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Abstract: Starting from a local quantum field theory with an unbroken compact sym-
metry group in 1+1-dimensional spacetime we construct disorder fields implementing
gauge transformations on the fields (order variables) localized in a wedge region. En-
larging the local algebras by these disorder fields we obtain a nonlocal field theory, the
fixpoint algebras of which under the appropriately extended action of the gfane

shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional
phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case
of a finite groupG the extended theory is acted upon in a completely canonical way
by the quantum doubl®(G) and satisfies R-matrix commutation relations as well as a
Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent
approach to bosonization. The main technical ingredient is a strengthened version of
the split property which is expected to hold in all reasonable massive theories. In the
appendices (part of) the results are extended to arbitrary locally compact groups and our
methods are adapted to chiral theories on the circle.

1. Introduction

Since the notion of the “quantum double” was coined by Drinfel'd in his famous ICM
lecture [30] there have been several attempts aimed at a clarification of its relevance
to two dimensional quantum field theory. The gquantum double appears implicitly in
the work [19] on orbifold constructions in conformal field theory, where conformal
guantum field theories (CQFTs) are considered whose operators are fixpoints under the
of a symmetry group on another CQFT. Whereas the authors emphasize that “the fusion
algebra of the holomorphic G-orbifold theory naturally combines both the representation
and class algebra of the group G” the relevance of the double is fully recognized only in
[20]. There the construction is also generalized by allowing for an arbitrary 3-cocycle in

* Supported by the Studienstiftung des deutschen Volkes



138 Michael Muger

H3(G,U(1)) leading only, however, to a quasi quantum group in the sense of [31]. The
guantum double also appears in the context of integrable quantum field theories, e.g.
[7], as well as in certain lattice models (e.g. [67]). Common to these works is the role of
disorder operators or “twist fields” which are “local with respectitap to the action of

an elemeny € G”[19]. Finally, it should be mentioned that the quantum double and its
twisted generalization also play a role in spontaneously broken gauge theoriesin 2 + 1
dimensions (for a review and further references see [6]).

Regrettably most of these works (with the exception of [67]) are not very precise in
stating the premises and the results in mathematically unambiguous terms. For example
it is usually unclear whether the “twist fields” have to be constructed or are already
present in some sense in the theory one starts with. As a means to improve on this
state of affairs we propose to take seriously the generally accepted conviction that the
physical content of a quantum field theory can be recovered by studying the inequivalent
representations (superselection sectors) of the algélmhobservables (which in the
framework of conformal field theory is known as the chiral algebra). This point of view,
put forward as early as 1964 [45] but unfortunately widely ignored, has proved fruitful
for the model independent study of (not necessarily conformally covariant) quantum
field theories, for reviews see [46, 49]. Using the methods of algebraic quantum field
theory we will exhibit the mechanisms which cause the quantum double to appear in
everyquantum field theory with group symmetry in 1 + 1 dimensions fulfilling (besides
the usual assumptions like locality) only two technical assumptions (Haag duality and
split property, see below) but independent of conformal covariance or exact integrability.

As in [21] we will consider a quantum field theory to be specified by a net of von
Neumann algebras, i.e. a map

O — F(O), (1.1)

which assigns to any bounded region in 1 + 1 dimensional Minkowski space a von Neu-
mann algebra (i.e. an algebra of bounded operators closed under hermitian conjugation
and weak limits) on the common Hilbert spagesuch that isotony holds:

01 C Oy = F(O1) C F(Oy). (1.2)
The quasilocal algebr& defined by the union
——— Il
F=1J 70 (1.3)

oeK

over the sekC of all double cones (diamonds) is assumed to be irreduciblest.e.C1.1

The net is supposed to fulfill Bose-Fermi commutation relations, i.e. any local oper-
ator decomposes into a bosonic and a fermionic partF + I'_ such that for spacelike
separated’” andG we have

[Fr, G = [Fe,G_]=[F_,G.]={F_,G_} =0. (1.4)
The above decomposition is achieved by
Fi=J(F+a (F)), (L5)

Lin generalM’ = {X € B(H)|XY = YXVY € M} denotes the algebra of all bounded operators
commuting with all operators it 1.



Quantum Double Actions on Operator Algebras and Orbifold QFTs 139

wherea_(F) = VFV andV = V* = V~1is the unitary operator which acts trivially

on the space of bosonic vectors and liké& on the fermionic ones. To formulate this
locality requirement in a way more convenient for later purposes we introduce the twist
operationf't = ZF Z*, where

1+:V
7 =
1+4

which leads taZ F. Z* = Fy, ZF_Z* = iV F_ implying [F, G*] = 0. The (twisted)
locality postulate (1.4) can now be stated simply as

F(O) c FOY. (1.7)

. (=22=V), (1.6)

Poincaé covariance is implemented by assuming the existence of a (strongly con-
tinuous) unitary representation @tof the Poincag groupP such that

an,a)(F(O)) = AdU(A, a)(F(O)) = F(AO +a). (1.8)

The spectrum of the generators of the translations (momenta) is required to be contained
in the closed forward lightcone and the existence of a unique vacuum geatgariant
underP is assumed. Covariance under the conformal group, howevest isquired.

Our last postulate (for the moment) concerns the inner symmetries of the theory.
There shall be acompact groGprepresented in a strongly continuous fashion by unitary
operators or leaving invariant the vacuum such that the automorphisg(g’) =
AdU(g)(F) of B(H) respect the local structure:

ag(F(0O)) = F(O). (1.9)

The action shall be faithful, i.ex, 7 id Vg € G. This is no real restriction, for the kernel

of the homomorphisnr — Aut(F) can be divided out. (Compactnessoheed not be
postulated, as it follows [27, Thm. 3.1] from the split property which will be introduced
later.) In particular, there is an elemént Z(G) of order 2 in the center of the group

G such that = U(k). This implies that the observables which are now defined as the
fixpoints under the action af

A(0) = F(O)¢ = F(O)NU(G) (1.10)

fulfill locality in the conventional untwisted sense. In 1+1 dimensions the representations
of the Poincagé group and of the inner symmetries do not necessarily commute. In
the appendix of [57] it is, however, proved that in theories satisfying the distal split
property the translations commute with the inner symmetries whereas the boosts act
by automorphisms on the grodpmax of all inner symmetries. As we will postulate a
stronger version of the split property in the next section the cited result applies to the
situation at hand. What we still have to assume is that the one parameter group of Lorentz
boosts maps the group of inner symmetries, which in general will be a subgroup of
Gmay, into itself and commutes with” = U(k). This assumption is indispensable for
the covariance of the fixpoint net as well as of another net to be constructed later.

This framework was the starting point for the investigations in [21] where in particular
properties of the observable net (1.10) and its representations on the segifyrisein
the G-invariant subspaces, were studied, implicitly assuming the spacetime to be of
dimension> 2 + 1. While it is impossible to do any justice to the deep analysis which
derives from this early work (e.g. [22-25, 61, 28] and the books [46, 49]) we have
to sketch some of the main ideas in order to prepare the ground for our own work in
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the subsequent sections. One important notion examined in [21] was tdaglify
designating a certain maximality property in the sense that the local algebras cannot be
enlarged (on the same Hilbert space) without violating spacelike commutativity. The
postulate of twisted duality for the fields consists in strengthening the twisted locality
(1.7) to

F(O) =F(OY, (1.11)

which means thaf ('), the von Neumann algebra generated byr{tD;), O’ > O, €

K contains all operators commuting withi(O) after twisting. From this it has been
derived [21, Thm. 4.1] that duality holds for the observables when restricted to a simple
sector:

(AO) | H1)' = A(O') | Ha. (1.12)
A sectorH, is called simple if the grougr acts on it via multiplication with a character:
U(g) I H1=x(9) -1 [ Ha. (1.13)

Clearly the vacuum sector is simple. Furthermore it has been shown [21, Thm. 6.1]
that the irreducible representations of the observables on the charge seGtbesén
strongly locally equivalent in the sense that for any representatidh = A | H, and
anyO € K there is a unitary operatdty : Ho — H., such that

Xo mo(A) =7(A) Xo VA € A(O). (1.14)

The fundamental facts (1.12) and (1.14), which have come to be called Haag duality
and the DHR criterion, respectively, were taken as starting points in [23, 24] where
a more ambitious approach to the theory of superselection sectors was advocated and
developed to a large extent. The basic idea was that the physical content of any quantum
field theory should reside in the observables and their vacuum representation. All other
physically relevant representations as well as unobservable charged fields interpolating
between those and the vacuum sector should be constructed from the observable data.
The vacuum representation and the other representations of interest were postulated to
satisfy

mo(A(0)) = mo(AO")), (1.15)
T 1A ¥ 1o | AO) YO € K, (1.16)

respectively. It may be considered as one of the triumphs of the algebraic approach that it
has finally been possible to prove [28, and references given there] the existence of an es-
sentially unique net of field algebras with a unique compact gééapinner symmetries

such that there is an isomorphism between the monoidal (strict, symmetric) category
of the superselection sectors satisfying (1.16) with the product structure established in
[23] and the category of finite dimensional representations.defore turning now to

the two dimensional situation we should remark that the duality property (1.11) upon
which the whole theory hinges has been proved to hold for free massive and massless
fields (scalar [3] and Dirac [21]) itz 1 + 1 dimensions (apart from the massless scalar
field in two dimensions) as well as for several interacting theoili¥s)., Y>). Further-

more, there is a remarkable link [61] between Haag duality and spontaneous symmetry
breakdown. For the rest of this paragraph we assume that only a sub@gafp is
unbroken, i.e. unitarily implemented 6. Then the neB(0) = F(0)%° satisfies Haag
duality in restriction taHg = H° whereas4(0) = F(O)“, being a true subnet d,

does not. Yet, defining thdual net(on Hy) by
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AN 0) = A0, (1.17)
the fixpoint netA still satisfiesessential duality
AY0) = A¥(0). (1.18)

(Haag duality, by contrast, is simpl¢(O) = .A%(0).) Furthermore, one find4?(0) =
B(O). These matters have been developed further in [28, 15] in the context of recon-
struction of the fields from the observables.

In 1+ 1 dimensions a large part of the analysis sketched above breaks down due to
the following topological peculiarities of 1 + 1 dimensional Minkowski space. Firstly,
there is a Poincérinvariant distinction between left and right, i.e. for a spacelike vector
x the sign ofz! is invariant under the unit componentBf This fact accounts for the
existence okoliton sectorsvhich have been studied rigorously in the frameworks of
constructive and general quantum field theory, see [39] and [37, 38, 63], respectively.
We intend to make use of the latter in a sequel to this work.

In the present paper we focus on the other well known feature of the topology of 1+1
dimensional Minkowski space, viz. the fact that the spacelike complement of a bounded
connected region (in particular, a double cone) consists of two connected components.
The implications of this fact are twofold. On one hand, in the adaption of the DHR
analysis [23, 24] based on (1.15, 1.16) to 1 + 1 dimensions [35, 58, 36] the permutation
group S, governing the statistics is replaced by thaid group B.., as anticipated,

e.g., in [40]. Itis still not known by which structure the compact group appearing in the
higher dimensional situation has to be replaced if a completely general solution to this
guestion exists at all.

Besides the appearance of braid group statistics the disconnectedf¥éssarfifests
itself also if one starts from a field néf with unbroken symmetry grou@'. It was
mentioned above that ir 2 + 1 dimensions the restriction of the fixpoint néto the
simple sectors ift{ satisfies Haag duality provided the field tefulfills (twisted) Haag
duality. Since questions of Haag duality have been studied only in the framework of the
algebraic approach the third peculiarity of quantum field theories in 1 + 1 dimensions
(besides solitons and braid group statistics/quantum symmetry) is less widely known.
We refer to the fact that the step from (1.11) to (1.15) may fail in 1+1 dimensions. This
means that one cannot conclude from twisted duality of the fields that duality holds for
the observables in simple sectors, which in fact is possible only in conformal theories.
The origin of this phenomenon is easily understood.@et K be a double cone. One
can then construct gauge invariant operatorg{®’) which are obviously contained
in A(O)’ but not in A(O’). This is seen remarking that the latter algebra, belonging to
a disconnected region, is defined to be generated by the observable algebras associated
with the left and right spacelike complements®frespectively. This algebra does not
contain gauge invariant operators constructed using fields localized in both components.

We now come to the plan of this paper. Our aim will be to explore the relation
between a quantum field theory with symmetry graw@pn 1+1 dimensions and the
fixpoint theory. In addition to the general properties of such a theory stated above,
twisted duality (1.11) is assumed to hold for the large theory. As explained above, in
this situation duality of the fixpoint theory fails even in the case of unbroken group
symmetry. Yet there is a local extension which satisfies Haag duality and one would
like to obtain a complete understanding of this dual net. To this end we will need one
additional postulate concerning the causal independence of one-sided infinite regions
(wedges) which are separated from each other by a finite spacelike distance. This property
rules out conformal theories and singles out a (presumably large) class of well-behaved
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massive theories. In Sect. 2 we prove the existence of unitary disorder operators which
implement a global symmetry transformation on one wedge and act trivially on the
spacelike complement of a slightly larger wedge. Using these operators we will in Sect.
3 consider a non-local extensmﬁ?\((’)) of the field netF(O). The fixpoint netA((’))

of the enlarged nef(O) under the action ofs is shown to coincide with the dual net
A4(0) (1.17) in restriction to the simple sectors. In conjunction with several technical
results on actions aff this leads to an explicit characterization of the dual net. In Sect.

4 we will show that there is an action of the quantum doub({€r) on the extended net

F and that the spacelike commutation relations are governed by Drinfél‘d'satrix.

Since massive free scalar fields satisfy all assumptions we mageluis construction
provides the first mathematically rigorous construction of quantum field theories with
D(G)-symmetry for any finite grougs. The quantum double may be considered a
“hidden symmetry” of the original theory since it is uncovered only upon extending
the latter. TheD(G)-symmetry is spontaneously broken in that only the action of the
subalgebr&G c D(G) is implemented in the Hilbert spa@é. In analogy to Roberts’
analysis this might be interpreted as the actual reason for the failure of Haag duality for
the fixpoint netd. The aim of the final Sect. 5 is to show that the methods introduced in
the preceding sections are well suited for a discussion of Jordan-Wigner transformations
and bosonization in the framework of algebraic quantum field theory.

Three appendices are devoted in turn to a summary of the needed facts on quantum
groups and quantum doubles, a partial generalization of our results to infinite compact
groups and an indication how an analysis similar to Sects. 2 to 4 can be done for chiral
conformal theories on the circle.

2. Disorder Variables and the Split Property

2.1. Preliminaries.For any double con® < K we designate the left and right spacelike
complement b)WfL andW gy, respectively. Furthermore we writ€? and W for

W "andw 2L These regions are wedge shaped i.e. translates of the standard wedges
Wi, ={r € R?| 2! < —|2%} andWy = {x € R? | ! > |2°|}. We will not distinguish
between open and cIosed regions, for definiteness one may co@?saaheirall W-regions

as open. With these definitions we haVe= W& N W andO’ = W&, U W&, which
graphically looks as follows:

8% we, 2.1)

Whereas, as we have shown in the introduction, Haag duality for double cones is
violated in the fixpoint theory, one obtains the following weaker form of duality.
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Proposition 2.1. The representation of the fixpoint nétfulfills duality for wedges
AW = AW") (2.2)
and essential duality (1.18) in all simple sectors.

Proof. The spacelike complement of a wedge region is itself a wedge, thus connected,
whereby the proof of [21, Thm. 4.1] applies, yielding the first statement. The second
follows from wedge duality via

AY0) = A0 = (AW L)V AWER)) = AWE) NAWE),  (23)
as locality of the dual net is equivalent to essential dualitdof [

We will now introduce the central notion for this paper.

Definition 2.2. A family of disorder operators consists, for aflye K and anyg € G,
of two unitary operator€/€ (¢g) and U (g) verifying

AdUE (g) | FWEL) = AdUR(9) | FIWER) = ay, 2.4)
AdU(9) | FIWgR) = AdUR (g) | F(WEy) = id.
In words: the adjoint action dﬁf/R(g) on fields located in the left and right spacelike

complements o, respectively, equals the global group action on one side and is trivial
on the other. As a consequence of (twisted) wedge duality we have at once

UP(g) € FWEY, UR(g) € FIWR). (2.5)

On the other hand it is clear that disorder operators cannot be contained in the local
algebrasF(0), F(0O)! nor in the quasilocal algebta, for in this case locality would

not allow their adjoint action to be as stated on operators located arbitrarily far to the
left or right. Heuristically, assuming/(g) arises from a conserved local current via

U(g) = ¢t [ 0D one may think of7€(g) as given by

i [0 %x)dx
Uo(g) = ¢ S-S (2.6)

where integration takes place over a spacelike curve from left spacelike infinity to a
point zo in O. The need for a finitely extended interpolation reg@rarises from the
distributional character of the current which necessitates a smooth cutoff. We refrain
from discussing these matters further as they play no role in the sequel. In massive free
field theories disorder operators can be constructed rigorously (e.g. [43, 1]) using the
CCRI/CAR structure and the criteria due to Shale.

Lemma 2.3. LetU? 1(9), Uy 2(g) be disorder operators associated with the same dou-

ble cone and the same group element. Thféhl(g) = FU?,(9) with F € F(O)!
unitary. An analogous statement holds for the right-handed disorder operators.

Proof. Considett’ = Ufl(g) ULE(g). By construction” € F(W)t. Onthe other hand
AdF | F(WEy) = id holds ad/{,(g) andU ,(g) implement the same automorphism

of F(WE,). By (twisted) wedge duality we havé € F(Wg)! and (twisted) duality
for double cones implieg' € F(O). O
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Remarks.1. This result shows that disorder operators are unique up to unitary ele-
ments of F(O)?, the twisted algebra of the interpolation region. The obvious fact that
UP(g) UP(h) andU(g) UP (k) U(g)* are disorder operators for the group elemeits
andghg~1, respectively, implies that a family of disorder operators constitutes a pro-
jective representation @¥ with the cocycle taking values & (O).

2. Later on we will consider only bosonic disorder operators, which leads to the stronger
resultt’ € F(O).

For the purposes of the present investigation the mere existence of disorder operators
is not enough, for we need them to obey certain further restrictions. Our first aim will
be to obtain such operators by a construction which is model independent to the largest
possible extent, making use only of properties valid in any reasonable model. To this
effect we reconsider an idea due to Doplicher [26] and developed furtherin, e.g., [27, 14].
It consists of using the split property [12] to obtain, for ang G and any pair of double
conesA = (01, 0,) such thatD; C Oy, an operatot/, (g) € F(O5) such that

Un(9)FUA(9)" =U(9)FU(9)" VF € F(Oy). (2.7)
In order to be able to do the same thing with wedges we introduce our last postulate.

Definition 2.4. An inclusionA C B of von Neumann algebras is split [27], if there
exists a type-I factoiV such thatd C N C B. Anet of field algebras satisfies the “split
property for wedges” if the inclusion&(WS,) ¢ F(WP) and F(WSR) € F(WE)

are split for every double con®. (In our case, where wedge duality holds, the split
property for one of the above inclusions entails the same for the other as is seen by
passing to commutants and twisting.)

This property is discussed at some length in [57] and shown to be fulfilled for the free
massive scalar and Dirac fields. In quantum field theories where there are lots of cyclic
and separating vectors for the local algebras by the Reeh-Schlieder theorem, the split
property is equivalent [27] to the existence, for any double €@nef a unitary operator

Y 1 'H — H ® H implementing an isomorphism betwe&i{W ;) v F(WSg)t and

the tensor producE(W S, ) @ F(WSR)! (in the sense of von Neumann algebras)

YOREYO* =R @F, Ve FWE), e F(WSR). (2.8)

That one of the algebrag(W ;) and]-‘(WgR), which are associated with spacelike
separated regions, has to be twisted in order for an isomorphism as above to exist is clear
as in general these algebras do not commute while the factors of a tensor product do
commute. Analogously, there is a spatialisomorphism bet\&*‘ééﬁfL)tv]—'(WSR) and
FWE) @ F(WSy) implemented by ©. We will stick to the use o¥ © throughout.

In order not to obscure the basic simplicity of the argument we assume for a moment that
the theoryF is purely bosonic, i.e. fulfills locality and duality without twisting. Using

the isomorphism implemented B° we then have the following correspondences:

FWo)2FWo)® 1,

FWE) 1 @FWE),
FWP) = BH) © FWP),
FWE) ¥ FWR) © B(H),

(2.9)

whereas Haag duality for double cones yields

F(O)=FWPYNFWE) = FWE) @ F(WP). (2.10)
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(Taking the intersection separately for both factors of the tensor product is valid in this
situation as can easily be proved using the lattice property of von Neumann algebras
MAN = (M’ v N') and the commutation theorem for tensor produdts @ N)' =
M’ @ N'.) We thus see that in conjunction with the well known fact [29] that the
algebras associated with wedge regions are factors of ijpethe split property for
wedges implies that the algebras of double cones areltyhefactors, too.

The following property of the mags® will be pivotal for the considerations below.
Given any unitanlU implementing a local symmetry (i.&l.F(O)U* = F(O) YO) and
leaving invariant the vacuuni/(2 = Q) the following identity holds:

YOU=UoU)Y°. (2.11)

For the construction o © as well as for the proof of (2.11) we refer to [27, 14], the
difference that those authors work with double cones being unimportant.

2.2. Construction of disorder operatordhe operatord”© will now be used to obtain
disorder operators. To this purpose we give the following

Definition 2.5. For any double con® € K and anyg € G we set

Up(g) =Y (U(9) @ )Y?,

UQ(g) = YO (1o U(g)) Y©. (212)
As an immediate consequence of this definition we have the following
Proposition 2.6. The disorder operators defined above satisfy
[UP(9). UR(W)] =0, (2.13)
UL (9) UR (9) = U(g), (2.14)
U@ UL (M) Ug)" = UP) z(ghg™). (2.15)

Proof. The first statement is trivial and the second follows from (2.11). The covariance
property (2.15) is another consequence of (2.11). O

Remark.We have thus obtained some kind of factorization of the global action of the
group GG into two commutingtrue (i.e. no cocycles) representations @fsuch that

the original action is recovered as the diagonal. Furthermore, these operators transform
covariantly under global gauge transformations. In particular they are bosonic since
k € Z(G).

It remains to be shown that triéf/R indeed fulfill the requirements of Definition
2.2. The second requirement follows from Definition 2.5, which with (2.9) obviously
yields

UL (9) € FWE), U (9) € FIWE). (2.16)

The first one is seen by the following computation valid foe F(WE,):

UL (9FUL*(9) * (U(g) @ D(F ® 1)(U(g) @ 1)* (2.17)
=(U@FU(@9) ®1) = U(@FU(9)",

appealing to the isomorphisii implemented by ©.
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Returning now to the more general case including fermions we have to consider
the apparent problem that there are now two ways to define the opet#tged and
U$(g), depending upon whether we chodsg or Y©. (By contrast, the tensor product
factorization (2.10) of the local algebras is of a purely technical nature, rendering it
irrelevant whether we usg® or Y©.) This ambiguity is resolved by remarking that
the element € G giving rise toV by V' = U (k) is central, implying that the operators
U(g), g € G, are bosonic (even). For even operatbyss F(WS,), F> € F(WSy) we
haveF, = F{, F, = F} and thus

YO REYO* =Y REYO = F o B, (2.18)

so that the disorder variables are uniquely defined even operators.
The first two equations of (2.9) are replaced by

FWE) *FWE) e 1,

FWON = 1 @ FWO. (2.19)
By taking commutants we obtain
O\ o~ O

FVE)Y = FWR) © B(H),

and an application of the twist operation to the second equations of (2.19) and (2.20)
yields

FWE Y 1 @ FWEe)++ Vv @ FWER) -,

FWO) ¥ FWQ ® BH). +FWS)V e BH) . (2.21)

The identityF(0) = F(WE)AF (W), whichis valid in the fermionic case, too, finally
leads to
FO) ¥ FWE) @ FIW)s + FWE)V @ F(WL)-. (2.22)
While this is not as nice as (2.10) it is still sufficient for the considerations in the sequel.
ThatF(O), O € K is a factor is, however, less obvious than in the pure Bose case and
will be proved only in Subsect. 3.3.
The following easy result will be of considerable importance later on.

Lemma 2.7. The disorder operator§ © () andU g (¢) associated with the double cone
O implement automorphisms of the local algel#f&0).

Proof. In the pure Bose case this is obvious from Definition 2.5, (2.10) and the fact that
Ad U (g) acts as an automorphism on all wedge algebras. In the Bose-Fermi case (2.22)
the same is true sindé(g) commutes with/ = U (k). |

Definition 2.8. af = AdU{(g), g€ G,0 e K.

We close this section with one remark. We have seen that the split property for
wedges implies the existence of disorder operators which constitute true representations
of the symmetry group and which transform covariantly under the global symmetry.
Conversely, one can show that the existence of disorder operators, possibly with group
cocycle, in conjunction with the split property for wedges for the fixpointéénplies
the split property for the field nef. This in turn allows to remove the cocyle using the
above construction. We refrain from giving the argument which is similar to those in
[26, pp. 79, 85].
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3. Field Extensions and Haag Duality

3.1. The extended field natlaving defined the disorder variables we now take the next
step, which at first sight may seem unmotivated. Its relevance will become clear in the
sequel. We define a new net of algebés— F(©) by adding the disorder variables
associated with the double co@kto the fields localized in this region.

Definition 3.1.
F(O) = F(O)vUSG)". (3.1)

Remarks.1. In accordance with the common terminology in statistical mechanics and
conformal field theory, the operators which are composed of fields (order variables) and
disorder variables might be call@drafermion operators

2. We could as well have chosen the disorder operators acting on the right-hand side.
As there is a complete symmetry between left and right there would be no fundamental
difference. We will therefore stick to the above choice throughout this paper. Including
both the left and right-handed disorder operators would, however, have the unpleasant
consequence that there would be translation invariant operators (namély¢ys in

the local algebras.

3. The local algebr& (O) of the above definition resembles the crossed produg(6)

by the automorphism groug’, the interesting aspect being that the automorphism group
depends on the regiafl. These two constructions differ, however, with respect to the
Hilbert space on which they are defined. Whereas the crossed ptBfl¥ o G lives

on the Hilbert spacé&?(G, H), our algebra§3‘(0) are defined on the original spaté

For later purposes it will be necessary to know whether these algebras are isomorphic,
but we prefer first to discuss those aspects which are independent of this question.

The first thing to check is, of course, that Definition 3.1 specifies a net of von
Neumann algebras.

Proposition 3.2. The assignmer® — F(0) satisfies isotony.

Proof. Let©® c O be an inclusion of double cones. Obviously we h&(©) c F(O).

In order to provelU/?(g) € F(O) we observe tha/© (¢) is a disorder operator for the
larger region?, too. Thus, by Lemma 2.3 we hal&’(g) = F U9 (g) with F € F(O).
Now it is clear that/®(g) € F(O). O

Remark.From this we can conclude that the rf@(t(’)) is uniquely defined in the sense
that any family of bosonic disorder operators gives rise to the samg (&t provided

such operators exist at all. For most of the arguments in this paper we will, however,
need the detailed properties proved above which follow from the construction via the
split property.

It is obvious that the nef is nonlocal. While the spacelike commutation relations of
fields and disorder operators are known by construction we will have more to say on
this subject later. On the other hand it should be clear that thefnetsd.A are local
relative to each other. This is simply the fact that the disorder operators commute with
the fixpoints ofc, in both spacelike complements.
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Proposition 3.3. The netf is Poincai covariant with the original representation of
P. In particular o, (U9 (g)) = U9**(g) whereas for the boosts we have

ar(UP (9)) = ULC(h), (3.2)
if U(A)U(g) U(A)* = U(h) .

Proof. The familyY'© : H — H ® H of unitaries provided by the split property fulfills
the identity
YAO* = (U(A,a) @ U(A,a)) YO UA, a)*, (3.3)

as is easily seen to follow from the construction in [27, 14]. This implies
ara(UP(9) = U(A,a) YO (U(g) @ ) YC U(A, a)*

= Y2O* T (U(A,a) U(g) U(A, a)* ® 1) YAOH (3.4)
= UL (h),

whereU(A) U(g) U(A)* = U(h). O
Proposition 3.4. The vacuum vectd® is cyclic and separating fov:'(O).

Proof. Follows from R
F(0) C F(O) c F(WP) (3.5)

sinceQ is cyclic and separating foF(O) and F(W ). O

Proposition 3.5. The wedge algebras for the ngttake the form
FWE)=FWP), FWE)=FWR)VU@G) = AWE).  (3.6)

As a consequenc® is not separating foﬂA-'(Wg)!

Proof. The firstidentity is obvious, while the second follows frafiv $) > URé(g) vO
€ W§ and the factorization property (2.14). The last statement is equivaleniat
being cyclic forA(W ). O

Proposition 3.6. LetF F(O)UP(g). Then the following cluster properties hold.

w— lim_ o (F) = (Q,FQ) - 1, (3.7)
w— lim aa(F) = (R, FQ) - U(g). (3.8)

Proof. The first identity follows fromk' € f-‘(Wf) and the usual cluster property. The
second is seen by writing = F US (9~ ) U(g) and applying the weak convergence of
Ug as above, the translation invariance () and the invariance of the vacuum under
Ul(g). O

3.2. Haag duality. Observing by (2.15) that the adjoint action of the global symmetry
group leaves the ‘localization’ (in the sense of Definition 2.2) of the disorder operators
invariant it is clear that the automorphismg = Ad U(g) extend to local symmetries of

the enlarged nef. We are thus in a position to define yet another net, the fixpoint net
of F.
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Definition 3.7. R R
A(0) = F(O) NU(GY'. (3.9)

Remark.We then have the following square of local inclusions:

A(0) ¢ F(0)
U U (3.10)
A(0) C F(O).

The conditional expectatiom(-) = [ dg a,(-) from F(O) to A(0) clearly restricts
to a conditional expectation frof#(0) to A(0O). In Sect. 4 we will see that there is
also a conditional expectation from F(O) to F(O) which restricts to a conditional

expectation fromA(O) to A(O), provided the groug is finite. Sincey. commutes
with m the square (3.10) then constitutes a commuting square in the sense of Popa.

Proposition 3.8. The net® — A(0) is local.
Proof. LetO < O be two regions spacelike to each otf@heing located to the right of
O.FromA(0) ¢ A(W?) and the relative locality of observables and fields we conclude
thatA(©®) commutes withF(O). On the other hand the operatf§ (g) commute with
A©) ¢ FWP) = FWP) sinceAdUP(g) | F(WP) = o, and.A(O) is pointwise
gauge invariant. [

We have just proved that the nédtconstitutes a local extension of the observable net
A, thereby confirming our initial observation thdtdoes not satisfy Haag duality. The
elements of4 being gauge invariant they commute a fortiori with the central projections

in the group algebra, thereby leaving invariant the sectofg.ilVe will now prove a
nice result which serves as our first justification for Definitions 3.1 and 3.7.

Lemma 3.9.
AOY = FO) VUL (G)' VUL(@)". (3.12)

Proof. We already know that
A > FO) VUG VUR(G)". (3.12)
In order to prove equality we consider the following string of identities, making use of
the spatial isomorphisms due to the split property and omitting the superSooipthe
wedge regions.
A0 = (A(WLL) V A(WgR))

= (FWrL) NU(GY) V (F(Wrr) ANU(GY)Y

¥ ((F(WLL) AU(GY) @ (F(Wrr) AUGY))

= (F(Wgr)' VU(G)) & (F(WL)' VU(G)"),

= (FWr)@ FWr) vV (UG)" @) v (1eUG)")

~ FO) VUG VUL(@R)'. (3.13)
In the third step we have used the identitle@V;  )AU(G) = F(W . )AU(G) ®1land
FWrr)ANU(G) = 1@ F(Wggr) AU(G) which are easily seen to follow from (2.20)

and (2.21), respectively. The fourth step is justified®y) v U(G)" = F(-) v U(G)".
O



150 Michael Muger

Theorem 3.10. In restriction to a simple sectdt/; the netA satisfies Haag duality, i.e.
it coincides with the dual neti? in this representation.

Proof. Let P, be the projection on a simple sector, i.e. fulfilling
U(g)P1L = PLU(9) = x(9) - P, (3.14)

wherey is a character ofi. Making use o2 (G)" v US(G)" = U2 (G)" v U(G)"
and (3.14) we have

P (FO)VUP(G)' VUR(G)") Py =
PL(FO)VUP(G)' v UG)")PL= P, F(O) Py (3.15)

With m(F) = [ dg U(g9)FU(g)* and once again using (3.14) we obtain

P, F(0) Py = Pym(F(O)) Py = P1 A(O) Pi. (3.16)
On the other hand

PLAOYY Py | PPH = (PLAO) Py | PYH)' . (3.17)
The proof is now completed by applying the preceding lemma.(

Remark.The above arguments make it clear that Haag duality cannot hold for the net
A(O) even in simple sectors. This is not necessarily so if the split property for wedges
does not hold. In conformally invariant theories gauge invariant combinations of field
operators in the left and the right spacelike complements of a double(zZonay well

be contained ind(O’) due to spacetime compactification. One would think, however,
that this is impossible in massive theories, even those without the split property.

3.3. Outerness properties and compu}ationéiﬁ(’)). While the above theorem allows

us in principle to construct the dual ndtone would like to know more explicitly how

the elements afl look in terms of the fields itF and the disorder operators. In the case
of an abelian group this is easy to see. As a consequence of the covariance property
(2.15) we then have

U(g) UL g(W) U(9)* = U rlghg™) = UL, g(h), (3.18)

that is the disorder operators are gauge invariant and thus contaiu%(d)bm Itis then
obvious that R
A(0) = A(0) v UP(G)", (G abelian!) (3.19)

as/l((?) is spanned by operators of the fodit/ ¥ (g), F' € F(O) which are invariant
iff F e A(O).

The case of the grou@ being non-abelian is more complicated and we limit our-
selves to finite groups leading already to structures which are quite interesting. In order
to proceed we would like to know that every opera‘fbe ]3(0) has a unique represen-

tation of the form R
F=3"F(gUP(g), Flg) € F(O). (3.20)
geG

While this true for the crossed produbt x G on L?(G, H) (only for finite groups!) it
is not obvious for the algebr&1 v U(G)” on 'H. The latter may be considered as the
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image of the former under a homomorphism which might have a nontrivial kernel. In
this case there would be equations of the type

> F(g)UP(9) =0, (3.21)

geG

where not all'(¢) vanish. Fortunately at least for finite groups (infinite, thus noncompact,
discrete groups are ruled out by the split property) this undesirable phenomenon can
be excluded without imposing further assumptions using the following result due to
Buchholz [16].

Proposition 3.11. The automorphisms, = Ad U(g) actouterly onthe wedge algebras.

Proof. Let W be the standard wedd& = {z € R? | 2! > |20|} and assume there
is a unitaryV, € F(W) such thatddV, | F(W) = «4. DefineV, , = a.(V,) for
all x € W. ObviouslyV, , € F(W,). By the commutativitye, o oy = g 0 iy
of translations and gauge transformations we havd/; ., [ F(W,) = «a,. By the
computation (forr € W)

Vo Vo Vy = ag(Vyz) =agoag(Vy) =azoayVy)

) = - 3.22
=0,V V) = aly) = Vi 8:22)
we obtain
VoVga =VyaVy Yo € W. (3.23)
The von Neumann algebra
V=_{Vy 4z, v €W}’ (3.24)

is mapped into itself by translations, wherexz € W and the vacuum vectae it is
separating fol as we havey c F(W). This allows us to apply the arguments in [29]

to conclude thaV is either trivial (i.e.V = C1) or a factor of type/I1;. The assumed
existence o¥/,, which cannot be proportional to the identity due to the postulatg id,
excludes the first alternative whereas the second is incompatible with (3.23) according
to whichV, is central. Contradiction! [

Remark. This result may be interpreted as a manifestation of an ultraviolet problem.
The automorphisnay, being inner on a wedg#’, wedge duality would imply it to

be inner on the complementary wedgé€, too, giving rise to a factorizatiot/(g) =
Vi(9) Vr(g), Vi(g9) € F(W), Vr(g) € F(W'). This would be incompatible with the
distributional character of the local current from whicky) derives.

We cite the following well known result on automorphism groups of factors.

Proposition 3.12. Let M be a factor andy an outer action of the finite groud. Then
the inclusionsM® ¢ M, ©(M) C M x G are irreducible, i.,e M x G N w(M) =
MNAME =CL In particular M x G and M are factors. If the actiom is unitarily
implementedy, = AdU(g) thenM x G and M Vv U(G)" are isomorphic.

Proof. The irreducibility statementd1 x G N w(M) = M N ME" = C1 are stan-

dard consequences of the relative commutant theorent 23 for crossed products.
Remarking that finite groups are discrete and compact the proof is completed by an
application of [48, Corr. 2.3] which states that x G and M Vv U(G)” are isomorphic

if the former algebra is factorial ar@ is compact. [
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We are now in a position to prove several important corollaries to Prop. 3.11.

Corollary 3.13. The algebrasF(0), O € K are factors also in the Bose-Fermi case.

Proof. SinceAd V acts outerly onthe factdf(W§) by Prop. 3.11)M; = F(WS)V{V'}
is afactor and there is an automorphisf 1, leavingF (W S) pointwise invariant such
that3(V) = —V. The automorphism @« of My @ F(WP) clearly hay™© F(O) Y ©*
asfixpointalgebra, cf. (2.22). Sinag is outer the same holds [65, Prop. 17.6]6av vy, .
Thus the fixpoint algebra is factorial by another application of Prop. 3.12.C0

Corollary 3.14. LetO € K. The automorphisms, = AdU(g) anda$ = AdUP (9)
act outerly on the algebr& (0).

Proof. The pure Bose case is easy(O), o/g-" and o, are unitarily equivalent to
FWE) @ FWP), a4 ®id, anda, ® a4, respectively. Sincey, = AdU(g) is
outer onF(W,?) the same holds by [65, Prop. 17.6] for the automorphisgs <d and
ay ® a4 of the above tensor product.

Turning to the Bose-Fermi case &, € F(O) be an implementer af, oraf and
defineX, = Y© X, Y°*. Then (®V)X,(1® V) also implements, ©id or a, ® avy,
respectively, sincé is central.F(O) being a factor this impliesl(® V)Xg(l ®V)=
cg X, with 2 = +1due tok? = e. X, is thus contained either iIF(WQ) © F(WP).
orin F(WS)V @ F(WP)_. In the first case the restriction af, ® id or o, ® , t0
FWE) @ F(WP). isinner which can not be true by the same argument as for the Bose
case. (Observe tha (W), is factorial.) On the other hand, n¥, € F(WS)V ®
F(WP)_ can implementy, ® id or ay @ c, since both automorphisms are trivial on
the subalgebra @ F(W) N U(G) which requiresX, € B(H) @ F(WP)¢". This,
however, isimpossibleE(WO) N FWP)¢' = [FWO)NnFWE)E' - =[C1]_ =0,
where we have used the irreducibility 5{IV )¢ ¢ F(WP). O

Corollary 3.15. Letthe symmetry grou@ be finite. Then the enlarged algebir%a((’)) =
F(O) Vv UP(G)" is isomorphic to the crossed produg(0) x,o G and the inclusions

A(0) C F(O), F(O) C F(O) are irreducible.
Proof. Obvious from Prop. 3.12 and Cors. 3.13, 3.14. [

Remark.If G is a compact continuous group, outerness of the action does not allow us
to draw these conclusions. In this case an additional postulate is needed. It would be
sufficient to assume irreducibility of the inclusiof(W) c F(W), for, as shown by
Longo, this property in conjunction with proper infinitenessi¢f?’) implies dominance

of the action and factoriality of the crossed product.

We are now able to give an explicit description of the dualaet

Theorem 3.16. Every operatord € .A(®) can be uniquely written in the form

A= A9 UL (9), (3.25)

geG
where thed(g) € F(O) satisfy
Alkgk™) = ai(A(9)) Vg.k € G. (3.26)
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Conversely, every choice dfg) complying with this constraint gives rise to an element
of A(©). An analogous representation for the algebr@(sWﬁ,?) is obtained by replacing

UP (9) by U(g)-

Remark. Condition (3.26) impliesi(g) € F(O)NU(N,)', whereN, ={h € G| gh =
hg} is the normalizer of in G.

Proof. By Prop. 3.11 anyfl € fl((’)) can be represented uniquely according to (3.25).
Usingay(4) = 3=, ar(A(9)) UP (kgk™) = 32, an(A(k~1gk)) UL (9), Eq. (3.26) fol-

lows by comparing coefficients. It is obvious that the arguments can be reversed. The
statementonthe Wedge aIgebﬂ‘e(W,?) follows from the factthaF(Wo) isthe crossed
product of 7(W ) by the global automorphism group, cf. Prop. 3.5. O

3.4. The split propertyThe prominent role played by the split property in our investiga-
tions so far gives rise to the question whether it extends to the enlargeﬁ aatsF. As

to the net itis clear that a twist operation is needed in order to achieve commutativity
of the algebras of two spacelike separated regionsChet O, be double cones. Then
one hasF(0,)T c F(O,), where

T
(Z F(g) Uf(Q)) =Y F@'UP(9)Ulg™) =D Fl9)'URg)", (327

and the’ on F(g) denotes the Bose-Fermi twist of the introduction. (By the crossed
product nature of the algebrdg ) it is clear that this map is well defined and invert-
ible.) That commutativity holds as claimed follows easily frét©;) C ]-"(Wfl) and
F(O)T ¢ ]—'(Wgz)t. It is interesting to observe that the twist has to be applied to the
algebralocated to the right for this construction to work. This twist operation lacks, how-
ever, several indispensable features. Firstly, there is no unitary opSratmiementing
the twist as in the Bose-Fermi case. The second, more important objection refers to the
fact that the map (3.27) becomes non-invertible when extended to right-handed wedge
regions, for the operatofg$ (¢) are contained iFF(WS).

Concerning the nefl which, in contrast, is local }here is no conceptual obstruction to
proving the split property. We start by observing tigtv o, ) = A(WLL) Furthermore,
in restriction to a simple sect@t; wedge duality (Prop. 2.1) |mpI|eA(WRR) [ Hy =
A(WRR) ‘H1. As the split property for the fields carries over [26] to the observables
in the vacuum sector there is nothing to do if we restrict ourselves to the latter. We
intend to prove now that the net fulfills the split property on the big Hilbert space
‘H. To this purpose we draw upon the pioneering work [26] where it was shown that
the split property (for double cones) of a field net with group symmetry and twisted
locality follows from the corresponding property of the fixpoint net provided the group
G is finite abelian. (The case of general groups constitutes an open problem, but given
nuclearity for the observables and some restriction on the masses in the charged sectors
nuclearity and thus the split property for the fields can be proved.)

Proposition 3.17. The net® — A(O) satisfies the split property for wedge regions,
provided the grou~ is finite.

Proof. The split property for wedges is equivalent [11] to the existence, for every double
cone®, of a product state® satisfyingp®(AB) = ¢©(A)-¢°(B)VA € AWE,), B €
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fl(WgR). For the rest of the proof we fix one double caf@nd omit itin the formulae.
We have already remarked that for the peproduct stateg, are known to exist. In
order to construct a product state fdnwe suppose, is a conditional expectation from
AWLL) V A(WgRr) to AW ) vV A(WgRr) such thaty.(A(Wgr)) = A(Wgg). Then
Ye(AB) = 7.(A4) 7.(B), whereA, B are as above, implying that= ¢go~. is a product
state. It remains to find the conditional expectationTo make plain the basic idea we
consider abelian groups first. In this casey. is given by

WA= 1 3 e (3.28)

xe@

wherevy, € F(O) is a unitary field operator transforming accordingdg(y,) =
x(9) - ¥, under the groug. This map has all the desired properties. The pointwise
invariance otfl(WLL) follows from the fact that this algebra commutes with the unitaries
1. On the other hand

VU9 Uy = X(9) - U(g), O c Wiy (3.29)

in conjunction with the identityzxeé x(9) = |G|d4. (valid also for non-abelian

groups) implies that the operatot&’(g) € A(WRR), g # e are annihilated byy,.
Finally, the existence of, € F(O) for all x (i.e. the dominance of the group action
«a on F(0)) is well known to follow from the outerness of the group actienThe
generalization to non-abelian groups is straightforward. The unitérjemre replaced
by multiplets,. ; of isometries for all irreducible representatiansf GG. They fulffill
the following relations of orthogonality and completeness:

Vi ¥rg = 051, (3.30)
dy
> it =1 (3.31)
=1
and transform according to
ag(¥ri) =Y Dy i(9) i (3.32)

il

under the group. That the conditional expectatjpigiven by

d.
1A= 15 30D v, (3.33)

reG =1
does the job follows from

dr

N wr UL(@) v = tr D™(9) - U2 (9) = X (9) - U (9)- (3.34)
=1

Again the existence of such multiplets is guaranteed by our assumption§l]
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Remark. Tensor multiplets satisfying (3.30, 3.31) were first considered in [25] where
the relation between the charged fields in a net of field algebras and the inequivalent
representations of the observables was studied in the framework of [21]. Multiplets of
this type will play a role in our subsequent investigations, too.

3.5. Irreducibility of. A(©) ¢ F(O). The inclusions4(©) c F(O) c F(O) are of the
form
N=PEcPcPxL=M, (3.35)

where K and L are finite subgroups of AR, as studied in [8] (albeit for typél;
factors). TheréPX C P x L was shown to be irreducible ifk N L = {e} in OutP

and to be of finite depth if and only if the subgro@pof Out’? generated by and

L is finite. Furthermore, the inclusion has depth two (N&.A M, is a factor where

N cMc My Cc My, C ---is the Jones tower corresponding to the subfactor
N C M) in the special case whef) = K - L (i.e. everyq € @Q can be written as
q=kl, ke K,l€L).

In our situation, wherd{ = Diag(G x G) andL = G x 1, all these conditions are
fulfilled, as we have) = G x G andg x h = (h x h) - (h~1g x €). The interest of this
observation for our purposes derives from the following result, discovered by Ocnheanu
and proved, e.g., in [69, 55]. It states that an irreducible inclugior M arises via
N =MHT ={x € M| ~,(x) =e(z)l Va € H} from the action of a Hopf algebra
H on M iff the inclusion has depth two. In the next section this Hopf algebra will be
identified and related to our quantum field theoretic setup.

For the irreducibility of.A(0) in F(O) we now give a proof independent of any
sophisticated inclusion theoretic machinery.

Proposition 3.18. For any O € K we have
F(O) A AO) =C1. (3.36)

Proof. All unitary equivalences in this proof are implementediby. With the abbre-
viations My = F(WE)! and M, = F(WP) we haveM) v M, = Mj ® M). By
(2.10) if F is bosonic or (2.22) in the Bose-Fermi case we have

FO)Z FW) VUG @ FWE) = M1V U(G)" @ My, (3.37)

where we have usett® v U(G)" = MV U(G)" (which is true for every von Neumann
algebraM). Furthermore,

AO) = F(O) VU(G)" = (FWEL) vV FWER)' v U(G)" (3.38)
= FWEL) Vv FWER) VUGY' = FIWEL) v FWER)' v UG
=MV MVU(G)" = (M@ Ma) V{U(9) @ U(g), g € G}
The relative commutarf(©) A A(O)' is thus equivalent to
M1V U(G)" @ M2) N[(My®@ M3) vV {U(9) ® U(g), g € G}']. (3.39)

The obvious inclusionft; @ M5) Vv {U(g) @ U(g), g € G}’ C B(H) @ M)V U(G)”
in conjunction with the irreducibility propertyt, A (M5 Vv U(G)”) = C1 (Cor. 3.15)
yields

(M@ M) V{U(@G) @U(g), g€ GY'TABMH) @ M) C B(H)®1  (3.40)
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Now let X be an element of the algebra given by Eg. (3.39). By the same arguments as
used earlier, every operatdf € (M} ® M5) Vv {U(g9) ® U(g), g € G}" has a unique
representation of the fornX = >° F, (U(9) ® U(g)), whereF, € M} ® M5. The
conditionX € B(H) ® 1impliesF, = 0 for all g 7 e and therebyX € M] ® 1. We

thus haveX € (M} A (M1 Vv U(G)")) ® 1 and, once again using the irreducibility of

the group inclusionsX « 1 ® 1. O

4. Quantum Double Symmetry

4.1. Abelian groupsAs we have shown above the alget)fé(@) may be considered as
crossed products of (O) with the actions of the respective automorphism grauwfls

In the case of abelian (locally compact) groups there is a canonical action [70] of the
dual (character-) grouy on M x G given by

ay(m(x)) = _7(x) A
&X(Ug) - @ Ug s X S G. (41)

Making use inOl(g) U%(g)* € F, YO, one can consistently define an actiortbbn

the net® — F (O), respecting the local structure and thus extending to the quasilocal
algebraj—' The action of; commutes with the original action ¢f as extended toF,
implying that the locally compact grou@ x Gisa group of local symmetries of the
extended theory) — F (0). The square structure (3.10) can now easily be interpreted
in terms of the larger symmetry:

A=FC, F=FC¢ A=FxC (4.2)

The symmetry between the subgroﬂband@ of G x G is, however, not perfect, as only
the automorphisma,, g € G are unitarily implemented on the Hilbert spaide That
there can be no unitary implementé(y) for &, x € G leaving invariant the vacuum
Q is shown by the following computation which would be valid for Al A(O):

(2, AUL (9)9) = (2, U() AU (9) U(\)* Q) (4.3)
= (Q, A&, (UT (9)R) = x(9) - (2. AUE (9)2).

This can only be true if(¢g) = 1 or (<, AUf(g)SZ> 0VA € A(O). The latter, however,

can be ruled out, since the density4f0)$2 in Ho would imply U (g)Q2 L Howhichis
impossible 2 being unitary and gauge invariant. This argument shows that the vacuum
statew = (€2,-Q) is not invariant under the automorphisméy), x € G, in other
words, the symmetry undéf is spontaneously broken.

The preceding argument is just a special case of the much more general analysis in
[61], where non-abelian groups were considered, too. There, to be sure, the field net acted
upon by the group was supposed to fulfill Bose-Fermi commutation relations, whereas
in our case the field net is nonlocal. Furthermore, whereas thé (@), the point
of departure for our analysis, fulfills (twisted) duality, the extendedﬁl(e:t)) enjoys
no obvious duality properties. Nevertheless the analogy to [61] goes beyond the above
argument. Indeed, as shown by Roberts, spontaneous breakdown of group symmetries is
accompanied by a violation of Haag duality for the observables, restricted to the vacuum
sectorHy. Defining the net3(0) = F(0)%°, the fixpoint net under the action of the
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unbroken partio = {g € G |wp o oy = wo} Of the symmetry group, a combination of
the arguments in [21] and [61] leads to the conclusion that (in the vacuum $égjtor
B(O) is just the dual ned?(0) which verifies Haag duality. Our analysis in Sect. 2,
leading to the identification of the dual netda$ = A = ¢, is obviously in accord with
the general theory as we have shown above@histthe unbroken part, corresponding
to Gy, of the full symmetry grougs x G.

In the case of spontaneously broken group symmetries it is known that, irrespective
of the nonexistence of global unitary implementers leaving invariant the vacuum, one can
find local implementers for the whole symmetry group. This means that for each double
coneQ there exists a unitary representatiGn> g — Vo(g) satisfyingAd Vo(g) |
F(O) = a4, the important point being the dependence on the re@lofDue to the
large commutant ofF(O) such operators are far from unique.) A particularly nice
construction, which applied to an unbroken symmetautomatically yields the global
implementerVo(g) = U(g) YO), was givenin [15]. The construction given there applies
without change to the situation at hand where the action of the dual graupF(O)
is spontaneously broken.

An interesting example is provided by the free massive Dirac field which as already
mentioned fulfills our postulates, including twisted duality and the split property. Its
symmetry group/(1) being compact and abelian, the extendedfemnd the action
of the dual grouf¥. can be constructed as described above. By restriction of thd net
to the vacuum sectd, one obtains a local net fulfilling Haag duality with symmetry
groupZ. Wondering to which quantum field theory this net might correspond, it appears
quite natural to think of the sine-Gordon theory at the free fermion pgint 4r as
discussed, e.g., in [53].

4.2. Non-abelian groupsie refrain from further discussion of the abelian case and turn

to the more interesting case Gfbeing non-abelian and finite. (Infinite compact groups
will be treated in Appendix B.) For non-abelian groups the dual object is not a group but
either some Hopf algebraic structure or a category of representations. Correspondingly,
the action of the dual group in [70] has to be replaced by a coaction of the group or
the action of a group dual in the sense of [62]. For our present purposes these high-
brow approaches will not be necessary. Instead we choose to generalize (4.1) in the
following straightforward way. We observe that the characters of a compact abelian
group constitute an orthogonal basis of the function sg¢€’), whereas in the non-
abelian case they span only the subspace of class functions. This motivates us to define
an action ofC(G), the|G|-dimensional space @il complex valued functions ofi, on

F(O) in the following way:

VF (Z (9) U?(g)) =Y Fl9)=(9) UL (g), =(9) € F(O),F € C(G). (4.4)

geqG geG

Again this action of®(G) is consistent with the local structure of the et F (O)and
extends to the quasilocél*-algebraZ. In general, of course;r is no homomorphism
but only a linear map. (That the mapg are well defined for every’ € C(G) should
be obvious, see also the next section.) Introducing the “deltafunctig(¥s) = ¢, 5, any
function can be writtenaB = 3 p F(g) §,4, andys, will be abbreviated by,. The latter

are projections, i.e. they satiglyg = 74. The images of—‘(O) and under these will be
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designated?-“g((’)) andZ,, respectively. Obviously we ha\lﬁg(O) = F(O)UP(g) and
Fq= ]-'Uf(g) with O € K arbitrary. It should be clear that the decomposition

F=7F (4.5)

geqG
represents a grading ot by the group, i.e.
FyFn C Fon Vg, h € G. (4.6)

(In fact we have equality, but this will play no role in the sequel.) This group grading
which is, of course, not surprising as it holds for every crossed product by a finite group
allows us to state the behavior@f under products:

Y9(AB) =Y yn(A) 1h-14(B). (4.7)
h

The novel aspect, however, is thétis at the same time acted upon by the graup
these two structures being coupled by

ag(Fn) = Fyng- (4.8)
as a consequence of (2.15). This is equivalent to the relation

Qg O Vh = Yghg—1 © Q. (4.9)

In this context it is of interest to remark that several years ago algebraists studied (see
[18] and references given there) analogies between group graded algebras and algebras
acted upon by a finite group. Similar studies have been undertaken in the context of
inclusions of von Neumann algebras. As it turns out the situation at hand, which is
rather more interesting, can be neatly described in terms of the action, as defined, e.g.,
in [68], of a Hopf algebra (in our case finite dimensional)BnThe relations fulfilled

by thea, and~y, in particular (4.9), motivate us to cite the following well known

Definition 4.1. LetC(G) be the algebra of (complex valued) functions on the finite group
G and consider the adjoint action 6f on C(G) according toa, : f +— f o Ad(g™1).

The quantum doubl®(G) is defined as the crossed produe{G) = C(G) x, G of
C(G) by this action. In terms of generatof3(G) is the algebra generated by elements
Uy andVy, g, h € G with the relations

Ug Uh = Ugh, (4.10)
Vo Vi, = 89,1V, (4.12)
Uy Vi = Vgng—1 Uy, (4.12)

and the identificatiot/. = >V, = 1.

Itis easy to see thdd(G) is of the finite dimensionG|2, where as a convenient basis one
may choosé’/(¢q)U(h), g, h € G, multiplying according td/(g1)U (h1) V (92)U (h2) =
5g1,h1gzh;1 -V (g1)U (h1h2). Thisis just a special case of a construction given by Drinfel'd
[30] in greater generality which we do not bother to retain. For the purposes of this work
it suffices to state the following well known propertiesi®fG), referring to [30, 59, 20]
for further discussion, see also Appendix A.

In order to define an action of a Hopf algebra on von Neumann algebras we further
need a star structure on the former which in our case is provided by the following
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Proposition 4.2. With the definitior/; = U,-1, V;* =V}, and the appropriate exten-
sion, D(G) is a *-algebra. D(G) is semisimple.

Proof. Trivial calculation. Finite dimensional *-algebras are automatically semisimple.
O

Before stating how the quantum doubl¥G) acts onF we define precisely the
properties of a Hopf algebra action.

Definition 4.3. A bilinear mapy : H x M — M is an action of the Hopf *-algebra
H on the *-algebraM iff the following hold for any:, b € H, x,y € M:

y1(x) = x, (4.13)
Yo (1) = e(a)l, (4.14)
Yab(T) = Ya © Vo(), (4.15)
Ya(2y) = Yoo (@) Va2 (Y), (4.16)
(Va(2))* = ¥s(a) (7). (4.17)

We have used the standard notatiafz) = a® ® a® for the coproduct where on the
right side there is an implicit summation. The mais assumed to be weakly continuous
with respect toM and continuous with respect to sofig-norm onH (which is unique

in the case of finite dimensionality).

After these lengthy preparations it is clear how to define the actidp(6f) on F.
Theorem 4.4. Definingy,(F), F € F fora € {U(g), V(h)|g,h € G} by
0, (F) = ag(F), (4.18)
i (F) = yn(F), (4.19)

using (4.15) to define on the basisi'(¢)U(h) and extending linearly td>(G) one
obtains an action in the sense of Definition 4.3.

Proof. Equation (4.13) follows fromp) = Zg Vg, (4.14) froml; € F. and (A.4),
whereas (4.15) is an obvious consequence of the definition. Furthermore, (4.16) is a con-
sequence ofy, being a homomorphism, the coproduct property (4.7) and the definition
(A.5). The statement (4.17) on the * operat|0n finally follows framy(i))* = a4(x™)
andS(U,) = U, on the one hand andf(,)* = ]—' -1 andS(V,) = V-1 on the other.

([

Remarks.1. It should be obvious that the action B{G) on F commutes with the
translations and that it commutes with the boosts iff the gréugdoes. Otherwise,
UA)U(g) U(A)* = Uy impliesap o vg =y, 0 ip.

2.Inthe case off being abeliart/,, = dec x(9)Vy, x € G constitutes an alternative
basis for the subalgeb(G) C D(G). The resulting formula&, U, = U,,, A(U,) =

Uy ® Uy andqy, (-) = &, (-) establish the equivalence of the quantum double with the
groupG x G. The abelian case is special insofar/2&>) is spanned by its grouplike
elements, which is not true f@¥ non-abelian.

4.3. Spontaneously broken quantum symmettgving shown in the abelian case that
the symmetry under the dual grotpis spontaneously broken it should not come as a
surprise that the same holds for non-abelian gratipghere, of course, the notion of
unitary implementation has to be generalized.
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Definition 4.5. An action of the Hopf algebraH on the *-algebraM is said to be
implemented by the (homomorphic) representation H — B(H) ifforall a € H,xz €
M

Ula) z = v,0(z) U(a®) (4.20)

or equivalently
va(@) = U(@M) 2 U(S(a@)). (4.21)

The representation is said to be unitary if the ntajs a *-homomorphism.

In complete analogy to the abelian case we see that only a subalgéli@phamely the
group algebr&G isimplemented in the above sense. A similar phenomenon has already
been observedto occurinthe Coulomb gas representation of the minimal models [44] and
in [7] where two dimensional theories without conformal covariance were considered. It
would be interesting to know whether there exists, in some sense, a “quantum version”
of Goldstone’s theorem for spontaneously broken Hopf algebra symmetries.

In an earlier section we defined a twist operation (3.27) which bijectively maps
ﬁ(O) into an algebraﬁ(O)T which commutes with all field operators localized in the
left spacelike complemeerL of 0. With the notation introduced in this chapter this
operation can be written d8' = Zg 74(F)t U(g~1). One might wonder whether there

isa mapT_Which achieves the same thing for the right spacelike complefh&n. If
the quantum symmetry were not spontaneously broken, such a map would be given by

FT =3 a (F) V(g), (4.22)

where thel/(g) are the projectors implementing the d@(|=) of the groupG. Using
the spacelike commutation relations and the prop&ff(g) V' (k) = V(gh) U (g) this
claim is easily verified.

In the discussion of the abelian case we have mentioned that one can construct, e.g.
by the method given in [15], local implementers of the dual gr6ug-or the quantum
doubleD(G) of a non-abelian grou@, however, which is not spanned by its grouplike
elements, another approach is needed.

Proposition 4.6. For every double con® < K there is a family of orthogonal projec-
tions Vo (g) fulfilling

Vo(g) Vo(h) = 6,0 Volg) , >, Volg) = 1, (4.23)
g

Yo 1 F(O) =" Volgh) - Vo(h) (4.24)
h

and transforming correctly under the (unbroken) gratip
U(g) Vo(h) U(9)* = Vo(ghg ™). (4.25)

Proof. In order to obtain operators with these properties we make use of the isomor-
phism, for every wedgéV, betweenF (W) v U(G)” and F(W) %, G. We briefly
recall the construction of the crossed prodidtx G. It is represented on the Hilbert
spaceH = L?(G,H) of square integrable functions fro@ito . The algebra\t acts
according to £(z) f)(g9) = a,-1(x) f(g) whereas the grour is unitarily represented

by Uk)f)(g9) = f(k~1g). With these definitions one can easily verify the equation
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U(k) m(x) U(k)* = woayg(zx). If the groupG is finite one can furthermore define the pro-
jections E(k)f)(g) = é4, f(g) for which one obviously ha& (¢) E(k) = E(gk) U(g).

As already discussed above there is, as a consequence of the outerness of the action of
the group, an isomorphism between the algebvas/ U(G)” and M %, G sending

Zg zqU(g) tO Zg m(xz4) U(g). As both algebras are of type Ill and live on separable
Hilbert spaces this isomorphism is unitarily implemented and can be used to pull back
the projectionsZ(k) to the Hilbert spacét, where we denote them biy(k). (E(e) is

nothing but the Jones projection in the extensida of the inclusionM ¢ MVU(G)".)

Applying these considerations to the algebras of the wetliggsand WS we obtain

the families of projectionEf/R(k), satisfying

U(9) EZ r(k) U(9)* = EE) p(gk), (4.26)
which we use to define

Volg) =Y (O ER (gh) @ EL(h) Y©. (4.27)
h
The properties (4.23) of orthogonality and completeness are obvious whereas covariance
(4.25) follows from (4.26) and/ (k) = YO* U(k) ® U(k) Y © as follows:

AdUk)(Vo(g)) = YO (Y ER (kgh) @ E (kh)) Y©
h
=Y () ER(kgk™h) ® Ef (h) Y° (4.28)
h

= Vo(kgk™Y).

It remains to show the implementation property (4.24). Using the fact that
EP(q) FWE)Ef(h) = {0} if g 7 h and F(O) ¥ F(WR) Vv UG)" ® F(WP)
we obtain

YO Volgh) FVo(h)Y "
h

=Y ER(ghk) ® EP (k) Fy @ F, ER (hl) ® EF (1)
h,k,l

=Y Ef(ghk) ® Ef (k) Fy ® F, Ef (hk) @ Ef (k)
h,k

= _ER(gh) LER(h) ® (O EP (k) F2 EF (k)
h k
=Y ER(gh) LER(h) ® F, (4.29)
h

where we have written (abusively) ® F for Y© FY9*. Since we havé ", E9(gh)
U(k) ES(h) = 0,4, U(k) it is clear that the above map project§0©) onto F(O)U L (g),
thus implementing the restriction of, to 7(0O). O

Remark. It should be remarked that the simpler definitign(g) = Y °*(ES (9)21)Y©,

which also satisfies (4.24), does not lead to a representatiOi{@j as thesd/»’s do
not transform according to the adjoint representation (4.25).
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4.4. Spectral propertiesThe above discussion was to a large extent independent of the
guantum field theoretic application insofar as the action of the quantum double on a
certain class of *-algebras was concerned. As we have seen, any *-algebra which is at
the same time acted upon by a finite gra@kiand graded by supports an action of the
double provided the relation (4.8) holds. The converse is also trug\Lle¢ a *-algebra
on which the double acts. Themt, = ~,(M) induces a&-grading satisfying (4.8). It
may however happen that!, = {0} for g in a normal subgroup. This possibility can
be eliminated by demanding the existence of a unitary representati@imaM : G >
g — U(g) € M,. In the situation at hand this condition is fulfilled by construction.

We now turn to the spectral properties of the action of the double. To this purpose
we introduce the following notion [62], already encountered implicitly in the proof of
Prop. 3.17.

Definition 4.7. Anormclosed linear subspa@eof a von Neumann algebr&d is called
a Hilbert space inM if z*x € Clforall x € 7 andz € M andxa = 0Va € T
impliesz = 0.

The name isjustified &g, y)1 = «*y defines a scalar product#. One can thus choose

a basisy;, i = 1,...,dr satisfying the requirements (3.30, 3.31). The interest of this
definition stems from the following well known lemma, the easy proof of which we
omit.

Lemma 4.8. Let7 be afinite dimensional Hilbert space.st globally invariant under
the actionyg of H on M. A basis of the above type gives rise to a unitary representation
of H according to

d
Ya(¥i) =Y Diri(a) i (4.30)

/=1

Our aim will now be to show that the extended aIgebY%(@), O € K in fact
contain such tensor multiplets for every irreducible representatiab(6f). In order
to do this we make use of the representation theory of the double developed in [20].
(D(G) being semisimple, every finite dimensional representation decomposes into a
direct sum of irreducible ones.) The (equivalence classes of) irreducible representations
are labeled by pairs:(r), wherec € C(G) is a conjugacy class andis an irreducible
representation of the normalizer gro¥p. Here V. is the abstract group corresponding
to the mutually isomorphic normalizer§, for g € ¢, already encountered in the remark
following Thm. 3.16. The representatiaridbeled by ¢, 7) is obtained by choosing an
arbitrarygo € ¢ and inducing up from the representation

#(Vy Un) = by g 1(h) (4.31)

of the subalgebr#,, of D(G) generated bW(g) g € GandU(h),h € Ng. The
representation space af. ) is thusV. = D(G) ®p,, Vx. FOr a more complete
discussion we refer to [20] remarking only that ) (V; Uh) Oifg ¢ c.

Definition 4.9. The actiony of a group or Hopf algebra on a von Neumann algeiira

is dominant iff the algebra of fixed points is properly infinite and the monoidal spectrum
of v is complete, i.e. for every finite dimensional unitary representatiofithe group

or Hopf algebra, respectively, there ishainvariant Hilbert space7 in M such that

~ | 7 is equivalent tar.
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Proposition 4.10. Let M be a von Neumann algebra supporting an action of the quan-
tum doubleD(G). Assume further that there is a unitary representatio@ af M, where
U(g) € M, anday,(U(g)) = U(hgh~1). Then the action oD(G) on M is dominant if

and only if the action off on M = ~.(M) is dominant.

Proof. As a consequence df1¢ = MP(©) the conditions of proper infiniteness of the
fixpoint algebras coincide. The “only if” statement is easily seen by considering the
representations of the double corresponding to the conjugacy«clade}. For these
N. ¥ G holds, implying that the representationd®fG) with ¢ = {e} are in one-to-one
correspondence to the representation& oA multiplet in M transforming according
to ({e}, 7) is nothing but ar-multiplet in M.

The “if” statement requires more work. We have to show that for every pair) (
wherer is an irreducible representation of the normali2gr;, there exists a multiplet
of isometries transforming according 4@. ). To begin with, choosg € c arbitrarily
and find inM a multiplet of isometries);, « = 1,...,d = dim(r) transforming ac-
cording to the representatienunder the action oV, C G. The existence of such a
multiplet follows from the dominance of the group actionoh Now, letz,, .. ., x, be
representatives of the cos€tgN,, wheren = [G : Ny] = |c|. Furthermore, the proper
infiniteness of the fixpoint algebra allows us to choose a faiily. . , V,, of isometries
in M% = MP@ satisfyingV;*V; =6, ;, 3, V;V;* = 1. Defining

Wi =Via.,Ug);), i=1,....n,j=1,....d (4.32)

one verifies that th&;; constitute a complete family of mutually orthogonal isometries
spanning a vectorspace of dimensieh= dim(7..r)). That this space is mapped into
itself by the action of the double follows from the fact that, for everg G, k z; can
uniquely be written as; h, h € N,. Finally, the multiplet transforms according to the
representationc( ) of D(G), which is evident from the definition of the latter in [20,
(2.2.2)]. O

Remark.Since in our field theoretic application the conditions of the proposition are
satisfied thanks to Lemma 3.14 and the discussion in Subsect. 4.2 we can conclude that
F(O), O € K has full D(G)-spectrum.

4.5. Commutation relations and statisticlp to this point our investigations in this
section have focused on the local inclusid(®) c F(O) for any fixed double cone

0. Having clarified the relation between these algebras in terms of the action of the
guantum double we can now complete our discussion of the latter. To this purpose we
recall that the double construction has been introduced in [30] as a means of obtaining
quasitriangular Hopf algebras (quantum groups) in the sense defined there, i.e. Hopf
algebras possessing a “universal R-matrix,” cf. Appendix A. As it turns out the latter
appears very naturally in our approach when considering the spacelike commutation
relations of irreducibleD(G)-multiplets as defined in the preceding subsection.

Proposition 4.11. Assume the n&d — F(O) is bosonic, i.e. fulfills untwisted local-
ity. Let O, < Opand¢},i = 1,...,dyand¢?,j = 1,...,dp be D(G)-tensors in

]:"((’)1), ]:"((92), respectively. They then fulfill C-number commutation relations

Uigs =Y bk (D, @ D3 )(R), (4.33)

il 5’
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whereD?, D? are the matrices of the respective representation® @) and
R=)"V,0U, € D(G)® D(G). (4.34)
geG

Proof. The equatiory V, =1in D(G) implies}_ v, = id. We can thus compute

VIR = @D vE = > ag () (W) (4.35)
geG geG
= Z Z wjz" il’ Dyz"j(Ug) Dz‘lfi(vg)a
gEG i’j’

where the second identity follows from,(y}) € F(O1) U (g) and Ad U (g) |
F(O2) = oy. Therestisclear. O

Remarks.1. Commutation relations of the above general type have apparently first been
considered in [40]. For the special casefifV) order disorder duality they date back

at least to [66].

2. By this result the field extension of Definition 3.1 in conjunction with Thm. 4.4 may
be considered a local version of the construction of the double. (If we had used the
U$ (g) we would have ended up witR~* which would do just as well.)

3. If the netO® — F(O) is fermionic an additional sige- appears on the right-hand
side of (4.33) depending on the Bose/Fermi nature of the fields. Using the bosonization
prescription of the next section this sign can be eliminated.

We now turn to a discussion of the localized endomorphisms of the observable
algebra4 which are implemented by the charged fieldsfiras in [25]. Lety;, i =
1,...,dy, be amultiplet of isometries ift () transforming according to the irreducible
representation of D(G). Then the map

dy
p() =) -y (4.36)
=1

defines a unital *-endomorphism &f. The relative locality of4d and F implies the
restriction ofp to A to be localized inO in the sense that(A4) = A VA € A(O).
Furthermorep mapsA(O,) into itself if O; O O as follows from theD(G)-invariance

of p(z) for € A. (The conventional argument using duality would allow us only to
concludep(A(0,)) C A(0O7).)

Proposition 4.12. In restriction to.4(01), O1 D O the endomorphismis irreducible.

Proof. The proof is omitted as it is identical to the proof of [54, Prop. 6.9], where
compact groups are considered. [

Remarks.1. In application to the netl the endomorphismg are localized only in
wedge regions, i.e. they are of solitonic character.

2. Due to the spontaneous breakdown of the quantum symmetry the endomorphisms
which arise from non-group representationgi{=) should not be considered as true
superselection sectors of the nét| Hop. This would be justified if the symmetry were
unbroken. Nevertheless, one can analyze their statistics, as will be done in the rest of
this subsection.
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Whereas the endomorphismsliefined above need not be invertible one can always
find left inverses [21} such thatp o p = id. For p as defined by (4.36) the left inverse
is easily verified to be given by

d
- 1 - %
¢, = i ;wi 1. (4.37)

In order to study the statistics of endomorphisms one introduces [23, 35] the statistics

operators

e(p1, p2) = Uz p1(U2) € (p1p2, p2p1); (4.38)
wherel,, is a charge transporter intertwinipg and g, the latter being localized in the
left spacelike complement of the localization regiorpefSuch an intertwiner is given
by U, = 32, 02¢2* € FC& = A, wherey; is a multipletinF(O), O < O, transforming
according the same representation/i(i~) as;, such that/, is D(G)-invariant and
thus in A.

Lemma 4.13. Lety)} € ﬁ(Ol),i =1...,d1 and@bjz.,j =1,...,dy be D(G)-multiplets

corresponding to the representations, D? and letp,, p, be the associated endomor-
phisms. Then the statistics operator is given by

e(p1 p2) = Y W2l 2 i (D}, © DE)(R). (4.39)
ijkl
The statistics parameter [21] for the morphigiwhich is implemented by the irreducible
D(G)-tensory;,i = 1,...,dy is
A, =2, (4.40)
dP

with d, = dy, and Dy;(X) = &;; w,, WhereX =3V, U, is a unitary element in the
center of D(G).

Proof. With U, = 3, 2 we have

e(pr p2) = Y WPOZ U DRUE YT (4.41)
ijk
Then (4.39) follows by an application of (4.33) t@ and 7/:;2@ and appealing to the
orthogonality relation/?iz*zﬁjz- = §;;1. With the identificationy! = 12 = v in (4.39),
(4.37) and using once more the orthogonality relation we compute the statistics parameter
as follows:

1 1
1= 0,0 = > vyl (D @ Dij)(R) = i > iy My, (4.42)
ijl 4l
where
My; =) (Di; @ Dyj)(R) = Di; (Y V, Uy). (4.43)
i g

An easy calculation shows thaf = >~ V; U, is a unitary element in the center of
D(G) such that it is represented by a phase times the unit matrix in the irreducible
representatiol: M;; = §,; w, w € St O
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Remarks.1. The statistical dimension of the sectodefined asl, = |\,|~* coincides

with the dimension of the corresponding representation of the quantum double. This was
to be expected and is in accord with the fact [55] that the action of finite dimensional
Hopf algebras cannot give rise to non-integer dimensions.

2. Recalling Lemma 4.8 we see that in restriction to a field operator in a multiplet
transforming according to the irreducible representatidghe action ofyx amounts

to multiplication byw,.. The unitaryX € D(G) may thus be interpreted as the quan-
tum double analogue of the group eleménwhich distinguishes between bosons and
fermions. This is reminiscent of the notion of ribbon elements in the framework of quan-
tum groups, see Appendix A. In fact, the operaXodefined above is just the inverse of
Drinfel'd’s u = Zg V4 U,-1 which itself is a ribbon element due &{u) = .

3. Appealing to the representation theorylofG) as expounded in [20] it is easy to
compute the phase. for the representation= (c, ). It is given by the scalar to which

g € ¢, obviously being contained in the center of the normalixgy is mapped by the
irreducible representatianof N,. As an immediate consequence [L9]is annth root

of unity wheren is the order of;.

We now turn to the calculation of the monodromy operator

em(p1, p2) = €(p1, p2) €(p2, p1), (4.44)

which measures the deviation from permutation group statistics and atalistics
characterqd58]

Yij 1=did; ¢i(ens(pi, p5)"). (4.45)

Inthe latter expressiom;, p; are irreducible morphisms such that the right-hand side is a
C-number since; (e (ps, p;)*) is a selfintertwiner op; and due to the irreducibility of

the latter, cf. Prop. 4.12.) We thus obtain a square matrix of complex numbers indexed by
the superselection sectors, i.e. in our case the irreducible representations of the quantum
doubleD(G).

Proposition 4.14. In terms of the fields the monodromy operator is given by
en(p1, p2) = Y W20 U 7 (D), ® DA)I), (4.46)
ijkl

where
I=Ro(R). (4.47)

The statistics characters are given by
Yy = (tri @ tr;) o (D' ® DI)(I"). (4.48)

Proof. Inserting the statistics operators according to (4.39) and using twice the orthog-
onality relation we obtain

en(p1,p2) = Y VFUTUR O (D ® DR)R) (D} @ Dij)(R).  (4.49)
ijkl
k'l
The numerical factor to the right (including the summations @véy can be simplified
to
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> D3 (VaUp) D2(Uy Vi) = (D @ D2)(I). (4.50)
g,heG

Omitting the primes o', I’ we obtain (4.46). The formula (4.48) follows in analogy to
the computation of, from (4.46), (4.37) and;; o 1. O

Remark.I = R o(R) can be considered as the quantum group version of the monodromy
operator.

In [2] it was shown thafY” is invertible, in factﬁY is unitary. In conjunction
with the known facts concerning the representation theory one concludes [2] that the
guantum doublé)(G) is amodular Hopf algebran the sense of [60]. We are now in
a position to complete our demonstration of the complete parallelism between quantum
group theory and quantum field theory (which we claim only for the quantum double
situation at hand!). What remains to be discussed is the Verlinde algebra structure [71]
behind the fusion of representations of the double and the associated endomorphisms of

F, respectively. The fusion rules are said to be diagonalized by a unitary nsafrix

= E rm m ~Mkm 1

m

(For a comprehensive survey of fusion structures see [41].) One speaks of a Verlinde
algebra if, in additionS is symmetric, there is a diagonal matfixof phases satisfying

TC =CT =T (Cy; = é;5is the charge conjugation matrix) asdand” constitute a
representation o L(2, Z) (in general not ofPSL(2,Z) = SL(2,7)]Z,), i.e.

S52=(ST)®=C. (4.52)

On the one hand the representation categories of modular Hopf algebras are known [60]
to be modular, i.e. to satisfy (4.51) and (4.52), where the phasEsaie given by the
values of the ribbon elemefi in the irreducible representations.

On the other hand this structure has been shown [58] to arise from the superselection
structure ofeveryrational quantum field theory in 1 + 1 dimensions. In this framework
the phases iff’ are given by the phases of the statistics parameters (4.40), whereas the
matrix S arises from the statistics characters

1/3
T= (ﬁ) Diag(w,), S =|o| Y. (4.53)
g

For nondegenerate theories the numbery", w; * @2 satisfiego|? = 3, d?. Using the
result [2]o = |G| this condition is seen to be fulfilled, for the semisimplicity o{G)
givesd_, d? = dim(D(Q)) = |G|%.

We thus observe, for the orbifold theories under study, a perfect parallelism between
the general superselection theory [58] for quantum field theories in low dimensions and
the representation theory of the quantum double [20]. This parallelism extends beyond
the Verlinde structure. One observes, e.g., that Egs. (2.4.2) of [20] and (2.30) of [58], both
stating that the monodromy operator is diagonalized by certain intertwining operators,
are identical although derived in apparently unrelated frameworks.
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5. Bosonization

In this section we will show how the methods expounded in the preceding sections can
be used to obtain an understanding of the Bose/Fermi correspondence in 1+1 dimensions
in the framework of local quantum theory. This is so say, we will show how one can pass
from a fermionic net of algebras with twisted duality to a bosonic net satisfying Haag
duality on the same Hilbert spagand vice versa. Our method amounts to a continuum
version of the Jordan-Wigner transformation and is reminiscent of Araki’'s approach to
the XY-model [4].

Our starting point is as defined in the introduction, i.e. a net of field algebras with
fermionic commutation relations (1.4) and twisted duality (1.11) augmented by the split
property for wedge regions introduced in Sect. 2. As before there exists a selfadjoint
unitary operatorl/ distinguishing between even and odd operators. For the present
investigations, however, the existence of further inner symmetries is ignored as they are
irrelevant for the spacelike commutation relations. Therefore we now repeat the field
extension of Sect. 3 replacing the groGby the subgroufZ, = {e, k}. This amounts
to simply extending the local algebras by the disorder operator associated with the only
nontrivial group element,

F(0) = F(O) v {V°Y, (5.1)

whereV? = UP(k). Again, the assignmert® — F(O) is isotonous, i.e. a net. This

is of course the simplest instance of the situation discussed at the beginning of Sect. 4
where it was explained that there is an action of the dual gféwom the extended net.

We thus have an action @ x Z, on the quasilocal algebrﬁ generated by = AdV

andg,

A(F+GVO) =F, — F_+(Gs — G_)V9, (5.2)
BF+GVO) =F—-GV°, (5.3)

whereF, G € F. We now defineF () as the fixpoint algebra under tH@gonalaction

aofB=fFoa:

F(O)={x e F(O) |z = ao fx)}. (5.4)
Obviously F(O) can be represented as the following sum:
F(O) = F(O): + F(O)_ VO, (5.5)
It is instructive to comparé (©) with the twisted algebra
F(O) = F(O)+ + F(O)_V, (5.6)

the only difference being that in the former expressith appears instead 6f. This
reflects just the difference between Jordan-Wigner and Klein transformations. It is well
known that the nef*? is local relative toF. That the former cannot be local itself,
however, follows clearly from the fact that it is unitarily equivalent to the latter by
F(O)Y = ZF(0)Z*.

Lemma5.1. Let W, and Wx be left and right wedges, respectively. Then the wedge
algebras ofF are given by

F(W1) = F(WL), (5.7)
F(Wg) = F(Wg)". (5.8)
Wedge duality holds for the ngt.
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Proof. V© is contained inF(IW;). forany® c Wp,. Thus, F(W.)_V°® = F(W.)_,

whence the first identity. Similarly we haw&® € F(Wx). for O € W, from which
we obtainF(W.)_ VO = F(W.)_ V. Wedge duality focF now follows immediately
from twisted duality forF. O

Proposition 5.2. The netD — ]t"((’)) is local.

Proof. Let Oy, O, be mutually spacelike double cones. We may assthne O, such
that W and W52 are mutually spacelike. The commutativity 5{0;) and F(O1)
follows from the preceding lemma and twisted locality fBrsinceO; C Wfl and
O, C Wgz. O

Remark.A more intuitive proof goes as follows. Let; € F(O,)_,i = 1,2. Then
commuting F; VO through F» V92 gives exactly two factors of-1. The first arises
from F1F, = —F»F; and the other fronfV 92F; = —F;V 92, wheread/ 1 F, = F,V 1,

Proposition 5.3. The netZ fulfills Haag duality for double cones.

Proof. We have to prover (0) = ]?'(Wg) A F(WP). Using the lemma the right-hand
side is seen to equaF(WP) A F(WS)! which by (2.20) is unitarily equivalent to
FWE) @ F(WP). On the other hand (2.22) leads to

F(O) = F(O): + F(O)_V°
> FWR)s @ FWP)e + FWE)_ V@ F(WP)_
+[FWE)_ @ FWP)s + FWE): VR FWP) 1Vel
= FWE) @ FIWP), (5.9)

which completes the proof. O

Itis obvious that the nef is Poincaé covariant with respect to the original represen-
tation of P. Finally, the group acts on* via the adjoint representatign— Ad U(g).

In particularAd U (k) = Ad 'V acts trivially on the first summand of the decomposition
(5.5) and by multiplication with-1 on the second, i.e. the bosonized theory carries an
action ofZ, in a natural way.

It should be clear that the same construction can be used to obtain a twisted dual
fermionic net from a Haag dual bosonic net wittZa symmetry. It is not entirely
trivial that these operations performed twice lead back to the net one started with, as the
operators/© constructed with the original and the bosonized net might differ. That this
is not the case, however, can be derived from Lemma 5.1, the easy argument is left to
the reader.

6. Conclusions and Outlook

In this final section we summarize our results and relate them to some of those in
the literature. Starting from a local quantum field theory in 1 + 1 dimensions with an
unbrokengroup symmetry we have discussed disorder operators which implement a
global symmetry on some wedge region and commute with the operators localized in
the spacelike complement of a somewhat larger wedge. Whereas disorder operators
are only localized in wedge regions, they can in a natural way be associated to the
bounded region where the interpolation between the global group action and the trivial
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action takes place. Extending the local algehf®) of the original theory by the
disorder operators corresponding to the double @@rgives rise to a nonlocal net

which is uniquely defined. We have shown that for every quantum field theory fulfilling

a sufficiently strong version of the split property disorder operators exist and can be
chosen such as to transform nicely under the global group action. As a consequence,
the extended theory supports an action of the quantum ddv@® which, however,

is spontaneously broken in the sense that only the subal@&Bris implemented by
operators on the Hilbert space. Nevertheless, all other aspects of the quantum symmetry,
like R-matrix commutation relations and the Verlinde algebra, show up and correspond
nicely to the structures expected due to the general analysis [35, 58]. The spontaneous
breakdown of the quantum symmetry is in accord with the findings of [50] where it was
argued (in the case of a cyclic grodjg/V)) that the vacuum expectation values of order

and disorder variables can vanish jointly, as they must in the case of unbroken quantum
symmetry, only if there is no mass gap. Massless theories are, however, ruled out by the
postulate of the split property for wedges upon which our analysis hinges.

The fact that in the situation studied in this paper “one half” of the quantum double
symmetry is spontaneously broken hints at an alternative construction which we describe
briefly. Given a local net of>*-algebras with group symmetry there may of course
be vacuum states which am®t gauge invariant. Let us assume thatis such that
wg = weony 7 we Vg 7 e,1.€.the symmetry is completely broken. One may now consider

the reducible representatian, r, of 7 on the Hilbert spacél = L?(G,H), wherer, is

the GNS-representation corresponding to a soliton state which connects theyyacuaa

wg. The existence of such states follows from the same set of assumptions as was used in
the presentinvestigation [63]. Again, one can construct oper&td(g) enjoying similar
algebraic properties as the disorder operators appearing in this paper. Their interpretation
is different, however, in that they are true soliton operators intertwining the vacuum
representation and the soliton sectors. Extending the local algebras according to (3.1)
gives rise to a field nef which acts irreducibly orH. The details of the construction
outlined above, which is complementary in many ways to the one studied in the present
work, will be given in a forthcoming publication. In the solitonic variant there is also

an action of the quantum douhl&G), where the action of (G) is implemented in the
obvious way, whereas the group symmetry is spontaneously broken.

Although the split property for wedges should be satisfied by reasonable massive
guantum field theories it definitely excludes conformally invariant models, which via
[19, 20] provided part of the motivation for the present investigation. Concerning this
somewhat disturbing point we confine ourselves to the following remarks. It is well
known that quantum field theories in 1 + 1 dimensions, like7i¢), models, possess
a unigue symmetric vacuum for some range of the parameters whereas spontaneous
symmetry breakdown and vacuum degeneracy occur for other choices. The construction
sketched above shows that the algebraic structure of order/disorder duality is the same
in both massive regimes. It is furthermore known that#{e), theory with interaction
\¢* — 6¢? possesses a critical point at the interface between the symmetric and broken
phases. Unfortunately, little is rigorously known about the possible conformal invariance
of the theory at this point. The case of conformal invariance is quite different anyway,
for Haag duality of the nef and of the fixpoint ne#d are compatible in contrast to the
massive case.

In the framework of lattice models things are easier as the local degrees of freedom
are amenable to more direct manipulation. The authors of [67] considered a class of
models where the disorder as well as the order operators were explicitly defined by
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specifying their action on the Hilbert space associated to a finite region. They then
had to assume the existence of a vacuum state which is invariant under the action of
the quantum double. In his approach [4] to the XY-model Araki similarly defines an
automorphism of the algebra of order variables which is localized in a halfspace and
then constructs the crossed product. In the continuum solitonic automorphisms can be
defined for some models [39], but for a model independent analysis there seems to be
no alternative to our abstract approach.

As to the interpretation of the structures found in the present work and outlined
above, we have already remarked that they may be considered as a local version of the
construction of the quantum double. The quantum double was invented by Drinfel'd
as a means to obtain quasitriangular Hopf algebras, and in [59] it was shown to be
“factorizable,” see Appendix A. Furthermore, every finite dimensional factorizable Hopf
algebra can be obtained as a quotient of a quantum double by a two-sided ideal. One
may therefore expect that quantum doubles will play an important role in an extension
of the constructions in [28] to low dimensional theories.

A. Quantum Groups and Quantum Doubles

A Hopf algebra is an algebr&d which at the same time is a coalgebra, i.e. there are
homomorphism&\ : H — H ® H ande : H — C satisfying

(A®id)oA=(id® A)o A, (A.1)

(c@id)oA=(d®e)oA =id, (A.2)

with the usual identificatiod @ C = C ® H = H. Furthermore, there is an antipode,
i.e. an antihomomorphisi§i : H — H for which

mo(S@id)oA=mo(id®S)oA =e()1, (A.3)

wherem : H ® H — H is the multiplication map of the algebra.

Remark.By (A.2) the counit, which is simply a one dimensional representation, is the
“neutral element” with respect to the comultiplication.

For the quantum doubl®(G) defined in Definition 4.1 these maps are given by

e(V(9)U(h)) = dg.c, (A.4)

AWV(QUR) =Y V(RE)U(R) ® V(U (R), (A.5)
k

S(V(g)UR) = V(h~tg U () (A.6)

on the basi{V (g)U(h) g, h € G} and extended t®(G) by linearity.
A Hopf algebraH is quasitriangulat or simply a quantum group, if there is an
elementk € H ® H satisfying

A'()=RA()R™, (A7)

whereA’ = o o A with o(a ® b) =b® a and
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(A ®@id)(R) = Riz Ros, (A.8)
(id® A)(R) = Raz Raz. (A.9)

HereRi = R® 1,Rx3 = 1® RandRi3 = (id ® 0)(R ® 1). As a consequenceé?
satisfies the Yang-Baxter equation

Ry R13 Rp3 = Roz R13 Rao. (A.10)

It is easy to verify that the R-matrix (4.34) satisfies these requirements.

Remark.As shown by Drinfel'd, for quantum groups the square of the antipode is inner,
i.e.5%(a) = uau~t, whereu is given byu = mo (S ®id) o o (R). The operator satisfies

e(u) =1, A() = (6(R)R)™! (u ® u) = (u ® u)(oc(R)R)~*. For quantum doubles of
finite groups the antipode is even involutive?(= id, equivalentlyu is central). This
holds for all finite dimensional Hopf-algebras, whether quantum groups or not.

A quantum group is callefdctorizablg59] if the mapH* — H givenbyH* 3 z —
(x®1d, I') isnondegenerate, whefés as in (4.47). Quantum doubles are automatically
factorizable.

A quasitriangular Hopf algebra possessing a (non-unique) central elersetisfy-
ing the conditions

v> =uS), e(v) =1, S(w) = v, (A.11)
A(@) = (0(R)R) ™ (v ® ), (A.12)
whereu is the operator defined in the above remark, is calleidlzon Hopf algebra

[60].

Finally, modular Hopf algebrasre defined by some restrictions on their representa-
tion structure, the mostimportant of which is the nondegeneracy of the mratiéfined
in (4.48). Obviously, the conditions of factorizability and modularity are strongly related.

B. Generalization to Continuous Groups

In this appendix we will generalize our considerations on quantum double actions to
arbitrary locally compact groups (the quantum field theoretic framework gives rise only
to compact groups.) In Sect. 4 we identified von Neumann algebras acted upon by the
double D(G) of a finite group with von Neumann algebras which are simultaneously
graded by the group and automorphically acted upon by the latter, satisfying in addition
the relation (4.8). The concept of group grading, however, loses its meaning for con-
tinuous groups. This problem is solved by appealing to the well known fact (see e.g.
the introduction to [52]) that an algebr& (von Neumann or unital’*) graded by a

finite groupG is the same as an algebra with a coaction of the group. A coaction is a
homomorphism from A into A ® CG satisfying

(G ®id)od=(id®da) o0, (B.1)

whereds : CG — CG ® CG is the coproduct given by — g ® g. The correspondence
between these notionsiis as follows. Giver-graded algebrd = ¢,A4,, A;A, C Agn

and definingd(z) = z ® g for z € Ay, one obtains a coaction. The converse is also
true. The relatiomv, (Ax) = Agp -1 between the group action and the grading obviously
translates to
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doag = (ag® Adg)od. (B.2)

The concept of coaction extends to continuous groups, where the group alyeébra
is replaced by the von Neumann algeldi@) (here we will treat only quantum double
actions on von Neumann algebras) of the left regular representation which is generated
by the operatorsX(¢)¢)(h) = £(g~1h) on the Hilbert spacé?(G).

In the next step we give a precise definition of the double of a continuous group.
To this purpose we have to put a topology on the crossed product of some algebra
of functions on the group by the adjoint action of the latter. There are many ways of
doing this, as is generally the case with infinite dimensional vector spaces. For compact
Lie groups two different constructions, one of which appears to generalize to arbitrary
compact groups, have been given in [10]. The most important virtue of this work is that
the topological Hopf algebras obtained there are reflexive as topological vector spaces,
making the duality betweeP(G) and D(G)* very explicit. From the technical point
of view, however, the Fchet topologies on which this approach relies are not very
convenient.

In the following we will define the quantum double in the framework of Kac algebras
[32, 33]. The latter has beeninvented as a generalization of locally compact groups which
is closed under duality. As th&* and von Neumann versions of Kac algebras have been
proved [33] equivalent (generalizing the equivalence between locally compact groups
and measurable groups) it is just a matter of convenience which formulation we use. We
therefore consider first the von Neumann version which is technically easier.

We start with the von Neumann algehva = L°°(G) of essentially bounded mea-
surable functions acting on the Hilbert spdde= L?(G) by pointwise multiplication.

With the coproduct’(f)(g,h) = f(gh) and the involutions(f)(g) = f(g~?) itis a
coinvolutive Hopf von Neumann algebra. This med@iris a coassociative isomorphism
of M into M ® M, x is an anti-automorphism (complex linear, antimultiplicative and
k(z*) = k(z)*) andT o k = 0 o (k ® k) o T" holds wheres is the flip. The weightp,
defined onM; by ¢(f) = fG dg f(g), is normal, faithful, semifinite (n.f.s.) and fulfills

1. Forallz € M, one has{® ¢)I'(x) = p(x)1.
2. Forallz,y € n, one has{® ¢)(1 ® y*)I'(z)) = c((* @ )T (¥*)(1 ® z))).
3. kool =c?,0kVtER.

This makes {4, T, x, ) a Kac algebra in the sense of [32], well knownrad(G). The
dual Kac algebra [32] ok A(G) is KS(G) = (L(G), T, &, ¢), the von Neumann algebra
of the left regular representation equipped with the coprofi@gfg)) = A(g) ® A(g),
the coinvolution<{\(g)) = A(¢g~1) and the weight Which we do not bother to state (see
e.g. [47]).

Defining now an action of on M by the automorphisms,(f)(h) = f(g~1hg)
it is trivial to check weak continuity with respect to Furthermorep, is unitarily
implemented by, = X(g)p(g), where p(g)§)(h) = A(g)Y2¢(hg) is the right regular
representation. We can thus consider the crossed product (in the usual von Neumann
algebraic sense [70)) = M x, G on H ® L?(G) (= L¥(G) ® L3(G)), generated by
w(M) andA1(g) = 1y ® A(g), g € G.

Proposition B.1. There are mappings, &, ¢ onM suchthatthe quadruple, I", %, ¢)

is a Kac algebra, which we call the quantum douBlé=). On the subalgebras(/)

and \1(G)’ = 1), ® L(G) the coproduct and the coinvolution act according to
f(?r(x)) = (r @ m)(T(x)), F(r(x)) =n(k(z)), = € M, (B.3)
T(\1(9)) = M) @ Malg), #(Ma(9)) = Mlg™h), g € G. (B.4)
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The Haar weight? is given by the dual weight [47]
p=porto(y ® §)E()), (B.5)
where$ is the dual coaction from/ to M ® L(G) which acts according to

~5(7r(x)) =7(2) ® 1), = € M, (B.6)
0(A1(9)) = M(9) ® Mg), g € G. (B.7)

Proof. The automorphisms, of M are easily shown to satistyo oy = (g ® ag) o T

andr o o, = a o . (The first identity is jusy—1(hk)g = (9~ 1hg)(g1kg), the second

(97 hg)~t = g7 *h1g.) Thusa : G — Aut M constitutes an action @ on the Kac
algebra (1, T, k, ¢) in the sense of [17]. We can now apply [17, Thm. 1] to conclude
that there exist a coproduct, a coinvolution and a Haar weight uch that the axioms

of a Kac algebra are satisfied. Equations (B.3, B.4) are restatements of [17, Props. 3.1,
3.3] whereas the Haar weight is as in [L&fD1.9]. O

Proposition B.2. The dual Kac algebra of the quantum doubleli(\i) = (L(G)®
L>=(G),T, &, & ® ). The coproduct and the counit are

Mz)=R1loool) @M@ 1o l)R", (B.8)
Ma)=V* (R @ k)(x)V, (B.9)

whereR andV are given by

(RE)(g,h) = (un @ 1) (g, h), (B.10)
(VE)9) = ug £(9)- (B.11)

Proof. This is just the specialization of [17, Thm. 2] to the situation at hand. According
to this theorem the von Neumann algebra underlying the dual of the crossed product
Kac algebrak x, G is M ® L>(G), whereM is the von Neumann algebra &f. In

our caseM = L°°(G) such thatV/ = L(G). The formulae fol” and# are stated in [17,

Prop. 4.10]. O

Remark.If the groupG is not finite the quantum double is neither compact nor discrete,
for the weightsp] ¢ = ¢ ® ¢ are both infinite.

We are now in a position to define a coaction of the dual doﬂ/m@) on an algebra
A, providedA supports an actionr and a coaction satisfying (B.2) (withg replaced
by A(g)). In order to remove the apparent asymmetry betweend x G — A and
d: A — A® L(G) we write the former as the homomorphism A — A ® L>(G)
which mapse € A into g — a4(z) € L*=(G, A). We now show that the majpsandd
can be put together to yield a coaction.

Definition B.3. The mapA : A — A ® £(G) @ L=(G) = A ® D(G) is defined by
A=(a®0)o(a®iy)od, (B.12)

whereo : z @ y — y ® z is the flip map fromL>°(G) @ L(G) to L(G) ® L>°(G).
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Theorem B.4. The mapA is a coaction ofﬁ(@) on A, i.e. it satisfies
(A®1p)0A=(a® )0 A. (B.13)

Proof. Appealing to the isomorphisd® L>(G) = L (G, A) we identifyA® L(G)®
L (G)®L(G)QL>®(G)with L*(G x G, AQ L(G)® L(G)). We computef ®2)o A(x)
as follows (abbreviating. () by 2.)

(A ®2) o A())(g,h) = (g @1 ®12) 0 (0 ®1z) 0 (o, ®1z) 0 6(x)
=(ag®1 @) 0 (an @ Ad A, ®1z) 0 (0 @ oz) 0 0(x) (B.14)
= (14 ® Ad N, @ 12) 0 (agn @ 1) 0 §(x).

The second equality follows from the connection (B.2) between the actiand the
coactions whereas the third derives from the defining property (B.1) of the coattion
Now (agr, @ I') 0 6(2) is seen to be nothing butll® o ® 1) (I' @ I')(z) (1® o @ 1)](g, k),
andthe adjointaction a® in (B.8) is seen to have the same effectiaqi 4 ® Ad A\, ®1r)
due top(g) € L(G)'. O

Proposition B.5. The fixpoint algebra under the coactian defined asi® = {z € A |
A(z) =z ® 1p}, is given by
AR = A% A°, (B.15)

whereA®, A? are defined analogously.

Proof. Obvious consequence of Definition B.3. [

The coaction of the dual doubﬁ(@) on A constructed above is exactly the kind
of output the theory of depth-2 inclusions [55, 34] would give when applied to the
inclusion AP(@) ¢ A, which in the quantum field theoretical application corresponds
to A(O) C F(O). Nevertheless it is perhaps not exactly what one might have desired
from a generalization of the results of Sect. 4 to compact groups. At least to a physicist,
some kind of bilinear map : A x D(G) — A, as it was defined above for finitg,
would seem more intuitive. This map should be well defined on the whole algebra
Such a map can be constructed, provided the von Neumann db(B)es replaced by
its C*-variant, which is uniquely defined by the above mentioned results [5, 33]. The
details will be given in a subsequent publication.

The representation theory of the quantum double in the (locally) compact case was
studied in a recent preprint [51] of which | became aware after completion of the present
work. An application of the results expounded there in analogy to Sect. 4 should be
possible but is deferred for reasons of space.

C. Chiral Theories on the Circle

For the foregoing analysis in this chapter the split property for wedges was absolutely
crucial. While this property has been proved only for free massive fields it is expected
to be true for all reasonable theories with a mass gap. For conformally invariant theories
in 1+ 1 dimensions, however, it has no chance to hold. This is a consequence of the fact
that two wedge$V; C W> “touch at infinity.” More precisely, there is an element of the
conformal group transforming/y, 1> into double cones having a corner in common.

For such regions there can be no interpolating tiyffector, see e.g. [11]. On the other



176 Michael Muger

hand, for chiral theories on a circle, into which a 1+1 dimensional conformal theory
should factorize, an appropriate kind of split property makes sense. For a general review
of the framework, including a proof of the split property from the finiteness of the trace
of e~7Lo, we refer to [42]. We restrict ourselves to a concise statement of the axioms.

For every intervall on the circle such that # S%, there is a von Neumann algebra
(1) on the common Hilbert spad¥. The assignment — 21([) fulfills isotony and
locality:

I) C I = A(11) C A(1), (C.1)
LNL=0= A1) C Q[(Ig),. (C.2)

Furthermore, there is a strongly continuous unitary representation oféb@sigroup
SU(1,1) such thaty, (A(1)) = Ad U(g)(A(1)) = A(gI). Finally, the generatak, of the
rotations is supposed to be positive and the existence of a unique invariant dstor
assumed.

Starting from these assumptions one can prove, among other important results, that
the local algebra8l((I) are factors of typd I1; for which the vacuum is cyclic and
separating. Furthermore, Haag duality [42] is fulfilled automatically:

A1) = A(I). (C.3)

Given a chiral theory in its defining (vacuum) representatipmne may consider in-
equivalent representations. An important first result [13] states that all positive energy
representations are locally equivalent to the vacuum representation] (/) = np |

(1) VI. This implies that all superselection sectors are of the DHR type and can be
analyzed accordingly [37, 36]. As a means of studying the superselection theory of a
model it has been proposed [64] to examine the inclusion

A(I1) V A(I3) C (A(L2) V A(L4)) = A(L341) N A(L123), (C.4)
wherely . 4 are quadrants of the circle adg, = 1; U I; U I;;:
I
I 14 (C.5)
I3

At least for strongly additive theories, whe¥i;) Vv 4(lp) = A(l) if ;U I, = I, the
inclusion (C.4)is easily seento beirreducible. In the presence of nontrivial superselection
sectors this inclusion is strict as the intertwiners between endomorphisms localized in
11, I3, respectively, are contained in the larger algebra of (C.4) by Haag duality but not
in the smaller one. Furthermore, for rational theories the inclusion (C.4) is expected to
have finite index.

While we have nothing to add in the way of model independent analysis the tech-
niques developed in the preceding sections can be applied to a large class of interesting
models. These are chiral nets obtained as fixpoints of a larger one under the action of
a group. |. e. we start with a nét— F(I) on the Hilbert spacé{ fulfilling isotony
and locality, the latter possibly twisted. Thedlius groupSU (1, 1) and the groupd
of inner symmetries are unitarily represented with common invariant vertégain,
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the netF is supposed to fulfill the split property (with the obvious modifications due
to the different geometry). The nét— 2A(I) is now defined byA(I) = F(I) A U(G)
and((I) = A(I) | Ho, WwhereH, is the space of G-invariant vectors. The proof of Haag
duality for chiral theories referred to above applies also to th@pmhplying that there
is no analogue of the violation of duality for the fixpoint net as occurs in 1+1 dimensions.
This is easily understood as a consequence of the fact that the spacelike complement of
an interval is again an interval, thus connected. However, our methods can be used to
study the inclusion (C.4).

It is clear that due to the split property

A(I1) V A(L3) = F(I1) @ F(I3) | Ho ® Ho. (C.6)

Our aim will now be to compute((1,) V2((14))’. In analogy to the 1+1 dimensional case
we use the split property to construct unitaiigs. .., Y, : H — H ® H implementing
the following isomorphisms:

Yi FiFl, Y, = Fy @ Flyy VF; € F(L). (C.7)

(3

(One easily checks thaf., = T'Y;, whereT' z ® y = y ® x.) These unitaries can in
turn be used to define local implementers of the gauge transformations

Ui(g) =Y (U(9) @ D Y; (C.8)

with the localizationU;(g) € F(I;+2)’. (The index arithmetic takes place modulo 4.)
These operators satisfy

AdUi(g) I F(I;) = ag, (C.9)
[Ui(g), Uir2(h)] = 0, (C.10)
Ui(g) Uiva(g) = U(9). (C11)
In a manner analogous to the proof of Lemma 3.9 one sh@ws(F(I;) etc.)
(A2 V AL = (Fo VvV Fa) VUG v Usy(G)". (C.12)

At this point we strengthen the property of Haag duality for the/dty requiring
(FLV Fa) = (F2V Fa)', (C.13)

which by the above considerations amountsFidiaving no nontrivial superselection
sectors. This condition is fulfilled, e.g., by the CAR algebra on the circle which also
possesses the split property. The chiral Ising model as discussed in [9] is covered by our
general framework (with the groufy).

While (C.13) is a strong restriction it is the same as in [19] where the larger theory
was supposed to be “holomorphic.” At this place it might be appropriate to emphasize
that the requirement of (twisted) Haag duality (1.11) made above when considering 1+1
dimensional theories by no means excludes nontrivial superselection sectors.

Making use of (C.13) we can now state quite explicitly hdy (/ 24)’ looks. In
analogy to Thm. 3.10 we obtain

R VA =m (.7:1 VvV F3V Uz(G)”) I Ho. (C.14)

Again, using (C.13) one can check that(g) = Ad U,(g) restrict to automorphisms of
F1V Fzrendering the algebra; v F3 Vv Uz(G)” a crossed product. Recalling
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Ay V Az = m(F1) V m(F3) | Ho, (C.15)
we have the following natural sequence of inclusions:
A VA3 Cm(F1V Fs) | Ho C (A2 V As), (C.16)

both of which have inde}G|. It is interesting to remark that the intermediate algebra
m(F1VF3) | Hoequalstn(F2V Fs) | Ho) . For general chiral theories the existence of
such an intermediate subfactor betw@gr 203 and @l vV 2(4)’ is not known. In the case
of G being abelian where thé;(¢) are invariant under global gauge transformations we
obtain a square structure similar to the one encountered in Sect. 3.:

A VA3V Ug(G)H C (912 \Y 9(4)/
U U (C.17)
Aq VA3 C m(]:]_ V .7:3) [ Ho.

It may be instructive to compare the above result with the situation prevailingin2+1
or more dimensions. There, as already mentioned in the introduction, the superselection
theory for localized charges is isomorphic to the representation theory of a (unique)
compact group. Furthermore, there is a net of field algebras acted upon by this group,
such that the observables arise as the fixpoints. The analogue of the inclusion (C.4) then
is

A(O1) V AO2) C O, N Oy, (C.18)

whereO,, O, are spacelike separated double cones. Under natural assumptions it can
be shown that the larger algebra equal€F(O1) v F(O2)) | Ho, implying that the

inclusion (C.18) is of the typeRy ® F)C*C ¢ (F1 @ F»)P134E) just as the first one

in (C.16). That the index of the inclusion (C.4)|5|? instead of(G| as for (C.18) is a
consequence of the low dimensional topology comparable to the phenomena occurring
in 1+ 1 dimensions.

Acknowledgementl am greatly indebted to K.-H. Rehren for his stimulating interest, many helpful discussions
and countless critical readings of the evolving manuscript. Special thanks are due to D. Buchholz for the proof
of Prop. 3.11.

Note added in proofin Appendix C we claimed that the combination of Haag duality
and the split property for wedges is weaker than the requirement of absence of charged
sectors which was made in [19] where conformal orbifold theories were considered. After
submission of this paper we discovered that this claim is wrong! While this does not
affect any result of the present work it shows that the analysis of massive models based
on the former assumptions is even stronger related to the one in [19] than expected.
Furthermore, if the vacuum sector satisfies HD+SPW then Haag duality holds in all
irreducible locally normal representations. In particular, on can replace “simple sector”
by “irreducible.4-stable subspace &f” in Thm. 3.10. The proofs as well as applications
to the theory of quantum solitons will be found in [56].

| thank Prof. B. Schroer for drawing my attention to [72], where massive quantum
field theories in 1 + 1 have been considered. In particular it has been shown that the
statistics of charged fields is arbitrary in the sense that the same particle states can be
created by Bose and by Fermi fields. Even though scattering theory aspects have not
been discussed in the present work, the cited result fits well with that of our Sect. 5.
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