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ABSTRACT. Consider a complex affine variety V and a real analytic Zariski-dense
submanifold V of V. We compare modules over the ring O(V) of regular functions
on V with modules over the ring C*° (V) of smooth complex valued functions on V.

Under a mild condition on the tangent spaces, we prove that C*°(V) is flat as a

module over O(V). From this we deduce a comparison theorem for the Hochschild
homology of finite type algebras over O( ‘7) and the Hochschild homology of similar
algebras over C*° (V).

We also establish versions of these results for functions on V (resp. V) that
are invariant under the action of a finite group G. As an auxiliary result, we show

that C°°(V) has finite rank as module over C*>(V)¢.
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INTRODUCTION

Let V be a complex affine variety and let V C V be a smooth submanifold. The
general goal of this paper is to compare modules over the algebra of regular functions
O(V) with modules over the algebra of (complex-valued) smooth functions C*(V).
One may pass from the algebraic setting to the smooth setting by tensoring with
C®(V) over O(V), and we study that functor in detail. It may enable one to transfer
various problems from one setting to the other.

The standard case is V=V as sets, a non-singular complex affine variety consid-
ered both with its Zariski topology and with its analytic topology. In this case it
follows from [Mal] (although we have not found an explicit account) that C*°(V) is

flat as a module over O(V).
In the more general situations which we consider, the affine variety V' may be
singular. On the smooth side we allow minor singularities via an action of a finite
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group G, so that we actually consider an orbifold V/ G. We assume that the action
extends to V and we want to compare O(V)¢ = O(V /G) with C=(V)C.

By well-known results of Noether [Eis, §13] V / G is always an affine variety and
O(V) is finitely generated as a module over O(V /G). While V/G need not be a
smooth manifold and C*(V)% can be substantially more complicated than C*°(V'),
one part of Noether’s algebraic results remains valid in this smooth setting:

Theorem A. (see Theorem [3.1])
Let V' be a smooth manifold with a smooth action of a finite group G. Then C*°(V)
is finitely generated as a C™(V)-module.

The precise conditions needed for our main results are:

Conditions B. (i) V is a real analytic Zariski-dense submanifold of v,
(ii) a finite group G acts algebraically on V' and stabilizes V,
(iii) for allv € V, T,(V) = T,,(V) @ C.

Typical examples come from real forms of V (but maybe not all real forms qualify
if V' is singular). Sometimes (iii) can be replaced by

(iii’) G acts freely on V' (e.g. G = 1) and for each v € V, the real vector space
T, (V') spans the complex vector space T,(V).

The assumptions (i) and (ii) guarantee that O(V') embeds G-equivariantly in C>(V).
Either of (iii) and (iii’) entails that at every point of V' the formal completion of

O(V) is a subalgebra of the formal completion of C*°(V'). Under condition (iii’),
V/G can be endowed with the structure of a smooth manifold.

Theorem C. (see Theorem [1.5)) )
Assume that (i), (ii) and (iii) or (iii’) hold. Then C>®(V)% is flat over O(V)%

The proof runs mainly via formal completions of C°°(V)%-modules. Theorem [C] .
tells us that the functor C°(V)¢ Do (i7)c 1s exact on finitely generated modules.

Roughly speaking, that means that passing from 1% /G to V/G is a reasonable ope-
ration, which does not lose information beyond shrinking the space.
Theoremenables us to compare homological algebra with (’)(V)G—modules to ho-
mological algebra with C°°(V)%-modules. Our main application is to the Hochschild
homology of finite type algebras and their bimodules, as studied in [KNS]. Recall
that a unital algebra A is a finite type O(V)%-algebra if an algebra homomorphism
from O(V)G to the centre of A is given, and makes A into a finitely generated
O(V)%module. Under the above conditions C*° (V)% ® Ais a Fréchet algebra
o)«
(this is why we need V' to be real-analytic). Furthermore it is finitely generated as
C>(V)%module, so it is reasonable to regard it as a smooth finite type algebra.

We stress that A and C®°(V)® ® A need not be commutative.
OW)G

Theorem D. (see Theorem [2.3)
Let A be a unital finite type O(V)C-algebra and let M be a finitely generated A-
bimodule. Assume that (i), (it) and (iii) from Conditions[B hold. There is a natural
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isomorphism of Fréchet C*(V)%-modules

C®(V)¢ © H,(A M) —
o)<
H, (000(1/)0 © A, (C®(V)G&C>=(V)For) ® M).
oW)G O(V)YGRO(V)Gop

We note that on the right hand side the Hochschild homology involves the topo-
logy of the algebra, via the complete projective tensor product of Fréchet spaces.
Theorem |§| is a smooth version of an earlier result with formal completions [KNS|
Theorem 3]. The special case of Theorem [D] with M = A is an isomorphism for
Hochschild homology of the algebras:

C*(V)¢ @ HH,(A) = HH,(C®(V)¢ © A).
oWv)< oWv)<
With this one can reduce the computation of the Hochschild homology of certain
Fréchet algebras to the Hochschild homology of finite type algebras, about which a
lot is known from [KNS]. To facilitate that, we make the left hand side of Theorem@
explicit in some cases. Recall that by Hochschild-Kostant—Rosenberg Theorem

HH,(O(V))=Q"V) for nonsingular V,

where Q" stands for algebraic differential forms. Denote the C°°(V)-module of
smooth n-forms on V' by Q7 (V).

Theorem E. (a special case of Lemma |3.4)
Suppose that (i), (ii) and (iii) from Conditions[B| hold. There is a natural isomor-
phism of Fréchet C*(V)-modules

Cx(V)¢ ® QNV) = R, (V).
ow)<

From Theorems[D]and [E]one can easily deduce a smooth version of the Hochschild-
Kostant—Rosenberg Theorem, see Section |4l Obviously that would be an extremely
roundabout proof. The advantage of our methods is rather that they apply to much
wider classes of algebras, possibly noncommutative. In particular our results will
be useful for the computation of the Hochschild homology of the Harish-Chandra—
Schwartz algebra of a reductive p-adic group, for which we refer to [Sol].

1. FLATNESS OF SMOOTH FUNCTIONS AS MODULE OVER REGULAR FUNCTIONS

Let V be a smooth manifold (without boundary) and let G be a finite group
acting on V by diffeomorphisms. Consider the algebra C*(V)¢ of G-invariant
smooth complex-valued functions on V. For each v € V we have the closed max-
imal ideal I, C C*°(V) of functions vanishing at v and the closed ideal Ig, of
functions vanishing on Gv. The G-invariant elements in the latter form an ideal
1§, c C=(V)Y. Let FP, be the Fréchet algebra of formal power series on an infi-
nitesimal neighborhood of v in V and let FP%* be the subalgebra of G,-invariants.
Then FP, = 1£1n C>(V)/I} and

(11) FPS = (D, FP,) = (lm C*(V)/15,) =lim C*(V)¢/15E.

v’ eGu
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By a theorem of Borel (see [Tou, Théoreme IV.3.1 and Remarque IV.3.5] or [MeVo),
Theorem 26.29]) the Taylor series map
Ty :C®(V)— FP,

is surjective. Its kernel is the module I>° of functions that are flat at v. Similarly
we have the ideal

Iz, = o o

Gv ﬂv,er o C ¢ (V)

of functions that are flat on Gv. In view of the surjectivity of ¥, (1.1) becomes an
isomorphism

(1.2) FPSv = Cc=(V)C /15,

For any Fréchet C°°(V)%-module M we can form the “formal completion” at v:
y - Gy 5 ~ 00,G

(1.3) Mg, = FP; COO%)GM = M/I5" M.

In contrast with the algebraic setting, MGv is actually a quotient rather than a
completion of M.

Lemma 1.1. Let M be a finitely generated Fréchet C™(V)%-module. Let My and

My be closed C™ (V)% -submodules of M, such that My D My and My = Mag, for
allveV. Then My = Ms.

Proof. By assumption there exists a finitely generated free C°°(V)%-module N and
a surjective homomorphism of Fréchet C*°(V)%modules p : N — M. By the
continuity of p, N; := p~1(M;) is a closed C*°(V)%-submodule of N. For any v € V
we have - -

Nl/N2Gv = Ml/MZGv =0.
From that and we deduce

(1.4) Ni /Ny = IZC (N1 /Ny).

The inclusion 1% (N, /Ny) € (Ig’;’GN + N3) /N> induces an inclusion

(1.5) IZY(NI/No) C I ON + No/Ny = IZ9N + Ny/No.
From ([1.4) and (L.5]) for all v € V', we obtain
.G
N € [ 167N + Na.
Consider the finitely generated free C*°(V)-module C*°(V) & N. In there we

C'oo (V)G
have C*°(V')-submodules

cx(WV)Ny € cx(WV)(( _, 1IN+ M) € (), ToN + CX(V) N,

Applying the Taylor series map, we find
TH(C®(V)Ny) C F,(C>®(V)Na).

By [Tou, Corollaire V.1.6] for the variety {v}, the right hand side equals T, (C*°(V)Na).
As N; D Nj, we deduce that C*°(V)N; and C*°(V)Ny have the same Taylor series
at every v € V. By Whitney’s spectral theorem [Tou, Corollaire V.1.6], this implies

(1.6) COO(V)Nl C COO(V)NQ
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Taking G-invariants inside C®°(V) & N, we obtain
Coo(V)G

7G -
Ny = (COO(V)Nl)G C Coo(V)N2 = Ny = No.
Hence Ny = Ny and M7 = M. O

In this context it is useful to mention the following slight generalization of a result
of Malgrange [Tou, Corollaire VI.1.8].

Theorem 1.2. Assume that V is real analytic and let r € N. Let M be a C=(V)%-
submodule of (COO(V)G)T generated by finitely many real-analytic G-invariant func-
tions from V to C". Then M is closed in (C*°(V))".

Proof. Let {f;} be a finite set of analytic G-invariant functions from V to C". By
[Toul, Corollaire VI.1.8] they generate a closed C°°(V')-submodule M’ of C*°(V)".
Assume that the f; generate M as C°°(V)%-module. Write pg = |G|~} > gec 9

an idempotent in C[G]. Clearly M c M’ N (C*>(V)%)". On the other hand
M=) C*(V)°fi=3 (cC*(V)fi=pa)_ (pcC*(V)f)

=pc(Y_ C*(V)fi) = paM' > M' 0 (C=(V)O)".

Hence M = M' N (C*°(V)¥)", which is closed in (C*(V)%)" because M’ is closed
in C(V)". O

Let V be a complex affine G-variety and recall the Conditions

Lemma 1.3. Assume (i) and (ii) from Condz'tz'ons@ and let M be a finitely gene-
rated O(V)%-module. The C*(V)%-modules
cxWV)¥ © M, FPS © M  and IXC(C®(V)E © M)

o)< o)< oG

are nuclear Fréchet. The first two are generated by a finite subset of M.

Proof. Any finite set of generators of M as O(V')-module also generates the first two
C*>(V)%modules under consideration. By [OpSo} (30) and subsequent lines], every
finitely generated F P -module is Fréchet, so in particular FPS* @ M.

oWv)e
Pick r € Zo and a O(V)%-submodule N of (O(V)¢)" such that M = (O(V)¢)"/N.
The kernel of the surjective homomorphism of ¢ (V)¢

(C>*W)9)" =c>(V)¢ o (0% —
o(V)@

-modules

1.7 -
4 ce*(V)¢ & (0N =Cc>*V)Y @ M
O(V)& o)<
is generated by 1@ N. Since O(V)% is Noetherian, N is generated as O(V)E-module
by some finite subset Sy. Then the kernel of (1.7 is generated by 1 ® Sy. The
analyticity of V' entails that Sy consists of analytic G-invariant functions from V'
to C". Now Theorem says that the kernel of (L.7) is closed in (C>(V)Y)".
Hence C®°(V)¢ @ M is the quotient of (C>(V)“)" by a closed subspace, and in
o(V)¢
particular is a Fréchet space.
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In the short exact sequence of topological vector spaces
0= IS (C=WV)¢ © M)—=C*V)¢ @ M—=FPS © M—0
oG oW)&G O(W)G
the middle term is Fréchet and the right hand side is Hausdorff. Hence the left hand
side is a closed subspace of the middle term, and is itself Fréchet.

Next we address the nuclearity. Our arguments are based entirely on the inhe-
ritance properties for nuclearity, which can be found for instance in [MeVo, Satz
28.6-28.7] and [ScWo| Theorem 7.4]. The power series ring F'P, is a direct product
of copies of C, so it is nuclear. Then its subspace F' PUG” and the finite direct sum
(FP%)" with r € N inherit nuclearity from FP,. As FPS* ® M is a Hausdorff

o)
quotient of (FPS)" for a suitable r, it is nuclear as well.

The Fréchet space C*°(V) is a standard example of a nuclear space [ScWa, p.
108]. Hence the subspace C*®(V)¢ and (C°°(V)%)" are also nuclear. We showed
that C®° (V)¢ ® M is a Hausdorff quotient of (C°°(V)%)", and therefore nuclear.

oV)e
Finally, nuclearity is inherited by the subspace Ig';’G(COO(V)G ® M ) O
OWV)G

From Lemma [[.3] we obtain a functor

(1.8) C®(V)Y @ :Modg(O(V)C) = Modg (C(V)),

o6&
where the subscripts fg and Fr stand for finitely generated and Fréchet, respectively.

Lemma 1.4. Assume that (i), (ii) and either (iii) or (1ii’) from Conditions [B hold
and let M C M’ be finitely generated O(V)-modules. Then the natural map

(C>(V)Y @ M)gv—>(C°°(V)G ® M’)gv is injective.
o)< o)<

Proof. Recall that the formal completion of the O(V)%-module M at Gv € V/G is
defined as

(1.9) Mgy = lim M/ (I¢, N O(V)¥) M.
— ~ ——Gy
Let FP, be the formal completion of O(V) at v € V. Like in (1.1, FP, is the

formal completion of O(V)% at Gv, and it can be considered as a subalgebra of
FPS%. Since M is finitely generated, there is a natural isomorphism

~ ——Gy
Mg, =FP, ® M.
oW)&

By definition

(1.10) (C>*(WV)¢ © M), =FPS & (C*(WV)¢ © M).
o(V)© Coo (V)@ oW)e
The right hand side is the completion of the algebraic tensor product
(1.11) FPS © C*WV)Y © M=FP% ® M.
Coo (V)G o6 oW)e

Since O(V)% is Noetherian, M admits a finite presentation
(OWV)9F = (O(V)9)™ — M — 0.
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Tensoring with FPS over O(V)€ gives a finite presentation

(1.12) (FPE )k - (FPS)™ — FPS ® M —0.

OW)G
The power series ring FPSY is a Fréchet space of finite type, i.e. its topology is
defined by an increasing sequence of seminorms all of whose cokernels have finite

codimension. By [Kopp] all continuous linear maps between such Fréchet spaces have

closed images. Now (1.12)) shows that FPS* ® M is the quotient of (FPS»)™
oWV)&
by a closed linear subspace, so in particular is complete. Hence (1.11]) and (1.10]

are equal. Consequently there are isomorphisms of F P% -modules

N~ v
(C>WV)Y @ M), =FP" ® M
oV)e oWV)¢<
(1.13) — G, ~
~FpPY ® FP,” ® M=FP’ & Mg,
FPJY oW)¢© FPJY

By the exactness of the formal completion functor ((1.9)) for finitely generated (’)(V)G—
modules,

. —a, .
(1.14) Mgy is a FP, -submodule of M’g,.

— —— Gy

Suppose that (iii) holds. Then FP, = FP, as G,-representations, so FP% = FP.
With the isomorphism ([1.13)) that immediately implies the statement.
Suppose that (iii’) holds, so that G,, = 1. The canonical surjection

T,(V)®r C — T,(V)

induces an injection

j :Tqi(f/)* — (T,(V) ®r C)*

Pick a basis {z1, ..., zq} of j(T,(V)*) and extend it with elements {w1, ..., Wdimv—d}
to a basis of (T,,(V) ®r C)*. There are isomorphisms of Fréchet algebras

(115) FPU = C[[Zl, ey Rdy W1y ,wdimV,dH = F/’\J/Dv[[wl, ey wdim\/,d“.

Thus the F/’\I/Dv—module F' P, is isomorphic to a product of copies of Ff’v, indexed by
all the monomials built from {wy, ..., wgimv—4}. Furthermore }/7\]/31, is Noetherian,
and then [Chal, Theorem 2.1] says that FP, is flat over FP,. Combine that with
and . g

We note that Lemma[I.4] may become false if we assume only (i), (i) and (iii’) in a
weaker version without the freedom of the G-action. For example, take V =V = C,
on which G = {1, —1} acts by multiplication. For v = 0 we have

FPO" = C[[z%]] and FPS =C[[z, 2] = C[[:, 22, 27]).

Here FPSv is not flat over ﬁfv, and then we see from that Lemma fails.

The main result of this section generalizes the flatness of C(V) over O(V). As
pointed out in an answer to a question on MathOverﬂowH, that case can be shown
quickly with results of Malgrange [Mal] about complex analytic functions.

Imathoverflow.net/questions/226136 /is-the-sheaf-of-smooth-functions-flat
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Theorem 1.5. Assume that (i), (ii) and either (iii) or (iii’) from Conditions B
hold. Then C*°(V)% is flat as an O(V)C-module. In particular the functor (1.8) is
exact.

Proof. According to [Eis, Proposition 6.1], flatness can be checked by testing it with
finitely generated modules. Let M C M’ be finitely generated O(V)%-modules. We
need to show that the natural map
p:CWV)°¢ @ M—-0o®WV)°¢ & M
o)< o)<

is injective. We want to apply Lemma [I.1] inside the domain of x, which by Lemma
has the right properties. The submodules will be My = 0 and M; = ker(u),
which is a closed submodule of the domain because y is continuous and C>(V)%-
linear. Lemma yields the desired conclusion ker(u) = 0, provided we can check
that all formal completions of the C*°(V)%-module ker(p) are zero.

From Lemma [1.4] we know that jig, is injective. We would like to apply the
exactness of the formal completion functor from [OpSo, Theorem 2.5] to

0= ker(u) = C®(V)¢ © M—C®V)¢ © M,
(V)¢ o(V)¢
but unfortunately ker(u) could be a topological vector space of a more general kind
than allowed by [OpSol, Theorem 2.5]. It turns out that we can still use the proof of
[OpSo, Theorem 2.5], which relies on technical constructions in [MeTo, Chapitre 1].

—

Consider an element of ker(u), represented by m € ker(u) C C*(V)¢ @ M. By
the injectivity of fig, and (1.3]), m belongs to

G
I (C2(V)6 @ M).
oG
Here taking the closure is superfluous, for by Lemma [1.3] it is already a closed
subspace of (V)¢ ® M. Hence there are finitely many f; € IZ%’G and mj € M

O(WV)G
such that m =3, f; ® m;. By [MeTo, p. 183] there exists a 1 € I, such that
fi/v € Ig, c C(V) for all j.
The construction of ¢ in [MeTol p. 184] runs via a sequence of functions

6 €Ig, suchthat Y e =1¢ and €/¢c I,

Since the set Guv is G-stable, we may assume that the copy of R™ in [MeTo, p.
183-184], which is obtained from a neighborhood of Gv, inherits a G-action. Next
we average the metric on R"™ over GG, so that G acts isometrically. Then the sets
Ui, F;, G; in [MeTol, p. 183-184] are G-stable and we can average all the functions ¢;
over GG, that preserves their properties used in [MeTo|. Hence we may assume that
all the ¢; are G-invariant and that ¢ € Ig;’G C C>=(V)%. Then

mfp =2 fi/v@m;eC*V)® © M

oWV)e
is well-defined. By G-invariance (€;/1)m lies in IZ%G ker(u). Now we can write

m=1-m/i = ZZ € -mj = Zz(el/i/)) m e IS ker(p).
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The sums converge by the equalities (although ) .(e;/1) need not converge). Hence

m =0 in @Gw and ker(pt), = 0. O

2. FINITE TYPE ALGEBRAS AND THEIR SMOOTH VERSIONS

We will apply Theoremto finite type algebras. By an O(V)G—algebra we mean
a (not necessarily unital) algebra A together with a unital algebra homomorphism
from O(V)% to the centre of the multiplier algebra of A. Recall from [KNS] that A
has finite type (as O(V)%-algebra) if it is finitely generated as module over O(V).
The structure, homology and representation theory of such algebras were studied
in [KNS|. In particular A is always a polynomial identity algebra. We want to
compare A and C>® (V)¢ ® A. By Lemma |1.3[the latter is a Fréchet algebra, and

oG

it is finitely generated as a module over COO(V)G. It is also a polynomial identity
algebra, and we regard it as a smooth version of a finite type algebra.

Assume that A is unital. Let M be a finitely generated A-module. By [KNS|
Lemma 3| it has a resolution (A ®c Fk,d,) consisting of finitely generated free A-
modules.

Lemma 2.1. Assume that (i), (ii) and (iit) or (iti’) from Conditions [B| hold and
put Cp, = C®(V)¢ @ ARF,.
oG C
(a) (Chn,id ® dy,) is a resolution of the
C®(V)Y @ A-module C®(V)¢ ® M
o) o)<
by finitely generated free modules.
(b) Suppose in addition that C*(V)¢ © A and C*(V)¢ © M are isomor-
ow)e oV)e
phic (as Fréchet spaces) to direct summands of the space of rapidly decreasing
sequences S(N). Then the resolution from part (a) is split exzact as a complex of
Fréchet spaces.

Proof. (a) The exactness of

(2.1) C.—C*(V)¢ ® M

o)<
is a direct consequence of Theorem
(b) Let D be the category of Fréchet spaces that are isomorphic to direct summands
of S(N). Recall that S(N)¢ = S(N) for all d € N. Hence C,, belongs to D and
is an exact sequence in D. By [Vog, Theorems 1.8 and 5.1], every exact sequence in

D admits a continuous linear splitting. O

We turn to a comparison of the Hochschild homologies of A and of C®°(V)¢ © A.
oV)e
For a unital finite type algebra A and an A-bimodule M, this can be defined as
Hy (A, M) = Tor @4 (4, M),

see [Lod, Proposition 1.1.13]. The special case M = A is by definition the Hochschild
homology HH,,(A).

For Fréchet algebras like C®°(V)¢ & A, the topology must be taken into ac-

o)

count. This is done best by fixing a (completed) topological tensor product and
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building all differential complexes with respect to this tensor product, see for in-
stance [Tay].

We do it slightly differently though, with bornologies and bornological modules
[Mey1], §2]. This approach has the advantage that both 4 and C*°(V)¢ ® A can

o)<

be regarded as complete bornological algebras. For A it boils down to the standard
purely algebraic setup, while for Fréchet algebras/modules the bornological structure
is equivalent to the topological structure. The appropriate tensor product is the
complete bornological tensor product &, which for Fréchet spaces agrees with the
complete projective tensor product [Mey2, Theorem 1.87]. By default we endow
all finitely generated O(V)%-modules with the fine bornology [MeyT, §2.1], so that
complete bornological tensor products also make sense for them (and they agree
with the algebraic tensor products).

The category of bornological modules (always tacitly assumed to be complete) of
a complete bornological algebra B is made into an exact category by allowing only
extensions of B-modules that are split as extensions of bornological vector spaces.
For extensions of Fréchet B-modules, this just means that they must be split as
extensions of Fréchet spaces. It was checked in [Meyl], §3] that this is an excellent
setting for homological algebra.

Assume that B is unital, and let N be a bornological B-bimodule. Equivalently,
N is a bornological module over B& B, where B denotes the opposite algebra of
B. A good definition of the Hochschild homology of B with coefficients in NV is

(2.2) H, (B, N) = TorBB” (B, N),

where Tor is computed in the exact category of bornological B-bimodules. For
N = B this yields the Hochschild homology HH,(B). For Fréchet algebras and
modules, agrees with the definition in terms of the completed projective tensor
product [Tay].

From we see that we will have to consider some modules over

(2.3) Co(V)SRC™(V)E = C®(V x V)9xC,
Lemma 2.2. Suppose that (i), (ii) and (iii) from Conditions[B| hold.
(a) O(V)C is dense in C®(V)Y.

(b) For a finitely generated O(V)%-module M, considered also as bimodule with the
same action from the right, there is a natural isomorphism of C* (V)% -modules

Cx(WV)% @ M—Cc®V)9eC>WV)%*?  ®  M:feme folamn.
o)< O(V)G@O(V)Grop

When M s an O(V)G—algebm, this map s an algebra isomorphism.

Remark. Of course K°? = K for any commutative algebra K. The above super-
scripts op merely indicate which tensor factor acts from the right on the bimodule.

Proof. (a) It suffices to show that O(V) is dense in C*(V), because from that we
can obtain the statement by applying the idempotent pg. For any v € V, (iii) yields
a natural isomorphism

—
— —

O(V),=FP, = FP,=C>(V),.
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According to [Toul, Corollaire V.1.6] this implies that the closure of O(V') in C*° (V')

is C(V).

(b) By (2.3) and Lemma (applied to V x V with the G x G-action),

(2.4)

(C=(V)CRC>=(V)Cr) ® M = (C>(V)FP&C™(V)%) ® M
O(V)GRO(V)Gop O(V)Gor@0(V)C

is a Fréchet space. Let 7 € C*°(V)Y ® M and f € C>°(V)%°P. By part (a) there

oWw)e
exists a sequence (f)22 in O(V)E°P converging to f. The space (2.4)) is Hausdorff,
so limits are unique in there and we can compute

fr=lm f[,xz=1lm 1® frr =11 fz.
n—oo n—oo
Consequently ([2.4) equals

(2.5) cx(WV)¢ & M.
O(V)G
Since C®(V)¢ ® M is already Fréchet (by Lemma , it equals (2.5)). It is
oW)Gé

easy to see that this isomorphism of Fréchet C°°(V)%-modules is given by the map
in the statement.

When M is in addition an O(V)%-algebra, the map in the statement is also an
algebra homomorphism, so in fact an algebra isomorphism. O

Lemmas and together say that, under the topological condition from
Lemma [2.1]b, the embedding of bornological algebras
(2.6) A= C2WV)¢ © A= (C®(V)CeC™(V)%r) ® A

oW)e O(V)CRO(V)Gop
is a homological epimorphism. That implies several comparison results for homo-
logical properties of the derived module categories of the two involved algebras, see
[Meyl, Theorem 35| (where this is called an isocohomological embedding).

Since the Fréchet space C*°(V)% is isomorphic to a direct summand of S(N) when

V is compact [MeVo, Satz 31.16], it seems likely that in many cases C®(V)¢ ® A

ow)e
has the same property. Proving that is another matter though. Fortunately, we
can work around the existence of continuous linear splittings of our resolutions by
involving properties of nuclear Fréchet spaces.

One can compute Hy (B, N) (at least when B is unital) with a completed version
of the standard bar-resolution of B [Lod, §1], but the definition as a derived functor
is more flexible. The inclusion A — C*®(V)® ® A induces a chain map between

oV)e
the respective bar-resolutions, and hence induces a natural map

(2.7)
Hn(A,M)—>Hn(C°°(V)G ® A (CWV)CC™= (V)% ® M).

o(V)@ O(V)G@0(V)G-or
Notice that by Lemma [1.3
(CxW)Cac>(V)®?)  ® M
O(V)ERO(V)Gop
is a Fréchet C>® (V)¢ O(®)G A-bimodule, so the right hand side of is defined.
1%
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Theorem 2.3. Let A be unital and let M be a finitely generated A-bimodule. Assume
that (i), (ii) and (iii) from Conditions B are fulfilled. Then ([2.7) induces a natural
isomorphism of Fréchet C™ (V)% -modules

C®(V)¢ © H,(A M) —
o(V)&
H, (COO(V)G © A, (C=(V)Ge0>(V)5r) ® M).
oV)© O(V)GRO(V)Cop
In the special case M = A this gives a natural isomorphism

C*(V)® ©® HH,(A) = HH,(C*(V)Y © A).

oG oW)e

Proof. The algebra A ® A is of finite type over O(V)¢ @ O(V)%. Hence [KNS,
Lemma 3] applies to it, and yields a resolution (A ® A? ® F,d,) of A by finitely
generated free A ® A°P-modules. (Here each F), is just a finite dimensional C-vector
space, so later we may use ®F,, and ®F), interchangeably.) By definition

(2.8)  Hn(A,M)=H,((A® A?) ® F, L8 M,d, ®id) = Hy(F. @ M, d,).
®A°P

We note that by [KNS, Proposition 2 and Corollary 1] Hy(A, M) is a finitely gen-
erated O(V)%module, so applying C>®(V) ® to it yields a Fréchet C>°(V)¢-
G

o)
module (Lemma[[.3). We abbreviate
B=0®V)® ® A and N = (C®(V)9@0®(V)%?) ® M.
o(V)& O(V)G@O(V)Gop

By the associativity of completed bornological tensor products [Mey1], §2.1] there is
a natural algebra isomorphism
(C*(V)C@C™(V)Y)  ®  (A®AP)= B&BY.
O(V)GRO(V)G
Using that we put

Cp = (C¥(V)PRC®(V)¢)  ®  (A®AP)®F,=B&B*®F,.
O(V)GRO(V)Gop

Then Lemma says that (C,,d,) is a finitely generated free B&B°P-resolution of

(2.9) (C>WM@C=V)¢?) & A
O(V)ERO(V)Ghop

We warn that this resolution need not be split in the category of Fréchet spaces. By
Lemmathe algebra is just B.

Next we check all the conditions for [Tay, Proposition 4.5]. The exactness of
(Cy, dy) entails that im(d,+1) = ker(d,) is a closed subspace of C,,, and in particular
it is also Fréchet. The open mapping theorem for Fréchet spaces says that d,, : C,, —
im(d,) is open, which in the terminology of [Tay, §4] means that it is a topological
homomorphism. By Lemma for O(V)% @ O(V)%, N is a Fréchet space and B
and all the C,, are nuclear Fréchet spaces. Now we can apply [Tay], Proposition 4.5],
which says that H, (B, N) can be computed as

(2.10) H,(B&B? @ F, @ N,d,®id) = Hy(F,® N,d,).
BXB°P
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By the exactness of (C°(V)“&@C>(V)%p) ® from Theorem (1.5 there
O(V)GRO(V)Gop

are natural isomorphisms of C*°(V')%-bimodules
H,(F, ® N,d.) 2 H,(F. ® (C®(V)“@C™(V)5P) ® M,d.)
O(V)GRO(V)Gop
= (C(V)9@C™(V)9P) ® H,(F, ® M,d,).
O(V)ERO(V)Gor

From (2.8) and Lemma we see that (2.11]) is isomorphic to
(2.12) C*(V)Y @ H,(AM).
oW)e
By (2.10), (2.12)) is also isomorphic to H,(B,N). This shows that H,(B,N) is
Hausdorff. In its construction as
H,(F, ® N,d,) = ker(dy) /im(dn1),

ker(d,,) is closed by the continuity of d,,. By Hausdorffness, the image of d, 1 must
be closed as well, which implies that the quotient H,,(Fx ® N,d,) is Fréchet.

The statement about the special case M = A follows from the general case and
Lemma 2.21b. O

(2.11)

3. MODULES CONSISTING OF DIFFERENTIAL FORMS

We preserve the setting of the previous paragraph. To make good use of Theorem
we will make both its sides more explicit in some relevant classes of examples.
As we are dealing with algebraic tensor products, this involves checking that some
modules are finitely generated. There have been ample investigations of the structure
of C>®(V)%, starting with [Sch]. On the other hand, C*° (V') has hardly been studied
as C°°(V)%module.

Let 7 be a representation of G' on a finite dimensional real vector space W. By
classical results of Noether, see for instance [Eis, §13.3], the ring of real valued
polynomial functions S(W*) on W is finitely generated as module over S(W*)&.

Theorem 3.1. Let G be a finite group.

(a) C®(W) is generated as C°(W)%-module by a finite subset of S(W*).

(b) Let V' be a smooth manifold with a smooth G-action. Then C*°(V') is finitely
generated as C>°(V)-module.

Proof. (a) This is contained in [Poe, Lemme I11.1.4.1], but in disguise. Namely, it is
stated there that, for any finite dimensional real G-representation (7', W’),

CF (W W) = {f € C*(W, W) : f(m(g)w) = 7'(g)f(w) Vg € G,w € W}

is a finitely generated C°°(W)%module. We claim that, for W’ = C[G] the left
regular representation, there is an isomorphism of C°°(W)%-modules

C®(W) +— CE (W, ClG)),
(3.1) f = o Y e f(r(gTHw)g)
P1 = ¢ =2 gcc P99

Indeed, the equivariance condition ¢(mw(g)w) = g¢(w) means precisely that

bg(w) = ¢1(7f(971)w) for all w € W.
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Hence the two maps in are mutually inverse. The proof of [Poe, Lemme
IT1.1.4.1] uses only polynomial functions on W @ W' as generators, so via the iso-
morphism we can conclude that C°°(W) is generated by a finite subset of
S(W*). In fact any set that generates S(W*) as S(W*)%-module will do.

(b) By [Mosl, Theorem 6.1], V' can be embedded G-equivariantly as a closed subma-
nifold in a space W as in part (a). Thus we may and do regard V as a subspace of
W. With part (a) we choose a finite set of generators { f;}; for C>° (W) as C>°(W)%-

module. According to [Tou, Théoreme IX.4.3], the restriction map

CO(W)—=C®V): f flv

G

is surjective. Hence the functions f;|yy generate C*°(V) as C*°(V)“-module. O

In the algebraic setting, a theorem of Serre says that Q”(V) is finitely generated as
O(V)-module, and hence also as O(V)%-module. Similarly, the smooth Serre-Swan
theorem says that Q7 (V) is finitely generated as C°°(V')-module, for any n € Z>.
This holds for any smooth manifold V', compact or not [Mor]. By Theorem
Q7 (V) also finitely generated as C*°(V)%-module.

In view of the Hochschild-Kostant-Rosenberg Theorem [Lod, Theorem 3.4.4],
the Hochschild homology of finite type algebras will involve differential forms on
varieties related to V. We will study this in a setting that starts with (i) and (ii)
from Conditions l We assume that an embedding s : Y, > Vis given, such that

e the image of ¢ is closed in V and 2 : Y7 — ¢(Y}) is an isomorphism of affine
algebraic varieties,

e Y] := 1 }(V) is a real analytic Zariski-dense submanifold of Y; and 1y, :
Y1 — (Y1) is a diffeomorphism.

Thus ¢ induces algebra homomorphisms
2 0®(V) = C°(Y1) and of: O(V) = O(YY).

Let Y be a finite disjoint union of complex affine varieties Y; (j € J), not necessarily
of the same dimension, each of which has the same properties as those of Y; just
listed. Let Y be the disjoint union of the Y;.

The above setup is used to study Schwartz algebras of reductive p-adic groups
[Sol, §3.1]. However, let us point out that the standard and most instructive case of
the upcoming results is simply Y =V, Y = V.

Lemma 3.2. With the above assumptions, let C*(V) act on Q7 (Y) via 1*.

(a) Q(Y) is finitely generated as an O(V)-module. )
(b) Q. (Y) is generated, as a C™(V)%-module, by a finite subset of Q"(Y).

Proof. (a) By assumption 2(Y) is closed in V, so the restriction map O(V) —
O((Y)) is surjective. As Z‘Y/ is an isomorphism 2* : O(V) — O(Y) is surjective.
In particular Q*(Y) is a finitely generated module, over O(V) as well as over O(Y).
Since O(V) is the integral closure of O(V)% in the quotient field of O(V), it has
finite rank over O(V)¢ [Eis, Proposition 13.14]. Hence Q"(Y) is also finitely gener-
ated as O(V)%module.

(b) By the smooth Serre-Swan theorem, 7, (Y;) is finitely generated over C*°(Y}).
As 1(Y;) is a closed submanifold of V, the restriction map C*°(V) — C*(«(Yj)) is
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surjective [Tou, Théoreme 1X.4.3]. Since Z‘Y. is a diffeomorphism, also
J
(3.2) 1" 1 C°(V) — C™(Y;) is surjective.
In particular QF, (Y;) is a finitely generated C°°(V')-module, and so is Q7,,(Y) =

@D ,c; 2" (Y;). From the definition of the module structures we see that the tensor
products

Ce(M)Y@QUY), C®WV)20()20"(Y), C*V)Y20(V)eQ"(Y).
have the same image in Q7 (Y'), under the natural action maps. By Theorem b
and (3.2) the last one has the same image as

C®(V)@Q"(Y) and C®(Y)® QY (Y).
The latter equals Q7 (Y), so Q*(Y) generates Q7 (Y) as C(V)%-module. By part

(a) that can be achieved with a finite subset of Q™(Y"). O

Consider a O(V)%-submodule M of Q™(Y), where the action goes via +*. Although

it might seem obvious that C*°(V)¢ ® M embeds in Q7,(Y), that is actually
o)<
about as difficult as Theorem [L.5
Proposition 3.3. Assume that (i), (i) and (iii) from Conditions [B hold and let
M,Y and Y be as above. The natural homomorphism of Fréchet C* (V)% -modules
C®(WV)Y @ M —Qn (Y) is injective.
oW)&
Proof. By Theorem [I.5] the natural map
CoWM)E @ M—-C®WV)Y o QYY)
OWV)G OW)G
is injective. Therefore we may assume that M = Q"(?) Then the statement factors
naturally as a direct sum indexed by j € J. It suffices to consider one such direct
summand, say
(3.3) Ce(V)¢ ® Q" (Yi)— QL (V).
oW)e

The formal completion of Q7 (Y1) as C*(V)%module at Gv € V/G is

—

O rr o oy, @e))= @ =00, \'(@m)).

Coo(V)@ yer—1(Gw)

Using assumption (iii) we can also compute the formal completion of the left hand

side of (3.3)):

) G n(\ A _ Gy AT n *
(=) & @), = 6]? R e, o), g A\ (T,(1)")

Assumption (iii) and the construction of ¥; imply that T, (Y1) = T, (Y1) ®g C. From
that and the above we see that the map

(C>(V)¢ © Q"(W))5, — (M)
oG

v
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induced by (3.3) is injective. Now the same argument as for g in the proof of
Theorem shows that (3.3) is injective. O

Describing the image of the map from Proposition [3.3]is another issue. One would
like to think of it as some closure of M in QF (Y'), but in general it is not clear
whether the image is closed. To overcome that, we specialize to submodules of
Q"(Y) that are direct summands. Let p be an idempotent in the ring of continuous
C>°(V)%-linear endomorphisms of Q7 (Y), such that p stabilizes Q"(Y"). Then

(3.4) Qi (V) = QG (V) @ (1 = p)Q,, (Y),

so pQg,(Y) is a closed C>(V)%-submodule of 07, (Y).  Similarly P (Y) is a
O(V)%-submodule and a direct summand of Q™(Y").

Lemma 3.4. Assume (i), (ii) and (iii) from Conditions[B, The natural map

p:CN @ p™(Y) — pQ, (V)
ow)&G

is an isomorphism of Fréchet C™ (V)% -modules.

Proof. By construction the image of p is contained in pQ? (V') and we know from
Proposition that p is injective. By Lemma [3.2]b any m € pQL (Y ) can be
written as a finite sum m = ), fiw; with f; € C®(V)¢ and w; € QU(Y). We
compute
m=plm) = (Y, fi) = 3, i) € OV & p07(9).
ow

In other words, p is surjective. In view of Proposition 1 is a continuous bi-
jection between Fréchet spaces. Now the open mapping theorem says that it is a
homeomorphism. O

4. SPECIAL CASES

Consider the algebra C*°(V') with V and V as in Conditions [B} for the moment
without any group action. By Theorem

(4.1) HH,(C™(V)) = HH, (C"X’(V) ® O(f/)) ~ (V) @ HH,(O(V)).
o) ow)
Here we may remove the singular locus of V', because it does not meet V. Then V
is nonsingular, so we can invoke the Hochschild-Kostant—Rosenberg Theorem [Lod),
Theorem 3.4.4]. Next we apply Lemma to the right hand side of and we
find natural isomorphisms
H,(C=(V) = CF(V) © QN V) = Q5,(V).
ow)
In this way we recover Connes’ version of the Hochschild—Kostant—Rosenberg Theo-
rem [Conl|, for the Hochschild homology of the Fréchet algebra of smooth functions
on a real analytic manifold V. Because of the techniques that we used, our proof
only applies when V can be embedded in a complex affine variety V such that
Ty(V) =T,(V)@r C for all v € V.
Interesting examples arise from imposing conditions in terms of an affine subvari-
ety W C V. For instance, let k € N and consider the unital finite type O(V)-algebra

={(2}) € My(C) ® O(V) : ¢ vanishes to the order k on W}.
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From Lemma [3.4] one can deduce that
C®(V) ® A={(2%) € My(C)® C>(V) : ¢ vanishes to the order k on W NV}.
o)

In principle HH,(A) can be computed with the techniques from [KNS]. Thus The-
orem [2.3| provides an approach to analyse H H, (C‘X’(V) ® A).

o)
Consider the crossed product algebra (’)(‘N/) X G, where (G is a finite group acting on
V and on V. Its Hochschild homology has been determined in [Nis, Theorem 2.11]:

(4.2) HH,(O(V) x G) = @gq@ QY (V9)%elo),

where (G) is a set of representatives for the conjugacy classes in G. Similary, it is
known from [Bry|, Proposition 6] that

(4.3) HH,(C¥(V) 2 Q)= D) _ . (V)7

As O(V) has finite rank over O(V)¢, O(V) x G is a finite type O(V)%-algebra. By
Lemma 3.4 .
C®V) © OWV)xG=C®(V)xG.

OWV)G
Now Theorem [2.3] says that
HH,(C®(V)xG)=C®V)¢ © HH,(OV)xGq)

oW)&

>~ C®WV)¢ © n(V9)Zc9),
020 Dieio

(4.4)

By Lemma with plon (vs) the projection to Z(;(g)—mvarlants, the right hand
side of (4.4) is isomorphic to

@ Qr (V9)Zale),
ge(@) M

Thus our results agree with the earlier findings from [Bry] [Nis].
A more challenging class of examples arises as follows. Suppose that G' acts on
M, (C) ® O(V) = Mp(O(V)) by
g-f=ug(fog Hu,',
where u, € M, (O(V))* and f is regarded as a map from V to M, (C). Then
(4.5) A= M,(O(V))©

is a finite typeNO(f/)G—algebra. Special cases of this construction are O(V)¢ (for
n=1) and O(V) x G, for M,(C) = End(C[G]). As far as we are aware, there is no
general formula for the Hochschild homology of such algebras. By Lemma

(4.6) C¥(V)Y © A =2 M,(C™(V))C.
owW)G

Algebras of the form (4.5) and (4.6 are relevant because they arise in abundance
from reductive p-adic groups, see for instance [Sol].

Acknowledgements.
We thank Roman Bezrukavnikov and Sacha Braverman for interesting discussions,
which motivated these investigations. It is our pleasure to thank the referees for their



18 DAVID KAZHDAN AND MAARTEN SOLLEVELD

work and their reports. D.K. was supported by the European Research Council, via
grant number 101142781.

REFERENCES

[Bry] J.L. Brylinski, “Cyclic homology and equivariant theories”, Ann. Inst. Fourier 37.4 (1987),
15-28

[Cha] S.U. Chase, “Direct products of modules”, Trans. Amer. Math. Soc. 97 (1960), 457-473

[Con] A. Connes, “Noncommutative differential geometry”, Publ. Math. Inst. Hautes Etudes Sci.
62 (1985), 41-144

[Eis] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer-Verlag,
New York NJ, 1995

[KNS] D. Kazhdan, V. Nistor, P. Schneider, “Hochschild and cyclic homology of finite type alge-
bras”, Sel. Math. New Ser. 4.2 (1998), 321-359

[Kopp] M.K. Kopp, “Fréchet algebras of finite type”, Arch. Math. 83.3 (2004), 217228

[Lod] J.-L. Loday, Cyclic homology 2nd edition, Mathematischen Wissenschaften 301, Springer-
Verlag, Berlin, 1997

[Mal] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Stud-
ies in Mathematics 3, Oxford University Press, London, 1967

[Meyl] R. Meyer, “Embeddings of derived categories of bornological modules”,
arXiv:math.FA /0410596, 2004

[Mey2] R. Meyer, Local and analytic cyclic homology, European Mathematical Society Publishing
House, 2007

[MeVo] R. Meise, D. Vogt, Einfihrung in die Funktionalanalysis, Vieweg Studium: Aufbaukurs
Mathematik 62, Friedr. Vieweg & Sohn, 1992

[MeTo] J. Merrien, J.-C. Tougeron, “Ideaux de fonctions différentiables II”, Ann. Inst. Fourier 20.1
(1970), 179-233

[Mor] A.S. Morye, “Note on the Serre-Swan theorem”, Math. Nachrichten 286.2-3 (2013), 272-278

[Mos] G.D. Mostow, “Equivariant embeddings in euclidean space”, Ann. Math. 65 (1957), 432-446

[Nis] V. Nistor, “A non-commutative geometry approach to the representation theory of reductive
p-adic groups: Homology of Hecke algebras, a survey and some new results”, pp. 301-323 in:
Noncommutative geometry and number theory, Aspects of Mathematics E37 Vieweg Verlag,
Wiesbaden, 2006

[OpSo] E. Opdam, M. Solleveld, “Extensions of tempered representations”, Geom. And Funct.
Anal. 23 (2013), 664-714

[Poe] V. Poénaru, Singularités C*° en présence de symétrie, Lecture Notes in Mathematics 510,
Springer Verlag, Berlin, 1976

[ScWo] H.H. Schaefer, M.P. Wolff, Topological vector spaces. Second edition, Graduate Texts in
Mathematics 3, Springer-Verlag, New York, 1999

[Sch] G.W. Schwarz, “Smooth functions invariant under the action of a compact Lie group”, Topol-
ogy 14 (1975), 63-68

[Sol] M. Solleveld, “Hochschild homology of reductive p-adic groups”, J. Noncommut. Geom. 18
(2024), 1-65

[Tay] J.L. Taylor, “Homology and cohomology for topological algebras”, Adv. Math. 9 (1972),
137-182

[Tou] J.C. Tougeron, Idéauz de fonctions différentiables, Ergebnisse der Mathematik und ihrer
Grenzgebiete 71, Springer-Verlag, Berlin, 1972

[Vog] D. Vogt, “On the functors Ext' (E, F) for Fréchet spaces”, Studia Math. 85.2 (1987), 163-197

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, GIVAT
RaM, JERUSALEM, 9190401, ISRAEL
Email address: kazhdan@math.huji.ac.il

INSTITUTE FOR MATHEMATICS, ASTROPHYSICS AND PARTICLE PHYSICS, RADBOUD UNIVER-
SITEIT, HEYENDAALSEWEG 135, 6525AJ NIJMEGEN, THE NETHERLANDS
Email address: m.solleveld@science.ru.nl



	Introduction
	1. Flatness of smooth functions as module over regular functions
	2. Finite type algebras and their smooth versions
	3. Modules consisting of differential forms
	4. Special cases
	References

