1 Cesàro summation and Hardy’s theorem

1.1 Definition Given a sequence \((a_n \in \mathbb{C})_{n \in \mathbb{N}_0}\), we define

\[s_n = \sum_{k=0}^{n} a_n, \quad \sigma_n = \frac{\sum_{k=0}^{n} s_n}{n+1}. \]

If \(\lim_{n \to \infty} \sigma_n = A \in \mathbb{C}\) we say that \(\sum_{k} a_k\) is Cesàro summable to \(A\) and write

\[C - \sum_{k=0}^{\infty} a_n = A. \]

1.2 Remark The following facts are easy to show:

(a) \(\lim_{n \to \infty} s_N = A\) implies \(\lim_{n \to \infty} \sigma_N = A\). (Ordinary convergence implies Cesàro convergence.)

(b) There are sequences \((a_k)\) such that \(C - \sum_{k=0}^{\infty} a_n\) exists but \(\sum_{k=0}^{\infty} a_n\) does not.

(c) If \(C - \sum_{k=0}^{\infty} a_n = A\) and \(a_n = o\left(\frac{1}{n}\right)\) then \(\sum_{k=0}^{\infty} a_n = A\).

The following theorem of Hardy (1910) is better than (c) above since \(a_n = O\left(\frac{1}{n}\right)\) (meaning \(|na_n| \leq C\) for some \(C > 0\) and all \(n > 0\)) is a weaker assumption than \(a_n = o\left(\frac{1}{n}\right)\) (meaning \(\lim_{n \to 0} na_n = 0\)).
1.3 Theorem If \(C - \sum_{k=0}^{\infty} a_n = A \) and \(a_n = O(\frac{1}{n}) \) then \(\sum_{k=0}^{\infty} a_n = A \).

Proof. Recall that

\[
S_n = \sum_{k=0}^{n} a_n, \quad \sigma_n = \sum_{k=0}^{n} \left(1 - \frac{k}{n+1} \right) a_n.
\]

Picking \(\lambda > 1 \) and recalling that \(\lfloor x \rfloor := \max\{n \in \mathbb{Z} \mid n \leq x\} \) we claim that

\[
S_n = \frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \left(\sigma_{\lfloor \lambda n \rfloor} - \sum_{n<k \leq \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n \right) - \frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n.
\] (1.1)

To see this, we observe that

\[
\sigma_{\lfloor \lambda n \rfloor} - \sum_{n<k \leq \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n = \sum_{k=0}^{n} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n,
\]

thus the first half of the expression equals

\[
\frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \sum_{k=0}^{n} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n = \sum_{k=0}^{n} \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} a_n,
\]

and subtracting the last term, namely

\[
\frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n = \frac{n+1}{\lfloor \lambda n \rfloor - n} \sum_{k=0}^{n} \left(1 - \frac{k}{n+1} \right) a_n = \sum_{k=0}^{n} \frac{n+1 - k}{\lfloor \lambda n \rfloor - n} a_n,
\]

we get

\[
\sum_{k=0}^{n} \frac{\lfloor \lambda n \rfloor + 1 - k - (n+1-k)}{\lfloor \lambda n \rfloor - n} a_n = \sum_{k=0}^{n} \frac{\lfloor \lambda n \rfloor - n}{\lfloor \lambda n \rfloor - n} a_n = S_n,
\]

proving (1.1). If we now let \(n \to \infty \) in (1.1) then \(\sigma_n \to A \) and \(\sigma_{\lfloor \lambda n \rfloor} \to A \) by the assumption of Cesàro summability. Therefore,

\[
\frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \sigma_{\lfloor \lambda n \rfloor} - \frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n \to \frac{\lambda}{\lambda-1} A - \frac{1}{\lambda-1} A = A.
\]
Thus, (1.1) implies \(\lim_{n \to \infty} S_n = A \), provided we can show that the remaining term in (1.1) tends to zero as \(n \to \infty \). It is given by

\[
\sum_{n < k \leq \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) \left(\frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} \right) a_n
\]

\[
\leq \sum_{n < k \leq \lfloor \lambda n \rfloor} \left| \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} \right| a_n
\]

where we used that

\[
\left| \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} \right| \leq 1
\]

for \(n < k \leq \lfloor \lambda n \rfloor \). Finally using the assumption \(a_n = O\left(\frac{1}{n} \right) \), or \(|a_n| \leq C/n \) \(\forall n \geq 1 \), we continue the estimate (1.2) as follows:

\[
\leq \sum_{n < k \leq \lfloor \lambda n \rfloor} \frac{C}{n} \leq \int_n^{\lfloor \lambda n \rfloor} \frac{C}{n} = C \ln(\lambda n) - \ln n = C \ln \frac{\lambda n}{n} = C \ln \lambda.
\]

(In comparing the sum with the integral, we have used that \(C/n \) is monotonously decreasing.) Thus, for any given \(\varepsilon > 0 \), we can choose \(\lambda > 1 \) sufficiently close to 1 to make \(C \ln \lambda \), and thereby the term with \(\sum_{n < k \leq \lfloor \lambda n \rfloor} \) smaller than \(\varepsilon \), uniformly in \(n \). This proves \(S_n \to A \). \(\square \)

1.4 Remark 1. I thank Lawrence Forooghian from Cambridge University for drawing my attention to a mistake in a previous version of these notes and for providing a correction.

2. Recall the notion of Abel summability: If \((a_n)_{n \in \mathbb{N}_0} \) is such that

\[
f(x) = \sum_{k=0}^{\infty} a_k x^k
\]

converges for all \(|x| < 1 \) and \(A = \lim_{x \to 1^-} f(x) \) exists, then \(A \) is called the Abel-sum \(A - \sum_{k=0}^{\infty} a_k \). Abel proved that if \(A = \sum_{k=0}^{\infty} a_k \) exists then \(A - \sum_{k=0}^{\infty} a_k = A \). As for Cesàro summation, the converse is false. In 1897, Tauber proved

\[
A = A - \sum_{k=0}^{\infty} a_k \quad \text{and} \quad a_n = o\left(\frac{1}{n} \right) \quad \Rightarrow \quad \sum_{k=0}^{\infty} a_k = A.
\]
Since then, a “Tauberian theorem” is a theorem the effect that summability w.r.t. some summation method together with a decay condition on the coefficients implies summability w.r.t. some weaker method (for example ordinary convergence). Fact (c) of Remark 1.2 and Hardy’s Theorem 1.3 are such theorems. Another example: Littlewood proved in 1911 that $o(\frac{1}{n^2})$ in Tauber’s original theorem can be replaced by $O(\frac{1}{n})$. (This is a good deal more difficult to prove than Theorem 1.3, which it implies!)

2 Application to Fourier series

Let $f \in \mathcal{R}[0, 2\pi]$ and define

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx}dx, \quad S_N(f)(x) = \sum_{n=-N}^{N} c_n(f)e^{inx}.$$

The convergence of $S_N(f)(x)$ to $f(x)$ is a tricky problem, but the Cesàro means

$$\sigma_N(f)(x) = \frac{\sum_{k=0}^{N} S_N(f)(x)}{N + 1}$$

of the partial sums $S_N(f)$ behave much better: If f is continuous at x then $\sigma_N(f)(x) \to f(x)$. Furthermore, if f is continuous on $E \subset S^1$ then $\sigma_N(f) \Rightarrow f$ on E (uniform convergence).

We are now in a position to apply Hardy’s theorem to the theory of Fourier series:

2.1 Theorem Let $f \in \mathcal{R}[0, 2\pi]$ be such that $c_n(f) = O(\frac{1}{|n|})$. Then, as $N \to \infty$ we have

(a) $S_N(f)(x) \to f(x)$ at every point of continuity of f.

(b) If $f \in C(S^1)$ then $S_N(f) \Rightarrow f$ (uniform convergence).

Proof. (a) Assume first that f is continuous at 0. We have

$$S_N(f)(0) = \sum_{n=-N}^{N} c_n = c_0 + \sum_{n=1}^{N} (c_n + c_{-n}) = \sum_{n=0}^{N} a_n,$$
where \(a_0 = c_0, \ a_n = c_n + c_{-n} \) for \(n \geq 1 \). Now, by Fejér’s theorem, \(C - \sum_{n=0}^{\infty} a_n \) exists (and is equal to \(f(0) \)). Since \(c_n = O\left(\frac{1}{|n|}\right) \) clearly implies \(a_n = O\left(\frac{1}{n}\right) \), Theorem 1.3 gives that

\[
\lim_{N \to \infty} S_N(f)(0) = \lim_{N \to \infty} \sum_{n=-N}^{N} c_n = \sum_{n=0}^{\infty} a_n = f(0).
\]

Considering now \(f_{x_0}(x) = f(x + x_0) \), we have \(c_n(f_{x_0}) = e^{-inx_0}c_n(f) \) and thus \(c_n(f_{x_0}) = O\left(\frac{1}{n}\right) \). Thus, if \(f \) is continuous at \(x_0 \) then the above implies

\[
S_N(f)(x_0) = S_N(f_{x_0})(0) \longrightarrow f_{x_0}(0) = f(x_0).
\]

(b) A continuous function on \(S^1 \) is the same as a continuous periodic function on \(\mathbb{R} \). Such a function is uniformly continuous, i.e. for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \). Using this, the convergence in (a) is easily seen to be uniform in \(x \).

2.2 Remark Fejér’s theorem generalizes to the situation where \(f \) is not continuous at \(x_0 \), but the limits \(f(x+) \) and \(f(x-) \) both exist, giving \(\sigma_N(f)(x) \to \frac{f(x)+f(x-)}{2} \). Combining this with Hardy’s theorem, we see that also (a) of Theorem 2.1 generalizes accordingly.

We are now left with the problem of identifying a natural class of functions for which \(c_n(f) = O\left(\frac{1}{|n|}\right) \).

3 Functions of bounded variation

3.1 Definition The total variation \(\text{Var}_{[a,b]}(f) \in [0, \infty] \) of a function \(f : [a, b] \to \mathbb{C} \) is defined by

\[
\text{Var}_{[a,b]}(f) = \sup_P \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|,
\]

where the supremum is over the partitions \(P = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\} \) of \([a, b] \). If \(\text{Var}_{[a,b]}(f) < \infty \) the \(f \) has bounded variation on \([a, b]\).

3.2 Proposition If \(f : [0, 2\pi] \to \mathbb{C} \) has bounded variation then

\[
|c_n(f)| \leq \frac{\pi}{2} \frac{\text{Var}_{[0,2\pi]}(f)}{|n|} \quad \forall n \in \mathbb{Z} \setminus \{0\}.
\]
Proof. Extending f to a 2π-periodic function on \mathbb{R}, we have for $n \in \mathbb{Z}$:
\[
c_n(T_a f) = \frac{1}{2\pi} \int_0^{2\pi} f(x+a)e^{-inx}dx = \frac{e^{ina}}{2\pi} \int_0^{2\pi} f(x)e^{-inx}dx = e^{ina}c_n(f).
\]
For $n \neq 0$ and $a = \pi/n$ this gives $c_n(T_{\pi/n} f) = -c_n(f)$ and thus
\[
c_n(f) = \frac{1}{2}(c_n(f) - c_n(T_{\pi/n} f)) = \frac{1}{2}c_n(f - T_{\pi/n} f),
\]
implying
\[
|c_n(f)| \leq \frac{1}{2}|c_n(f - T_{\pi/n} f)| \leq \frac{1}{2}\|f - T_{\pi/n} f\|_1. \tag{3.1}
\]
(Note that this inequality holds for all f with $\|f\|_1 < \infty$.) Now,
\[
\|f - T_{\pi/n} f\|_1 = \int_0^{2\pi} \left| f(x) - f(x + \frac{\pi}{n}) \right| dx
\]
\[
= \sum_{k=1}^{2n} \int_{(k-1)\pi/n}^{k\pi/n} \left| f(x) - f(x + \frac{\pi}{n}) \right| dx
\]
\[
= \sum_{k=1}^{2n} \int_0^{\pi/n} \left| f(x + \frac{k-1}{n}\pi) - f(x + \frac{k}{n}\pi) \right| dx
\]
\[
= \int_0^{\pi/n} \sum_{k=1}^{2n} \left| f(x + \frac{k-1}{n}\pi) - f(x + \frac{k}{n}\pi) \right| dx
\]
\[
\leq \int_0^{\pi/n} \text{Var}_{[x,x+2\pi]}(f) \ dx
\]
\[
= \frac{\pi}{n} \text{Var}_{[0,2\pi]}(f).
\]
(In the last step we have used that f is 2π-periodic.) Together with (3.1) this implies the proposition. \qed

Combining Proposition 3.2 and Theorem 2.1, we finally have:

3.3 Theorem (Dirichlet-Jordan) Let $f : [0, 2\pi] \to \mathbb{C}$ have bounded variation. Then

(a) \(\lim_{N \to \infty} S_N(f)(x) = \frac{f(x^+)+f(x^-)}{2} \quad \forall x \in S^1 \). (Recall that a function of bounded variation automatically has left and right limits $f(x^+)$, $f(x^-)$ in all points and is Riemann integrable, so that we can define the coefficients $c_n(f)$.}

6
(b) If $f \in C(S^1)$ has bounded variation then $S_n(f) \Rightarrow f$.

3.4 Remark Assume that there is a partition P of $[0,2\pi]$ such that f is continuous and monotonous on each interval (x_{i-1}, x_i), $i = 1, \ldots, n$ and the limits $f(x_i+), f(x_i-)$ exist. Then

$$\text{Var}_{[0,2\pi]}(f) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| < \infty,$$

and the Theorem applies. This is the case proven by Dirichlet in 1828.

3.5 Remark If $f \in C^1([a,b])$ then

$$\text{Var}_{[a,b]}(f) \leq \int_{a}^{b} |f'(x)|dx < \infty.$$

4 Summary of our main results

1. For all $f \in \mathcal{R}[0,2\pi]$ the formula of Parseval holds:

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^2dx < \infty.$$

This implies the Riemann-Lebesgue Lemma: $\lim_{|n| \to \infty} c_n(f) = 0$ or $c_n(f) = o(1)$.

2. Defining

$$S_N(f)(x) = \sum_{k=-N}^{N} c_k(f)e^{ikx},$$

we have

$$\|f - S_N(f)\|_2^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(x) - S_N(f)(x)|^2dx \to 0.$$

Note that a priori this implies nothing about pointwise convergence, since there is a sequence $\{f_n\}$ such that $\|f_n\|_2 \to 0$, while $\lim_{n \to \infty} f_n(x)$ exists for no x. (However, Fourier series cannot be that badly behaved, at least if f is Riemann integrable. See 15-17 below.)
3. If \(f \in C^k(S^1) \) then \(c_n(f^{(k)}) = (in)^kc_n(f) \) and \(c_n(f^{(k)}) = o(1) \) imply

\[
|c_n(f)| = o\left(\frac{1}{|n|^k}\right).
\]

4. Thus: If \(f \in C^2(S) \) then \(\hat{f}(n) = o(n^{-2}) \), thus \(\sum_{n \in \mathbb{Z}} |c_n(f)| < \infty \), thus \(S_N(f) \to f \) even absolutely!

5. If \(f \in C^1(S^1) \) then a combination of Parseval’s formula, the Cauchy-Schwarz inequality and \(\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6 \) implies:

\[
\|\hat{f}\|_1 := \sum_{n \in \mathbb{Z}} |\hat{f}(n)| \leq \|f\|_1 \frac{\pi}{\sqrt{3}} \|f'\|_2,
\]

thus \(S_N(f) \to f \) absolutely and uniformly.

6. Fejér: The Fejér sums

\[
F_N(f)(x) = \frac{\sum_{k=0}^{N} S_N(f)(x)}{N+1} = \sum_{k=-N}^{N} c_k(f) \left(1 - \frac{|k|}{N+1}\right) e^{ikx}
\]

converge to \((f(x^+) + f(x^-))/2 \) whenever \(f(x^+) \) and \(f(x^-) \) exist, thus to \(f(x) \) at every point \(x \) of continuity.

7. If \(f \in C(S^1) \) then \(F_N(f) \Rightarrow f \) (uniform convergence). Thus we can uniquely reconstruct \(f \) from its Fourier coefficients \(\{c_n(f)\} \) even if the Fourier series \(S_N(f) \) behaves badly.

8. If \(f(x^+), f(x^-) \) exist and \(S_N(f)(x) \to A \in \mathbb{C} \) then \(A = (f(x^+) + f(x^-))/2 \). Thus: If the Fourier series converges, it converges to the only reasonable value. (We clearly cannot expect \(S_N(f)(x) \to f(x) \) at a discontinuity, since the value of \(f(x) \) can be chosen arbitrarily without influencing the coefficients \(c_n(f) \).)

9. If \(f \in \text{Lip}^{\alpha}[0,2\pi] \) then \(|c_n(f)| = O(|n|^{-\alpha}) \).

10. If \(f \) has bounded variation then \(|c_n(f)| = O(|n|^{-1}) \).

11. Dirichlet-Jordan: If \(f \) has bounded variation then \(S_N(f)(x) \to (f(x^+) + f(x^-))/2 \) everywhere.
12. Special case (Dirichlet): \(f \) is piecewise continuous and monotonous.

13. If \(f \in C(S^1) \) has bounded variation then \(S_N(f) \Rightarrow f \). In particular this holds for \(f \in C^1(S^1) \).

14. Dini: If \(f(x+), f(x-) \) exist and, for some \(\delta > 0 \)

\[
\int_0^\delta \left| \frac{f(x+t) - f(x+) + f(x-t) - f(x-)}{t} \right| < \infty,
\]

then \(S_N(f)(x) \to (f(x+) + f(x-))/2 \). Note that this is a local criterion, whereas the previous assumptions on \(f \) were global, i.e. concerned all \(x \in S^1 \).

15. The preceding condition is satisfied if \(|f(x+t) - f(x)| \leq Ct^\alpha \) for some \(\alpha > 0 \) and \(t \) in some neighborhood of \(x \). In particular: when \(f \) is differentiable at \(x \).

16. Riemann localization principle: The convergence of \(S_N(f)(x) \) depends only on the behavior of \(f \) on some neighborhood of \(x \). More precisely: If \(f, g \) coincide on some open neighborhood of \(x \) then either \(S_N(f)(x) \) and \(S_N(g)(x) \) both diverge or they converge to the same value.

Here a few important and/or useful facts that we haven’t proven:

15. There exist \(f \in C(S^1) \) such that \(S_N(f)(x) \) is divergent for some \(x \). In fact, for every \(E \subset S^1 \) of measure zero one can find a function \(f \) such that \(\lim_{N \to \infty} S_N(f)(x) \) diverges for all \(x \in E \). (Notice that a set of measure zero can be dense in \(S^1 \).) However, it cannot get worse, as the following result shows.

16. Carleson (1966): If \(f \in \mathcal{R}[0,2\pi] \) then \(S_N(f)(x) \to f(x) \) almost everywhere (i.e., on the complement of a set of measure zero). In fact this conclusion holds for any function \(f \in \mathcal{L}_p([0,2\pi]) \), i.e. \(f \) is “measurable” and

\[
\int_0^{2\pi} |f(x)|^p dx < \infty,
\]

for some \(p > 1 \). (Such a function can be unbounded and very discontinuous!)
17. On the other hand, Kolmogorov constructed a function \(f \in L^1([0, 2\pi]) \), thus \(f \) is measurable and

\[
\int_0^{2\pi} |f(x)| \, dx < \infty,
\]

such that \(\lim_{N \to \infty} S_N(f)(x) \) exists for no \(x \).

A Alternative proof of Hardy’s theorem

We will use the following discrete Taylor formula:

A.1 Lemma Given a real series \((a_n)_{n \in \mathbb{N}_0}\), we define \(s_n \) as above and \(t_n = \sum_{k=0}^n s_k \). Then for all \(n, h \in \mathbb{N}_0 \) we have

\[
t_{n+h} = t_n + hs_n + \frac{1}{2}h(h+1)\xi,
\]

where

\[
\min_{n<k \leq n+h} a_k \leq \xi \leq \max_{n<k \leq n+h} a_k.
\]

Proof. By definition of \(s_k \) and \(t_k \) we have

\[
t_{n+h} = t_n + (s_{n+1} + \cdots + s_{n+h})
\]

\[
= t_n + hs_n + ha_{n+1} + (h-1)a_{n+2} + \cdots + 2a_{n+h-1} + a_{n+h}.
\]

Now,

\[
ha_{n+1} + (h-1)a_{n+2} + \cdots + 2a_{n+h-1} + a_{n+h}
\]

\[
\leq (h + (h-1) + \cdots + 2 + 1) \max_{n<k \leq n+h} a_k = \frac{n(n+1)}{2} \max_{n<k \leq n+h} a_k,
\]

and similarly

\[
\frac{n(n+1)}{2} \min_{n<k \leq n+h} a_k \leq ha_{n+1} + (h-1)a_{n+2} + \cdots + 2a_{n+h-1} + a_{n+h}.
\]

Thus

\[
t_{n+h} - t_n - hs_n \in \frac{n(n+1)}{2} \left[\min_{n<k \leq n+h} a_k, \max_{n<k \leq n+h} a_k \right],
\]
and we are done. □

Proof of Theorem 1.3. We may clearly assume that $A = 0$. (Otherwise replace a_0 by $a_0 - A$. This entails that s_n and σ_n are replaced by $s_n - A$ and $\sigma_n - A$.) Furthermore, considering real and imaginary parts separately, it is sufficient to give a proof for real sequences (a_n).

In view of $\sigma_n = t_n/(n+1)$, the assumption $\sigma_n \to 0$ is equivalent to $t_n/n \to 0$. Thus, for every $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that $n \geq N$ implies $|t_n| \leq n\varepsilon$. Solving (A.1) for s_n we have

$$s_n = \frac{t_{n+h} - t_n}{h} - \frac{(h+1)\xi}{2},$$

where, using (A.2) and the assumption $a_n = O(\frac{1}{n})$ in the form $|a_n| \leq C/n$,

$$-\frac{C}{n} \leq \min_{n<k\leq n+h} a_k \leq \xi \leq \max_{n<k\leq n+h} a_k \leq \frac{C}{n}.$$

Thus

$$|s_n| \leq \frac{|t_{n+h}|}{h} + \frac{|t_n|}{h} + \frac{(h+1)C}{2n}.$$

With $|t_n| \leq n\varepsilon$ for $n \geq N$ we have

$$|s_n| \leq \frac{(n+h)\varepsilon}{h} + \frac{n\varepsilon}{h} + \frac{(h+1)C}{2n} = \frac{(n+h)\varepsilon}{h} + \frac{(h+1)C}{2n} = \epsilon + \frac{C}{2n} + \frac{2n\varepsilon}{h} + \frac{hC}{2n}.$$

We now try to minimize this expression by choosing $h \in \mathbb{N}$ cleverly. The minimum of $f(h) = \frac{2n\varepsilon}{h} + \frac{hC}{2n}$ is obtained at the solution of $f'(h) = 0$:

$$-\frac{2n\varepsilon}{h^2} + \frac{C}{2n} = 0 \quad \Rightarrow \quad h_{\text{min}} = 2n\sqrt{\frac{\varepsilon}{C}}.$$

Now

$$f(h_{\text{min}}) = \frac{2n\varepsilon}{h_{\text{min}}} + \frac{h_{\text{min}}C}{2n} = \frac{2n\varepsilon}{2n\sqrt{\frac{\varepsilon}{C}}} + \frac{2n\sqrt{\frac{\varepsilon}{C}}C}{2n} = 2\sqrt{C\varepsilon}.$$

Of course, h_{min} has no reason to be in \mathbb{N}. Defining $h = \lceil h_{\text{min}} \rceil$, to wit the smallest natural number $h \geq h_{\text{min}}$, we have

$$\frac{2n\varepsilon}{h} + \frac{hC}{2n} \leq 2\sqrt{C\varepsilon} + \frac{C}{2n},$$
since the first term in f can only decrease when we replace h_{min} by h, whereas the second can increase by at most $C/2n$. Plugging this into (A.3), we can conclude

$$\forall \varepsilon > 0 \exists N : n \geq N \Rightarrow |s_n| \leq \varepsilon + \frac{C}{n} + 2\sqrt{C\varepsilon},$$

implying $s_n \to 0$. \hfill \square