Moduli of abelian varieties via
linear algebraic groups

M

APer)
L (Sus)
A (Sus)
c Gory || Pors || !
< (Per) ([D (Per) F(Per) = || Zer]| e
5 deos | () D] 5] [y 050 5] 150
sy) D Lend A NI S AN S >
o/ | h
! | iRz
4 T
|

Milan Lopuhaa-Zwakenberg



Moduli of abelian varieties via linear algebraic groups

Proefschrift
ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. J.H,J.M. van Krieken,
volgens besluit van het college van decanen
in het openbaar te verdedigen op dinsdag 25 september 2018
om 14:30 uur precies

door
Milan Abel Lopuhai
geboren op 25 april 1990
te Amsterdam



Promotor: Prof.dr. B.J.J. Moonen

Manuscriptcommissie:  Prof.dr. G.J. Heckman
Prof.dr. S.J. Edixhoven (Universiteit Leiden)
Dr. A.L. Kret (Universiteit van Amsterdam)
Prof.dr. L.D.J. Taelman (Universiteit van Amsterdam)
Prof.dr. T. Wedhorn (Technische Universitit Darmstadt, Duitsland)



ST I v 3=t 1T G T 16 KT T T o T 3o T TT T 16 KT 7 T < I Ty T T 7 16
YT I T QT 16 KT 77 1633 v 32T B 17 1 € T v 16 KT T <y 61 Gy s iy T/ T
R T (B YRl I O AKE I K KT M K77 6
Bisotiin (Old Persian text) i 1-3, [28].






Contents 5

5
D General introduction 7
I Point counts and zeta functiong 13
15
P Point counts and zeta functions of quotient stacks 19
2.1  Point counts on torsion stacksI ......................... 19

2.2 Zeta functions of algebraicstackg . . . . . . ... ... ... ... 27
Stacks of truncated Barsotti-Tate groups 31

3.1 Dieudonnémoduled . . .. ... 31

3.2 Classification of p-groups . . . . ... 34

3.3 Morphism and automorphism scheme5| .................... 38

3.4 Zetafunctions of stacks of BT,| . . . . o v 41
Stacks of BT, -flagg 45

4.1 Chain words and categories . . . . . .. ... 47

4.2 Point counts of chainstacks . . . . .. ... ... 52

4.3 Shortcuts for manual calculation| . . . . ... ... .............. 56

44 ANexample . . . .. 61

b Stacks of G-zips 69
b.l Weyl groups and Levi decompositionsl ..................... 70
5.1.1  The Weyl group of a connected reductive groug . . . . ....... 70

5.1.2  The Weyl group of a nonconnected reductive groug . . . . . . . .. 71

5.1.3  Levi decomposition of nonconnected groups . . . . . .. ... ... 72

5.2 G-ZIDY .« . e e e e e 73

5.3 Algebraiczipdatd . . ... ... 78

5.4 Zeta functions of stacks of G-zipS . . . . o o 80



6 Contents

II Integral models of reductive groups 85
6 Introductio 87
7 Integral models in representations 91
|7.1 Lattices, models, Hopf algebras and Lie algebraﬁi ................ 92
7.1.1  Models of reductive groupg . . . . . . ..o 92

7.1.2 Hopfalgebrasand Liealgebrad . . . .. ................ 94

7.1.3 Lattices in vector spaces over p-adic fieldsl .............. 96

7.2 Representations of split reductive groups . . . . . ... ... ... ..., 97

7.3  Split reductive groups over local fieldsl ..................... 99
7.3.1 Lattices in representationsi ....................... 100

7.3.2  Chevalleylatticed . . .. .. ......... .. ..., 104

733 Chevalley-invariant lattices . . . . .. ..ot 106

7.3.4  Models of split reductive groups . . . . ... ... 108

|7.4 Nonsplit reductive Sroups . . . . . o v oo v vt e 111
7.4.1 Bruhat-Titsbuildings . . . ... ... ........ ... ... ... 111

7.4.2  Compact open subgroups and quotienty . . . . . .. ......... 112

7.4.3  Models of reductive groups . . . . . ..o e 115

7.5 Reductive groups over number field . . . . ... ... ............ 117

B Integral Mumford-Tate groupy 119
B.1 Generic integral Mumford-Tate groupg . . . ... .............. 120
8.1.1 Therationalcasg . . ... .. ... ..., 120

8.1.2 Theintegralcasg . ... .......... .. uiiiiiiii.. 125

B.2 Connection to the Mumford-Tate conjecturd . . . .............. 127
8.2.1  Groups of Mumford’s type and quaternion algebrag . . . ... ... 129

8.2.2  Proof of theorem 8.22 . . . . . . . oo 132

B1b graphy 135
141
145
Acknowledgements 153

Curriculum Vitae 155
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Chapter 0

General introduction

This dissertation focuses on two unrelated questions about group-theoretical invariants as-
sociated to abelian varieties: one concerning complex abelian varieties, and one concerning
abelian varieties over finite fields. It turns out that both questions are best framed in the
context of moduli spaces and stacks associated to abelian varieties. We can then answer
these questions by studying these moduli spaces and stacks in the language of linear alge-
braic groups. For expository convenience, we discuss the two parts of this thesis in opposite
order.

II: Integral Mumford-Tate groups of complex abelian vari-
eties

Let A be a principally polarised complex abelian variety of dimension g. Let A be the in-
tegral Betti homology group H'(A*", Z); this is a free abelian group of rank 2g, and the
polarisation induces a perfect pairing ¢ on A. From Hodge theory, we know that A natu-
rally is a polarised integral Hodge structure, i.e. there is a natural group homomorphism
h: C* — GSp(Ag,¥r). The Zariski closure MT(A) of im(h) in the integral group scheme
GSp(A, v) is called the (integral) Mumford-Tate group of A; it is a flat group scheme over Z.
Its generic fibre MT(A)q is a connected reductive algebraic group over Q, and it is known
to contain important information about A; for example, MT(A)g is a torus if and only if A
is a CM abelian variety. An advantage of looking at the generic fibre is that we have a well-
developed theory of reductive algebraic groups and their representations, which makes it
easier to study A via MT(A)g. A disadvantage of looking at only this generic fibre, how-
ever, is that it is invariant under isogenies; as such we can only obtain information about
the isogeny class of A. In part II, we study how much ‘extra’ information we can obtain by
taking additional integral information into account:
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Question. Let A be a complex abelian variety. To what extent does the integral group scheme MT(A)
uniquely determine A?

In general, the group scheme MT(A) does not determine A uniquely. We can see this by
looking at a moduli space of g-dimensional abelian varieties: this is the complex scheme A,
such that for every complex scheme S, there is a natural bijection

Hom(S, A,) = { g-dim. princ. pol. abelian schemes X /.S + extra data} /=

The extra data is needed to ensure that .4, exists as a quasiprojective complex variety. We
can deform the abelian variety A by conjugating the Hodge structure morphism h with an
element x € GSp(Ag, ¥Rr). Let ¢ = MT(A); then the abelian varieties obtained by conjuga-
ting 1 by elements of 4 (R) define a complex subvariety of A,. The irreducible components
of the subvarieties obtained in this way are called special subvarieties. they often admit a
moduli interpretation; for instance, the subvariety of A, parametrising abelian varieties
with an action of a given ring R is a special subvariety. If Y C A, is a special subvariety
obtained from A as above, then a sufficiently generic point y/ € Y (C) corresponds to a
complex abelian variety A’ satisfying MT(A’) = ¢; as such we call ¢ the generic Mumford-
Tate group of Y, denoted GMT(Y"). The question then becomes to what extent ¢ uniquely
determines Y. We answer this question in chapter E;

Answer. (Theorem Ell) Let & be a group scheme over Z. Then there are at most finitely many
special subvarieties Y of Ay such that GMT(Y') = ¢.

In general, this is the best we can hope for, since in general a class group-like obstruction
will prevent ¢ from corresponding to a single special subvariety. As might be expected
from this short discussion, the main ingredient in the proof of theorem B.1 is the theory of
linear algebraic groups and their representations. In chapter H, we prove a theorem ([7.1)
concerning the integral group schemes that appear in the context of representations of
linear algebraic groups. In chapter g we use this result to prove theorem B.1. We also study
the consequences of this theorem in the context of the Mumford-Tate conjecture, a well-
known conjecture concerning the compatibility between the singular and étale cohomology
of an abelian variety.

I: Torsion subgroups of abelian varieties over finite fields

Let p be a prime number, let n be a positive integer, and let A be an abelian variety over a
field k. Let A[p"] be the p"-torsion subgroup of A, considered as a commutative group
scheme over k. If char(k) # p, then after replacing k by its algebraic closure we find
Alp™ =2 (Z) p”Z)i'dim(A). If char(k) = p, we find a different behaviour: the group scheme
Alp™] will no longer be smooth, and even over algebraically closed fields there are multi-
ple nonisomorphic possibilities for how the infinitesimal structure manifests. For elliptic
curves and n = 1, this gives us the distinction between supersingular and ordinary elliptic
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curves. If k is a finite field, then there are only finitely many options for A[p™], provided
we fix dim(A). This leads to the following question:

Question. Let k be a finite field of characteristic p, and let g and n be positive integers. How many
options are there for the k-group scheme A[p™], where A ranges over the abelian varieties over k of
dimension g?

Such a group A[p"] is called a truncated Barsotti-Tate group of level n, or BT,, for short; for a
given F-scheme S, the BT,, over S with some given numerical invariants (such as its order
2g) form a category BT, (S). One way to answer the question above is to look at moduli
stacks of BT,,. The theory of algebraic stacks is quite involved, but naively one should think
of a moduli stack BT, as a categorical construction such that for every F,-scheme S, we
get a ‘natural’ geometrical structure on the category BT,,(S) (as opposed to a moduli space,
where we get a geometrical structure on the set of isomorphism classes [BT,,(.5)]). Moduli
stacks often appear in cases where moduli spaces fail to exist. For a given finite field &, we
define the point count of BT, over k to be

#BT, (k)= Y pryesrwe Ault &)’

z€[BT1 (k)]

where [BT,, (k)] is the set of isomorphism classes in the category BT,, (k); in other words, we
count the isomorphism classes of BT,,, but we count an object  with weight (#Aut(x)) 1.
This choice is motivated by the fact that this definition of point counts has the same rela-
tion to the cohomology of the stack BT,, as what we would expect from the cohomology
of schemes (see theorem @). Because of this, we want to answer the question above by
calculating #BT,, (k). In chapter H, we study the point counts of stacks as well as their zeta
functions, which are rational power series that contain information about all point counts
over finite fields. We develop methods to calculate the point counts and zeta functions of
quotient stacks, which are stacks [G\ X | that are algebro-geometric avatars of the quotient of
avariety X by the action of a linear algebraic group G. In chapter B, we apply these meth-
ods to stacks of the form BT,,, by studying how BT,, over finite fields can be described via
linear algebraic groups, and how this relates the stack BT,, to quotient stacks. This allows
us to answer the question above:

Answer. (Theorem ) Let BT, be a moduli stack of BT,,. Then we can find direct formulas for
the point counts and zeta functions of BT,,.

We also apply these methods to two generalisations of the stack BT;. In chapter H we con-
sider flags of group schemes that can appear as flags in a BT;. Although we cannot give a
direct formula for the point counts and zeta functions of moduli stacks X of such flags, we
will give an algorithm that finds a polynomial R € Z[X, X ~!] such that #X(F,) = R(q)
for all powers ¢ of p. In chapter H we consider stacks of BT; with some additional struc-
ture, such as a polarisation or a given endomorphism algebra; previous research ([55], [56])
has formalised these to so-called G-zips, which are objects in the theory of linear algebraic
groups. Using the description of stacks of G-zips in [56], and our results on the point counts
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and zeta functions of quotient stacks, we are able to find a direct formula for both the point
counts and the zeta functions of stacks of G-zips.

About the cover

The cover of this dissertation is adapted from plate XIII in [28]. It is a schematic depiction
of the rock relief on Bisotiin mountain (0 s.) in Iran. The relief depicts the Persian king
Darius along with representatives of various conquered peoples. The relief is accompanied
by a description of Darius’ empire and his reign in the three languages Old Persian, Elamite,
and Akkadian; the first lines of the Old Persian text form the motto of this dissertation.
Transliterated and translated the text reads as follows:

Adam Darayavaus, x$ayabiya vazraka, xSayadiya xsayabiya-
nam, xSayadiya Parsaiy, x$ayathiya dahyanam, Vista-
spahyd puga, ArSamahyad napd, Haxamanisiya.

‘I am Darius, the great king, king of kings, the king of Persia, the king of countries, the son
of Hystaspes, the grandson of Arsames, the Achaemenid’

I have chosen this cover for two reasons. The first reason concerns the title ‘king of kings’,
i.e. xSayabiya x5ayabiyanam. In the Achaemenid empire, and especially in the Median and
Assyrian empires before that, this title was to be taken literally: a king was the ruler of a city
or province, and the ruler of the entire empire had the same relation to these kings as a king
had to its subjects.ﬂ In algebraic geometry, the position of king of kings is held by a (fine)
moduli space, which can be considered a ‘space of spaces’: for example, an abelian variety
can (somewhat naively) be considered as a set of points enriched with a geometric structure.
In the same way a moduli space of abelian varieties enriches a set of abelian varieties with
a geometric structure. As such the relation between a moduli space and abelian varieties is
the same as the relation between an abelian variety and its points.

The second reason concerns the importance of this inscription for the decipherment of
cuneiform. Cuneiform was used to write a wide variety of Near Eastern languages since
3100 BC. After it fell into disuse in the first century AD, the script remained undeciphered
for a long time. The first cuneiform language to be deciphered was Old Persian in the 1830s,
which could be deciphered due to the fact that it used an alphabetic system with only 50
signs, and because it was related to Modern Persian and Sanskrit, two languages already
known to orientalists. Most cuneiform languages, however, used variants of the far more
complicated Sumerian cuneiform, which had hundreds of signs. The key to deciphering
this system was the inscription at Bisottin, which played the same role as the Rosetta stone
did for the decipherment of Egyptian hieroglyphs: the fact that the Old Persian text could

In the Achaemenid empire the satrapies were ruled by satraps (viceroys) rather than actual kings, and the
king of kings was officially also king of each of the individual satrapies. Aside from terminological differences the
same principle applied, however.
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be read allowed for the decipherment of the Akkadian text, which was discovered to be a
Semitic language. This provided a starting point for the translation of the vast amount of
literature in Akkadian, and from there the decipherment of the other languages written in
Sumerian cuneiform.

The theme of translation and decipherment plays a large role in this dissertation. In this
analogy, the role of Akkadian is played by moduli spaces of abelian varieties, whose geomet-
ric structure we wish to understand. The role of Old Persian is played by linear algebraic
groups: while to the layman these are as rnagicalH as the moduli spaces themselves, alge-
braic geometers have extensively studied their structure and classification. By describing
moduli spaces of abelian varieties in terms of linear algebraic groups we are given more
tools to work with in order to understand these moduli spaces.

2The reader will be delighted to know that the English word magic is derived from the Old Persian word magus
‘Zoroastrian priest’, which is attested in the Bisotiin inscription.



12

Chapter 0. General introduction




Part 1

Point counts and zeta functions






Chapter 1. Introduction 15

Chapter 1

Introduction

Throughout this part we fix a prime number p. Let & be a field of characteristic p. A trun-
cated Barsotti-Tate group of level 1 (henceforth BT;) of height & is a finite group scheme of
order p" over k of exponent p that can be realised as the p-torsion of a p-divisible group
or Barsotti-Tate group (see definition @). The motivating example for BT comes from
abelian varieties: if A is an abelian variety over k, then its p-torsion A[p] is a BT of height
2 - dim(A). The BT, over an algebraically closed field k were first classified in [32]. These
results were used in [52] to obtain the so-called Ekedahl-Oort stratification on the moduli
space of abelian varieties in characteristic p. We can describe this stratification in terms
of algebraic stacks: BT; of a given height (plus some other numerical invariants) form an
algebraic stack of finite type BT, over F,, (see [70]). If A, v is the moduli space of princi-
pally polarised abelian varieties of dimension g with full level NV structure in characteristic
p, then there exists a smooth, surjective morphism of IF),-stacks A, n — BT (see [71]).
The fibres of this morphism form the strata of the Ekedahl-Oort stratification.

The goal of this chapter is to study the stack BT; and several related stacks, via their point
counts and their zeta functions. For a power g of p and an algebraic stack X over [F,, one can
define the point count of the category X(F,) (definition @); by this we mean that we count
the isomorphism classes in X(F, ), where the class of an object z is given the weight Wlt(x)'
As is the case for schemes this point count is in fact related to the ¢-adic cohomology of
X (theorem @). The point counts #X(IF,,) for varying ¢ are organised in the zeta function
Z(X,t) € Q[t] (definition ). The zeta function represents a meromorphic function
that is defined on all of C. Furthermore, if a stack is a Deligne-Mumford stack, then its zeta

function is a rational function.

Via Dieudonné theory there is a one-to-one correspondence between BT; over a perfect
field k of characteristic p and level 1 Dieudonné modules over k; these are k-vector spaces
with some semilinear data (definition @). In terms of algebraic stacks, we find a moduli
stack D; of level 1 Dieudonné modules (with some numerical invariants), together with a
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morphism of stacks
BT, — Dy

that is an equivalence of categories on perfect fields. As the zeta function of a stack only
depends on its values on finite fields we find Z(BT;,t) = Z(D1,t). The advantage of this
approach is that we can describe the stack D; via quotient stacks [G\ X], where G is an
algebraic group over I, acting on a variety X. In chapter H we develop methods to calculate
the point counts and zeta functions of quotient stacks. We apply these methods to three
generalisations of moduli stacks of BTy:

1. Instead of looking at BT; we may look at BT,, for n > 1, i.e. truncated Barsotti-Tate
groups of level n > 1. The main examples of these are p™-torsion kernels A[p"] of
abelian varieties A over a field k. Via Dieudonné theory these correspond to free
modules over W,, (k), the n-th truncated Witt vector ring of k, along with some semi-
linear data. Over an algebraically closed field the BT,,; 1 extending a given BT,, were
classified via orbits under the action of an algebraic group on an affine space in [69]
and [19]. By interpreting these results in a ‘stacky’ way we can use our results on zeta
functions on quotient stacks to determine the zeta function of moduli stacks of BT,,s
(see theorem B.33).

2. Instead of looking at BT, we look at ‘flags’ of k-group schemes of the form G; C
G2 C - -+ C G, where G, is a BT;. On the level of abelian varieties this corresponds
to the reduction of a moduli space with partial level n structure rather than full level
n structure. If BTFlag is a moduli stack of such flags, then we provide an algorithm
() to calculate a polynomial R € Z[X, X ~!] such that #BTFlag(F,) = R(q) for
all powers q of p. This also gives us an expression for the zeta function Z(BTFlag, t).

3. We can generalise the concept of BT; to that of BT; with some additional structure,
such as the action of a given ring of endomorphisms, or a polarisation. For instance, in
the study of abelian varieties such objects arise if we replace A, with the reduction of
a Shimura variety of PEL type (see [[70]). Over an algebraically closed field these were
first classified in [43], in terms of the Weyl group of an associated reductive group G
over IF,,. The underlying semilinear algebra objects were later generalised in [47] to
so-called F-zips. The classification of F-zips, as well as the classification of F-zips
with additional structure, could again be stated in terms of the Weyl group of a re-
ductive group G. These F'-zips were again generalised in [55] and [56] to so-called
G-zips, where the reductive group G is the primordial object. In [56] moduli stacks of
G-zips are realised as quotient stacks. We use this description, along with (a general-
isation of) the description of the automorphism schemes of G-zips, to calculate the
zeta functions of moduli stacks of G-zips (see theorem ).

The structure of this part is as follows. In chapter H we define point counts and zeta func-
tions, and we develop some methods to calculate them in the case of quotient stacks. In
chapter H we discuss the relation between BT,, and Dieudonné modules, and we calculate
the zeta function of moduli stacks of BT,,. In chapter H we find an algorithm to calculate the
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zeta function of moduli stacks of BT;-flags. In chapter E we introduce G-zips as defined in
[56], and we calculate the zeta function of moduli stacks of G-zips.

Parts of this part of the dissertation, namely section @ and chapter E, are taken from [37],
albeit slightly modified. Parts of section p.1}, in particular proposition and the results
leading up to it, are also present in this preprint.

As mentioned before we fix a prime number p. Furthermore, we will use the notation Hom,
Aut, Stab, etc. for homomorphism sets (or abelian groups), automorphism groups, and
stabiliser groups, while we will use Hom, Aut, Stab, etc. for the underlying schemes, if these
exist. For a power g of p we write Fr, for the ¢g-th power Frobenius map.
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Chapter 2

Point counts and zeta functions
of quotient stacks

In this chapter we develop some tools for determining the point counts and zeta functions
of quotient stacks over finite fields. We will use these methods in the following chapters
to calculate the zeta functions of moduli stacks related to truncated Barsotti-Tate groups.
The main results of this chapter (propositions , , and , and theorem ) are
unfortunately quite technical in nature, but we need them in this form in order to apply
them in the following chapters.

2.1 Point counts on torsion stacks

Throughout this section we let k be a finite field. In this section we study the point counts
of categories, in particular those associated to quotient stacks. If C is an (essentially small)
category, we write [C] for its set of isomorphism classes.

Definition 2.1. Let Cbe a category. Then C is essentially finite if it is equivalent to a category
with finitely many objects and morphisms. If C is essentially finite, we define its point count
to be

1

#(C = —_—.

¢ Z #Aut(x)
z€([C]

If X is an algebraic stack of finite type over k, then for every finite extension k' of k the
category X(k') is essentially finite. The following theorem relates the point count of an
algebraic stack to its cohomology.
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Theorem 2.2. (See [63, 1.1]) Let X be an algebraic stack of finite type over k. Let I be the geometric
Frobenius on X. Let £ be a prime number different from the characteristic of k, and let .- Q; == C be
an isomorphism of fields. For an integer n, let H! (X, Qy) be the cohomology with compact support
of the constant sheaf Q; on X as in [B5, 3.1]. Then the infinite sum

S (1) TR HE (X5, Q1)

nez
converges to #X (k) when considered as a complex series via ¢. O

This theorem generalises the Lefschetz trace formula for separated schemes of finite type.
As such, this theorem motivates our definition of point count. It also shows the relation
between the point count of a stack and its geometry. In the rest of this section we develop
methods to calculate the point counts of quotient stacks.

Let G be a smooth algebraic group over k. Let X be a variety over k, by which we mean in this
thesis a reduced k-scheme of finite type. Suppose X has a left action of G. Recall that the
quotient stack [G\ X| is defined as follows: If S is a k-scheme, then the objects of the category
[G\X](S) are pairs (T, f), where T is a left G-torsor over S in the étale topology, and
f: T — Xg is a Gg-equivariant morphism of S-schemes. A morphism (7, f) — (177, )
in [G\X](S) is an isomorphism of G-torsors ¢: T = T’ such that f = f’¢. In order to
calculate point counts we first need to set up a bit of notation.

Notation 2.3. Suppose G is a smooth algebraic group over k, and let z be a cocycle in
7' (k,G). Recall that this means that 2 is a continuous map z: Gal(k/k) — G(k) (where
the right hand side has the discrete topology) for which the following equation is satisfied
forall , 7' € Gal(k/k):

2(rr') = 2(m) - T2(7") (2.4)

Let X be a k-variety with a left action of G, and let z be a cocycle in Z' (k, G). We define the
twisted scheme X, as follows: Let X, ; be isomorphic to X, as k-schemes with a Gj-action
via an isomorphism ¢ : X, ; =% Xj. We define the Galois action on X _ ; by taking

Tx =7 (2(m) - Ta(2)

forallz € X, (k) andall m € Gal(k/k); this defines a variety X over k. Its isomorphism
class only depends on the class of z in H' (k, G). Two cases deserve special mention:

* We let G act on itself on the left by defining g - # := xg~'. Then G, is a left G-torsor,
and H' (k, Q) classifies the left G-torsors in this way.

+ Welet G act on itself on the left by inner automorphisms. The corresponding twisted
group is denoted Gy (.. If X is a k-variety with a left G-action, then X, naturally
has a left Gy (.)-action.

This terminology enables us to formulate the following proposition.
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Proposition 2.5. Let k' be a finite extension of k. Let G be a smooth algebraic group over k, and
let X be a k-variety equipped with a left action of G. Then

AW = ¥ el
sl (k,G) o n)

Proof. It suffices to show this for k' = k. Let T'be aleft G-torsor over &, and let z € Z*(k, G)
besuchthat 7" = G.. Then the automorphism group scheme of T"as a left G-torsor is Gy, ),
which acts by right multiplication on G.. As such, we may consider T as a (G, Gin.))-
bitorsor. If we look at the left G-action, we can define a variety T, as in notation p.3. This
naturally has the structure of a (Giy(.), Gin(»))-bitorsor; in fact, it is easily verified that it is
a trivial bitorsor. If f: T — X}, is a (left) G-equivariant map, then the map f;: T — Xj,
is defined over k when considered as a map T, ; — X, 3, and we denote the resulting
map T, — X by f.;itis (left) Gy, (.)-equivariant. This gives a one-to-one correspondence
between Homg (7', X) and Homg, ., (7%, X»). Let to be an element of T, (k), which exists
since 77, is a trivial G, )-torsor. We may identify the sets Homg,, , (7%, X,) and X, (k) by
identifyinga map with its image of ¢y, and two maps f., f. € Homg,, (7%, X.) correspond
to isomorphic objects (T, f), (T, f') in [G\X](k) if and only if f,(t¢) and f.(¢¢) are in the
same Gy (. (k)-orbit in X (k). On the other hand, the automorphism group of (7', f) is
identified with Stabg, _, ) (f:(t0)). From the orbit-stabiliser formula we find

Y mmmhc X meeen®
#Aut(T7, f') #Stabg,
ey, AT g, S PG w (@)
T'=T
 #X. (k)
#Gin(z) (k) .
Summing over all cohomology classes in H' (k, G') now proves the proposition. O

While proposition @ gives a direct formula for the point count of a quotient stack over a
given field extension k' of k, it is not as useful in a context where &’ varies, as it is a priori

unclear how H' (k’, Q) varies with it. In propositions , and p.21 we give formulas for
the point counts [G\ X](k’) that do not involve determining the cohomology set H' (k’, G),

under some (quite technical) conditions on G and X, We first set up some notation.

Notation 2.6. As before let G be a smooth algebraic group over k, and let 7 € Gal(k/k) be
the #k-th power Frobenius. We let G(k) act on itself on the left by defining

g-x:=gx(Tg)" " (2.7)
Its set of orbits is denoted Conj, (G).

Lemma 2.8. Let G be a smooth algebraic group over k. Let 7 € Gal(k/k) be the #k-th power
Frobenius. Then the map

7' (k,G)

z

G(k)

%
= z(w

~—
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is a bijection, and it induces a bijection H' (k, G) = Conj,,(G).

Proof. Let I be the Galois group Gal(k/k). Since (r) C I is a dense subgroup, the map is

certainly injective. To show that it is surjective, fixa g € G(k), and defineamap z: (1) —
G(k) by

sy = 99 ("g),  ifn>0;
(777 g_l)...(ﬂ”g—1> ifn < 0.

This satisfies the cocycle condition (@) on (7). Let e be the unit element of G (k). To
show that we can extend z continuously to II, we claim that there is an integer n such
that z(7V) = e forall N € nZ. To see this, let &’ be a finite extension of k such that
g € G(k'). Then from the definition of the map z we see that z maps (7) to G(k’). The
latter is a finite group, and hence there must be two nonnegative integers m < m’ such
that z(7™) = z(7™"). Set n. = m/ — m. From the definition of z we see that

’ m m/—1

(m™) =z(@")- (T g)--- (T 9),
hence (""g) - - - (”mlflg) = ¢; but the left hand side of this is equal to ™" z(7"), hence
z(7™) = e. The cocycle condition (Q) now tells us that z(7™V) = e for every multiple NV of
n; furthermore, we see that for general f € Z the value z(7/) only depends on f € Z/nZ.
Hence we can extend z to all of II via the composite map

IT — I /nll = (7)/(x") 2 G(k),

and this is an element of Z' (k, G) that sends 7 to g; hence the map in the lemmais surjective,
as was to be shown. This map is also G (k)-equivariant with respect to the actions that give
rise to the quotients H'(k, G) and Conj, (G), which proves the second statement of the
lemma. O

Recall that the classifying stack of an algebraic group G is defined to be B(G) := [G\ %], where
* = Spec(k) (with the trivial G-action).

Lemma 2.9. Let G be a finite étale group scheme over k. Then for every finite extension k' of k we

have #B(G)(K') = 1.

Proof. 1t suffices to show this for k£ = &’. The category B(G) (k) is the category of G-torsors
over k; its objects are classified by H' (k, G). Let m € Gal(k/k) be the #k-th power Frobe-
nius, and let 2 € H'(k, G). Then the automorphism group (as an abstract group) of the
torsor G is equal to Gy, () (k), which equals

Gingo) (k) = {g € G(R) : g = 2(m) - "g - 2(m) ™}
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where the action of G(k) on itself in the last line is the one in (@). For every orbit C' €
Conj, (G) choose an element x¢ € C; then the orbit-stabiliser formula and lemma @ yield

1 1

zeH'(k,G) CeConj, (G)
- ¥ @
CeConj, (G) #G(k)
=1. O

Lemma 2.10. Let1 — A — B — C — 1 be a short exact sequence of smooth algebraic groups
over k. Suppose that A is connected.

1. The natural map H' (k, B) — H'(k, C) is bijective.

2. Forz € H'(k, B) = H'(k, C), let A, be the twist of A induced by the image of z under the
natural map H' (k, B) — H'(k, Aut(Az)). Then

#Bi,(2) (k) = #A. (k) - #Ciy(2)(K).
Proof. The short exact sequence of algebraic groups over k
1-A—-B—-C—1
induces an exact sequence of pointed cohomology sets
1 — A(k) — B(k) — C(k) — H'(k, A) — H'(k, B) — H'(k, C).

From Lang’s theorem we know that H' (k, A) is trivial. By [60, I11.2.4.2] the last map is sur-
jective, so by exactness it is bijective, which proves the first statement. Furthermore for a
z € H'(k, B) the inclusion map A, (k) — Biy(.)(k) is Galois-equivariant, and the quotient
of By,(»)(k) by the image of this map is isomorphic to Ci,(. (k). This shows that we get a
twisted short exact sequence

1— Az — Bin(z) — Cin(z) — 1.
Since A, is connected, we find H' (k, A.) = 1, and then a long exact sequence analogous
to the one above proves the second statement. O

Definition 2.11. Let X be an algebraic stack over a field k. Let &’ C k" be two field exten-
sions of k, and let X € X(k”). Then a model of X over k' is an object Y € X(k’) such that
Yk.// g X.

Lemma 2.12. Let G be a smooth algebraic group over k, and let X be a variety over k.
1. The isomorphism classes of [G\ X | (k) are classified by the quotient set G (k)\ X (k).

2. Let k' be a finite extension of k, and let C be an element of G(k)\ X (k), corresponding to a

(T, f) € [G\X](k). Then (T, f) has amodel over k' if and only if C'is fixed under the action
of Gal(k/k") on G(k)\ X (k).
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Proof.

1. Over k every torsor is trivial, and a G-equivariant map f: G} — X, is determined
by its image of the unit element e € G(k). Furthermore, two maps f, f': Gz — X},
yield isomorphic elements (Gy, f), (G, f’) of [G\X](k k) if and only if f(e) and f'(e)
lie in the same G/(k)-orbit. Since f(G(k)) is a G (k)-orbit in X (k), we get a bijection

[G\X](k)] = G(k)\X (k)
(G f) = [(G(R)).

2. Let (T, f) beanelement of [G\X](k"). Then f: T'(k) — X (k)is Gal(k/k')-equivariant.
Hence f(T(k)) is an element of G(k)\X (k) that is invariant under the action of
Gal(k/k'); this proves one direction. For the other direction, let 7 € Gal(k /K') be
the #k'-th power Frobenius. Let # € C; then there exists a g € G(k) such that
g-m(z) = z. Let z € Z'(k', G) be the unique cocycle such that z(7) = g asin lemma

. Then the G-equlvarlant map

G,;—)X,;
g—9-x

descends to a G-equivariant map of k’-varieties G, — X} (where we identify G, j,
with Gy, via ¢, as in notation p.3).

0l

Remark 2.13. Let C be a G(k)-orbit in X( ), and let x be an element of C. Then the auto-
morphism group of the object of [G'\ X (k) corresponding to C by lemma p.19is isomorphic
to Stabg, (). In particular its isomorphism class does not depend on the choice of z in C.
We denote A(C) for the algebraic group Stabg, () over k.

The next theorem is a classical result:

Theorem 2.14. (See [58, Thm. 5]) Let U be a connected unipotent group over k. Then U is iso-
dim(U) ..
morphic to A}, as k-varieties. O

What makes this theorem so useful for us is that it shows that the point count of a unipotent
group remains the same under twisting. Under suitable conditions on X and G this allows
us to simplify the expression in proposition

Proposition 2.15. Let G be an algebraic group over k. Let X be a k-variety with an action of
G, such that for every C € G(k)\X (k) the identity component of the algebraic group A(C')™? is
unipotent. Let k' be a finite field extension of k. Then

#[G\X}(k/) = Z (#k/)fdim(A(C)).

Ce(G(R\X (k))Gal(k/k")
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Proof. As before it suffices to show this for k = k’. For C' € (G(k)\ X (k)), let m(C) be the
isomorphism class in [G'\ X](k) corresponding to C. We may then define the full subcate-
gory S(C') of [G\X](k), the isomorphism classes of whose objects form the set

{:v e [G\X](k)] : zf, € m(C)}.

By lemma .12 this category is nonempty if and only if C' € (G (k)\ X (k))%*/k)_ suppose
this is true for C, and let g be an object of S(C'). Then the algebraic group Aut(xg) is a
k-form of A(C). By [20, Thm. 111.2.5.1] S(C') is equivalent to the category B(Aut(x¢))(k); its
elements are classified by H' (k, Aut (z0)) = H' (k, Aut (20)™?). Write L := Aut(xo)™; we
now find for the point count

1
z€H! (k,L)

Let LY be the identity component of L; this is a connected unipotent group of dimension
dim(A(C)). Let mo(L) be the component group of L. By lemma , applied to the short
exact sequence

1= L° =L —m(L)—1,

we see that the natural map H' (k, L) — H'(k, mo(L)) is a bijection. On the other hand, let
z € H'(k, L); then the same lemma tells us that

#Lin(z) (k) = (#Llon(z)(k)) : (#W()(Lin(z))(k))~ (217)
By theorem we get an equality
#L?n(z) (k‘) _ (#k)dim(A(C)) (2.18)

and this does not depend on the choice of z. Furthermore, if we identify H' (k, L) and
H' (k, mo(L)) as above, we find mo(Lin(z)) = mo(L)in(=). Applying lemma @ to the finite
étale group scheme mo (L) yields

1

zeH! (k,mo (L)) #770 (L)in(z) (k)

Combining (), (), (), and () now gives us
1
#S(C) = [
©) 2 Lin(z) (k)

#
z€H! (k,L)

= #B(mo(L)) = 1. (2.19)

1
To(L)in(z) (k) - (#k)dm(AC)

#
z€H! (k,mo(L))
— (#k)—dim(A(C)) )

summing over all C' € (G(k)\X (k))**/%) now proves the proposition. O
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Proposition 2.20. Let G be a smooth algebraic group over k, and let X be a k-variety with a left
action of G. Suppose G =2 H x U, where U is connected and unipotent. Let k' be a finite field
extension of k. Then

#G\X|(K") = #[H\X|(K) - (#k/)—dim(U).

Proof. Fora z € H'(K', G), let Uiy, be the twist of U induced by the conjugation action
of G on U. A straightforward computation using proposition @, lemma E, and theorem

shows

#X, (k')

Gin(z) (k/)

HG\X(K') = :
zeH (k,G)

- ¥ #X. (')
2€H (k' H) #Hin(z) (K') - #Unn(z) (K')

= #[H\X]|(K') - (#k")~dmV), O

Proposition 2.21. Let G be a smooth algebraic group over k of the form G = (F x H) x U, where
F has a unipotent identity component, H is connected, and U is connected and unipotent. Let X be
a variety over k of the form E x V, where E is finite and V' = A} for some nonnegative integer
n. Suppose that G acts on X in such a way that there is an action of F' on E and V such that the
induced action of F on X is the product of these. Suppose furthermore that the action of F' on V/
factors through the action of a connected algebraic group. Let k’ be a finite field extension of k. Then

#l’ydim(V) —dim(U) —dim(F)

HG\XI(K) = (FRNE(R) S #H ()

Proof. It suffices to prove this for k&' = k. Since the map mo(F) — 7o (G) is an isomorphism,
by lemma we find that the natural map H' (k, 7o (F)) — H'(k, G) is an isomorphism
as well. The same lemma also tells us that H' (k, 7(F)) = H' (k, F). By proposition @ we
get

R D T
zeH! (k,F) in(2)

Let z € H'(k, F). Since X = E x V not just as k-varieties, but as k-varieties with an
action of F', we find (E x V), = E, x V,. Furthermore, let F be a connected algebraic
group acting on V such that the action of F on V factors through F. Then the induced map
H'(k, F) — H'(k, Aut(V)) factors through H* (k, F), which is trivial by Lang’s theorem;
hence we find V, = V. Now consider Gi,(»). Since G = H x (F x U), we may write

Gin(z) = H x (En(z) X Uin(z))'

Then Uyy.) is a connected unipotent group of dimension dim(U). Applying theorem ,
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we get

#E x V), (k)
#Gin(z) (k)

#(E.) (k) - #(V2) (k)
#H(k) . #E11(z)<k) : #Uin(z)(k)

[G\X](kK) =" >

z€H! (k,F)

z€E

H(k,F)
Z #(EZ)(k) (#k.)dim(V)fdim(U)
iy *Fin(z) (K) #H (k)

z€
(#k)dim(V)fdim(U)
#H (k)
#k)dim(V)fdim(U)7dim(F)
#H (k) ’

= #{F\E(k)-

— (FUR)\E(R)E0

where the last equality follows from proposition . O

2.2 Zeta functions of algebraic stacks

In this section we define the zeta function of an algebraic stack over a finite field, and we
discuss a few of its properties. The main result is theorem ,

Definition 2.22. Let ¢ be a power of p. Let X be an algebraic stack of finite type over F,.
Then the zeta function of X is defined to be the element of Q[¢] given by

Z(X,t) := exp Z L#X(qu)
v

v>1

In the case that X is sufficiently nice the zeta function will satisfy some nice properties itself:

Theorem 2.23. (see [63, Thm 1.3]) Let X be an algebraic stack of finite type over a finite field F,.
Then Z(X, t) defines a meromorphic function that is defined on all of C. If X is a Deligne-Mumford
stack, then Z (X, t) is rational. O

This theorem shows that there is some ‘structure’ in the point counts #X(F,») for varying
v. Our main goal is to prove theorem , which contains two statements that will be im-
portant for us when calculating zeta functions of various moduli stacks. First, if #X(Fg)
is given by an integral polynomial in ¢¥, we have a direct expression for Z (X, t). Second,
if #X(IFyv ) is given by a rational function R in ¢” of a certain form, and the zeta function
Z(X,t) is rational, then R is actually an integral polynomial, and we may apply the first
statement. This theorem rests on two lemmas, the proof of the first of which is a straight-
forward calculation and therefore omitted.
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Lemma 2.24. Let R € Z[X, X '], andwrite R = ", _, 7, X". Let ¢ > 1 be an integer. Then

exp (Y Sr) | = [[a-a

v>1 nez
as rational power series in t. O

Lemma 2.25. Let g > 1 be an integer. Let R be the subring of Q(X) given by

R=17 [{X,X‘l}u {an_ [in= 1H . (2.26)

Suppose R € R is such that the rational power series

2() = exo | 3 CRG@)

v>1

defines a meromorphic function that is defined on all of C, and suppose that this meromorphic func-
tion is rational. Then R € Z[X, X ~1].

Proof. Using the identity — = X" + X 2" + X 3" + ... in Q((X)) we may regard
R as an element of Z[X]|[X ~']. Write R = Y _, 7, X", withall 7, € Z and r, = 0 for
n > 0. First I claim that r,, < O((—n)¥) for some k € Zsq asn — —oo. To see this,
note that it suffices to prove this claim for R = T[]}, (X™ —1)~!, where m and the n; are
positive integers. In this case,

Tn :#{(cl,...,cm) SVAGE Zcim = —n},
i

and we see that r,, < O((—n)™) asn — —oo. It follows that for every v > 1 the sum
Y nez g™ converges absolutely and is equal to R(q"). For any integer m, define the
following elements of R[¢] (these are actually elements of Q[¢]], but we are taking infinite
sums in Q using the Archimedean topology):

Lom(®) =3 <wt> ;

v
v>1
r nuv
Lan(t) = 3 (el
v>1

Z>m(t) = exp(Lem(t));
Z < (t) = exp(L<m(t))-

Since ), ., rnq"™" converges absolutely to R(q"), we find the following equality in R[¢]:

Z ﬁR(qv) = Lzm(t) + L<m(t)'

v>1
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It follows that Z(t) = Z>,(t) - Z<y(t). Furthermore, Z>,,(t) = [[,>,,(1 — ¢"t)" ™.
As such Z>,,(t) and Z_,,(t) are both rational functions. Now consider the value of Z at
t = tg := ¢~ ™ for some integer m. If r,,, < 0, then ¢, is a root of Z>,,,, while it is a pole
of Z>,, if r,, > 0. On the other hand, from the fact that r,, grows polynomially in (—n) as
n — —oo, we find that the infinite sum

n—m:\w

Lan(to) =3 30 1"

v>1n<m

converges absolutely in R in the archimedean topology. We conclude that Z_,,(tg) =
el<m(to) ¢ Ryq. This shows that ¢ is neither a root nor a pole of Z.,,. We conclude
that ¢ = ¢~™ is a root or a pole of Z if and only if r,, # 0. Since Z is rational by as-
sumption, this means that only finitely many r,,, may be nonzero; hence R is an element of
Z[X, X 1. O

The following theorem is now a direct consequence of the previous two lemmas.

Theorem 2.27. Let X be an algebraic stack of finite type over a finite field IF,,. Suppose there exists
an R € Q(X) such that for every v € Z>1 we have that R(q") is defined and is equal to #X(Fz»).

1. Suppose R € Z[X, X '], andwrite R =), _;, r, X" Then

Z(X,t) = [J(1—q"t).

neZ

2. Suppose Z (X, t) is a rational function and that R is an element of the ring R from (@) Then
R € Z[X, X 1], and the previous point applies. O
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Chapter 3

Stacks of truncated Barsotti-Tate
groups

The aim of this chapter is threefold. First we introduce truncated Barsotti-Tate groups,
Dieudonné modules, and the relation between the two. The second goal is to state the
classification of BT; over algebraically closed fields and to determine their automorphism
schemes. We do this in two ways: we give the classification in terms of graph theory as
developed in [32], and the classification in terms of the Weyl group of an algebraic group as
developed in [43]. The second classification can be stated more succinctly, especially the de-
scription of the automorphism schemes, but the first classification has the advantage that
it also gives us the classification of general p-groups over algebraically closed fields; we will
need this in chapter H The third goal is to calculate the zeta function of moduli stacks of
BT,,; the exact result is stated in theorem . The first two sections contain only ‘classical’
material, and only the sections from section B.3 onwards contain new material.

3.1 Dieudonné modules

In this chapter we will define (truncated) Barsotti-Tate groups, and how they are classified
by Dieudonné crystals. Although the general setting is quite involved, for our purposes we
only need to describe this relation over finite fields. For the general setting the reader is
referred to [2].

Definition 3.1. Let S be a scheme of characteristic p. A Barsotti-Tate group of height h over S,
or a p-divisible group over S, is a sequence (G;);>1 of finite commutative group schemes of
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order p'" over S, together with inclusions ¢;: G; < G, 1, such that the induced sequence
1—-G; L% Gz’+1 p—) Gi+1

is exact. A truncated Barsotti-Tate group of level n and height h over S, or BT,, for short, is a
commutative group scheme G over S such that there exists a Barsotti-Tate group (G;);>1
of height h over S such that G = G,,. As an abuse of notation we will sometimes refer to a
Barsotti-Tate group as a truncated Barsotti-Tate group of level oo.

Remark 3.2. There is also a direct definition of a truncated Barsotti-Tate group that de-
pends on intrinsic properties of the group scheme G, rather than on the existence of a lift;
see [23, Def. 11.3.2].

Example 3.3. Let A be an abelian scheme over S. Then A[p"] is a commutative group
scheme of order p?"4™(4) over S. The sequence (A[p"]),>1 is a Barsotti-Tate group of
height 2 - dim(A) over S.

Let S be a scheme of characteristic p, and let n € Zs1 U {oo}. Let BT%(S) be the category
of truncated Barsotti-Tate groups of level n, height h and dimension d (see [[12, 1.7 Def.]).
Together with the obvious notion of pullback these form an algebraic stack BT"% over F,,
which is of finite type if n < oo (see [70, Prop. 1.8]). Let Crys!** be the F,,-stack of truncated
Dieudonné crystals D of level n that are locally of rank h, for which the Frobenius map
F: D — D® hasrank d locally (see [27, Rem. 2.4.10]; again we use the convention that
truncated crystals of level oo are just untruncated crystals). Then covariant Dieudonné
theory (see [56, §9.3] and [2, 3.3.6 & 3.3.10]) tells us that there is a morphism of stacks over
F

p
D, : BT — Crys4

that is an equivalence over perfect fields. This implies #BT"%(F,) = #Crys"*(F,) for all
powers g of p, and Z(BT™? t) = Z(Crys"? t). Since point counts and zeta functions are
our main objects of interest, we will study Barsotti-Tate groups mainly via their connection
to Dieudonné crystals. In the case that we are working over finite fields we can describe
categories of Dieudonné crystals more explicitely, but first we need some more notation.

Definition 3.4. Let k be a perfect field of characteristic p, and let n € Z>; U {occ0}. Denote
by W, (k) the ring of truncated Witt vectors of length n over & (truncated Witt vectors of
length oo are just untruncated Witt vectors). Let o € Aut(W,,(k)) be the automorphism
induced by the p-power Frobenius on k.

1. A level n Dieudonné module over k of height h is a triple (D, F, V'), where D is a free
W,,(k)-module of rank hand F': D — DandV: D — D are o-and o~ !-semilinear
maps, respectively, satisfying F'V = VF = p. We will often omit F' and V from the
notation if there is no danger of confusion.

2. Alevel 1 Dieudonné module is called exact if ker(F) = im(V) (or ker(V') = im(F),
which is equivalent).
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3. The dimension of a Dieudonné module (D, F, V) is the k-dimension of the image of
the induced map F': D/pD — D/pD.

4. If n > 1, then category of level n Dieudonné modules over k of height h and dimen-
sion d is denoted D’?(k). The category of exact level 1 Dieudonné modules of height
h and dimension d is denoted D% (k); the category of level 1 Dieudonné modules
over k of height h is denoted D?ﬁex(k‘) (here ‘nex’ stands for ‘non-exact’). In both
cases the morphisms are isomorphisms of Dieudonné modules (i.e. isomorphisms of
W, (k)-modules that commute with F' and V).

Remark 3.5. If n > 1 and (D, F, V) is a level n Dieudonné module, then the level 1 Dieu-
donné module (D/pD, F, V) is always exact. This is why in definition @.4 we take exact
level 1 Dieudonné modules to be the ‘correct’ analogue of level n Dieudonné modules. How-
ever, we are also interested in non-exact level 1 Dieudonné modules, because of the role
they will play in chapter H

Remark 3.6. Dieudonné modules and p-groups can also be defined over general schemes
of characteristic p (see [27, Def. 2.3.4]). This gives rise to algebraic stacks D¢ and D;Lﬁex
over F,,. The latter is of finite type, and the first one is of finite type if n < co.

Definition 3.7. Let S be a scheme of characteristic p. A p-group over S is a finite commu-
tative group scheme over S of exponent p. The category of p-groups over S of order p” is
denoted p-Grp” (9).

The following facts show us that for the purposes of point counts and zeta functions we are
only concerned with Dieudonné modules. For proofs the reader is referred to [12] and [B].

Fact 3.8. Let k be a perfect field of characteristic p. Let h and d be nonnegative integers,
and let n be an element of Z>; U {cc}.

1. Letn > 1. There is a natural equivalence of categories

®,,: Crysp (k) = DI(k).

2. Let p-Grp" (k) be the category of p-groups over k of order p’. Then there are natural
equivalences @, U that fit into the following commutative diagram:

Dy (k o
BT/ (k) _ Du®) | Crys" (k) ———— DI"(k)

~ ~

| , |

p—Grph(k) D}ll,nex(k)

2
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3.2 Classification of p-groups

In this section we discuss the classification of p-groups (or, to be more precise, level 1 Dieu-
donné modules) over an algebraically closed field k of characteristic p. There are two ap-
proaches to this: The formulation of the first classification (proposition ) is compact
and can be generalised to Dieudonné modules with extra structure, but it only classifies ex-
act level 1 Dieudonné modules. The second approach (theorem ) is more involved and
requires some combinatorial notation, but the advantage is that it also classifies the non-
exact level 1 Dieudonné modules. We will only need the first classification to determine the
zeta function of moduli stacks of the form BTZ’d; the second classification is needed in chap-
ter H We start by defining so-called Kraft types, which form the basis of the classification
introduced in [32].

Notation 3.9. If X is a set, we denote by W(X) the set of (possibly infinitely long) words
WiWoWs - - -, where each W; is an element of X.

Definition 3.10. Let A be a finite directed graph, in which every edge is coloured with one
of two colours F (fuchsia) or V (vermilion). We call A a primitive Kraft graph if it is of one of
the following two types:

Type ‘T Let W = W - - - W, be a finite, possibly empty word in W({F, V~1}). Then the
associated primitive Kraft graph of type T has {vg,v1,...,vx} as its set of vertices,
and for every integer i an edge v;_1 gvi if W; = F, and an edge vi_lévi if W; =
Vi

Type ‘Z’ Let W = W --- W}, be a finite nonempty word in W({F, V~1}) that is nonre-
peating, i.e. there is no word W’ such that W is a concatenation of multiple copies
of W’. Then the associated primitive Kraft graph of type Z has as its set of vertices
{v; 11 € Z/kZ}, and for every i € Z/kZ an edge vi_1 v if W; = F,and an edge
vi_livi ifw, =v-1,

Notation 3.11. The set of primitive Kraft graphs of type T is denoted Pr, the set of primitive
Kraft graphs of type Z is denoted Pz, and we define P := Pr U Py. If A is a primitive
Kraft graph, then we define the length of A, denoted ¢(A), to be the number of vertices of
A. Furthermore, we let £x(A) be the number of F-edges in A, and we let £,/ (A) be the
number of /-edges in A; note that £(A) > ¢p(A) + £y (A) for all A,

Example 3.12. Consider the word W = F2?V~2F := FFV~'V~!F. Then the Kraft
graphs of types T and Z corresponding to W, are depicted below. The figure should illustrate
why the types are denoted T (ostensibly from German Treppe ‘stairs’) and Z (from German
Zyklus ‘cycle’) (in this picture v, v/, w and w’ are marked because they will be mentioned in
later examples).
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Remark 3.13. We see that a primitive Kraft graph of type T uniquely determines its corre-
sponding word. For a primitive Kraft graph of type Z this is true only up to cyclic permuta-
tion of the letters in the word.

Definition 3.14. A Kraft type is a formal sum K =} \ . K(A) - A, where each K (A) is
a nonnegative integer, only finitely many of which are allowed to be nonzero. For such a K
we define its set of vertices | K| to be | |z, r¢(a)>0 |Al, where |A] denotes the set of vertices
in A. Forav € | K| we furthermore define K (v) := K(A), where A is the primitive Kraft
graph containing v. The set of Kraft types is denoted K.

Definition 3.15. Let K = )\ . K(A) - A be aKraft type. We define:
* The height of K tobe >~ . p K(A) - £(A);
* The F-height of K tobe )\ p K(A) - Lp(A);
* The V-height of K tobe Y, .p K(A) - Ly (A).

For a nonnegative integer h, we let JC(h) denote the set of Kraft types of height h. If a and b
are nonnegative integers satisfying a > b, then we denote by K(a, b) the set of Kraft types
of height a, F-height b and V-height a — b. Note that this is only possible if all primitive
Kraft graphs in such a Kraft type are of type Z.

We need a little more notation on Kraft types in order to describe their homomorphism
and automorphism schemes in section B.3. Let K be a Kraft type, and let v € |K| be a
vertex. We now define two words associated with v: The F-route of v, denoted Ry (v), which
is a (possibly infinitely long) word in W({F, V~1}), and the V-route of v, denoted Ry (v),
which is a (possibly infinitely long) word in W({V, F~'}). They are defined as follows:
suppose v lies on a primitive Kraft graph A of type T, and let W = W - - - W), be the word
corresponding to A. There is a unique integer 0 < 4 such that v corresponds to the vertex
v; in A in the description of definition ; then set

Rp(v) :=Wigq -+ Wy,
Ry (v) = Wi_IWi:11 T W1_1,

with (V=1)~! := V. Suppose v lies on a primive Kraft graph A of type Z. There is a unique
word W = Wj - - - Wy, such that A corresponds to the word W and v corresponds to the
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vertex vy in the description of definition ; then set

Rp(v) = (Wy-- W),

Ry (v) := (WE1W1;11 W H,
where W stands for ‘W repeated infinitely often’. We order the sets W(F,V ~!) and
W(V, F~1) lexicographically by taking V! < ) < Fand F~! < < V.

Notation 3.16. If K and K’ are Kraft types with vertices v € |K|and v' € |K’|, then we
write v = v’ if Rp(v) > Rp(v') and Ry (v) > Ry (V). Ifv = v' and v’ = v, we write
v,

Example 3.17. Let v and v’ be as in example . Then

Rp(v) = V7?F, Rp(v') = (F?V 2PN,

Ry (v) = F2, Ry (V) = (F~'W2F=2)N,
As such we see Rp(v') > Rp(v), Ry (v') > Ry (v), hence v’ = vbutwv # v'.

Note that in notation we have v = v’ precisely if there is an isomorphism between the
primitive Kraft graphs containing v and v’ that maps v to v’. Because of this we get the
following result:

Lemma 3.18. Let K be a Kraft type. Then = is a partial order on | K |. O

Definition 3.19. Let K and K’ be two Kraft types. For (v, v') and (w, w’) € |K| x |K'| we
write (v,v") ~p (w,w") if v and w lie on the same primitive Kraft graph A, v" and w’ lie on
the same primitive Kraft graph A’, and either of the following sets of edges exist in A and
A"

F R
¢ v—wand v —w';
1% , Vo,
o vi—wand v’ ',

Similarly, we write (v, v’) ~y (w,w’) if either of the following sets of edges exist in A and
A"

F B
o p<—wand v’ <—w';
v , Vo,
¢« v—wand v —w'.

We say that (v, v") and (w, w’) are equivalent if they are equivalent under the minimal equiv-
alence relation on | K| x |K’| containing ~ g (or, equivalently, ~y/); this equivalence rela-
tion is denoted ~.

Example 3.20. In example we have (v,v') ~y (w,w"), and (w,w’) ~p (v,0").

Remark 3.21. Note that if (v,v") ~ (w,w’), then v > v’ if and only if w = w’.
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Let K be a Kraft type, and let k be a perfect field of characteristic p. Then to K we can
associate a level 1 Dieudonné module Sty (K), called its standard Dieudonné module, as follows:
a k-basis of Sty (K) is given by the set

{eviive KL 1<) <KW}, (5.22)

where K (v) is as in definition . Furthermore, we define F': St (K) — St (K) to be
the Fr,-semilinear map given as follows: for each vertex v € | K| on a primitive Kraft graph
A, if there exists an edge v50" in A, then o' is unique and K (v) = K(v'). If such an ¢/
exists, we set F'(e, ;) = e, ; forall j < K(v); otherwise, we set F'(e, ;) = 0. Similarly,
Vi Sti(A) — Str(A) is the Fr;l-semilinear map that for each vertex v € |K| on a primi-
tive Kraft graph A satisfies V (e, ;) = e, ; if there exists an edge v in A (such a v’ is
then necessarily unique), and V (e, ;) = 0 otherwise.

Theorem 3.23. (See [32, §5]) Let k be an algebraically closed field of characteristic p.

1. Sty gives a bijection between the set of isomorphism classes of types, and the set of isomorphism
classes of level 1 Dieudonné modules over k;

2. Dieudonné modules of height h correspond to Kraft types of height h;
3. Dieudonné modules of dimension d correspond to Kraft types of F-height d;
4. Indecomposable Dieudonné modules correspond to primitive Kraft graphs;

5. Exact Dieudonné modules correspond to Kraft types whose primitive Kraft graphs are all of type
Z. O

Notation 3.24. If D is a level 1 Dieudonné module over a field k of characteristic p, then
we define the type of D to be the Kraft type K such that St;(K) = Dj.

The exact level 1 Dieudonné modules over an algebraically closed field & can also be classi-
fied more explicitely by means of abstract group theory (that in chapter H will turn out to
be algebraic group theory).

Notation 3.25. Let n and d be nonnegative integers such that d < n. For an integer
h, consider the Coxeter system (W, .S), where W = S),, and S is the set of generators
{(1 2),...,(h—=1 h)}. Letd < h,andlet I = S\ {(d d+ 1)}. Let W; C W be the
subgroup generated by I, and let /T be the subset of W of all elements w that are of mini-
mal length ¢(w) in their coset W;w (see subsection ). Foraw € W, we can consider
the Kraft type K, which is constructed as follows. Consider the directed graph I, with
{F', V}-coloured edges whose vertices are vy . . . , v, and where we have an edge v; va(i)

ifi < d,and an edge vie‘ivw(i) ifi > d. Then the undirected connected components of T,
are primitive Kraft graphs of type Z. For a primitive Kraft graph A, let m(A) be the number
of copies of A inT',; then we define K, by taking K,,(A) = m(A) for all A € Py.
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Proposition 3.26. Let k be an algebraically closed field of characteristic p, and let h, d, and TW
be as in notation . Then the map w + Sty (K,,) is a bijection between TW and the set of
isomorphism classes of exact level 1 Dieudonné modules of height h and dimension d.

Proof. This is proven in [43, Thm, 4.7]. Alternatively, this follows from applying proposition
to example . O

3.3 Morphism and automorphism schemes

Let K and K be two Kraft types, and let k be a perfect field of characteristic p. The aim of

this section is to give explicit descriptions for the algebraic groups Hom (St (K1), Sty (K2))™!
and Aut (St (K1))™. These results are stated in propositions @ andB.29. There is a more

compact description of the automorphism group in the case that K only has summands of

type Z (i.e. Sty (K1) is an exact Dieudonné module); this is given in proposition .

Notation 3.27. Let K and Pr again denote the set of Kraft types and the set of primitive
Kraft graphs of type T, respectively. Let A be the set
A= {(’Ul,l}g) S ‘K1| X |K2| U > ’Ug}/ ~ .
We define two maps d, e: K x K — Z>( given by
d(Ky, Ky) = Y Ki(v) - Ka(vs),
(v1,v2)EA

e(K1, Kz) = Y Ki(A (A).
A€Pr

Furthermore, we define d(K) := d(K, K).
In the next two propositions, we consider Mat,, x(Fpe ) and GL, (Fye ) (for integers a, b, ¢ >

0) as finite étale group schemes over F, by having them be the abstract group of F,,-points
of these group schemes, along with the action of Gal(F,/F,,).

Proposition 3.28. Let K7 and K be two Kraft types, and let k be a perfect field of characteristic
p. Then as additive group schemes Hom(Sty (K7 ), Sty, (K>))*! is isomorphic to

< H MatK2(A)XK1(A)(Fpl(A>)> % Gi(}fl,xz)ﬂ(m,xz).
AEPy

Proposition 3.29. Let K be a Kraft diagram, and let k be perfect a field of characteristic p. Then
Aut(K)*d = (F x H) x U, where U is unipotent of dimension d(K) and

F= H GLK(A)(]FPZ(A))7
A€EPy

H = H GLi(A) k-
A€Pr
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We start by proving proposition . Choose bases (e1,4,j)v,; and (e2.4,5)v,; for Sty (K1)
and Sty (K) respectively, as in (). From this basis we see that the scheme of linear
maps between St (K1) and Sty (K2) can be given as a commutative group scheme as

Link(Stk(Kl),Stk(Kg)): @ MatKg(v’)XKl(v),k-
vE|K1],
UIE|K2|

Our goal is to determine its subgroup scheme of morphisms of Dieudonné modules. For an
element = € Ling (St (K1), Sty (K2)) we write £ = (v, )ve|k |0’ €| K| according to the
decomposition above. For positive integers m,n and a matrix g € Mat,,«, (k) we write
gP) for the matrix where every entry is of the form (¢(")); ; = (g;;)?. The following
two lemmas are straightforward consequences of the fact that morphisms of Dieudonné
modules have to commute with F and V.

Lemma 3.30. Let x € Hom(Stz (K1), St;(K2)) C Ling(Stz (K1), St;(K2)). Let v, w be

two elements of | K1| and let v', w’ be two elements of | Ks|. If (v,v') ~p (w,w"), then zy, v =
(p)

xvm" D

Lemma 3.31. Let v € Hom(Sty (K1), St;(K2)) C Ling (Stz (K1), St (K2)). Then following
two statements hold (also for Y instead of )

o . F
¢ Letv',w’ € |Ks| be on the same primitive Kraft graph such that there exists an edge v/ —w’
in the primitive Kraft graph containing them, and let v € | K1 | be such that that there is no

v-w in the primitive Kraft graph containing v. Then x,, ,,» = 0.

+ Letv,w € | K| be on the same primitive Kraft graph such that there exists an edge wsv
in the primitive Kraft graph containing them, and let v’ € | Ks| be such that that there is no

w' 50 in the primitive Kraft graph containing w. Then ,, ,» = 0. O

Proof of proposition . Since we are only interested in the reduced scheme, it suffices to
determine the subset

Hom(Sty, (K1 ), Sti (K2)) (k) = Hom(Sty, (K1), St (K»)) C Ling (Sty (K1), Sty (K2)).

Let X C |K1|x|K2|be aset of representatives for ~. By lemmaB.3q we see that an element
g € Hom(St (K1), Stg(Kz2)) is determined by (gy,v7) (v,0)ex- Now let (v,v") € X be such
that v % v'. Let Ay and A, be the primitive Kraft graphs such that v € Ay, v’ € Ay, Then
there exists a pair (w, w’) € |A1| x |Az| equivalent to (v, v’) that satisfies at least one of
the following conditions:

. F . F .
o there exists a w’ —u' in Ay but no w—u in Aq;
o there exists a w+—u in A; but no w’<—u' in As;

. v, V.o,
« there exists a w’—u' in Ay but now—uin Aq;
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. Fo, F .
+ there exists a w<—u in A; but no w’<—u’ in Asq.

By lemma we see that this implies that g, .+ = 0; by lemma this means that
gv = 0. Now let (v,v") € X be such that v > ¢/, and suppose that either v > ¢/, or
v ~ v and the primitive Kraft diagram on which v lies is of type T. In these cases, for every
(w,w") € |K1| x | K2| such that (v,v") ~ (w,w’), there is a unique n = n(w, w’) such that
either n is nonnegative and there exist (v,v") = (vo, v}), (v1,v1), ..., (Vn,v),) = (w,w")
such that (v, v) ~F (vig1,vj,,) forall i, or n is nonpositive and there exist

(val) = (UO?vé)v (U—lvvl—l)a sy (Unvviz) = (wawl)

such that (v;,v}) ~v (vi—1,v]_;) for all i. If  is any element of Mat x, (,/ &, (1) (k), then
the element g € Ling (St; (K1), St (K2)) given by
goy = 4 2D (w0 ~ (0.0
o 0 otherwise
is a morphism of Dieudonné modules. In the case that v ~ w and the primitive Kraft dia-
gram A on which v lies is of type Z, then for (w, w’) ~ (v, v") the integer n(w, w') is defined
only up to a multiple of [(A). As such, the construction above is a well-defined morphism
of Dieudonné modules if and only if 2 € Mat g, (), i, (v) (Fpica) ). To conclude, we find that

a morphism of Dieudonné modules g is determined by (g, ) (v,07)e x> and we may freely
choose g, .+ from:

« {0}ifv £ 0

* Mat s, (v/),x; (v) (k) if v = v/, 0r v & v’ and the associated primitive Kraft diagram A
is of type T;

* Matg, ('), i, (v) (Fpeca ) if v &= v and the associated primitive Kraft diagram A is of
type Z.

This proves the proposition. O

Proof of proposition . Let X be as in the proof of proposition (for K = K7 = Ko»).
Choose a linear order on |K| that extends the partial order > on | K|, and consider ele-
ments of Ling (St (K1), Stz (K2)) as block matrices with respect to this linear order; then
the proof of the previous proposition shows that the group G of Dieudonné morphisms is
contained in the group of upper triangular matrices with respect to this block structure. The
elements (v, v’) of X such that v > v’ give the strictly upper triangular part of G, which
is unipotent; by the proof of the previous proposition this has dimension d(K). The diago-
nal blocks correspond to elements of X of the form (v, v), and these blocks have the form
GLk (v)(Fpi(a)) if v lies on a primitive Kraft diagram A of type Z, and the form GL () (k)
if v lies on a primitive Kraft diagram of type T. O
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In the case that the Kraft type K only contains primitive Kraft graphs of type Z, proposition
tells us that Aut (St (K))™ is a semidirect product of a finite group and a unipotent

roup. The alternative classification of exact level 1 Dieudonné modules from proposition
@ allows us to express its dimension more explicitely:

Proposition 3.32. Let h, d, and W be as in notation and let ¢ be the length function as in
subsection p.1.1. Let w € TW; then Aut (St (K )™ is a semidirect product of a finite group and
a unipotent group of dimension d(h — d) — ¢(w).

Proof. This is proven in [44, Thm. 2.1.2]. Alternatively, one can apply proposition .2 to
example . O

3.4 Zeta functions of stacks of BT,

Letn,h > 0and 0 < d < h be integers. The goal of this section is to determine the zeta
function of the algebraic stack BT over IF,,. The result is as follows:

Theorem 3.33. Let h,n > 0and 0 < d < h be integers. Let W be as in notation . Then for
every power q of p one has

#BTLIF,) = Y gfw)=d=d),

welWw
and consequently
1
h,d _
Z(BT” ’t)* H l_pz(w)—d(h—d)t‘
welWw

In particular the point counts and the zeta function of the stack BT"*® do not depend on n.

Our strategy will be to interpret the results of [69] and [119], which concerns the set of BT,, ;1
over k extending a given BT,,, in a ‘stacky’ sense over a finite k. This allows us to invoke the
results of chapter Eg

Let ¢ be a power of p. As discussed in fact @ Dieudonné theory gives us an equivalence of
categories BT"*(F,) — DM4(F,), so it suffices for our purposes to find the point count
of the second category. Fix h and d, and choose a (non-truncated) Barsotti-Tate group G of
height h and dimension d over F,,. For n € Z>1 U {oo}, let (D,,, F,,, V,,) be the Dieudonné
module of G[p"], and choose a W o (F,)-basis for D; this induces a W,, (F,,)-basis for every
D,,. Then for every power q of p, every element in D»¢(F,) is isomorphic to

n,g = (Wn(]Fq) ®Z/p"Z Dy, gFy, Vngil)
for some g € GLj,(W,,(F,)) (See [69, 2.2.2]).

D

For a smooth affine group scheme ¢ over Spec(Z,), let W,,(¥) be the group scheme over
Spec(F,) definedby W,,(¢)(R) = G(W,,(R)) (see [69, 2.1.4]); it is again smooth and affine.
For every n there is a natural reduction morphism W,, 1 (¢4) — W,,(¥).
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Proposition 3.34. Let D,, := W,,(GLy,). Then there exists a smooth affine group scheme H
over Z,, and for every n an action of H,, := W, (#) on D,,, compatible with the reduction maps
Hnt1 — Hpand D1 — Dy, such that for every power q of p, there exists for every g, g' €
D,,(F4) an isomorphism of F ;-varieties

Nred ed
Pg.q' TranspHn,Fq (9,9")"" =5 Isom(Dy, g, Dp g/ )™

that is compatible with compositions in the sense that for every g, ¢, 9" € D,,(F,) the following
diagram commutes, where the horizontal maps are the natural composition morphisms:

)r(\d red )rcd

TranspHny]Fq (9,9 X TranspHMFq (g, 9"

prg,y’xwg/,g” J{Lpgvg”

ISOm(Dn_’g,Dn’g/)red X ISOm(Dnyqun’g//)red E— Isom(Dn’g,Dn,gu)red

—_— TranspH"’]Fq (9,9"

Proof. The group H and the action H,, x D,, — D,, are defined in [69, 2.1.1 & 2.2] over an
algebraically closed field & of characteristic p, but the definition still makes sense over F,,.
The isomorphism of groups ¢, 4 is given on k-points in [69, 2.4(b)]. The definition of the
map there shows that it is algebraic and defined over IF,,. Since it is an isomorphism on F,,-
points, it is an isomorphism of reduced group schemes over F,,. Furthermore, a morphism
Transpy,, . (9,9") — Isom(D,, 4, D, ¢ ) is given in the proof of [69, 2.2.1]. It is easily seen
that this map is compatible with compositions in the sense of the diagram above, and that it
is equivariant under the action of Staby, (¢)(F,) = Isom(D,, 4)(F,). Since both varieties
are torsors under this action, this must be an isomorphism as well. O

Corollary 3.35. For every power q of p the categories D!*(F ) and [H,\D,,)(F,) are equivalent.

Proof. For every object D € D4(FF,) choose a gp € D,,(F,) such that D = D,, ;. Define

a functor

sgD*

E: DZ’d(Fq) — [H'IL\DTL](IFQ)

that sends a D to the pair (H,,, fp), where fp: H, — D, isgivenby fp(h) = h- gp. We
send an isomorphism from D to D’ to the corresponding element of

ISOHl((Hn, fD)7 (Hna fD/)) = Transp’)—[n (Fg) (gDa gD/)

This functor is fully faithful and essentially surjective, hence an equivalence of categories.
O

By proposition the isomorphism classes in D¢(k) for an algebraically closed field &
are classified by TW. For each w € W, let D!:%% be the substack of D¢ consisting of
truncated Barsotti-Tate groups of level n, rank h, and with F of rank d, whose associated
BT, are of type K, at all geometric points. Then over fields & of characteristic p one has
Dl-d(k) = | ],ery Di%™ (k) as categories, hence (for all powers g of p)

#Dg’d(]Fq): Z D27d7w(Fq)~
welW
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For every w € TW, let g1 ., € D1(F,) be such that Dy 4, , = Stg, (K,,). For every n, let
D, 1 be the preimage of g; , under the reduction map D,, — D;. Let H,, ,, be the preimage
of Stabyy, (g1,w) in H,; then analogous to corollary for every power ¢ of p we get an
equivalence of categories (see [[19, 3.2.3 Lem. 2(b)])

D4 (Fg) 2 [H,u\Di ) (Fy)-
Proof of Theorem . Let g be a power of p. By the discussion above we see that

#BTZ’d(Fq): Z #[Ha,w\Dn,w] (Fg)-
welW

By proposition the group scheme Stabs, (g,)™ = Aut(D; 4, )™ has an identity
component that is unipotent of dimension d(h — d) — ¢(w). The reduction morphism
H, — Hi is surjective and its kernel is unipotent of dimension h?(n — 1), see [19, 3.1.1
& 3.1.3]. This implies that H,, ,, has a unipotent identity component of dimension h?(n —
1) + d(h — d) — ¢(w). Now fix a gnw € Dpw(Fp); then we can identify D, ,, with
the affine group X = W, _;(Matyxp), by sending an z € X to g, + ps(x), where
s: W, (Matpxn) = pW, (Matpxpn) C W, (Maty «p,) is the canonical identification. Fur-
thermore, the action of an element z € #,, ,, on some y = (gn . + ps(z)) € Dy, . is given
by 2 -y = f(2)(gnw + ps(z)) f'(2) for some algebraic maps f, f': Hy o — W, (GLy,) (see
[69, 2.2.1a]). From this we see that the induced action of an element z € H,, ,, on the variety
X is given by

z-x = f(2)xf'(2) + ]%(f(z)gnwa'(z) — Gnow)s (3.36)

which makes sense because f(z)gn.wf'(2) is equal to g, ., modulo p. If we regard X as
Wn,l(ng) via its canonical coordinates, () shows us that the action of H,, ,, factors
through the action of W,,_; (Aff;2), which is a connected algebraic group over F,,; here
Aff)2 is the Z,-group scheme of affine transformations of h?-dimensional affine space.
Applying proposition with FF = Hy, H = U = E = 1,V = D, ,, now yields
’d”"(IFq) = ¢t(w)=d(h=d) The formula for the zeta function is provided by theorem
2.27. O

Remark 3.37. Since the zeta function Z(BT"? ) does not depend on n, one might be
tempted to think that the stack BT of non-truncated Barsotti-Tate groups of height
and dimension d has the same zeta function. However, this stack is not of finite type. For
instance, every Barsotti-Tate group G over I, has a natural injection Z)* < Aut(G), which

shows us that the zeta function of BT": is not well-defined.
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Chapter 4

Stacks of BT;-flags

In this chapter we define so-called BT, -flags: these are inclusion chains
GicGyC---CG,

of p-groups over a scheme S, such that G, is a BT;. Under some numerical constraints
these BT;-flags form an algebraic stack of finite type over F,; this chapter is dedicated to
calculating the point counts and zeta functions of these stacks. Although we cannot find a
direct formula as in theorem , we provide an algorithm () that calculates the point
count over IF,, of such a stack as an integral polynomial in g and ¢*. Furthermore, in section
@ we provide some shortcuts for calculating the point count manually. Finally, we give an
example of such a manual calculation in section é

Before diving straight into the formal approach, it is helpful to sketch an informal example.
Suppose we want to determine the point counts of the stack of chains of p-groups

G1CG2CG3

where G is of height hy := 2, G5 is of height hy := 3, and G35 is of height h; := 6.
Furthermore, we demand that G5 is a BT of dimension 2. Since we are working over finite
fields, we might as well consider the stack of quintuples (D1, D2, D3, f1, f2), where

« Each D; is a level 1 Dieudonné module of height h;;
« D3 is exact of dimension 2;
+ Each f; is an injective morphism of Dieudonné modules f;: D; < D;y1.

Schematically, we may denote the numerical data by the ‘word’ 2 < 3 < (6, 2), and the
category of these quintuples over F, by C(2 — 3 — (6,2),F,) (in this category, mor-
phisms are isomorphisms of the D; that are compatible with the f;). To determine the
point count of this category, we would like to know the structure of the scheme of injective
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morphisms Inj(D, D) for two Dieudonné modules D and D’. Unfortunately, we only have
a description of the full scheme of morphisms Hom(D, D’) from proposition @ Therefore
it is initially easier to look at a bigger category C(2 — 3 — (6, 2),F,), which has the same
definition as C(2 — 3 — (6,2),F,), except that we do not require f; and f> to be injec-
tive. We can calculate the point count of this bigger category as follows: recall that the
set of Kraft types is denoted K. For a triple (K1, K2, K3) € K2 with appropriate numer-
ical invariants (see definition @), let C(K7; — Ko — K3,F,) be the full subcategory of
C(2 — 3 — (6,2),F,) such thateach D; is of type K. Then there is a finite subset X C K3
such that

C(2—3—(6,2),F,) = | ] C(K, — Koy — K3,T,).
(K1,K2,K3)eX

We can relate such a category C(K; — Ko — K3, F) to a quotient stack, and then use the
results of chapter E to calculate its point count (see theorem ). By summing over X we
find an expression for #C(2 — 3 — (6,2),F,).

Let us return to the difference between the point counts #C(2 — 3 — (6,2),F,) and
#C(2 — 3 — (6,2),F,). If f1 is not injective, we get a chain

Dy — im(f1) < Dy — D3,
where im( f1) has height either 1 or 0. From this we get an equivalence of categories

C2—3—(6,2),F,) = C(2—=3—(62),F,)
uc(2 —-1—=3—(6,2),F,)
uc(2 - 0—=3—(6,2),F,),

where the categories are defined as one would expect (see definition @ for more details).
As such we find

#C(2—3— (6,2),F,) = #C(2—3—(6,2),F,) (4.1)
—#C(2 > 13— (6,2),F,)
—#C(2 - 0— 3 — (6,2),F,).

Applying similar reasoning to the second < yields a decomposition

#C(2— 3 (6,2),F,) = #C(2—3— (6,2),F,)
—#C(2 =3 » 2= (6,2),F,)
—#C(2—=>3—>»1<= (6,2),F,)
—#C(2 >3 - 0= (6,2),F,).

Together these two equations describe the difference between #C(2 — 3 — (6, 2),F,) and
#C(2 — 3 — (6,2),F,) in terms of the point counts of other categories. Unfortunately,
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we do not have a direct formula for these point counts. However, we can get an expression
for such a point count (e.g. #C(2 — 3 — 1 < (6,2),F,)) by first calculating the point
count of a similar category of chains where we allow more morphisms within a chain (e.g.
#C(2 -3 — 1 — (6,2),F,)), and then expressing the difference in terms of point counts
of other categories. We then continue this process with our newly-found set of point counts.
This process eventually terminates (see lemma ), and this gives us a recursive method to
determine the point count #C(2 < 3 < (6, 2),F,). In the rest of this chapter, we formalise
this approach into algorithm , which allows us to calculate the point counts of chains of
arbitrary length and numerical invariants.

4.1 Chain words and categories

In this section we formally define BT;-flags; these arise as invariants of points on moduli
spaces of abelian varieties with non-full level structure. We also introduce their moduli
stacks, whose point counts and zeta functions will be the subject of this chapter. To study
these moduli stacks, we relate them to so-called chain categories, which are categories of
Dieudonné theory objects related to BT, -flags.

Definition 4.2. Let r be a positive integer. Let S be a scheme of characteristic p, and let
h = (hy,- -+, h,) be an increasing sequence of positive integers. Then a BT;-flag of height h
over S is an increasing sequence of p-groups G; C --- C G, over S, such that each G; is of
height h;, and such that G, is a BT;. The dimension of the sequence is the dimension of G,
(see [12, 11.7 Def.]).

Analogously to [70, Prop. 1.8] and fact @ one can prove the following.

Fact 4.3. Let r be a positive integer. Let h = (hq,--- , h,) be an increasing sequence of
positive integers, and let d < h,. be a nonnegative integer.

1. The BT, -flags of height 1 and dimension d form an algebraic stack BTFlag?® of finite
type over IF,,.

2. Let kbeaperfect field, and let DFlag™? (k) be the category of flags of level 1 Dieudonné
modules Dy C --- C D,, such that each D; is of height h;, and D,. is exact of dimen-
sion d (we take the morphisms of this categories to be isomorphisms of Dieudonné
modules D, = D that preserve the flags). Then there is an equivalence of cate-

gories
BTFlag™?(k) = DFlagh (k)
coming from the natural equivalences in fact @.2. O
Example 4.4. Let h = (hy,- - , h,) be an increasing sequence of integers, with h,. even. In

characteristic p, let S be the moduli stack of pairs (X, Hy,--- , H._1), where X is a prin-
cipally polarised abelian variety of dimension %=, and H; C -+ C H,_; C X[p]is aflag
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of subgroup schemes where each H; has order p"i. Then we get a natural morphism of
[F,-stacks

S — BTFlagh
(X7H17"‘ aHr)'_)Hl CCHTCX[p]

BT -flags of this type occur in the study of polarised abelian varieties with a 'y (p)-structure
(see for example [26]).

Remark 4.5. There are two reasons why we demand G, to be a BT; in definition @ First,
example @ shows that this is what we find in the study of moduli of abelian varieties. Sec-
ond, this extra assumption ensures that the stack BTFlag?? has a rational zeta function,
which we will be able to determine explicitely.

As before it suffices for our purposes to consider the point counts of categories of the form
DFlag(F,). If we replace the inclusions in the definition of DFlag by injective mor-
phisms, we see that it consists of tuples D = ((D;)i<r, (fi)i<r), where each D, is a Dieu-
donné module (subject to some numerical conditions), and each map f;: D; < D;;1 isan
injective morphism of Dieudonné modules. To determine the point count of this category,
it will prove useful to extend or restrict the category by playing around with the restrictions
on the D; and the f;: for example, we might want to restrict a D; to a certain Kraft type,
or we might drop the condition that an f; is injective. A convenient way to denote what
restriction we place on a category of chains of Dieudonné modules is given in the definition
below.

Definition 4.6. Let 7 > 1 be an integer. Let K denote the set of Kraft types. A chain word of
length r is a word (see @)

L =A1B1AsBy---A,_1B,_1A, € W(K: UZsoU ZZZO L {—)7 —, —»})
of one of the following types such that:

+ Each A, is either a Kraft type, a nonnegative integer, or a pair of nonnegative integers
(a, b) satisfying a > b,

+ Each B; is an element of the set {—, —, —}.

A chain word is called regular if each B; equals —, injective if each B; equals <, and surjective
if each B; equals —. Furthermore a chain word is called of numeric type if each A, is either
an integer or a pair of integers, and of Kraft type if each A; is a Kraft type.

Definition 4.7. Let L. = A;B; --- A, be a chain word of length r, and let k£ be a perfect
field field of characteristic p. Then the chain category of L over k, denoted C(L, k), is defined
as follows. Its objects are collections D = ((D;)i<r, (fi)i<r), where each D; is a level 1
Dieudonné module over k whose type

+ isan element of K(A4;) if A, is either an integer, or a pair of integers (a, b) witha > b
(see definition );
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« isequal to 4; if A; is a Kraft type.

Furthermore, each f; is a morphism of Dieudonné modules f;: D; — D, that is injective
if B; = <, and surjective if B; = —». Amorphism ¢: D — D’ in C(L, k) is a collection of
isomorphisms ¢;: D; = D! of Dieudonné modules, satisfying ;1 f; = flp; foralli < n.

Example 4.8.
1. Consider the chain word of numeric type 2 < 3 < (6, 2), and let k be a perfect field

of characteristic p. Then the category C(2 — 3 < (6, 2), k) consists of sequences

p. &5 D, & Dy

Where D; is a Dieudonné module of height 2, D5 is a Dieudonné module of height
3, and Dj is a Dieudonné module of height 6 and dimension 2; furthermore, both f;
and f, have to be injective. A morphism ¢ between two such sequences D and D’ is
a commutative diagram as below.

D, f1 D, fa Dy

Z[ P1 Z[ P2 2[@3
fi f3

D« Dy« Dj

2. Let Ag and Ag be the elements of K as defined in section @ Consider the chain word
of Kraft type Ag — Ag — 5. Then C(Ag — Ag — 5, k) consists out of sequences

D, & Dy Dy

where D, is of type Ag, Dy is of type Ag, Dj is of height 5, f; is injective and fo
is surjective. In particular D, j is isomorphic to St;(Ag) and D, j is isomorphic
to Stz (As). However, as we will see in section 4.4, there do not exist any injective
homomorphisms Stz (Ag) — Stz (As); hence C(Ag — Ag — 5, k) is the empty
category.

3. Let h = (hq,...,h,) be a sequence of increasing positive integers, and let d < h,
be a nonnegative integer. Let k be a perfect field of characteristic p. Then we get an
equivalence of categories

BTFlagh?(k) = DFlagh®(k) = C(L™?, k)
with L4 .= by < ... < h,_1 < (h,,d).

Remark 4.9. Similar to remark @ we can extend the definition of C(L, k) from perfect
fields & to general schemes of characteristic p, and this gives us an algebraic stack C(L) of
finite type over F,,. As usual, however, we are only concerned with its points over finite

fields.
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Remark 4.10. Let L = Ay By - - - A, be a chain word of numeric type, and let k be a perfect
field of characteristic p. Let D = ((D;);, (f;):) be an object of C(L, k), and for every 1,
let K; be the type of D;; this is an element of KC(4;). Let L’ be the chain word of Kraft
type L’ = KB --- K,; then we can consider D as an element of C(L’, k). This gives a
decomposition

C(L, k) = | ] C(K1B;--- K, k).
(Ki)i €1, K(A:)

Although our definition allows for a wide variety of chain words, we are mainly interested
in chain words of two types:

1. injective chain words of numeric type, because their chain categories correspond to
categories of BT -flags by example ¢1.8.3;

2. regular chain words of Kraft type, because we will be able to explicitely calculate the
point counts of their chain categories (see theorem ).

As such, the goal for the remainder of this section is to find a way to express the point count
of a chain category of a (not necessarily regular) chain word of numeric type in terms of the
point counts of chain categories of regular chain words of Kraft type:

Proposition 4.11. Let L be a chain word of numeric type. There exists a finite set of regular chain
words of Kraft type L' and integers cy, such that

#C(L,k) = > cp#C(L k) (4.12)
L'ecl!

for every finite field k of characteristic p.

To prove this proposition we first need an auxiliary lemma. It is in the proof of this lemma,
and in the proof of proposition , that we need chain words of greater generality than the
two types discussed above. The philosophy of the lemma is that if in a chain word we replace
aletter — or — by —, we will allow more objects in corresponding chain categories, so this
will increase their point counts. However, it turns out that we can express this increase
in terms of point counts of other chain categories. We have seen an illustration of this
phenomenon in (Ell).

Lemma 4.13. Let k be a finite field of characteristic p. Consider two chain words of numeric type
LZAlBl ~--ArandL’ = A/lBi A;A/

1. Consider the chain word of numeric type L — L'. Let a be such that A,. is either an integer
a, or a pair of integers (a, b). Then

#C(L < L' k) = #C(L — L', k) = > _#C(L -z — L' k). (4.14)

r<a
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2. Consider the chain word of numeric type L — L’. Let a’ be such that A is either an integer
a', or a pair of integers (a’,b’). Then

#C(L — L' k) = #C(L — L' k) = Y _ #C(L —» x < L', k). (4.15)
r<a’

Proof. We only prove the first point, as the other point can be proven analogously. Consider
the set Z as a category whose only morphisms are identities. Then we get a functor

o: C(L—>L k) — Z
D = ((Di)i,(fi)i) = dim(im(f,));

note that the numbering is such that the map f,.: D, — D,y is the morphism correspond-
ing to the ‘=’ in L — L’. The fibre over a € Z consists of those D for which f, is injective,
hence it is naturally identified with C(L < L', k). For x < a we get a functor from ®~*(z)
to C(L - x — L', k) by sending an object

r Frgrr —
DiBEDp, s D D S D N D

to

fr+r’—1
_—

DB Dy 5D Sim(f) B Doy == Doy Dy

where g is the surjective map induced by f,., and h is the inclusion. It is easily seen that this
is an equivalence of categories, hence we get an equivalence of categories

CL— L k)=CL— L ku| |CL -z L k),

r<a
from which the first point follows. The second point is proven in an analogous way. O

Proof of proposition . First we claim that there is a set £ of chain regular chain words of
numeric type and integers ¢y, such that

#C(L k)= Y cpn#C(L" k)

L"eL!”

for every k. If L is regular, then this statement is trivially true. If not, then at least one of
its ‘arrows’ must be equal to either < or —», If this is the case we can, using lemma ,
express #C(L, k) as an integral combination of some other #C(L" | k); the L” involved do
not depend on the choice of k. If some of these L” again are not regular, we can use the
same method to rewrite each of them as a sum of other #C(L", k). We want to show that
this process eventually ends. For this, we wish to assign to every numeric chain word L a
constant J(L) € Zx¢ such that

« In (8.14) we have J(L — I') > J(L — L) and J(L < L') > J(L — & — L) for
allz < a;
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« In (8.19) we have J(L — L') > J(L — L) and J(L — L') > J(L — & — L) for
allz < d'.

Together, these properties ensure that every time we invoke lemma we replace the
point count of a chain category by an integral combination of point counts of chain cate-
gories whose associated chain words have lower J-values. Since all J(L) are nonnegative
integers, this means that we will always arrive at a point where we cannot invoke lemma
; this is only possible if we are at a point where we all chain words in our integral combi-
nation are regular. Hence, if we prove the existence of such a J, we have proven the claim.
To define such a J, let L = A; By - - - A, be a chain word of length r of numeric type. Let
L = A,By--- A, be the same as L, except that we have replace a letter A; by the integer
A; := aif A; is a pair (a, b). Fori < r we set

3AitAin  if B, £ —;
Ji(L) = ’ : ’

and we define J(L) := >, _, Ji(L). A straightforward check shows that this .J satisfies the
properties above, and this proves our claim.

To prove the proposition, it now suffices to show that for every regular chain word M of
numeric type there is a finite set M’ of regular chain words of Kraft type such that

#C(M, k)= > #C(M',k)
M'e M’

for all k. We can find such a set using remark : ifM=A; — -+ — A,,then the set
M = {K1 S K, K € K(A;) foralli < r}

satisfies this property. O

4.2 Point counts of chain stacks

In this section we give an algorithm () to calculate the point count #DFlag®?(F,). The
strategy is as follows: if L is a regular chain word of Kraft type, we define a variety X, and
an algebraic group G, acting on X, such that C(L,F,) = [G.\XL]|(F,). Using methods
of section p.1 we can then calculate the point count of C(L,F,). Finally, we may express
#BTFlag?(FF,) in terms of such #C(L, F,) via proposition .

Notation 4.16. Let L be a regular chain word of Kraft type of length r. We define a scheme
X1, over IF,,, with an action of an algebraic group Gy, as follows: For ¢ < r, define G; :=
Aut(Str, (L;))™d, where where Str, isas in section @ Furthermore define G, :=[],, G;,
and for ¢ < r, define -

Xi = Hom(StFP (Lz), St]Fp (LiJr]_))md.
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1

Since G; X G;41 acts on X; on the leftby (g,¢') - * = gxg'~!, we get a left action of G, on

X L +— Hz <r Xz
Lemma 4.17. Let k be a perfect field of characteristic p, and let L be a chain word of Kraft type. Let
X, and G, be as in notation §.16. Then there is a contravariant equivalence of categories

C(L, k) = [GL\XL] (k).
Proof. Let L = A1B;y -+ Ay, and let D := ((D;), (f;)) € C(L, k). Then

Tp = H Isom(D;, Str(A;))

i<r

is a left G1.-torsor over k. Furthermore we get a map

<n
(Cii<r = Cipr0 fio Gt

This map is G'1-equivariant, and as such (Tp, fp) € [GL\XL](k). f p: D — D'isa
morphism in C(L, k), then we get an induced isomorphism of G;-torsors

o5 Isom(D], Str(A;)) = Isom(D;, Str(A;)).

Together these form a morphism (Tp/, fp/) — (T, fp) in [GL\X](k). One can check
that this is fully faithful and essentially surjective, hence a contravariant equivalence of
categories. O

As might be expected our next aim is to calculate point counts of categories of the form
[GL\XL](F,). For this we need a little more notation.

Notation 4.18. Let r be a positive integer, and let dy, . . ., d, be nonnegative integers. We
define N(dy,...,d,) to be the set of sequences of nonnegative integers (a; ;)1<i<;<r sat-
isfying the following relations:

capj <arforalll <i<j<nr

caj;=djforallj <r;

C Qi — Qi—15 > Qi1 — Gi—1 441 foralll <i <j <
cajj > a4 foralll <i<j<r.

Lemma 4.19. Let k be a field, and let dy, . .., d, be nonnegative integers. For each i < r, let
GLg, (k) xGLg,_, (k) actonthelefton Mat, . , x4, (k) in the natural way. Then there s a bijection

( I1 6L, (k)) \ ( [ Mata, ., a, (k)) <5 N(dy,....dy).

Jj<r i<r
Ifk is Galois over a subfield k' C k, then this is an isomorphism of Gal(k / k')-sets, where Gal(k / k')
acts trivially on the right hand side.
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Proof. Forevery j < r,let V; be the vector space k% . Let f; be an element of Maty, ,, xa; (k)
for each i < r, and consider each f; asamap V; — V; 1. Foreach i < j, set

Vij = (fj—i0---0f)(V;) C Vj;

then the integers a; ; := dim(V; ;) satisfy the inequalities of notation , and this gives
us a map

[ Mata,,,xa (k) = N(dy,....d,).

i<r
A straightforward verification shows that this map is invariant under the left actions of both
[I;<, GLq, (k) and Gal(k/k’), and that it is indeed a bijection. O

Theorem 4.20. Let q be a power of p,and let L = A} — --- — A, be a regular chain word of
Kraft type. Let d,e: K x K — Z and d: K — Z be as in notation and define

m(L) =Y (d(As, Aip1) + e(Ay, Aigr)) — > d(A;

i<r i<r

Then
HAGPZ #N(Al (A) A (A)) m(L)

[Lic, [aep, #GLAi(A)(Fq)

Proof. By lemma we know that #C(L,F,) = #{G\X](F,). From proposition we
get an isomorphism G, = (F' x H) x U, where U is unipotent of dimension >, d(4;)
and

#C(L,F,) =

FgH H GLAi(A)(FpZ(A))a

i<r A€Py

HZ= H H GLA,;(A)F

i<r AePr

Furthermore, by proposition we know that X;, = F x V, where V is a vector space of
dimension  _, . (d(A;, A1) + e(Ai, Ait1)), and

E = H H MatAi_'_l(A)XAi(A)(FPE(A)).
i<r A€Py

Furthermore the decomposition X;, = E x V is a decomposition of varieties with an F-
action, and the action of F' on V' is given by linear transformations. We may apply proposi-

tion to find

m(L)

(PR B\ Gl /By a
#GL\XL](F,) = (F(Fp)\E(F,)) Li<, [Tacp, #GLa,(a)(Fy)’

The action of F on E is the natural action as in lemma . Applying this lemma yields the
required result. O
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Corollary 4.21. Let h = (hy, ..., h,) be an increasing sequence of positive integers, and let 0 <
d < h,. Then there exists a R € Q(X) such that R is an element of the ring R in @ and such
that for every power q of p one has

#BTFlagh(F,) = R(q).

Proof. By example @ and proposition it suffices to prove this statement for regular
chain words of Kraft type. The result now follows from theorem and the formula

This corollary allows us to express the point count of a moduli stack of BT;-flags over F,
as a rational function in ¢. It turns out, however, that this rational function is actually an
integral polynomial in g and ¢~1. A key ingredient for this is the following lemma.

Lemma 4.22. The zeta function of the F,-stack BTFlag™ is a rational function.

Proof. Recall that #BTFlagh? (k) = #C(L™?, k), where
Lt =hy oo by < (hy,d)

as in example @ Let k be a finite field of characteristic p, and for every K € K(h,,d),
define

LK ::hl‘—>~'~‘—>h7-_1‘—>K;

Then

#C(LEY k)= Y #C(Lg, k);
KeK(hy,d)

as such it suffices to show that for each K € K(h,., d) the ‘zeta function’
t’l)
Zk(t) = —#C(Lg,F o
(0= e | 2oL By

is rational. Now fixa K € K(h,., d). For a vector space V and an integer n, let Gr(n, V') be
the Grassmannian scheme of n-dimensional subspaces of V. Let X be the closed subscheme
of the Fj,-scheme [[, ., Gr(h;, Str, (K)) consisting of elements S = (5;);<, satisfying:

¢ S; C Siyqforalli <,
+ each S; is mapped to itself under the semilinear maps F' and V.

The group scheme G := Aut(Str, (K))™ acts on X on the left. We get a contravariant
functor

®: C(Lk, k) = [G\X](k)
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as follows: let D € C(Lg, k). Since all the f; are injective, we may regard each D; as a
Dieudonné submodule of D,.. As such, we may assign to D the G-torsor Isom(D,, Sty (K))
over k, and the G-equivariant map 7' — X given by

Isom(D,,Stp(K)) — X
e = (o(Di))i<r

Similar to lemma we can prove that ® is a contravariant equivalence of categories;
hence Zk(t) = Z([G\X],t). On the other hand, we know from proposition @ that
G = T x U, with T finite and U unipotent. From proposition @ it now follows that
Z([G\X],t) = Z([0\X],p )¢, Since [\ X] is a Deligne-Mumford stack, theorem
tells us that Z ([T"\ X1, ¢) is rational; hence Zx (t) is rational, as was to be shown. O

Corollary 4.23. Let h = (hy, ..., h,) be an increasing sequence of positive integers, and let d be
an integer such that 0 < d < h,.. Then there exists a R € Z[X, X ~*] such that for all powers q of

p one has
#BTFlagh(F,) = R(q).

IfFR=3, ;X" then Z(BTFlagh? t) =[], (1 — p"t) ™.
Proof. By lemma we may apply theorem to corollary . O
As a result of this we can formulate the following algorithm to calculate Z(BTFlag?, t):

Algorithm 4.24. Let h = (hq, ..., h,) be an increasing sequence of positive integers, and
let 0 < d < h,. To calculate Z (BTFIagﬁ’d, t), perform the following steps:

1. Define the chain word L2 = hy < --. < h,_1 < (h,., d).

2. Using proposition , find a finite set £’ of regular chain words of Kraft type and an
integer ¢y for every L' € £ such that

#C(LEY k) = > cp - #C(L k).
Lec
3. Using theorem , determine for each L’ € L’ the rational function Q1 € Q(X)
such that #C(L',F,) = Q1 (q) for all powers g of p.

4. Then R := Y, ., cyQy is an element of Z[X, X 1], see corollary . if R =
> X", then Z(BTFlagh? 1) = I, —prt)~"

Remark 4.25. One can verify that the polynomial R in the algorithm above does not depend
on the prime number p.

4.3 Shortcuts for manual calculation

Although in the previous section we have given algorithm to calculate the zeta func-
tion of the F,-stack BTFIagﬁ’d, this calculation can become quite cumbersome if performed



4.3. Shortcuts for manual calculation 57

manually, as the number of terms in the sum in proposition grows quickly as either the
length of the sequence h or its entries increase. In this section we discuss a few shortcuts
that will make manual computation slightly easier. The overall strategy is as follows: in the
proof of proposition , we express the point count of a chain category of a chain word
of numeric type in terms of the point counts of chain categories corresponding to regular
chain words of Kraft type. We did this in two steps:

1. We reduce to regular chain words of numeric type using lemma ;
2. We reduce to regular chain words of Kraft type using remark .
We can also do this the other way around:
1. We reduce to chain words of Kraft type using lemma .1;
2. We reduce to regular chain words of Kraft type using lemma .2 & .3.

The advantage of the second approach is that the number of terms on the right hand side
of () will be a lot less, making manual computation considerably easier. The downside
is that it involves calculations that can be done by hand in small examples, but are not fully
automatisable to my knowledge; this makes a general implementation more difficult (see

remark ).

Notation 4.26. Let A be the primitive Kraft graph of type Z corresponding to the word F,
and let A; be the primitive Kraft graph of type Z corresponding to the word V. For a Kraft
type K we define its étale part to be K := K(Ay) - Ay, its infinitesimal multiplicative part to
be K™ := K(Ay) - Ay, and its infinitesimal unipotent part to be

K= > K(A)-A
AeP\{Ap, A1}

A Kraft type K is called étale (resp. infinitesimal multiplicative, infinitesimal unipotent) if K
equals K (resp. K™, K'). Note that K = K® + K'™ + K,

Remark 4.27. Let k be a perfect field of characteristic p. Then we get a natural decomposi-
tion
Sty (K) = Stp(K®) @ Sty (K™) @ Sty (K®).

Via Dieudonné theory this corresponds to the decomposition of the corresponding p-group
into its étale, infinitesimal unipotent, and infinitesimal multiplicative part as in [13, IV,§3,
n°s].

Let K be a Kraft type. Let vy be the unique vertex of Ag, let v; be the unique vertex of
A1, and let v be any vertex of K. Let Rr and Ry be as in section @ Then Rp(vg) >
Rp(v) > Rp(v1) and Ry (vg) < Ry (v) < Ry (v1); hence if w,w’ € {vg,v,v1}, then
w = w' if and only if w = w'. If we apply this to propositions and we now find the
following lemma:

Lemma 4.28. Let K be a Kraft type, and let k be a perfect field of characteristic p.
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1. Let w and w' be any of the designations ét, im, iu, such that w # w’. Then

Hom (St (K™), Stx(K™")) = 0.

2. The inclusion map
Aut(Sty, (K%)) x Aut(Ste(K™)) x Aut(Sty(K™)) < Aut(Sty(K))
is an isomorphism. O

For a Dieudonné module D over a perfect field & of characteristic p we now obtain a canoni-
cal decomposition D = D@ D™ @ D' as follows. Let K be the Kraft type of D and choose
anisomorphism ¢: Dy, = Stz (K). Then Stz (K) = Stg(K®) @ Stz (K™) @ Stz (K™); set
D& := o1 (Stz(K®)). By lemma.28.2 this does not depend on the choice of ; in particu-
lar, it is Galois-invariant, hence it descends to a canonically defined Dieudonné submodule
D® C D. We can define D™ and D™ analogously.

If L = A1B;--- A, is a chain word of Kraft type, we denote by L the chain word where
every A; is replaced by A%'. Suppose k is a perfect field of characteristic pand D € C(L, k).
Then D := ((D{")i<n, (filpe)i<n) is an element of C(L®, k). As such we get a functor
o C(L, k) — C(L*, k); we define words L™, L™ and functors ®™, " analogously. The
following proposition is now a straightforward corollary of lemma .

Lemma 4.29. Let L be a chain word of Kraft type, and let k be a perfect field of characteristic p.
Then the functor

% x @™ x @M C(L, k) — C(LY, k) x C(L™, k) x C(L™, k)
is an equivalence of categories. O

Lemma 4.30. Let L be an injective chain word of Kraft type of length r. Let k be a finite field of
characteristic p. Let w be one of the designations ét or im. If K is a Kraft type, denote its height by
a(K). Then

L,
0, otherwise.

ifa(LY) <a(ly) <--- < a(Ly);

T

#C(L™, k) = {

Proof. Define a; := a(LY"). By proposition E we have

Hom(Sty,(LY), Sti (L 1)) 2 Lin(Fy , Fatt);
hence

Inj(Sta(Li"), Ste(Li1)™) = Inj(Fy!, Fyi).
Applying lemma we find C(L™, k) = [G\X](k), where G and X are the finite étale
IF,-schemes whose F,-points with Galois action are given by

G(Fp) = H GLa, (Fp)»
i<r

X(Fp) = []mmjFg, Fa),
<r
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where G acts on X in the natural way. If there is an ¢ such that a; > a;,1, then X is empty
and #C(L", k) = 0. If no such i exists, then an object of X corresponds to a flag in Fy» of
dimensions (a1, ..., a,). The group GL,, (F,) acts transitively on this set, so in particular
G acts transitively on X. Since both G and X are finite, we may apply proposition
(with H, U, V trivial), and we find #C(L* k) = 1. O

Corollary 4.31. Let L be an injective chain word of Kraft type. Let k be a finite field of characteristic
p. Then #C(L, k) = #C(L™, k).

Proof. By lemmal.2qwe find #C(L, k) = #C(L®, k) - #C(L™, k) - #C(L™", k), and by lemma
the first two factors are equal to 1. O

In the proof of proposition we expressed #C(L%? F,) (see @) in terms of the point
counts of chain categories of straight chain words of Kraft type by first removing all letters
of the form < and —», and then replacing all integers and triples by Kraft types. Lemma
gives us a way to do this the other way around.

Notation 4.32. Let K and K be Kraft types, and let k be an algebraically closed field of
characteristic p. We write K7 <1 Ky (respectively K1 > K3) if there exists an injective
(resp. surjective) morphism of Dieudonné modules St; (K1) < Stz(K3z); this does not
depend on the choice of k. Let a be either a nonnegative integer or a pair of nonnegative
integers (z, y) satisfying = > y. Then we denote:

S(Ky, Ka,a) = {K eK:K > KKKy K e IC(a)} \ {K1, Ks).

In this notation, we may replace an argument by e to drop the restrictions imposed by that
argument; for instance, S(e, K5, e) is the set of K € K satisfying K < K that are not
equal to K.

Lemma 4.33. Let K and K> be Kraft types. Then K1 <1 K3 (respectively K1 1> K3) if and only
lfK]_(A()) < KQ(A()), K (Al) < KQ(A1>, and Kilu < Kéu (respectively K1<A0) > KQ(Ao),
Kl(Al) > KQ(Al), and Kilu > Kéu)

Proof. This is a straightforward consequence of lemma . O
Lemma 4.34. Let k be a finite field of characteristic p.

1. Leth = (hy,..., h,) be an increasing sequence of positive integers, and let 0 < d < h,,.. Let
L% be as in example @ Define the set

X K, € K:(hmd)a
X=d(K ... K T :
{( 1, ; T)GK KiGS(.7Ki+17hi) Vi<r }
Then
#C(Lﬁ’d,k) — Z #C(K; — - — K. k)
(Ky,,Kp)ex

= Y #(K" - KE).
K
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2. Let L = AyBy---Apand L' = A B --- A, be two chain words of Kraft type. Then
#C(L — L', k) is equal to:

« 0,if A, 4 AL
« #C(A1By--- ApB1AYB, - Al k), if A, = AY;
« #C(L —» L' k) — ZKGS(An,A’l,o) #C(L — K — L' k),if A} € S(e, Ay, 0).

3. Let L = A1By---A,and L' = A|Bj--- A, be two chain words of Kraft type. Then
#C(L — L', k) is equal to:

C 0, if A, A
e #C(AL1By - AnBLALBY - AL, k), if Ay = Al
HC(L > LK) = Y geesia, a0 #C(L = K < L k), if A, € S(A7o,0).

Proof. The first equality of the first point is straightforward, as X" contains precisely those
sequences (K71, - -, K,.) € K" where each of the K; has the right numerical invariants, and
where each Kj; is chosen such that it admits an injective morphism Sty (K;) < Sty (K;41);
in other words, these are precisely the sequences for which the associated chain category
C(Ky < -+ — K, k) is nonempty. The second equality follows from corollary . The
second and third point are proven analogously, so we will only prove the second point. If
A, 4 Al, then there exist no D,, of type A,,, D11 of type A} such that there exists an
injective morphism of Dieudonné modules f,,: D,, < D, 1. In particular the category
#C(L — L', k) is empty. If A,, = A/, we get an equivalence of categories

C(L <, k) 2 C(A1By--- A, B{ALB, -+ Al k),
by sending an object

fn 1

I
Dy — =Dy =3 Dy Dpio— -+ = Dyip

to

fnt10fn
Dy — =D, " Dyio— = Dypip.

Its inverse is given by sending an object

’
/ /f7 / !/
Dy— =D, =Dy — =Dy

to

/ p id r Froy ’
Di—.--—D,—D,=D,. = =D, .

One can check that these two are indeed inverses (note that f,, has to be an isomorphism).
The case that A,, € S(A], e, e) is proven analogously to lemma . O



4.4. An example 61

Alternate proof of proposition .11 for L = L%, First, use lemma .1 to write #C(L, k) as
an integral combination ), . ... #C(L", k), where each L" is a chain word of Kraft type.
Then use lemma .2 &.3 to replace any arrow < and — in L” by —, adding extra
terms to our sum in the process. Analogously to the first proof of proposition , we may
show that this process eventually terminates, leaving us with a set of regular chain words

of Kraft type. O

Remark 4.35. Using the proof above rather than the first proof of proposition when
performing algorithm has two advantages: First, we can use lemma .1 to work with
Kraft types of lower height, which makes computations easier. Second, in this way, we disre-
gard chain words whose associated chain categories are actually empty (e.g. example @.2)
at an early stage, which leads to fewer terms in the sum. This makes manual calculation
less cumbersome. The disadvantage of this method is that we have no general method to
compute the sets S(K1, K>, a) beyond lemma . Because of this, this method is harder
to automatise. In the next section, however, we will see that we can compute these sets in
small examples.

4.4 An example

We finish this chapter with a somewhat lengthy example: we will calculate the zeta function
of the IF,-stack BTFlag!®>%-2. This will showcase the techniques developed in section @
for calculating point counts and zeta functions manually. In order to do so in an efficient
manner, we will need some additional notation. To start, all Kraft types involved in the
calculation will be integral combinations of the following primitive Kraft graphs:

F
F v
Az 62 Ay :0—@ As :0——@
v
N, F
F
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Since the involved Kraft types are small in height, we can explicitely work out the homo-
morphism sets to see whether there exist any injective homomorphisms. For example, if
we label the vertices in Ag and Ag clockwise, starting at the bottom left in Ag and at the
top left in Ag, an actual computation of the group of homomorphisms as in the proof of
proposition show us that for any perfect field k of characteristic p we have

0 0 O

a 0 O
Hom(Str(Ag), St (Asg)) = b a0 | bek

0 0 O

This does not contain any injective linear maps, hence Ag 4 Ag. This method allows us
manually check the relations <1 and t> for other Kraft types as well.

Wehave K(4,2) = {2A0+2A1, Ao+ A1+ A3, 2A3, A1+ Ag, Ag+ A7, Ag}. Furthermore,
by determining the relation < between elements of X(2) and elements of (4, 2) we find
the following sets:

S(o,2A0 + 2A1,2
S(.7A0 +A1 —|—A3,2

= {200,241, A0 + A1}
={Ao+ A1, A0+ Ao, Ay + Ag, Az}

)
)
S(O, 2A3, 2) = {QAQ, Ag}
S(Q, 20¢ + 2A1, 2) = {Al + A27 A4}
S(O, 2A0 + 2A1, 2) = {AQ + AQ, A5}
S(O, QAO + 2A1, 2) = {Ag, A47 A5}
Hence we find, for any power q of p,
#BTFlag®P2(F,) = #C(2 = (4,2),F,)

= #C(2A¢ < 270 + 2A4,F,)
+#C(2A1 — 270 + 2A4,F,)
+#C(Ag + Ay — 2A¢ + 2A4,F,)
+#C(Ag + A1 — Ag + Ay + A3, Fy)
+#C(Ag + Ag = Ao + Ay + Ay, Fy)
+#C(A1 + Ay — Ag + Ay + A3, TFy)
#C(Az — Ag + Ay + A3, TFy)
#C(2A2 — 2A3,TF,)
(
(
(
(

+ + +

#C(As < 2A3,F,)

+#C(A1 + Ag — Ay + Ag, Fy)
+#C(Ay — Ay + Ag,TFy)
F#C(Ag + Ay > Ag + A7, Fy)
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+#C(As — Ao + A7, Fy)
+#C(A3 — Ag,Fy)
+#C(Ay — Ag,Fy)
+#C(A5 — Ag,F,).

We now calculate each of the summands individually using lemma to reduce to straight
chains, and theorem to calculate the associated point count. From the definition of the
functions d,e: K x K — Z in notation we easily see that d and e are distributive
functions on the semigroup K. As such, to determine the function m from theorem on
all words involved in the calculation, it suffices to calculate d on all the A; depicted above.
The results are in the following table:

d(J,, —>) AQ Ag A4 A5 AG A7 AS

Ao 0 1 1 1 1 1 1
Ag 1 1 1 1 1 1 2
Ay 1 1 1 1 2 1 2
As 1 1 1 1 1 2 2
Ag 1 1 1 1 2 1 2
Ay 1 1 1 1 1 2 2
Ag 1 2 2 2 2 2 3

The last two ingredients we need for our calculation are the other relevant sets of the form
S(K1, Ko, e) for two Kraft types K and K>, and the integers #N (dy,--- ,d,). The sets
S(K7, K, o) are readily determined analogously to the sets S (e, K, 2) above. Furthermore,

the vast majority of the #N (dy, - - - , d,,) that appear in the calculation below have no two
consecutive nonzero d;; in this case we easily see from notation that #N (dy,--- ,d,) =

1. The only exception is that we find one instance of #N (1, 2), which equals 2. Using this
we can calculate all the #C(K; — K3, F,) that appear in our calculation. The results are
as follows:

#C(2A0 — 2A¢ +2A,,F,) = #C(0—0,F,)
1;

#C(2A, < 200 + 2A,,F,) = #C(0 < 0,F,)
= 1;

#C(Ap + Ay = 2A¢ 4+ 2A4,F,) = #C(0—0,F,)
I;

#C(Ap+ A1y = Ao+ Ay + Ay, Fy)

|
H*
(@)
=)
{
>

@
=
N

#C(AO =+ AQ — AO + Al + A37Fq)

I

3
jal
e
!

e
=
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= #C(Ay — Ag,Fy) — #C(Ay - 0 — A3, Fy)
= #C(Ay — Ag,Fy) — #C(Ay — 0 — A3, Fy)
1 gt
#E;)  #E)
1 gt
g—1 q-1
= ¢
#C(A1 4+ Ay = Ag+ Ay + A3, Fy) = #C(Ag — A3, Fy)
g
#C(Ag — Ag,Fy)
= #C(A3,Fy)
q
#C(2A5 — 2A3,F,)
—#C(20g — Ay <5 204, F,)
—#C(2A2 — 0 — 2A3,F,)
= #C(2A, — 2A3,F,)
—#C(2A9 — Ay — 2A3,TF,)
+#C(2A2 — 0 = Ay — 2A3,TF,)
—#C(2A3 — 0 — 2A3,F,)
= #C(2A, — 2A3,F,)
—#C(2A9 — Ay — 2A3,F,)
+#C(2A2 = Ag — 0 — 2A3,F,)
+#C(2A2 — 0 = Ay — 2A3,F,)
#C(2A2 = 0 — Ay — 0 — 2A3,F,)
#C(2A2 — 0 — 2A3,TF,)
1
#GLo(F,)
1
#GLy(Fy) - (g — 1)

#C(Ag — Ao + Al + Ag,Fq)

#C(2A2 — 2A3, Fq)
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#C(Ag, — 2A3, Fq)

#C(Al —+ AQ — Al —+ AG,]Fq)

#C(A4 — Al + Aﬁ,]Fq)

q74

#GL2(Fq)

q—2+2¢2—q*
(-1 —a)(g—1)
q
#C(As — 273, F,)
—#C(Az — Ay < 273, F,)
—#C(A3 — 0 — 2A3,F)
#C(Ag — 2A3,F,)
—#C(Ag — Ay — 2A3,F,)
+#C(A3 — 0 = Ay — 2A3,F)
—#C(A3 — 0 — 2A3,F)
#C(Ag — 2A3,F,)
—#C(A3 — Ag — 2A3,F,)
+#C(A3 = Ay — 0 — 2A3,Fy)
+#C(A3 — 0 = Ay — 2A3,F)
#C(A3 — 0 — Ay — 0 — 2A3,F,)
#C(A3 — 0 — 2A3,F,)

¢ ¢t P

2737 N -
q q—1+q—1+q—1 qg—1 a

%

#C(Ag — Ag,TFy)

#C(Ag — Ag,Fy) — #C(A2 — 0 — Ag, Fy)
' g

g—1 qg—1

q %

#C(Ay — Ag,TFy)

#C(Ay — Ag,Fy)

—#C(Ay — Ag — Ag,Fy)
—#C(Ay — 0 — Ag, Fy)

#C(Ay — Ag,Fy)

—#C(Ay — Ag — Ag,Fy)
+#C(Ay = 0 = Ay — Ag,Fy)
—#C(Ay — 0 — Ag, Fy)

#C(Ay — Ag,Fy)
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#C(AO —+ AQ — Ao —+ A7,]Fq)

#C(A5 — AO + A7,]Fq)

#C(Ag — Ag, Fq)

—#C(Ay — Ay = Ag,TFy)

+#C(Ay — Ay — 0 — Ag,Fy)

+#C(Ay — 0 = Ay — Ag,Fy)
#C(Ay =5 0— Ay — 0 — A, Fy)
#C(Ay — 0 — Ag,Fy)

' _a' L a

g—1 (¢—=1? (¢—1)
-2 -3 -3

L4 q q

(=12 (¢-12 g¢-1

q %

#C(Ag — A7, TFy)

#C(Agy — A7, F,) — #C(Ay — 0 — A7, Fy)

' g7

q—1 B q—1

q

#C(A5 — A7, TFy)

#C(As — A7, Fy)

—#C(A5 — Ag — A7, Fy)
—#C(As = 0 = A7, Fy)
#C(As5 — A7, Fy)

—#C(A5 — Ay — A7, Fy)
+#C(A5 = 0 = Ay — A7, F)
—#C(As = 0= A7, Fy)
#C(As — A7, Fy)

—#C(A5 — Ay — A7, TFy)
+#C(As — Ay — 0 — A7, Fy)
+#C(A5 = 0 = Ay = A7, Fy)
—#C(As; 50— Ay = 0— A7, Fy)
—#C(A5 — 0 — A7, Fy)

gt ! q?

q—1 (qfl)2+(qfl)2
q? q? q?

(¢—1)2 (¢—1)?2 q—1

q %

#C(A3 — Ag,Fy)

—#C(A3 —» AQ — AS,IFQ)

+
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#C(A4 — Ag,

#C(As — Asg,

Fy)

Fy)

—#C(A3 — 0 — Ag,Fy)
= #C(A3 — Ag,Fy)
—#C(A3 — Ag — Ag,F,)
+#C(A3 = 0 = Ay — Ag,Fy)
—#C(A3 — 0 — Ag,Fy)
= #C(A3 — Ag,Fy)
—#C(A3 — Ay — Ag,TFy)
+#C(A3 = Ay = 0 — Ag,Fy)
+#C(A3 = 0 = Ay — Ag,Fy)
—#C(
—#C(A3 — 0 — Ag,Fy)

A3 —0— Ay = 0— Ag,

qg—1 B q—1
= ¢’—q%
= #C(As — Ag,Fy)
—#C(Ay — Ay — Ag,Fy)
—#C(Ay — 0 — Ag,Fy)
= #C(As — Ag,Fy)
—#C(Ay — Ay — Ag,Fy)
+#C(Ay — 0 = Ay — Ag,Fy)
—#C(Ay — 0 — Ag,Fy)
— #C(As — Ag,F,)
—#C(Ay — Ay — Ag,TFy)
+#C(Ay = Ay — 0 — Ag,Fy)
+#C(Ay — 0 = Ay — Ag,Fy)
—#C(Ay — 0 — Ay — 0 — Ag,
—#C(Ags — 0 — Ag,Fy)

q? q? q?

-1 (-1 (g1
q° ¢t gt
@—1) S (q—1)2 g¢-1

Fy)

Fy)
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—#C(A5 — Ay — Ag,Fy)
—#C(A5 — 0 — Ag,Fy)
= #C(A5 — Ag,Fy)
—#C(A5 — Ag — Ag,Fy)
+#C(A5 = 0 = Ay — Ag,Fy)
—#C(A5 — 0 — Ag,Fy)
= #C(A5 — Ag,Fy)
—#C(Ap — Ay — Ag,Fy)
+#C(A5 = Ay — 0 — Ag,Fy)
+#C(A5 - 0 = Ay — Ag,Fy)
#C(As — 0 — Ay — 0 — Ag,TFy)
#C(As — 0 — A, Fy)

q? q? q?

~ +
g—1 (q¢-12 (¢-1)

q? g g
(@-12 (¢g-12 g¢-1
— 4B

+

Adding all these terms, we find
#C(2 — (45 2)7]Fq) =3+ 4q71 =+ 56]72 + 26173 + q74;

as predicted by corollary this is indeed an integral combination of summands ¢™. From
this point count formula we deduce

Z(BTFlag®? 1) = (1 =) (1 —p~ ') (1 —p ) P(1 —p~*) 21— p 1)\,

While this computation is still quite cumbersome, we can see the strength of lemma in
action: if we would have used lemma instead in algorithm , we would have needed
to calculate #C(L, F,) for 702 regular chain words of Kraft type, instead of the 49 we needed
now.
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Chapter 5

Stacks of G-zips

Following the classification of the BT; over algebraically closed fields in [32], and the ap-
plication of this classification to obtain the Ekedahl-Oort stratification on moduli spaces
of abelian varieties in [52], various efforts have been made to generalise these results to
BT; with additional structure. In [43] the BT; with a given action of an endomorphism ring
and/or a polarisation were classified over an algebraically closed field; this can be used to
define an Ekedahl-Oort stratification on Shimura varieties of PEL type as in [7(]. The di-
mensions of these strata were calculated in [44], and the key ingredient in this result is the
description of the automorphism groups of the corresponding BT;. Both the classification
of BT; with extra structure, and their automorphisms groups, can be expressed in terms of
the Weyl group of an associated reductive algebraic group over F,,.

In [47] the Dieudonné modules associated to BT; were generalised to semilinear algebra ob-
jects called F-zips; these also appear in the de Rham cohomology of smooth proper schemes.
The classification of F-zips, as well as the classification of F-zips with additional structure,
could again be stated in terms of the Weyl group of a reductive group G. In [55] and [56]
so-called G-zips were introduced, which are objects in algebraic group theory in which the
reductive group G is the primordial object. For specific choices of G these generalise F-zips
(and BT1) with additional structure. Its relationship to Shimura varieties can be described
as follows: Let S be a be a Shimura variety of Hodge type governed by an algebraic group G
over Q, and assume G is hyperspecial at p. Let %, be the reduction of the canonical model
of S at p (see [29]), and let & be a reductive model of G over Z,,. Then by [71] there exists a
smooth surjective morphism from .#} to a moduli stack of % -zips.

The goal of this chapter is to calculate the point counts and zeta functions of moduli stacks
of G-zips; the main result is theorem . Because of the relation between G-zips on one
hand and BT; and F'-zips with additional structure on the other hand, this result can also be
used to determine the point counts and zeta functions of moduli stacks of the latter; see [56,
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§8 & §9] for more details on how to express stacks of F-zips in terms of G-zips. The main
ingredients of this proof are the classification of G-zips over an algebraically closed field and
the description of their automorphism groups from [56], and the methods for calculating
point counts of quotient stacks developed in chapter H In [56] the automorphism groups are
only described for connected G, so we need to generalise these results to the non-connected
case.

5.1 Weyl groups and Levi decompositions

In this section we briefly review some relevant facts about Weyl groups and Levi decompo-
sitions, in particular those of nonconnected reductive groups.

5.1.1 The Weyl group of a connected reductive group

Let G be a connected reductive algebraic group over a field k. For any pair (7', B) of a Borel
subgroup B C Gy, and a maximal torus T’ C B, let &1 g be the based root system of G
with respect to (T, B), and let Wy g be the Weyl group of this based root system, i.e. the
Coxeter group generated by the set Sp g of simple reflections. As an abstract group Wr g
is isomorphic to Norm g (T'(k))/T (k). If (T, B') is another choice of a Borel subgroup
and a maximal torus, then there exists a g € G(k) such that (7, B') = (¢Tg~*,gBg™").
Furthermore, such a g is unique up to right multiplication by 7'(k), which gives us a unique
isomorphism &7 g =% @7+ /. As such, we can simply talk about the based root system &
of G, with corresponding Coxeter system (W, S). By these canonical identifications ®, W
and S come with an action of Gal(k/k).

The set of parabolic subgroups of G containing B is classified by the power set of S, by
associating to I C S the parabolic subgroup P = L - B, where L is the reductive group
with maximal torus T' whose root system is ®;, the root subsystem of ® generated by the
roots whose associated reflections lie in I. We call I the type of P. Let U := R, P be the
unipotent radical of P;then P = L x U is the Levi decomposition of P with respect to T
(see subsection ). For every subset I C S, let W7 be the subgroup of W generated by
I; it is the Weyl group of the root system @, with I as its set of simple reflections.

For w € W, define the length ¢(w) of w to be the minimal integer such that there exist
51,82, Sg(w) € S suchthat w = 5189 5y(,). Since Gal(k/k) acts on W by permut-
ing S, the length is Galois invariant. Let I, J C S; then every (left, double, right) coset
Wrw, WiwWy or wW has a unique element of minimal length, and we denote the sub-
sets of W of elements of minimal length in their (left, double, right) cosets by ‘W, W,
and W7,

Proposition 5.1. (See [14, Prop. 4.18])Let I, .J C S.Letx € TW andsetI, = JNz~ Iz C
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W. Thenforeveryw € WixW j thereexist uniquew; € Wy, wy € =W suchthatw = wrzw .
Furthermore {(w) = £(wy) + ¢(x) + L(wy). O

Lemma 5.2. (See [55, Prop. 2.8]) Let I, J C S. Every element w € W can uniquely be written
as xw for somex € TWY andw;y € =W, O

Lemma 5.3. (See [55, Lem. 2.13])) Let I,J C S. Letw € W and write w = zw s with
xr € IWJ, wy € Wj. Then

Y(w) = #{a € dN\D, :wa e <1>—\<1>1}. O

5.1.2 The Weyl group of a nonconnected reductive group

Now let us drop the assumption that our group is connected. Let G be a reductive algebraic
group and write G for its connected component. Let B be a Borel subgroup of Gy, and let
T be a maximal torus of B. Define the following groups:

W = Normg ) (T) /T (k);
W= Normé(,—c)(T /T (k);

Q = (Normg,,(T) N Normé(E)(B))/T(l_f).

)
)

Lemma 5.4.

1. Onehas W =W x .

2. The composite map Q — G (k) /T (k) — 7o(G(k)) is an isomorphism of groups.
Proof.

1. First note that T is a normal subgroup of W, since it consists of the elements of 17
that have a representative in G(k), and G is anormal subgroup of G. Furthermore, 1/
acts on the set X of Borel subgroups of G, containing T'. The stabiliser of B under
this action is €0, whereas W acts simply transitively on X; hence Q N W = 1 and
WQ = W, and together this proves W = W x (.

2. By the previous point, we see that
Q=W /W = NormG(E)(T)/NormGU;)(T),

50 it is enough to show that every connected component of G/(k) has an element
that normalises 7. Let 2 € G(k); then 272" is another maximal torus of G,
so there exists a ¢ € G(k) such that 272! = ¢gT'g~'. From this we find that
T = (g7 t2)T (g tx)~1, and g~z is in the same connected component as z. O
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We call W the Weyl group of G with respect to (T, B). Again, choosing a different (T, B)
leads to a canonical isomorphism, so we may as well talk about the Weyl group of G. The
two statements of lemma é are then to be understood as isomorphisms of groups with
an action of Gal(k/k). Note that we can regard W as the Weyl group of the connected
reductive group G; as such we can apply the results of the previous subsection to it. Let
S C W be the generating set of simple reflections.

Now let us define an extension of the length function to a suitable subset of W. First, let T
and .J be subsets of the set S of simple reflections in W, and consider the set / W= 1wq.
Define a subset W7 of TV as follows: every element w € W can uniquely be written as
w = w'w, withw € TW and w € Q. We rewrite this as w = ww”, with w” = w™ lw'w €
@ w1y then per definition w € W7 if and only if w” € “~ ' 1“W 7, Note that /W7 is
contained in TW".

Now let w € IW; write w = ww”. Since w” is an element of“’flI“W, we can uniquely
write w” = yw; by lemma @, withy € @ 1“W7 and w; € T«vW,. Then define the
extended length function £ y: TW — Z>q by

lr5(w) == #{a € oM\®;:wya € (D_\‘I)[} + l(wy). (5.5)

Remark 5.6.

1. By proposition @ and lemma @ the map ¢;,;: TW — Zs extends the length func-
tion £: 'TW — Zxq.

2. Analogously to proposition Ell we see that every w € W can be uniquely written as
zwywithz € IW‘], wy € I'“”W], and f[”](w) = f[J(l‘) + E(wJ)

3. A straightforward calculation shows that for 7 € Gal(k/k) we get {1 ;("w) =
¢r.7(w). In particular, if I and J are fixed under the action of Gal(k/k), the map
(1.7: "W — Zsy is Galois-invariant,

4. Ingeneral ¢; ; depends on J. It also depends on I, in the sense thatif I, I’ C S, then
(1 y(w)and 1 s (w) forw € TW NI W = "I/ need not coincide. As an example,
consider over any field the group G = SLj. Let @ = (w) be cyclic of order 2, and let
G = G x Q be the extension given by wgw ™! = g™, Then w acts as —1 on the
root system, and S has only one element. Then a straightforward calculation shows
Uz z(w) =1, whereas {5 s(w) = £g s(w) = s z(w) =0.

5.1.3 Levi decomposition of nonconnected groups

Let P be a connected smooth linear algebraic group over a field k. A Levi subgroup of P is the
image of a section of the map P — P /R, P, i.e. asubgroup L C P suchthat P = L x R, P.
In characteristic p, such a Levi subgroup need not always exist, nor need it be unique. How-
ever, if P is a parabolic subgroup of a connected reductive algebraic group, then for every
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maximal torus T' C P there exists a unique Levi subgroup of P containing 7" (see [15, Propo-
sition 1.17]). The following proposition generalises this result to the non-connected case.

Proposition 5.7. Let G be a reductive group over a field k, and let P be a subgroup of G whose
identity component P is a parabolic subgroup of G. Let T' be a maximal torus of P. Then there exists
a unique Levi subgroup of P containing T, i.e. a subgroup L C P such that P = L x R, P.

Proof. Let L be the Levi subgroup of P containing T'. Then any L satisfying the conditions
of the proposition necessarily has L has its identity component, hence L C Norm p(L). On
the other hand we know that Normp(L) = L, so the only possibility is L = Normp (L),
and we have to check that 7 (Normp (L)) = 7T0(P) i.e. that every connected component
in P; has an element normalising L. Let z € P(k). Then Tz~ is another maximal

torus of P, so there exists ay € P(k) such that T2~ = yTy~!. Then y~'x is in the
same connected component as x, and (y~'z)T(y~'x)~! = T. Since L is the unique Levi
subgroup of P containing T', and (y~'z)L(y~'x)~! is another Levi subgroup of P, we see
that y~ ' normalises L, which completes the proof. O
5.2 (G-zips

In this section we give the definition of G-zips from [56] along with their classification and
their connection to BT;. We will need the discussion on Weyl groups from subsection .
As before, we denote the component group of a nonconnected algebraic group A by mo(A).

Let gy be a power of p. Let G be a reductive group over F,,, and write G for its identity
component. Let g be a power of qo, and let x: Gy, r, — G, be a cocharacter of G, . Let
L = Centg,, (x),andletU} C G, be the unipotent subgroup defined by the property that
Lie(U,) C Lie(GF,) is the direct sum of the weight spaces of positive weight; define U_
similarly. Note that L is connected (see [15, Proposition 0.34]). This defines parabolic sub-
groups P = L x U of Gr,. Now take an F;-subgroup scheme © of ﬂo(CentéFq (x)),and

let L be the inverse image of © under the canonical map Cent é.. (X) = mo(Centy (X));
aq q

then L has L as its identity component and 7o (L) = ©. We may regard © as a subgroup of
mo(G) via the inclusion

mo(Cente, (X)) = Cente, (X)/L < m0(Gr, ).

We may then define the algebraic subgroups PL:=LxUgof G‘F , whose identity compo-
nents Py are equal to L x Uy. Let 7 € Gal(F,, /F,, ) be the o- -th power Frobenius. Then G
and G, are canonically isomorphic; as such we can regard Pi - Li = etc. as subgroups of
G. They correspond to the parabolic and Levi subgroups associated to the cocharacter oy
of Gy, and the subgroup ¢(0) of m)((?), where ¢: G — @ is the relative go-th Frobenius
isogeny.
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Definition 5.8. Let A be an algebraic group over a field k, and let B be a subgroup of A.
Let T be an A-torsor over some k-scheme S. A B-subtorsor of T is an S-subscheme Y of T,
together with an action of Bg, such that Y is a B-torsor over .S and such that the inclusion
map Y — T is equivariant under the action of Bg.

Definition 5.9. Let S be a scheme over F,. A G-zip of type (x, ©) over S is a tuple ) =
(Y,Y,,Y_,v) consisting of:

¢ A right—GFq—torsor Y over S;

« Aright-P, -subtorsor Y, of Y;

¢« A right-]:l_yw-subtorsor Y_ of Y;

+ Anisomorphismv: Yy /Uy » = Y_/U_ . of right-L-torsors.

Together with the obvious notions of pullbacks and morphisms we get a fibred category
G—Zip]}‘;@ over Fy. If G is connected there is no choice for ©, and we will omit it from the
notation.

Proposition 5.10. (See [56, Prop. 3.2 & 3.11]) The fibred category G-Zi pfF‘(’I@ is asmooth algebraic
stack of finite type over F. O

Example 5.11. Let 0 < d < h be integers, let k be a perfect field, and let (D, F, V) €
D”?(k). On D we have a descending filtration D > ker(F) D 0 and an ascending filtration
0 C ker(V) C D. Furthermore, ker(F') has dimension h — d and ker(V') has dimension d.
Consider the algebraic group G := GL;, over Fy, := [F,,. and a cocharacter x: G5, — G
that sends a z € Gy, r, to the diagonal matrix

diag(z,...,z,2%,...,2%).

d times h—d times

Since G is connected we have P, = Py, and since X is defined over IF,, we have P_ , = P_
and U_ , = U_. Consider the vector space W = ]F;‘ with the natural action of G, and
let A and B be the cocharacter spaces in W on which x(z) acts as z and 22, respectively.
Furthermore, define an ascending filtration W, and a descending filtration W* on W given

by

Wy =0, wo=w,
W, = A, Wt =B,
Wy =W, wW? =0.

Then Py is the stabiliser of W*, and P_ is the stabiliser of the ascending filtration W,. Now
define the following torsors:

* Aright G-torsor Y = Isom(Wy, D) over k;
¢ Aright P, -subtorsor Y} = Isom(Wp?, D D ker(F) D 0)of Y;
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« Aright P_-subtorsor Y_ = Isom(W, ,0 C ker(V) C D) of Y.

Then L = GL(W° /W) x GL(W1) = GL(W;) x GL(W, /W) via the identifications W /A =
Band W/B = A. As L-torsors we find:

Y, /U, = Isom(WY /W), D /ker(F)) x Isom(W}, ker(F)),
Y_/U_ = Isom(Wi i, ker(V)) x Isom(Wa /W1 , D/ker(V)).

The k-vector space isomorphisms

V=1 ™(D/ker(F)) = ker(V)
F: " (ker(F)) = D/ker(V)

yieldanisomorphismv: Y /Uy » =5 Y_/U_ , of right-L.-torsors. Then the quadruple
(Y,Y,,Y_,v)isaGLy-zip of type x over k; since G = G there is no choice for ©. This gives
us a natural equivalence of categories (see [56, §8.1 & §9.3]):

D%(k) = GLj,-Zip* (k).

If we replace GL;, with a suitable reductive group G (e.g. Resg , /r, GLy, /2) we get a natural
equivalence between a category of G-zips, and a stack of exact level 1 Dieudonné modules
with additional structure (e.g. with a given action of F,2); see [56, §8] for several examples.
As such the concept of G-zips generalises the concept of level 1 Dieudonné modules with
additional structure. This construction extends to isomorphisms of IF,,-stacks (see remark
@), and it can be applied to stacks of F-zips as defined in [47].

Now let qo, ¢, G, x, ©, L, U and Py be as above. As in subsection let W =W x Qbe
the Weyl group of G. Let I C S be the type of P, and let .J be the type of P_ .. If wy € W
is the unique longest word, then J = 7(wolwy ) = wor(I)wy *. Let wy € 7W7U) be the
element of minimal length in W ;woW (1), and let wy = 7~ (w1 ); then we may write this
relation as J = m(wyTwy ') = wyw(Hw; .

The group © can be considered as a subgroup of Q 2 7 (G). Let ¢ be the automorphism of
W given by 1) = inn(w;) o m = 7 o inn(ws), and let © act on W by

0-w:=Ow(h) L.
Lemma 5.12. The subset [W C W is invariant under the ©-action.

Proof. Since L normalises the parabolic subgroup P, of Gr,, the subset I C S is stable
under the action of © by conjugation; hence for each § € © one has §(!W)§=1 = IW, so

O W)~ = (O W)~ - (0Q(0) ") = "W =" D

Let us write 2X-© := ©\IV.
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Proposition 5.13. (See [56, Rem. 3.21]) There is a natural bijection between the sets ZX*© and
Py

[G’Z'p%{q (Fg)l- 0

This bijection can be described as follows. Choose a Borel subgroup B of Gf, contained

in P_ ., and let T be a maximal torus of B. Let v € G(F,) be such that (yBy™!), =
Band (yTy ') = T. Foreveryw € W = Normg g (T )/T(F,), choose a lift w
to Norme, g (T), and set g = b, Then ¢ € ZX© corresponds to the G-zip V,, =
(G, Py, gP_ ,, giv-) for any representative w € 'W of &; its isomorphism class does not
depend on the choice of the representatives w and . Note that this description differs from
the one given in [56, Remark 3.21], as that description seems to be wrong. Since there it is
assumed that B C P_ i rather than that B C P_ ; g, the choice of (B, T, g) presented
there will not be a frame for the connected zip datum (G, Py k', P— » x,¢: Lk — Lz i).
Also, the choice for g given there needs to be modified to account for the fact that P, x and
P_ . k might not have a common maximal torus.

The rest of thls subsection is dedicated to the extended length functions ¢; ; defined in
subsectlon . We need lemma . in order to show a result on the dimension of the
automorphlsm group of a G-zip that extends [56, Prop. 3.34(a)] to the nonconnected case
(see proposition .2).

Lemma5.14. Thelengthfunction(; ;: "W — Zs isinvariant under the semilinear conjugation
action of ©.

Proof. Letw € /W, let@ € ©,andlet @ = fwi)(A) L. Let w = wyw, be the decomposition
as in subsection . A straightforward computation shows w = ow” = @gw; with

1 ’(/A)(H)w//l&(a)_l c @ llwW’
§=0O)yh(o) " e EW;
Wy = P(O)wsp(0) € LWy,

since conjugation by v (6) fixes .J. Furthermore, 1)(©) fixes ®; (as a subset of ®) and ©
fixes @1, and 2 fixes &+ and &, hence

Or.(@) = #{a € dH\D, : Dja € qr\cbf} ¥ 0(idy)
_ #{a € dH\D : fuydh(0) o e q>—\<1>,} + 0(iy)
= #{a €PM\®; :wya € <I>*\<I>1} + l(wy)

:£17J(w). O

Let IT := Gal(F,/F,). By remark @.3 we know that the function ¢; ; is not only invariant
under the action of ©, but also under the action of II. As such, we can also consider ¢; ; as
a function 2X© — Z or as a function I\ZX© — Zs.
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Example 5.15. Let p be an odd prime, let V' be the F,-vector space F;, and let ¢ be the
symmetric nondegenerate bilinear form on V given by the matrix

= O O O
o = O O
S O = O
(= e e

Let (3 be the algebraic group 0(V, 1) over F,; it has two connected components. The Weyl
group W of its identity component G = S0(V, ) is of the form W = {+1}? (with trivial
Galois action), and its root system is of the form ¥ = {ry, ro, —71, —72}, where the i-th
factor of W acts on {r;, —r; }. The set of generators of W is S = {(-1,1), (1, —1)}. Fur-
thermore, #Q = 2, and the nontrivial element o of Q permutes the two factors of W (as
well as e; and e5); hence W 22 {112 %1 S5,

Let x: G, — G be the cocharacter that sends ¢ to diag(t,¢,¢t~*,¢~1). Its associated Levi
factor L is isomorphic to GLs; the isomorphism is given by the injection GL, — G that
sends a g € GLy to diag(g, g~ >T). The associated parabolic subgroup P, is the product of
L with the subgroup B C G of upper triangular orthogonal matrices. The type of Py is
a singleton subset of .S; without loss of generality we may choose the isomorphism W 2
{£1}? in such a way that P* has type I = {(—1,1)}. Recall that .J denotes the type of the
parabolic subgroup P_ . of G. Since W is abelian and has trivial Galois action, the formula
J = wom(I)wy ' shows us that J = I. Furthermore, since Cent () is connected, the
group O has to be trivial.

An element of W is of the form (a, b, ¢), with a,b € {1} and ¢ € Sy = {1, 0}; then T W is
the subset of T consisting of elements for which a = 1. Also, note that + \ ®; = {e,},
O\ &; = {—e2}, so to calculate the length function ¢; ; as in (@) we only need to
determine ¢(w ;) and whether wy sends es to —es or not. If we use the terminology w, w”,
y, wy from subsection , we get the following results:

w

(1,1,1) (1,-1,1) (1,1,0) (1,-1,0)
w (1,1,1)  (1,1,1)  (1,1,0) (1,1,0)
w” (1,-1,1) (1,1,1) (1,1,1) (=1,1,1)
y (1,1,1) (1,-1,1) (1,1,1) (1,1,1)
wy (1,1,1) (1,1,1) (1,1,1) (1,1,-1)
wyes = —eq? no yes no no
L(wy) 0 0 0 1

lr, 5 () 0 1 0 1
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5.3 Algebraic zip data

In this section we discuss algebraic zip data, which are needed to prove statements about
the automorphism group of a G-zip. This section copies a lot from sections 3-8 of [55],
except that there the reductive group is assumed to be to be connected. A lot carries over
essentially unchanged; in particular, if we cite a result from [55] without comment, we mean
that the same proof holds for the nonconnected case. Throughout this section, we will be
working over an algebraically closed field & of characteristic p, and for simplicity, we will
identify algebraic groups with their set of k-points (which means that we take all groups to
be reduced). Furthermore, if A is an algebraic group, then we denote its identity component
by A. Finally for an algebraic group G we denote by rs the quotient mapr, : G — G/R,G,
where R, G is the unipotent radical of G.

Definition 5.16. An algebraic zip datum over k is a quadruple Z = (G, P, Q, @) consisting
of:

« areductive group G over k;
« two subgroups P, Q C G such that P and Q are parabolic subgroups of G;

« anisogeny ¢: P/R.P — Q/R,Q, i.e. a morphism of algebraic groups with finite
kernel that is faithfully flat on identity components.

For an algebraic zip datum Z, we define its zip group E 5 tobe
Bz ={(2) € Px Q: p(rp) =14() }-

It acts on G by (y, z) - g = ygz~". Note that if Z is an algebraic zip datum, then we have
an associated connected algebraic zip datum Z := (G, P, Q, ¢). Its associated zip group Ez is
the identity component of £ 3, and as such also acts on G.

Definition 5.17. A frame of Z is a tuple (B, T\, g) consisting of a Borel subgroup B of G, a
maximal torus T of B, and an element g € G, such that

- BCQ;
« gBg~! C P;
* o(rp(gBg")) = 14(B);
* p(rp(9Tg™")) = 15(T).
Proposition 5.18. (See [55, Prop. 3.7]) For every algebraic zip datum Z = (G, P, Q, ©), every

Borel subgroup B of G contained in () and every maximal torus T' of B there exists an element g € G
such that (B, T, g) is a frame of Z. O
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We now fix a frame (B, T, g) of Z. Let P = U x Land Q = V x M be the Levi decomposi-
tions of P and @ with respect to T'; these exist by proposition @ In this notation

E; = {(uz,w(l)) uelveV,le i}. (5.19)

Furthermore, let I be the type of the parabolic P, and let J be the type of the parabolic
Q. Letw € "W ¢ Normg(T')/T, and choose a lift @ € Normg (7). If H is a sub-
group of (gu) "' L(gw), we may compare it with its image under ¢ o inn(guw), viewed as
subgroups of G via the chosen Levi splitting of Q. The collection of all such H for which
H = ¢ oinn(gw)(H) has a unique largest element, namely the subgroup generated by all
such subgroups.

Definition 5.20. Let H,, be the unique largest subgroup of (g1r) ™! - L - (gw) that satisfies
the relation H,, = ¢ o inn(gw)(Hy). Let vy: H, — H, be the isogeny induced by
¢ oinn(giw), and let H,, act onitself by h - b’ := hh'p;(h) L.

Since poinn(gw)(T) = T, the group H,, does not depend on the choice of w, even though
©u does. One of the main results of this section is the following result about certain stabilis-
ers.

Theorem 5.21. (See[55, Thm.8.1]) Letw € !W and h € H,,. Then the stabiliser St abg (gwh)
is the semidirect product of a connected unipotent normal subgroup and the subgroup

{(int(gu'))(h’), <p(int(gw)(h'))) h e Stawa(h)} :
where the action of H,, on itself is given by semilinear conjugation as in definition . O

Definition 5.22. The algebraic zip datum Z is called orbitally finite if for any w € T the
number of fixed points of the endomorphism ¢ o inn(gw) of H,, is finite; this does not
depend on the choice of w (see [55, Prop. 7.1]).

We will see later (lemma ) that Z is orbitally finite in the case that is of main interest to
us, i.e. when Z comes from the G, x, © defining a stack of G-zips (see ()).

Theorem 5.23. (See [55, Thm. 7.5c]) Suppose Z is orbitally finite. Then for any w € TW the
orbit Ez - (gw) has dimension dim(P) + ¢ j(w). O

Remark 5.24. Although the proofs of these two theorems carry over from the connected
case without much difficulty, we feel compelled to make some comments about what ex-
actly changes in the non-connected case, since the proofs of these theorems require most
of the material of [55]. The key change is that in [55, Section 4] we allow = to be an ele-
ment of /W, rather than just /W ~7; however, one can keep working with the connected
algebraic zip datum Z, and define from there a connected algebraic zip datum Z; as in [55,
Constr. 4.3]. There, one needs the Levi decomposition for non-connected parabolic groups;
but this is handled in our proposition @ The use of non-connected groups does not give
any problems in the proofs of most propositions and lemmas in [55, §4-8]. In [55, Prop. 4.8],
the term ¢(z) in the formula will now be replaced by ¢; s (). The only property of ¢(z) that
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is used in the proof is that if z € TW, then {(x) = #{a € ®F\®; : za € &~ \®;}. In
our case, we have . € TW7, and €7 ;: TW7 — Zs is the extension of £: W7 — Zs,
that gives the correct formula. Furthermore, in the proof of [53, Prop. 4.12] the assumption
z € TW7 is used, to conclude that z®% C ®*. However, the same is true for z € ! W
write # = wa’ withw € Qand 2’ € ¥ W, then 2’®% C @F, and wdt = 7,
since € acts on the based root system. Finally, the proofs of both [55, Thm. 7.5¢] and [55,
Thm. 8.1] rest on an induction argument, where the authors use that an element w € W
can uniquely be written asw = zwy, withz € TW7,w; € I=W;, and £(w) = £(x) +£(wy).
The analogous statement that we need to use is that any w € W can uniquely be written
asw = zwy, withe € TW7, wy € =Wy, and £ j(w) = 1,5 (z) + £(wy), see remark

The proofs of the other lemmas, propositions and theorems work essentially unchanged.

5.4 Zeta functions of stacks of G-zips

We fix qg, G, ¢, x and © as in section @ The aim of this section is to calculate the point
counts and the zeta function of the stack G- le]F , as described in the following theorem.

Theorem 5.25. Let q0 be a power of p, and let G be a reductive group over F,. Let q be a power of
qo, let x: Gy p, — GF be a cocharacter, and let © be a subgroup scheme of m (Cent G, (x))- Let

=%© and I1 be as in section . and A, B: TI\EX® — Z> beas in notatlon Then for every

v > 1one has
oTpE O F ) = 3 g AO

£ezx©;
Bl

and

) - 1
_ZipX® ) = = =
Z(G anFq ,1) i HI\I 1= (qu(g)t)B(E)'
e =X

The functions A and B depend on some finite combinatorial data, namely the Weil group
W of G, the action of W on the root system of G, and the action of Gal(F,,/F,, ) on W. For
a given G these data, and the functions A and B, are readily calculated.

Before proving this theorem we first need to introduce some auxiliary results. Let ¢ be as
in section @ To the triple (G, x, ©) we can associate the algebraic zip datum

Z2=(G, Py, P, 0l;) (5.26)
As in section Q the zip group E ; acts on GFq by (yi,y-) -9 =y. gyt
Lemma 5.27. (See [56, Rem. 3.9]) The algebraic zip data Z is orbitally finite.

Proof. Let w € TW, and choose a lift w of w to Normg, g ) (T(F,)) (for some chosen frame

(B,T,g) of Z). Then ¢, = ¢ o inn(gw) is a w-semilinear automorphism of H,,, hence
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it defines a model Hy,, of H,, over Fg,. The fixed points of ¢, in H,, then correspond to
H,(F,,), which is a finite set; hence Z is orbitally finite. O

Proposition 5.28. (See [56, Prop. 3.11]) There is an isomorphism @—Zipr;e = [Ez\éyq] of
IF,-stacks. O

Lemma 5.29. Let B C P_  be a Borel subgroup defined over Fy, and let T C B be a maximal
torus defined over F ;. Then there exists an element g € G(F,) such that (B, T, g) is a frame of Z.

Proof. Consider the algebraic subset
X = {g € G(Fy) : p(gBg™") = B,p(gTg™") = T}

of G(F,). Since Normg(B) N Normg(T) = T, we see that X forms a T-torsor over F,. By
Lang’s theorem such a torsor is trivial, hence X has a rational point. O

For the rest of this section we fix a frame (B, T, g) as in the previous lemma.

Lemma 5.30. Choose, for everyw € W = Norme g (T(F,))/T(F,),alift of w to the group
Normgz ) (T(F,)). Then the map

EXO = B5(Fy)\G(F,)

0 ws Ex(F,) - g

is well-defined, and it is an isomorphism of Gal(F, /I, )-sets that does not depend on the choices of
w and W.

Proof. In[55, Thm. 10.10] it is proven that this map is a well-defined bijection independent

of the choices of w and . Furthermore, if 7 is an element of Gal(F, /F, ), then the fact that
T and g are defined over IF, implies that 7(w) is a lift of 7(w) to Norm 4 (T'); this shows that
the map is Galois-equivariant. O

Remark 5.31. The isomorphism above, together with the identification [[E;\Gr |(F,)] =
E;(F,)\G(F,) from lemma ,1, gives the natural bijection in proposition b.13.

Notation 5.32. Let IT = Gal(F,/F,). We define functions A, B: TW — Zsq on /W as
follows:

. A(w) = d1m(G/P+) — KI,J(w);
+ B(w) is the cardinality of the IT-orbit of © - w in 2X:© i.e.

B(w) :#{geEX’@:§€H~(@~w)}.

The fact that A(w) is nonnegative for every w € T follows from proposition .2. The
function B is clearly ©-invariant, and A is ©-invariant by lemma p.14. As such these func-
tions can also be regarded as functions A, B: ZX© — Zs, or alternatively as functions
A7 B: H\Ex’e — Zzo.
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Proposition 5.33. For & € ZX9, let V; be the G-zip over F, corresponding to £.
1. The G-zip Ve has a model over F v (see definition if and only if v is divisible by B(§).

2. Onehasdim(Aut(Ye)) = A(€) and the identity component of the group scheme Aut (Ve )¢
is unipotent.

Proof.
1. This follows directly from lemma .2.

2. Note that dim(E;) = dim(G). Let w € "W be such that £ = © - w. By remark ,
lemma and theorem we have

dim(Aut())) = dim(Stabg_ (gu))

=dim(Ez) — dim(E; - gw)

= dim(G) — dim(E; - gw)
(@) -
)-

= dim(G) — dim(Py) — ¢1.5(&)

/\

A(¢

Furthermore, by theorem the identity component of Aut():)™¢ is unipotent.
O

Remark 5.34. The formula dim(Aut()e)) = dim(G/P) — {1 ;(&) from proposition .2
apparently contradicts the proof of [56, Thm. 3.26]. There an extended length function
(: W — Zsy is defined by £(ww) = £(w) for w € W,w € . It is stated that the codimen-
sion of E; - (gi) in G is equal to dim(G// Py ) — £(w). In other words, if this were correct,
dim(Aut()e)) would be equal to dim(G/P*) — ¢(w) rather than dim(G/P*) — £; ;(w).
However, the proof seems to be incorrect (and the theorem itself as well); the dimension
formula should follow from [55, Thm. 5.11], but that result only holds for the connected
case. In the nonconnected case one can construct a counterexample as follows. Let ( be
the example of remark @.4 (over ), and consider the cocharacter

x: Gy —>G

Then L is the diagonal subgroup of G, Py the upper triangular matrices, and P_ = P_
the lower triangular matrices, and we can take g = (° §). Employing the notation of
(), the stabiliser of gw in E 5 (F,) is then equal to

{(ur,ou) € Bx(F,) : luy = gup(u-w'g™'}.

Conjugation by g and w both exchange P, and P_, so in the equation

luy = gwp(lu_w™ g™



5.4. Zeta functions of stacks of G-zips 83

the left hand side is in P;, while the right hand side is in P_. This means that both sides
have to be in L, hence u;. = u_ = 1, and the equation simplifies to [ = —(l). This has
only finitely many solutions, hence

codim(Ez - (gw)) = dim(Stabg, (gw)) = 0 = dim(G/Py) — 41 7 (w)
while dim(G/Py) — f(w) = 1.
Remark 5.35. Ingeneral Aut () will not be reduced; see [44, Rem. 3.1.7] for the first found
instance of this phenomenon, or [56, Rem. 3.35] for the general case.

Proof of theorem . With all the previous results all that is left is a straightforward calcu-
lation. As in proposition let V¢ be the G-zip over F, corresponding to ¢, for every
¢ € 2%©. Furthermore, for an integer v > 1, we set Z¥:© (F0) := (2%:©)l(Fa/Fav) and
(E5\G)(Fgv) = (E5(F)\G(F,))%F/Fa) We get for every v > 1:

#G—Zip]}:’@(]qu) = #[Ez\é] (Fg)
s

2 Z qfdim(A(C))-v

Ce(BEz\G)(Fqv)
6230 —dim(Au )
= Z q dim(Aut(Ye))

IIH

§eExO (Fyr)
6332 ZA(E) v
= Z q A(8)
EEEX’G(FQ’U)
=1 g~ AO,
fEEX’e:
B(&)|v
hence
. v
2(C-ZioX® 1) — L ~A(&)
(G-Zipk"t) = exp | D — > g
v>1 £e=x9;
B(&)[v
_ 1 —A(&) 4\v
eo| XY taen
EEEXO v>1:
B(&)|v
L —a@pBEO
= ] e | D 5@
EGEX'G) v/21 B(é‘)v
_ H (1_(q_A(€)t)B(€))_B(1$)

£eEX©

— H H(l _ (q—A(ﬁ)t)B(f))*Big)

EETI\EX® gef
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=2 H (1— (g~ A1) B@)-1, O
E€II\EX-©

Example 5.36. Using the language of G-zips and theorem , we can give an alternative
proof for theorem for the case n = 1. Let G and x be as in example . Since G is
connected we get W = W,© = 1,and I and W are as in notation @ Furthermore, G
is split, so we get TT\EX© = 2X© = IV and B(w) = 1 forallw € 'W. Since W = W
we find that A(w) = dim(G/P*) — ¢(w), and we readily calculate that dim(G) = h?,
dim(PT) = h? — hd + d?, hence dim(G/P*) = d(h — d). Taking all of this together, we
find that theorem p.25 gives the same formula for Z (GLh—Zip]}‘p .t) = Z(BT!"?, t) as theorem
3
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Chapter 6

Introduction

Let K be a number field or a p-adic field, and let R be its ring of integers. Let G be a con-
nected reductive group over K. By a model 4 of G we mean a flat group scheme of finite
type over R such that 95 = G. Animportant way to construct models of G is the following.
Let V be a finite dimensional K -vector space, and let p: G — GL(V') be an injective map of
algebraic groups (again we use GL(V) for the algebraic group underlying the abstract group
GL(V)). We consider G as a subgroup of GL(V') via . Now let A be a lattice in V, i.e. a lo-
cally free R-submodule of V' that generates V' as a K-vector space. Then GL(A) is a group
scheme over R whose generic fibre is canonically isomorphic to GL(V'). Let mod (A) be the
Zariski closure of G in GL(A); this is a model of G. In general, the group scheme modg(A)
depends on the choice of A, and one can ask the following question:

Question. Suppose that G, its representation V, and its model mod (A) are given. To what extent
can we recover the lattice A C V'?

As a partial answer we can say that the group scheme mod¢ (A) certainly does not determine
A uniquely. Let g € GL(V); then the automorphism inn(g) of GL(V') extends to an isomor-
phism GL(A) = GL(gA). As such, we obtain an isomorphism between the group schemes
modg(A) and mod, -1 (gA). This shows that the group scheme modq (A) only depends on
the N(K)-orbit of A, where N is the scheme-theoretic normaliser of G in GL(V). The fol-
lowing theorem shows that the correspondence between models of G and N (K )-orbits of
lattices is finite.

Theorem [7.1. Let G be a connected reductive group over a number field or p-adic field K, and let
V be a finite dimensional faithful representation of G. Let N be the scheme-theoretic normaliser of
G inGL(V). Let 4 be amodel of G. Then the lattices A in V such thatmod (A) = ¥ are contained
in at most finitely many N (K )-orbits.

In general, a model of G will correspond to more than one N (K )-orbit of lattices, see ex-

amples @ and .
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A variant of theorem @ can be applied in the context of Shimura varieties. Let g and n > 2
be positive integers, and let A, ,, be the moduli space of complex principally polarised
abelian varieties of dimension g with a given level n structure. Let Y be a special subvariety
of A, ., and let G be the generic (rational) Mumford-Tate group of Y (with respect to the
variation of rational Hodge structures coming from the homology of the universal abelian
variety with Q-coefficients). Then the inclusion Y < A, ,, is induced by a morphism of
Shimura data ¢: (G, X) < (GSpy, o, #7;) that is injective on the level of algebraic groups.
On the other hand the variation of rational Hodge structures on A, ,, comes from a vari-
ation of integral Hodge structures related to homology with Z-coefficients. This integral
variation of Hodge structures corresponds to a lattice A in the standard representation V'
of GSpy, o- Let GMT(Y") be the generic integral Mumford-Tate group of ¥ with respect to
this variation of integral Hodge structures; then GMT(Y") is isomorphic to modg (A) (where
V is regarded as a faithful representation of G via g). Replacing Y by a Hecke translate
corresponds to replacing the inclusion G < GSp,, by a conjugate, or equivalently to
choosing another lattice in V. By applying theorem [7.1 we are able to prove the following
theorem.

Theorem B.1. Let g and n be positive integers with n. > 2, and let 4 be a group scheme over Z.
Then there are only finitely many special subvarieties Y of A, ,, such that GMT(Y") = ¢.

In other words, a special subvariety Y C A, ,, is determined, up to some finite ambiguity,
by its generic integral Mumford-Tate group. We can also apply this result to the Mumford-
Tate conjecture: Let A be an abelian variety over a number field X C C, and denote for every
prime number £ the ¢-adic Galois monodromy group of A by G;(A) (see definition for
details); this is a flat group scheme of finite type over Z, whose generic fibre is a reductive
algebraic group over Q. Furthermore, let MT(A) denote the Mumford-Tate group of A;
this is a flat group scheme of finite type over Z whose generic fibre is a reductive algebraic
group over Q. The Mumford-Tate conjecture states that MT(A)z, = G¢(A) for every prime
number ¢. On the other hand, let z be a point on A, ,, corresponding to A, and let Y be the
special closure of z; then GMT(Y") =2 MT(A). As such, the Mumford-Tate conjecture predicts
that the answer to the following question is ‘yes”:

Question. Let A be a g-dimensional abelian variety over a number field & C C. Does there exist a
special subvariety S of Ag ,, such that GMT(Y )z, = G¢(A) for all prime numbers £?

By slightly altering the proof of theorem Ell, we can prove the following converse to this
question, and give an affirmative answer in the smallest unsolved case of the Mumford-Tate
conjecture:

Theorem B.23. Let A be a g-dimensional principally polarised abelian variety over a number field
K C C,andletn > 2 be an integer. Then there exist at most finitely many special subvarieties
Y of Ag.,, such that GMT(Y)z, = Gg(A) for all prime numbers £. If A is of Mumford’s type (see
definition @ then at least one such Y exists.

The structure of this part is as follows: The lengthy chapter H is dedicated to the proof of
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theorem lZlI; in chapter H we prove theorems Ell and . We let go of the notations and
conventions of the previous part, with the exception that we will continue to use Hom, Aut,
Stab, etc, for the schemes underlying Hom, Aut, Stab, etc. With the exception of section
@ all of the material is adapted mostly unchanged from [36].
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Chapter 7

Integral models in
representations

As in the introduction we let K be a number field or a p-adic field and R its ring of integers,
and for a vector space V over K, an algebraic subgroup G C GL(V'),and a lattice A C V', we
let modg (A) be the closure of G in GL(A). The goal of this chapter is to prove the following
theorem:

Theorem 7.1. Let G be a connected reductive group over a number field or p-adic field K, and let
V be a finite dimensional faithful representation of G. Let N be the scheme-theoretic normaliser of
G inGL(V). Let 4 be amodel of G. Then the lattices A in V such thatmod g (A) = ¥ are contained
in at most finitely many N (K )-orbits.

In a sense this is a generalisation of the statement that the class group of a number field is
finite, see example @ The strategy for the case that G is split and K is a local field is as
follows. Let g be the Lie algebra of G, then V' is a faithful representation of G. If ¢ is any
model of G, then its Lie algebra & is a lattice in g. The proof consists of the following steps:

1. We define a set of ‘nice’ lattices in g (definition ) and a set of ‘nice’ lattices in V
(definition );

2. We show that the nice lattices in V form only finitely many orbits under a suitably
chosen algebraic group (proposition );

3. We show that if ¢ is the model corresponding to a lattice A, then we can give an upper
bound to the distance from A to a ‘nice’ lattice in terms of the distance from & to a

nice lattice (proposition ).

This upper bound allows us to prove that there are only finitely many N (K )-orbits corre-
sponding to one model of 4. The proof of this is given in section é In section [7.4 we
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generalise this to nonsplit groups, and in section @ we generalise it to number fields. For
this last step we will need that for p-adic K under sufficiently nice assumptions there will
only correspond one N (K )-orbit to the model 4.

7.1 Lattices, models, Hopf algebras and Lie algebras

In this section we will discuss a number of properties of models, and their relation to lattices
in various vector spaces. Throughout we fix a number field or p-adic field K, along with its
ring of integers R.

7.1.1 Models of reductive groups

Definition 7.2. Let G be a connected reductive algebraic group over K, and let T be a
maximal torus of G.

1. A model of G is a flat group scheme ¢ of finite type over R such that there exists an
isomorphism ¢: ¥k == G. Such an isomorphism is called an anchoring of ¢. The set
of isomorphism classes of models of G is denoted Mod(G).

2. An anchored model of G is pair (¢, ) consisting of a model ¢ of G and an anchoring
p: Yk = G. The set of isomorphism classes of anchored models of G is denoted
Mod*(G).

3. A model of (G, T) is a pair (¢,.7) consisting of a model of G and a closed reduced
subgroup scheme 7 of ¢, for which there exists an isomorphism p: ¥ = G such
that ¢| 7,. is an isomorphism from J to T. Such a ¢ is called an anchoring of (¢, 7).
The set of isomorphism classes of models of (G, T') is denoted Mod (G, T').

Note that there are natural forgetful maps Mod*(G) — Mod(G,T) — Mod(G). Our use of
the terminology ‘model’ may differ from its use in the literature; for instance, some authors
consider the choice of an anchoring to be part of the data (hence their ‘models’ would be
our ‘anchored models’), or they may impose other conditions on the group scheme ¢ over
R; see for instance [[10], [18] and [21]. Our choice of terminology is justified by the fact
that our models are exactly those that arise from lattices in representations (see remark
@). This use of the word ‘model’ also differs from definition , but as mentioned in the
introduction of this part we will drop all our notations from the previous part.

Definition 7.3. Let V be a K-vector space. A lattice in V is a locally free R-submodule of V
that spans V as a K-vector space. The set of lattices in V is denoted Lat(V'). If H C GL(V)
is an algebraic subgroup, we write Lat ;; (V') for the quotient H (K )\Lat(V).

Remark 7.4. If V is finite dimensional, then an R-submodule A C V is a lattice if and only
if A is finitely generated and K - A = V (see [62, Tag 00NX]).
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Let G be a connected reductive group over K, and let V be a finite dimensional faithful
representation of G; we consider G as an algebraic subgroup of GL(V'). Let A be a lattice in
V. The identification Ax = V induces a natural isomorphism

Fa: GL(A)x = GL(V).

Now let mod¢(A) be the Zariski closure of f, ! (G) in GL(A); this is a model of G. If we let
@ be the isomorphism f4 [noag; (A) : modG(A)x = G, then (modg(A), ) isananchored
model of G. This gives us a map

mod%, : Lat(V) — Mod™(G)
A — (modg(A), pa).

The compositions of mod?, with the forgetful maps Mod"(G) — Mod(G, T') (for a maximal
torus 7" of G) and Mod*(G) — Mod(G) are denoted mod¢ r and mod, respectively.

Lemma 7.5. Let G be a connected reductive group over K and let V' be a faithful finite dimensional
representation of G. Consider G as a subgroup of GL(V'). Let Z := Centgy(y)(G) be the scheme-
theoretic centraliser of G in GL(V'), and let N := Normgy () (G) be the scheme-theoretic normaliser
of GinGL(V). Let T be a maximal torus of G, and let H := Z - T C GL(V).

1. The map mod, : Lat(V') — Mod"(G) factors through Lat z (V).
2. Themapmodg,r: Lat(V) — Mod(G, T') factors through Lat g (V).
3. The map modg : Lat(V) — Mod(G) factors through Lat y (V).

Proof. We only prove the first statement; the other two can be proven analogously. Let ¢
be an element of GL(V'). The map inn(g) € Aut(GL(V')) extends to an automorphism
GL(A) — GL(gA) as in the following diagram:

(f_qA o inn(g) o le)Zar

GL(A) - GL(gA)

A~

o fga oinn(g) o le J
GL(A )k ——=—— GL(gA)k
2| fa 2| fan

inn(g)

(V) — 2 GL(V)

J J

G = gGg~!

This shows that (mod(A), pa) = (modyg,-1(gA),inn(g)~" o Fonlnoa,, 1 (gn)xc) @S an-
chored models of G. If g is an element of Z(K) we find that as anchored models of G' we
have (mod¢(A), pa) = (mode(gA), pgn), as was to be proven. O
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Remark 7.6. Throughout the rest of this chapter we say that a map of sets is finite if it has
finite fibres. In the terminology of the lemma above, theorem @ then states that the map
mod¢: Laty (V) — Mod(G) is finite.

Example 7.7. Let I’ be a number field, and let G = Resp,q(G.n) be the Weil restriction of
Gy from F to Q. Let V be the Q-vector space F, together with its natural representation
of G. Now let A be a lattice in V, and define the ring

Apn :={x € F: A C A};

this is an order in F. In this case one has modg(A) = Resa, z(Gn) as group schemes
over Z. Now let A be such that Ay = Op. As an additive subgroup of F' the lattice A can
be considered as a fractional &p-ideal. Since in this case we have N(Q) = G(Q) = F*,
the N(Q)-orbit of A corresponds to an element of the class group CI(F). On the other
hand, every element of CI(F') corresponds to a N(Q)-orbit of lattices A in V satisfying
Ap = Op. In other words, there is a bijective correspondence between N (Q)-orbits of
lattices yielding the model Res ¢, /7(Gw ) of G, and elements of the class group CI(F”). This
shows that a model of G generally does not correspond to a single N-orbit of lattices. In
this setting, theorem @ recovers the well-known fact that C1(F) is finite.

Remark 7.8. Let G be a (not necessarily connected) reductive group over K, and let ¢ be
a model of G. Then [22, Exp. VLB, Prop. 13.2] tells us that there exists a free R-module A
of finite rank such that ¢ is isomorphic to a closed subgroup of GL(A). If we take V' =
A, we find that V is a faithful representation of G, and ¢ is the image of A under the
map modg: Lat(V) — Mod(G). Hence every model of G arises from a lattice in some
representation.

7.1.2 Hopf algebras and Lie algebras

Definition 7.9. Let G be a connected reductive group over K, and let A := O(G) be the
Hopf algebra of G. An order of A is an R-subalgebra o7 of A of finite type such that 7 has
the structure of an R-Hopf algebra with the comultiplication, counit, and coinverse of A,
and such that &7 is a lattice in the K-vector space A.

If of is an order in A, then (Spec(&), Spec(A = o7k )) is an anchored model of G, and this
gives a bijection between the set of orders of A and Mod”(G). Analogously the set Mod(G)
corresponds bijectively to the set of flat R-Hopf algebras o7 of finite type such that o7 = A.
If V is a faithful representation of G, and A is a lattice in V, we write mod 4 (A) for the order
of A corresponding to the anchored model (modg (A), wa ). It is the image of the composite
map of rings

O(GL(A)) < O(GL(V)) — A.

Let g be the (K -valued points of the) Lie algebra of G. Let 4 be amodel of G, and let & be the
(R-valued points of the) Lie algebra of &. Then g is a K-vector space of dimension dim(G),



7.1. Lattices, models, Hopf algebras and Lie algebras 95

and & is a locally free R-module of rank dim(G). If ¢ is an anchoring of ¢, then ¢ induces
an embedding of R-Lie algebras Lie ¢: & < g, and its image is a lattice in g. Suppose V'
is a faithful representation of G'and A C V is a lattice such that mod%,(A) = (¢, ¢). Then
(Lie ¢)(®) = g N gl(A) as subsets of gl(V).

Example 7.10. We give an example that shows that mod¢ : Laty (V) — Mod(G) is gener-
ally not injective over local fields. Let K be the field Qs, and let G be the algebraic group
PGLy over K. The standard representation V of G = SLy g, induces a representation of
GonW = Sym?*(V). Let E = {ej,es} be the standard basis of V; this induces a basis
F ={e?, e1ea,e3} of W. Relative to this basis the representation is given as follows:

G = GL(W)
ab a?  ab b2
( ¢ d) — Qchc adCJCrlbc 2;211 .

Then O(G) = Q%["Ell,l'lg,xgl, $22]/(£L’11$22 — L1221 — 1), and A= O(G) is the QQ-
subalgebra of O(G) generated by the coefficients of this representation, i.e. by the set

2 2 2 2
S = {In,50119312,9512,2$11$21,117111E22 +I125621,2I125022,I217I21172279322}-

Let A be the lattice generated by F'; then mod 4 (A) is the Z,-subalgebra of A generated by S.
It contains T11T21 = ,’L‘%l (3321:622) — 33‘%1 (.%‘11.%‘12) and T12X22 = .’17%2 (.’1?11:1}12) — .1‘%2 (5(7211‘22),
hence mod 4 (A) is also generated as a Z-algebra by

’r 2 2 2 2
S = {3511»5511%127$127$119€21,$11$22 + $12$21,$129€22,£U217$215E22,$22}'

Now consider the basis I/ = {e?, 2e;e2, €3} of W, and let A’ be the lattice in W generated
by F”. Relative to this basis the representation is given by

G = GL(WW)

(3) o < 3 SZ)
ac a C .

cd c? 2cd d?

Analogous to the above we see that mod 4 (A’) is also generated by S’, hence mod s (A) =
mod 4 (A) as Zs-subalgebras of A. Let T C GL(W) be the group of scalars; then the nor-
maliser N of G is equal to the subgroup 7" - G of GL(W). We will show that N(Qs) - A
and N(Q2) - A’ are two different elements of Laty (V). Call a lattice L C W pure if
L = ¢ - Sym?(M) for some lattice M C V and some ¢ € K*. I claim that the pure
lattices form a single orbit under the action of N(Q3) on Lat(W). To see this, note that
pure lattices from an orbit under the action of GL(V') x T'(Q5) on W. We get a short exact
sequence
1-Gn—GL(V)XxT — N =1,

where the first map is given by z — ((§ 9), 272). Taking Galois cohomology, we obtain an
exact sequence

1= QF — CGL(V) x T(Qz) = N(Q2) — H'(Qa,Gyy).
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By Hilbert 90 the last term of this sequence is trivial; hence the image of the group GL(V') x
T(Q2) in GL(W) is equal to N(Qz), and pure lattices form a single N (Q5)-orbit.

Let M :=Zy - e1 & Zgy - e3 C V. Then A is equal to Sym? (M), hence it is pure. Suppose
A’ is pure; then there exist x = x1e1 + z2e2,y = y1€1 + yoes and ¢ € K* such that A’ is
generated by {cx?, czy, cy?}. By changing c if necessary, we may assume that 22, ry, y? €
A, Since 22 = x2e? + 271 w0e1 €9 + Xoe3 is an element of A’, we see that 1,15 € Zs. The
same is true for y; and yo, hence M’ := Zy - x & Zo -y C V is a sublattice of M. Then a

straightforward calculation shows that

Cl’% CT1Y1 CZ/%
#(A/N') =det | 2cz120  cx1ys + cToyr  2cy1Y0
cx? CY2y2 cy3

03(a:1y2 - x2y1)3

3
= 2det (xl yl)
T2 Y2
=c#(M/M")3.

On the other hand, from the definition of A and A’ we see #(A/A’) = 2. This is a contra-
diction as 2 is not a cube in Q9, hence A’ cannot be pure. Since A is pure, we find that
N(Q2)-Aand N(Q3)- A’ are two different elements of Lat i (V') that have the same image
in Mod(G).

Definition 7.11. Suppose G is a split reductive group with a split maximal torus T". In that
case there is exactly one model (¢, ) of (G, T) such that ¢ is reductive (i.e. smooth with
reductive fibres) and such that .7 is a split fibrewise maximal torus of ¢, see [22, Exp. XXIII,
Cor. 5.2; Exp. XXV, Cor. 1.2]. This model is called the Chevalley model of (G, T'). We also refer
to & as the Chevalley model of G.

7.1.3 Lattices in vector spaces over p-adic fields

Suppose K is a p-adic field, and let w be a uniformiser of K. Let V like before be a finite
dimensional K -vector space, and let A, A’ be two lattices in V. Then there exist integers
n,m such that w”A C A’ C w™A. If we choose n minimal and m maximal, then we call
d(A, A") := n—mthe distance between A and A’. Let G be an algebraic subgroup of GL(V),
and as before let Latg (V) = G(K)\Lat(V). We define a function

dg: Latg(V) x Latg (V) — R>g
(X, Y) — min(AyA/)GXXyd(A, A/)

The following lemma tells us that the name ‘distance’ is justified. Its proof is straightforward
and therefore omitted.
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Lemma 7.12. Let V and G be as above. Suppose G contains the scalars in GL(V').
1 Let X, Y € Latg(V) and let A € X. Then dg(X,Y) = minpreyd(A, A).
2. The map d is a distance function on Latg (V).

3. Foreveryr € RxgandeveryY € Lat (V') the open ball
{X € Late(V) : dg(X,Y) < r}

is a finite set. O

7.2 Representations of split reductive groups

As before let K be a number field or a p-adic field. In this section we will briefly review
the representation theory of split reductive groups over K. Furthermore, we will prove
some results on the associated representation theory of Lie algebras. We will assume all
representations to be finite dimensional.

Let G be a connected split reductive group over K, and let T C G be a split maximal torus.
Furthermore, we fix a Borel subgroup B C G containing T'. Let ¥ C X*(T') be the set of
roots of G with respect to T (see [42, Thm. 22.44]); let Q C X*(T') be the subgroup generated
by U, Associated to B we have a basis A1 of ¥ such that every 3 € ¥ can be written as
B =2 aca+ Maa, with the m,, either all nonpositive integers or all nonnegative integers.
This gives a decomposition ¥ = U+ [ U, Accordingly, if g and t are the Lie algebras of G
and T, respectively, we get

g=tonton =t ( D g@> ® ( D g)
aevt aev—

The following theorem gives a description of the irreducible representations of G. If V is
a representation of G, we call the characters of T' that occur in V' the weights of V' (with
respect to T)).

Theorem 7.13. (See [42, Th. 24.3], [40, 3.39], and [5, Ch. VIII, §6.1, Prop. 1]) Let V be an
irreducible representation of G.

1. There is a unique weight 1 of V, called the highest weight of V, such that V,, has dimension
1, and every weight of V' is of the form 1) — > | . x+ ma for constants my, € Zxo.

2. Visirreducible as a representation of the Lie algebra g.
3. V is generated by the elements obtained by repeatedly applying n™ to V.

4, Up to isomorphism V is the only irreducible representation of G with highest weight v». [
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Corollary 7.14 (Schur’s lemma). Let V' be an irreducible representation of G. Then the natural
inclusion K < Endg (V) is an isomorphism.

Proof. Every endomorphism of V" has to send Vj, to itself. By point 3 we find that an en-
domorphism of V' is determined by its action on V,;, hence this gives us an injective map
Endg(V) < Endg(Vy) = K; this map is an isomorphism since it is the inverse of the
inclusion K < Endg (V). O

Remark 7.15. With G as above, let V be any representation of G. Then, because G is re-
ductive, we know that V is a direct sum of irreducible representations of G. By theorem
.1 we can canonically write V' = @, V{4, where for ¢) € X*(T') the subspace V(,
is the isotypical component of V' with highest weight v (as a character of T'), and D is the
set of highest weights occuring in V. Furthermore, we can decompose every V) into 7
character spaces, and we get a decomposition

V:@ @ Vi) x:

YeD xeX*(T)

Let U(g) be the universal enveloping algebra of g. It obtains a @-grading coming from the
Q-grading of g; we may also regard this as a X*(T')-grading via the inclusion Q ¢ X*(T). If
V is a representation of G, then the associated map U(g) — End(V) is a homomorphism
of X*(T')-graded K-algebras. Furthermore, from the Poincaré-Birkhoff-Witt theorem (see
[24, 17.3, Cor. C]) it follows that there is a natural isomorphism of Q-graded K-algebras
U(g) 2 U™ ) @ U(t) ® U(nT), with the map from right to left given by multiplication.
The following two results will be useful in the next section.

Theorem 7.16 (Jacobson density theorem). Let G be a split reductive group, and let g be its
Lie algebra. Let V1, ..., Vi, be pairwise nonisomorphic irreducible representations of G. Then the
induced map U(g) — €D, End(V;) is surjective.

Proof. This theorem is proven over algebraically closed fields in [17, Thm. 2.5] for represen-
tations of algebras in general (not just for universal enveloping algebras of Lie algebras).
The hypothesis that K is algebraically closed is only used in invoking Schur’s lemma, but
this also holds in our situation, see corollary . O

Proposition 7.17. Let V be an irreducible representation of G of highest weight 1. Let x be a
weight of V. Then the maps

U(ni)x_w — HOmK(Vw, VX)’
U(n+)¢_x — HOHIK(VX, Vw)
are surjective.

Proof. From theorem .3 we know that V. = U(n™) - V. Since U(n~) — End(V) isa
homomorphism of X*(7")-graded K -algebras, this implies that V,, = U(n™),_y - V. Since



7.3. Split reductive groups over local fields 99

Vi is one-dimensional by theorem .1 this shows that U(n™),—y — Homg (V, V) is
surjective.

For the surjectivity of the second map, let f: V,, — V;, be a linear map, and extend f to a
map f: V — V by letting f be trivial on all V,» with x’ # x. Then f is pure of degree ¢ — x,
and ) —x € Q by theorem .1. By theorem .16 there existsawu € U(g),—, such that the

image of u in End (V') equals f. We know that U (g) is isomorphic to U(n~)@U (t) @ U (n*);
+

writew = Y, ; u; -t;-u; witheachw; ,t; and u; of pure degree, such that eachu; -t;-u
is of degree 1) — x. Let I’ be the subset of I of the i for which u;" is of degree ) — y. Since only
negative degrees (i.e. sums of nonpositive multiples of elements of A™) occurin U(n™) and
only degree 0 occurs in U (t), this means that u; is of degree 0 for ¢ € I’; hence for these i
the element u;" is a scalar. Now consider the action of w on V,,. If i ¢ I’, then the degree of

u;” will be greater than ¢ — x, in which case we will have u}” - V,, = 0. Forall v € V, we

i

i

now have

fv)=u-v
— (Zui_~ti~uj'> ‘v
iel
= (Zu;~ti-uj> ‘v
iel’
= u; i (uf -v)
iel’
= u;p(t:)(uf - v)
icl’
= (Zuiwmuf)
iel’

Because every factor u; in this sum is a scalar, we know that >, u; ¥ (t;)u; is an el-
ement of U(n"),_,, and it acts on V, as the map f € Hompg (V,, Vy); hence the map
Unt)y—y — Hompg (Vy, Vi) is surjective. O

7.3 Split reductive groups over local fields

Throughout the rest of this chapter K is either a number field or a p-adic field, and R is
its ring of integers. All representations of algebraic groups are assumed to be finite dimen-
sional. The aim of this section is to prove the following theorem.

Theorem 7.18. Let G be a split connected reductive group over K, and let V' be a faithful represen-
tation of G. Regard G as a subgroup of GL(V), and let N be the scheme-theoretic normaliser of G
inGL(V).
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1. Suppose K is a p-adic field. Then the map mod¢: Laty (V) — Mod(G) of lemma @ is
finite.

2. Suppose K is a number field. Then for all but finitely many finite places v of K there is at most
one N (K,)-orbit X of lattices in Vi, such that modg (X)) is the Chevalley model of G (see
definition f.11).

The first point of this theorem is theorem @ for split reductive groups over local fields. The
second point is quite technical by itself, but we need this finiteness result to prove theorem
@ for number fields. Before we prove this theorem we will need to develop some theory of
integral structures in representations of split reductive groups.

7.3.1 Lattices in representations

In this section we will introduce two important classes of lattices that occur in represen-
tations of split reductive groups. We will rely on much of the results and notations from
section @

Notation 7.19. For the rest of this section, we fix the following objects and notation:
« a split connected reductive group G over K and a split maximal torus T' C G;
+ the Lie algebras g and t of G and T', respectively;

+ the root system ¥ C X*(T) of G with respect to T', and the subgroup Q of X*(7')
generated by U;

the image T of T in G* C GL(g);

* the decomposition g = t & P,y o

the basis of positive roots AT of W associated to some Borel subgroup B of G contain-
ing T, the decompositions ¥ = U+ U ¥~ andg=t&nt Hn~;

the Q-graded universal enveloping algebra U (g) of g;

a faithful representation V' of GG and its associated inclusion g C gl(V);

+ the centraliser Z of G in GL(V'), and the group H = Z - T' C GL(V);

+ the decomposition V' = @weD @xeX*(T) Viy),x (see remark );

+ the projections pr(,,) , : V' — V{4, , associated to the decomposition above.
Remark 7.20.

1. Since the set of characters of T that occur in the adjoint representation is equal to

{0} U T, the inclusion X*(T') — X*(T') has image Q.
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2. By corollary the induced map Z — [[,,cp GL(V{y),4) is an isomorphism.

Definition 7.21. Let W be a K-vector space with a decomposition W = @, W;. An R-
submodule M C V is called split with respect to this decomposition if one of the following
equivalent conditions is satisfied:

1. M =&, pr; M,
2. M =,(W;nM).
If M is split, we write M; := pr;, M = W, N M.

We now define two classes of lattices that will become important later on. Since the Lie
algebra g is a K -vector space, we can consider lattices in g. For a vector space W over K,
let FLat(W) be the set of lattices in W that are free as R-modules. Define the following
sets:

£t := [] FLat(ga);
acAt

L™= J] Flat(g_o);
acAt

J =[] FLat(Viy),p)-
eD

As before, let U (n™) be the universal enveloping algebra of n™. Let L™ = (L}),ca+ be an
element of LT, and let %, + be the R-subalgebra of U (n*) generated by the R-submodules
L} C n'. Define, foran L~ € L, the R-subalgebra %;- C U(n~) analogously. Now let
Lt € L*,L™ € L™ and J € J be as above. We define the following two R-submodules of
V:

SHL*,J) = {g; €V i pryy (Zps ) C Jy Vb € 9}7
STL7, )= Up--Jy C V.

YeD

Note that the sum in the second equation is actually direct, since %;,- - .Jy, C V{4, for all
¢ € D. In the next proposition we use the symbol + for statements that hold both for +
and —.

Proposition 7.22. Let LY € L*,L~ € L™ and J = (Jy)yep.
1. U+ is a split lattice in U (n™) with respect to the Q-grading.
2. SE(L*, J) is asplit lattice in V with respect to the decomposition V = Dy, Viw)x-

3. Forallyy € Dandall x < 1 one has ST(L*, J)(y),y = Jy. Furthermore, S*(LT,J)
(respectively S~ (L™, J)) is the maximal (respectively minimal) split lattice A in V closed
under the action of the L7, (respectively the L) such that Ay , = Jy forall 1 € D.
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Proof.

1.

2.

It suffices to prove this for % +. Recall that U (n™) has a Q-grading coming from the
Q-grading on U(g). Since %+ is generated by elements of pure degree, we see that
Wp,+ is split with respect to the Q-grading; hence it suffices to show that % + , is
a lattice in U (n™), for all y. Since each g, is one-dimensional, the R-module L is
free of rank 1; let x,, be a generator. Then the R-module %+ , is generated by the

finite set
{xm Loy Tay, Kk E ZZO,Zai = X}-
i

On the other hand, the Poincaré-Birkhoff-Witt theorem (see [24, 17.3, Cor. C]) tells us
that the K-vector space U(n™), is also generated by this set; hence %7+ , is alattice
inU(n'),, as was to be shown.

We start with S~ (L™, J). Since the action of U (n™), sends Viy) y to Viy) 4> We
see that

S N=P P % o= P S (L™, 7) N Vig)pixs

PeED xeQ PED xXEQ

hence S~(L~, J) is split. Since % -, is a finitely generated R-module spanning
U(n~)y,and J;; is afinitely generated Z-module spanning V(y,) ,,, we may conclude
that %, de is a finitely generated R-module spanning U (n™), - V(4 , which
is equal to V(y) 44y by proposition Hence S™ (L™, J)(yp),p+y is a lattice in
Vi) otxo and since S™ (L™, J) is split thlS shows that it is a lattice in V.

Now consider S*(L*, J). Letx € V,and writex = 3_, | x(y),, Where every z(y)
is an element of V() .. Then for every ¢ € D we have

Py (Zie @) = ey (W 8) = Y Uit Ty

XEQ XEQ

hence z is an element of S* (L, J) if and only if x(y , is for all » € D and all
x € X*(T); this shows that ST (L™, J) is split with respect to the decomposition
V =, , Viy).x- Wenowneedtoshow that S*(L", )y, isalatticein Vi) . Fix
a x and ¢, and choose a basis f1, ..., f of Jy; then W, := U(g) - f; is an irreducible
subrepresentation of V(). We get a decomposition Vy , = &, Wi y, and from the
definition of ST (LT, J) we get

STIT ) wyx = @5 (LT D) N Wi
so we need to show that for each i the R-module S;  := ST(LT,.J) ) N Wiy

is a lattice in W; ,.. Fix an i, and let ey, ..., e, be a basis of W; . For j < n, let
wj: Wiy = Wiy = K - f; be the linear map that sends e; to f;, and the other



7.3. Split reductive groups over local fields 103

ejs to 0. By proposition there exists a u; € U(n™) such that u; acts like ¢; on
Wi . Since %+ is a lattice in U (n™) there exists ar € R such that ru; € %+ for
all j. Then forall z € S;, one has ru; - « € Rf; for all j, so z lies in the free R-
submodule of W; , generated by r~ley, ..., 7" e,; hence S; , is finitely generated.
On the other hand, since %+ ,,_, is finitely generated, for every = € W; , we get
that %+ _, - x is a lattice in W; . As such we can find some 7' € R such that
Ui+ p— 7' C R- fiyhence ST(LY, J)(y),y.: generates W , as a K-vector space,
50 S;,y is alattice in W; , , as was to be shown.

3. Since %+ g = U1~ o = R we immediately get ST (L, )y, = Jy forall . The
other statement follows immediately from the definition of the modules ST (L™, J)
and S~ (L, J). O

Remark 7.23. By proposition .22 we can define maps S*: £* x J — Lat(V).

Let H = Z - T as before. Since H normalises GG, we see that H acts on G by conjugation.
This gives us a representation o: H — GL(g). Since Z acts trivially on G, we see that the
image of H in GL(g) is equal to 7. As such we see that the action of H on g respects the
decomposition g = t ® P,y Ja-

Lemma 7.24. Themap o: H — T is surjective on K -points.

Proof. The short exact sequence 1 — Z — H — T — 1 of algebraic groups induces a
longer exact sequence of groups

1 - Z(K)— HK) = T(K) — H (K, Z).

Since H' (K, GL,, ) is trivial for every integer n and Z is isomorphic to a product of GL,s by
remark .20.2, this implies that the map H(K) — T(K) is surjective. O

Since the action of H on g respects its decomposition into root spaces, we get an action
of H(K) on the sets L*. Furthermore, the representation H < GL(V') respects the de-
composition V' = @ cp V(y)- Since H centralises T’ the action of H also respects the
decomposition Vi) = @, ex- (1) Viy),x; hence H(K) acts on the set 7.

Proposition 7.25. Themaps S*: LT x J — Lat(V) are H (K )-equivariant, and the action of
H(K)on L* x J is transitive.

Proof. The Lie algebra action map g x V' — V is equivariant with respect to the action of
H(K) on both sides. From the definition of S*(L*, J) it now follows that

SE(h-LE h-J)=h-ST(L*,J)

forallh € H(K). Nowlet L], Ly € £t and Jy, J, € J. Forevery a € AT, letz, € K*
be such that LY , = z, L3 ,; the scalar z,, exists because L{ , and L3, are free lattices in

the same one-dimensional vector space. Since A7 is a basis for Q = X*(T) (see remark
.1) there exists a unique ¢t € T(K) such that a(t) = z, for alla € A*. By lemma
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there exists an h € H(K) such that o(h) = t;then h - LT = LJ. Since Z(K) acts
transitively on 7 by remark @.2, there existsa z € Z(K) suchthatz- (h-J1) = Jo. As z
acts trivially on £+, we get zh- (L, J1) = (L3, J2); this shows that H (K) acts transitively
on LT x J. The proof for L~ is analogous. O

7.3.2 Chevalley lattices

In this subsection we consider lattices in the K -vector space g. We will define the set of
Chevalley lattices in g. The distance (in the sense of lemma ) between such a Chevalley
lattice and the Lie algebra of a model of (G, T') (as lattices in g) will serve as a good measure
of the ‘ugliness’ of the model, and this will allow us to prove finiteness results. We keep
employing notation .

Let G4 be the derived group of G, and let 7" be the identity component of ' N G4, Let
g* and t' be the Lie algebras of G4 and 77, respectively. The roots of G' (with respect
to T) induce linear maps Lie(a): ' — K, and these form the root system of the split
semisimple Lie algebra (g, t’) in the sense of [5, Ch. VIII, §2]. Since the Killing form x on t/
is nondegenerate by [24, Thm. 5.1] there exists a unique ¢, € ¥ suchthat x(¢,, —) = Lie(«).

Since k(tq,tq) # 0 we may define h,, := ﬁta; see [24, Prop. 8.3].

Definition 7.26. Anelement 2 = (24 )acw Of [, cy (8o \ {0}) is called a Chevalley set if the
following conditions are satisfied:

1. [Za,Z_o) = hg foralla € T;

2. If @ and S are two R-linearly independent roots such that 5 + Z« intersects ¥ in
the elements 5 — ra, 8 — (r — 1)ov, ..., B + qa, then [z,,zp] = 0if ¢ = 0, and
[Za, 28] = £(r + Dazarpifg > 0.

There is a canonical isomorphism of K-vector spaces:
K@y X" (T) = ¥
1®a +— Lie(a).
Under this isomorphism, we can consider T := (R®z X*(T'))" as an R-submodule of the
K-vector space t.
Lemma 7.27. Let o € ®. Then h,, € .

Proof. 1t suffices to show that Lie(A\)(h,) € Z for all A € X*(T). Since the action of A €
X*(T) on t only depends on its image in X*(7"), it suffices to prove this for semisimple G;
this was done in in [25, 31.1]. O

Definition 7.28. A Chevalley lattice is an R-submodule of g of the form

) =T P R+ 2a,
ac¥



7.3. Split reductive groups over local fields 105

where z is a Chevalley set. The set of Chevalley lattices is denoted C.

Remark 7.29. It is clear that €(x) is a finitely generated R-submodule of g that generates
g as a K-vector space, hence it is indeed a lattice. The name comes from the fact that if G is
adjoint, then {h, }aen+ U {xo: a € U} is a Chevalley basis of g in the sense of [24, Section
25.2], and the Lie algebra of the Chevalley model (for any anchoring of ) is a Chevalley
lattice in g (see definition ).

Lemma 7.30. Let Aut(G,T) := {0 € Aut(G) : o(T) =T}

1. There exists a Chevalley lattice in g.

2. Every Chevalley lattice is an R-Lie subalgebra of g.

3. Leto € Aut(G,T),and let € € C. Then the lattice 0 (€) C g is again a Chevalley lattice.
Proof.

1. It suffices to show that a Chevalley set exists, for which we refer to [24, Thm. 25.2].

2. By definition we have [z, z_,] € T and [z, 23] € R a4 if « + 8 # 0. Further-
more fort € Ty one has [¢, z,] = Lie(a)(t) - 4 € R - x4 by definition of .

3. The automorphism o € Aut(G,T) induces an automorphism & of ¥. Then o maps
ga t0 g5(a) and To to Tp. Let = be a Chevalley set such that € = &(x), and define
v = (2,)acy by 7, = 0(25-1(4)). Since o(ha) = hz(q) this is again a Chevalley
set, and o(€) = €(z’). O

It is easily checked that the action of H(K) on Lat(g) sends the subset C to itself. Further-
more there are natural isomorphisms of H (K )-sets

fr.Cc =t (7.31)
€ — (€ M g:l:a)aEA+ .
Since the action of H(K) on L¥ is transitive, we have shown:
Lemma 7.32. The action of H(K) onC is transitive. O

Lemma 7.33. Let € € C be a Chevalley lattice and let ¢ be the R-subalgebra of U (g) generated
by €. Then % is split with respect to the Q-grading of U (g). The subalgebra %z o C U(g)o does
not depend on the choice of €.

Proof. The fact that % is split follows from the fact that it is generated by elements of pure
degree. Now let €, ¢’ € C. Since H(K) acts transitively on C and the action of H on C
factors through T, there exists at € T(K) such thatt - € = ¢’, Then % = t - U, where
t acts on U(g) according to its Q-grading. In particular this shows that % o = % o. O

Lemma 7.34. There exists an r € R such that for every Chevalley lattice €, every b € D and
every x € X*(T'), the endomorphism - pr . , of V" lies in the image of the map %¢ — End (V).
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Proof. Fix a ¢y € Danday € X*(T). For every ¢ € D, let W(v) be the irreducible
representation of G of highest weight . Let fy,x € @ cp End(W(v)) be the element
whose 1y-component is pr, and whose other components are 0. By theorem there
exists a uy,,y € U(g)o thatactsas fy,  on @ cp W (¥); then uy, , acts as pr,, , on V.
Let € be a Chevalley lattice, and let r € R be such that ruy, \ € % forall ¢y € D and
all x for which V() , # 0. Then r satisfies the properties of the lemma for €. By Lemma
the element r works regardless of the choice of €, which proves the lemma. O

7.3.3 Chevalley-invariant lattices

In this section we consider lattices in V' that are invariant under some Chevalley lattice in g.
The main result is that up to H (K)-action only finitely many such lattices exist. As before
we keep employing notation .19,

Definition 7.35. Let A be alattice in V. We call A Chevalley-invariant if there exists a Cheval-
ley lattice € C gsuchthat €- A C A.

Lemma 7.36. There exists a Chevalley-invariant lattice in V.

Proof. Thisis proven for K = Qin[5, Ch. VIII, §12.8, Thm. 4]; note that for a Chevalley lattice
¢ the lattice €Nt = T is a reseau permis in the sense of [5, Ch. VIII, §12.6, Def. 1]. The proof
given there also works for general K. Alternatively, one can use the classification of split
reductive Lie algebras in [5, Ch. VIII, §4.3, Thm. 1 & §4.4, Thm. 1] and their representations
in [, Ch. VIII, §7.2, Thm. 1] to construct a model of the representation g < gl(V) over Q,
and use a Chevalley-invariant lattice in this model to obtain one in the original setting. O

Lemma 7.37. The set of Chevalley-invariant lattices is invariant under the action of H(K)onV.

Proof. If A is closed under multiplication by a Chevalley lattice € and h is an element of
ﬂK ), then h - A is closed under multiplication by A - €; hence this follows from lemma
.32, 0

Remark 7.38. Since H(K) acts transitively on the set of Chevalley lattices, we see that for
every Chevalley lattice € there is a lattice in V' closed under multiplication by €.

Lemma 7.39. Let € be a Chevalley lattice in g, and let Jy € J. Let LT = f+(€o)and Ly =
17 (€p) (see @). Let A C V be a split Chevalley-invariant lattice such that Ay . is a free
R-module for all 1) € D. Then there exists an h € H(K) such that

S™(Ly,Jo) Ch-ACSHLS, Jo).

Proof. Let € be a Chevalley lattice in g such that € - A C A. Let J = (A(y),y)pep; by
assumption it is an element of 7. Since C is isomorphic to LT as H (K )-sets, by proposition
there existsan h € H(K) suchthath-€ = €yandh-J = Jy. Now let Ag = h- A; this
is a split lattice satisfying (Ao) (), = Jo,y for all . Furthermore, the lattice A is closed
under multiplication by Chevalley lattice €y; in particular it is closed under the action of



7.3. Split reductive groups over local fields 107

the f(€y)a = €y N go and the f~(€g)a = € N g_n, where fT is as in subsection .
By proposition .3 we now get

S™(Ly,Jo) C Ao C ST(LE, Jo). O

Proposition 7.40. Suppose K is a p-adic field. Then there are only finitely many H (K )-orbits of
Chevalley-invariant lattices.

Proof. Let €y, Jo, Lg and L be as in the previous lemma. Let w be a uniformiser of K.
Let m € Zso be such that w™S*T(L$, Jo) € S™(Ly,Jo), and let n € Zs¢ be such
that for every Chevalley lattice €, every ¢ € D and every x € X*(T') the endomorphism
w"pr(yy , € End(V) lies in the image of %¢; such an n exists by lemma . Let PT be the
H(K)-orbit of lattices of the form ST(L*,.J) (see proposition ). Let X be an H(K)-
orbit of Chevalley-invariant lattices. Let A be an element of X, and let € be a Chevalley
lattice such that A is closed under multiplication by €. Then A is closed under multiplica-
tion by %, hence

w™ @ Pr(y) A C % - A=AC @ PT(y) 5 A (7.41)
(¥),x (¥),x

Since € = P, €, weseethat A" := €D, , Pr(y),,A isalso closed under multiplication by
¢. Then () tells us that d(A, A’) < n (where d is the distance function from subsection
). Since K is a p-adic field, all locally free R-modules are in fact free, hence A’ satisfies
the conditions of lemma , and there exists an h € H(K) such that

S_(LanO) Ch- N c S+(L37JO);
hence d(h - A, ST(L{, Jo)) < m. From this we get

dg(X,PT) <dg(X,H(K)-AN)+dg(H(K)-N,PT")
<dAAN)+dg(H(K)-N, P
<n+dy(H(K)-A,P")
<n+dh-N,ST(LS, Jo))
<n-+m.

This shows that all H(K)-orbits of Chevalley-invariant lattices lie within a ball of radius
n + m around P in the metric space (Laty (V),dy). By lemma .3 this ball is finite,
which proves the proposition. O

Proposition 7.42. Let K be a number field. Then for almost all finite places v of K there is exactly
one H (K, )-orbit of Chevalley-invariant lattices in Lat(Vi, ).

Proof. Fixa Chevalley lattice @ C ganda J € 7,andlet L* = f*(¢). For a finite place v of
K define €, := €p, and J, = (Jy r,)yep. Then €, isaChevalley lattice in gk, and we set
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L¥ = f*(¢,); then it follows from the definitions of f* and S* that L = (LZ ; )aea+
and
SE(LE, J,) = SE(L*, )R, C Vk, .

This shows that S~ (L, ,J,) = ST(L],J,) for almost all v. Furthermore, let r be as
in lemma ; then v(r) = 0 for almost all v. Now let v be such that S—(L;,J,) =
S*T(L}, J,) and v(r) = 0. Consider the proof of the previous proposition for the group
G, and its representation on Vi, taking €, := €, and Jy := J,. In the notation of that
proof we get m = n = 0, hence X = P, and there is exactly one orbit of Chevalley-
invariant lattices. O

7.3.4 Models of split reductive groups

In this section we apply our results about lattices in representations of Lie algebras to prove
theorem . The strategy is to give a bound for the distance between a lattice A and a
Chevalley-invariant lattice in V' in terms of the distance between the Lie algebra of mod ¢ (A)
and a Chevalley lattice in g. Combined with propositions and this will give the
desired finiteness properties.

Notation 7.43. Let (¢, .7 ) beamodel of (G, T'), and let & be the Lie algebra of 4. Let % ,
be the R-subalgebra of U(g) generated by (Lie ¢)(®) C g. Let furthermore ¢o: U(g) —
End(V') be the homomorphism of K-algebras induced by the representation g — gl(V).

Lemma 7.44.

1. Let A be alattice in V, let (4, ¢) = mod%,(A) be the anchored model of G associated to A,
and let & be the Lie algebra of 4. Then o(%s ) is a lattice in the K -vector space o(U (g)).

2. Let € C g be a Chevalley lattice, and let s be as in lemma . Then o(%s) is a lattice in
o(U(g))-

Proof.

1. Theimage of %s , under pis contained in (U (g))"End(A); since End(A) is alattice
in End(V'), we see that o(U(g)) N End(A) is a lattice in o(U(g)); hence o(%s,,)
is finitely generated. On the other hand % ,, generates U(g) as a K-vector space,
hence o(%s ) is a lattice in o(U(g)).

2. Let A be a lattice closed under multiplication by €, and let (¢, ¢) be its associated
anchored model of G; then o(%¢) is an R-submodule of the lattice o(%s ) that gen-
erates o(U(g)) as a K-vector space, i.e. a lattice in o(U(g)). O

Lemma 7.45. Let (¢,.7) be amodel of (G,T'). Let & be the Lie algebra of . Then there is an
r € R such that for every anchoring ¢ of (4, ) there exists a Chevalley lattice € such that

r- Q(%t’j,w) C o(%e) C rot 9(%®,w)~
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Proof. Fix a Chevalley lattice € and an anchoring ¢ of (¢, .7). By lemma both o(%s )
and o(%c ) are lattices in o(U(g)), hence there exists an r, € R such that r,0(%s,,)) C
o(%s) C r;lg(%@ﬁa). Let

Auwt(G,T) = {a € Aut(G) : o(T) = T}

as in lemma , and let Aut(G,T) be the underlying K-group scheme. There is a short
exact sequence of algebraic groups over K

1 =G = aut(G) =T — 1

where T is the automorphism group scheme of the based root datum (¥, A*); this is a
finite étale group scheme. The kernel of the map Aut(G,T) — T is the image of the nor-
maliser Normg (T') in G*4; its identity component is T'. Since I is finite and the index of T'in
ker(Aut(G, T) — T) is finite, we see that T(K) has finite index in Aut(G,T'). Now let ¢’
be another anchoring of (¢, 7). There exists a unique 0 € Aut(G, T') such that ¢’ = go.
The automorphism o also induces automorphisms of g and U (g), which we will still denote
by o; by lemma o(€) is again a Chevalley lattice. Suppose ¢ is an inner automorphism
corresponding toat € T(K). Then o acts as x(t) on U(g), for every x € Q. Since gis a
homomorphism of X*(T')-graded algebras we get

To 0 Us,o1) = 1o 0(Us,00p)
=7y 0(0(%s.p))
=7y ot %))
=7yt (0(Ze.p))
Ct-o(%)
= 0o(%s(c))-

Similarly one shows o(%(¢)) C 7" - 0(%e ' ); hence the element r, € R only depends
on the T'(K)-orbit of the anchoring . Since there are only finitely many such orbits, we
can take 7 to be a common multiple of these r. O

Proposition 7.46. If K is a p-adic field, then the map modg r: Latg (V) — Mod(G,T) of
lemma @ is finite.

Proof. Let (¢,.7) be a model of (G, T), and let r be as in lemma . Let P C Laty (V)
be the set of H(K)-orbits of Chevalley-invariant lattices; this is a finite set by proposition
. Let X be an H (K)-orbit of lattices in V such that modg r(X) = (¢, .7). Let A € X,
and let ¢ be the anchoring of (¢, .7) induced by A. Then A is closed under multiplication
by o(%s,,). Let C be a Chevalley lattice in g such that r = o(%s,,,) C o(%e) C ro(%s,,),
and let A" = o(%s) - A C V. Since o(%c) is a finitely generated submodule of End(V'), we
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see that A’ is a lattice in V that is closed under multiplication by C'. Furthermore we see

rTIA = rilg(%@w)/\
C o(%)A
C ro(%s,,)\
=rA,

hence d(A, A’) < 2v(r), where v is the valuation on K. For the metric space Latg (V') this
implies that X is at most distance 2v(r) from an element of P. Since P is finite and balls
are finite in this metric space, we see that there are only finitely many possibilities for X,
which proves the proposition. O

Lemma 7.47. Suppose K is a number field. Then for almost all finite places v of K there is ex-
actly one H (K, )-orbit X of lattices in Vi, such that modg, 1, (X) is the Chevalley model of
(GKu ’ TKU )

Proof. Let (¢,.7) be the Chevalley model of (G, T), let ¢ be some anchoring of (¢4,.7),
and let € C g be a Chevalley lattice. Then R, ®p (Lie »)(&) = R, ®p € as lattices in
gx, for almost all finite places v of K. Hence for these v, the Lie algebra of the Chevalley
model of (G, , Tk, ) is a Chevalley lattice via the embedding induced by the anchoring (.
However, two anchorings differ by an automorphism in Aut(Gg, , Tk, ). Since the action of
Aut(Gg,,Tk,) on Lat(gk, ) sends Chevalley lattices to Chevalley lattices by lemma .3,
this means that for these v the Lie algebra of the Chevalley model will be a Chevalley lattice
with respect to every anchoring. For these v, a lattice in Vi, yielding the Chevalley model
must be Chevalley-invariant; hence by discarding at most finitely many v we may assume
by proposition that there is at most one H (K, )-orbit of lattices yielding the Chevalley
model. On the other hand, any model of G will be reductive on an open subset of Spec(R),
and any model of 7" will be a split torus on an open subset of Spec(R). This shows that any
model of (G, T) is isomorphic to the Chevalley model over almost all R,; hence for almost
all v there is at least one lattice yielding the Chevalley model. O

Proof of theorem .

1. Let ¢ be a given model of G. Let T be a split maximal torus of G, and choose a sub-
group scheme .7 C ¥ such that (¢, .7) is a model of (G,T). Let A’ be a lattice in
V with model modg r(A") = (¢',.7"), and suppose there exists an isomorphism
V: 9 = 4'. Then ¢(Jk) is a split maximal torus of ¢}.. Since all split maxi-
mal tori of a split reductive group are conjugate (see [61, Thm. 15.2.6]), there exists
ag € 9(K) such that ¢(Jx) = g7/g~". Then inn(g) o ¢ is an isomorphism
of models of (G, T') between (¢,.7) and mod¢,r(gA’). By proposition there
are only finitely many H (K)-orbits yielding (¢,.7), so gA’ can only lie in finitely
many H (K)-orbits; hence A’ can only lie in finitely many (G - H)(K)-orbits. Since
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G-H = G- Z is a subgroup of N, this shows that there are only finitely many N (X)-
orbits in Lat (V') yielding the model ¢ of G.

2. Let T be a split maximal torus of G. By lemma for almost all finite places v of K
there exists exactly one H(K,)-orbit ¥, C Lat(Vk,) yielding the Chevalley model
of (Gk,,Tk,); let v be such a place. Repeating the proof of the previous point, we
see that gA’ has to lie in Y, hence A" hasto liein (G - Z)(K,) - Y, and in particular
in the single N (K, )-orbit N(K,) - Y. O

7.4 Nonsplit reductive groups

The main goal of this section is to prove theorem i7:]l for local fields, as well as a stronger
finiteness result a la theorem .2 needed to prove theorem m for number fields. We will
h

make use of some Bruhat-Tits theory to prove one key lemma ([7.56).

7.4.1 Bruhat-Tits buildings

In this subsection we give a very brief summary of the part of Bruhat-Tits theory that is
revelant to our purposes; Bruhat-Tits theory will only play a role in the proof of lemma
. The reader looking for an actual introduction to the theory is referred to [66] and [4].
If A is a simplicial complex, I denote its topological realisation by |A|.

Theorem 7.48. (See [}/, Cor. 2.1.6; Lem. 2.5.1; 2.5.2], [66, 2.2.1] and [p, Thm. VI.3A]) Let G
be a connected semisimple algebraic group over a p-adic field K. Then there exists a locally finite
simplicial complex Z(G, K), called the Bruhat-Tits building of G, with the following properties:

1. Z(G, K) has finite dimension;

2. Every simplex is contained in a simplex of dimension dim(Z (G, K)), and these maximal sim-
plices are called chambers;

3. Thereisanactionof G(K)onZ(G, K) that induces a proper and continuous action of G(K)
on |Z(G, K)|, where G(K) is endowed with the p-adic topology;

4. The stabilisers of points in |Z(G, K)| are compact open subgroups of G(K);
5. G(K) acts transitively on the set of chambers of Z(G, K);

6. There is a metric d on |Z(G, K)| invariant under the action of G(K) that gives the same
topology as its topological realisation. O

Remark 7.49. Since the stabiliser of each point is an open subgroup of G(K), the G(K)-
orbits in |Z(G, K)| are discrete subsets.
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Corollary 7.50. Let G be a connected semisimple algebraic group over a p-adic field K, let C' C
|Z(G, K)| be a chamber, let C C |Z(G, K)| be its closure, and let r € R~.q. Then the subset V of
|Z(G, K)| given by

V= {x € |Z(G, K)| : d(z,C) < 7’}

is compact.

Proof. Since the metric of |Z(G, K)| is invariant under the action of G(K) and G(K) acts
transitively on the set of chambers, we see that every chamber has the same size. Since
Z(G, K) is locally finite this means that V' will only meet finitely many chambers. The
union of the closures of these chambers is compact, hence V, being a closed subset of this,
is compact as well. O

Theorem 7.51. (See [59, Prop. 2.4.6; Cor. 5.2.2; Cor. 5.2.8]) Let G be a connected semisimple
algebraic group over a p-adic field K, and let L/ K be a finite Galois extension.

1. The simplicial complex Z(G, L) has a natural action of Gal(L/K);

2. Themap G(L)xZ(G, L) — Z(G, L) that gives the G(L)-actiononZ(G, L) is Gal(L/ K)-
equivariant;

3. ThereisacanonicalinclusionZ(G, K) < Z(G, L)% (E/K) which allows us toview (G, K )
as a subcomplex of Z(G, L);

4. Thereisanr € R such that for every z € |Z(G,L)|SE/K) there exists a point y in
|Z(G, K)| such that d(z,y) < r. O

7.4.2 Compact open subgroups and quotients

Let G be an algebraic group over a p-adic field K, and let L be a finite Galois extension of K.
Let U be a compact open subgroup of G(L) that is invariant under the action of Gal(L/K).
Then G(L) /U inherits an action of Gal(L/K), and its set of invariants (G (L) /U)G2(L/K)
has a left action of G(K). The goal of this section is to show that, for various choices of G,
K, L and U, the quotient G (K)\(G(L)/U)%L/K) is finite. We will also show that it has
cardinality 1 if we choose U suitably ‘nice’.

Notation 7.52. Let G be an algebraic group over a p-adic field K, let L/ K be a finite Galois
extension over which G splits, and let U be a compact open subgroup of G(L) (with respect
to the p-adic topology) fixed under the action of Gal(L/K). Then we write Qé/ Ky =
G(E)\(G(L) /U5,

The next lemma tells us that compact open subgroups often appear in the contexts relevant

to us.

Lemma 7.53. (See [57, p. 134]) Let G be an algebraic group over a p-adic field K, and let L be
a finite field extension of K. Let (¢, ¢) be an anchored model of G. Then (4 (0'1.)) is a compact
open subgroup of G( L) with respect to the p-adic topology. O
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Lemma 7.54. Let G be an algebraic group over a p-adic field K, and let L/ K be a finite Galois
extension over which G splits. If Qé/ K(U) is finite for some compact open Galois invariant U C
G(L), then it is finite for all such U.

Proof. This follows from the fact that if U and U’ are compact open Galois invariant sub-
groups of G(L), then U” := U N U’ is as well, and U” has finite index in both U and
U'. O
We will now prove that Qé/ K(U) is finite for connected reductive G. To prove this we first
prove it for tori and for semisimple groups, and then combine these results.

Lemma 7.55. Let T be atorus over a p-adic field K, and let L be a finite Galois extension of K over
which T splits. Let U be a compact open subgroup of T'(L). Then Qé/ K(U ) is finite.

Proof. Choose an isomorphism p: T, == Gr‘fh .- Then T'(L) has a unique maximal compact
open subgroup, namely ¢~ 1((0)?); by lemma it suffices to prove this lemma for U =
e H(O))Y). Let f be the ramification index of L/ K, and let ¢ be a uniformiser of L such
that t/ € K. Now consider the homomorphism of abelian groups
F: X, (T) = T(L)/U
n=n(t) - U.

For every cocharacter 7 the subgroup (&) of T'(L) is contained in U. This implies that
foralln € X (T) and all m € Gal(L/K) one has

F(m-n) = (m-n)(t)-U
=x(n(z~'t))-U

=ty w (v () -0

(n(t))-U
(F(n)- U,

™
™

since ’T_tlt € O} This shows that F is Galois-equivariant. On the other hand ¢ induces

isomorphisms of abelian groups X, (T) = Z% and

T(L)/U = (L*/67)" = ().
In terms of these identifications the map F is given by
283 (21, .. xg) = (t°, .. %) € ()4 = T(L)/U.

We see from this that F is an isomorphism of abelian groups with an action of Gal(L/K).
Let ¢t € T(L)/U be Galois invariant, and let n = F~1(t) € X, (T)%!L/K); then n is a
cocharacter that is defined over K. By definition we have t/ € K, hence F(f - 1) = n(tf)
is an element of T'(K'). This shows that the abelian group

X (1)) | P=HT(K) - U)
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isannihilated by f. Since itis finitely generated, it is finite. Furthermore, the map F' induces
a bijection
X (T) I/ FHT(K) - U) = Q™ (U),

hence Q;/ K(U) is finite. O

Lemma 7.56. Let G be a (connected) semisimple group over a p-adic field K, and let L be a finite
Galois extension over which G splits. Let U be a Galois invariant compact open subgroup of G(L).
Then Qé/ K(U) is finite.

Proof. By lemma it suffices to show this for a chosen U. Let Z(G, K) be the Bruhat-Tits
building of G over K, and let Z(G, L) be the Bruhat-Tits building of G over L. Choose a
point z € |Z(G, K)| C |Z(G, L)|(L/K); its stabiliser U € G(L) is a Galois invariant com-
pact open subgroup of G(L) by theorems .4 and .2. Now we can identify Qé/ (%
with

GE)\(G(L) - &) E,

so it suffices to show that this set is finite. Let y € (G(L) - x)%!(X/%) and let r be as in
theorem .4. Then there exists a z € Z(G, K) such that d(y, z) < r. Now fix a chamber
Cof I(G, K),and let g € G(K) such that gz € C (see theorem .5). Thend(gy,C) <,
so gy liesin the set D = {v € |Z(G,L)| : d(v,C) < r}, which is compact by corollar

. On the other hand the action of G(L) on |Z(G, L)| has discrete orbits by remark ,
so G(L) - = intersects D in only finitely many points. Hence there are only finitely many
possibilities for gy, so G(K)\(G(L) - )5(L/K) s finite, as was to be shown. O

Proposition 7.57. Let G be a connected reductive group over a p-adic field K, and let L be a finite
Galois extension of K over which G splits. Let U be a Galois invariant compact open subgroup of
G(L). Then Q5/™ (U) is finite.

Proof. Let G’ be the semisimple group G4, and let G*" be the torus G//G". This gives us an
exact sequence

1 - GY(K) — G(K) % G™(K) - H(G', K).

The image ¥(U) C G®(L) is compact. It is also open: if Z is the centre of G, then the
map v: Z — G is an isogeny, and since Z(L) N U is open in Z(L), its image in G*" is
open as well. As such we know by lemma that QéﬁbK(w(U )) is finite. Furthermore,
by [60, 11.4.3] H(G’, K) is finite, hence the image of G(K) in G**(K) has finite index.
If we let G(K) act on (G**(L)/v(U))SE/K) via 1), we now find that the quotient set
G(K)\(G* (L) /4 (U))%(L/K) is finite. The projection map

P (G(L)/U)Gal(L/K) N (Gab(L)/w(U))Gal(L/K)
is G(K)-equivariant, so we get a map of G(K)-quotients

é/K(U) — GK)\(G™(L) /¢ (U)) S E/ K,
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To show that Qé/ X(U) is finite it suffices to show that for every = € Qé/ X(U) there

exist at most finitely many y € Qé/ K(U) such that Y(x) = Y(y) in the quotient set
G(K)\(G*™ (L) /(U))GL/E) | Choose such an x and ¥, and choose a representative i
of z in G(L). Then there exists a representative § of y in G(L) such that =  in G**(L);
hence there is a ¢’ € G'(L) such that ¢’z = §. Since U and §U are Galois invariant,
the element ¢’ is Galois invariant in G’(L)/(G’(L) N UZ~'); this makes sense because
the compact open subgroup G'(L) N ZUZ~! of G'(L) is Galois invariant. Furthermore the
element y only depends on the choice of ¢’ in

G (K)\ (G'(L) J(G'(L) N @szl))Gal(L/ QLR (@) nauaY),

Since this set is finite by lemma there are only finitely many possibilities for y for a
given x. This proves the proposition. O

The final proposition of this subsection is a stronger version of proposition in the case
that the compact open subgroup U comes from a ‘nice’ model of G. We need this to prove
a stronger version of theorem [7.1] over local fields in the case that we have models over a
collection of local fields coming from the places of some number field (compare theorem

p.1d.2).

Proposition 7.58. Let K be a p-adic field, and let & be a smooth group scheme over ' whose
generic fibre is reductive and splits over an unramified Galois extension L/ K. Then Qé}i K (oy))
has cardinality 1.

Proof. Let k be the residue fueld of K. Let g € 4 (L) such that ¢¢ (&) is Galois-invariant;
we need to show that ¢ (&', has a point defined over K. Since L/K is unramified, we see
that Gal(L/K) is the étale fundamental group of the covering Spec(&)/Spec(Ok). As
such ¢4 (01 can be seen as the & -points of a ¥-torsor & over Spec(O ) in the sense of
[41, 111.4]. By Lang’s theorem the ¥.-torsor %, is trivial, hence Z(k) is nonempty. Since ¢
is smooth over O, so is %, and we can lift a point of Z(k) to a point of (0 ). Hence
9% (01) has an Ok-point, as was to be shown. O

7.4.3 Models of reductive groups
In this subsection we prove theorem i7:]! over local fields, plus a stronger statement for local
fields coming from one number field; we need this to prove theorem @ for number fields.

Theorem 7.59. Let G be a connected reductive group over K. Let V' be a faithful representation of
G, and regard G as an algebraic subgroup of GL(V'). Let N be the scheme-theoretic normaliser of G
inGL(V).

1. Let K be a p-adic field. Then the map mod¢ : Latn (V) — Mod(G) of lemma @ is finite.
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2. Let K be a number field. Then there exists a finite Galois extension L of K over which G splits
with the following property: For almost all finite places v of K there is exactly one N (K, )-
orbit X, of lattices in Vi, such that modg,. (Xy)e,, isthe Chevalley model of G 1., for all
places w of L over v (see definition .

Proof. As before, let N° and () be the identity group and component group of N, re-
spectively.

1. Let L/ K be a Galois extension over which G splits. Let R and S be the rings of integers
of K and L, respectively. Then we have the following commutative diagram:

S®r —

LatNO (V) B — LatNO (VL)

S _
LatN(V) L LatN(VL)

modg modGL

SpecS XspeerR —

Mod(G) ——— Mod(Gy)

By theorem .1 we know that the map on the lower right is finite. Furthermore,
since NV is of finite index in N, we know that the maps on the upper left and upper
right are finite and surjective. To show that the map on the lower left is finite, it now
suffices to show that the top map is finite. Let A be a lattice in V. The N°(L)-orbit of
Ag in Lat(Vy) is a Galois-invariant element of Lat yo (V7). As a set with an N°(L)-
action and a Galois action, this set is isomorphic to N°(L)/U, where U C NY(L) is
the stabiliser of Ag; this is a compact open Galois-invariant subgroup of N°(L). If
A’ € Lat(V) is another lattice such that Ay € N°(L) - Ag, then A’y corresponds to
a Galois-invariant element of N°(L)/U. By [68] we see that NV is reductive, hence
QIL\/OK (U) is finite by proposition . This shows that, given A, there are only finitely
many options for N°(K) - A’. Hence the top map of the above diagram is finite, as
was to be shown.

2. Let L/ K be finite Galois such that the map N (L) — (V) (K) is surjective. Choose
alattice A € Lat(V). Let .#" be the model of N* induced by A. Let A, := A% ;
this is the model of N} induced by Ar, C V,. For almost all v the R,-group
scheme .4, is reductive. Since G, is split, for almost all places w of L the model of
G, associated to Ag,, is the Chevalley model. Furthermore, let n1,...,n, € N(L)
be a set of representatives of o (N) (K ); then for every place w of L we have

N(Ly) - As, = |J N°(Lw)ni - As,, -
=1
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For almost all w all the lattices n; - Ag,, coincide, hence for those w we have N(L,,) -

As, = N°(Ly,) - Ag, . Now let v be a finite place of K satisfying the following con-
ditions:

» For every place w of L above v, the N(L,,)-orbit of lattices N(L,,) - Ag,, is the
only orbit of lattices in V,, inducing the Chevalley model of G, ;

« for every place w of L above v we have N (L,,) - As, = N°(L,) - Ag,;
« L is unramified over v;
« AV is reductive.

The last three conditions hold for almost all v, and by theorem .2 the same is
true for the first condition. Let us now follow the proof of the previous point, for the
group G, and its faithful representation Vi, . The first two conditions tell us that
NO(L,) - Ag,, is the only N°(L,,)-orbit of lattices yielding the Chevalley model of
Gy, for every place w of L over v. By the last two conditions and proposition . we
know that QL“’/ Kv(_#9(8,)) = 1, hence there is only one N°(K,)-orbit of lattices
that gets mapped to N°(L,,)-As,, . This is the unique N° (K, )-orbit of lattices in Vi,
yielding the Chevalley model of G, ; in particular there is only one N (K, )-orbit of
such lattices. O

7.5 Reductive groups over number fields

In this section we prove theorem @ over number fields. We work with the topological ring
of finite adeles A r over a number field K; let RcCA k.t be the profinite completion of
the ring of integers R of K. If M is a free A g ;-module of finite rank, we say that a lattice
in M is a free R-submodule that generates M as an Ak ;-module. The set of lattices in
M is denoted Lat(M), and if G is a subgroup scheme of GL(M), we denote Latg (M) :=
G(Akr)\Lat(M). If V is a finite dimensional K-vector space, then the map A — A ; gives
a bijection Lat(V) = Lat(Va, ).

Lemma 7.60. Let K be a number field, let G be a (not necessarily connected) reductive group over
K, and let V be a finite dimensional faithful representation of G. Let 4 be a model of G.

1. 9(R) is a compact open subgroup of G(Ax ¢) in the adélic topology;
2. The induced map Latc (V) — Latg(Va, ) is finite;
3. Themap Latg(Va, ) — [], Lata(Vk, ) is injective.

Proof.

1. Let V be a faithful representation of G and let A be a lattice in V such that ¢ is the
model of G associated to A. Then 4(R) = G(Ax ) N End(A ). Since End(A ) is
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open in End(Vy,, ), we see that % (R) is open in G(Af ). It is compact because it
is the profinite limit of finite groups @ ¢ (R/IR), where I ranges over the nonzero
ideals of R.

2. Let A be a lattice in V, and let ¢ be the model of G induced by A. Then the sta-
biliser of A, in G(Ag ) is equal to &4 (R), which by the previous point is a compact
open subgroup of G(Ak ). Then as a G(Ag s)-set we can identify G(Axy) - Ap
with G(Ax 1) /% (R). By [4, Thm. 5.1] the set G(K)\G(Ax 1) /¥ (R) is finite; as such
G(Ak) - Ap consists of only finitely many G(K)-orbits of lattices in Lat(Vy, ).
Since the map Lat(V') — Lat(Vy, ) is a G(K)-equivariant bijection, each of these
orbits corresponds to one G(K)-orbit of lattices in V; hence there are only finitely
many G (K )-orbits of lattices in V' with the same image as A in Latg (Va, ), which
proves that the given map is indeed finite.

3. Let A, A’ be two lattices in V}, . . whose images in [ [, Latc (Vi ) are the same. Then
for every v there exists a g, € G(K,) suchthat g, - (Agr,) = A’ . Since Ar, = A,
for almost all v, we can take g, = 1 for almost all v; hence g- A = A’ for g = (g, €
G(Aky). O

Proof of theorem @ The case that K is a p-adic field is proven in theorem .1, SO suppose
K is a number field. Then we have the following commutative diagram:

f1 f2

LatN(V) _— LatN(VAKyf) _— Hv LatN(VK,U)
[modg [Hu modG g
H’u Spe (Rv) Xfpcc -
Mod(G) P T [1, Mod(Gx,)

Let L be as in theorem .2, and let R and S be the rings of integers of K and L, respec-
tively. Let ¢ be a model of G. Then for almost all finite places w of L the model %5 of G,
is its Chevalley model. By theorem .1 we know that for every finite place v of K there
are only finitely many N (K, )-orbits of lattices in Vi, whose associated model is %5, , and
for almost all v there is exactly one such orbit. This shows that there are only finitely many
elements of [ [, Latn(Vk, ) that map to (4z, ). Hence the map [, modq, on the right
of the diagram above is finite; since f; and f5 are finite as well by lemma , this proves
the theorem. O

Remark 7.61. The proofof theorem @ also shows that for every collection of models (4,),
of the G, there are at most finitely many lattices in V' that yield that collection of models.
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Chapter 8

Integral Mumford-Tate groups

Let g and n be integers with g > 1 and n > 3. Let A, ,, be the moduli space of principally
polarised complex abelian varieties of dimension g with full level n structure, and let X}, ,,
be the universal abelian variety over A, ,,. The singular cohomology of the fibres X}, ,,
gives a variation of integral Hodge structures on Ay . If Y C Ay, is a subvariety, then
the generic Mumford-Tate group GMT(Y") of Y is the generic (integral) Mumford-Tate group
of this variation of integral Hodge structures over Y. If Y is a special subvariety of A, ,,,
then GMT(Y") is the (integral) Mumford-Tate group of any point of which Y is the special
closure.

For a special subvariety Y the group scheme GMT(Y') is an integral model of its generic
fibre, which is a reductive algebraic group over Q. While reductive groups over fields are
well understood, generic integral Mumford-Tate groups are more complicated: there is no
general classification of the models of a given rational reductive group, not even for tori
(see [18]). On the other hand, the advantage of the integral group scheme GMT(Y) is that it
carries more information than its generic fibre. This can be seen in [116, Thm. 4.1], where
a lower bound is given on the size of the Galois orbit of a CM-point of a Shimura variety in
terms of the reduction of its generic Mumford-Tate group at finite primes. In theorem Ell,
we present another instance of this phenomenon, by showing that up to a finite ambiguity
a special subvariety Y of A, ,, is determined by GMT(Y"). This is not generally true when we
only consider its generic fibre, as this is invariant under Hecke correspondence. The main
ingredient in proving this is theorem lZlI

Let A be a g-dimensional abelian variety over a number field K, and for every prime number
£, let Gg(A) be its £-adic Galois monodromy group (see definition ); this is a flat group
scheme of finite type over Z,. By adapting theorem /.1 we can show that there exist at
most finitely many special subvarieties Y such that GMT(Y)z, = G¢(A) for all primes £ (see
theorem B.22). On the other hand, the Mumford-Tate conjecture () implies that at least
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one such Y exists. In theorem we will show that in the smallest unsolved case of the
Mumford-Tate conjecture this is indeed the case. This provides additional evidence for the
Mumford-Tate conjecture.

8.1 Generic integral Mumford-Tate groups

Let g and n > 2 be positive integers, and let A, ,, be the moduli space of complex princi-
pally polarised abelian varieties of dimension g with full level n structure. Let X, ,, be the
universal abelian variety over A, ,,, and let V; ,, be the variation of integral Hodge struc-
tures in A, ,, for which V, ,, = HI(X;’;L’y,Z) foreveryy € A, ,(C). fY C Ay,
is a special subvariety, then we can define its generic (integral) Mumford-Tate group GMT(Y")
analogously to how one defines the generic rational Mumford-Tate group for a variation of
rational Hodge structures as for instance in [45]. if y € Y is Hodge generic (i.e. its special
closure is Y') then GMT(Y") is isomorphic to the Mumford-Tate group of the integral Hodge
structure V, ,, . The resulting integral group scheme is flat and of finite type over Z, and
its generic fibre is a reductive rational algebraic group. The aim of this section is to prove
the following theorem:

Theorem 8.1. Let g and n be positive integers with n > 2, and let & be a group scheme over Z.
Then there are at most finitely many special subvarieties Y of A, ., such that GMT(Y') = ¢.

Throughout this section, by a symplectic representation of an algebraic group G over a field
K we mean a morphism of algebraic groups G — GSp(V/, v) for some symplectic K-vector
space (V,). By [31, Thm. 2.1(b)] the isomorphism class of a symplectic representation is
uniquely determined by its underlying representation G — GL(V'). The structure of this
section is as follows: in subsection we prove a weaker version of theorem B.1 concern-
ing only the generic fibre GMT(Y )¢ (see proposition @), and in subsection @ we use this,
and the theory of integral models in representations from chapter H, to prove theorem @

8.1.1 The rational case

The goal of this subsection is to prove the following proposition:

Proposition 8.2. Let G be a reductive algebraic group over Q. Then up to Hecke correspondence
there are only finitely many special subvarieties Y of A, ,, such that GMT(Y )g = G.

This is as far as we can get into proving theorem @ without using integral information, as
rational Mumford-Tate groups are invariant under Hecke correspondences. We first need
to set up some notation before we get to the proof. For an algebraic group G over Q we
write G(R)™ for the identity component of the Lie group G(R). We write S for the Deligne
torus Resc/r G Let 1, be the g-dimensional Siegel space; then (GSp,,, H,) is a Shimura
datum. We fix a connected component H} C H,.
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Definition 8.3. A reductive connected Shimura datum is a pair (G, X ) consisting of a con-
nected reductive group G over Q and a G(R)*-orbit X * of morphisms S — G such that
the pair (G, G(R) - XT) is a Shimura datum.

A reductive connected Shimura datum differs from a connected Shimura datum in the sense
of [44, Def. 4.4] in that we do not require G to be semisimple, and we look at morphisms
S — G instead of maps S* — Gl

Definition 8.4. A connected Shimura triple of rank 2g is a triple (G, X, o) consisting of:
+ areductive algebraic group G over Q;

« aG(R)T-orbit X* C Hom(S, Gr) such that the pair (G, X ) is a connected reduc-
tive Shimura datum;

+ an injective morphism of algebraic groups o: G' < GSp,, o such that gro X+ C H [,
and such that G is the generic Mumford-Tate group of X+ under this embedding.

A morphism of connected Shimuratripleso: (G, X™, 0) = (G', X'*, ¢')isamorphismo: G —
G’ suchthat ogo X+ C X’T andsuchthat cop = ¢'. The collection of isomorphism classes
of connected Shimura triples of rank 2g is denoted Sa,; the subset of connected Shimura
triples whose first element is isomorphic to an algebraic group G is denoted Sz, (G). We let
GSp,, (Q) act on Syy(G) on the right by the formula

(G, X", 0)-a=(G,XT,inn(a"") 0 o). (8.5)

The reason to study these special triples is that every special subvariety of A, comes from
a special triple in the following sense: the Shimura variety A, ,, is a finite disjoint union of
complex analytical spaces of the form T'\# ", where I' C GSp,,(Z) is a congruence sub-
group, and #} is a connected component of 4. For such a T', and a connected Shimura
triple (G, X, o) of rank 2g, denote by Yr(G, X+, o) the image of o(X ") C H S inT\H}.
This is a special subvariety of I'\#, and all special subvarieties arise in this way. Fur-
thermore, GMT(Y (G, X, 0))qg is isomorphic to G. If Y = Yr(G, X T, ) and Y’ are two
special subvarieties of '\ that differ by a Hecke correspondence, then there exists an
a € GSpy,(Q) such that Y = Yr(G, X, 0) - a. Proposition @ is now a direct conse-
quence of the following result.

Proposition 8.6. Let GG be a connected reductive group over Q. Then the cardinality of the quotient
set So4(G)/GSpy, (Q) is finite.

The rest of this subsection is dedicated to the proof of this proposition. We first prove some
auxiliary results.

Lemma 8.7. Let d be a positive integer. Let I1 be a finite subgroup of GL4(Z), and let no € 7% be
such that I1 - 1y generates the rational vector space Q<. Then up to the action of Autr(Z?) there
are only finitely many elements n € Z% such that for all 7y, . . ., mq € II we have

det(my - mo,...,mq - 1m0) = det(my -, ..., 7q - N). (8.8)
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Proof. Fix my,...,mq € II such that the 7; - g are Q-linearly independent, and define the
integer C' := det(my - 1o, ..., 74 - 170); then C # 0. Now let p € Z be such that it satisfies
(@). Thendet(my -0, ..., mq-n) = C # 0, so the m; oy are Q-linearly independent as well.
If 7 is any element of II, then there exist unique ¢;, ¢; € Q suchthat 7 -7y = ", ¢;(m; - 7o)
and 7 -n =), c;(m; - ). Then we may calculate

¢i-C=det(m -no,..., M1 M0, T N0s Tit1 - Nos---,Td " 7o)

=det(m 7y, Wim1 TNy i1 Ny e e s T~ 1)

hence ¢; = ¢} for all i. We find that for every collection of scalars (z,)rer in Map(II, Q)
we have

Z:v,r-(w-no):0<:) Z;v,r~(7r-n):0.

mell mell
It follows that that there exists a unique II-equivariant linear isomorphism f,,: Q¢ — Q¢
satisfying f,,(n0) = 7. Let A, be the lattice in Q¢ generated by II - n; then f,)(A,,) =
A,. Now let i’ € Z* be another element satisfying (@); then f,/ o f;l is the unique
II-equivariant automorphism of Q¢ that sends 7 to . This automorphism induces a II-
equivariant automorphism of Z¢ if and only if f,"'(2%) = f..*(2?) in Q?; hence Auty (Z%)-
orbits of suitable ) correspond bijectively to lattices of the form f, ! (Z%) in Q% Let C be
as above; then A, € Z4 c C~'A,, hence A,,, C f,'(Z?) € C~'A,,. Since there are
only finitely many options for lattices between A,,, and C~'A,,, we conclude that there
are only finitely many options for the Auty(Z?)-orbit of 7. O

Lemma 8.9. Let T"be atorus over Q, andletv: G, g — GSpy, g be a symplectic representation.
Let S be the collection of pairs (1, 0), where n: G,,, g — Tg is a cocharacter whose image is Zariski
dense in the Q-group T', and 0: T — GSp,, ¢ is a faithful symplectic representation, such that
v = og on as symplectic representations of G, g. Define an action of Aut(T") on Sby o - (n, 0) =
(ogomn, 000~ t). Then Aut(T)\S is finite.

Proof. Let X = X, (T) as a free abelian group with a Galois action, and identify X*(T") with
XV via the natural perfect pairing. Let II be the image of Gal(Q/Q) in GL(X); this is a
finite group. Now let (1, 0) € S; then g is given by a multiset W C XV. The fact that g is
faithful and defined over Q implies that W generates XV as an abelian group and that W
is invariant under the action of II. Since the image of 7 is Zariski dense in T', we find that
Xg is generated by II - 7. Now let d be the rank of X, and let 71, ..., w4 € IL. Consider the
homomorphism of abelian groups

P (mye: X = 20
A= (A - m))i<d-

The isomorphism class of the representation v is given by a multiset ¥ C X*(Gy,) = Z.
Since we require v = gg o 17, we find that W o = ¥ as multisets in Z. Furthermore, W' is
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Galois-invariant,so W o (7 - n) = X forall w € II. Let
m :=max{|o|:0 € ¥ C Z};

then the multiset ¢, (), (W) in Z¢ is contained in [—m, m]%. Now choose an identification
X = 74, so that we may consider ¢, (), as an element of Matq(Z); then |det(py; (x,),)
is equal to the volume of the image of a fundamental parallellogram of Z?. Since XV is
generated by W, this volume cannot exceed m?, hence |det(g,) (x,),)| < m* for all choices
of the ;. Hence if we let (o, 7) range over S there are only finitely many possibilities for
the map

ty: 14— Z
(71'1; ceey 71-oi) = det(@n,(m)i)'

By lemma @ there are, up to the action of Aut(7) = Auty(X), only finitely many n € X
yielding the same ¢,; since the set of possible ¢, is also finite, we see that there are only
finitely many options for 1 (up to the Aut(T)-action). Now fix such an n. For every w € W
we need to have w(w-n) € X, forall w € I Since II- 7 generates Xg, there are only finitely
many options for w, hence for the multiset W, since the cardinality of W has to be equal to
2g. We conclude that up to the action of Aut(T') there are only finitely many possibilities
for (n, o). O

Lemma 8.10. Let G be a connected reductive group over Q, and let Z° be the identity component of
its centre; let o be the map Aut(G) — Aut(Z°). Then o(Aut(G)) has finite index in Aut(Z°).

Proof. Let H := Z° N G, and let n := #H. If o is an automorphism of Z° that is the
identity on H, then we can extend o to an automorphism & of G by having & be the identity
on G*'; hence it suffices to show that the subgroup

{O’ € Aut(Z2°): o|lg = idH} C Aut(Z%)

has finite index. Let X = X,(Z°). Let 0 € Aut(T'), and consider o as an element of
GL(X). If o maps to the identity in Autz,,z(X /nX), then o is the identity on Z°[n], and
in particular on H. Since Auty,7(X /nX) is finite, the lemma follows. O

Lemma 8.11. Let G be a connected reductive group over Q, and let Z° be the identity component
of its centre. Let Qcens and 0qer be 2g-dimensional symplectic representations of Z° and G, Then
there are at most finitely many isomorphism classes of symplectic representations o of G such that
0] 20 = Ocent and 0| e = 0ger as symplectic representations of Z° and G, respectively.

Proof. Let T' be a maximal torus of G9*; then the isomorphism classes of gcen and oqer
are given by multisets Yoy C X*(Z°) and L4 € X*(T”), both of cardinality 2g. Let
T := Z°.T' C G, this is a maximal torus. A symplectic representation g of G satisfying
these conditions corresponds to a multiset > C X*(7T') of cardinality 2g, such that 3> maps
to Beens in X*(Z°) and to By, in X*(7”). Because

X*(T)g = X"(Z2")q & X" (T")g
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there are only finitely many options for 3, as we obtain all of them by pairing elements of
Y eent With elements of g, O

Proof of proposition @ Let 2 be the sets of pairs (X, o) such that (G, X, o) is a special
triple. The group Aut(G) actson Q by o - (XT,0) := (or 0 X T, 00 07 1), and we may
identify Sy, (G) with Aut(G)\Q2. Furthermore, §2 has the same right action of GSp,,(Q)
as Sz, (G); we write Q := Q/GSp,, (Q). Since the left and right actions on {2 commute, we
get an action of Aut(G) on €2, and this identifies Aut(G)\(2 with Sz, (G) /GSp,, (Q).

Consider the natural projection Z° x G — . This is an isogeny, and we let n be its
degree. Let (X, ) be an element of (2. If z is an element of X, then the composite map

S&SS Gr

factors uniquely through Z8 x G%ﬂ. Let Zcene and e, be the associated maps from S to Z9
and G, respectively; then X = {zge : 2 € X T} is a G (R)*-orbit in Hom(S, G&™).
Let X% be the image of X+ under Ad: G — G*I; then (G*!, XT2) is a connected
Shimura datum (in the sense of [39, Def. 4.4]). Furthermore Ad o ngr = Xtadopas

subsets of Hom(S, G&!). Now let Q4. be the set of all pairs (YT, &) satisfying:

« YT isa G (R)*-orbit in Hom(S, G&) such that Ad o Y+ = X+ o n for some
connected Shimura datum (G4, X +-24);

* & is an isomorphism class of symplectic representations of G4 of dimension 2g.

It follows from [[11,, Cor. 1.2.8] that, for a given G, there are only finitely many possibilities
for X4, Since Ad: G4 — G is an isogeny, there are only finitely many possibilities for
Y. Furthermore a semisimple group has only finitely many symplectic representations of
a given dimension, hence Qqe; is a finite set. Consider also the following set:

Ecent = {(7], 7):m € X*(Z°), 7 isom. class of sympl. rep. of Z° of dim. 29}.
If u: Gyu,c — Sc is the Hodge cocharacter, then there is a natural map

Peent * Q — Ecent

(X+7 Q) — (-Tcent o W, Q|ZO)

for some & € X T; this is well-defined because zccn; does not depend on the choice of , and
because Zeent,c © f1: G, — Z2, being a morphism of tori, is defined over Q. Let Qe be
the image of 2 in Z.,,.. We also have a map

Pder + Q — Qder
(X7, 0) = (X ol o).

der?

Consider the product map ¢ = @eent X Pder: Q@ — Qeent X Qder. An element z € X T is

determined by Tcens and xger, s0 X T is determined by zeey; and thr. Furthermore lemma
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tells us that the isomorphism class of g is determined, up to a finite choice, by the
isomorphism classes of g|zo and g|gar. As such we find that ¢ is finite. It is also Aut(G)-
equivariant, where Aut(G) works on the right hand side via the map

Aut(G) = Aut(Z°) x Aut(G).
It follows that the induced map
Aut(G)\Q — Aut(G)\ (Qeens X Qeer)

is finite as well; to show that its domain is finite, it now suffices to show that its codomain is
finite. To see this, let (X, o) be an element of ), and let z € X*. Then the isomorphism
class of gg o x is fixed; it is the symplectic representation of S corresponding to a polarised
Hodge structure of type {(1,0), (0,1)} of dimension 2g. It follows that the isomorphism
class of the representation gr © Zcent of S is uniquely determined, hence there is only one
possibility for the isomorphism class of the symplectic representation g¢ © Zeen,c © p of
Gum,c. Now choose z such that z(S) is Zariski dense in G, which exists by our assumption
that G is the generic Mumford-Tate group on X. Then the image of Z ey o p is Zariski
dense in Z°. Since there was only one possibility for oc © Zeent,c © p1, lemma @ now tells
us that Aut(Z%)\ Qe is finite. Since the image of Aut(G) in Aut(Z°) has finite index by
lemma and Qe is finite, we conclude that Aut(G)\(Qeens X Quer) is finite; this proves
the proposition. O

8.1.2 The integral case

In this subsection we prove theorem Ell Recall that as a complex analytic space we can view
Ay as a disjoint union of spaces of the form T'\ ", where I' is a congruence subgroup of
GSpy,(Z). As before, for a connected Shimura triple (G, X, o), let Yr(G, X, o) be the
image of o(X ) in "\H . We call two special triples (G, X, ¢) and (G’, X'*, o) equivalent
under T if

YF(Gv X+7 Q) = YF(le X/’ «Ql)’

This holds if and only if there isay € T such that (G, X+, g) = (G', X', o) - v, where the
action of I' C GSp,,(Q) on Sy4 is asin (@). Let Mod(G) be the set of (integral) models of
G as in definition [.3. Using this notation we get a natural map

GMT: Say(G)/T — Mod(G)

by sending (G, X, o) to the generic (integral) Mumford-Tate group of Y1 (G, X, p); note
that this is the same as the generic Mumford-Tate group of X+. We may also describe
this map in the terminology of chapter H, as follows: let (G, X, 0) € S24(G). The stan-
dard representation V' := Q¢ of GSp,,, ¢, has a lattice A := Z?9. Then GMT(G, X, o) =
mod () (A). We can also understand Hecke correspondences in this way: recall that spe-
cial subvarieties equivalent to Y1 (G, X, g) under Hecke correspondence are of the form
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Yr(G, X*,inn(a™") o p) for some a € GSp,,(Q). For such a connected Shimura triple we
get

GMT(G, X T, inn(a" ') 0 9) = m0d,—1,(G)a(A) = mod,y ) (al). (8.12)
Furthermore, the map GMT defined above allows us to consider theorem @ asaconsequence
of the following result:

Theorem 8.13. Let G be a connected reductive group over Q, and let I C GSpy,,(Z) be a congru-
ence subgroup. Then the map GMT: Sz4(G)/T" — Mod(G) is finite.

Proof of theorem @ from theorem . The Shimura variety A, ,, is a finite disjoint union of
connected Shimura varieties I'\H. We need to show that for every I and for every group
scheme & over Z there are only finitely many special subvarieties of I'\ % whose generic
Mumford-Tate group is isomorphic to &. Let G be the generic fibre of ¢; then every such
special subvariety is of the form Y1-(G, X, o), for some (X, o) such that (G, X, 0) €
S24(G). The theorem now follows from theorem . O

Let I be a congruence subgroup of GSp,,, (Z). Write M (T') := T'\Hf; this is a real analytic
space. If T is small enough, then M (T") is a connected Shimura variety. Let ?—l; be the
subspace GLg, (R)-H/} of Hom(S, GLy, ), and let I' be a congruence subgroup of GLz, (Z)
and define M (T') := f\’;':[;r. This is a real analytic space, but for g > 1 it will not have the
structure of a connected Shimura variety.

Lemma 8.14. Let I' C GSp,,(Z) be a congruence subgroup, and let I'c GL2y(Z) be a congru-
ence subgroup containing I'. Then the map of real analytic spaces M (I') — M (T') is finite.

Proof. 1t suffices to prove this for I' = GSp, (Z) and ' = GLay,(Z). For these choices of
congruence subgroups we have (see [116, 4.3]):

MIT) = {princ. pol. Hodge structures of type {(0,1), (1,0)} on Zzg}/ =3

1%

M(T) {Hodge structures of type {(0,1),(1,0)} on ZQg}/ =3

where in the first equation we consider isomorphisms of polarised Hodge structures, and
in the second equation isomorphisms of Hodge structures. In this terminology the natural
map M(I') — M (D) is just forgetting the polarisation. By [38, Thm. 18.1] a polarisable
Z-Hodge structure of type {(0, 1), (1,0)} has only finitely many principal polarisations (up
to automorphisms of polarised Hodge structures), from which the lemma follows. O

Proof of theorem . By proposition @ it suffices to show that for every GSp,,,(Q)-orbit
B in S5,(G) the map GMT: B/T" — Mod(G) is finite. Let (G, X, ) be an element of
sucha B, and let IV be the scheme-theoretic normaliser of o(G) in GSp,,, o- Then as aright
GSp,, (Q)-set we can identify B with N(Q)\GSp,,(Q), and under this identification we
have

B/I' = N(Q)\GSpy, (Q)/I (8.15)
(G, X, 0)-al = N(Q)al.
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Now let V' := Q29 be the standard representation of GSp,, , and let N be the scheme-
theoretic normaliser of o(G) in GLy, g. Furthermore, recall that Lat g (V) is the set of
N (Q)-orbits of lattices in V (see definition B); by considering every lattice as g - A for
A =729 and g € GLa,(Q), we get a natural identification

Lat (V) 2 N(Q)\GLa, (Q)/GLa (Z).

From () we see that the map GMT: B/I' — Mod(G) sends a double coset N(Q)al’,
considered as an element of B/T via (8.15), to modg (aA). As such we can decompose GMT
as a composite map

B/T = N(Q)\GSp,y,(Q)/T
- N(Q)\GSp,,(Q)/GSp,y(Z) (8.16)
—  N(Q)\GLyy(Q)/GLagy(Z) (8.17)
= Latg(V)
"% Mod(G). (8.18)

Since T is of finite index in GSp,,(Z) we see that the map in () is finite. Furthermore,
theorem Ell tells us that the map in () is finite, so it suffices to prove that the map in
() is finite; denote this map by f. Let Z be the set of connected real analytic subspaces of
M (GSpqy(Z)), and let Z be the set of connected real analytic subspaces of M (GLgy(Z)).
Since the map M (GSp,,(Z)) — M (GLgy(Z)) is finite by lemma , the induced map
z: Z — Z is finite as well. There are injective maps

i: N(Q)\GLay(Q)/GLag(Z) = 2
where ¢ sends the class of a € GSp,,(Q) to the image of a~'p(X *)a in GSpy, (Z)\H}

g 7
and i sends the class of a € GLay(Q) to the image of ™' p(X*)a in GLay(Z)\H . Then
zot={lo f,andsince z is finite and ¢, 7 are injective, we see that f is finite; this proves the

theorem. O

Remark 8.19. By applying remark rather than theorem @, we can also prove that
for every collection (4;), of group schemes over Z, there exist only finitely many special
subvarieties Y of A, ,, such that GMT(Y)z, = %, for all prime numbers ¢.

8.2 Connection to the Mumford-Tate conjecture

Let K be a number field embedded in C, and let A be a principally polarised abelian variety
over K. Let MT(A) be the (integral) Mumford-Tate group of A; it is the smallest closed
subgroup scheme of GSp(H' (A%, Z)) through which s factors, where

s:S — GSp(H' (A R))
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is the morphism defining the polarised Hodge structure. On the other hand, for every prime
number £ there is a natural action of Gal(K/K) on the étale cohomology H;, (A g, Z;)
which fixes the polarisation up to a scalar.

Definition 8.20. Let A be an abelian variety over a number field K, and let ¢ be a prime
number. Then the ¢-adic Galois monodromy group of A, G¢(A), is defined as follows: its generic
fibre G¢(A)g, is the unit component of the Zariski closure of the image of Gal(K/K) in
GSp(HY (Ax, Qy)), and G,(A) itself is the Zariski closure of G¢(A)q, in GSp(H}, (Ax, Z¢)).

One reason for taking the unit component, rather than the entire Zariski closure, is that the
unit component remains unchanged if we replace K by a finite extension. Via the compar-
ison theorem there is a canonical isomorphism of free Z,-modules with a symplectic form
He(Ag,Ze) = H'(A®,Z)z,. As such we can regard MT(A)z, and Gy(A) as subgroup
schemes of the same group scheme GSp(H}, (A, Z¢)). The Mumford-Tate conjecture now
claims the following;

Conjecture 8.21 (Mumford-Tate conjecture). Let A be an abelian variety over a number field
K. Then for every prime £ one has MT(A)z, = G¢(A) as subgroup schemes of GSp(H;, (A g, Zy)).

The Mumford-Tate conjecture is usually formulated in terms of the generic fibres of these
groups, but this is equivalent to the ‘integral’ statement above. In general, the Mumford-
Tate conjecture is very much an open problem, with the smallest unproven case appearing
in dimension 4 already; this concerns abelian fourfolds of Mumford’s type, see definition
. An overview of the progress on the Mumford-Tate conjecture for abelian varieties is
given in [8]. The conjecture has also been stated, and proven in some cases, for smooth
proper varieties in general; see for example [[l] or independently [64], [65] for the case of K3
surfaces, or [46] for the case of varieties with h?° = 1.

An implicit consequence of the Mumford-Tate conjecture is that the group schemes G;(A)
are all compatible in the sense that they all come from the same group scheme over Z. This
implies, for example, that all G;(A)g, have the same root system, and that G,(A) is a re-
ductive group scheme over Z, for £ > 0. The compatibility between the algebraic groups
G¢(A)q, has been studied in [34] and [54]. In this section, we study a related question:

Question. Letn > 2 be an integer, and let g := dim(A). Does there exist a special subvariety Y’
of Ag,n such that GMT(Y")z, == G¢(A) for all prime numbers £?

It should be noted that if the Mumford-Tate conjecture is true, and z is a point on A,
corresponding to A, then the special closure of « provides a positive answer to question @
hence a positive answer to this question provides additional evidence for the Mumford-
Tate conjecture. Our main goal is to prove the following theorem. On one hand, it shows
that the Y satisfying the conditions of question @ are limited. On the other hand, it pro-
vides a positive answer to this question in the smallest unsolved case of the Mumford-Tate
conjecture.

u

Theorem 8.22. Let A be a g-dimensional principally polarised abelian variety over a number field
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K C C,andletn > 2 be an integer. Then there exist at most finitely many special subvarieties
Y of Ay, such that GMT(Y )z, = G¢(A) for all prime numbers (. If A is of Mumford’s type (see
definition then at least one such Y exists.

Without loss of generality we may replace K by a finite extension, and we will do so over
the course of the proof. Roughly speaking the proof of the second part of this theorem is as
follows: first, we classify groups of Mumford’s type over a given field by means of quaternion
algebras. Since quaternion algebras are determined by their local invariants, we can ‘glue’
the G;(A)g, to a Q-group G. The final step is to combine the integral structures in each
G¢(A) to find an integral model of G.

8.2.1 Groups of Mumford’s type and quaternion algebras

In this section we define groups of Mumford’s type, and we classify them by means of quater-
nion algebras. For this we need to generalise the concept of quaternion algebras, and several
of their characteristics, to étale algebras over a given field.

Definition 8.23. Let k be a field, and let £ be an étale algebra over k. Suppose E =[], E;,
where each F; is a field extension of k. A quaternion algebra over F is an (non-commutative)
E-algebra D such that each D; := FE; ® D is a quaternion algebra over F;. The set of
isomorphism classes of quaternion algebras over E is denoted Quat(E).

Suppose F is an étale algebra over a field k of rank n, and let D be a quaternion algebra
over E. Let Cores /1, (D) be the corestriction of D from E to k as defined in [33, 2.3]; this is
a central simple algebra over k of dimension 2", There is a natural ‘norm” homomorphism
of groups

Nm: D* — Coresg (D)™

That can be interpreted as a morphism of algebraic groups if we consider both the domain
and the codomain as algebraic groups over k (see [48, §4]). If k is algebraically closed the
norm map is described as follows: Since every central simple algebra over & is a matrix
algebra, we have D* = GLy (k)" and Cores g, (D)* = GLgn (k) (also as algebraic groups
over k). The map

Nm: GLy (k)™ — GLan (k) (8.24)

is the representation of GLy(k)™ obtained by taking the tensor product of the standard
representation of its n factors.

We say that Coresg (D) is trivial if it is isomorphic (as a k-algebra) to Matyn (k); denote
the subset of quaternion algebras with trivial corestriction by Quat,(FE). The following
classification of quaternion algebras over étale algebras is a straightforward consequence
of the ‘regular’ classification of quaternion algebras over local fields and number fields; see
for example [53, §18] and [30]. For a number field k we denote the set of places of k by S(k).
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Lemma 8.25. Let k be a field, and let E = ][, E; be an étale algebra over k, where each E; is a
finite field extension of k.

1. Suppose k is a local field of characteristic 0; then there is a natural bijection

Vg Quat(E @ 17/7

whose image consists of all sequences (d;); such that d; = 0 for all i with E; = C. This
map sends Quat (E) to the subset of all (d;); € B,(3Z/Z) satisfying Y, d; = 0. For
a quaternion algebra D one has E; ® g D = Maty(E;) if and only if the corresponding
sequence satisfies d; = 0;if d; = 1, then E; @ g D is the unique nonsplit quaternion algebra
over E;.

2. Suppose k is a number field, and suppose F is a field extension of k. Then the natural map

H Yg, | @ Quat(E H 17.)7)

weS(E) weS(E)

is injective, and its image equals the set of sequences (d,, ), satisfying d., = 0 for almost all v,
dy =0ifE, =C,and ", d, = 0. This map sends Quat, (E) to the subset of all (d., ),
such that for every v € S(k) onehas " dy = 0. O

wlv
Remark 8.26. Let k be a number field, and let E be a field extension of k. Since for every
place v of k one has k, ® E =[], Ew, lemma tells us that the natural map

wlv

Quat(F) — H Quat(k, ®; E)
veS(k)
D (k‘v Rk D)v
is injective and sends Quat,(E) into the product of the Quaty(k, ®x F).

We will use these algebraic objects to classify the algebraic groups we are interested in.

Definition 8.27. Let k be a field, let G be an algebraic group over k, and let V be a faithful
representation of G. We say that (G, V') is of Mumford’s type if the following three conditions
are satisfied:

1. Lie(G) has a one dimensional centre c;
~/ 3 .
2. Lie(G)j, = ¢ @5[2,,;,

3. Lie(G)z acts on V7, by the tensor product of the standard representations C, V4, Vz,
V3 of ¢ and the factors s, 1, respectively.

The set of isomorphism classes of triples of Mumford’s type over k is denoted Mum(k). We
say that an abelian variety A over anumber field K is of Mumford’s type if one (or equivalently
all, see [50, Lem. 1.3]) of the pairs (G¢(A)q,, He, (Az, Q;)) is of Mumford’s type over Q.
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The abelian varieties A over a number field K of Mumford’s type are extensively studied in
[50] and [51]. Our first task is to classify Mum(k). To do this, we define a EQ-pair over k to
be a pair (F, D), where E is an étale algebra of rank 3 over &, and D is a quaternion algebra
over E with trivial corestriction to k. The set of isomorphism classes of EQ-pairs over k is
denoted EQ(k). For a field k we can define a map

Uy, : Mum(k) — EQ(k) (8.28)

as follows: let (G, V') be of Mumford’s type over k. Let G’ be the derived group of G, and let
G’ be the universal cover of G’; then C;';—€ = SLg’E. Its three simple factors form a Gal(k/k)-
set of cardinality 3, and as such it corresponds to an étale k-algebra E; then G’ = Resp, /1B,
where B is a form of SLy 5. As is the case over fields, the forms of SLy over E are in a
one-to-one correspondence to quaternion algebras over E. The fact that G’ has a faithful
8-dimensional representation implies that the quaternion algebra D corresponding to B
has a trivial corestriction; we now define ¥, (G, V) := (E, D).

Lemma 8.29. Let k be a field. Then the map ¥y, of (@) is a bijection. It is compatible with field
extensions of k.

Proof. Let (E, D) € EQ(k). Then () tells us that Nm(D*) C Coresp,(D)* = GLg(k)
is of Mumford’s type (together with the standard representation V' of GLg(k)), when con-
sidered as an algebraic group over k. One can check that this is the inverse of ¥, and that
both these maps are compatible with field extensions of k. O

Remark 8.30. In our definition of U}, we find the étale algebra E from the Gal(k/k)-set
of simple factors in G’. We can also find E directly from G as follows: let T' be a maximal
torus of G defined over k. Then there exist x, 01, 02, 03 € X*(T)g such that the characters
of T present in V are those of the form y & 01 &+ 92 + 03, and the Galois action on X* (7T")
is given by a Galois action on the set {£p; : ¢ < 3}. From the latter, we get an action of
Gal(k/k) on {{£o01},{F02}, {*03}}, and this is the Gal(k/k)-set corresponding to E. It
does not depend on the choice of T'.

We need one more lemma on étale algebras that will be useful later on.

Lemma 8.31. Let I be a topological group, and let X and Y be two discrete sets of cardinality 3
with a continuous I'-action. Suppose that there is a dense subset S C I' such that for every s € S
there is an isomorphism of (s)-sets X =2 Y. Then X =Y as I'-sets.

Proof. For every s the action of s on X is trivial if and only if the action of s on Y is trivial as
well. Let Bij(X) denote the group of permutations of X. Since S is dense in I this means
that the kernels of the maps ox : T' — Bij(X) and gy : I' — Bij(X) are the same. We may
divide out this kernel and assume without loss of generality that the actions are faithful.
In this case T is finite, so S = I'. Upon choosing identifications X = {1,2,3} = Y we
get two subgroups ox ('), oy (I') C Ss, and we need to prove that these two subgroups
are conjugate. However, since ox and gy are injective, these two subgroups have the same
cardinality, and in S5 subgroups are determined, up to conjugation, by their cardinality. O
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Corollary 8.32. Let k be a number field, and let E and F' be two étale algebras of rank 3 over k.
Suppose that Ey,, = Fy, as k,-algebras for every finite place v of k. Then E = F as k-algebras.

Proof. Let X and Y be the Gal(k/k)-sets corresponding to E and F, respectively. For every
finite place v of k, choose an embedding k < k,; this induces an injection Gal(k, /k,) —
Gal(k/k). By Cebotarév’s density theorem the images of these injections form a dense sub-
set (see [67]). Furthermore, by the assumption the Gal(k,/k,)-sets are isomorphic for ev-
ery v. We can now use lemma to find that F and F are isomorphic. O

8.2.2 Proof of theorem

From this point onwards we consider an abelian variety A over a number field K such that
A is of Mumford’s type. For each prime number ¢ we set &, := Gy(A). We let G, be the
generic fibre of 4, and we define V; := H}, (Az, Q;). Let (Ey, Dy) € EQ(Qy) be the pair
corresponding to the pair (G, V;) via the map ¥q, of().

Lemma 8.33. There is a unique étale algebra E over Q such that Q; ®q E = Ey for all £. This E
is a totally real number field.

Proof. Let S be the set of all finite places v of K for which the Frobenius torus T, exists
(see [4, 3.b]); this is a subset of S(K) of Dirichlet density 1. This T, is a torus over Q, and it
comes equipped with a canonical representation W,,. By replacing S by a subset of density
1 if needed, we may assume that there exists an identification of Q,-vector spaces W, g, =
Vi such that T;, g, is a maximal torus of Gy, for every prime number ¢ different from the
characteristic of v (see [9, Cor. 3.8]). By remark there exist x, 01, 02, 03 € X*(T})g such
that the characters of T present in W, are those of the form y & ;1 & 02 + ¢3. Let E be the
étale Q-algebra corresponding to the Gal(Q/Q)-set {{+01}, {02}, {£03}}; this does not
depend on the choice of v. Now let £ be a prime number not equal to the characteristic of v.
Since T, ¢ is isomorphic to a maximal torus of G, remark tellsus that £, = Q; ®q F
for all 4. Since for every £ we can find a v € S whose characteristic does not equal /, this is
actually true for every ¢. Furthermore, F is the unique étale Q-algebra with this property
by corollary . Since G is Q,-simple for infinitely many ¢ by [54, Thm. 5.13(b)], we see
that Ey is a field for infinitely many ¢; hence E is a field. To prove that E is in fact totally
real, let ,, be the residue field of the place v, and let A, be the reduction of A at v; this is
an abelian variety over k,,. After replacing K by a finite extension if necessary, we know
by [49, Thm. 2.2] that A, is an ordinary abelian variety for v in a set of Dirichlet density
1. Let W(k,) be the ring of Witt vectors of x,. Since A, is an ordinary abelian variety we
can consider its canonical lift A$", which the unique lift of A, to W(k,,) for which the
natural map End(A%") — End(A,) is a bijection. Choose any embedding W(k,) — C;
then MT(AJ'%)q = T), and the two representations W, and H' (A5'e™, Q) of this algebraic
group are isomorphic. Then MT(A{™, C)g ~ Hdg(A;'¢)q X Gu,q, where Hdg(AJ'¢) is the
(integral) Hodge group of the Hodge structure H' (ASe™,Z). ThenT" := Hdg(A'¢)oNT is
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a maximal torus of the algebraic group Hdg(A;'¢) o, and the rational vector space X*(7")q
can now be identified (in the terminology of remark B ) as

XH(T")g = X*(T)e/(X)-

Since Hdg(A;'¢)(R) is a compact Lie group, we see that complex conjugation acts as —1 on
the X*(T")q. For the Galois action on {+g; : ¢ < 3} this means that complex conjugation
sends each g; to —g;. It follows that the Gal(Q/Q)-set {{#01}, {Z02}, {Z03}} is trivial,
hence F is totally real. O

Lemma 8.34. There exists a special subvariety Y of A, 4 such that MT(Y )q, = G¢(A)q, for all
prime numbers .

Proof. Let E be asinlemma , and choose an isomorphism Q;®q E = E, for every prime
number £. Furthermore, choose an isomorphism R ®g E = R3. These isomorphisms give
us isomorphisms Ey = [],,, Ew and R® = [,  E,,. For every finite place w of £, let
D, = E, ®g, Dy, where ¢ is such that w | ¢. Define Dy = H x H x Ma(R) as a
quaternion algebra over R3, and for every infinite place w of E define D, := E,, ®ps Do
Foreachw € S(E) weletd,, € £Z/Z be the invariant corresponding to D,,. Since each D,
has a trivial corestriction to Q, lemma jshowsthat°, ,d,, = 0forall £. Furthermore
our definition of D, implies Zw|oo = 0. By [34, Thm. 3. 2] the group G/ is quasi-split
for almost all ¢. In the notation of the definition of the map ¥, of () this implies that

= Resp,/q,SL2, hence d,, = 0 for almost all w. By lemma E the sequence (dy)w
now corresponds to a quaternion algebra D over E whose corestriction to Q is trivial. The
construction from [48] now yields a special curve on A, 4 with the desired property. O

Remark 8.35. The quaternion algebra D constructed in the proof of is not unique and
depends on the chosen isomorphisms Q; ®g E = E,. However, the chosen isomorphism
does not matter if all the invariants over ¢ are equal to 0, hence there will only be finitely
many possibilities for D.

Proof of theorem . The first statement is a direct consequence of remark . For the
second statement, let Y be as in lemma B.34, and let B := GMT(S)q; then Y is the im-
age of an embedding of Shimura varieties, correspondmg to an injective morphism of al-
gebraic groups ¢: B < GSp,, that induces a morphism of Shimura varieties (B, X) —
(GSpy,, Hy). Consider B as a subgroup of GSp,, via this injection. Let V' = QB be the
standard symplectic representation of GSp,,, and let A C V be the lattice Z8. Then by
assumption By, = Gy. Furthermore, for ¢ >> 0 we find that mod g (A )z, and ¢, are isomor-
phic; they are both isomorphic to the quotient of the product G, z, x Res(z,g6,)/2,SL2
by its subgroup

{(I,y) € N2(ZZ) X ,LLQ(Z[ ® ﬁE) : I'NEQZ/@z(y) = 1}7

where N (g, 1)/, (Q¢ ® E)* — Q/ is the regular norm map from Galois theory. Let L
be the finite set of £ for whichmodp(A)z, % %. For each of £ € L, choose an isomorphism
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we: Vg, =5 Vi of symplectic Qg-vector spaces that identifies By, and Gy, and let M, :=
oy H(HY (Ag, Zy)). Let M C V be the lattice such that Mz, = M, forall ¢ € L, and
Mz, = Az, otherwise; then modp(M)z, = %, for all £. Let g € GSp,,(Q) be such that
gA = M. Theninn(g~") o ¢ is a morphism of Shimura data (B, X) — (GSp,,, H,), and
any irreducible component of the image of X in A, ,, is a special subvariety that satisfies
the conditions of the theorem. O
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Samenvatting

““Wat is het nut van een boek, dacht Alice, ‘zonder tekeningen en gesprekken?”
Lewis Carroll, Alice in Wonderland, 1865

Deze samenvatting is geschreven onder de aanname dat iedereen die de algebraische meet-
kunde genoeg beheerst om een gedetailleerde, technische Nederlandse samenvatting van
dit proefschrift te begrijpen, ook het Engels voldoende beheerst om uit hoofdstukken H, E]
en geen goede indruk te krijgen wat er in dit proefschrift staat. Deze inleiding is dan ook
bedoeld om de geinteresseerde leek te laten proeven aan het soort wiskunde waarmee ik
me de afgelopen vier jaar bezig heb gehouden.

Vertaald naar het het Nederlands is de titel van dit proefschrift Moduli van abelse variéteiten
via lineair-algebraische groepen. Naar mijn mening is het eerste woord in deze titel het belang-
rijkst; hieronder zal ik dan ook proberen uit te leggen wat het begrip moduliruimte inhoudt
aan de hand van een voorbeeld.

Driehoeken

In dit proefschrift bestudeer ik een aantal verschillende meetkundige objecten. Deze ob-
jecten zijn vaak lastig te visualiseren, omdat ze van een hogere dimensie zijn dan mensen
zich voor kunnen stellen (de ‘kleinste’ objecten die ik bekijk zijn al vierdimensionaal). Om
het toch een beetje begrijpelijk te houden, ga ik het in dit hoofdstuk hebben over meetkun-
dige figuren waar de meeste mensen wat meer ervaring mee hebben, namelijk driehoeken.
In een later hoofdstukje kom ik terug op hoe je als wiskundige meetkunde kan doen met
dingen die je je moeilijk voor kunt stellen.

Op de middelbare school zullen veel mensen geleerd hebben hoe je een driehoek kunt con-
strueren. Dit gaat als volgt: Stel dat je een driehoek met zijden van 3, 4 en 5 cm wil con-
strueren. Dan begin je bijvoorbeeld door een lijnstuk van 5 cm te tekenen. Vervolgens teken
je (met een passer) een cirkel met een straal van 4 cm met als middelpunt het ene eindpunt
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van je lijnstuk, en een cirkel met straal 3 cm met als middelpunt het andere eindpunt van je
lijnstuk. Daarna kies je één van de twee snijpunten van de twee cirkels uit, en daar trek je
vanuit de eindpunten lijnen naar. Deze constructie kun je zien in het plaatje hieronder:

.
l' ,’l’ \ .
;
; v ™
ll , :l “ \ ‘\
; S
; 4em -7 3 cm \
J , / VN \
! - ! LN \
; ;
; Pid ' N \
] . ! Lo 4
; . : N \
;
i . : N :
!
' i ] [ '
. »
: L : * » :
' '
: 1ocm : :
4 ]
' ! ; -
. . N ]
.\ b I ’
\ /
. , II
[y . S

Zo kun je elke driehoek construeren, als je maar de zijden a, b en ¢ gegeven krijgt. Op deze
constructie is wel wat aan te merken. In het plaatje hieronder staan de driehoeken die we
hadden gekregen door de afstanden 3 cm, 4 cm en 5 cm in een andere volgorde te gebruiken:

AN
A/

Zoals je ziet krijgen we eigenlijk steeds dezelfde driehoek, maar dan gedraaid en mogelijk
gespiegeld. Ook als we in plaats daarvan een driehoek met zijden 30, 40, en 50 cm hadden
genomen had het eigenlijk niet uitgemaakt; we hadden dezelfde driehoek gekregen, maar
dan 10 keer zo groot.
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Een driehoek wordt dus gegeven door de lengtes van zijn zijden a, b en c. Door te draaien
en te spiegelen kunnen we aannemen dat deze op grootte geordend zijn, dat wil zeggen
a < b < ¢. Door de driehoek te vergroten of te verkleinen kunnen we aannemen dat ¢ = 1
cm; als we een willekeurige driehoek hebben, dan kunnen we die vergroten of verkleinen
totdat de langste zijde 1 cm lang is. We nemen dus aan dat « < b < 1. Nu is het zo dat
niet elke keuze van a en b een driehoek oplevert: als a en b te kort zijn, dan lukt het niet om
zoals hierboven een driehoek te construeren, omdat de cirkels elkaar niet snijden, zoals in
het plaatje hieronder:

'

q
\

Er bestaat een driehoek met lengtes a, b en 1 cm dan en slechts dan als a+b > 1 cm. Kortom,
we kunnen elke vorm driehoek krijgen door een driehoek te maken met zijden a, ben 1 cm,
energeldta <b<1lcm,ena+ b > 1cm. Laten we nu kijken hoe we deze informatie op
een goede manier ‘op kunnen slaan’. We kunnen het platte vlak nemen, en een assenstelsel
kiezen met codrdinaten x en y. Hierin kunnen we het gebied afbakenen van alle punten
(z,y) waarvoor geldt x <y < lenx +y > 1. Dit gebied noemen we M, en we kunnen dit
zien in het plaatjeﬂ op de volgende pagina.

1k sta mezelf hier een beetje Engelse notatie toe door kommagetallen met een punt te schrijven, omdat
(0.5,0.5) duidelijker is dan (0, 5, 0, 5).
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De bovenzijde en de rechterzijde van de driehoek horen wel bij M, maar de linkerzijde niet:
de linkerzijde zijn namelijk punten waarvoor geldt z + y = 1, en één van de voorwaar-
den voor M is dat x + y > 1. Omdat we de ongelijkheden die M definiéren slim hebben
gekozen, correspondeert ieder punt (z, y) van M met een driehoek, namelijk een driehoek
met zijden van lengte x cm, y cm en 1 cm. Zo correspondeert het punt (0.6, 0.8) in M met
een driehoek met zijden van 0.6 cm, 0.8 cm en 1 cm (of een driehoek met zijden van 6, 8 en
10 cm, omdat we mogen vergroten en verkleinen). Aan de andere kant kunnen we voor elke
driehoek een punt van M vinden die ermee correspondeert, en dus kunnen we zeggen dat
M de verzameling van alle driehoeken classificeert. Tegelijkertijd is het zo dat M zelf een
meetkundig object is: het is een driehoek (met een missende zijde) in het zy-vlak.

Zo'n meetkundig object waarbij elk punt staat voor een ander meetkundig object wordt een
moduliruimte genoemd, en deze spelen een belangrijke rol in de algebraische meetkunde.
Wat moduliruimten zo belangrijk maakt, is dat één enkel meetkundig object, de moduli-
ruimte, informatie bevat over oneindig veel meetkundige objecten. Zo kunnen we iets te
weten komen over alle driehoeken, en hun onderlinge relaties, door het ene object M te
bestuderen. Ik sluit dit hoofdstukje af met twee voorbeelden van hoe we de meetkunde van
M kunnen gebruiken om driehoeken te bestuderen. Ten eerste, als we twee driehoeken A
en B hebben, zoals in het plaatje hieronder, dan kunnen we in M een pad maken tussen de
punten die corresponderen met A en B. Door over dit pad te lopen kunnen we driehoek A
geleidelijk vervormen tot driehoek B: een punt halverwege het pad correspondeert met een
driehoek die qua vorm ‘halverwege’ ligt tussen driehoek A en driehoek B. Voor driehoeken
is dit misschien niet zo bijzonder, maar het kunnen vervormen van wiskundige objecten is
een belangrijk trucje in de algebraische meetkunde, en moduliruimten geven een manier
om dat te doen.
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Ten tweede is het mogelijk om eigenschappen van een driehoek af te lezen aan de hand van
de positie van het punt op M dat met die driehoek correspondeert. In het plaatje hieronder
staan een aantal driehoeken met bijzondere eigenschappen:

N\

De groene driehoek is gelijkbenig, dat wil zeggen dat hij twee even grote zijden en twee even
grote hoeken heeft. De blauwe driehoek is gelijkzijdig: alle hoeken zijn even groot en alle zij-
den zijn even groot. De rode driehoek is rechthoekig: deze heeft een hoek van 90 graden. Tot
slot is de oranje driehoek zowel rechthoekig als gelijkbenig. Het blijkt dat deze eigenschap-
pen van driehoeken terug te vinden zijn in de moduliruimte M. In het plaatje hieronder zijn
de punten van M die op de twee groene lijnen liggen precies de punten die corresponderen
met gelijkbenige driehoeken. Op dezelfde manier kunnen we ook gelijkzijdigheid (blauw),
rechthoekigheid (rood), en de combinatie van rechthoekigheid en gelijkbenigheid (oranje)
terugzien als meetkundige figuren in M; zie de figuur op de volgende pagina.

20pgave voor mensen met een wiskundige achtergrond: laat zien dat de rode boog het deel van de cirkel met
straal 1 en middelpunt (0, 0) is dat in M bevat is.
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Dit waren maar kleine voorbeelden van wat moduliruimten zijn, en wat voor handige eigen-
schappen ze hebben. Hoewel dit proefschrift niet over driehoeken gaat, maar over inge-
wikkeldere meetkundige objecten genaamd abelse variéteiten is het principe hetzelfde: Er
bestaat een moduliruimte van abelse variéteiten, en we kunnen alle abelse variéteiten in
één keer bestuderen door de meetkunde van deze moduliruimte beter te begrijpen.

Meetkunde in hogere dimensies

De abelse variéteiten waar dit proefschrift over gaat, zijn weliswaar meetkundige objecten,
maar niet helemaal in dezelfde betekenis als de driehoeken die hierboven besproken zijn.
Een eerste verschil is dat deze abelse variéteiten vaak hoger-dimensionaal zijn; de abelse
variéteiten die ik in sectie @ bespreek zijn vierdimensionaal, maar voor de rest gaat dit
proefschrift over abelse variéteiten van elke dimensie. Hoe kun je meetkunde doen als je in
een ruimte werkt die zoveel dimensies heeft dat je het niet voor je kunt zien? Dit kunnen we
laten zien aan de hand van een voorbeeld. Neem de cirkel in het zy-vlak met middelpunt
(0,0) en straal 1:

dah ;
NP2

-2 1

Zoals sommigen wel op de middelbare school geleerd hebben, kunnen we deze cirkel ook
beschrijven met een vergelijking: De punten op de cirkel zijn namelijk alle punten (z,y)
waarvoor geldt

2?4+ = 1.
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Het mooie is nu dat we de cirkel ook kunnen bestuderen aan de hand van deze vergelijk-
ing. Om een voorbeeld te geven, een cirkel heeft de eigenschap dat elke (rechte) lijn een
cirkel hoogstens in twee punten snijdt. Het blijkt dat dit te maken heeft met het feit dat
de vergelijking hierboven alleen kwadraten bevat, en een kwadratische vergelijking hoog-
stens twee oplossingen heeft. Op deze manier kunnen we meetkundige eigenschappen van
de cirkel bestuderen door de algebraische eigenschappen van de vergelijking te bestuderen.
Het mooie is nu dat we dit nu ook kunnen toepassen op andere vergelijkingen, zoals

m2+y2+22+v2+w2:1.

Dit is een vergelijking in vijf variabelen, en we kunnen het dus beschouwen als een vergelijk-
ing die een meetkundig object in de vijfdimensionale zyzvw-ruimte definieert. Hoewel we
ons deze ruimte en dit object moeilijk voor kunnen stellen, kunnen we alsnog zijn meet-
kundige eigenschappen berekenen aan de hand van deze vergelijking. Hoewel abelse varié-
teiten gegeven worden door meerdere (en ingewikkeldere) vergelijkingen, is het principe
hetzelfde. Een tweede voordeel van deze aanpak is dat we dit soort vergelijkingen ook kun-
nen opstellen in andere ‘getallensystemen’ dan gebruikelijk. De z en y in de definitie van
de cirkel zijn reéle getallen, dat wil zeggen alle getallen die je van de middelbare school kent
(positief en negatief, met eventueel oneindig veel cijfers achter de komma). Er worden
in de wiskunde een hoop andere getallensystemen gebruikt dan de reéle getallen, en op
deze manier kunnen we ook in deze getallensystemen meetkunde doen. Een belangrijk
voorbeeld hiervan zijn eindige getallensystemen: omdat deze ‘klein’ zijn vergeleken met de
oneindig grote getallensystemen die meestal gebruikt worden, zijn ze relatief makkelijk om
mee te werken, en hierdoor spelen ze een belangrijke rol in de theoretische wiskunde. Ze
hebben ook praktische toepassingen: de meetkundige eigenschappen van abelse variéteiten
in eindige getallensystemen spelen een belangrijke rol in de cryptografie.

Waar gaat dit proefschrift over?

In dit proefschrift probeer ik de moduliruimten van abelse variéteiten te beschrijven. Abelse
variéteiten zijn meetkundige objecten die een belangrijke rol spelen in de algebraische meet-
kunde, aan de ene kant omdat ze veel symmetrie hebben en daardoor makkelijk te bestud-
eren zijn, en aan de andere kant omdat ze overal opduiken, van de getaltheorie tot de cryp-
tografie. Abelse variéteiten blijken, net zoals driehoeken hierboven, moduliruimten te heb-
ben, en door deze moduliruimten te bestuderen kunnen we meer over abelse variéteiten te
weten komen.

Tk beschrijf moduliruimten van abelse variéteiten aan de hand van lineair-algebraische groepen.
Lineair-algebraische groepen zijn wiskundige objecten uit de lineaire algebra. Dit is een vakge-
bied dat niet alleen in de wiskunde, maar zo ongeveer in alle bétavakken erg belangrijk is,
omdat je er snel en eenvoudig berekeningen mee kunt doen in multidimensionale ruimten.
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Door eigenschappen van moduliruimten te vertalen naar lineair-algebraische groepen, kun-
nen meetkundige eigenschappen van deze moduliruimten ontdekt worden doordat we ze
expliciet uit kunnen rekenen.

Dit proefschrift bestaat uit twee delen die los van elkaar gelezen kunnen worden. In beide
delen bestudeer ik een beschrijving van moduliruimten van abelse variéteiten in termen
van lineair-algebraische groepen. Deze beschrijvingen waren eerder bedacht door andere
wiskundigen, en ik probeer ze te verbeteren om er nieuwe resultaten mee te kunnen vinden.
Het eerste deel gaat over moduliruimten over eindige getallensystemen. In deze context
zijn de moduliruimten zelf ook ‘eindig’, en ik gebruik de beschrijving die ik heb verbeterd
om een telformule te vinden die uitdrukt hoe groot deze moduliruimten zijn. Het tweede
deel gaat over een manier om eigenschappen van deelruimten van moduliruimten uit te
drukken in lineair-algebraische groepen. Ik verbeter deze beschrijving met behulp van de
getaltheorie, en ik laat zien dat deze verbeterde beschrijving een stuk meer informatie over
de moduliruimte geeft.
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