 but no w′ V←−u′ in∆2;
• there exists a w′ V−→u′ in∆2 but no w V−→u in∆1;



40 Chapter 3. Stacks of truncated Barsotti–Tate groups

• there exists a w F←−u in∆1 but no w′ F←−u′ in∆2.

By lemma 3.31 we see that this implies that gw,w′ = 0; by lemma 3.30 this means that
gv,v′ = 0. Now let (v, v′) ∈ X be such that v ≽ v′, and suppose that either v ≻ v′, or
v ≈ v′ and the primitive Kraft diagram on which v lies is of type T. In these cases, for every
(w,w′) ∈ |K1| × |K2| such that (v, v′) ∼ (w,w′), there is a unique n = n(w,w′) such that
either n is nonnegative and there exist (v, v′) = (v0, v

′
0), (v1, v

′
1), . . . , (vn, v

′
n) = (w,w′)

such that (vi, v′i) ∼F (vi+1, v
′
i+1) for all i, or n is nonpositive and there exist

(v, v′) = (v0, v
′
0), (v−1, v

′
−1), . . . , (vn, v

′
n) = (w,w′)

such that (vi, v′i) ∼V (vi−1, v
′
i−1) for all i. If x is any element ofMatK2(v′),K1(v)(k̄), then

the element g ∈ Link̄(Stk̄(K1), Stk̄(K2)) given by

gw,w′ =

{
x(p

n(w,w′)) if (w,w′) ∼ (v, v′);

0 otherwise

is a morphism of Dieudonné modules. In the case that v ≈ w and the primitive Kraft dia-
gram∆ onwhich v lies is of type Z, then for (w,w′) ∼ (v, v′) the integern(w,w′) is defined
only up to a multiple of l(∆). As such, the construction above is a well-defined morphism
of Dieudonné modules if and only if x ∈ MatK2(v′),K1(v)(Fpl(∆)). To conclude, we find that
a morphism of Dieudonné modules g is determined by (gv,v′)(v,v′)∈X , and we may freely
choose gv,v′ from:

• {0} if v ̸≽ v′;

• MatK2(v′),K1(v)(k̄) if v ≻ v′, or v ≈ v′ and the associated primitive Kraft diagram∆

is of type T;

• MatK2(v′),K1(v)(Fpℓ(∆)) if v ≈ v′ and the associated primitive Kraft diagram∆ is of
type Z.

This proves the proposition.

Proof of proposition 3.29. Let X be as in the proof of proposition 3.29 (for K = K1 = K2).
Choose a linear order on |K| that extends the partial order ≽ on |K|, and consider ele-
ments of Link̄(Stk̄(K1), Stk̄(K2)) as block matrices with respect to this linear order; then
the proof of the previous proposition shows that the group G of Dieudonné morphisms is
contained in the groupof upper triangularmatriceswith respect to this block structure. The
elements (v, v′) of X such that v ≻ v′ give the strictly upper triangular part of G, which
is unipotent; by the proof of the previous proposition this has dimension d(K). The diago-
nal blocks correspond to elements ofX of the form (v, v), and these blocks have the form
GLK(v)(Fpl(∆)) if v lies on a primitive Kraft diagram∆ of type Z, and the formGLK(v)(k̄)

if v lies on a primitive Kraft diagram of type T.
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In the case that the Kraft typeK only contains primitive Kraft graphs of type Z, proposition
3.29 tells us that Aut(Stk(K))red is a semidirect product of a finite group and a unipotent
group. The alternative classification of exact level 1 Dieudonné modules from proposition
3.26 allows us to express its dimension more explicitely:
Proposition 3.32. Let h, d, and IW be as in notation 3.25, and let ℓ be the length function as in
subsection 5.1.1. Letw ∈ IW ; then Aut(Stk(Kw))

red is a semidirect product of a finite group and
a unipotent group of dimension d(h− d)− ℓ(w).
Proof. This is proven in [44, Thm. 2.1.2]. Alternatively, one can apply proposition 5.33.2 to
example 5.11.

3.4 Zeta functions of stacks of BTn

Let n, h > 0 and 0 ≤ d ≤ h be integers. The goal of this section is to determine the zeta
function of the algebraic stack BTh,dn over Fp. The result is as follows:
Theorem 3.33. Let h, n > 0 and 0 ≤ d ≤ h be integers. Let IW be as in notation 3.25. Then for
every power q of p one has

#BTh,dn (Fq) =
∑
w∈IW

qℓ(w)−d(h−d),

and consequently
Z(BTh,dn , t) =

∏
w∈IW

1

1− pℓ(w)−d(h−d)t
.

In particular the point counts and the zeta function of the stack BTh,dn do not depend on n.
Our strategy will be to interpret the results of [69] and [19], which concerns the set of BTn+1

over k̄ extending a given BTn, in a ‘stacky’ sense over a finite k. This allows us to invoke the
results of chapter 2.
Let q be a power of p. As discussed in fact 3.8 Dieudonné theory gives us an equivalence of
categories BTh,dn (Fq) → Dh,dn (Fq), so it suffices for our purposes to find the point count
of the second category. Fix h and d, and choose a (non-truncated) Barsotti–Tate group G of
height h and dimension d over Fp. For n ∈ Z≥1 ∪ {∞}, let (Dn, Fn, Vn) be the Dieudonné
module ofG[pn], and choose aW∞(Fq)-basis forD∞; this induces aWn(Fq)-basis for every
Dn. Then for every power q of p, every element in Dh,dn (Fq) is isomorphic to

Dn,g := (Wn(Fq)⊗Z/pnZ Dn, gFn, Vng
−1)

for some g ∈ GLh(Wn(Fq)) (See [69, 2.2.2]).
For a smooth affine group scheme G over Spec(Zp), letWn(G ) be the group scheme over
Spec(Fp) defined byWn(G )(R) = G(Wn(R)) (see [69, 2.1.4]); it is again smooth and affine.
For every n there is a natural reduction morphismWn+1(G )→Wn(G ).



42 Chapter 3. Stacks of truncated Barsotti–Tate groups

Proposition 3.34. Let Dn := Wn(GLh). Then there exists a smooth affine group scheme H
over Zp and for every n an action ofHn := Wn(H) on Dn, compatible with the reduction maps
Hn+1 → Hn and Dn+1 → Dn, such that for every power q of p, there exists for every g, g′ ∈
Dn(Fq) an isomorphism of Fq-varieties

φg,g′ : TranspHn,Fq
(g, g′)red ∼−→ Isom(Dn,g, Dn,g′)

red

that is compatible with compositions in the sense that for every g, g′, g′′ ∈ Dn(Fq) the following
diagram commutes, where the horizontal maps are the natural composition morphisms:

TranspHn,Fq
(g, g′)red × TranspHn,Fq

(g′, g′′)red TranspHn,Fq
(g, g′′)red

Isom(Dn,g, Dn,g′)
red × Isom(Dn,g′ , Dn,g′′)

red Isom(Dn,g, Dn,g′′)
red

φg,g′×φg′,g′′ φg,g′′

Proof. The groupH and the actionHn × Dn → Dn are defined in [69, 2.1.1 & 2.2] over an
algebraically closed field k of characteristic p, but the definition still makes sense over Fp.
The isomorphism of groups φg,g is given on k-points in [69, 2.4(b)]. The definition of the
map there shows that it is algebraic and defined over Fp. Since it is an isomorphism on F̄p-
points, it is an isomorphism of reduced group schemes over Fp. Furthermore, a morphism
TranspHn,Fq

(g, g′)→ Isom(Dn,g, Dn,g′) is given in the proof of [69, 2.2.1]. It is easily seen
that this map is compatible with compositions in the sense of the diagram above, and that it
is equivariant under the action of StabHn

(g)(F̄p) ∼= Isom(Dn,g)(F̄p). Since both varieties
are torsors under this action, this must be an isomorphism as well.
Corollary 3.35. For every power q of p the categoriesDh,dn (Fq) and [Hn\Dn](Fq) are equivalent.
Proof. For every objectD ∈ Dh,dn (Fq) choose a gD ∈ Dn(Fq) such thatD ∼= Dn,gD . Define
a functor

E : Dh,dn (Fq)→ [Hn\Dn](Fq)

that sends aD to the pair (Hn, fD), where fD : Hn → Dn is given by fD(h) = h · gD . We
send an isomorphism fromD toD′ to the corresponding element of

Isom((Hn, fD), (Hn, fD′)) = TranspHn(Fq)(gD, gD′).

This functor is fully faithful and essentially surjective, hence an equivalence of categories.

By proposition 3.26 the isomorphism classes in Dh,dn (k) for an algebraically closed field k
are classified by IW . For each w ∈ IW , let Dh,d,wn be the substack of Dh,dn consisting of
truncated Barsotti–Tate groups of level n, rank h, and with F of rank d, whose associated
BT1 are of type Kw at all geometric points. Then over fields k of characteristic p one has
Dh,dn (k) =

⊔
w∈IW Dh,d,wn (k) as categories, hence (for all powers q of p)

#Dh,dn (Fq) =
∑
w∈IW

Dh,d,wn (Fq).
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For every w ∈ IW , let g1,w ∈ D1(Fp) be such that D1,g1,w
∼= StFp(Kw). For every n, let

Dn,w be the preimage of g1,w under the reductionmapDn → D1. LetHn,w be the preimage
of StabH1

(g1,w) in Hn; then analogous to corollary 3.35 for every power q of p we get an
equivalence of categories (see [19, 3.2.3 Lem. 2(b)])

Dh,d,wn (Fq) ∼= [Hn,w\Dn,w](Fq).

Proof of Theorem 3.33. Let q be a power of p. By the discussion above we see that

#BTh,dn (Fq) =
∑
w∈IW

#[Hn,w\Dn,w](Fq).

By proposition 3.32 the group scheme StabH1(gw)
red ∼= Aut(D1,g1)

red has an identity
component that is unipotent of dimension d(h − d) − ℓ(w). The reduction morphism
Hn → H1 is surjective and its kernel is unipotent of dimension h2(n − 1), see [19, 3.1.1
& 3.1.3]. This implies thatHn,w has a unipotent identity component of dimension h2(n −
1) + d(h − d) − ℓ(w). Now fix a gn,w ∈ Dn,w(Fp); then we can identify Dn,w with
the affine group X = Wn−1(Math×h), by sending an x ∈ X to gn,w + ps(x), where
s : Wn−1(Math×h) ∼−→ pWn(Math×h) ⊂Wn(Math×h) is the canonical identification. Fur-
thermore, the action of an element z ∈ Hn,w on some y = (gn,w + ps(x)) ∈ Dn,w is given
by z · y = f(z)(gn,w + ps(x))f ′(z) for some algebraic maps f, f ′ : Hn,w →Wn(GLh) (see
[69, 2.2.1a]). From this we see that the induced action of an element z ∈ Hn,w on the variety
X is given by

z · x = f(z)xf ′(z) +
1

p
(f(z)gn,wf

′(z)− gn,w), (3.36)

which makes sense because f(z)gn,wf ′(z) is equal to gn,w modulo p. If we regard X as
Wn−1(Gh

2

a ) via its canonical coordinates, (3.36) shows us that the action of Hn,w factors
through the action of Wn−1(Affh2), which is a connected algebraic group over Fp; here
Affh2 is the Zp-group scheme of affine transformations of h2-dimensional affine space.
Applying proposition 2.21 with F = Hn,w , H = U = E = 1, V = Dn,w now yields
#Dh,d,wn (Fq) = qℓ(w)−d(h−d). The formula for the zeta function is provided by theorem
2.27.
Remark 3.37. Since the zeta function Z(BTh,dn , t) does not depend on n, one might be
tempted to think that the stack BTh,d∞ of non-truncated Barsotti–Tate groups of height h
and dimension d has the same zeta function. However, this stack is not of finite type. For
instance, every Barsotti–Tate group G overFq has a natural injectionZ×

p ↪→ Aut(G), which
shows us that the zeta function of BTh,d∞ is not well-defined.
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Chapter 4

Stacks of BT1-flags

In this chapter we define so-called BT1-flags: these are inclusion chains

G1 ⊂ G2 ⊂ · · · ⊂ Gr

of p-groups over a scheme S, such that Gr is a BT1. Under some numerical constraints
these BT1-flags form an algebraic stack of finite type over Fp; this chapter is dedicated to
calculating the point counts and zeta functions of these stacks. Although we cannot find a
direct formula as in theorem 3.33, we provide an algorithm (4.24) that calculates the point
count overFq of such a stack as an integral polynomial in q and q−1. Furthermore, in section
4.3 we provide some shortcuts for calculating the point count manually. Finally, we give an
example of such a manual calculation in section 4.4.
Before diving straight into the formal approach, it is helpful to sketch an informal example.
Suppose we want to determine the point counts of the stack of chains of p-groups

G1 ⊂ G2 ⊂ G3

where G1 is of height h1 := 2, G2 is of height h2 := 3, and G3 is of height h3 := 6.
Furthermore, we demand thatG3 is a BT1 of dimension 2. Since we are working over finite
fields, we might as well consider the stack of quintuples (D1, D2, D3, f1, f2), where

• EachDi is a level 1 Dieudonné module of height hi;
• D3 is exact of dimension 2;
• Each fi is an injective morphism of Dieudonné modules fi : Di ↪→ Di+1.

Schematically, we may denote the numerical data by the ‘word’ 2 ↪→ 3 ↪→ (6, 2), and the
category of these quintuples over Fq by C(2 ↪→ 3 ↪→ (6, 2),Fq) (in this category, mor-
phisms are isomorphisms of the Di that are compatible with the fi). To determine the
point count of this category, we would like to know the structure of the scheme of injective
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morphisms Inj(D,D′) for two DieudonnémodulesD andD′. Unfortunately, we only have
a description of the full scheme ofmorphisms Hom(D,D′) from proposition 3.28. Therefore
it is initially easier to look at a bigger category C(2→ 3→ (6, 2),Fq), which has the same
definition as C(2 ↪→ 3 ↪→ (6, 2),Fq), except that we do not require f1 and f2 to be injec-
tive. We can calculate the point count of this bigger category as follows: recall that the
set of Kraft types is denoted K. For a triple (K1,K2,K3) ∈ K3 with appropriate numer-
ical invariants (see definition 4.7), let C(K1 → K2 → K3,Fq) be the full subcategory of
C(2→ 3→ (6, 2),Fq) such that eachDi is of typeKi. Then there is a finite subsetX ⊂ K3

such that

C(2→ 3→ (6, 2),Fq) =
⊔

(K1,K2,K3)∈X

C(K1 → K2 → K3,Fq).

We can relate such a category C(K1 → K2 → K3,Fq) to a quotient stack, and then use the
results of chapter 2 to calculate its point count (see theorem 4.20). By summing overX we
find an expression for #C(2→ 3→ (6, 2),Fq).
Let us return to the difference between the point counts #C(2 → 3 → (6, 2),Fq) and
#C(2 ↪→ 3 ↪→ (6, 2),Fq). If f1 is not injective, we get a chain

D1 � im(f1) ↪→ D2 → D3,

where im(f1) has height either 1 or 0. From this we get an equivalence of categories

C(2→ 3→ (6, 2),Fq) ∼= C(2 ↪→ 3→ (6, 2),Fq)
⊔C(2 � 1 ↪→ 3→ (6, 2),Fq)
⊔C(2 � 0 ↪→ 3→ (6, 2),Fq),

where the categories are defined as one would expect (see definition 4.7 for more details).
As such we find

#C(2 ↪→ 3→ (6, 2),Fq) = #C(2→ 3→ (6, 2),Fq) (4.1)
−#C(2 � 1 ↪→ 3→ (6, 2),Fq)
−#C(2 � 0 ↪→ 3→ (6, 2),Fq).

Applying similar reasoning to the second ↪→ yields a decomposition

#C(2 ↪→ 3 ↪→ (6, 2),Fq) = #C(2 ↪→ 3→ (6, 2),Fq)
−#C(2 ↪→ 3 � 2 ↪→ (6, 2),Fq)
−#C(2 ↪→ 3 � 1 ↪→ (6, 2),Fq)
−#C(2 ↪→ 3 � 0 ↪→ (6, 2),Fq).

Together these two equations describe the difference between #C(2→ 3→ (6, 2),Fq) and
#C(2 ↪→ 3 ↪→ (6, 2),Fq) in terms of the point counts of other categories. Unfortunately,
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we do not have a direct formula for these point counts. However, we can get an expression
for such a point count (e.g. #C(2 ↪→ 3 � 1 ↪→ (6, 2),Fq)) by first calculating the point
count of a similar category of chains where we allow more morphisms within a chain (e.g.
#C(2→ 3→ 1→ (6, 2),Fq)), and then expressing the difference in terms of point counts
of other categories. We then continue this processwith our newly-found set of point counts.
This process eventually terminates (see lemma 4.11), and this gives us a recursivemethod to
determine the point count #C(2 ↪→ 3 ↪→ (6, 2),Fq). In the rest of this chapter, we formalise
this approach into algorithm 4.24, which allows us to calculate the point counts of chains of
arbitrary length and numerical invariants.

4.1 Chain words and categories

In this section we formally define BT1-flags; these arise as invariants of points on moduli
spaces of abelian varieties with non-full level structure. We also introduce their moduli
stacks, whose point counts and zeta functions will be the subject of this chapter. To study
these moduli stacks, we relate them to so-called chain categories, which are categories of
Dieudonné theory objects related to BT1-flags.
Definition 4.2. Let r be a positive integer. Let S be a scheme of characteristic p, and let
h = (h1, · · · , hr) be an increasing sequence of positive integers. Then a BT1-flag of height h
over S is an increasing sequence of p-groupsG1 ⊂ · · · ⊂ Gr over S, such that eachGi is of
height hi, and such thatGr is a BT1. The dimension of the sequence is the dimension ofGr
(see [12, II.7 Def.]).
Analogously to [70, Prop. 1.8] and fact 3.8 one can prove the following.
Fact 4.3. Let r be a positive integer. Let h = (h1, · · · , hr) be an increasing sequence of
positive integers, and let d ≤ hr be a nonnegative integer.

1. The BT1-flags of height h and dimension d form an algebraic stackBTFlagh,d of finite
type over Fp.

2. Letk be aperfect field, and letDFlagh,d(k)be the category of flags of level 1Dieudonné
modulesD1 ⊂ · · · ⊂ Dr , such that eachDi is of height hi, andDr is exact of dimen-
sion d (we take the morphisms of this categories to be isomorphisms of Dieudonné
modules Dr

∼−→ D′
r that preserve the flags). Then there is an equivalence of cate-

gories
BTFlagh,d(k) ∼−→ DFlagh,d(k)

coming from the natural equivalences in fact 3.8.2.
Example 4.4. Let h = (h1, · · · , hr) be an increasing sequence of integers, with hr even. In
characteristic p, let S be the moduli stack of pairs (X,H1, · · · ,Hr−1), where X is a prin-
cipally polarised abelian variety of dimension hr

2 , and H1 ⊂ · · · ⊂ Hr−1 ⊂ X[p] is a flag
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of subgroup schemes where each Hi has order phi . Then we get a natural morphism of
Fp-stacks

S→ BTFlagh,
hr
2

(X,H1, · · · ,Hr) 7→ H1 ⊂ · · · ⊂ Hr ⊂ X[p].

BT1-flags of this type occur in the study of polarised abelian varietieswith aΓ0(p)-structure
(see for example [26]).
Remark 4.5. There are two reasons why we demandGr to be a BT1 in definition 4.2. First,
example 4.4 shows that this is what we find in the study of moduli of abelian varieties. Sec-
ond, this extra assumption ensures that the stack BTFlagh,d has a rational zeta function,
which we will be able to determine explicitely.
As before it suffices for our purposes to consider the point counts of categories of the form
DFlagh,d(Fq). If we replace the inclusions in the definition of DFlagh,d by injective mor-
phisms, we see that it consists of tuples D = ((Di)i≤r, (fi)i<r), where each Di is a Dieu-
donné module (subject to some numerical conditions), and each map fi : Di ↪→ Di+1 is an
injective morphism of Dieudonné modules. To determine the point count of this category,
it will prove useful to extend or restrict the category by playing aroundwith the restrictions
on the Di and the fi: for example, we might want to restrict a Di to a certain Kraft type,
or we might drop the condition that an fi is injective. A convenient way to denote what
restriction we place on a category of chains of Dieudonnémodules is given in the definition
below.
Definition 4.6. Let r ≥ 1 be an integer. LetK denote the set of Kraft types. A chain word of
length r is a word (see 3.9)

L = A1B1A2B2 · · ·Ar−1Br−1Ar ∈ W
(
K ⊔ Z≥0 ⊔ Z2

≥0 ⊔ {→, ↪→,�}
)

of one of the following types such that:
• EachAi is either a Kraft type, a nonnegative integer, or a pair of nonnegative integers
(a, b) satisfying a ≥ b;

• EachBi is an element of the set {→, ↪→,�}.
A chainword is called regular if eachBi equals→, injective if eachBi equals ↪→, and surjective
if each Bi equals�. Furthermore a chain word is called of numeric type if each Ai is either
an integer or a pair of integers, and of Kraft type if eachAi is a Kraft type.
Definition 4.7. Let L = A1B1 · · ·An be a chain word of length r, and let k be a perfect
field field of characteristic p. Then the chain category ofL over k, denoted C(L, k), is defined
as follows. Its objects are collections D = ((Di)i≤r, (fi)i<r), where each Di is a level 1
Dieudonné module over k whose type

• is an element ofK(Ai) ifAi is either an integer, or a pair of integers (a, b)with a ≥ b
(see definition 3.15);
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• is equal toAi ifAi is a Kraft type.
Furthermore, each fi is a morphism of Dieudonnémodules fi : Di → Di+1 that is injective
ifBi = ↪→, and surjective ifBi = �. Amorphismφ : D → D′ inC(L, k) is a collection of
isomorphisms φi : Di

∼−→ D′
i of Dieudonné modules, satisfying φi+1fi = f ′iφi for all i < n.

Example 4.8.

1. Consider the chain word of numeric type 2 ↪→ 3 ↪→ (6, 2), and let k be a perfect field
of characteristic p. Then the category C(2 ↪→ 3 ↪→ (6, 2), k) consists of sequences

D1
f1
↪→ D2

f2
↪→ D3

Where D1 is a Dieudonné module of height 2, D2 is a Dieudonné module of height
3, andD3 is a Dieudonné module of height 6 and dimension 2; furthermore, both f1
and f2 have to be injective. A morphism φ between two such sequencesD andD′ is
a commutative diagram as below.

D1 D2 D3

D′
1 D′

2 D′
3

φ1
∼

φ2

∼

φ3

∼

f1 f2

f ′1 f ′2

2. Let∆6 and∆8 be the elements ofK as defined in section 4.4. Consider the chainword
of Kraft type∆6 ↪→ ∆8 � 5. Then C(∆6 ↪→ ∆8 � 5, k) consists out of sequences

D1
f1
↪→ D2

f2� D3

where D1 is of type ∆6, D2 is of type ∆8, D3 is of height 5, f1 is injective and f2
is surjective. In particular D1,k̄ is isomorphic to Stk̄(∆6) and D2,k̄ is isomorphic
to Stk̄(∆8). However, as we will see in section 4.4, there do not exist any injective
homomorphisms Stk̄(∆6) ↪→ Stk̄(∆8); hence C(∆6 ↪→ ∆8 � 5, k) is the empty
category.

3. Let h = (h1, . . . , hr) be a sequence of increasing positive integers, and let d ≤ hr
be a nonnegative integer. Let k be a perfect field of characteristic p. Then we get an
equivalence of categories

BTFlagh,d(k) ∼−→ DFlagh,d(k) ∼−→ C(Lh,d, k)

with Lh,d := h1 ↪→ . . . ↪→ hr−1 ↪→ (hr, d).
Remark 4.9. Similar to remark 3.6 we can extend the definition of C(L, k) from perfect
fields k to general schemes of characteristic p, and this gives us an algebraic stack C(L) of
finite type over Fp. As usual, however, we are only concerned with its points over finite
fields.
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Remark 4.10. LetL = A1B1 · · ·Ar be a chain word of numeric type, and let k be a perfect
field of characteristic p. Let D = ((Di)i, (fi)i) be an object of C(L, k), and for every i,
let Ki be the type of Di; this is an element of K(Ai). Let L′ be the chain word of Kraft
type L′ = K1B1 · · ·Kn; then we can consider D as an element of C(L′, k). This gives a
decomposition

C(L, k) ∼=
⊔

(Ki)i∈
∏

i K(Ai)

C(K1B1 · · ·Kr, k).

Although our definition allows for a wide variety of chain words, we are mainly interested
in chain words of two types:

1. injective chain words of numeric type, because their chain categories correspond to
categories of BT1-flags by example 4.8.3;

2. regular chain words of Kraft type, because we will be able to explicitely calculate the
point counts of their chain categories (see theorem 4.20).

As such, the goal for the remainder of this section is to find a way to express the point count
of a chain category of a (not necessarily regular) chain word of numeric type in terms of the
point counts of chain categories of regular chain words of Kraft type:

Proposition 4.11. LetL be a chain word of numeric type. There exists a finite set of regular chain
words of Kraft typeL′ and integers cL′ such that

#C(L, k) =
∑
L′∈L′

cL′#C(L′, k) (4.12)

for every finite field k of characteristic p.

To prove this proposition we first need an auxiliary lemma. It is in the proof of this lemma,
and in the proof of proposition 4.11, that we need chainwords of greater generality than the
two types discussed above. The philosophy of the lemma is that if in a chainwordwe replace
a letter ↪→ or� by→, we will allowmore objects in corresponding chain categories, so this
will increase their point counts. However, it turns out that we can express this increase
in terms of point counts of other chain categories. We have seen an illustration of this
phenomenon in (4.1).

Lemma 4.13. Let k be a finite field of characteristic p. Consider two chain words of numeric type
L = A1B1 · · ·Ar andL′ = A′

1B
′
1 · · ·A′

r′ .

1. Consider the chain word of numeric type L ↪→ L′. Let a be such thatAr is either an integer
a, or a pair of integers (a, b). Then

#C(L ↪→ L′, k) = #C(L→ L′, k)−
∑
x<a

#C(L� x ↪→ L′, k). (4.14)
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2. Consider the chain word of numeric type L � L′. Let a′ be such thatA′
1 is either an integer

a′, or a pair of integers (a′, b′). Then

#C(L� L′, k) = #C(L→ L′, k)−
∑
x<a′

#C(L� x ↪→ L′, k). (4.15)

Proof. We only prove the first point, as the other point can be proven analogously. Consider
the set Z as a category whose only morphisms are identities. Then we get a functor

Φ: C(L→ L′, k) → Z
D = ((Di)i, (fi)i) 7→ dim(im(fr));

note that the numbering is such that themap fr : Dr → Dr+1 is themorphism correspond-
ing to the ‘→’ in L→ L′. The fibre over a ∈ Z consists of thoseD for which fr is injective,
hence it is naturally identified with C(L ↪→ L′, k). For x < awe get a functor fromΦ−1(x)

to C(L� x ↪→ L′, k) by sending an object

D1
f2→ D2 → · · · → Dr

fr−→ Dr+1 → · · · → Dr+r′−1

fr+r′−1−−−−−→ Dr+r′

to

D1
f2→ D2 → · · · → Dr

g−→ im(fr)
h−→ Dr+1 → · · · → Dr+r′−1

fr+r′−1−−−−−→ Dr+r′

where g is the surjective map induced by fr , and h is the inclusion. It is easily seen that this
is an equivalence of categories, hence we get an equivalence of categories

C(L→ L′, k) ∼= C(L ↪→ L′, k) ⊔
⊔
x<a

C(L� x ↪→ L′, k),

from which the first point follows. The second point is proven in an analogous way.
Proof of proposition 4.11. First we claim that there is a set L′′ of chain regular chain words of
numeric type and integers cL′′ such that

#C(L, k) =
∑

L′′∈L′′

cL′′#C(L′′, k)

for every k. If L is regular, then this statement is trivially true. If not, then at least one of
its ‘arrows’ must be equal to either ↪→ or �. If this is the case we can, using lemma 4.13,
express #C(L, k) as an integral combination of some other #C(L′′, k); the L′′ involved do
not depend on the choice of k. If some of these L′′ again are not regular, we can use the
same method to rewrite each of them as a sum of other #C(L′′, k). We want to show that
this process eventually ends. For this, we wish to assign to every numeric chain word L a
constant J(L) ∈ Z≥0 such that

• In (4.14) we have J(L ↪→ L′) > J(L → L′) and J(L ↪→ L′) > J(L � x ↪→ L) for
all x < a;
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• In (4.15) we have J(L � L′) > J(L → L′) and J(L � L′) > J(L � x ↪→ L′) for
all x < a′.

Together, these properties ensure that every time we invoke lemma 4.13 we replace the
point count of a chain category by an integral combination of point counts of chain cate-
gories whose associated chain words have lower J-values. Since all J(L) are nonnegative
integers, this means that we will always arrive at a point where we cannot invoke lemma
4.13; this is only possible if we are at a point where we all chain words in our integral combi-
nation are regular. Hence, if we prove the existence of such a J , we have proven the claim.
To define such a J , let L = A1B1 · · ·Ar be a chain word of length r of numeric type. Let
L̃ = Ã1B̃1 · · · Ãr be the same as L, except that we have replace a letter Ai by the integer
Ãi := a ifAi is a pair (a, b). For i < r we set

Ji(L) :=

{
3Ãi+Ãi+1 , ifBi ̸= →;

0, ifBi = →.

and we define J(L) :=∑i<r Ji(L). A straightforward check shows that this J satisfies the
properties above, and this proves our claim.
To prove the proposition, it now suffices to show that for every regular chain wordM of
numeric type there is a finite setM′ of regular chain words of Kraft type such that

#C(M,k) =
∑

M ′∈M′

#C(M ′, k)

for all k. We can find such a set using remark 4.10: ifM = A1 → · · · → Ar , then the set

M′ :=
{
K1 → · · · → Kr : Ki ∈ K(Ai) for all i ≤ r

}
satisfies this property.

4.2 Point counts of chain stacks

In this section we give an algorithm (4.24) to calculate the point count #DFlagh,d(Fq). The
strategy is as follows: if L is a regular chain word of Kraft type, we define a varietyXL and
an algebraic group GL acting on XL such that C(L,Fq) ∼= [GL\XL](Fq). Using methods
of section 2.1 we can then calculate the point count of C(L,Fq). Finally, we may express
#BTFlagh,d(Fq) in terms of such #C(L,Fq) via proposition 4.11.
Notation 4.16. LetL be a regular chain word of Kraft type of length r. We define a scheme
XL over Fp, with an action of an algebraic group GL as follows: For i ≤ r, define Gi :=
Aut(StFp(Li))

red, wherewhereStFp is as in section 3.2. FurthermoredefineGL :=
∏
i≤r Gi,

and for i < r, define
Xi = Hom(StFp

(Li), StFp
(Li+1))

red.
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SinceGi×Gi+1 acts onXi on the left by (g, g′) · x = gxg′−1, we get a left action ofGL on
XL :=

∏
i<rXi.

Lemma 4.17. Let k be a perfect field of characteristic p, and letL be a chain word of Kraft type. Let
XL andGL be as in notation 4.16. Then there is a contravariant equivalence of categories

C(L, k) ∼←→ [GL\XL](k).

Proof. Let L = A1B1 · · ·Ar , and letD := ((Di), (fi)) ∈ C(L, k). Then

TD :=
∏
i≤r

Isom(Di, Stk(Ai))

is a leftGL-torsor over k. Furthermore we get a map
fD : TD →

∏
i<n

Xi

(ζi)i≤r 7→ ζi+1 ◦ fi ◦ ζ−1
i .

This map is GL-equivariant, and as such (TD, fD) ∈ [GL\XL](k). If φ : D → D′ is a
morphism in C(L, k), then we get an induced isomorphism ofGi-torsors

φ∗
i : Isom(D′

i, Stk(Ai)) ∼−→ Isom(Di, Stk(Ai)).

Together these form a morphism (TD′ , fD′) → (TD, fD) in [GL\XL](k). One can check
that this is fully faithful and essentially surjective, hence a contravariant equivalence of
categories.
As might be expected our next aim is to calculate point counts of categories of the form
[GL\XL](Fq). For this we need a little more notation.
Notation 4.18. Let r be a positive integer, and let d1, . . . , dr be nonnegative integers. We
define N(d1, . . . , dr) to be the set of sequences of nonnegative integers (ai,j)1≤i≤j≤r sat-
isfying the following relations:

• ai,j ≤ ai+1,j for all 1 ≤ i < j ≤ r;
• aj,j = dj for all j ≤ r;
• ai,j − ai−1,j ≥ ai,j+1 − ai−1,j+1 for all 1 < i ≤ j < r;
• ai,j ≥ ai,j+1 for all 1 ≤ i ≤ j < r.

Lemma 4.19. Let k be a field, and let d1, . . . , dr be nonnegative integers. For each i < r, let
GLdi(k)×GLdi+1

(k) act on the left onMatdi+1×di(k) in the natural way. Then there is a bijection(∏
j≤r

GLdj (k)
)
\

(∏
i<r

Matdi+1×di(k)

)
∼←→ N(d1, . . . , dr).

If k is Galois over a subfield k′ ⊂ k, then this is an isomorphism ofGal(k/k′)-sets, whereGal(k/k′)
acts trivially on the right hand side.
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Proof. For every j ≤ r, let Vj be the vector space kdj . Let fi be an element ofMatdi+1×di(k)

for each i < r, and consider each fi as a map Vi → Vi+1. For each i ≤ j, set

Vi,j := (fj−1 ◦ · · · ◦ fi)(Vi) ⊂ Vj ;

then the integers ai,j := dim(Vi,j) satisfy the inequalities of notation 4.18, and this gives
us a map ∏

i<r

Matdi+1×di(k)→ N(d1, . . . , dr).

A straightforward verification shows that thismap is invariant under the left actions of both∏
j≤r GLdj (k) andGal(k/k′), and that it is indeed a bijection.

Theorem 4.20. Let q be a power of p, and let L = A1 → · · · → Ar be a regular chain word of
Kraft type. Let d, e : K ×K → Z and d : K → Z be as in notation 3.27, and define

m(L) :=
∑
i<r

(d(Ai, Ai+1) + e(Ai, Ai+1))−
∑
i≤r

d(Ai).

Then
#C(L,Fq) =

∏
∆∈PZ

#N(A1(∆), · · · , Ar(∆))∏
i≤r
∏

∆∈PT
#GLAi(∆)(Fq)

qm(L).

Proof. By lemma 4.17 we know that #C(L,Fq) = #[GL\XL](Fq). From proposition 3.29 we
get an isomorphism GL ∼= (F ×H) n U , where U is unipotent of dimension∑i≤r d(Ai)

and

F ∼=
∏
i≤r

∏
∆∈PZ

GLAi(∆)(Fpℓ(∆)),

H ∼=
∏
i≤r

∏
∆∈PT

GLAi(∆),Fp
.

Furthermore, by proposition 3.28 we know thatXL = E × V , where V is a vector space of
dimension∑i<r (d(Ai, Ai+1) + e(Ai, Ai+1)), and

E ∼=
∏
i<r

∏
∆∈PZ

MatAi+1(∆)×Ai(∆)(Fpℓ(∆)).

Furthermore the decomposition XL = E × V is a decomposition of varieties with an F -
action, and the action of F on V is given by linear transformations. We may apply proposi-
tion 2.21 to find

#[GL\XL](Fq) = (F (F̄p)\E(F̄p))Gal(F̄p/Fp) · qm(L)∏
i≤r
∏

∆∈PT
#GLAi(∆)(Fq)

.

The action of F onE is the natural action as in lemma 4.19. Applying this lemma yields the
required result.
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Corollary 4.21. Let h = (h1, . . . , hr) be an increasing sequence of positive integers, and let 0 ≤
d ≤ hr . Then there exists aR ∈ Q(X) such thatR is an element of the ringR in (2.26) and such
that for every power q of p one has

#BTFlagh,d(Fq) = R(q).

Proof. By example 4.8 and proposition 4.11 it suffices to prove this statement for regular
chain words of Kraft type. The result now follows from theorem 4.20 and the formula

#GLn(Fq) = (qn − 1)(qn − q) · · · (qn − qn−1).

This corollary allows us to express the point count of a moduli stack of BT1-flags over Fq
as a rational function in q. It turns out, however, that this rational function is actually an
integral polynomial in q and q−1. A key ingredient for this is the following lemma.
Lemma 4.22. The zeta function of the Fp-stack BTFlagh,d is a rational function.

Proof. Recall that #BTFlagh,d(k) = #C(Lh,d, k), where

Lh,d := h1 ↪→ · · · ↪→ hr−1 ↪→ (hr, d)

as in example 4.8. Let k be a finite field of characteristic p, and for every K ∈ K(hr, d),
define

LK := h1 ↪→ · · · ↪→ hr−1 ↪→ K;

Then
#C(Lh,d, k) =

∑
K∈K(hr,d)

#C(LK , k);

as such it suffices to show that for eachK ∈ K(hr, d) the ‘zeta function’

ZK(t) := exp

∑
v≥1

tv

v
#C(LK ,Fpv )


is rational. Now fix aK ∈ K(hr, d). For a vector space V and an integer n, let Gr(n, V ) be
the Grassmannian scheme ofn-dimensional subspaces ofV . LetX be the closed subscheme
of the Fp-scheme∏i≤r Gr(hi, StFp(K)) consisting of elements S = (Si)i≤r satisfying:

• Si ⊂ Si+1 for all i < r;

• each Si is mapped to itself under the semilinear maps F and V .

The group scheme G := Aut(StFp(K))red acts on X on the left. We get a contravariant
functor

Φ: C(LK , k)→ [G\X](k)
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as follows: let D ∈ C(LK , k). Since all the fi are injective, we may regard each Di as a
Dieudonné submodule ofDr . As such, we may assign toD theG-torsor Isom(Dr, Stk(K))

over k, and theG-equivariant map T → X given by
Isom(Dr, Stk(K)) → Xk

φ 7→ (φ(Di))i≤r.

Similar to lemma 4.17 we can prove that Φ is a contravariant equivalence of categories;
hence ZK(t) = Z([G\X], t). On the other hand, we know from proposition 3.29 that
G ∼= Γ n U , with Γ finite and U unipotent. From proposition 2.20 it now follows that
Z([G\X], t) = Z([Γ\X], p-dim(U)t). Since [Γ\X] is a Deligne–Mumford stack, theorem
2.23 tells us that Z([Γ\X], t) is rational; hence ZK(t) is rational, as was to be shown.
Corollary 4.23. Let h = (h1, . . . , hr) be an increasing sequence of positive integers, and let d be
an integer such that 0 ≤ d ≤ hr . Then there exists aR ∈ Z[X,X−1] such that for all powers q of
p one has

#BTFlagh,d(Fq) = R(q).

IfR =
∑
n∈Z rnX

n, thenZ(BTFlagh,d, t) =
∏
n(1− pnt)−rn .

Proof. By lemma 4.22 we may apply theorem 2.27 to corollary 4.21.
As a result of this we can formulate the following algorithm to calculate Z(BTFlagh,d, t):
Algorithm 4.24. Let h = (h1, . . . , hr) be an increasing sequence of positive integers, and
let 0 ≤ d ≤ hr . To calculate Z(BTFlagh,d, t), perform the following steps:

1. Define the chain word Lh,d = h1 ↪→ · · · ↪→ hr−1 ↪→ (hr, d).
2. Using proposition 4.11, find a finite setL′ of regular chain words of Kraft type and an

integer cL′ for every L′ ∈ L′ such that
#C(Lh,d, k) =

∑
L′∈L′

cL′ · #C(L′, k).

3. Using theorem 4.20, determine for each L′ ∈ L′ the rational function QL′ ∈ Q(X)

such that #C(L′,Fq) = QL′(q) for all powers q of p.
4. Then R :=

∑
L′∈L′ cL′QL′ is an element of Z[X,X−1], see corollary 4.23. if R =∑

n rnX
n, then Z(BTFlagh,d, t) =

∏
n(1− pnt)−rn .

Remark 4.25. One canverify that thepolynomialR in the algorithmabovedoes not depend
on the prime number p.

4.3 Shortcuts for manual calculation

Although in the previous section we have given algorithm 4.24 to calculate the zeta func-
tion of theFp-stackBTFlagh,d, this calculation can become quite cumbersome if performed
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manually, as the number of terms in the sum in proposition 4.11 grows quickly as either the
length of the sequence h or its entries increase. In this section we discuss a few shortcuts
that will make manual computation slightly easier. The overall strategy is as follows: in the
proof of proposition 4.11, we express the point count of a chain category of a chain word
of numeric type in terms of the point counts of chain categories corresponding to regular
chain words of Kraft type. We did this in two steps:

1. We reduce to regular chain words of numeric type using lemma 4.13;
2. We reduce to regular chain words of Kraft type using remark 4.10.

We can also do this the other way around:
1. We reduce to chain words of Kraft type using lemma 4.34.1;
2. We reduce to regular chain words of Kraft type using lemma 4.34.2 & 4.34.3.

The advantage of the second approach is that the number of terms on the right hand side
of (4.12) will be a lot less, making manual computation considerably easier. The downside
is that it involves calculations that can be done by hand in small examples, but are not fully
automatisable to my knowledge; this makes a general implementation more difficult (see
remark 4.35).
Notation 4.26. Let∆0 be the primitive Kraft graph of type Z corresponding to the word F ,
and let∆1 be the primitive Kraft graph of type Z corresponding to the word V . For a Kraft
typeK we define its étale part to beKét := K(∆0) ·∆0, its infinitesimal multiplicative part to
beK im := K(∆1) ·∆1, and its infinitesimal unipotent part to be

K iu :=
∑

∆∈P\{∆0,∆1}

K(∆) ·∆.

A Kraft type K is called étale (resp. infinitesimal multiplicative, infinitesimal unipotent) if K
equalsKét (resp. K im,K iu). Note thatK = Két +K im +K iu.
Remark 4.27. Let k be a perfect field of characteristic p. Then we get a natural decomposi-
tion

Stk(K) = Stk(Két)⊕ Stk(K im)⊕ Stk(Két).

Via Dieudonné theory this corresponds to the decomposition of the corresponding p-group
into its étale, infinitesimal unipotent, and infinitesimal multiplicative part as in [13, IV,§3,
no5].
Let K be a Kraft type. Let v0 be the unique vertex of ∆0, let v1 be the unique vertex of
∆1, and let v be any vertex of K iu. Let RF and RV be as in section 3.2. Then RF (v0) >
RF (v) > RF (v1) and RV (v0) < RV (v) < RV (v1); hence if w,w′ ∈ {v0, v, v1}, then
w ≽ w′ if and only ifw = w′. If we apply this to propositions 3.28 and 3.29 we now find the
following lemma:
Lemma 4.28. LetK be a Kraft type, and let k be a perfect field of characteristic p.
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1. Letw andw′ be any of the designations ét, im, iu, such thatw ̸= w′. Then
Hom(Stk(Kw), Stk(Kw′

)) = 0.

2. The inclusion map
Aut(Stk(Két))×Aut(Stk(K im))×Aut(Stk(K iu)) ↪→ Aut(Stk(K))

is an isomorphism.
For a Dieudonné moduleD over a perfect field k of characteristic pwe now obtain a canoni-
cal decompositionD = Dét⊕Dim⊕Diu as follows. LetK be the Kraft type ofD and choose
an isomorphismφ : Dk̄

∼−→ Stk̄(K). Then Stk̄(K) = Stk̄(Két)⊕Stk̄(K im)⊕Stk̄(K iu); set
Dét
k̄
:= φ−1(Stk̄(Két)). By lemma 4.28.2 this does not depend on the choice ofφ; in particu-

lar, it is Galois-invariant, hence it descends to a canonically defined Dieudonné submodule
Dét ⊂ D. We can defineDim andDiu analogously.
If L = A1B1 · · ·Ar is a chain word of Kraft type, we denote by Lét the chain word where
everyAi is replaced byAét

i . Suppose k is a perfect field of characteristic p andD ∈ C(L, k).
Then Dét := ((Dét

i )i≤n, (fi|Dét
i
)i<n) is an element of C(Lét, k). As such we get a functor

Φét : C(L, k)→ C(Lét, k); we define words Lim, Liu and functorsΦim,Φiu analogously. The
following proposition is now a straightforward corollary of lemma 4.28.
Lemma 4.29. Let L be a chain word of Kraft type, and let k be a perfect field of characteristic p.
Then the functor

Φét × Φim × Φiu : C(L, k)→ C(Lét, k)× C(Lim, k)× C(Liu, k)

is an equivalence of categories.
Lemma 4.30. Let L be an injective chain word of Kraft type of length r. Let k be a finite field of
characteristic p. Let w be one of the designations ét or im. IfK is a Kraft type, denote its height by
a(K). Then

#C(Lw, k) =
{

1, if a(Lw1 ) ≤ a(Lw2 ) ≤ · · · ≤ a(Lwr );
0, otherwise.

Proof. Define ai := a(Lwi ). By proposition 3.28 we have
Hom(Stk(Lwi ), Stk(Lwi+1)

red) ∼= Lin(Faip ,Fai+1
p );

hence
Inj(Stk(Lwi ), Stk(Lwi+1)

red) ∼= Inj(Faip ,Fai+1
p ).

Applying lemma 4.17 we find C(Lw, k) ∼= [G\X](k), where G and X are the finite étale
Fp-schemes whose F̄p-points with Galois action are given by

G(F̄p) =
∏
i≤r

GLai(Fp),

X(F̄p) =
∏
i<r

Inj(Faip ,Fai+1
p ),
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whereG acts onX in the natural way. If there is an i such that ai > ai+1, thenX is empty
and #C(Lw, k) = 0. If no such i exists, then an object ofX corresponds to a flag in Fanp of
dimensions (a1, . . . , ar). The groupGLdn(Fp) acts transitively on this set, so in particular
G acts transitively on X . Since both G and X are finite, we may apply proposition 2.21
(withH , U , V trivial), and we find #C(Lw, k) = 1.
Corollary 4.31. LetL be an injective chainword of Kraft type. Letk be a finite field of characteristic
p. Then #C(L, k) = #C(Liu, k).
Proof. By lemma 4.29 we find #C(L, k) = #C(Lét, k) · #C(Lim, k) · #C(Liu, k), and by lemma
4.30 the first two factors are equal to 1.
In the proof of proposition 4.11 we expressed #C(Lh,d,Fq) (see 4.8) in terms of the point
counts of chain categories of straight chain words of Kraft type by first removing all letters
of the form ↪→ and �, and then replacing all integers and triples by Kraft types. Lemma
4.34 gives us a way to do this the other way around.
Notation 4.32. LetK1 andK2 be Kraft types, and let k̄ be an algebraically closed field of
characteristic p. We write K1 ▹ K2 (respectively K1 ◃ K2) if there exists an injective
(resp. surjective) morphism of Dieudonné modules Stk̄(K1) ↪→ Stk̄(K2); this does not
depend on the choice of k̄. Let a be either a nonnegative integer or a pair of nonnegative
integers (x, y) satisfying x ≥ y. Then we denote:

S(K1,K2, a) =
{
K ∈ K : K1 ◃ K,K ▹ K2,K ∈ K(a)

}
\ {K1,K2}.

In this notation, we may replace an argument by • to drop the restrictions imposed by that
argument; for instance, S(•,K2, •) is the set of K ∈ K satisfying K ▹ K2 that are not
equal toK2.
Lemma 4.33. LetK1 andK2 be Kraft types. ThenK1 ▹ K2 (respectivelyK1 ◃ K2) if and only
ifK1(∆0) ≤ K2(∆0),K1(∆1) ≤ K2(∆1), andK iu

1 ▹ K iu
2 (respectivelyK1(∆0) ≥ K2(∆0),

K1(∆1) ≥ K2(∆1), andK iu
1 ◃ K iu

2 ).
Proof. This is a straightforward consequence of lemma 4.29.
Lemma 4.34. Let k be a finite field of characteristic p.

1. Let h = (h1, . . . , hr) be an increasing sequence of positive integers, and let 0 ≤ d ≤ hr . Let
Lh,d be as in example 4.8. Define the set

X =

{
(K1, · · · ,Kr) ∈ Kr :

Kr ∈ K(hr, d),
Ki ∈ S(•,Ki+1, hi) ∀i < r

}
.

Then
#C(Lh,d, k) =

∑
(K1,··· ,Kr)∈X

#C(K1 ↪→ · · · ↪→ Kr, k)

=
∑

(K1,··· ,Kr)∈X

#C(K iu
1 ↪→ · · · ↪→ K iu

r , k).
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2. Let L = A1B1 · · ·An and L′ = A′
1B

′
1 · · ·A′

n′ be two chain words of Kraft type. Then
#C(L ↪→ L′, k) is equal to:

• 0, ifAn ̸▹ A′
1;

• #C(A1B1 · · ·AnB′
1A

′
2B

′
2 · · ·A′

n′ , k), ifAn = A′
1;

• #C(L→ L′, k)−
∑
K∈S(An,A′

1,•)
#C(L� K ↪→ L′, k), ifA′

1 ∈ S(•, An, •).
3. Let L = A1B1 · · ·An and L′ = A′

1B
′
1 · · ·An′ be two chain words of Kraft type. Then

#C(L� L′, k) is equal to:
• 0, ifAn ̸◃ A′

1;
• #C(A1B1 · · ·AnB′

1A
′
2B

′
2 · · ·A′

n′ , k), ifAn = A′
1;

• #C(L→ L′, k)−
∑
K∈S(An,A′

1,•)
#C(L� K ↪→ L′, k), ifAn ∈ S(A′

1, •, •).

Proof. The first equality of the first point is straightforward, as X contains precisely those
sequences (K1, · · · ,Kr) ∈ Kr where each of theKi has the right numerical invariants, and
where eachKi is chosen such that it admits an injective morphism Stk(Ki) ↪→ Stk(Ki+1);
in other words, these are precisely the sequences for which the associated chain category
C(K1 ↪→ · · · ↪→ Kr, k) is nonempty. The second equality follows from corollary 4.31. The
second and third point are proven analogously, so we will only prove the second point. If
An ̸▹ A′

1, then there exist no Dn of type An, Dn+1 of type A′
1 such that there exists an

injective morphism of Dieudonné modules fn : Dn ↪→ Dn+1. In particular the category
#C(L ↪→ L′, k) is empty. IfAn = A′

1, we get an equivalence of categories

C(L ↪→, k) ∼= C(A1B1 · · ·AnB′
1A

′
2B

′
2 · · ·A′

n′ , k),

by sending an object

D1 → · · · → Dn
fn→ Dn+1

fn+1→ Dn+2 → · · · → Dn+n′

to
D1 → · · · → Dn

fn+1◦fn−−−−−→ Dn+2 → · · · → Dn+n′ .

Its inverse is given by sending an object

D′
1 → · · · → D′

n

f ′
n→ D′

n+1 → · · · → D′
n+n′−1

to
D′

1 → · · · → D′
n

id−→ D′
n

f ′
n→ D′

n+1 → · · · → D′
n+n′−1.

One can check that these two are indeed inverses (note that fn has to be an isomorphism).
The case thatAn ∈ S(A′

1, •, •) is proven analogously to lemma 4.13.
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Alternate proof of proposition 4.11 for L = Lh,d. First, use lemma 4.34.1 to write #C(L, k) as
an integral combination∑L′′∈L′′ #C(L′′, k), where each L′′ is a chain word of Kraft type.
Then use lemma 4.34.2 & 4.34.3 to replace any arrow ↪→ and � in L′′ by→, adding extra
terms to our sum in the process. Analogously to the first proof of proposition 4.11, we may
show that this process eventually terminates, leaving us with a set of regular chain words
of Kraft type.
Remark 4.35. Using the proof above rather than the first proof of proposition 4.11 when
performing algorithm 4.24 has two advantages: First, we can use lemma 4.34.1 to work with
Kraft types of lower height, whichmakes computations easier. Second, in this way, we disre-
gard chain words whose associated chain categories are actually empty (e.g. example 4.8.2)
at an early stage, which leads to fewer terms in the sum. This makes manual calculation
less cumbersome. The disadvantage of this method is that we have no general method to
compute the sets S(K1,K2, a) beyond lemma 4.33. Because of this, this method is harder
to automatise. In the next section, however, we will see that we can compute these sets in
small examples.

4.4 An example

Wefinish this chapterwith a somewhat lengthy example: wewill calculate the zeta function
of the Fp-stack BTFlag(2,4),2. This will showcase the techniques developed in section 4.3
for calculating point counts and zeta functions manually. In order to do so in an efficient
manner, we will need some additional notation. To start, all Kraft types involved in the
calculation will be integral combinations of the following primitive Kraft graphs:

∆0 : ∆1 : ∆2 :F V

F F
V

V
∆3 : ∆4 : ∆5 :

F
F F

V
V V

∆6 : ∆7 :

F
FV

V
∆8 :
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Since the involved Kraft types are small in height, we can explicitely work out the homo-
morphism sets to see whether there exist any injective homomorphisms. For example, if
we label the vertices in ∆6 and ∆8 clockwise, starting at the bottom left in ∆6 and at the
top left in ∆8, an actual computation of the group of homomorphisms as in the proof of
proposition 3.28 show us that for any perfect field k of characteristic p we have

Hom(Stk(∆6), Stk(∆8)) =




0 0 0

a 0 0

b ap 0

0 0 0

 : a, b ∈ k

 .

This does not contain any injective linear maps, hence ∆6 ̸▹ ∆8. This method allows us
manually check the relations▹ and◃ for other Kraft types as well.
We haveK(4, 2) = {2∆0+2∆1,∆0+∆1+∆3, 2∆3,∆1+∆6,∆0+∆7,∆8}. Furthermore,
by determining the relation ▹ between elements of K(2) and elements of K(4, 2) we find
the following sets:

S(•, 2∆0 + 2∆1, 2) = {2∆0, 2∆1,∆0 +∆1}
S(•,∆0 +∆1 +∆3, 2) = {∆0 +∆1,∆0 +∆2,∆1 +∆2,∆3}

S(•, 2∆3, 2) = {2∆2,∆3}
S(•, 2∆0 + 2∆1, 2) = {∆1 +∆2,∆4}
S(•, 2∆0 + 2∆1, 2) = {∆0 +∆2,∆5}
S(•, 2∆0 + 2∆1, 2) = {∆3,∆4,∆5}.

Hence we find, for any power q of p,

#BTFlag(2,4),2(Fq) = #C(2 ↪→ (4, 2),Fq)
= #C(2∆0 ↪→ 2∆0 + 2∆1,Fq)

+#C(2∆1 ↪→ 2∆0 + 2∆1,Fq)
+#C(∆0 +∆1 ↪→ 2∆0 + 2∆1,Fq)
+#C(∆0 +∆1 ↪→ ∆0 +∆1 +∆3,Fq)
+#C(∆0 +∆2 ↪→ ∆0 +∆1 +∆3,Fq)
+#C(∆1 +∆2 ↪→ ∆0 +∆1 +∆3,Fq)
+#C(∆3 ↪→ ∆0 +∆1 +∆3,Fq)
+#C(2∆2 ↪→ 2∆3,Fq)
+#C(∆3 ↪→ 2∆3,Fq)
+#C(∆1 +∆2 ↪→ ∆1 +∆6,Fq)
+#C(∆4 ↪→ ∆1 +∆6,Fq)
+#C(∆0 +∆2 ↪→ ∆0 +∆7,Fq)
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+#C(∆5 ↪→ ∆0 +∆7,Fq)
+#C(∆3 ↪→ ∆8,Fq)
+#C(∆4 ↪→ ∆8,Fq)
+#C(∆5 ↪→ ∆8,Fq).

Wenow calculate each of the summands individually using lemma 4.34 to reduce to straight
chains, and theorem 4.20 to calculate the associated point count. From the definition of the
functions d, e : K × K → Z in notation 3.27 we easily see that d and e are distributive
functions on the semigroupK. As such, to determine the functionm from theorem 4.20 on
all words involved in the calculation, it suffices to calculate d on all the∆i depicted above.
The results are in the following table:

d(↓,→) ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

∆2 0 1 1 1 1 1 1

∆3 1 1 1 1 1 1 2

∆4 1 1 1 1 2 1 2

∆5 1 1 1 1 1 2 2

∆6 1 1 1 1 2 1 2

∆7 1 1 1 1 1 2 2

∆8 1 2 2 2 2 2 3

The last two ingredients we need for our calculation are the other relevant sets of the form
S(K1,K2, •) for two Kraft types K1 and K2, and the integers #N(d1, · · · , dn). The sets
S(K1,K2, •) are readily determined analogously to the setsS(•,K, 2) above. Furthermore,
the vast majority of the #N(d1, · · · , dn) that appear in the calculation below have no two
consecutive nonzero di; in this case we easily see fromnotation 4.18 that #N(d1, · · · , dn) =
1. The only exception is that we find one instance of #N(1, 2), which equals 2. Using this
we can calculate all the #C(K1 ↪→ K2,Fq) that appear in our calculation. The results are
as follows:

#C(2∆0 ↪→ 2∆0 + 2∆1,Fq) = #C(0 ↪→ 0,Fq)
= 1;

#C(2∆1 ↪→ 2∆0 + 2∆1,Fq) = #C(0 ↪→ 0,Fq)
= 1;

#C(∆0 +∆1 ↪→ 2∆0 + 2∆1,Fq) = #C(0 ↪→ 0,Fq)
= 1;

#C(∆0 +∆1 ↪→ ∆0 +∆1 +∆3,Fq) = #C(0 ↪→ ∆3,Fq)
= #C(0→ ∆3,Fq)
= q−1;

#C(∆0 +∆2 ↪→ ∆0 +∆1 +∆3,Fq) = #C(∆2 ↪→ ∆3,Fq)
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= #C(∆2 → ∆3,Fq)− #C(∆2 � 0 ↪→ ∆3,Fq)
= #C(∆2 → ∆3,Fq)− #C(∆2 → 0→ ∆3,Fq)

=
1

#(F×
q )
− q−1

#(F×
q )

=
1

q − 1
− q−1

q − 1

= q−1;

#C(∆1 +∆2 ↪→ ∆0 +∆1 +∆3,Fq) = #C(∆2 ↪→ ∆3,Fq)
= q−1;

#C(∆3 ↪→ ∆0 +∆1 +∆3,Fq) = #C(∆3 ↪→ ∆3,Fq)
= #C(∆3,Fq)
= q−1;

#C(2∆2 ↪→ 2∆3,Fq) = #C(2∆2 → 2∆3,Fq)
−#C(2∆2 � ∆2 ↪→ 2∆3,Fq)
−#C(2∆2 → 0→ 2∆3,Fq)

= #C(2∆2 → 2∆3,Fq)
−#C(2∆2 → ∆2 ↪→ 2∆3,Fq)
+#C(2∆2 → 0→ ∆2 ↪→ 2∆3,Fq)
−#C(2∆2 → 0→ 2∆3,Fq)

= #C(2∆2 → 2∆3,Fq)
−#C(2∆2 → ∆2 → 2∆3,Fq)
+#C(2∆2 → ∆2 → 0→ 2∆3,Fq)
+#C(2∆2 → 0→ ∆2 → 2∆3,Fq)
−#C(2∆2 → 0→ ∆2 → 0→ 2∆3,Fq)
−#C(2∆2 → 0→ 2∆3,Fq)

=
1

#GL2(Fq)

− 1

#GL2(Fq) · (q − 1)

+
q−2

#GL2(Fq) · (q − 1)

+
q−2

#GL2(Fq) · (q − 1)

− q−4

#GL2(Fq) · (q − 1)
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− q−4

#GL2(Fq)

=
q − 2 + 2q−2 − q−3

(q2 − 1)(q2 − q)(q − 1)

= q−4;

#C(∆3 ↪→ 2∆3,Fq) = #C(∆3 → 2∆3,Fq)
−#C(∆3 � ∆2 ↪→ 2∆3,Fq)
−#C(∆3 → 0→ 2∆3,Fq)

= #C(∆3 → 2∆3,Fq)
−#C(∆3 → ∆2 ↪→ 2∆3,Fq)
+#C(∆3 → 0→ ∆2 ↪→ 2∆3,Fq)
−#C(∆3 → 0→ 2∆3,Fq)

= #C(∆3 → 2∆3,Fq)
−#C(∆3 → ∆2 → 2∆3,Fq)
+#C(∆3 → ∆2 → 0→ 2∆3,Fq)
+#C(∆3 → 0→ ∆2 → 2∆3,Fq)
−#C(∆3 → 0→ ∆2 → 0→ 2∆3,Fq)
−#C(∆3 → 0→ 2∆3,Fq)

= 2q−3 − q−2

q − 1
+

q−4

q − 1
+

q−3

q − 1
− q−5

q − 1
− q−5

= q−3;

#C(∆1 +∆2 ↪→ ∆1 +∆6,Fq) = #C(∆2 ↪→ ∆6,Fq)
= #C(∆2 → ∆6,Fq)− #C(∆2 → 0→ ∆6,Fq)

=
q−1

q − 1
− q−2

q − 1

= q−2;

#C(∆4 ↪→ ∆1 +∆6,Fq) = #C(∆4 ↪→ ∆6,Fq)
= #C(∆4 → ∆6,Fq)
−#C(∆4 � ∆2 ↪→ ∆6,Fq)
−#C(∆4 → 0→ ∆6,Fq)

= #C(∆4 → ∆6,Fq)
−#C(∆4 → ∆2 ↪→ ∆6,Fq)
+#C(∆4 → 0→ ∆2 ↪→ ∆6,Fq)
−#C(∆4 → 0→ ∆6,Fq)

= #C(∆4 → ∆6,Fq)



66 Chapter 4. Stacks of BT1-flags

−#C(∆4 → ∆2 → ∆6,Fq)
+#C(∆4 → ∆2 → 0→ ∆6,Fq)
+#C(∆4 → 0→ ∆2 → ∆6,Fq)
−#C(∆4 → 0→ ∆2 → 0→ ∆6,Fq)
−#C(∆4 → 0→ ∆6,Fq)

=
q−1

q − 1
− q−1

(q − 1)2
+

q−2

(q − 1)2

+
q−2

(q − 1)2
− q−3

(q − 1)2
− q−3

q − 1

= q−2;

#C(∆0 +∆2 ↪→ ∆0 +∆7,Fq) = #C(∆2 ↪→ ∆7,Fq)
= #C(∆2 → ∆7,Fq)− #C(∆2 → 0→ ∆7,Fq)

=
q−1

q − 1
− q−2

q − 1

= q−2;

#C(∆5 ↪→ ∆0 +∆7,Fq) = #C(∆5 ↪→ ∆7,Fq)
= #C(∆5 → ∆7,Fq)
−#C(∆5 � ∆2 ↪→ ∆7,Fq)
−#C(∆5 → 0→ ∆7,Fq)

= #C(∆5 → ∆7,Fq)
−#C(∆5 → ∆2 ↪→ ∆7,Fq)
+#C(∆5 → 0→ ∆2 ↪→ ∆7,Fq)
−#C(∆5 → 0→ ∆7,Fq)

= #C(∆5 → ∆7,Fq)
−#C(∆5 → ∆2 → ∆7,Fq)
+#C(∆5 → ∆2 → 0→ ∆7,Fq)
+#C(∆5 → 0→ ∆2 → ∆7,Fq)
−#C(∆5 → 0→ ∆2 → 0→ ∆7,Fq)
−#C(∆5 → 0→ ∆7,Fq)

=
q−1

q − 1
− q−1

(q − 1)2
+

q−2

(q − 1)2

+
q−2

(q − 1)2
− q−3

(q − 1)2
− q−3

q − 1

= q−2;

#C(∆3 ↪→ ∆8,Fq) = #C(∆3 → ∆8,Fq)
−#C(∆3 � ∆2 ↪→ ∆8,Fq)
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−#C(∆3 → 0→ ∆8,Fq)
= #C(∆3 → ∆8,Fq)
−#C(∆3 → ∆2 ↪→ ∆8,Fq)
+#C(∆3 → 0→ ∆2 ↪→ ∆8,Fq)
−#C(∆3 → 0→ ∆8,Fq)

= #C(∆3 → ∆8,Fq)
−#C(∆3 → ∆2 → ∆8,Fq)
+#C(∆3 → ∆2 → 0→ ∆8,Fq)
+#C(∆3 → 0→ ∆2 → ∆8,Fq)
−#C(∆3 → 0→ ∆2 → 0→ ∆8,Fq)
−#C(∆3 → 0→ ∆8,Fq)

= q−2 − q−2

q − 1
+

q−3

q − 1

+
q−3

q − 1
− q−4

q − 1
− q−4

= q−2 − q−3;

#C(∆4 ↪→ ∆8,Fq) = #C(∆4 → ∆8,Fq)
−#C(∆4 � ∆2 ↪→ ∆8,Fq)
−#C(∆4 → 0→ ∆8,Fq)

= #C(∆4 → ∆8,Fq)
−#C(∆4 → ∆2 ↪→ ∆8,Fq)
+#C(∆4 → 0→ ∆2 ↪→ ∆8,Fq)
−#C(∆4 → 0→ ∆8,Fq)

= #C(∆4 → ∆8,Fq)
−#C(∆4 → ∆2 → ∆8,Fq)
+#C(∆4 → ∆2 → 0→ ∆8,Fq)
+#C(∆4 → 0→ ∆2 → ∆8,Fq)
−#C(∆4 → 0→ ∆2 → 0→ ∆8,Fq)
−#C(∆4 → 0→ ∆8,Fq)

=
q−2

q − 1
− q−2

(q − 1)2
+

q−3

(q − 1)2

+
q−3

(q − 1)2
− q−4

(q − 1)2
− q−4

q − 1

= q−3;

#C(∆5 ↪→ ∆8,Fq) = #C(∆5 → ∆8,Fq)
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−#C(∆5 � ∆2 ↪→ ∆8,Fq)
−#C(∆5 → 0→ ∆8,Fq)

= #C(∆5 → ∆8,Fq)
−#C(∆5 → ∆2 ↪→ ∆8,Fq)
+#C(∆5 → 0→ ∆2 ↪→ ∆8,Fq)
−#C(∆5 → 0→ ∆8,Fq)

= #C(∆5 → ∆8,Fq)
−#C(∆5 → ∆2 → ∆8,Fq)
+#C(∆5 → ∆2 → 0→ ∆8,Fq)
+#C(∆5 → 0→ ∆2 → ∆8,Fq)
−#C(∆5 → 0→ ∆2 → 0→ ∆8,Fq)
−#C(∆5 → 0→ ∆8,Fq)

=
q−2

q − 1
− q−2

(q − 1)2
+

q−3

(q − 1)2

+
q−3

(q − 1)2
− q−4

(q − 1)2
− q−4

q − 1

= q−3.

Adding all these terms, we find

#C(2 ↪→ (4, 2),Fq) = 3 + 4q−1 + 5q−2 + 2q−3 + q−4;

as predicted by corollary 4.23 this is indeed an integral combination of summands qn. From
this point count formula we deduce

Z(BTFlag(2,4),2, t) = (1− t)−3(1− p−1t)−4(1− p−2t)−5(1− p−3t)−2(1− p−4t)−1.

While this computation is still quite cumbersome, we can see the strength of lemma 4.34 in
action: if we would have used lemma 4.13 instead in algorithm 4.24, we would have needed
to calculate #C(L,Fq) for 702 regular chain words of Kraft type, instead of the 49 we needed
now.
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Chapter 5

Stacks of G-zips

Following the classification of the BT1 over algebraically closed fields in [32], and the ap-
plication of this classification to obtain the Ekedahl–Oort stratification on moduli spaces
of abelian varieties in [52], various efforts have been made to generalise these results to
BT1 with additional structure. In [43] the BT1 with a given action of an endomorphism ring
and/or a polarisation were classified over an algebraically closed field; this can be used to
define an Ekedahl–Oort stratification on Shimura varieties of PEL type as in [70]. The di-
mensions of these strata were calculated in [44], and the key ingredient in this result is the
description of the automorphism groups of the corresponding BT1. Both the classification
of BT1 with extra structure, and their automorphisms groups, can be expressed in terms of
the Weyl group of an associated reductive algebraic group over Fp.

In [47] the Dieudonné modules associated to BT1 were generalised to semilinear algebra ob-
jects calledF -zips; these also appear in the de Rham cohomology of smooth proper schemes.
The classification of F -zips, as well as the classification of F -zips with additional structure,
could again be stated in terms of the Weyl group of a reductive group G. In [55] and [56]
so-calledG-zips were introduced, which are objects in algebraic group theory in which the
reductive groupG is the primordial object. For specific choices ofG these generaliseF -zips
(and BT1) with additional structure. Its relationship to Shimura varieties can be described
as follows: Let S be a be a Shimura variety of Hodge type governed by an algebraic groupG
overQ, and assumeG is hyperspecial at p. Let S0 be the reduction of the canonical model
of S at p (see [29]), and let G be a reductive model ofG over Zp. Then by [71] there exists a
smooth surjective morphism from S0 to a moduli stack of GFp

-zips.

The goal of this chapter is to calculate the point counts and zeta functions of moduli stacks
of G-zips; the main result is theorem 5.25. Because of the relation between G-zips on one
hand and BT1 andF -zips with additional structure on the other hand, this result can also be
used to determine the point counts and zeta functions of moduli stacks of the latter; see [56,
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§8 & §9] for more details on how to express stacks of F -zips in terms of G-zips. The main
ingredients of this proof are the classification ofG-zips over an algebraically closedfield and
the description of their automorphism groups from [56], and the methods for calculating
point counts of quotient stacks developed in chapter 2. In [56] the automorphismgroups are
only described for connectedG, soweneed to generalise these results to the non-connected
case.

5.1 Weyl groups and Levi decompositions

In this section we briefly review some relevant facts about Weyl groups and Levi decompo-
sitions, in particular those of nonconnected reductive groups.

5.1.1 The Weyl group of a connected reductive group

LetG be a connected reductive algebraic group over a field k. For any pair (T,B) of a Borel
subgroup B ⊂ Gk̄ and a maximal torus T ⊂ B, let ΦT,B be the based root system of G
with respect to (T,B), and letWT,B be the Weyl group of this based root system, i.e. the
Coxeter group generated by the set ST,B of simple reflections. As an abstract groupWT,B

is isomorphic to NormG(k̄)(T (k̄))/T (k̄). If (T ′, B′) is another choice of a Borel subgroup
and a maximal torus, then there exists a g ∈ G(k̄) such that (T ′, B′) = (gTg−1, gBg−1).
Furthermore, such a g is unique up to right multiplication by T (k̄), which gives us a unique
isomorphism ΦT,B ∼−→ ΦT ′,B′ . As such, we can simply talk about the based root system Φ

of G, with corresponding Coxeter system (W,S). By these canonical identifications Φ,W
and S come with an action ofGal(k̄/k).
The set of parabolic subgroups of Gk̄ containing B is classified by the power set of S, by
associating to I ⊂ S the parabolic subgroup P = L · B, where L is the reductive group
with maximal torus T whose root system is ΦI , the root subsystem of Φ generated by the
roots whose associated reflections lie in I . We call I the type of P . Let U := RuP be the
unipotent radical of P ; then P = L n U is the Levi decomposition of P with respect to T
(see subsection 5.1.3). For every subset I ⊂ S, letWI be the subgroup ofW generated by
I ; it is the Weyl group of the root system ΦI , with I as its set of simple reflections.
For w ∈ W , define the length ℓ(w) of w to be the minimal integer such that there exist
s1, s2, ..., sℓ(w) ∈ S such that w = s1s2 · · · sℓ(w). Since Gal(k̄/k) acts onW by permut-
ing S, the length is Galois invariant. Let I, J ⊂ S; then every (left, double, right) coset
WIw,WIwWJ or wWJ has a unique element of minimal length, and we denote the sub-
sets of W of elements of minimal length in their (left, double, right) cosets by IW, IW J ,
andW J .
Proposition 5.1. (See [14, Prop. 4.18]) Let I, J ⊂ S. Letx ∈ IW J , and set Ix = J∩x−1Ix ⊂



5.1. Weyl groups and Levi decompositions 71

W . Then for everyw ∈WIxWJ there exist uniquewI ∈WI ,wJ ∈ IxWJ such thatw = wIxwJ .
Furthermore ℓ(w) = ℓ(wI) + ℓ(x) + ℓ(wJ).
Lemma 5.2. (See [55, Prop. 2.8]) Let I, J ⊂ S. Every elementw ∈ IW can uniquely be written
as xwJ for some x ∈ IW J andwJ ∈ IxWJ .
Lemma 5.3. (See [55, Lem. 2.13]) Let I, J ⊂ S. Let w ∈ IW and write w = xwJ with
x ∈ IW J ,wJ ∈WJ . Then

ℓ(w) = #
{
α ∈ Φ+\ΦJ : wα ∈ Φ−\ΦI

}
.

5.1.2 The Weyl group of a nonconnected reductive group

Now let us drop the assumption that our group is connected. Let Ĝ be a reductive algebraic
group and write G for its connected component. Let B be a Borel subgroup of Gk̄, and let
T be a maximal torus ofB. Define the following groups:

W = NormG(k̄)(T )/T (k̄);

Ŵ = NormĜ(k̄)(T )/T (k̄);

Ω = (NormĜ(k̄)(T ) ∩NormĜ(k̄)(B))/T (k̄).

Lemma 5.4.

1. One has Ŵ =W o Ω.
2. The composite mapΩ ↪→ G(k̄)/T (k̄) � π0(G(k̄)) is an isomorphism of groups.

Proof.

1. First note thatW is a normal subgroup of Ŵ , since it consists of the elements of Ŵ
that have a representative inG(k̄), andG is a normal subgroup of Ĝ. Furthermore, Ŵ
acts on the set X of Borel subgroups of Gk̄ containing T . The stabiliser of B under
this action is Ω, whereas W acts simply transitively on X ; hence Ω ∩ W = 1 and
WΩ = Ŵ , and together this proves Ŵ =W o Ω.

2. By the previous point, we see that

Ω ∼= Ŵ/W ∼= NormĜ(k̄)(T )/NormG(k̄)(T ),

so it is enough to show that every connected component of Ĝ(k̄) has an element
that normalises T . Let x ∈ Ĝ(k̄); then xTx−1 is another maximal torus of Gk̄,
so there exists a g ∈ G(k̄) such that xTx−1 = gTg−1. From this we find that
T = (g−1x)T (g−1x)−1, and g−1x is in the same connected component as x.
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We call Ŵ the Weyl group of Ĝ with respect to (T,B). Again, choosing a different (T,B)

leads to a canonical isomorphism, so we may as well talk about the Weyl group of Ĝ. The
two statements of lemma 5.4 are then to be understood as isomorphisms of groups with
an action of Gal(k̄/k). Note that we can regard W as the Weyl group of the connected
reductive group G; as such we can apply the results of the previous subsection to it. Let
S ⊂W be the generating set of simple reflections.
Now let us define an extension of the length function to a suitable subset of Ŵ . First, let I
and J be subsets of the set S of simple reflections inW , and consider the set IŴ := IWΩ.
Define a subset IŴ J of IŴ as follows: every element w ∈ IŴ can uniquely be written as
w = w′ω, with w′ ∈ IW and ω ∈ Ω. We rewrite this as w = ωw′′, with w′′ = ω−1w′ω ∈
ω−1IωW ; then per definition w ∈ IŴ J if and only if w′′ ∈ ω−1IωW J . Note that IW J is
contained in IŴ J .
Now let w ∈ IŴ ; write w = ωw′′. Since w′′ is an element of ω−1IωW , we can uniquely
write w′′ = ywJ by lemma 5.2, with y ∈ ω−1IωW J and wJ ∈ IωyWJ . Then define the
extended length function ℓI,J : IŴ → Z≥0 by

ℓI,J(w) := #
{
α ∈ Φ+\ΦJ : ωyα ∈ Φ−\ΦI

}
+ ℓ(wJ). (5.5)

Remark 5.6.

1. By proposition 5.1 and lemma 5.3 the map ℓI,J : IŴ → Z≥0 extends the length func-
tion ℓ : IW → Z≥0.

2. Analogously to proposition 5.1 we see that everyw ∈ IŴ can be uniquely written as
xwJ with x ∈ IŴ J , wJ ∈ IxWJ , and ℓI,J(w) = ℓI,J(x) + ℓ(wJ).

3. A straightforward calculation shows that for π ∈ Gal(k̄/k) we get ℓπI,πJ(πw) =

ℓI,J(w). In particular, if I and J are fixed under the action of Gal(k̄/k), the map
ℓI,J :

IŴ → Z≥0 is Galois-invariant.
4. In general ℓI,J depends on J . It also depends on I , in the sense that if I, I ′ ⊂ S, then
ℓI,J(w) and ℓI′,J(w) forw ∈ IŴ ∩ I′Ŵ = I∩I′Ŵ need not coincide. As an example,
consider over any field the groupG = SL2. Let Ω = ⟨ω⟩ be cyclic of order 2, and let
Ĝ = G o Ω be the extension given by ωgω−1 = gT,−1. Then ω acts as −1 on the
root system, and S has only one element. Then a straightforward calculation shows
ℓ∅,∅(ω) = 1, whereas ℓ∅,S(ω) = ℓS,S(ω) = ℓS,∅(ω) = 0.

5.1.3 Levi decomposition of nonconnected groups

LetP be a connected smooth linear algebraic group over a field k. A Levi subgroup ofP is the
image of a section of the mapP � P/RuP , i.e. a subgroupL ⊂ P such thatP = LnRuP .
In characteristic p, such a Levi subgroup need not always exist, nor need it be unique. How-
ever, if P is a parabolic subgroup of a connected reductive algebraic group, then for every
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maximal torusT ⊂ P there exists a unique Levi subgroup ofP containingT (see [15, Propo-
sition 1.17]). The following proposition generalises this result to the non-connected case.

Proposition 5.7. Let Ĝ be a reductive group over a field k, and let P̂ be a subgroup of Ĝ whose
identity componentP is a parabolic subgroup ofG. Let T be a maximal torus ofP . Then there exists
a unique Levi subgroup of P̂ containing T , i.e. a subgroup L̂ ⊂ P̂ such that P̂ = L̂n RuP .
Proof. Let L be the Levi subgroup of P containing T . Then any L̂ satisfying the conditions
of the proposition necessarily has L has its identity component, hence L̂ ⊂ NormP̂ (L). On
the other hand we know that NormP (L) = L, so the only possibility is L̂ = NormP̂ (L),
and we have to check that π0(NormP̂ (L)) = π0(P̂ ), i.e. that every connected component
in P̂k̄ has an element normalising L. Let x ∈ P̂ (k̄). Then xTx−1 is another maximal
torus of Pk̄, so there exists a y ∈ P (k̄) such that xTx−1 = yTy−1. Then y−1x is in the
same connected component as x, and (y−1x)T (y−1x)−1 = T . Since L is the unique Levi
subgroup of P containing T , and (y−1x)L(y−1x)−1 is another Levi subgroup of P , we see
that y−1x normalises L, which completes the proof.

5.2 G-zips

In this section we give the definition ofG-zips from [56] along with their classification and
their connection to BT1. We will need the discussion on Weyl groups from subsection 5.1.2.
As before, we denote the component group of a nonconnected algebraic groupA by π0(A).
Let q0 be a power of p. Let Ĝ be a reductive group over Fq0 , and write G for its identity
component. Let q be a power of q0, and let χ : Gm,Fq

→ GFq
be a cocharacter of GFq

. Let
L = CentGFq

(χ), and letU+ ⊂ GFq
be theunipotent subgroupdefinedby theproperty that

Lie(U+) ⊂ Lie(GFq ) is the direct sum of the weight spaces of positive weight; define U−
similarly. Note that L is connected (see [15, Proposition 0.34]). This defines parabolic sub-
groups P± = LnU± ofGFq

. Now take an Fq-subgroup schemeΘ of π0(CentĜFq
(χ)), and

let L̂ be the inverse image of Θ under the canonical map CentĜFq
(χ) → π0(CentĜFq

(χ));
then L̂ has L as its identity component and π0(L̂) = Θ. We may regardΘ as a subgroup of
π0(Ĝ) via the inclusion

π0(CentĜFq
(χ)) = CentĜFq

(χ)/L ↪→ π0(ĜFq ).

Wemay then define the algebraic subgroups P̂± := L̂nU± of ĜFq
, whose identity compo-

nentsP± are equal toLnU±. Let π ∈ Gal(F̄q0/Fq0) be the q0-th power Frobenius. Then Ĝ
and Ĝπ are canonically isomorphic; as such we can regard P̂±,π , L̂±,π , etc. as subgroups of
Ĝ. They correspond to the parabolic and Levi subgroups associated to the cocharacterφ◦χ
of Ĝk and the subgroup φ(Θ) of π0(Ĝ), where φ : Ĝ → Ĝ is the relative q0-th Frobenius
isogeny.
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Definition 5.8. Let A be an algebraic group over a field k, and let B be a subgroup of A.
Let T be an A-torsor over some k-scheme S. A B-subtorsor of T is an S-subscheme Y of T ,
together with an action ofBS , such that Y is aB-torsor over S and such that the inclusion
map Y ↪→ T is equivariant under the action ofBS .
Definition 5.9. Let S be a scheme over Fq . A Ĝ-zip of type (χ,Θ) over S is a tuple Y =

(Y, Y+, Y−, υ) consisting of:
• A right-ĜFq

-torsor Y over S;
• A right-P̂+-subtorsor Y+ of Y ;
• A right-P̂−,π-subtorsor Y− of Y ;
• An isomorphism υ : Y+,π/U+,π

∼−→ Y−/U−,π of right-L̂π-torsors.
Together with the obvious notions of pullbacks and morphisms we get a fibred category
Ĝ-Zipχ,ΘFq

over Fq . If Ĝ is connected there is no choice for Θ, and we will omit it from the
notation.
Proposition 5.10. (See [56, Prop. 3.2& 3.11])Thefibred category Ĝ-Zipχ,ΘFq

is a smooth algebraic
stack of finite type over Fq .
Example 5.11. Let 0 ≤ d ≤ h be integers, let k be a perfect field, and let (D,F, V ) ∈
Dh,d1 (k). OnD we have a descending filtrationD ⊃ ker(F ) ⊃ 0 and an ascending filtration
0 ⊂ ker(V ) ⊂ D. Furthermore, ker(F ) has dimension h − d and ker(V ) has dimension d.
Consider the algebraic groupG := GLh over Fq0 := Fp. and a cocharacter χ : Gm,Fp → G

that sends a z ∈ Gm,Fp
to the diagonal matrix

diag(z, . . . , z︸ ︷︷ ︸
d times

, z2, . . . , z2︸ ︷︷ ︸
h−d times

).

SinceG is connected we have P̂± = P±, and since χ is defined over Fp we have P−,π = P−
and U−,π = U−. Consider the vector space W = Fhp with the natural action of G, and
let A and B be the cocharacter spaces inW on which χ(z) acts as z and z2, respectively.
Furthermore, define an ascending filtrationW• and a descending filtrationW • onW given
by

W0 = 0, W 0 =W,

W1 = A, W 1 = B,

W2 =W, W 2 = 0.

ThenP+ is the stabiliser ofW •, andP− is the stabiliser of the ascending filtrationW•. Now
define the following torsors:

• A rightG-torsor Y = Isom(Wk, D) over k;
• A right P+-subtorsor Y+ = Isom(W •

k , D ⊃ ker(F ) ⊃ 0) of Y ;
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• A right P−-subtorsor Y− = Isom(W•,k, 0 ⊂ ker(V ) ⊂ D) of Y .
ThenL ∼= GL(W 0/W 1)×GL(W 1) ∼= GL(W1)×GL(W2/W1) via the identificationsW/A ∼=
B andW/B ∼= A. As L-torsors we find:

Y+/U+
∼= Isom(W 0

k /W
1
k , D/ker(F ))× Isom(W 1

k , ker(F )),
Y−/U− ∼= Isom(W1,k, ker(V ))× Isom(W2,k/W1,k, D/ker(V )).

The k-vector space isomorphisms

V −1 : π(D/ker(F )) ∼−→ ker(V )

F : π(ker(F )) ∼−→ D/ker(V )

yield an isomorphism υ : Y+,π/U+,π
∼−→ Y−/U−,π of right-Lπ-torsors. Then the quadruple

(Y, Y+, Y−, υ) is a GLh-zip of type χ over k; sinceG = Ĝ there is no choice forΘ. This gives
us a natural equivalence of categories (see [56, §8.1 & §9.3]):

Dh,d1 (k) ∼−→ GLh-Zipχ(k).

If we replace GLh with a suitable reductive groupG (e.g. ResFp2/Fp
GLh/2) we get a natural

equivalence between a category of G-zips, and a stack of exact level 1 Dieudonné modules
with additional structure (e.g. with a given action of Fp2 ); see [56, §8] for several examples.
As such the concept of G-zips generalises the concept of level 1 Dieudonné modules with
additional structure. This construction extends to isomorphisms of Fp-stacks (see remark
3.6), and it can be applied to stacks of F -zips as defined in [47].
Now let q0, q, Ĝ, χ,Θ, L̂, U± and P̂± be as above. As in subsection 5.1.2 let Ŵ =W oΩ be
the Weyl group of Ĝ. Let I ⊂ S be the type of P+ and let J be the type of P−,π . If w0 ∈W
is the unique longest word, then J = π(w0Iw

−1
0 ) = w0π(I)w

−1
0 . Let w1 ∈ JWπ(I) be the

element of minimal length inWJw0Wπ(I), and let w2 = π−1(w1); then we may write this
relation as J = π(w2Iw

−1
2 ) = w1π(I)w

−1
1 .

The groupΘ can be considered as a subgroup ofΩ ∼= π0(Ĝ). Let ψ̂ be the automorphism of
Ŵ given by ψ̂ = inn(w1) ◦ π = π ◦ inn(w2), and letΘ act on Ŵ by

θ · w := θwψ̂(θ)−1.

Lemma 5.12. The subset IŴ ⊂ Ŵ is invariant under theΘ-action.
Proof. Since L̂ normalises the parabolic subgroup P+ of GFq

, the subset I ⊂ S is stable
under the action ofΘ by conjugation; hence for each θ ∈ Θ one has θ(IW )θ−1 = IW , so

θ(IŴ )ψ̂(θ)−1 = (θ(IW )θ−1) · (θΩψ̂(θ)−1) = IWΩ = IŴ .

Let us write Ξχ,Θ := Θ\IŴ .
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Proposition 5.13. (See [56, Rem. 3.21]) There is a natural bijection between the sets Ξχ,Θ and
[Ĝ-Zipχ,ΘFq

(F̄q)].
This bijection can be described as follows. Choose a Borel subgroup B of GF̄q

contained
in P−,π , and let T be a maximal torus of B. Let γ ∈ G(F̄q) be such that (γBγ−1)π =

B and (γTγ−1)π = T . For every w ∈ Ŵ = NormĜ(F̄q)
(T )/T (F̄q), choose a lift ẇ

to NormĜ(F̄q)
(T ), and set g = γẇ2. Then ξ ∈ Ξχ,Θ corresponds to the Ĝ-zip Yw =

(Ĝ, P̂+, gẇP̂−,π, gẇ·) for any representative w ∈ IŴ of ξ; its isomorphism class does not
depend on the choice of the representativesw and ẇ. Note that this description differs from
the one given in [56, Remark 3.21], as that description seems to be wrong. Since there it is
assumed that B ⊂ P−,K rather than that B ⊂ P−,π,K , the choice of (B, T, g) presented
therewill not be a frame for the connected zip datum (GK , P+,K , P−,π,K , φ : LK → Lπ,K).
Also, the choice for g given there needs to bemodified to account for the fact thatP+,K and
P−,π,K might not have a common maximal torus.
The rest of this subsection is dedicated to the extended length functions ℓI,J defined in
subsection 5.1.2. We need lemma 5.14 in order to show a result on the dimension of the
automorphism group of a Ĝ-zip that extends [56, Prop. 3.34(a)] to the nonconnected case
(see proposition 5.33.2).
Lemma 5.14. The length function ℓI,J : IŴ → Z≥0 is invariant under the semilinear conjugation
action ofΘ.
Proof. Letw ∈ IŴ , let θ ∈ Θ, and let w̃ = θwψ̂(θ)−1. Letw = ωywJ be the decomposition
as in subsection 5.1.2. A straightforward computation shows w̃ = ω̃w̃′′ = ω̃ỹw̃J with

ω̃ = θωψ̂(θ)−1 ∈ Ω;

w̃′′ = ψ̂(θ)w′′ψ̂(θ)−1 ∈ ω̃−1Iω̃W ;

ỹ = ψ̂(θ)yψ̂(θ)−1 ∈ ω̃−1Iω̃W J ;

w̃J = ψ̂(θ)wJ ψ̂(θ)
−1 ∈ Iω̃ỹWJ ,

since conjugation by ψ̂(θ) fixes J . Furthermore, ψ̂(Θ) fixes ΦJ (as a subset of Φ) and Θ

fixes ΦI , and Ω fixes Φ+ and Φ−, hence

ℓI,J(w̃) = #
{
α ∈ Φ+\ΦJ : ω̃ỹα ∈ Φ−\ΦI

}
+ ℓ(w̃J)

= #
{
α ∈ Φ+\ΦJ : θωyψ̂(θ)−1α ∈ Φ−\ΦI

}
+ ℓ(w̃J)

= #
{
α ∈ Φ+\ΦJ : ωyα ∈ Φ−\ΦI

}
+ ℓ(wJ)

= ℓI,J(w).

LetΠ := Gal(F̄q/Fq). By remark 5.6.3 we know that the function ℓI,J is not only invariant
under the action ofΘ, but also under the action ofΠ. As such, we can also consider ℓI,J as
a function Ξχ,Θ → Z≥0 or as a function Γ\Ξχ,Θ → Z≥0.
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Example 5.15. Let p be an odd prime, let V be the Fp-vector space F4
p, and let ψ be the

symmetric nondegenerate bilinear form on V given by the matrix


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .

Let Ĝ be the algebraic group O(V, ψ) over Fp; it has two connected components. The Weyl
groupW of its identity component G = SO(V, ψ) is of the formW ∼= {±1}2 (with trivial
Galois action), and its root system is of the form Ψ ∼= {r1, r2,−r1,−r2}, where the i-th
factor ofW acts on {ri,−ri}. The set of generators ofW is S = {(−1, 1), (1,−1)}. Fur-
thermore, #Ω = 2, and the nontrivial element σ of Ω permutes the two factors ofW (as
well as e1 and e2); hence Ŵ ∼= {±1}2 o S2.

Let χ : Gm → G be the cocharacter that sends t to diag(t, t, t−1, t−1). Its associated Levi
factor L is isomorphic to GL2; the isomorphism is given by the injection GL2 ↪→ Ĝ that
sends a g ∈ GL2 to diag(g, g−1,T). The associated parabolic subgroup P+ is the product of
L with the subgroup B ⊂ Ĝ of upper triangular orthogonal matrices. The type of P+ is
a singleton subset of S; without loss of generality we may choose the isomorphismW ∼=
{±1}2 in such a way that P+ has type I = {(−1, 1)}. Recall that J denotes the type of the
parabolic subgroup P−,π ofG. SinceW is abelian and has trivial Galois action, the formula
J = w0π(I)w

−1
0 shows us that J = I . Furthermore, since CentĜ(χ) is connected, the

groupΘ has to be trivial.

An element of Ŵ is of the form (a, b, c), with a, b ∈ {±1} and c ∈ S2 = {1, σ}; then IŴ is
the subset of Ŵ consisting of elements for which a = 1. Also, note that Φ+ \ ΦJ = {e2},
Φ− \ ΦI = {−e2}, so to calculate the length function ℓI,J as in (5.5) we only need to
determine ℓ(wJ) and whether ωy sends e2 to−e2 or not. If we use the terminology ω, w′′,
y, wJ from subsection 5.1.2, we get the following results:

w

(1, 1, 1) (1,−1, 1) (1, 1, σ) (1,−1, σ)

ω (1, 1, 1) (1, 1, 1) (1, 1, σ) (1, 1, σ)

w′′ (1,−1, 1) (1, 1, 1) (1, 1, 1) (−1, 1, 1)
y (1, 1, 1) (1,−1, 1) (1, 1, 1) (1, 1, 1)

wJ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1,−1)
ωye2 = −e2? no yes no no
ℓ(wJ) 0 0 0 1

ℓI,J(ŵ) 0 1 0 1
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5.3 Algebraic zip data

In this section we discuss algebraic zip data, which are needed to prove statements about
the automorphism group of a Ĝ-zip. This section copies a lot from sections 3–8 of [55],
except that there the reductive group is assumed to be to be connected. A lot carries over
essentially unchanged; in particular, if we cite a result from [55] without comment, wemean
that the same proof holds for the nonconnected case. Throughout this section, we will be
working over an algebraically closed field k of characteristic p, and for simplicity, we will
identify algebraic groups with their set of k-points (which means that we take all groups to
be reduced). Furthermore, if Â is an algebraic group, thenwe denote its identity component
byA. Finally for an algebraic group Ĝwe denote by rĜ the quotientmap rĜ : Ĝ→ Ĝ/RuG,
whereRuG is the unipotent radical ofG.
Definition 5.16. An algebraic zip datum over k is a quadruple Ẑ = (Ĝ, P̂ , Q̂, φ) consisting
of:

• a reductive group Ĝ over k;
• two subgroups P̂ , Q̂ ⊂ Ĝ such that P andQ are parabolic subgroups ofG;
• an isogeny φ : P̂/RuP → Q̂/RuQ, i.e. a morphism of algebraic groups with finite
kernel that is faithfully flat on identity components.

For an algebraic zip datum Ẑ , we define its zip groupEẐ to be

EẐ =
{
(y, z) ∈ P̂ × Q̂ : φ(rP̂ (y)) = rQ̂(z)

}
.

It acts on Ĝ by (y, z) · g = ygz−1. Note that if Ẑ is an algebraic zip datum, then we have
an associated connected algebraic zip datumZ := (G,P,Q, φ). Its associated zip groupEZ is
the identity component ofEẐ , and as such also acts on Ĝ.
Definition 5.17. A frame of Ẑ is a tuple (B, T, g) consisting of a Borel subgroup B of G, a
maximal torus T ofB, and an element g ∈ G, such that

• B ⊂ Q;
• gBg−1 ⊂ P ;
• φ(rP̂ (gBg−1)) = rQ̂(B);
• φ(rP̂ (gTg−1)) = rQ̂(T ).

Proposition 5.18. (See [55, Prop. 3.7]) For every algebraic zip datum Ẑ = (Ĝ, P̂ , Q̂, φ), every
Borel subgroupB ofG contained inQ and everymaximal torusT ofB there exists an element g ∈ G
such that (B, T, g) is a frame ofZ .
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We now fix a frame (B, T, g) of Ẑ . Let P̂ = U o L̂ and Q̂ = V o M̂ be the Levi decomposi-
tions of P̂ and Q̂ with respect to T ; these exist by proposition 5.7. In this notation

EẐ =
{
(ul, vφ(l)) : u ∈ U, v ∈ V, l ∈ L̂

}
. (5.19)

Furthermore, let I be the type of the parabolic P , and let J be the type of the parabolic
Q. Let w ∈ IŴ ⊂ NormĜ(T )/T , and choose a lift ẇ ∈ NormĜ(T ). If H is a sub-
group of (gẇ)−1L(gẇ), we may compare it with its image under φ ◦ inn(gẇ), viewed as
subgroups of Ĝ via the chosen Levi splitting of Q̂. The collection of all such H for which
H = φ ◦ inn(gẇ)(H) has a unique largest element, namely the subgroup generated by all
such subgroups.
Definition 5.20. LetHw be the unique largest subgroup of (gẇ)−1 · L · (gẇ) that satisfies
the relation Hw = φ ◦ inn(gẇ)(Hw). Let φẇ : Hw → Hw be the isogeny induced by
φ ◦ inn(gẇ), and letHw act on itself by h · h′ := hh′φẇ(h)

−1.
Since φ ◦ inn(gẇ)(T ) = T , the groupHw does not depend on the choice of ẇ, even though
φẇ does. One of themain results of this section is the following result about certain stabilis-
ers.
Theorem5.21. (See [55, Thm. 8.1])Letw ∈ IŴ andh ∈ Hw . Then the stabiliserStabEZ (gẇh)

is the semidirect product of a connected unipotent normal subgroup and the subgroup{(
int(gẇ)(h′), φ

(
int(gẇ)(h′)

))
: h′ ∈ StabHw

(h)
}
,

where the action ofHw on itself is given by semilinear conjugation as in definition 5.20.
Definition 5.22. The algebraic zip datum Ẑ is called orbitally finite if for any w ∈ IŴ the
number of fixed points of the endomorphism φ ◦ inn(gẇ) of Hw is finite; this does not
depend on the choice of ẇ (see [55, Prop. 7.1]).
We will see later (lemma 5.27) that Ẑ is orbitally finite in the case that is of main interest to
us, i.e. when Ẑ comes from the Ĝ, χ,Θ defining a stack of Ĝ-zips (see (5.26)).
Theorem 5.23. (See [55, Thm. 7.5c]) Suppose Ẑ is orbitally finite. Then for any w ∈ IŴ the
orbitEZ · (gẇ) has dimension dim(P ) + ℓI,J(w).
Remark 5.24. Although the proofs of these two theorems carry over from the connected
case without much difficulty, we feel compelled to make some comments about what ex-
actly changes in the non-connected case, since the proofs of these theorems require most
of the material of [55]. The key change is that in [55, Section 4] we allow x to be an ele-
ment of IŴ J , rather than just IW J ; however, one can keep working with the connected
algebraic zip datumZ , and define from there a connected algebraic zip datumZẋ as in [55,
Constr. 4.3]. There, one needs the Levi decomposition for non-connected parabolic groups;
but this is handled in our proposition 5.7. The use of non-connected groups does not give
any problems in the proofs of most propositions and lemmas in [55, §4–8]. In [55, Prop. 4.8],
the term ℓ(x) in the formula will now be replaced by ℓI,J(x). The only property of ℓ(x) that
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is used in the proof is that if x ∈ IW J , then ℓ(x) = #{α ∈ Φ+\ΦJ : xα ∈ Φ−\ΦI}. In
our case, we have x ∈ IŴ J , and ℓI,J : IŴ J → Z≥0 is the extension of ℓ : IW J → Z≥0

that gives the correct formula. Furthermore, in the proof of [55, Prop. 4.12] the assumption
x ∈ IW J is used, to conclude that xΦ+

J ⊂ Φ+. However, the same is true for x ∈ IŴ J :
write x = ωx′ with ω ∈ Ω and x′ ∈ ω−1IωW J ; then x′Φ+

J ⊂ Φ+, and ωΦ+ = Φ+,
since Ω acts on the based root system. Finally, the proofs of both [55, Thm. 7.5c] and [55,
Thm. 8.1] rest on an induction argument, where the authors use that an element w ∈ IW

can uniquely bewritten asw = xwJ , with x ∈ IW J ,wJ ∈ IxWJ , and ℓ(w) = ℓ(x)+ℓ(wJ).
The analogous statement that we need to use is that any w ∈ IŴ can uniquely be written
asw = xwJ , with x ∈ IŴ J ,wJ ∈ IxWJ , and ℓI,J(w) = ℓI,J(x) + ℓ(wJ), see remark 5.6.2.
The proofs of the other lemmas, propositions and theorems work essentially unchanged.

5.4 Zeta functions of stacks of G-zips

We fix q0, G, q, χ and Θ as in section 5.2. The aim of this section is to calculate the point
counts and the zeta function of the stack Ĝ-Zipχ,ΘFq

, as described in the following theorem.
Theorem 5.25. Let q0 be a power of p, and let Ĝ be a reductive group over Fq0 . Let q be a power of
q0, letχ : Gm,Fq

→ ĜFq
be a cocharacter, and letΘ be a subgroup scheme of π0(CentĜFq

(χ)). Let
Ξχ,Θ andΠ be as in section 5.2 andA,B : Π\Ξχ,Θ → Z≥0 be as in notation 5.32. Then for every
v ≥ 1 one has

#Ĝ-Zipχ,ΘFq
(Fqv ) =

∑
ξ∈Ξχ,Θ:
B(ξ)|v

q−A(ξ)·v

and
Z(Ĝ-Zipχ,ΘFq

, t) =
∏

ξ̄∈Π\Ξχ,Θ

1

1− (q−A(ξ̄)t)B(ξ̄)
.

The functions A and B depend on some finite combinatorial data, namely the Weil group
Ŵ of Ĝ, the action of Ŵ on the root system ofG, and the action ofGal(F̄p/Fq0) on Ŵ . For
a given Ĝ these data, and the functionsA andB, are readily calculated.
Before proving this theorem we first need to introduce some auxiliary results. Let φ be as
in section 5.2. To the triple (Ĝ, χ,Θ) we can associate the algebraic zip datum

Ẑ = (Ĝ, P̂+, P̂−,π, φ|L̂). (5.26)

As in section 5.3 the zip groupEẐ acts on ĜFq by (y+, y−) · g′ = y+g
′y−1

− .
Lemma 5.27. (See [56, Rem. 3.9]) The algebraic zip data Ẑ is orbitally finite.
Proof. Let w ∈ IŴ , and choose a lift ẇ of w to NormĜ(F̄p)

(T (F̄p)) (for some chosen frame
(B, T, g) of Ẑ). Then φẇ = φ ◦ inn(gẇ) is a π-semilinear automorphism of Hw , hence
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it defines a model H̃ẇ of Hw over Fq0 . The fixed points of φẇ in Hw then correspond to
H̃ẇ(Fq0), which is a finite set; hence Ẑ is orbitally finite.
Proposition 5.28. (See [56, Prop. 3.11]) There is an isomorphism Ĝ-Zipχ,ΘFq

∼= [EẐ\ĜFq
] of

Fq-stacks.
Lemma 5.29. Let B ⊂ P−,π be a Borel subgroup defined over Fq , and let T ⊂ B be a maximal
torus defined over Fq . Then there exists an element g ∈ G(Fq) such that (B, T, g) is a frame of Ẑ .
Proof. Consider the algebraic subset

X =
{
g ∈ G(F̄q) : φ(gBg−1) = B,φ(gTg−1) = T

}
of G(F̄q). Since NormG(B) ∩ NormG(T ) = T , we see thatX forms a T -torsor over Fq . By
Lang’s theorem such a torsor is trivial, henceX has a rational point.
For the rest of this section we fix a frame (B, T, g) as in the previous lemma.
Lemma 5.30. Choose, for everyw ∈ Ŵ = NormĜ(F̄q)

(T (F̄q))/T (F̄q), a lift ẇ ofw to the group
NormĜ(F̄q)

(T (F̄q)). Then the map

Ξχ,Θ → EẐ(F̄q)\Ĝ(F̄q)
Θ · w 7→ EẐ(F̄q) · gẇ

is well-defined, and it is an isomorphism ofGal(F̄q/Fq)-sets that does not depend on the choices of
w and ẇ.
Proof. In [55, Thm. 10.10] it is proven that this map is a well-defined bijection independent
of the choices ofw and ẇ. Furthermore, if τ is an element ofGal(F̄q/Fq), then the fact that
T and g are defined overFq implies that τ(ẇ) is a lift of τ(w) toNormĜ(T ); this shows that
the map is Galois-equivariant.
Remark 5.31. The isomorphism above, together with the identification [[EẐ\ĜFq

](F̄q)] ∼=
EẐ(F̄q)\Ĝ(F̄q) from lemma 2.12.1, gives the natural bijection in proposition 5.13.
Notation 5.32. Let Π = Gal(F̄q/Fq). We define functions A,B : IŴ → Z≥0 on IŴ as
follows:

• A(w) = dim(G/P+)− ℓI,J(w);
• B(w) is the cardinality of theΠ-orbit ofΘ · w in Ξχ,Θ, i.e.

B(w) = #
{
ξ ∈ Ξχ,Θ : ξ ∈ Π · (Θ · w)

}
.

The fact that A(w) is nonnegative for every w ∈ IŴ follows from proposition 5.33.2. The
function B is clearlyΘ-invariant, and A isΘ-invariant by lemma 5.14. As such these func-
tions can also be regarded as functions A,B : Ξχ,Θ → Z≥0, or alternatively as functions
A,B : Π\Ξχ,Θ → Z≥0.



82 Chapter 5. Stacks ofG-zips

Proposition 5.33. For ξ ∈ Ξχ,Θ, let Yξ be the Ĝ-zip over F̄q corresponding to ξ.
1. The Ĝ-zipYξ has a model over Fqv (see definition 2.11) if and only if v is divisible byB(ξ).
2. One hasdim(Aut(Yξ)) = A(ξ) and the identity component of the group schemeAut(Yξ)red

is unipotent.
Proof.

1. This follows directly from lemma 2.12.2.
2. Note that dim(EẐ) = dim(G). Let w ∈ IŴ be such that ξ = Θ · w. By remark 2.13,

lemma 5.27 and theorem 5.23 we have

dim(Aut(Yξ)) = dim(StabEẐ
(gẇ))

= dim(EẐ)− dim(EẐ · gẇ)
= dim(G)− dim(EẐ · gẇ)
= dim(G)− dim(P+)− ℓI,J(ξ)
= A(ξ).

Furthermore, by theorem 5.21 the identity component of Aut(Yξ)red is unipotent.

Remark 5.34. The formula dim(Aut(Yξ)) = dim(G/P )− ℓI,J(ξ) from proposition 5.33.2
apparently contradicts the proof of [56, Thm. 3.26]. There an extended length function
ℓ : Ŵ → Z≥0 is defined by ℓ(wω) = ℓ(w) for w ∈W , ω ∈ Ω. It is stated that the codimen-
sion of EẐ · (gẇ) in Ĝ is equal to dim(G/P+)− ℓ(w). In other words, if this were correct,
dim(Aut(Yξ)) would be equal to dim(G/P+) − ℓ(w) rather than dim(G/P+) − ℓI,J(w).
However, the proof seems to be incorrect (and the theorem itself as well); the dimension
formula should follow from [55, Thm. 5.11], but that result only holds for the connected
case. In the nonconnected case one can construct a counterexample as follows. Let Ĝ be
the example of remark 5.6.4 (over Fp), and consider the cocharacter

χ : Gm → G

x 7→
(
x 0
0 x−1

)
.

Then L is the diagonal subgroup of G, P+ the upper triangular matrices, and P− = P−,π
the lower triangular matrices, and we can take g =

(
0 1
−1 0

). Employing the notation of
(5.19), the stabiliser of gω inEẐ(F̄q) is then equal to{

(lu+, φ(l)u−) ∈ EẐ(F̄q) : lu+ = gωφ(l)u−ω
−1g−1

}
.

Conjugation by g and ω both exchange P+ and P−, so in the equation

lu+ = gωφ(l)u−ω
−1g−1
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the left hand side is in P+, while the right hand side is in P−. This means that both sides
have to be in L, hence u+ = u− = 1, and the equation simplifies to l = −φ(l). This has
only finitely many solutions, hence

codim(EZ · (gẇ)) = dim(StabEẐ
(gẇ)) = 0 = dim(G/P+)− ℓI,J(ω)

while dim(G/P+)− ℓ(ω) = 1.
Remark 5.35. In general Aut(Yξ)will not be reduced; see [44, Rem. 3.1.7] for the first found
instance of this phenomenon, or [56, Rem. 3.35] for the general case.
Proof of theorem 5.25. With all the previous results all that is left is a straightforward calcu-
lation. As in proposition 5.33 let Yξ be the Ĝ-zip over F̄q corresponding to ξ, for every
ξ ∈ Ξχ,Θ. Furthermore, for an integer v ≥ 1, we set Ξχ,Θ(Fqv ) := (Ξχ,Θ)Gal(F̄q/Fqv ) and
(EẐ\Ĝ)(Fqv ) := (EẐ(F̄q)\Ĝ(F̄q))Gal(F̄q/Fqv ). We get for every v ≥ 1:

#Ĝ-Zipχ,ΘFq
(Fqv )

5.28
= #[EẐ\Ĝ](Fqv )

2.15,
5.33.2=

∑
C∈(EẐ\Ĝ)(Fqv )

q−dim(A(C))·v

5.30
=

∑
ξ∈Ξχ,Θ(Fqv )

q−dim(Aut(Yξ))·v

5.33.2
=

∑
ξ∈Ξχ,Θ(Fqv )

q−A(ξ)·v

5.33.1
=

∑
ξ∈Ξχ,Θ:
B(ξ)|v

q−A(ξ)·v,

hence

Z(Ĝ-Zipχ,ΘFq
, t) = exp

∑
v≥1

tv

v

∑
ξ∈Ξχ,Θ:
B(ξ)|v

q−A(ξ)·v



= exp

 ∑
ξ∈Ξχ,Θ

∑
v≥1:
B(ξ)|v

1

v
(q−A(ξ)t)v


=

∏
ξ∈Ξχ,Θ

exp

∑
v′≥1

1

B(ξ)v′
(q−A(ξ)t)B(ξ)v′


=

∏
ξ∈Ξχ,Θ

(1− (q−A(ξ)t)B(ξ))−
1

B(ξ)

=
∏

ξ̄∈Π\Ξχ,Θ

∏
ξ∈ξ̄

(1− (q−A(ξ)t)B(ξ))−
1

B(ξ)
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5.32
=

∏
ξ̄∈Π\Ξχ,Θ

(1− (q−A(ξ̄)t)B(ξ̄))−1.

Example 5.36. Using the language ofG-zips and theorem 5.25, we can give an alternative
proof for theorem 3.33 for the case n = 1. Let G and χ be as in example 5.11. Since G is
connected we get Ŵ = W , Θ = 1, and I andW are as in notation 3.25. Furthermore, G
is split, so we get Π\Ξχ,Θ = Ξχ,Θ = IW and B(w) = 1 for all w ∈ IW . Since Ŵ = W

we find that A(w) = dim(G/P+) − ℓ(w), and we readily calculate that dim(G) = h2,
dim(P+) = h2 − hd + d2, hence dim(G/P+) = d(h − d). Taking all of this together, we
find that theorem5.25 gives the same formula forZ(GLh-ZipχFp

, t) = Z(BTh,d1 , t) as theorem
3.33.
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Chapter 6

Introduction

LetK be a number field or a p-adic field, and let R be its ring of integers. Let G be a con-
nected reductive group over K . By a model G of G we mean a flat group scheme of finite
type overR such thatGK ∼= G. An important way to construct models ofG is the following.
Let V be a finite dimensionalK-vector space, and let ϱ : G ↪→ GL(V ) be an injectivemap of
algebraic groups (again we use GL(V ) for the algebraic group underlying the abstract group
GL(V )). We considerG as a subgroup of GL(V ) via ϱ. Now let Λ be a lattice in V , i.e. a lo-
cally free R-submodule of V that generates V as aK-vector space. Then GL(Λ) is a group
scheme overRwhose generic fibre is canonically isomorphic to GL(V ). Let modG(Λ) be the
Zariski closure of G in GL(Λ); this is a model of G. In general, the group scheme modG(Λ)
depends on the choice of Λ, and one can ask the following question:
Question. Suppose thatG, its representation V , and its model modG(Λ) are given. To what extent
can we recover the latticeΛ ⊂ V ?
As a partial answerwe can say that the group scheme modG(Λ) certainly does not determine
Λ uniquely. Let g ∈ GL(V ); then the automorphism inn(g) of GL(V ) extends to an isomor-
phism GL(Λ) ∼−→ GL(gΛ). As such, we obtain an isomorphism between the group schemes
modG(Λ) and modgGg−1(gΛ). This shows that the group scheme modG(Λ) only depends on
theN(K)-orbit of Λ, whereN is the scheme-theoretic normaliser of G in GL(V ). The fol-
lowing theorem shows that the correspondence between models ofG andN(K)-orbits of
lattices is finite.
Theorem 7.1. LetG be a connected reductive group over a number field or p-adic fieldK , and let
V be a finite dimensional faithful representation ofG. LetN be the scheme-theoretic normaliser of
G in GL(V ). LetG be amodel ofG. Then the latticesΛ inV such that modG(Λ) ∼= G are contained
in at most finitely manyN(K)-orbits.
In general, a model of G will correspond to more than one N(K)-orbit of lattices, see ex-
amples 7.7 and 7.10.
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A variant of theorem 7.1 can be applied in the context of Shimura varieties. Let g and n > 2

be positive integers, and let Ag,n be the moduli space of complex principally polarised
abelian varieties of dimension g with a given level n structure. Let Y be a special subvariety
ofAg,n, and letG be the generic (rational) Mumford–Tate group of Y (with respect to the
variation of rational Hodge structures coming from the homology of the universal abelian
variety with Q-coefficients). Then the inclusion Y ↪→ Ag,n is induced by a morphism of
Shimura data ϱ : (G,X) ↪→ (GSp2g,Q,Hg) that is injective on the level of algebraic groups.
On the other hand the variation of rational Hodge structures on Ag,n comes from a vari-
ation of integral Hodge structures related to homology with Z-coefficients. This integral
variation of Hodge structures corresponds to a lattice Λ in the standard representation V
of GSp2g,Q. Let GMT(Y ) be the generic integral Mumford-Tate group of Y with respect to
this variation of integral Hodge structures; then GMT(Y ) is isomorphic to modG(Λ) (where
V is regarded as a faithful representation of G via ϱ). Replacing Y by a Hecke translate
corresponds to replacing the inclusion G ↪→ GSp2g,Q by a conjugate, or equivalently to
choosing another lattice in V . By applying theorem 7.1 we are able to prove the following
theorem.
Theorem 8.1. Let g and n be positive integers with n > 2, and let G be a group scheme over Z.
Then there are only finitely many special subvarieties Y ofAg,n such that GMT(Y ) ∼= G .
In other words, a special subvariety Y ⊂ Ag,n is determined, up to some finite ambiguity,
by its generic integral Mumford–Tate group. We can also apply this result to the Mumford–
Tate conjecture: LetA be an abelian variety over a number fieldK ⊂ C, and denote for every
prime number ℓ the ℓ-adic Galois monodromy group of A by Gℓ(A) (see definition 8.20 for
details); this is a flat group scheme of finite type over Zℓ whose generic fibre is a reductive
algebraic group over Qℓ. Furthermore, let MT(A) denote the Mumford–Tate group of A;
this is a flat group scheme of finite type over Z whose generic fibre is a reductive algebraic
group overQ. The Mumford–Tate conjecture states that MT(A)Zℓ

= Gℓ(A) for every prime
number ℓ. On the other hand, let x be a point onAg,n corresponding toA, and let Y be the
special closure of x; then GMT(Y ) ∼= MT(A). As such, theMumford–Tate conjecture predicts
that the answer to the following question is ‘yes’:
Question. LetA be a g-dimensional abelian variety over a number fieldK ⊂ C. Does there exist a
special subvariety S ofAg,n such that GMT(Y )Zℓ

∼= Gℓ(A) for all prime numbers ℓ?
By slightly altering the proof of theorem 8.1, we can prove the following converse to this
question, and give an affirmative answer in the smallest unsolved case of theMumford–Tate
conjecture:
Theorem 8.22. LetA be a g-dimensional principally polarised abelian variety over a number field
K ⊂ C, and let n > 2 be an integer. Then there exist at most finitely many special subvarieties
Y of Ag,n such that GMT(Y )Zℓ

∼= Gℓ(A) for all prime numbers ℓ. If A is of Mumford’s type (see
definition 8.27) then at least one such Y exists.
The structure of this part is as follows: The lengthy chapter 7 is dedicated to the proof of
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theorem 7.1; in chapter 8 we prove theorems 8.1 and 8.22. We let go of the notations and
conventions of the previous part, with the exception that we will continue to use Hom, Aut,
Stab, etc, for the schemes underlying Hom, Aut, Stab, etc. With the exception of section
8.2 all of the material is adapted mostly unchanged from [36].
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Chapter 7

Integral models in
representations

As in the introduction we letK be a number field or a p-adic field andR its ring of integers,
and for a vector spaceV overK , an algebraic subgroupG ⊂ GL(V ), and a latticeΛ ⊂ V , we
let modG(Λ) be the closure ofG in GL(Λ). The goal of this chapter is to prove the following
theorem:
Theorem 7.1. LetG be a connected reductive group over a number field or p-adic fieldK , and let
V be a finite dimensional faithful representation ofG. LetN be the scheme-theoretic normaliser of
G in GL(V ). LetG be amodel ofG. Then the latticesΛ inV such that modG(Λ) ∼= G are contained
in at most finitely manyN(K)-orbits.
In a sense this is a generalisation of the statement that the class group of a number field is
finite, see example 7.7. The strategy for the case that G is split and K is a local field is as
follows. Let g be the Lie algebra of G, then V is a faithful representation of G. If G is any
model ofG, then its Lie algebraG is a lattice in g. The proof consists of the following steps:

1. We define a set of ‘nice’ lattices in g (definition 7.28) and a set of ‘nice’ lattices in V
(definition 7.35);

2. We show that the nice lattices in V form only finitely many orbits under a suitably
chosen algebraic group (proposition 7.40);

3. We show that ifG is themodel corresponding to a latticeΛ, thenwe can give an upper
bound to the distance from Λ to a ‘nice’ lattice in terms of the distance from G to a
nice lattice (proposition 7.46).

This upper bound allows us to prove that there are only finitely many N(K)-orbits corre-
sponding to one model of G . The proof of this is given in section 7.3. In section 7.4 we
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generalise this to nonsplit groups, and in section 7.5 we generalise it to number fields. For
this last step we will need that for p-adicK under sufficiently nice assumptions there will
only correspond oneN(K)-orbit to the model G .

7.1 Lattices, models, Hopf algebras and Lie algebras

In this sectionwewill discuss a number of properties ofmodels, and their relation to lattices
in various vector spaces. Throughout we fix a number field or p-adic fieldK , along with its
ring of integersR.

7.1.1 Models of reductive groups

Definition 7.2. Let G be a connected reductive algebraic group over K , and let T be a
maximal torus ofG.

1. A model of G is a flat group scheme G of finite type over R such that there exists an
isomorphism φ : GK ∼−→ G. Such an isomorphism is called an anchoring of G . The set
of isomorphism classes of models ofG is denotedMod(G).

2. An anchored model ofG is pair (G , φ) consisting of a model G ofG and an anchoring
φ : GK ∼−→ G. The set of isomorphism classes of anchored models of G is denoted
Moda(G).

3. A model of (G,T ) is a pair (G ,T ) consisting of a model of G and a closed reduced
subgroup scheme T of G , for which there exists an isomorphism φ : GK ∼−→ G such
thatφ|TK

is an isomorphism fromTK to T . Such aφ is called an anchoring of (G ,T ).
The set of isomorphism classes of models of (G,T ) is denotedMod(G,T ).

Note that there are natural forgetfulmapsModa(G)→ Mod(G,T )→ Mod(G). Our use of
the terminology ‘model’ may differ from its use in the literature; for instance, some authors
consider the choice of an anchoring to be part of the data (hence their ‘models’ would be
our ‘anchored models’), or they may impose other conditions on the group scheme G over
R; see for instance [10], [18] and [21]. Our choice of terminology is justified by the fact
that our models are exactly those that arise from lattices in representations (see remark
7.8). This use of the word ‘model’ also differs from definition 2.11, but as mentioned in the
introduction of this part we will drop all our notations from the previous part.
Definition 7.3. Let V be aK-vector space. A lattice in V is a locally freeR-submodule of V
that spans V as aK-vector space. The set of lattices in V is denoted Lat(V ). IfH ⊂ GL(V )

is an algebraic subgroup, we write LatH(V ) for the quotientH(K)\Lat(V ).
Remark 7.4. If V is finite dimensional, then anR-submoduleΛ ⊂ V is a lattice if and only
if Λ is finitely generated andK · Λ = V (see [62, Tag 00NX]).
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Let G be a connected reductive group over K , and let V be a finite dimensional faithful
representation ofG; we considerG as an algebraic subgroup of GL(V ). Let Λ be a lattice in
V . The identification ΛK = V induces a natural isomorphism

fΛ : GL(Λ)K ∼−→ GL(V ).

Now let modG(Λ) be the Zariski closure of f−1
Λ (G) in GL(Λ); this is a model of G. If we let

φΛ be the isomorphism fΛ|modG(Λ)K : modG(Λ)K ∼−→ G, then (modG(Λ), φΛ) is an anchored
model ofG. This gives us a map

modaG : Lat(V )→ Moda(G)
Λ 7→ (modG(Λ), φΛ).

The compositions of modaG with the forgetful mapsModa(G)→ Mod(G,T ) (for a maximal
torus T ofG) andModa(G)→ Mod(G) are denoted modG,T and modG, respectively.
Lemma 7.5. LetG be a connected reductive group overK and letV be a faithful finite dimensional
representation ofG. ConsiderG as a subgroup of GL(V ). Let Z := CentGL(V )(G) be the scheme-
theoretic centraliser ofG inGL(V ), and letN := NormGL(V )(G) be the scheme-theoretic normaliser
ofG in GL(V ). Let T be a maximal torus ofG, and letH := Z · T ⊂ GL(V ).

1. The map modaG : Lat(V )→ Moda(G) factors through LatZ(V ).
2. The map modG,T : Lat(V )→ Mod(G,T ) factors through LatH(V ).
3. The map modG : Lat(V )→ Mod(G) factors through LatN (V ).

Proof. We only prove the first statement; the other two can be proven analogously. Let g
be an element of GL(V ). The map inn(g) ∈ Aut(GL(V )) extends to an automorphism
GL(Λ)→ GL(gΛ) as in the following diagram:

GL(Λ) GL(gΛ)

GL(Λ)K GL(gΛ)K

GL(V ) GL(V )

G gGg−1

(fgΛ ◦ inn(g) ◦ f−1
Λ )zar

∼

fgΛ ◦ inn(g) ◦ f−1
Λ

∼

fΛ

∼

fgΛ

∼

inn(g)
∼

∼

This shows that (modG(Λ), φΛ) ∼= (modgGg−1(gΛ), inn(g)−1 ◦ fgΛ|modgGg−1 (gΛ)K ) as an-
chored models of G. If g is an element of Z(K) we find that as anchored models of G we
have (modG(Λ), φΛ) ∼= (modG(gΛ), φgΛ), as was to be proven.
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Remark 7.6. Throughout the rest of this chapter we say that a map of sets is finite if it has
finite fibres. In the terminology of the lemma above, theorem 7.1 then states that the map
modG : LatN (V )→ Mod(G) is finite.
Example 7.7. Let F be a number field, and letG = ResF/Q(Gm) be the Weil restriction of
Gm from F to Q. Let V be the Q-vector space F , together with its natural representation
ofG. Now let Λ be a lattice in V , and define the ring

AΛ := {x ∈ F : xΛ ⊂ Λ};

this is an order in F . In this case one has modG(Λ) ∼= ResAΛ/Z(Gm) as group schemes
over Z. Now let Λ be such that AΛ = OF . As an additive subgroup of F the lattice Λ can
be considered as a fractional OF -ideal. Since in this case we have N(Q) = G(Q) = F×,
the N(Q)-orbit of Λ corresponds to an element of the class group Cl(F ). On the other
hand, every element of Cl(F ) corresponds to a N(Q)-orbit of lattices Λ in V satisfying
AΛ = OF . In other words, there is a bijective correspondence between N(Q)-orbits of
lattices yielding themodelResOF /Z(Gm) ofG, and elements of the class groupCl(F ). This
shows that a model of G generally does not correspond to a single N -orbit of lattices. In
this setting, theorem 7.1 recovers the well-known fact that Cl(F ) is finite.
Remark 7.8. LetG be a (not necessarily connected) reductive group overK , and let G be
a model of G. Then [22, Exp. VI.B, Prop. 13.2] tells us that there exists a free R-module Λ
of finite rank such that G is isomorphic to a closed subgroup of GL(Λ). If we take V =

ΛK , we find that V is a faithful representation of G, and G is the image of Λ under the
map modG : Lat(V ) → Mod(G). Hence every model of G arises from a lattice in some
representation.

7.1.2 Hopf algebras and Lie algebras

Definition 7.9. Let G be a connected reductive group overK , and let A := O(G) be the
Hopf algebra ofG. An order of A is an R-subalgebra A of A of finite type such that A has
the structure of an R-Hopf algebra with the comultiplication, counit, and coinverse of A,
and such that A is a lattice in theK-vector spaceA.
IfA is an order inA, then (Spec(A ), Spec(A ∼−→ AK)) is an anchoredmodel ofG, and this
gives a bijection between the set of orders ofA andModa(G). Analogously the setMod(G)
corresponds bijectively to the set of flatR-Hopf algebrasA of finite type such thatAK

∼= A.
If V is a faithful representation ofG, andΛ is a lattice in V , wewritemodA(Λ) for the order
ofA corresponding to the anchored model (modG(Λ), φΛ). It is the image of the composite
map of rings

O(GL(Λ)) ↪→ O(GL(V )) � A.

Let g be the (K-valued points of the) Lie algebra ofG. LetG be amodel ofG, and letG be the
(R-valued points of the) Lie algebra ofG. Then g is aK-vector space of dimension dim(G),
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andG is a locally freeR-module of rank dim(G). If φ is an anchoring of G , then φ induces
an embedding of R-Lie algebras Lie φ : G ↪→ g, and its image is a lattice in g. Suppose V
is a faithful representation ofG and Λ ⊂ V is a lattice such that modaG(Λ) = (G , φ). Then
(Lie φ)(G) = g ∩ gl(Λ) as subsets of gl(V ).
Example 7.10. We give an example that shows that modG : LatN (V )→ Mod(G) is gener-
ally not injective over local fields. LetK be the field Q2, and let G be the algebraic group
PGL2 over K . The standard representation V of G̃ = SL2,Q2

induces a representation of
G on W = Sym2(V ). Let E = {e1, e2} be the standard basis of V ; this induces a basis
F = {e21, e1e2, e22} ofW . Relative to this basis the representation is given as follows:

G̃ → GL(W )(
a b
c d

)
7→

(
a2 ab b2

2ac ad+bc 2bd
c2 cd d2

)
.

Then O(G̃) = Q2[x11, x12, x21, x22]/(x11x22 − x12x21 − 1), and A := O(G) is the Q2-
subalgebra ofO(G̃) generated by the coefficients of this representation, i.e. by the set

S =
{
x211, x11x12, x

2
12, 2x11x21, x11x22 + x12x21, 2x12x22, x

2
21, x21x22, x

2
22

}
.

LetΛ be the lattice generated byF ; thenmodA(Λ) is theZ2-subalgebra ofA generated byS.
It contains x11x21 = x211(x21x22)−x221(x11x12) and x12x22 = x222(x11x12)−x212(x21x22),
hencemodA(Λ) is also generated as a Z2-algebra by

S′ =
{
x211, x11x12, x

2
12, x11x21, x11x22 + x12x21, x12x22, x

2
21, x21x22, x

2
22

}
.

Now consider the basis F ′ = {e21, 2e1e2, e22} ofW , and let Λ′ be the lattice inW generated
by F ′. Relative to this basis the representation is given by

G̃ → GL(W )(
a b
c d

)
7→

(
a2 2ab b2

ac ad+bc bd
c2 2cd d2

)
.

Analogous to the above we see thatmodA(Λ′) is also generated by S′, hencemodA(Λ) =
modA(Λ′) as Z2-subalgebras of A. Let T ⊂ GL(W ) be the group of scalars; then the nor-
maliser N of G is equal to the subgroup T · G of GL(W ). We will show that N(Q2) · Λ
and N(Q2) · Λ′ are two different elements of LatN (V ). Call a lattice L ⊂ W pure if
L = c · Sym2(M) for some lattice M ⊂ V and some c ∈ K×. I claim that the pure
lattices form a single orbit under the action of N(Q2) on Lat(W ). To see this, note that
pure lattices from an orbit under the action ofGL(V )×T (Q2) onW . We get a short exact
sequence

1→ Gm → GL(V )× T → N → 1,

where the first map is given by x 7→ (
( x 0
0 x ) , x

−2
). Taking Galois cohomology, we obtain an

exact sequence
1→ Q×

2 → GL(V )× T (Q2)→ N(Q2)→ H1(Q2,Gm).
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ByHilbert 90 the last term of this sequence is trivial; hence the image of the groupGL(V )×
T (Q2) in GL(W ) is equal toN(Q2), and pure lattices form a singleN(Q2)-orbit.
LetM := Z2 · e1 ⊕ Z2 · e2 ⊂ V . Then Λ is equal to Sym2(M), hence it is pure. Suppose
Λ′ is pure; then there exist x = x1e1 + x2e2, y = y1e1 + y2e2 and c ∈ K× such that Λ′ is
generated by {cx2, cxy, cy2}. By changing c if necessary, we may assume that x2, xy, y2 ∈
Λ′. Since x2 = x21e

2
1 + 2x1x2e1e2 + x2e

2
2 is an element of Λ′, we see that x1, x2 ∈ Z2. The

same is true for y1 and y2, henceM ′ := Z2 · x ⊕ Z2 · y ⊂ V is a sublattice ofM . Then a
straightforward calculation shows that

#(Λ/Λ′) = det

 cx21 cx1y1 cy21
2cx1x2 cx1y2 + cx2y1 2cy1y2
cx22 cy2y2 cy22


= c3(x1y2 − x2y1)3

= c3det
(
x1 y1
x2 y2

)3

= c3#(M/M ′)3.

On the other hand, from the definition of Λ and Λ′ we see #(Λ/Λ′) = 2. This is a contra-
diction as 2 is not a cube in Q2, hence Λ′ cannot be pure. Since Λ is pure, we find that
N(Q2) ·Λ andN(Q2) ·Λ′ are two different elements of LatN (V ) that have the same image
inMod(G).
Definition 7.11. SupposeG is a split reductive group with a split maximal torus T . In that
case there is exactly one model (G ,T ) of (G,T ) such that G is reductive (i.e. smooth with
reductive fibres) and such thatT is a split fibrewise maximal torus of G , see [22, Exp. XXIII,
Cor. 5.2; Exp. XXV, Cor. 1.2]. This model is called the Chevalley model of (G,T ). We also refer
to G as the Chevalley model ofG.

7.1.3 Lattices in vector spaces over p-adic fields

Suppose K is a p-adic field, and let ω be a uniformiser of K . Let V like before be a finite
dimensional K-vector space, and let Λ, Λ′ be two lattices in V . Then there exist integers
n,m such that ωnΛ ⊂ Λ′ ⊂ ωmΛ. If we choose n minimal and m maximal, then we call
d(Λ,Λ′) := n−m the distance betweenΛ andΛ′. LetG be an algebraic subgroup of GL(V ),
and as before let LatG(V ) = G(K)\Lat(V ). We define a function

dG : LatG(V )× LatG(V )→ R≥0

(X,Y ) 7→ min(Λ,Λ′)∈X×Y d(Λ,Λ
′).

The following lemma tells us that the name ‘distance’ is justified. Its proof is straightforward
and therefore omitted.
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Lemma 7.12. Let V andG be as above. SupposeG contains the scalars in GL(V ).
1. LetX,Y ∈ LatG(V ) and letΛ ∈ X . Then dG(X,Y ) = minΛ′∈Y d(Λ,Λ

′).
2. The map dG is a distance function on LatG(V ).
3. For every r ∈ R≥0 and every Y ∈ LatG(V ) the open ball{

X ∈ LatG(V ) : dG(X,Y ) < r
}

is a finite set.

7.2 Representations of split reductive groups

As before let K be a number field or a p-adic field. In this section we will briefly review
the representation theory of split reductive groups over K . Furthermore, we will prove
some results on the associated representation theory of Lie algebras. We will assume all
representations to be finite dimensional.
LetG be a connected split reductive group overK , and let T ⊂ G be a split maximal torus.
Furthermore, we fix a Borel subgroup B ⊂ G containing T . Let Ψ ⊂ X∗(T ) be the set of
roots ofGwith respect toT (see [42, Thm. 22.44]); letQ ⊂ X∗(T )be the subgroupgenerated
by Ψ. Associated to B we have a basis ∆+ of Ψ such that every β ∈ Ψ can be written as
β =

∑
α∈∆+ mαα, with themα either all nonpositive integers or all nonnegative integers.

This gives a decompositionΨ = Ψ+ ⊔Ψ−. Accordingly, if g and t are the Lie algebras ofG
and T , respectively, we get

g = t⊕ n+ ⊕ n− := t⊕

( ⊕
α∈Ψ+

gα

)
⊕

( ⊕
α∈Ψ−

gα

)
.

The following theorem gives a description of the irreducible representations of G. If V is
a representation of G, we call the characters of T that occur in V the weights of V (with
respect to T ).
Theorem 7.13. (See [42, Th. 24.3], [40, 3.39], and [5, Ch. VIII, §6.1, Prop. 1]) Let V be an
irreducible representation ofG.

1. There is a unique weightψ of V , called the highest weight of V , such that Vψ has dimension
1, and every weight of V is of the form ψ −∑α∈∆+ mαα for constantsmα ∈ Z≥0.

2. V is irreducible as a representation of the Lie algebra g.
3. V is generated by the elements obtained by repeatedly applying n− to Vψ .
4. Up to isomorphism V is the only irreducible representation ofG with highest weight ψ.
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Corollary 7.14 (Schur’s lemma). Let V be an irreducible representation ofG. Then the natural
inclusionK ↪→ EndG(V ) is an isomorphism.
Proof. Every endomorphism of V has to send Vψ to itself. By point 3 we find that an en-
domorphism of V is determined by its action on Vψ , hence this gives us an injective map
EndG(V ) ↪→ EndK(Vψ) = K ; this map is an isomorphism since it is the inverse of the
inclusionK ↪→ EndG(V ).
Remark 7.15. With G as above, let V be any representation of G. Then, because G is re-
ductive, we know that V is a direct sum of irreducible representations of G. By theorem
7.13.1 we can canonically write V =

⊕
ψ∈D V(ψ), where for ψ ∈ X∗(T ) the subspace V(ψ)

is the isotypical component of V with highest weight ψ (as a character of T ), and D is the
set of highest weights occuring in V . Furthermore, we can decompose every V(ψ) into T -
character spaces, and we get a decomposition

V =
⊕
ψ∈D

⊕
χ∈X∗(T )

V(ψ),χ.

Let U(g) be the universal enveloping algebra of g. It obtains aQ-grading coming from the
Q-grading of g; wemay also regard this as aX∗(T )-grading via the inclusionQ ⊂ X∗(T ). If
V is a representation ofG, then the associated map U(g) → End(V ) is a homomorphism
ofX∗(T )-gradedK-algebras. Furthermore, from the Poincaré–Birkhoff–Witt theorem (see
[24, 17.3, Cor. C]) it follows that there is a natural isomorphism of Q-graded K-algebras
U(g) ∼= U(n−) ⊗ U(t) ⊗ U(n+), with the map from right to left given by multiplication.
The following two results will be useful in the next section.
Theorem 7.16 (Jacobson density theorem). Let G be a split reductive group, and let g be its
Lie algebra. Let V1, . . . , Vn be pairwise nonisomorphic irreducible representations of G. Then the
induced mapU(g)→

⊕
i End(Vi) is surjective.

Proof. This theorem is proven over algebraically closed fields in [17, Thm. 2.5] for represen-
tations of algebras in general (not just for universal enveloping algebras of Lie algebras).
The hypothesis that K is algebraically closed is only used in invoking Schur’s lemma, but
this also holds in our situation, see corollary 7.14.
Proposition 7.17. Let V be an irreducible representation of G of highest weight ψ. Let χ be a
weight of V . Then the maps

U(n−)χ−ψ → HomK(Vψ, Vχ),

U(n+)ψ−χ → HomK(Vχ, Vψ)

are surjective.
Proof. From theorem 7.13.3 we know that V = U(n−) · Vψ . Since U(n−) → End(V ) is a
homomorphism ofX∗(T )-gradedK-algebras, this implies that Vχ = U(n−)χ−ψ ·Vψ . Since



7.3. Split reductive groups over local fields 99

Vψ is one-dimensional by theorem 7.13.1 this shows that U(n−)χ−ψ → HomK(Vψ, Vχ) is
surjective.
For the surjectivity of the second map, let f : Vχ → Vψ be a linear map, and extend f to a
map f̃ : V → V by letting f̃ be trivial on allVχ′ withχ′ ̸= χ. Then f̃ is pure of degreeψ−χ,
andψ−χ ∈ Q by theorem 7.13.1. By theorem 7.16 there exists au ∈ U(g)ψ−χ such that the
image of u inEnd(V ) equals f̃ . We know thatU(g) is isomorphic toU(n−)⊗U(t)⊗U(n+);
write u =

∑
i∈I u

−
i ·ti ·u

+
i with each u−i , ti and u+i of pure degree, such that eachu−i ·ti ·u+i

is of degreeψ−χ. Let I ′ be the subset of I of the i forwhichu+i is of degreeψ−χ. Since only
negative degrees (i.e. sums of nonpositivemultiples of elements of∆+) occur inU(n−) and
only degree 0 occurs in U(t), this means that u−i is of degree 0 for i ∈ I ′; hence for these i
the element u−i is a scalar. Now consider the action of u on Vχ. If i /∈ I ′, then the degree of
u+i will be greater than ψ − χ, in which case we will have u+i · Vχ = 0. For all v ∈ Vχ we
now have

f̃(v) = u · v

=

(∑
i∈I

u−i · ti · u
+
i

)
· v

=

(∑
i∈I′

u−i · ti · u
+
i

)
· v

=
∑
i∈I′

u−i · ti · (u
+
i · v)

=
∑
i∈I′

u−i ψ(ti)(u
+
i · v)

=

(∑
i∈I′

u−i ψ(ti)u
+
i

)
· v.

Because every factor u−i in this sum is a scalar, we know that∑i∈I′ u
−
i ψ(ti)u

+
i is an el-

ement of U(n+)χ−ψ , and it acts on Vχ as the map f ∈ HomK(Vχ, Vψ); hence the map
U(n+)ψ−χ → HomK(Vχ, Vψ) is surjective.

7.3 Split reductive groups over local fields

Throughout the rest of this chapter K is either a number field or a p-adic field, and R is
its ring of integers. All representations of algebraic groups are assumed to be finite dimen-
sional. The aim of this section is to prove the following theorem.
Theorem 7.18. LetG be a split connected reductive group overK , and letV be a faithful represen-
tation ofG. RegardG as a subgroup ofGL(V ), and letN be the scheme-theoretic normaliser ofG
in GL(V ).
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1. SupposeK is a p-adic field. Then the map modG : LatN (V ) → Mod(G) of lemma 7.5 is
finite.

2. SupposeK is a number field. Then for all but finitely many finite places v ofK there is at most
oneN(Kv)-orbitX of lattices in VKv such that modG(X) is the Chevalley model ofG (see
definition 7.11).

The first point of this theorem is theorem 7.1 for split reductive groups over local fields. The
second point is quite technical by itself, but we need this finiteness result to prove theorem
7.1 for number fields. Before we prove this theoremwe will need to develop some theory of
integral structures in representations of split reductive groups.

7.3.1 Lattices in representations

In this section we will introduce two important classes of lattices that occur in represen-
tations of split reductive groups. We will rely on much of the results and notations from
section 7.2.

Notation 7.19. For the rest of this section, we fix the following objects and notation:
• a split connected reductive groupG overK and a split maximal torus T ⊂ G;
• the Lie algebras g and t ofG and T , respectively;
• the root system Ψ ⊂ X∗(T ) of G with respect to T , and the subgroup Q of X∗(T )

generated byΨ;
• the image T̄ of T inGad ⊂ GL(g);
• the decomposition g = t⊕

⊕
α∈Ψ gα;

• the basis of positive roots∆+ ofΨ associated to some Borel subgroupB ofG contain-
ing T , the decompositionsΨ = Ψ+ ⊔Ψ− and g = t⊕ n+ ⊕ n−;

• theQ-graded universal enveloping algebra U(g) of g;
• a faithful representation V ofG and its associated inclusion g ⊂ gl(V );
• the centraliser Z ofG in GL(V ), and the groupH = Z · T ⊂ GL(V );
• the decomposition V =

⊕
ψ∈D

⊕
χ∈X∗(T ) V(ψ),χ (see remark 7.15);

• the projections pr(ψ),χ : V → V(ψ),χ associated to the decomposition above.
Remark 7.20.

1. Since the set of characters of T that occur in the adjoint representation is equal to
{0} ∪Ψ, the inclusionX∗(T̄ ) ↪→ X∗(T ) has imageQ.



7.3. Split reductive groups over local fields 101

2. By corollary 7.14 the induced map Z →∏
ψ∈D GL(V(ψ),ψ) is an isomorphism.

Definition 7.21. Let W be a K-vector space with a decomposition W =
⊕

iWi. An R-
submoduleM ⊂ V is called split with respect to this decomposition if one of the following
equivalent conditions is satisfied:

1. M =
⊕

i priM ;
2. M =

⊕
i(Wi ∩M).

IfM is split, we writeMi := priM =Wi ∩M .
We now define two classes of lattices that will become important later on. Since the Lie
algebra g is aK-vector space, we can consider lattices in g. For a vector spaceW overK ,
let FLat(W ) be the set of lattices inW that are free as R-modules. Define the following
sets:

L+ :=
∏
α∈∆+

FLat(gα);

L− :=
∏
α∈∆+

FLat(g−α);

J :=
∏
ψ∈D

FLat(V(ψ),ψ).

As before, let U(n+) be the universal enveloping algebra of n+. Let L+ = (L+
α )α∈∆+ be an

element ofL+, and letUL+ be theR-subalgebra ofU(n+) generated by theR-submodules
L+
α ⊂ n+. Define, for an L− ∈ L−, the R-subalgebra UL− ⊂ U(n−) analogously. Now let

L+ ∈ L+, L− ∈ L− and J ∈ J be as above. We define the following twoR-submodules of
V :

S+(L+, J) :=
{
x ∈ V : pr(ψ),ψ(UL+ · x) ⊂ Jψ ∀ψ ∈ D

}
,

S−(L−, J) :=
∑
ψ∈D

UL− · Jψ ⊂ V.

Note that the sum in the second equation is actually direct, since UL− · Jψ ⊂ V(ψ) for all
ψ ∈ D. In the next proposition we use the symbol ± for statements that hold both for +
and−.
Proposition 7.22. LetL+ ∈ L+,L− ∈ L− and J = (Jψ)ψ∈D .

1. UL± is a split lattice inU(n±) with respect to theQ-grading.
2. S±(L±, J) is a split lattice in V with respect to the decomposition V =

⊕
ψ,χ V(ψ),χ.

3. For all ψ ∈ D and all χ < ψ one has S±(L±, J)(ψ),ψ = Jψ . Furthermore, S+(L+, J)

(respectively S−(L−, J)) is the maximal (respectively minimal) split lattice Λ in V closed
under the action of theL+

α (respectively theL−
α ) such thatΛ(ψ),ψ = Jψ for all ψ ∈ D.
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Proof.
1. It suffices to prove this forUL+ . Recall that U(n+) has aQ-grading coming from the
Q-grading on U(g). Since UL+ is generated by elements of pure degree, we see that
UL+ is split with respect to the Q-grading; hence it suffices to show that UL+,χ is
a lattice in U(n+)χ for all χ. Since each gα is one-dimensional, the R-module L+

α is
free of rank 1; let xα be a generator. Then the R-module UL+,χ is generated by the
finite set {

xα1
· xα2

· · ·xαk
: k ∈ Z≥0,

∑
i

αi = χ
}
.

On the other hand, the Poincaré–Birkhoff–Witt theorem (see [24, 17.3, Cor. C]) tells us
that theK-vector spaceU(n+)χ is also generated by this set; henceUL+,χ is a lattice
in U(n+)χ, as was to be shown.

2. We start with S−(L−, J). Since the action of U(n−)χ sends V(ψ),χ′ to V(ψ),χ+χ′ , we
see that

S−(L−, J) =
⊕
ψ∈D

⊕
χ∈Q

UL−,χ · Jψ =
⊕
ψ∈D

⊕
χ∈Q

S−(L−, J) ∩ V(ψ),ψ+χ,

hence S−(L−, J) is split. Since UL−,χ is a finitely generated R-module spanning
U(n−)χ, and J−

ψ is a finitely generatedR-module spanning V(ψ),ψ , we may conclude
that UL−,χ · J−

ψ is a finitely generated R-module spanning U(n−)χ · V(ψ),ψ , which
is equal to V(ψ),ψ+χ by proposition 7.17. Hence S−(L−, J)(ψ),ψ+χ is a lattice in
V(ψ),ψ+χ, and since S−(L−, J) is split this shows that it is a lattice in V .
Now consider S+(L+, J). Let x ∈ V , and write x =

∑
ψ,χ x(ψ),χ where every x(ψ),χ

is an element of V(ψ),χ. Then for every ψ ∈ D we have

pr(ψ),ψ(UL+ · x) =
∑
χ∈Q

pr(ψ),ψ(UL+,χ · x) =
∑
χ∈Q

UL+,χ · x(ψ),ψ−χ,

hence x is an element of S+(L+, J) if and only if x(ψ),χ is for all ψ ∈ D and all
χ ∈ X∗(T ); this shows that S+(L+, J) is split with respect to the decomposition
V =

⊕
ψ,χ V(ψ),χ. Wenowneed to show thatS+(L+, J)(ψ),χ is a lattice inV(ψ),χ. Fix

a χ and ψ, and choose a basis f1, . . . , fk of Jψ ; thenWi := U(g) · fi is an irreducible
subrepresentation of V(ψ). We get a decomposition V(ψ),χ =

⊕
iWi,χ, and from the

definition of S+(L+, J) we get

S+(L+, J)(ψ),χ =
⊕
i

S+(L+, J)(ψ),χ ∩Wi,χ,

so we need to show that for each i the R-module Si,χ := S+(L+, J)(ψ),χ ∩ Wi,χ

is a lattice in Wi,χ. Fix an i, and let e1, . . . , en be a basis of Wi,χ. For j ≤ n, let
φj : Wi,χ → Wi,ψ = K · fi be the linear map that sends ej to fi, and the other
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ej′ to 0. By proposition 7.17 there exists a uj ∈ U(n+) such that uj acts like φj on
Wi,χ. Since UL+ is a lattice in U(n+) there exists a r ∈ R such that ruj ∈ UL+ for
all j. Then for all x ∈ Si,χ one has ruj · x ∈ Rfi for all j, so x lies in the free R-
submodule ofWi,χ generated by r−1e1, . . . , r

−1en; hence Si,χ is finitely generated.
On the other hand, since UL+,ψ−χ is finitely generated, for every x ∈ Wi,χ we get
that UL+,ψ−χ · x is a lattice in Wi,ψ . As such we can find some r′ ∈ R such that
UL+,ψ−χ · r′x ⊂ R · fi; hence S+(L+, J)(ψ),χ,i generatesWi,χ as aK-vector space,
so Si,χ is a lattice inWi,χ, as was to be shown.

3. Since UL+,0 = UL−,0 = R we immediately get S+(L+, J)(ψ),ψ = Jψ for all ψ. The
other statement follows immediately from the definition of the modules S+(L+, J)

and S−(L−, J).
Remark 7.23. By proposition 7.22 we can define maps S± : L± × J → Lat(V ).
Let H = Z · T as before. Since H normalises G, we see that H acts on G by conjugation.
This gives us a representation ϱ : H → GL(g). Since Z acts trivially on G, we see that the
image of H in GL(g) is equal to T̄ . As such we see that the action of H on g respects the
decomposition g = t⊕

⊕
α∈Ψ gα.

Lemma 7.24. The map ϱ : H � T̄ is surjective onK-points.
Proof. The short exact sequence 1 → Z → H → T̄ → 1 of algebraic groups induces a
longer exact sequence of groups

1→ Z(K)→ H(K)→ T̄ (K)→ H1(K,Z).

SinceH1(K, GLn) is trivial for every integer n and Z is isomorphic to a product of GLns by
remark 7.20.2, this implies that the mapH(K)→ T̄ (K) is surjective.
Since the action of H on g respects its decomposition into root spaces, we get an action
of H(K) on the sets L±. Furthermore, the representation H ↪→ GL(V ) respects the de-
composition V =

⊕
ψ∈D V(ψ). Since H centralises T , the action of H also respects the

decomposition V(ψ) =
⊕

χ∈X∗(T ) V(ψ),χ; henceH(K) acts on the set J .
Proposition 7.25. The mapsS± : L±×J → Lat(V ) areH(K)-equivariant, and the action of
H(K) onL± × J is transitive.
Proof. The Lie algebra action map g × V → V is equivariant with respect to the action of
H(K) on both sides. From the definition of S±(L±, J) it now follows that

S±(h · L±, h · J) = h · S±(L±, J)

for all h ∈ H(K). Now let L+
1 , L

+
2 ∈ L+ and J1, J2 ∈ J . For every α ∈ ∆+, let xα ∈ K×

be such that L+
1,α = xαL

+
2,α; the scalar xα exists because L+

1,α and L+
2,α are free lattices in

the same one-dimensional vector space. Since ∆+ is a basis for Q = X∗(T̄ ) (see remark
7.20.1) there exists a unique t ∈ T̄ (K) such that α(t) = xα for all α ∈ ∆+. By lemma
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7.24 there exists an h ∈ H(K) such that ϱ(h) = t; then h · L+
1 = L+

2 . Since Z(K) acts
transitively onJ by remark 7.20.2, there exists a z ∈ Z(K) such that z · (h ·J1) = J2. As z
acts trivially onL+, we get zh·(L+

1 , J1) = (L+
2 , J2); this shows thatH(K) acts transitively

on L+ × J . The proof for L− is analogous.

7.3.2 Chevalley lattices

In this subsection we consider lattices in the K-vector space g. We will define the set of
Chevalley lattices in g. The distance (in the sense of lemma 7.12) between such a Chevalley
lattice and the Lie algebra of a model of (G,T ) (as lattices in g) will serve as a goodmeasure
of the ‘ugliness’ of the model, and this will allow us to prove finiteness results. We keep
employing notation 7.19.
Let Gder be the derived group of G, and let T ′ be the identity component of T ∩ Gder. Let
gss and t′ be the Lie algebras of Gder and T ′, respectively. The roots of G (with respect
to T ) induce linear maps Lie(α) : t′ → K , and these form the root system of the split
semisimple Lie algebra (gss, t′) in the sense of [5, Ch. VIII, §2]. Since the Killing form κ on t′

is nondegenerate by [24, Thm. 5.1] there exists a unique tα ∈ t′ such thatκ(tα,−) = Lie(α).
Since κ(tα, tα) ̸= 0 we may define hα := 2

κ(tα,tα) tα; see [24, Prop. 8.3].
Definition 7.26. An element x = (xα)α∈Ψ of∏α∈Ψ(gα \{0}) is called a Chevalley set if the
following conditions are satisfied:

1. [xα, x−α] = hα for all α ∈ Ψ;
2. If α and β are two R-linearly independent roots such that β + Zα intersects Ψ in

the elements β − rα, β − (r − 1)α, . . . , β + qα, then [xα, xβ ] = 0 if q = 0, and
[xα, xβ ] = ±(r + 1)xα+β if q > 0.

There is a canonical isomorphism ofK-vector spaces:

K ⊗Z X∗(T ) ∼−→ t∨

1⊗ α 7→ Lie(α).

Under this isomorphism, we can consider T0 := (R⊗ZX∗(T ))∨ as anR-submodule of the
K-vector space t.
Lemma 7.27. Let α ∈ Φ. Then hα ∈ T0.
Proof. It suffices to show that Lie(λ)(hα) ∈ Z for all λ ∈ X∗(T ). Since the action of λ ∈
X∗(T ) on t′ only depends on its image inX∗(T ′), it suffices to prove this for semisimpleG;
this was done in in [25, 31.1].
Definition 7.28. A Chevalley lattice is anR-submodule of g of the form

C(x) = T0 ⊕
⊕
α∈Ψ

R · xα,
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where x is a Chevalley set. The set of Chevalley lattices is denoted C.
Remark 7.29. It is clear that C(x) is a finitely generatedR-submodule of g that generates
g as aK-vector space, hence it is indeed a lattice. The name comes from the fact that ifG is
adjoint, then {hα}α∈∆+ ∪ {xα : α ∈ Ψ} is a Chevalley basis of g in the sense of [24, Section
25.2], and the Lie algebra of the Chevalley model (for any anchoring of φ) is a Chevalley
lattice in g (see definition 7.11).
Lemma 7.30. LetAut(G,T ) := {σ ∈ Aut(G) : σ(T ) = T}.

1. There exists a Chevalley lattice in g.
2. Every Chevalley lattice is anR-Lie subalgebra of g.
3. Let σ ∈ Aut(G,T ), and let C ∈ C. Then the lattice σ(C) ⊂ g is again a Chevalley lattice.

Proof.
1. It suffices to show that a Chevalley set exists, for which we refer to [24, Thm. 25.2].
2. By definition we have [xα, x−α] ∈ T0 and [xα, xβ ] ∈ R · xα+β if α+ β ̸= 0. Further-

more for t ∈ T0 one has [t, xα] = Lie(α)(t) · xα ∈ R · xα by definition of T0.
3. The automorphism σ ∈ Aut(G,T ) induces an automorphism σ̄ of Ψ. Then σ maps

gα to gσ̄(α) and T0 to T0. Let x be a Chevalley set such that C = C(x), and define
x′ = (x′α)α∈Ψ by x′α = σ(xσ̄−1(α)). Since σ(hα) = hσ̄(α) this is again a Chevalley
set, and σ(C) = C(x′).

It is easily checked that the action ofH(K) on Lat(g) sends the subset C to itself. Further-
more there are natural isomorphisms ofH(K)-sets

f± : C ∼−→ L± (7.31)
C 7→ (C ∩ g±α)α∈∆+ .

Since the action ofH(K) on L± is transitive, we have shown:
Lemma 7.32. The action ofH(K) on C is transitive.
Lemma 7.33. Let C ∈ C be a Chevalley lattice and let UC be theR-subalgebra ofU(g) generated
by C. Then UC is split with respect to theQ-grading of U(g). The subalgebra UC,0 ⊂ U(g)0 does
not depend on the choice of C.
Proof. The fact thatUC is split follows from the fact that it is generated by elements of pure
degree. Now let C,C′ ∈ C. Since H(K) acts transitively on C and the action of H on C
factors through T̄ , there exists a t ∈ T̄ (K) such that t · C = C′. Then UC′ = t ·UC, where
t acts on U(g) according to itsQ-grading. In particular this shows that UC,0 = UC,0.
Lemma 7.34. There exists an r ∈ R such that for every Chevalley lattice C, every ψ ∈ D and
everyχ ∈ X∗(T ), the endomorphism r · pr(ψ),χ of V lies in the image of the mapUC → End(V ).



106 Chapter 7. Integral models in representations

Proof. Fix a ψ0 ∈ D and a χ ∈ X∗(T ). For every ψ ∈ D, let W (ψ) be the irreducible
representation of G of highest weight ψ. Let fψ0,χ ∈

⊕
ψ∈D End(W (ψ)) be the element

whose ψ0-component is prχ and whose other components are 0. By theorem 7.16 there
exists a uψ0,χ ∈ U(g)0 that acts as fψ0,χ on⊕ψ∈DW (ψ); then uψ0,χ acts as pr(ψ),χ on V .
Let C be a Chevalley lattice, and let r ∈ R be such that ruψ0,χ ∈ UC,0 for all ψ0 ∈ D and
all χ for which V(ψ0),χ ̸= 0. Then r satisfies the properties of the lemma for C. By Lemma
7.33 the element r works regardless of the choice of C, which proves the lemma.

7.3.3 Chevalley-invariant lattices

In this section we consider lattices in V that are invariant under some Chevalley lattice in g.
The main result is that up toH(K)-action only finitely many such lattices exist. As before
we keep employing notation 7.19.
Definition 7.35. LetΛ be a lattice inV . We callΛ Chevalley-invariant if there exists a Cheval-
ley lattice C ⊂ g such that C · Λ ⊂ Λ.
Lemma 7.36. There exists a Chevalley-invariant lattice in V .
Proof. This is proven forK = Q in [5, Ch. VIII, §12.8, Thm. 4]; note that for a Chevalley lattice
C the lattice C∩ t = T0 is a reseau permis in the sense of [5, Ch. VIII, §12.6, Def. 1]. The proof
given there also works for general K . Alternatively, one can use the classification of split
reductive Lie algebras in [5, Ch. VIII, §4.3, Thm. 1 & §4.4, Thm. 1] and their representations
in [5, Ch. VIII, §7.2, Thm. 1] to construct a model of the representation g ↪→ gl(V ) over Q,
and use a Chevalley-invariant lattice in this model to obtain one in the original setting.
Lemma 7.37. The set of Chevalley-invariant lattices is invariant under the action ofH(K) on V .
Proof. If Λ is closed under multiplication by a Chevalley lattice C and h is an element of
H(K), then h · Λ is closed under multiplication by h · C; hence this follows from lemma
7.32.
Remark 7.38. SinceH(K) acts transitively on the set of Chevalley lattices, we see that for
every Chevalley lattice C there is a lattice in V closed under multiplication by C.
Lemma 7.39. Let C0 be a Chevalley lattice in g, and let J0 ∈ J . Let L+

0 = f+(C0) and L−
0 =

f−(C0) (see (7.31)). Let Λ ⊂ V be a split Chevalley-invariant lattice such that Λ(ψ),ψ is a free
R-module for all ψ ∈ D. Then there exists an h ∈ H(K) such that

S−(L−
0 , J0) ⊂ h · Λ ⊂ S+(L+

0 , J0).

Proof. Let C be a Chevalley lattice in g such that C · Λ ⊂ Λ. Let J = (Λ(ψ),ψ)ψ∈D ; by
assumption it is an element ofJ . Since C is isomorphic toL+ asH(K)-sets, by proposition
7.25 there exists an h ∈ H(K) such that h ·C = C0 and h ·J = J0. Now letΛ0 = h ·Λ; this
is a split lattice satisfying (Λ0)(ψ),ψ = J0,ψ for all ψ. Furthermore, the lattice Λ0 is closed
under multiplication by Chevalley lattice C0; in particular it is closed under the action of
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the f+(C0)α = C0 ∩ gα and the f−(C0)α = C0 ∩ g−α, where f± is as in subsection 7.3.2.
By proposition 7.22.3 we now get

S−(L−
0 , J0) ⊂ Λ0 ⊂ S+(L+

0 , J0).

Proposition 7.40. SupposeK is a p-adic field. Then there are only finitely manyH(K)-orbits of
Chevalley-invariant lattices.

Proof. Let C0, J0, L+
0 and L−

0 be as in the previous lemma. Let ω be a uniformiser of K .
Let m ∈ Z≥0 be such that ωmS+(L+

0 , J0) ⊂ S−(L−
0 , J0), and let n ∈ Z≥0 be such

that for every Chevalley lattice C, every ψ ∈ D and every χ ∈ X∗(T ) the endomorphism
ωnpr(ψ),χ ∈ End(V ) lies in the image ofUC; such an n exists by lemma 7.34. LetP+ be the
H(K)-orbit of lattices of the form S+(L+, J) (see proposition 7.25). Let X be an H(K)-
orbit of Chevalley-invariant lattices. Let Λ be an element of X , and let C be a Chevalley
lattice such that Λ is closed under multiplication by C. Then Λ is closed under multiplica-
tion by UC, hence

ωn
⊕
(ψ),χ

pr(ψ),χΛ ⊂ UC · Λ = Λ ⊂
⊕
(ψ),χ

pr(ψ),χΛ. (7.41)

SinceC =
⊕

χ Cχ, we see thatΛ′ :=
⊕

(ψ),χ pr(ψ),χΛ is also closed undermultiplication by
C. Then (7.41) tells us that d(Λ,Λ′) ≤ n (where d is the distance function from subsection
7.1.3). SinceK is a p-adic field, all locally freeR-modules are in fact free, henceΛ′ satisfies
the conditions of lemma 7.39, and there exists an h ∈ H(K) such that

S−(L−
0 , J0) ⊂ h · Λ′ ⊂ S+(L+

0 , J0);

hence d(h · Λ′, S+(L+
0 , J0)) ≤ m. From this we get

dH(X,P+) ≤ dH(X,H(K) · Λ′) + dH(H(K) · Λ′, P+)

≤ d(Λ,Λ′) + dH(H(K) · Λ′, P+)

≤ n+ dH(H(K) · Λ′, P+)

≤ n+ d(h · Λ′, S+(L+
0 , J0))

≤ n+m.

This shows that all H(K)-orbits of Chevalley-invariant lattices lie within a ball of radius
n + m around P+ in the metric space (LatH(V ), dH). By lemma 7.12.3 this ball is finite,
which proves the proposition.
Proposition 7.42. LetK be a number field. Then for almost all finite places v ofK there is exactly
oneH(Kv)-orbit of Chevalley-invariant lattices in Lat(VKv

).

Proof. Fix a Chevalley latticeC ⊂ g and a J ∈ J , and letL± = f±(C). For a finite place v of
K defineCv := CRv

andJv = (Jψ,Rv
)ψ∈D . ThenCv is a Chevalley lattice in gKv

, andwe set
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L±
v := f±(Cv); then it follows from the definitions of f± and S± that L±

v = (L±
α,Rv

)α∈∆+

and
S±(L±

v , Jv) = S±(L±, J)Rv
⊂ VKv

.

This shows that S−(L−
v , Jv) = S+(L+

v , Jv) for almost all v. Furthermore, let r be as
in lemma 7.34; then v(r) = 0 for almost all v. Now let v be such that S−(L−

v , Jv) =

S+(L+
v , Jv) and v(r) = 0. Consider the proof of the previous proposition for the group

GKv and its representation on VKv , taking C0 := Cv and J0 := Jv . In the notation of that
proof we get m = n = 0, hence X = P+, and there is exactly one orbit of Chevalley-
invariant lattices.

7.3.4 Models of split reductive groups

In this section we apply our results about lattices in representations of Lie algebras to prove
theorem 7.18. The strategy is to give a bound for the distance between a lattice Λ and a
Chevalley-invariant lattice inV in terms of the distance between the Lie algebra of modG(Λ)
and a Chevalley lattice in g. Combined with propositions 7.40 and 7.42 this will give the
desired finiteness properties.
Notation 7.43. Let (G ,T ) be amodel of (G,T ), and letG be the Lie algebra ofG . LetUG,φ

be the R-subalgebra of U(g) generated by (Lie φ)(G) ⊂ g. Let furthermore ϱ : U(g) →
End(V ) be the homomorphism ofK-algebras induced by the representation g→ gl(V ).
Lemma 7.44.

1. Let Λ be a lattice in V , let (G , φ) = modaG(Λ) be the anchored model ofG associated to Λ,
and letG be the Lie algebra of G . Then ϱ(UG,φ) is a lattice in theK-vector space ϱ(U(g)).

2. Let C ⊂ g be a Chevalley lattice, and let UC be as in lemma 7.33. Then ϱ(UC) is a lattice in
ϱ(U(g)).

Proof.
1. The image ofUG,φ underϱ is contained inϱ(U(g))∩End(Λ); sinceEnd(Λ) is a lattice

in End(V ), we see that ϱ(U(g)) ∩ End(Λ) is a lattice in ϱ(U(g)); hence ϱ(UG,φ)

is finitely generated. On the other hand UG,φ generates U(g) as a K-vector space,
hence ϱ(UG,φ) is a lattice in ϱ(U(g)).

2. Let Λ be a lattice closed under multiplication by C, and let (G , φ) be its associated
anchored model ofG; then ϱ(UC) is anR-submodule of the lattice ϱ(UG,φ) that gen-
erates ϱ(U(g)) as aK-vector space, i.e. a lattice in ϱ(U(g)).

Lemma 7.45. Let (G ,T ) be a model of (G,T ). Let G be the Lie algebra of G . Then there is an
r ∈ R such that for every anchoring φ of (G ,T ) there exists a Chevalley lattice C such that

r · ϱ(UG,φ) ⊂ ϱ(UC) ⊂ r−1 · ϱ(UG,φ).
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Proof. Fix a Chevalley lattice C and an anchoring φ of (G ,T ). By lemma 7.44 both ϱ(UG,φ)

and ϱ(UC) are lattices in ϱ(U(g)), hence there exists an rφ ∈ R such that rφϱ(UG,φ)) ⊂
ϱ(UC) ⊂ r−1

φ ϱ(UG,φ). Let

Aut(G,T ) =
{
σ ∈ Aut(G) : σ(T ) = T

}
as in lemma 7.30, and let Aut(G,T ) be the underlying K-group scheme. There is a short
exact sequence of algebraic groups overK

1→ Gad → Aut(G)→ Γ→ 1

where Γ is the automorphism group scheme of the based root datum (Ψ,∆+); this is a
finite étale group scheme. The kernel of the map Aut(G,T ) → Γ is the image of the nor-
maliser NormG(T ) inGad; its identity component is T̄ . SinceΓ is finite and the index of T̄ in
ker(Aut(G,T ) → Γ) is finite, we see that T̄ (K) has finite index in Aut(G,T ). Now let φ′

be another anchoring of (G ,T ). There exists a unique σ ∈ Aut(G,T ) such thatφ′ = σ◦φ.
The automorphism σ also induces automorphisms of g andU(g), which we will still denote
by σ; by lemma 7.30 σ(C) is again a Chevalley lattice. Suppose σ is an inner automorphism
corresponding to a t ∈ T̄ (K). Then σ acts as χ(t) on U(g)χ for every χ ∈ Q. Since ϱ is a
homomorphism ofX∗(T )-graded algebras we get

rφ · ϱ(UG,φ′) = rφ · ϱ(UG,σ◦φ)

= rφ · ϱ(σ(UG,φ))

= rφ · ϱ(t ·UG,φ))

= rφ · t · (ϱ(UG,φ))

⊂ t · ϱ(UC)

= ϱ(Uσ(C)).

Similarly one shows ϱ(Uσ(C)) ⊂ r−1
φ · ϱ(UG,φ′); hence the element rφ ∈ R only depends

on the T̄ (K)-orbit of the anchoring φ. Since there are only finitely many such orbits, we
can take r to be a common multiple of these rφ.

Proposition 7.46. If K is a p-adic field, then the map modG,T : LatH(V ) → Mod(G,T ) of
lemma 7.5 is finite.

Proof. Let (G ,T ) be a model of (G,T ), and let r be as in lemma 7.45. Let P ⊂ LatH(V )

be the set ofH(K)-orbits of Chevalley-invariant lattices; this is a finite set by proposition
7.40. LetX be anH(K)-orbit of lattices in V such that modG,T (X) = (G ,T ). Let Λ ∈ X ,
and let φ be the anchoring of (G ,T ) induced by Λ. Then Λ is closed under multiplication
by ϱ(UG,φ). Let C be a Chevalley lattice in g such that r−1ϱ(UG,φ) ⊂ ϱ(UC) ⊂ rϱ(UG,φ),
and letΛ′ = ϱ(UC) ·Λ ⊂ V . Since ϱ(UC) is a finitely generated submodule of End(V ), we
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see that Λ′ is a lattice in V that is closed under multiplication by C . Furthermore we see

r−1Λ = r−1ϱ(UG,φ)Λ

⊂ ϱ(UC)Λ

= Λ′

⊂ rϱ(UG,φ)Λ

= rΛ,

hence d(Λ,Λ′) ≤ 2v(r), where v is the valuation onK . For the metric space LatH(V ) this
implies that X is at most distance 2v(r) from an element of P . Since P is finite and balls
are finite in this metric space, we see that there are only finitely many possibilities for X ,
which proves the proposition.
Lemma 7.47. Suppose K is a number field. Then for almost all finite places v of K there is ex-
actly oneH(Kv)-orbitX of lattices in VKv

such that modGKv ,TKv
(X) is the Chevalley model of

(GKv , TKv ).

Proof. Let (G ,T ) be the Chevalley model of (G,T ), let φ be some anchoring of (G ,T ),
and let C ⊂ g be a Chevalley lattice. Then Rv ⊗R (Lie φ)(G) = Rv ⊗R C as lattices in
gKv

for almost all finite places v ofK . Hence for these v, the Lie algebra of the Chevalley
model of (GKv

, TKv
) is a Chevalley lattice via the embedding induced by the anchoring φ.

However, two anchorings differ by an automorphism inAut(GKv
, TKv

). Since the action of
Aut(GKv , TKv ) on Lat(gKv ) sends Chevalley lattices to Chevalley lattices by lemma 7.36.3,
this means that for these v the Lie algebra of the Chevalley model will be a Chevalley lattice
with respect to every anchoring. For these v, a lattice in VKv

yielding the Chevalley model
must be Chevalley-invariant; hence by discarding at most finitely many v we may assume
by proposition 7.42 that there is at most oneH(Kv)-orbit of lattices yielding the Chevalley
model. On the other hand, any model ofG will be reductive on an open subset of Spec(R),
and any model of T will be a split torus on an open subset of Spec(R). This shows that any
model of (G,T ) is isomorphic to the Chevalley model over almost allRv ; hence for almost
all v there is at least one lattice yielding the Chevalley model.

Proof of theorem 7.18.

1. Let G be a given model of G. Let T be a split maximal torus of G, and choose a sub-
group scheme T ⊂ G such that (G ,T ) is a model of (G,T ). Let Λ′ be a lattice in
V with model modG,T (Λ′) = (G ′,T ′), and suppose there exists an isomorphism
ψ : G ∼−→ G ′. Then ψ(TK) is a split maximal torus of G ′

K . Since all split maxi-
mal tori of a split reductive group are conjugate (see [61, Thm. 15.2.6]), there exists
a g ∈ G ′(K) such that ψ(TK) = gT ′

Kg
−1. Then inn(g) ◦ ψ is an isomorphism

of models of (G,T ) between (G ,T ) and modG,T (gΛ′). By proposition 7.46 there
are only finitely many H(K)-orbits yielding (G ,T ), so gΛ′ can only lie in finitely
manyH(K)-orbits; hence Λ′ can only lie in finitely many (G ·H)(K)-orbits. Since
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G ·H = G ·Z is a subgroup ofN , this shows that there are only finitely manyN(K)-
orbits in Lat(V ) yielding the model G ofG.

2. Let T be a split maximal torus ofG. By lemma 7.47 for almost all finite places v ofK
there exists exactly one H(Kv)-orbit Yv ⊂ Lat(VKv

) yielding the Chevalley model
of (GKv , TKv ); let v be such a place. Repeating the proof of the previous point, we
see that gΛ′ has to lie in Yv , hence Λ′ has to lie in (G ·Z)(Kv) · Yv , and in particular
in the singleN(Kv)-orbitN(Kv) · Yv .

7.4 Nonsplit reductive groups

The main goal of this section is to prove theorem 7.1 for local fields, as well as a stronger
finiteness result à la theorem 7.18.2 needed to prove theorem 7.1 for number fields. We will
make use of some Bruhat–Tits theory to prove one key lemma (7.56).

7.4.1 Bruhat–Tits buildings

In this subsection we give a very brief summary of the part of Bruhat–Tits theory that is
revelant to our purposes; Bruhat–Tits theory will only play a role in the proof of lemma
7.56. The reader looking for an actual introduction to the theory is referred to [66] and [6].
If∆ is a simplicial complex, I denote its topological realisation by |∆|.
Theorem 7.48. (See [7, Cor. 2.1.6; Lem. 2.5.1; 2.5.2], [66, 2.2.1] and [6, Thm. VI.3A]) Let G
be a connected semisimple algebraic group over a p-adic field K . Then there exists a locally finite
simplicial complex I(G,K), called the Bruhat–Tits building ofG, with the following properties:

1. I(G,K) has finite dimension;
2. Every simplex is contained in a simplex of dimension dim(I(G,K)), and these maximal sim-

plices are called chambers;
3. There is an action ofG(K) on I(G,K) that induces a proper and continuous action ofG(K)

on |I(G,K)|, whereG(K) is endowed with the p-adic topology;
4. The stabilisers of points in |I(G,K)| are compact open subgroups ofG(K);
5. G(K) acts transitively on the set of chambers of I(G,K);
6. There is a metric d on |I(G,K)| invariant under the action of G(K) that gives the same

topology as its topological realisation.
Remark 7.49. Since the stabiliser of each point is an open subgroup of G(K), the G(K)-
orbits in |I(G,K)| are discrete subsets.
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Corollary 7.50. Let G be a connected semisimple algebraic group over a p-adic fieldK , let C ⊂
|I(G,K)| be a chamber, let C̄ ⊂ |I(G,K)| be its closure, and let r ∈ R>0. Then the subset V of
|I(G,K)| given by

V :=
{
x ∈ |I(G,K)| : d(x, C̄) ≤ r

}
is compact.
Proof. Since the metric of |I(G,K)| is invariant under the action of G(K) and G(K) acts
transitively on the set of chambers, we see that every chamber has the same size. Since
I(G,K) is locally finite this means that V will only meet finitely many chambers. The
union of the closures of these chambers is compact, hence V , being a closed subset of this,
is compact as well.
Theorem 7.51. (See [59, Prop. 2.4.6; Cor. 5.2.2; Cor. 5.2.8]) Let G be a connected semisimple
algebraic group over a p-adic fieldK , and letL/K be a finite Galois extension.

1. The simplicial complex I(G,L) has a natural action ofGal(L/K);
2. ThemapG(L)×I(G,L)→ I(G,L) that gives theG(L)-action onI(G,L) isGal(L/K)-

equivariant;
3. There is a canonical inclusionI(G,K) ↪→ I(G,L)Gal(L/K), which allowsus to viewI(G,K)

as a subcomplex of I(G,L);
4. There is an r ∈ R>0 such that for every x ∈ |I(G,L)|Gal(L/K) there exists a point y in
|I(G,K)| such that d(x, y) ≤ r.

7.4.2 Compact open subgroups and quotients

LetG be an algebraic group over a p-adic fieldK , and letL be a finite Galois extension ofK .
LetU be a compact open subgroup ofG(L) that is invariant under the action ofGal(L/K).
ThenG(L)/U inherits an action ofGal(L/K), and its set of invariants (G(L)/U)Gal(L/K)

has a left action ofG(K). The goal of this section is to show that, for various choices ofG,
K , L and U , the quotientG(K)\(G(L)/U)Gal(L/K) is finite. We will also show that it has
cardinality 1 if we choose U suitably ‘nice’.
Notation 7.52. LetG be an algebraic group over a p-adic fieldK , letL/K be a finite Galois
extension over whichG splits, and letU be a compact open subgroup ofG(L) (with respect
to the p-adic topology) fixed under the action of Gal(L/K). Then we write QL/KG (U) :=

G(K)\(G(L)/U)Gal(L/K).
The next lemma tells us that compact open subgroups often appear in the contexts relevant
to us.
Lemma 7.53. (See [57, p. 134]) Let G be an algebraic group over a p-adic fieldK , and let L be
a finite field extension ofK . Let (G , φ) be an anchored model ofG. Then φ(G (OL)) is a compact
open subgroup ofG(L) with respect to the p-adic topology.
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Lemma 7.54. Let G be an algebraic group over a p-adic field K , and let L/K be a finite Galois
extension over which G splits. If QL/KG (U) is finite for some compact open Galois invariant U ⊂
G(L), then it is finite for all suchU .
Proof. This follows from the fact that if U and U ′ are compact open Galois invariant sub-
groups of G(L), then U ′′ := U ∩ U ′ is as well, and U ′′ has finite index in both U and
U ′.
We will now prove thatQL/KG (U) is finite for connected reductiveG. To prove this we first
prove it for tori and for semisimple groups, and then combine these results.
Lemma 7.55. Let T be a torus over a p-adic fieldK , and letL be a finite Galois extension ofK over
which T splits. LetU be a compact open subgroup of T (L). ThenQL/KT (U) is finite.
Proof. Choose an isomorphism φ : TL ∼−→ Gdm,L. Then T (L) has a unique maximal compact
open subgroup, namelyφ−1((O×

L )
d); by lemma 7.54 it suffices to prove this lemma forU =

φ−1((O×
L )

d). Let f be the ramification index of L/K , and let t be a uniformiser of L such
that tf ∈ K . Now consider the homomorphism of abelian groups

F : X∗(T )→ T (L)/U

η 7→ η(t) · U.

For every cocharacter η the subgroup η(O×
L ) of T (L) is contained in U . This implies that

for all η ∈ X∗(T ) and all π ∈ Gal(L/K) one has
F (π · η) = (π · η)(t) · U

= π(η(π−1t))) · U

= π(η(t)) · π
(
η

(
π−1t

t

))
· U

= π(η(t)) · U
= π(F (η)) · U,

since π−1t
t ∈ O×

L . This shows that F is Galois-equivariant. On the other hand φ induces
isomorphisms of abelian groupsX∗(T ) ∼= Zd and

T (L)/U ∼= (L×/O×
L )

d = ⟨t⟩d.

In terms of these identifications the map F is given by
Zd ∋ (x1, . . . , xd) 7→ (tx1 , . . . , txd) ∈ ⟨t⟩d ∼= T (L)/U.

We see from this that F is an isomorphism of abelian groups with an action of Gal(L/K).
Let t ∈ T (L)/U be Galois invariant, and let η = F−1(t) ∈ X∗(T )

Gal(L/K); then η is a
cocharacter that is defined overK . By definition we have tf ∈ K , hence F (f · η) = η(tf )

is an element of T (K). This shows that the abelian group
X∗(T )

Gal(L/K)/F−1(T (K) · U)
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is annihilated by f . Since it is finitely generated, it is finite. Furthermore, themapF induces
a bijection

X∗(T )
Gal(L/K)/F−1(T (K) · U) ∼−→ Q

L/K
T (U),

henceQL/KT (U) is finite.
Lemma 7.56. LetG be a (connected) semisimple group over a p-adic fieldK , and let L be a finite
Galois extension over which G splits. Let U be a Galois invariant compact open subgroup of G(L).
ThenQL/KG (U) is finite.

Proof. By lemma 7.54 it suffices to show this for a chosenU . Let I(G,K) be the Bruhat–Tits
building of G over K , and let I(G,L) be the Bruhat–Tits building of G over L. Choose a
point x ∈ |I(G,K)| ⊂ |I(G,L)|Gal(L/K); its stabiliserU ⊂ G(L) is a Galois invariant com-
pact open subgroup ofG(L) by theorems 7.48.4 and 7.51.2. Now we can identifyQL/KG (U)

with
G(K)\(G(L) · x)Gal(L/K),

so it suffices to show that this set is finite. Let y ∈ (G(L) · x)Gal(L/K), and let r be as in
theorem 7.51.4. Then there exists a z ∈ I(G,K) such that d(y, z) ≤ r. Now fix a chamber
C of I(G,K), and let g ∈ G(K) such that gz ∈ C̄ (see theorem 7.48.5). Then d(gy, C̄) ≤ r,
so gy lies in the set D = {v ∈ |I(G,L)| : d(v, C̄) ≤ r}, which is compact by corollary
7.50. On the other hand the action ofG(L) on |I(G,L)| has discrete orbits by remark 7.49,
so G(L) · x intersects D in only finitely many points. Hence there are only finitely many
possibilities for gy, soG(K)\(G(L) · x)Gal(L/K) is finite, as was to be shown.
Proposition 7.57. LetG be a connected reductive group over a p-adic fieldK , and letL be a finite
Galois extension of K over which G splits. Let U be a Galois invariant compact open subgroup of
G(L). ThenQL/KG (U) is finite.

Proof. LetG′ be the semisimple groupGder, and letGab be the torusG/G′. This gives us an
exact sequence

1→ G′(K)→ G(K)
ψ→ Gab(K)→ H1(G′,K).

The image ψ(U) ⊂ Gab(L) is compact. It is also open: if Z is the centre of G, then the
map ψ : Z → Gab is an isogeny, and since Z(L) ∩ U is open in Z(L), its image in Gab is
open as well. As such we know by lemma 7.55 that QL/K

Gab (ψ(U)) is finite. Furthermore,
by [60, III.4.3] H1(G′,K) is finite, hence the image of G(K) in Gab(K) has finite index.
If we let G(K) act on (Gab(L)/ψ(U))Gal(L/K) via ψ, we now find that the quotient set
G(K)\(Gab(L)/ψ(U))Gal(L/K) is finite. The projection map

ψ : (G(L)/U)Gal(L/K) → (Gab(L)/ψ(U))Gal(L/K)

isG(K)-equivariant, so we get a map ofG(K)-quotients

Q
L/K
G (U)→ G(K)\(Gab(L)/ψ(U))Gal(L/K).
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To show that QL/KG (U) is finite it suffices to show that for every x ∈ Q
L/K
G (U) there

exist at most finitely many y ∈ Q
L/K
G (U) such that ψ(x) = ψ(y) in the quotient set

G(K)\(Gab(L)/ψ(U))Gal(L/K). Choose such an x and y, and choose a representative x̃
of x inG(L). Then there exists a representative ỹ of y inG(L) such that x̃ = ỹ inGab(L);
hence there is a g′ ∈ G′(L) such that g′x̃ = ỹ. Since x̃U and ỹU are Galois invariant,
the element g′ is Galois invariant in G′(L)/(G′(L) ∩ x̃Ux̃−1); this makes sense because
the compact open subgroupG′(L) ∩ x̃Ux̃−1 ofG′(L) is Galois invariant. Furthermore the
element y only depends on the choice of g′ in

G′(K)\
(
G′(L)/(G′(L) ∩ x̃Ux̃−1)

)Gal(L/K)

= Q
L/K
G′ (G′(L) ∩ x̃Ux̃−1).

Since this set is finite by lemma 7.56 there are only finitely many possibilities for y for a
given x. This proves the proposition.
The final proposition of this subsection is a stronger version of proposition 7.57 in the case
that the compact open subgroup U comes from a ‘nice’ model of G. We need this to prove
a stronger version of theorem 7.1 over local fields in the case that we have models over a
collection of local fields coming from the places of some number field (compare theorem
7.18.2).
Proposition 7.58. LetK be a p-adic field, and let G be a smooth group scheme over OK whose
generic fibre is reductive and splits over an unramified Galois extensionL/K . ThenQL/KGK

(G (OL))

has cardinality 1.

Proof. Let k be the residue fueld ofK . Let g ∈ G (L) such that gG (OL) is Galois-invariant;
we need to show that gG (OL) has a point defined overK . SinceL/K is unramified, we see
that Gal(L/K) is the étale fundamental group of the covering Spec(OL)/Spec(OK). As
such gG (OL) can be seen as the OL-points of a G -torsor B over Spec(OK) in the sense of
[41, III.4]. By Lang’s theorem the Gk-torsor Bk is trivial, hence B(k) is nonempty. Since G

is smooth over OK , so is B, and we can lift a point of B(k) to a point of B(OK). Hence
gG (OL) has an OK-point, as was to be shown.

7.4.3 Models of reductive groups

In this subsection we prove theorem 7.1 over local fields, plus a stronger statement for local
fields coming from one number field; we need this to prove theorem 7.1 for number fields.
Theorem 7.59. LetG be a connected reductive group overK . Let V be a faithful representation of
G, and regardG as an algebraic subgroup of GL(V ). LetN be the scheme-theoretic normaliser ofG
in GL(V ).

1. LetK be a p-adic field. Then the map modG : LatN (V )→ Mod(G) of lemma 7.5 is finite.
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2. LetK be a number field. Then there exists a finite Galois extensionL ofK over whichG splits
with the following property: For almost all finite places v of K there is exactly one N(Kv)-
orbitXv of lattices in VKv

such that modGKv
(Xv)OLw

is the Chevalley model ofGLw
for all

placesw ofL over v (see definition 7.11).

Proof. As before, let N0 and π0(N) be the identity group and component group of N , re-
spectively.

1. LetL/K be aGalois extensionoverwhichG splits. LetR andS be the rings of integers
ofK and L, respectively. Then we have the following commutative diagram:

LatN0(V ) LatN0(VL)

LatN (V ) LatN (VL)

Mod(G) Mod(GL)

S ⊗R −

S ⊗R −

modG modGL

SpecS ×SpecR −

By theorem 7.18.1 we know that the map on the lower right is finite. Furthermore,
sinceN0 is of finite index inN , we know that the maps on the upper left and upper
right are finite and surjective. To show that the map on the lower left is finite, it now
suffices to show that the top map is finite. LetΛ be a lattice in V . TheN0(L)-orbit of
ΛS in Lat(VL) is a Galois-invariant element of LatN0(VL). As a set with an N0(L)-
action and a Galois action, this set is isomorphic to N0(L)/U , where U ⊂ N0(L) is
the stabiliser of ΛS ; this is a compact open Galois-invariant subgroup of N0(L). If
Λ′ ∈ Lat(V ) is another lattice such that Λ′

S ∈ N0(L) · ΛS , then Λ′
S corresponds to

a Galois-invariant element of N0(L)/U . By [68] we see that N0 is reductive, hence
Q
L/K
N0 (U) is finite byproposition 7.57. This shows that, givenΛ, there are onlyfinitely

many options for N0(K) · Λ′. Hence the top map of the above diagram is finite, as
was to be shown.

2. Let L/K be finite Galois such that the mapN(L)→ π0(N)(K̄) is surjective. Choose
a lattice Λ ∈ Lat(V ). Let N 0 be the model of N0 induced by Λ. Let N 0

v := N 0
Rv

;
this is the model of N0

Kv
induced by ΛRv

⊂ VKv
. For almost all v the Rv-group

scheme N 0
v is reductive. Since GL is split, for almost all places w of L the model of

GLw
associated to ΛSw

is the Chevalley model. Furthermore, let n1, . . . , nr ∈ N(L)

be a set of representatives of π0(N)(K̄); then for every place w of L we have

N(Lw) · ΛSw
=

r∪
i=1

N0(Lw)ni · ΛSw
.
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For almost allw all the lattices ni ·ΛSw coincide, hence for thosew we haveN(Lw) ·
ΛSw = N0(Lw) · ΛSw . Now let v be a finite place ofK satisfying the following con-
ditions:

• For every place w of L above v, theN(Lw)-orbit of latticesN(Lw) · ΛSw is the
only orbit of lattices in VLw inducing the Chevalley model ofGLw ;

• for every place w of L above v we haveN(Lw) · ΛSw
= N0(Lw) · ΛSw

;
• L is unramified over v;
• N 0

v is reductive.
The last three conditions hold for almost all v, and by theorem 7.18.2 the same is
true for the first condition. Let us now follow the proof of the previous point, for the
group GKv

and its faithful representation VKv
. The first two conditions tell us that

N0(Lw) · ΛSw is the only N0(Lw)-orbit of lattices yielding the Chevalley model of
GLw for every placew ofL over v. By the last two conditions and proposition 7.58 we
know thatQLw/Kv

N0 (N 0(Sw)) = 1, hence there is only oneN0(Kv)-orbit of lattices
that getsmapped toN0(Lw)·ΛSw

. This is the uniqueN0(Kv)-orbit of lattices inVKv

yielding the Chevalley model ofGLw
; in particular there is only oneN(Kv)-orbit of

such lattices.

7.5 Reductive groups over number fields

In this section we prove theorem 7.1 over number fields. We work with the topological ring
of finite adèles AK,f over a number field K ; let R̂ ⊂ AK,f be the profinite completion of
the ring of integers R ofK . IfM is a free AK,f-module of finite rank, we say that a lattice
in M is a free R̂-submodule that generates M as an AK,f-module. The set of lattices in
M is denoted Lat(M), and if G is a subgroup scheme of GL(M), we denote LatG(M) :=

G(AK,f)\Lat(M). If V is a finite dimensionalK-vector space, then themapΛ 7→ ΛR̂ gives
a bijection Lat(V )

∼→ Lat(VAK,f).
Lemma 7.60. LetK be a number field, letG be a (not necessarily connected) reductive group over
K , and let V be a finite dimensional faithful representation ofG. Let G be a model ofG.

1. G (R̂) is a compact open subgroup ofG(AK,f) in the adèlic topology;
2. The induced map LatG(V )→ LatG(VAK,f) is finite;
3. The map LatG(VAK,f)→

∏
v LatG(VKv

) is injective.
Proof.

1. Let V be a faithful representation of G and let Λ be a lattice in V such that G is the
model of G associated to Λ. Then G (R̂) = G(AK,f) ∩ End(ΛR̂). Since End(ΛR̂) is
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open in End(VAK,f), we see that G (R̂) is open in G(AK,f). It is compact because it
is the profinite limit of finite groups lim←−G (R/IR), where I ranges over the nonzero
ideals ofR.

2. Let Λ be a lattice in V , and let G be the model of G induced by Λ. Then the sta-
biliser of ΛR̂ in G(AK,f) is equal to G (R̂), which by the previous point is a compact
open subgroup of G(AK,f). Then as a G(AK,f)-set we can identify G(AK,f) · ΛR̂
withG(AK,f)/G (R̂). By [4, Thm. 5.1] the setG(K)\G(AK,f)/G (R̂) is finite; as such
G(AK,f) · ΛR̂ consists of only finitely many G(K)-orbits of lattices in Lat(VAK,f).
Since the map Lat(V ) → Lat(VAK,f) is a G(K)-equivariant bijection, each of these
orbits corresponds to one G(K)-orbit of lattices in V ; hence there are only finitely
many G(K)-orbits of lattices in V with the same image as Λ in LatG(VAK,f), which
proves that the given map is indeed finite.

3. LetΛ,Λ′ be two lattices in VAK,f whose images in∏v LatG(VKv
) are the same. Then

for every v there exists a gv ∈ G(Kv) such that gv · (ΛRv ) = Λ′
Rv

. SinceΛRv = Λ′
Rv

for almost all v, we can take gv = 1 for almost all v; hence g ·Λ = Λ′ for g = (gv)v ∈
G(AK,f).

Proof of theorem 7.1. The case thatK is a p-adic field is proven in theorem 7.59.1, so suppose
K is a number field. Then we have the following commutative diagram:

LatN (V ) LatN (VAK,f)
∏
v LatN (VKv )

Mod(G)
∏
vMod(GKv )

f1

modG

f2

∏
v modGKv∏

v Spec(Rv) ×Spec(R) −

Let L be as in theorem 7.59.2, and let R and S be the rings of integers ofK and L, respec-
tively. Let G be amodel ofG. Then for almost all finite placesw ofL the model GSw ofGLw

is its Chevalley model. By theorem 7.59.1 we know that for every finite place v ofK there
are only finitely manyN(Kv)-orbits of lattices in VKv

whose associated model is GRv
, and

for almost all v there is exactly one such orbit. This shows that there are only finitely many
elements of∏v LatN (VKv ) that map to (GRv )v . Hence the map∏v modGKv

on the right
of the diagram above is finite; since f1 and f2 are finite as well by lemma 7.60, this proves
the theorem.
Remark 7.61. The proof of theorem7.1 also shows that for every collection ofmodels (Gv)v
of theGv , there are at most finitely many lattices in V that yield that collection of models.
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Chapter 8

Integral Mumford–Tate groups

Let g and n be integers with g ≥ 1 and n ≥ 3. LetAg,n be the moduli space of principally
polarised complex abelian varieties of dimension g with full level n structure, and let Xg,n
be the universal abelian variety over Ag,n. The singular cohomology of the fibres Xg,n
gives a variation of integral Hodge structures on Ag,n. If Y ⊂ Ag,n is a subvariety, then
the generic Mumford–Tate group GMT(Y ) of Y is the generic (integral) Mumford–Tate group
of this variation of integral Hodge structures over Y . If Y is a special subvariety of Ag,n,
then GMT(Y ) is the (integral) Mumford–Tate group of any point of which Y is the special
closure.

For a special subvariety Y the group scheme GMT(Y ) is an integral model of its generic
fibre, which is a reductive algebraic group over Q. While reductive groups over fields are
well understood, generic integral Mumford–Tate groups are more complicated: there is no
general classification of the models of a given rational reductive group, not even for tori
(see [18]). On the other hand, the advantage of the integral group scheme GMT(Y ) is that it
carries more information than its generic fibre. This can be seen in [16, Thm. 4.1], where
a lower bound is given on the size of the Galois orbit of a CM-point of a Shimura variety in
terms of the reduction of its generic Mumford–Tate group at finite primes. In theorem 8.1,
we present another instance of this phenomenon, by showing that up to a finite ambiguity
a special subvariety Y ofAg,n is determined by GMT(Y ). This is not generally true when we
only consider its generic fibre, as this is invariant under Hecke correspondence. The main
ingredient in proving this is theorem 7.1.

LetA be a g-dimensional abelian variety over a number fieldK , and for every primenumber
ℓ, let Gℓ(A) be its ℓ-adic Galois monodromy group (see definition 8.20); this is a flat group
scheme of finite type over Zℓ. By adapting theorem 7.1 we can show that there exist at
most finitely many special subvarieties Y such that GMT(Y )Zℓ

∼= Gℓ(A) for all primes ℓ (see
theorem 8.22). On the other hand, the Mumford–Tate conjecture (8.21) implies that at least
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one such Y exists. In theorem 8.22 we will show that in the smallest unsolved case of the
Mumford–Tate conjecture this is indeed the case. This provides additional evidence for the
Mumford–Tate conjecture.

8.1 Generic integral Mumford–Tate groups

Let g and n > 2 be positive integers, and let Ag,n be the moduli space of complex princi-
pally polarised abelian varieties of dimension g with full level n structure. Let Xg,n be the
universal abelian variety over Ag,n, and let Vg,n be the variation of integral Hodge struc-
tures in Ag,n for which Vg,n,y = H1(X an

g,n,y,Z) for every y ∈ Ag,n(C). If Y ⊂ Ag,n
is a special subvariety, then we can define its generic (integral) Mumford–Tate group GMT(Y )

analogously to how one defines the generic rational Mumford–Tate group for a variation of
rational Hodge structures as for instance in [45]. if y ∈ Y is Hodge generic (i.e. its special
closure is Y ) then GMT(Y ) is isomorphic to the Mumford–Tate group of the integral Hodge
structure Vg,n,y . The resulting integral group scheme is flat and of finite type over Z, and
its generic fibre is a reductive rational algebraic group. The aim of this section is to prove
the following theorem:
Theorem 8.1. Let g and n be positive integers with n > 2, and let G be a group scheme over Z.
Then there are at most finitely many special subvarieties Y ofAg,n such that GMT(Y ) ∼= G .
Throughout this section, by a symplectic representation of an algebraic group G over a field
K wemean a morphism of algebraic groupsG→ GSp(V, ψ) for some symplecticK-vector
space (V, ψ). By [31, Thm. 2.1(b)] the isomorphism class of a symplectic representation is
uniquely determined by its underlying representation G → GL(V ). The structure of this
section is as follows: in subsection 8.1.1 we prove a weaker version of theorem 8.1 concern-
ing only the generic fibre GMT(Y )Q (see proposition 8.2), and in subsection 8.1.2 we use this,
and the theory of integral models in representations from chapter 7, to prove theorem 8.1.

8.1.1 The rational case

The goal of this subsection is to prove the following proposition:
Proposition 8.2. LetG be a reductive algebraic group overQ. Then up to Hecke correspondence
there are only finitely many special subvarieties Y ofAg,n such that GMT(Y )Q ∼= G.
This is as far as we can get into proving theorem 8.1 without using integral information, as
rational Mumford–Tate groups are invariant under Hecke correspondences. We first need
to set up some notation before we get to the proof. For an algebraic group G over Q we
writeG(R)+ for the identity component of the Lie groupG(R). We write S for the Deligne
torusResC/RGm. LetHg be the g-dimensional Siegel space; then (GSp2g,Hg) is a Shimura
datum. We fix a connected componentH+

g ⊂ Hg .
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Definition 8.3. A reductive connected Shimura datum is a pair (G,X+) consisting of a con-
nected reductive groupG overQ and aG(R)+-orbitX+ of morphisms S→ GR such that
the pair (G,G(R) ·X+) is a Shimura datum.
A reductive connected Shimura datumdiffers from a connected Shimura datum in the sense
of [44, Def. 4.4] in that we do not require G to be semisimple, and we look at morphisms
S→ GR instead of maps S1 → Gad

R .
Definition 8.4. A connected Shimura triple of rank 2g is a triple (G,X+, ϱ) consisting of:

• a reductive algebraic groupG overQ;
• aG(R)+-orbitX+ ⊂ Hom(S, GR) such that the pair (G,X+) is a connected reduc-
tive Shimura datum;

• an injectivemorphism of algebraic groups ϱ : G ↪→ GSp2g,Q such that ϱR◦X+ ⊂ H+
g ,

and such thatG is the generic Mumford–Tate group ofX+ under this embedding.
Amorphismof connected Shimura triplesσ : (G,X+, ϱ)→ (G′, X ′+, ϱ′) is amorphismσ : G→
G′ such thatσR◦X+ ⊂ X ′+ and such thatσ◦ϱ = ϱ′. The collection of isomorphism classes
of connected Shimura triples of rank 2g is denoted S2g ; the subset of connected Shimura
triples whose first element is isomorphic to an algebraic groupG is denoted S2g(G). We let
GSp2g(Q) act on S2g(G) on the right by the formula

(G,X+, ϱ) · a = (G,X+, inn(a−1) ◦ ϱ). (8.5)

The reason to study these special triples is that every special subvariety ofAg comes from
a special triple in the following sense: the Shimura varietyAg,n is a finite disjoint union of
complex analytical spaces of the form Γ\H+

g , where Γ ⊂ GSp2g(Z) is a congruence sub-
group, and H+

g is a connected component of H+
g . For such a Γ, and a connected Shimura

triple (G,X+, ϱ) of rank 2g, denote by YΓ(G,X+, ϱ) the image of ϱ(X+) ⊂ H+
g in Γ\H+

g .
This is a special subvariety of Γ\H+

g , and all special subvarieties arise in this way. Fur-
thermore, GMT(YΓ(G,X+, ϱ))Q is isomorphic to G. If Y = YΓ(G,X

+, ϱ) and Y ′ are two
special subvarieties of Γ\H+

g that differ by a Hecke correspondence, then there exists an
a ∈ GSp2g(Q) such that Y ′ = YΓ(G,X

+, ϱ) · a. Proposition 8.2 is now a direct conse-
quence of the following result.
Proposition 8.6. LetG be a connected reductive group overQ. Then the cardinality of the quotient
set S2g(G)/GSp2g(Q) is finite.
The rest of this subsection is dedicated to the proof of this proposition. We first prove some
auxiliary results.
Lemma 8.7. Let d be a positive integer. LetΠ be a finite subgroup ofGLd(Z), and let η0 ∈ Zd be
such that Π · η0 generates the rational vector spaceQd. Then up to the action of AutΠ(Zd) there
are only finitely many elements η ∈ Zd such that for all π1, . . . , πd ∈ Π we have

det(π1 · η0, . . . , πd · η0) = det(π1 · η, . . . , πd · η). (8.8)
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Proof. Fix π1, . . . , πd ∈ Π such that the πi · η0 are Q-linearly independent, and define the
integer C := det(π1 · η0, . . . , πd · η0); then C ̸= 0. Now let η ∈ Zd be such that it satisfies
(8.8). Then det(π1 · η, . . . , πd · η) = C ̸= 0, so the πi ◦ η areQ-linearly independent as well.
If π is any element ofΠ, then there exist unique ci, c′i ∈ Q such that π · η0 =

∑
i ci(πi · η0)

and π · η =
∑
i c

′
i(πi · η). Then we may calculate

ci · C = det(π1 · η0, . . . , πi−1 · η0, π · η0, πi+1 · η0, . . . , πd · η0)
= det(π1 · η, . . . , πi−1 · η, π · η, πi+1 · η, . . . , πd · η)
= c′i · C,

hence ci = c′i for all i. We find that for every collection of scalars (xπ)π∈Π inMap(Π,Q)

we have ∑
π∈Π

xπ · (π · η0) = 0⇔
∑
π∈Π

xπ · (π · η) = 0.

It follows that that there exists a unique Π-equivariant linear isomorphism fη : Qd → Qd

satisfying fη(η0) = η. Let Λη be the lattice in Qd generated by Π · η; then fη(Λη0) =

Λη . Now let η′ ∈ Zd be another element satisfying (8.8); then fη′ ◦ f−1
η is the unique

Π-equivariant automorphism of Qd that sends η to η′. This automorphism induces a Π-
equivariant automorphism ofZd if and only if f−1

η (Zd) = f−1
η′ (Zd) inQd; henceAutΠ(Zd)-

orbits of suitable η correspond bijectively to lattices of the form f−1
η (Zd) in Qd. Let C be

as above; then Λη ⊂ Zd ⊂ C−1Λη , hence Λη0 ⊂ f−1
η (Zd) ⊂ C−1Λη0 . Since there are

only finitely many options for lattices between Λη0 and C−1Λη0 , we conclude that there
are only finitely many options for theAutΠ(Zd)-orbit of η.
Lemma 8.9. Let T be a torus overQ, and let ν : Gm,Q̄ → GSp2g,Q̄ be a symplectic representation.
Let S be the collection of pairs (η, ϱ), where η : Gm,Q̄ → TQ̄ is a cocharacter whose image is Zariski
dense in the Q-group T , and ϱ : T ↪→ GSp2g,Q is a faithful symplectic representation, such that
ν ∼= ϱQ̄ ◦ η as symplectic representations ofGm,Q̄. Define an action ofAut(T ) onS by σ · (η, ϱ) =
(σQ̄ ◦ η, ϱ ◦ σ−1). ThenAut(T )\S is finite.
Proof. LetX = X∗(T ) as a free abelian group with a Galois action, and identifyX∗(T )with
X∨ via the natural perfect pairing. Let Π be the image of Gal(Q̄/Q) in GL(X); this is a
finite group. Now let (η, ϱ) ∈ S; then ϱ is given by a multisetW ⊂ X∨. The fact that ϱ is
faithful and defined over Q implies thatW generatesX∨ as an abelian group and thatW
is invariant under the action of Π. Since the image of η is Zariski dense in T , we find that
XQ is generated byΠ · η. Now let d be the rank ofX , and let π1, . . . , πd ∈ Π. Consider the
homomorphism of abelian groups

φη,(πi)i : X
∨ → Zd

λ 7→ (λ(πi · η))i≤d.

The isomorphism class of the representation ν is given by a multiset Σ ⊂ X∗(Gm) = Z.
Since we require ν ∼= ϱQ ◦ η, we find thatW ◦ η = Σ as multisets in Z. Furthermore,W is



8.1. Generic integral Mumford–Tate groups 123

Galois-invariant, soW ◦ (π · η) = Σ for all π ∈ Π. Let
m := max{|σ| : σ ∈ Σ ⊂ Z};

then the multisetφη,(π)i(W ) inZd is contained in [−m,m]d. Now choose an identification
X ∼= Zd, so that we may consider φη,(πi)i as an element ofMatd(Z); then |det(φη,(πi)i)|
is equal to the volume of the image of a fundamental parallellogram of Zd. Since X∨ is
generated byW , this volume cannot exceedmd, hence |det(φη,(πi)i)| ≤ md for all choices
of the πi. Hence if we let (ϱ, η) range over S there are only finitely many possibilities for
the map

tη : Π
d → Z

(π1, . . . , πd) 7→ det(φη,(πi)i).

By lemma 8.7 there are, up to the action ofAut(T ) ∼= AutΠ(X), only finitely many η ∈ X
yielding the same tη ; since the set of possible tη is also finite, we see that there are only
finitely many options for η (up to theAut(T )-action). Now fix such an η. For everyw ∈W
we need to havew(π ·η) ∈ Σ, for all π ∈ Π. SinceΠ ·η generatesXQ, there are only finitely
many options forw, hence for the multisetW , since the cardinality ofW has to be equal to
2g. We conclude that up to the action of Aut(T ) there are only finitely many possibilities
for (η, ϱ).
Lemma 8.10. LetG be a connected reductive group overQ, and letZ0 be the identity component of
its centre; let φ be the mapAut(G)→ Aut(Z0). Then φ(Aut(G)) has finite index inAut(Z0).
Proof. Let H := Z0 ∩ Gder, and let n := #H . If σ is an automorphism of Z0 that is the
identity onH , then we can extend σ to an automorphism σ̃ ofG by having σ̃ be the identity
onGder; hence it suffices to show that the subgroup{

σ ∈ Aut(Z0) : σ|H = idH
}
⊂ Aut(Z0)

has finite index. Let X = X∗(Z
0). Let σ ∈ Aut(T ), and consider σ as an element of

GL(X). If σ maps to the identity inAutZ/nZ(X/nX), then σ is the identity on Z0[n], and
in particular onH . SinceAutZ/nZ(X/nX) is finite, the lemma follows.
Lemma 8.11. LetG be a connected reductive group overQ, and let Z0 be the identity component
of its centre. Let ϱcent and ϱder be 2g-dimensional symplectic representations of Z0 andGder. Then
there are at most finitely many isomorphism classes of symplectic representations ϱ of G such that
ϱ|Z0 ∼= ϱcent and ϱ|Gder ∼= ϱder as symplectic representations ofZ0 andGder, respectively.
Proof. Let T ′ be a maximal torus of Gder; then the isomorphism classes of ϱcent and ϱder
are given by multisets Σcent ⊂ X∗(Z0) and Σder ⊂ X∗(T ′), both of cardinality 2g. Let
T := Z0 · T ′ ⊂ G, this is a maximal torus. A symplectic representation ϱ of G satisfying
these conditions corresponds to a multiset Σ ⊂ X∗(T ) of cardinality 2g, such that Σmaps
to Σcent inX∗(Z0) and to Σder inX∗(T ′). Because

X∗(T )Q = X∗(Z0)Q ⊕X∗(T ′)Q
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there are only finitely many options for Σ, as we obtain all of them by pairing elements of
Σcent with elements of Σder.
Proof of proposition 8.6. Let Ω be the sets of pairs (X+, ϱ) such that (G,X+, ϱ) is a special
triple. The group Aut(G) acts on Ω by σ · (X+, ϱ) := (σR ◦ X+, ϱ ◦ σ−1), and we may
identify S2g(G) with Aut(G)\Ω. Furthermore, Ω has the same right action of GSp2g(Q)

as S2g(G); we write Ω̄ := Ω/GSp2g(Q). Since the left and right actions onΩ commute, we
get an action ofAut(G) on Ω̄, and this identifiesAut(G)\Ω̄ with S2g(G)/GSp2g(Q).
Consider the natural projection Z0 × Gder → G. This is an isogeny, and we let n be its
degree. Let (X+, ϱ) be an element of Ω. If x is an element ofX+, then the composite map

S n→ S x→ GR

factors uniquely throughZ0
R×Gder

R . Let xcent and xder be the associated maps from S toZ0
R

andGder
R , respectively; thenX+

der := {xder : x ∈ X+} is aGder(R)+-orbit inHom(S, Gder
R ).

Let X+,ad be the image of X+ under Ad : G → Gad; then (Gad, X+,ad) is a connected
Shimura datum (in the sense of [39, Def. 4.4]). Furthermore Ad ◦ X+

der = X+,ad ◦ n as
subsets ofHom(S, Gad

R ). Now let Ω̄der be the set of all pairs (Y +, σ̄) satisfying:
• Y + is a Gder(R)+-orbit in Hom(S, Gder

R ) such that Ad ◦ Y + = X+,ad ◦ n for some
connected Shimura datum (Gad, X+,ad);

• σ̄ is an isomorphism class of symplectic representations ofGder of dimension 2g.
It follows from [11, Cor. 1.2.8] that, for a given G, there are only finitely many possibilities
forX+,ad. SinceAd : Gder → Gad is an isogeny, there are only finitelymany possibilities for
Y +. Furthermore a semisimple group has only finitely many symplectic representations of
a given dimension, hence Ω̄der is a finite set. Consider also the following set:

Ξcent :=
{
(η, τ̄) : η ∈ X∗(Z0), τ̄ isom. class of sympl. rep. of Z0 of dim. 2g

}
.

If µ : Gm,C → SC is the Hodge cocharacter, then there is a natural map

φcent : Ω̄→ Ξcent

(X+, ϱ) 7→ (xcent ◦ µ, ϱ|Z0)

for some x ∈ X+; this is well-defined because xcent does not depend on the choice of x, and
because xcent,C ◦ µ : Gm,C → Z0

C, being a morphism of tori, is defined over Q̄. Let Ω̄cent be
the image of Ω̄ in Ξcent. We also have a map

φder : Ω̄→ Ω̄der

(X+, ϱ) 7→ (X+
der, ϱ|Gder).

Consider the product map φ := φcent × φder : Ω̄ → Ω̄cent × Ω̄der. An element x ∈ X+ is
determined by xcent and xder, soX+ is determined by xcent andX+

der. Furthermore lemma
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8.11 tells us that the isomorphism class of ϱ is determined, up to a finite choice, by the
isomorphism classes of ϱ|Z0 and ϱ|Gder . As such we find that φ is finite. It is also Aut(G)-
equivariant, whereAut(G) works on the right hand side via the map

Aut(G)→ Aut(Z0)×Aut(Gder).

It follows that the induced map

Aut(G)\Ω̄→ Aut(G)\(Ω̄cent × Ω̄der)

is finite as well; to show that its domain is finite, it now suffices to show that its codomain is
finite. To see this, let (X+, ϱ) be an element of Ω, and let x ∈ X+. Then the isomorphism
class of ϱR ◦ x is fixed; it is the symplectic representation of S corresponding to a polarised
Hodge structure of type {(1, 0), (0, 1)} of dimension 2g. It follows that the isomorphism
class of the representation ϱR ◦ xcent of S is uniquely determined, hence there is only one
possibility for the isomorphism class of the symplectic representation ϱC ◦ xcent,C ◦ µ of
Gm,C. Now choose x such that x(S) is Zariski dense in G, which exists by our assumption
that G is the generic Mumford–Tate group on X . Then the image of xcent ◦ µ is Zariski
dense in Z0. Since there was only one possibility for ϱC ◦ xcent,C ◦ µ, lemma 8.9 now tells
us that Aut(Z0)\Ω̄cent is finite. Since the image of Aut(G) in Aut(Z0) has finite index by
lemma 8.10 and Ω̄der is finite, we conclude thatAut(G)\(Ω̄cent × Ω̄der) is finite; this proves
the proposition.

8.1.2 The integral case

In this subsectionwe prove theorem 8.1. Recall that as a complex analytic spacewe can view
Ag,n as a disjoint union of spaces of the form Γ\H+

g , where Γ is a congruence subgroup of
GSp2g(Z). As before, for a connected Shimura triple (G,X+, ϱ), let YΓ(G,X+, ϱ) be the
image of ϱ(X+) inΓ\H+

g . We call two special triples (G,X+, ϱ) and (G′, X ′+, ϱ) equivalent
under Γ if

YΓ(G,X
+, ϱ) = YΓ(G

′, X ′, ϱ′).

This holds if and only if there is a γ ∈ Γ such that (G,X+, ϱ) ∼= (G′, X ′+, ϱ′) ·γ, where the
action of Γ ⊂ GSp2g(Q) on S2g is as in (8.5). LetMod(G) be the set of (integral) models of
G as in definition 7.2. Using this notation we get a natural map

GMT : S2g(G)/Γ→ Mod(G)

by sending (G,X+, ϱ) to the generic (integral) Mumford–Tate group of YΓ(G,X+, ϱ); note
that this is the same as the generic Mumford–Tate group of X+. We may also describe
this map in the terminology of chapter 7, as follows: let (G,X+, ϱ) ∈ S2g(G). The stan-
dard representation V := Q2g of GSp2g,Q has a lattice Λ := Z2g . Then GMT(G,X+, ϱ) =

modϱ(G)(Λ). We can also understand Hecke correspondences in this way: recall that spe-
cial subvarieties equivalent to YΓ(G,X+, ϱ) under Hecke correspondence are of the form
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YΓ(G,X
+, inn(a−1) ◦ ϱ) for some a ∈ GSp2g(Q). For such a connected Shimura triple we

get
GMT(G,X+, inn(a−1) ◦ ϱ) = moda−1ϱ(G)a(Λ) = modϱ(G)(aΛ). (8.12)

Furthermore, themapGMTdefined above allowsus to consider theorem8.1 as a consequence
of the following result:
Theorem 8.13. LetG be a connected reductive group overQ, and letΓ ⊂ GSp2g(Z) be a congru-
ence subgroup. Then the map GMT : S2g(G)/Γ→ Mod(G) is finite.
Proof of theorem 8.1 from theorem 8.13. The Shimura variety Ag,n is a finite disjoint union of
connected Shimura varieties Γ\H+

g . We need to show that for every Γ and for every group
scheme G over Z there are only finitely many special subvarieties of Γ\H+

g whose generic
Mumford–Tate group is isomorphic to G . Let G be the generic fibre of G ; then every such
special subvariety is of the form YΓ(G,X

+, ϱ), for some (X+, ϱ) such that (G,X+, ϱ) ∈
S2g(G). The theorem now follows from theorem 8.13.
Let Γ be a congruence subgroup ofGSp2g(Z). WriteM(Γ) := Γ\H+

g ; this is a real analytic
space. If Γ is small enough, then M(Γ) is a connected Shimura variety. Let Ĥ+

g be the
subspaceGL2g(R) ·H+

g ofHom(S, GL2g,R), and let Γ̂ be a congruence subgroup ofGL2g(Z)
and define M̂(Γ̂) := Γ̂\Ĥ+

g . This is a real analytic space, but for g > 1 it will not have the
structure of a connected Shimura variety.
Lemma 8.14. Let Γ ⊂ GSp2g(Z) be a congruence subgroup, and let Γ̂ ⊂ GL2g(Z) be a congru-
ence subgroup containing Γ. Then the map of real analytic spacesM(Γ)→ M̂(Γ̂) is finite.
Proof. It suffices to prove this for Γ = GSp2g(Z) and Γ̂ = GL2g(Z). For these choices of
congruence subgroups we have (see [16, 4.3]):

M(Γ) ∼=
{
princ. pol. Hodge structures of type {(0, 1), (1, 0)} on Z2g

}
/ ∼=,

M̂(Γ̂) ∼=
{
Hodge structures of type {(0, 1), (1, 0)} on Z2g

}
/ ∼=,

where in the first equation we consider isomorphisms of polarised Hodge structures, and
in the second equation isomorphisms of Hodge structures. In this terminology the natural
map M(Γ) → M̂(Γ̂) is just forgetting the polarisation. By [38, Thm. 18.1] a polarisable
Z-Hodge structure of type {(0, 1), (1, 0)} has only finitely many principal polarisations (up
to automorphisms of polarised Hodge structures), from which the lemma follows.
Proof of theorem 8.13. By proposition 8.6 it suffices to show that for every GSp2g(Q)-orbit
B in S2g(G) the map GMT : B/Γ → Mod(G) is finite. Let (G,X+, ϱ) be an element of
such aB, and letN be the scheme-theoretic normaliser of ϱ(G) in GSp2g,Q. Then as a right
GSp2g(Q)-set we can identify B with N(Q)\GSp2g(Q), and under this identification we
have

B/Γ ∼−→ N(Q)\GSp2g(Q)/Γ (8.15)
(G,X+, ϱ) · aΓ 7→ N(Q)aΓ.
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Now let V := Q2g be the standard representation of GSp2g,Q, and let N̂ be the scheme-
theoretic normaliser of ϱ(G) in GL2g,Q. Furthermore, recall that LatN̂ (V ) is the set of
N̂(Q)-orbits of lattices in V (see definition 7.3); by considering every lattice as g · Λ for
Λ := Z2g and g ∈ GL2g(Q), we get a natural identification

LatN̂ (V ) ∼= N̂(Q)\GL2g(Q)/GL2g(Z).

From (8.12) we see that the map GMT : B/Γ → Mod(G) sends a double coset N(Q)aΓ,
considered as an element of B/Γ via (8.15), to modG(aΛ). As such we can decompose GMT
as a composite map

B/Γ ∼−→ N(Q)\GSp2g(Q)/Γ

� N(Q)\GSp2g(Q)/GSp2g(Z) (8.16)
→ N̂(Q)\GL2g(Q)/GL2g(Z) (8.17)
∼−→ LatN̂ (V )

modG→ Mod(G). (8.18)

Since Γ is of finite index in GSp2g(Z) we see that the map in (8.16) is finite. Furthermore,
theorem 7.1 tells us that the map in (8.18) is finite, so it suffices to prove that the map in
(8.17) is finite; denote thismap by f . LetZ be the set of connected real analytic subspaces of
M(GSp2g(Z)), and let Ẑ be the set of connected real analytic subspaces of M̂(GL2g(Z)).
Since the mapM(GSp2g(Z)) → M̂(GL2g(Z)) is finite by lemma 8.14, the induced map
z : Z → Ẑ is finite as well. There are injective maps

ι : N(Q)\GSp2g(Q)/GSp2g(Z) ↪→ Z
ι̂ : N̂(Q)\GL2g(Q)/GL2g(Z) ↪→ Ẑ

where ι sends the class of a ∈ GSp2g(Q) to the image of a−1ρ(X+)a in GSp2g(Z)\H+
g ,

and ι̂ sends the class of a ∈ GL2g(Q) to the image of a−1ρ(X+)a in GL2g(Z)\Ĥ+
g . Then

z ◦ ι = ι̂ ◦ f , and since z is finite and ι, ι̂ are injective, we see that f is finite; this proves the
theorem.
Remark 8.19. By applying remark 7.61 rather than theorem 7.1, we can also prove that
for every collection (Gℓ)ℓ of group schemes over Zℓ, there exist only finitely many special
subvarieties Y ofAg,n such that GMT(Y )Zℓ

∼= Gℓ for all prime numbers ℓ.

8.2 Connection to the Mumford–Tate conjecture

LetK be a number field embedded inC, and letA be a principally polarised abelian variety
over K . Let MT(A) be the (integral) Mumford–Tate group of A; it is the smallest closed
subgroup scheme of GSp(H1(Aan

C ,Z)) through which s factors, where
s : S→ GSp(H1(Aan

C ,R))
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is themorphismdefining the polarisedHodge structure. On the other hand, for every prime
number ℓ there is a natural action of Gal(K̄/K) on the étale cohomology H1

ét(AK̄ ,Zℓ)
which fixes the polarisation up to a scalar.
Definition 8.20. Let A be an abelian variety over a number field K , and let ℓ be a prime
number. Then the ℓ-adic Galois monodromy group ofA, Gℓ(A), is defined as follows: its generic
fibre Gℓ(A)Qℓ

is the unit component of the Zariski closure of the image of Gal(K̄/K) in
GSp(H1

ét(AK̄ ,Qℓ)), and Gℓ(A) itself is the Zariski closure of Gℓ(A)Qℓ
in GSp(H1

ét(AK̄ ,Zℓ)).
One reason for taking the unit component, rather than the entire Zariski closure, is that the
unit component remains unchanged if we replaceK by a finite extension. Via the compar-
ison theorem there is a canonical isomorphism of free Zℓ-modules with a symplectic form
H1
ét(AK̄ ,Zℓ) ∼−→ H1(Aan

C ,Z)Zℓ
. As such we can regard MT(A)Zℓ

and Gℓ(A) as subgroup
schemes of the same group scheme GSp(H1

ét(AK̄ ,Zℓ)). The Mumford–Tate conjecture now
claims the following:
Conjecture 8.21 (Mumford–Tate conjecture). Let A be an abelian variety over a number field
K . Then for every prime ℓ one has MT(A)Zℓ

= Gℓ(A) as subgroup schemes of GSp(H1
ét(AK̄ ,Zℓ)).

The Mumford–Tate conjecture is usually formulated in terms of the generic fibres of these
groups, but this is equivalent to the ‘integral’ statement above. In general, the Mumford–
Tate conjecture is very much an open problem, with the smallest unproven case appearing
in dimension 4 already; this concerns abelian fourfolds of Mumford’s type, see definition
8.27. An overview of the progress on the Mumford–Tate conjecture for abelian varieties is
given in [8]. The conjecture has also been stated, and proven in some cases, for smooth
proper varieties in general; see for example [1] or independently [64], [65] for the case of K3
surfaces, or [46] for the case of varieties with h2,0 = 1.
An implicit consequence of the Mumford–Tate conjecture is that the group schemes Gℓ(A)
are all compatible in the sense that they all come from the same group scheme overZ. This
implies, for example, that all Gℓ(A)Q̄ℓ

have the same root system, and that Gℓ(A) is a re-
ductive group scheme over Zℓ for ℓ ≫ 0. The compatibility between the algebraic groups
Gℓ(A)Qℓ

has been studied in [34] and [54]. In this section, we study a related question:
Question. Let n > 2 be an integer, and let g := dim(A). Does there exist a special subvariety Y
ofAg,n such that GMT(Y )Zℓ

∼= Gℓ(A) for all prime numbers ℓ?
It should be noted that if the Mumford–Tate conjecture is true, and x is a point on Ag,n
corresponding toA, then the special closure of x provides a positive answer to question 8.2;
hence a positive answer to this question provides additional evidence for the Mumford–
Tate conjecture. Our main goal is to prove the following theorem. On one hand, it shows
that the Y satisfying the conditions of question 8.2 are limited. On the other hand, it pro-
vides a positive answer to this question in the smallest unsolved case of the Mumford–Tate
conjecture.
Theorem 8.22. LetA be a g-dimensional principally polarised abelian variety over a number field
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K ⊂ C, and let n > 2 be an integer. Then there exist at most finitely many special subvarieties
Y of Ag,n such that GMT(Y )Zℓ

∼= Gℓ(A) for all prime numbers ℓ. If A is of Mumford’s type (see
definition 8.27) then at least one such Y exists.
Without loss of generality we may replace K by a finite extension, and we will do so over
the course of the proof. Roughly speaking the proof of the second part of this theorem is as
follows: first, we classify groups ofMumford’s type over a givenfield bymeans of quaternion
algebras. Since quaternion algebras are determined by their local invariants, we can ‘glue’
the Gℓ(A)Qℓ

to a Q-group G. The final step is to combine the integral structures in each
Gℓ(A) to find an integral model ofG.

8.2.1 Groups of Mumford’s type and quaternion algebras

In this sectionwe define groups ofMumford’s type, andwe classify thembymeans of quater-
nion algebras. For thisweneed to generalise the concept of quaternion algebras, and several
of their characteristics, to étale algebras over a given field.
Definition 8.23. Let k be a field, and letE be an étale algebra over k. SupposeE =

∏
iEi,

where eachEi is a field extension of k. A quaternion algebra overE is an (non-commutative)
E-algebra D such that each Di := Ei ⊗E D is a quaternion algebra over Ei. The set of
isomorphism classes of quaternion algebras overE is denotedQuat(E).
Suppose E is an étale algebra over a field k of rank n, and let D be a quaternion algebra
overE. Let CoresE/k(D) be the corestriction ofD fromE to k as defined in [33, 2.3]; this is
a central simple algebra over k of dimension 2n. There is a natural ‘norm’ homomorphism
of groups

Nm : D× → CoresE/k(D)×

That can be interpreted as a morphism of algebraic groups if we consider both the domain
and the codomain as algebraic groups over k (see [48, §4]). If k is algebraically closed the
norm map is described as follows: Since every central simple algebra over k is a matrix
algebra, we haveD× ∼= GL2(k)

n andCoresE/k(D)× ∼= GL2n(k) (also as algebraic groups
over k). The map

Nm : GL2(k)
n → GL2n(k) (8.24)

is the representation of GL2(k)
n obtained by taking the tensor product of the standard

representation of its n factors.
We say that CoresE/k(D) is trivial if it is isomorphic (as a k-algebra) toMat2n(k); denote
the subset of quaternion algebras with trivial corestriction by Quat0(E). The following
classification of quaternion algebras over étale algebras is a straightforward consequence
of the ‘regular’ classification of quaternion algebras over local fields and number fields; see
for example [53, §18] and [30]. For a number field k we denote the set of places of k by S(k).
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Lemma 8.25. Let k be a field, and let E =
∏
iEi be an étale algebra over k, where each Ei is a

finite field extension of k.
1. Suppose k is a local field of characteristic 0; then there is a natural bijection

ψE : Quat(E) ∼−→
⊕
i

1
2Z/Z

whose image consists of all sequences (di)i such that di = 0 for all i with Ei = C. This
map sends Quat0(E) to the subset of all (di)i ∈

⊕
i(

1
2Z/Z) satisfying

∑
i di = 0. For

a quaternion algebra D one has Ei ⊗E D ∼= Mat2(Ei) if and only if the corresponding
sequence satisfies di = 0; if di = 1

2 , thenEi⊗ED is the unique nonsplit quaternion algebra
overEi.

2. Suppose k is a number field, and supposeE is a field extension of k. Then the natural map ∏
w∈S(E)

ψEw

 : Quat(E)→
∏

w∈S(E)

( 12Z/Z)

is injective, and its image equals the set of sequences (dw)w satisfying dw = 0 for almost all v,
dw = 0 ifEw ∼= C, and∑w dw = 0. This map sendsQuat0(E) to the subset of all (dw)w
such that for every v ∈ S(k) one has∑w|v dw = 0.

Remark 8.26. Let k be a number field, and let E be a field extension of k. Since for every
place v of k one has kv ⊗k E ∼=

∏
w|v Ew , lemma 8.25 tells us that the natural map

Quat(E) →
∏

v∈S(k)
Quat(kv ⊗k E)

D 7→ (kv ⊗k D)v

is injective and sendsQuat0(E) into the product of theQuat0(kv ⊗k E).
We will use these algebraic objects to classify the algebraic groups we are interested in.
Definition 8.27. Let k be a field, letG be an algebraic group over k, and let V be a faithful
representation ofG. We say that (G,V ) is ofMumford’s type if the following three conditions
are satisfied:

1. Lie(G) has a one dimensional centre c;
2. Lie(G)k̄ ∼= ck̄ ⊕ sl32,k̄;
3. Lie(G)k̄ acts on Vk̄ by the tensor product of the standard representations C , V1, V2,
V3 of ck̄ and the factors sl2,k̄, respectively.

The set of isomorphism classes of triples of Mumford’s type over k is denotedMum(k). We
say that an abelian varietyAover anumberfieldK is ofMumford’s type if one (or equivalently
all, see [50, Lem. 1.3]) of the pairs (Gℓ(A)Qℓ

,H1
ét(AK̄ ,Qℓ)) is of Mumford’s type overQℓ.
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The abelian varietiesA over a number fieldK of Mumford’s type are extensively studied in
[50] and [51]. Our first task is to classifyMum(k). To do this, we define a EQ-pair over k to
be a pair (E,D), whereE is an étale algebra of rank 3 over k, andD is a quaternion algebra
over E with trivial corestriction to k. The set of isomorphism classes of EQ-pairs over k is
denoted EQ(k). For a field k we can define a map

Ψk : Mum(k)→ EQ(k) (8.28)

as follows: let (G,V ) be of Mumford’s type over k. LetG′ be the derived group ofG, and let
G̃′ be the universal cover ofG′; then G̃′

k̄
∼= SL3

2,k̄
. Its three simple factors form aGal(k̄/k)-

set of cardinality 3, and as such it corresponds to an étale k-algebraE; then G̃′ ∼= ResE/kB,
where B is a form of SL2,E . As is the case over fields, the forms of SL2 over E are in a
one-to-one correspondence to quaternion algebras over E. The fact that G′ has a faithful
8-dimensional representation implies that the quaternion algebra D corresponding to B
has a trivial corestriction; we now defineΨk(G,V ) := (E,D).
Lemma 8.29. Let k be a field. Then the mapΨk of (8.28) is a bijection. It is compatible with field
extensions of k.
Proof. Let (E,D) ∈ EQ(k). Then (8.24) tells us thatNm(D×) ⊂ CoresE/k(D)× ∼= GL8(k)

is of Mumford’s type (together with the standard representation V of GL8(k)), when con-
sidered as an algebraic group over k. One can check that this is the inverse ofΨk, and that
both these maps are compatible with field extensions of k.
Remark 8.30. In our definition of Ψk we find the étale algebra E from the Gal(k̄/k)-set
of simple factors in G̃′. We can also find E directly from G as follows: let T be a maximal
torus ofG defined over k. Then there exist χ, ϱ1, ϱ2, ϱ3 ∈ X∗(T )Q such that the characters
of T present in V are those of the form χ ± ϱ1 ± ϱ2 ± ϱ3, and the Galois action on X∗(T )

is given by a Galois action on the set {±ϱi : i ≤ 3}. From the latter, we get an action of
Gal(k̄/k) on {{±ϱ1}, {±ϱ2}, {±ϱ3}}, and this is theGal(k̄/k)-set corresponding to E. It
does not depend on the choice of T .
We need one more lemma on étale algebras that will be useful later on.
Lemma 8.31. Let Γ be a topological group, and letX and Y be two discrete sets of cardinality 3
with a continuous Γ-action. Suppose that there is a dense subset S ⊂ Γ such that for every s ∈ S
there is an isomorphism of ⟨s⟩-setsX ∼= Y . ThenX ∼= Y as Γ-sets.
Proof. For every s the action of s onX is trivial if and only if the action of s on Y is trivial as
well. Let Bij(X) denote the group of permutations ofX . Since S is dense in Γ this means
that the kernels of the maps ϱX : Γ→ Bij(X) and ϱY : Γ→ Bij(X) are the same. We may
divide out this kernel and assume without loss of generality that the actions are faithful.
In this case Γ is finite, so S = Γ. Upon choosing identifications X ∼= {1, 2, 3} ∼= Y we
get two subgroups ϱX(Γ), ϱY (Γ) ⊂ S3, and we need to prove that these two subgroups
are conjugate. However, since ϱX and ϱY are injective, these two subgroups have the same
cardinality, and inS3 subgroups are determined, up to conjugation, by their cardinality.
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Corollary 8.32. Let k be a number field, and let E and F be two étale algebras of rank 3 over k.
Suppose thatEkv ∼= Fkv as kv-algebras for every finite place v of k. ThenE ∼= F as k-algebras.

Proof. LetX and Y be theGal(k̄/k)-sets corresponding toE andF , respectively. For every
finite place v of k, choose an embedding k̄ ↪→ k̄v ; this induces an injectionGal(k̄v/kv) ↪→
Gal(k̄/k). By Čebotarëv’s density theorem the images of these injections form a dense sub-
set (see [67]). Furthermore, by the assumption the Gal(k̄v/kv)-sets are isomorphic for ev-
ery v. We can now use lemma 8.31 to find thatE and F are isomorphic.

8.2.2 Proof of theorem 8.22

From this point onwards we consider an abelian varietyA over a number fieldK such that
A is of Mumford’s type. For each prime number ℓ we set Gℓ := Gℓ(A). We let Gℓ be the
generic fibre of Gℓ, and we define Vℓ := H1

ét(AK̄ ,Qℓ). Let (Eℓ, Dℓ) ∈ EQ(Qℓ) be the pair
corresponding to the pair (Gℓ, Vℓ) via the mapΨQℓ

of (8.28).
Lemma 8.33. There is a unique étale algebraE overQ such thatQℓ ⊗Q E ∼= Eℓ for all ℓ. ThisE
is a totally real number field.

Proof. Let S be the set of all finite places v of K for which the Frobenius torus Tv exists
(see [9, 3.b]); this is a subset of S(K) of Dirichlet density 1. This Tv is a torus overQ, and it
comes equipped with a canonical representationWv . By replacing S by a subset of density
1 if needed, we may assume that there exists an identification ofQℓ-vector spacesWv,Qℓ

∼=
Vℓ such that Tv,Qℓ

is a maximal torus of Gℓ, for every prime number ℓ different from the
characteristic of v (see [9, Cor. 3.8]). By remark 8.30 there existχ, ϱ1, ϱ2, ϱ3 ∈ X∗(Tv)Q such
that the characters of T present inWv are those of the form χ± ϱ1± ϱ2± ϱ3. LetE be the
étaleQ-algebra corresponding to theGal(Q̄/Q)-set {{±ϱ1}, {±ϱ2}, {±ϱ3}}; this does not
depend on the choice of v. Now let ℓ be a prime number not equal to the characteristic of v.
Since Tv,ℓ is isomorphic to a maximal torus ofGℓ, remark 8.30 tells us that Eℓ ∼= Qℓ ⊗Q E

for all ℓ. Since for every ℓ we can find a v ∈ S whose characteristic does not equal ℓ, this is
actually true for every ℓ. Furthermore, E is the unique étale Q-algebra with this property
by corollary 8.32. SinceGder

ℓ isQℓ-simple for infinitely many ℓ by [54, Thm. 5.13(b)], we see
that Eℓ is a field for infinitely many ℓ; hence E is a field. To prove that E is in fact totally
real, let κv be the residue field of the place v, and let Av be the reduction of A at v; this is
an abelian variety over κv . After replacing K by a finite extension if necessary, we know
by [49, Thm. 2.2] that Av is an ordinary abelian variety for v in a set of Dirichlet density
1. LetW(κv) be the ring of Witt vectors of κv . Since Av is an ordinary abelian variety we
can consider its canonical lift Acan

v , which the unique lift of Av to W(κv) for which the
natural map End(Acan

v ) → End(Av) is a bijection. Choose any embeddingW(κv) ↪→ C;
then MT(Acan

v,C)Q
∼= Tv , and the two representationsWv andH1(Acan,an

v,C ,Q) of this algebraic
group are isomorphic. Then MT(Acan

v ,C)Q ∼ Hdg(Acan
v,C)Q × Gm,Q, where Hdg(Acan

v,C) is the
(integral) Hodge groupof theHodge structureH1(Acan,an

v,C ,Z). ThenT ′ := Hdg(Acan
v,C)Q∩T is
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a maximal torus of the algebraic group Hdg(Acan
v,C)Q, and the rational vector spaceX∗(T ′)Q

can now be identified (in the terminology of remark 8.30) as

X∗(T ′)Q = X∗(T )Q/⟨χ⟩.

Since Hdg(Acan
v,C)(R) is a compact Lie group, we see that complex conjugation acts as−1 on

the X∗(T ′)Q. For the Galois action on {±ϱi : i ≤ 3} this means that complex conjugation
sends each ϱi to −ϱi. It follows that the Gal(Q̄/Q)-set {{±ϱ1}, {±ϱ2}, {±ϱ3}} is trivial,
henceE is totally real.
Lemma 8.34. There exists a special subvariety Y ofAg,4 such that MT(Y )Qℓ

∼= Gℓ(A)Qℓ
for all

prime numbers ℓ.
Proof. LetE be as in lemma 8.34, and choose an isomorphismQℓ⊗QE ∼= Eℓ for every prime
number ℓ. Furthermore, choose an isomorphism R ⊗Q E ∼= R3. These isomorphisms give
us isomorphisms Eℓ ∼=

∏
w|ℓEw and R3 ∼=

∏
w|∞Ew . For every finite place w of E, let

Dw := Ew ⊗Eℓ
Dℓ, where ℓ is such that w | ℓ. Define D∞ := H × H × M2(R) as a

quaternion algebra overR3, and for every infinite placew ofE defineDw := Ew ⊗R3 D∞.
For eachw ∈ S(E)we let dw ∈ 1

2Z/Z be the invariant corresponding toDw . Since eachDℓ

has a trivial corestriction toQℓ, lemma 8.25 shows that∑w|ℓ dw = 0 for all ℓ. Furthermore
our definition ofD∞ implies∑w|∞ dw = 0. By [34, Thm. 3.2], the group Gℓ is quasi-split
for almost all ℓ. In the notation of the definition of the map ΨQℓ

of (8.28) this implies that
G̃′
ℓ
∼= ResEℓ/Qℓ

SL2, hence dw = 0 for almost all w. By lemma 8.25 the sequence (dw)w
now corresponds to a quaternion algebraD overE whose corestriction toQ is trivial. The
construction from [48] now yields a special curve onAg,4 with the desired property.
Remark 8.35. The quaternion algebraD constructed in the proof of 8.34 is not unique and
depends on the chosen isomorphisms Qℓ ⊗Q E ∼= Eℓ. However, the chosen isomorphism
does not matter if all the invariants over ℓ are equal to 0, hence there will only be finitely
many possibilities forD.
Proof of theorem 8.22. The first statement is a direct consequence of remark 8.19. For the
second statement, let Y be as in lemma 8.34, and let B := GMT(S)Q; then Y is the im-
age of an embedding of Shimura varieties, corresponding to an injective morphism of al-
gebraic groups ϱ : B ↪→ GSp2g that induces a morphism of Shimura varieties (B,X) →
(GSp2g,Hg). Consider B as a subgroup of GSp2g via this injection. Let V = Q8 be the
standard symplectic representation of GSp2g , and let Λ ⊂ V be the lattice Z8. Then by
assumptionBQℓ

∼= Gℓ. Furthermore, for ℓ≫ 0we find that modB(Λ)Zℓ
and Gℓ are isomor-

phic; they are both isomorphic to the quotient of the product Gm,Zℓ
× Res(Zℓ⊗OE)/Zℓ

SL2

by its subgroup {
(x, y) ∈ µ2(Zℓ)× µ2(Zℓ ⊗ OE) : x ·NEQℓ

/Qℓ
(y) = 1

}
,

where N(Qℓ⊗E)/Qℓ
: (Qℓ ⊗ E)× → Q×

ℓ is the regular norm map from Galois theory. Let L
be the finite set of ℓ for which modB(Λ)Zℓ

̸∼= Gℓ. For each of ℓ ∈ L, choose an isomorphism
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φℓ : VQℓ
∼−→ Vℓ of symplectic Qℓ-vector spaces that identifies BQℓ

and Gℓ, and letMℓ :=

φ−1
ℓ (H1

ét(AK̄ ,Zℓ)). Let M ⊂ V be the lattice such that MZℓ
= Mℓ for all ℓ ∈ L, and

MZℓ
= ΛZℓ

otherwise; then modB(M)Zℓ
∼= Gℓ for all ℓ. Let g ∈ GSp2g(Q) be such that

gΛ = M . Then inn(g−1) ◦ ϱ is a morphism of Shimura data (B,X) → (GSp2g,Hg), and
any irreducible component of the image of X in A4,n is a special subvariety that satisfies
the conditions of the theorem.
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Ĝ-zip, 74

Hg , 120

I(G,K), 111
Gin(z), 20

J , 101

K, 35
K(h), 35
K(a, b), 35
Kraft type, 35
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lattice, 92

adèlic, 117
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modG(Λ), 93
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model, 23, 92
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order, 94

P , 34
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primitive Kraft graph, 34
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Q
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G (U), 112
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Quat0(E), 129
quotient stack, 20

rĜ, 78
RF (v), 35
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R, 28
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UC, 105
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Wn(G ), 41
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Samenvatting

“‘Wat is het nut van een boek,’ dacht Alice, ‘zonder tekeningen en gesprekken?”’
Lewis Carroll, Alice in Wonderland, 1865

Deze samenvatting is geschreven onder de aanname dat iedereen die de algebraïsche meet-
kunde genoeg beheerst om een gedetailleerde, technische Nederlandse samenvatting van
dit proefschrift te begrĳpen, ook het Engels voldoende beheerst om uit hoofdstukken 0, 1
en 6 een goede indruk te krĳgen wat er in dit proefschrift staat. Deze inleiding is dan ook
bedoeld om de geïnteresseerde leek te laten proeven aan het soort wiskunde waarmee ik
me de afgelopen vier jaar bezig heb gehouden.
Vertaald naar het het Nederlands is de titel van dit proefschrift Moduli van abelse variëteiten
via lineair-algebraïsche groepen. Naarmĳnmening is het eerste woord in deze titel het belang-
rĳkst; hieronder zal ik dan ook proberen uit te leggen wat het begrip moduliruimte inhoudt
aan de hand van een voorbeeld.

Driehoeken

In dit proefschrift bestudeer ik een aantal verschillende meetkundige objecten. Deze ob-
jecten zĳn vaak lastig te visualiseren, omdat ze van een hogere dimensie zĳn dan mensen
zich voor kunnen stellen (de ‘kleinste’ objecten die ik bekĳk zĳn al vierdimensionaal). Om
het toch een beetje begrĳpelĳk te houden, ga ik het in dit hoofdstuk hebben over meetkun-
dige figuren waar de meeste mensen wat meer ervaring mee hebben, namelĳk driehoeken.
In een later hoofdstukje kom ik terug op hoe je als wiskundige meetkunde kan doen met
dingen die je je moeilijk voor kunt stellen.
Op de middelbare school zullen veel mensen geleerd hebben hoe je een driehoek kunt con-
strueren. Dit gaat als volgt: Stel dat je een driehoek met zĳden van 3, 4 en 5 cm wil con-
strueren. Dan begin je bijvoorbeeld door een lĳnstuk van 5 cm te tekenen. Vervolgens teken
je (met een passer) een cirkel met een straal van 4 cmmet als middelpunt het ene eindpunt
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van je lĳnstuk, en een cirkel met straal 3 cmmet als middelpunt het andere eindpunt van je
lĳnstuk. Daarna kies je één van de twee snĳpunten van de twee cirkels uit, en daar trek je
vanuit de eindpunten lĳnen naar. Deze constructie kun je zien in het plaatje hieronder:

5 cm

4 cm 3 cm

Zo kun je elke driehoek construeren, als je maar de zĳden a, b en c gegeven krĳgt. Op deze
constructie is wel wat aan te merken. In het plaatje hieronder staan de driehoeken die we
hadden gekregen door de afstanden 3 cm, 4 cm en 5 cm in een andere volgorde te gebruiken:

Zoals je ziet krĳgen we eigenlĳk steeds dezelfde driehoek, maar dan gedraaid en mogelĳk
gespiegeld. Ook als we in plaats daarvan een driehoek met zĳden 30, 40, en 50 cm hadden
genomen had het eigenlĳk niet uitgemaakt; we hadden dezelfde driehoek gekregen, maar
dan 10 keer zo groot.
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Een driehoek wordt dus gegeven door de lengtes van zĳn zĳden a, b en c. Door te draaien
en te spiegelen kunnen we aannemen dat deze op grootte geordend zĳn, dat wil zeggen
a ≤ b ≤ c. Door de driehoek te vergroten of te verkleinen kunnen we aannemen dat c = 1

cm; als we een willekeurige driehoek hebben, dan kunnen we die vergroten of verkleinen
totdat de langste zĳde 1 cm lang is. We nemen dus aan dat a ≤ b ≤ 1. Nu is het zo dat
niet elke keuze van a en b een driehoek oplevert: als a en b te kort zĳn, dan lukt het niet om
zoals hierboven een driehoek te construeren, omdat de cirkels elkaar niet snĳden, zoals in
het plaatje hieronder:

Er bestaat een driehoekmet lengtes a, b en 1 cmdan en slechts dan als a+b ≥ 1 cm. Kortom,
we kunnen elke vorm driehoek krĳgen door een driehoek te maken met zĳden a, b en 1 cm,
en er geldt a ≤ b ≤ 1 cm, en a+ b ≥ 1 cm. Laten we nu kĳken hoe we deze informatie op
een goede manier ‘op kunnen slaan’. We kunnen het platte vlak nemen, en een assenstelsel
kiezen met coördinaten x en y. Hierin kunnen we het gebied afbakenen van alle punten
(x, y)waarvoor geldt x ≤ y ≤ 1 en x+ y > 1. Dit gebied noemen weM, en we kunnen dit
zien in het plaatje1 op de volgende pagina.

1Ik sta mezelf hier een beetje Engelse notatie toe door kommagetallen met een punt te schrĳven, omdat
(0.5, 0.5) duidelĳker is dan (0, 5, 0, 5).
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(0.5, 0.5)

(1, 1)

(0, 1)

M

De bovenzĳde en de rechterzĳde van de driehoek horen wel bijM, maar de linkerzĳde niet:
de linkerzĳde zĳn namelĳk punten waarvoor geldt x + y = 1, en één van de voorwaar-
den voorM is dat x + y > 1. Omdat we de ongelĳkheden dieM definiëren slim hebben
gekozen, correspondeert ieder punt (x, y) vanMmet een driehoek, namelĳk een driehoek
met zĳden van lengte x cm, y cm en 1 cm. Zo correspondeert het punt (0.6, 0.8) inMmet
een driehoek met zĳden van 0.6 cm, 0.8 cm en 1 cm (of een driehoek met zĳden van 6, 8 en
10 cm, omdat wemogen vergroten en verkleinen). Aan de andere kant kunnen we voor elke
driehoek een punt vanM vinden die ermee correspondeert, en dus kunnen we zeggen dat
M de verzameling van alle driehoeken classificeert. Tegelĳkertĳd is het zo datM zelf een
meetkundig object is: het is een driehoek (met een missende zĳde) in het xy-vlak.

Zo’n meetkundig object waarbĳ elk punt staat voor een ander meetkundig object wordt een
moduliruimte genoemd, en deze spelen een belangrĳke rol in de algebraïsche meetkunde.
Wat moduliruimten zo belangrĳk maakt, is dat één enkel meetkundig object, de moduli-
ruimte, informatie bevat over oneindig veel meetkundige objecten. Zo kunnen we iets te
weten komen over alle driehoeken, en hun onderlinge relaties, door het ene objectM te
bestuderen. Ik sluit dit hoofdstukje af met twee voorbeelden van hoe we de meetkunde van
M kunnen gebruiken om driehoeken te bestuderen. Ten eerste, als we twee driehoekenA
enB hebben, zoals in het plaatje hieronder, dan kunnen we inM een pad maken tussen de
punten die corresponderen metA enB. Door over dit pad te lopen kunnen we driehoekA
geleidelĳk vervormen tot driehoekB: een punt halverwegehet pad correspondeertmet een
driehoek die qua vorm ‘halverwege’ ligt tussen driehoekA en driehoekB. Voor driehoeken
is dit misschien niet zo bĳzonder, maar het kunnen vervormen van wiskundige objecten is
een belangrĳk trucje in de algebraïsche meetkunde, en moduliruimten geven een manier
om dat te doen.
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A B
A

B
M

Ten tweede is het mogelĳk om eigenschappen van een driehoek af te lezen aan de hand van
de positie van het punt opM datmet die driehoek correspondeert. In het plaatje hieronder
staan een aantal driehoeken met bĳzondere eigenschappen:

De groene driehoek is gelĳkbenig, dat wil zeggen dat hĳ twee even grote zĳden en twee even
grote hoeken heeft. De blauwe driehoek is gelĳkzĳdig: alle hoeken zĳn even groot en alle zĳ-
den zĳn even groot. De rode driehoek is rechthoekig: deze heeft een hoek van 90 graden. Tot
slot is de oranje driehoek zowel rechthoekig als gelĳkbenig. Het blĳkt dat deze eigenschap-
pen vandriehoeken terug te vinden zĳn in demoduliruimteM. In het plaatje hieronder zĳn
de punten vanM die op de twee groene lĳnen liggen precies de punten die corresponderen
met gelĳkbenige driehoeken. Op dezelfde manier kunnen we ook gelĳkzĳdigheid (blauw),
rechthoekigheid (rood), en de combinatie van rechthoekigheid en gelĳkbenigheid (oranje)
terugzien als meetkundige figuren inM; zie de figuur op de volgende pagina.2

2Opgave voor mensen met een wiskundige achtergrond: laat zien dat de rode boog het deel van de cirkel met
straal 1 en middelpunt (0, 0) is dat inM bevat is.
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Dit warenmaar kleine voorbeelden van wat moduliruimten zĳn, en wat voor handige eigen-
schappen ze hebben. Hoewel dit proefschrift niet over driehoeken gaat, maar over inge-
wikkeldere meetkundige objecten genaamd abelse variëteiten is het principe hetzelfde: Er
bestaat een moduliruimte van abelse variëteiten, en we kunnen alle abelse variëteiten in
één keer bestuderen door de meetkunde van deze moduliruimte beter te begrĳpen.

Meetkunde in hogere dimensies

De abelse variëteiten waar dit proefschrift over gaat, zĳn weliswaar meetkundige objecten,
maar niet helemaal in dezelfde betekenis als de driehoeken die hierboven besproken zĳn.
Een eerste verschil is dat deze abelse variëteiten vaak hoger-dimensionaal zĳn; de abelse
variëteiten die ik in sectie 8.2 bespreek zĳn vierdimensionaal, maar voor de rest gaat dit
proefschrift over abelse variëteiten van elke dimensie. Hoe kun je meetkunde doen als je in
een ruimte werkt die zoveel dimensies heeft dat je het niet voor je kunt zien? Dit kunnenwe
laten zien aan de hand van een voorbeeld. Neem de cirkel in het xy-vlak met middelpunt
(0, 0) en straal 1:

−4 −2 2 4

−2

2

Zoals sommigen wel op de middelbare school geleerd hebben, kunnen we deze cirkel ook
beschrĳven met een vergelĳking: De punten op de cirkel zĳn namelĳk alle punten (x, y)

waarvoor geldt
x2 + y2 = 1.
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Het mooie is nu dat we de cirkel ook kunnen bestuderen aan de hand van deze vergelĳk-
ing. Om een voorbeeld te geven, een cirkel heeft de eigenschap dat elke (rechte) lĳn een
cirkel hoogstens in twee punten snĳdt. Het blĳkt dat dit te maken heeft met het feit dat
de vergelĳking hierboven alleen kwadraten bevat, en een kwadratische vergelĳking hoog-
stens twee oplossingen heeft. Op deze manier kunnen we meetkundige eigenschappen van
de cirkel bestuderen door de algebraïsche eigenschappen van de vergelĳking te bestuderen.
Het mooie is nu dat we dit nu ook kunnen toepassen op andere vergelĳkingen, zoals

x2 + y2 + z2 + v2 + w2 = 1.

Dit is een vergelĳking in vĳf variabelen, enwe kunnen het dus beschouwen als een vergelĳk-
ing die een meetkundig object in de vĳfdimensionale xyzvw-ruimte definieert. Hoewel we
ons deze ruimte en dit object moeilĳk voor kunnen stellen, kunnen we alsnog zĳn meet-
kundige eigenschappen berekenen aan de hand van deze vergelĳking. Hoewel abelse varië-
teiten gegeven worden door meerdere (en ingewikkeldere) vergelĳkingen, is het principe
hetzelfde. Een tweede voordeel van deze aanpak is dat we dit soort vergelĳkingen ook kun-
nen opstellen in andere ‘getallensystemen’ dan gebruikelĳk. De x en y in de definitie van
de cirkel zĳn reële getallen, dat wil zeggen alle getallen die je van de middelbare school kent
(positief en negatief, met eventueel oneindig veel cĳfers achter de komma). Er worden
in de wiskunde een hoop andere getallensystemen gebruikt dan de reële getallen, en op
deze manier kunnen we ook in deze getallensystemen meetkunde doen. Een belangrijk
voorbeeld hiervan zĳn eindige getallensystemen: omdat deze ‘klein’ zijn vergeleken met de
oneindig grote getallensystemen die meestal gebruikt worden, zijn ze relatief makkelijk om
mee te werken, en hierdoor spelen ze een belangrijke rol in de theoretische wiskunde. Ze
hebben ook praktische toepassingen: demeetkundige eigenschappen van abelse variëteiten
in eindige getallensystemen spelen een belangrĳke rol in de cryptografie.

Waar gaat dit proefschrift over?

In dit proefschrift probeer ik demoduliruimtenvan abelse variëteiten te beschrĳven. Abelse
variëteiten zĳnmeetkundige objectendie eenbelangrĳke rol spelen in de algebraïschemeet-
kunde, aan de ene kant omdat ze veel symmetrie hebben en daardoor makkelĳk te bestud-
eren zĳn, en aan de andere kant omdat ze overal opduiken, van de getaltheorie tot de cryp-
tografie. Abelse variëteiten blĳken, net zoals driehoeken hierboven, moduliruimten te heb-
ben, en door deze moduliruimten te bestuderen kunnen we meer over abelse variëteiten te
weten komen.
Ik beschrĳfmoduliruimtenvanabelse variëteiten aandehandvan lineair-algebraïsche groepen.
Lineair-algebraïsche groepen zĳnwiskundige objectenuit de lineaire algebra. Dit is eenvakge-
bied dat niet alleen in de wiskunde, maar zo ongeveer in alle bètavakken erg belangrĳk is,
omdat je er snel en eenvoudig berekeningen mee kunt doen in multidimensionale ruimten.
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Door eigenschappen vanmoduliruimten te vertalen naar lineair-algebraïsche groepen, kun-
nen meetkundige eigenschappen van deze moduliruimten ontdekt worden doordat we ze
expliciet uit kunnen rekenen.
Dit proefschrift bestaat uit twee delen die los van elkaar gelezen kunnen worden. In beide
delen bestudeer ik een beschrĳving van moduliruimten van abelse variëteiten in termen
van lineair-algebraïsche groepen. Deze beschrĳvingen waren eerder bedacht door andere
wiskundigen, en ik probeer ze te verbeteren om er nieuwe resultatenmee te kunnen vinden.
Het eerste deel gaat over moduliruimten over eindige getallensystemen. In deze context
zĳn de moduliruimten zelf ook ‘eindig’, en ik gebruik de beschrĳving die ik heb verbeterd
om een telformule te vinden die uitdrukt hoe groot deze moduliruimten zĳn. Het tweede
deel gaat over een manier om eigenschappen van deelruimten van moduliruimten uit te
drukken in lineair-algebraïsche groepen. Ik verbeter deze beschrĳving met behulp van de
getaltheorie, en ik laat zien dat deze verbeterde beschrĳving een stuk meer informatie over
de moduliruimte geeft.
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