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Abstract: Starting from a local quantum field theory with an unbroken compact sym-
metry groupG in 1+1-dimensional spacetime we construct disorder fields implementing
gauge transformations on the fields (order variables) localized in a wedge region. En-
larging the local algebras by these disorder fields we obtain a nonlocal field theory, the
fixpoint algebras of which under the appropriately extended action of the groupG are
shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional
phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case
of a finite groupG the extended theory is acted upon in a completely canonical way
by the quantum doubleD(G) and satisfies R-matrix commutation relations as well as a
Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent
approach to bosonization. The main technical ingredient is a strengthened version of
the split property which is expected to hold in all reasonable massive theories. In the
appendices (part of) the results are extended to arbitrary locally compact groups and our
methods are adapted to chiral theories on the circle.

1. Introduction

Since the notion of the “quantum double” was coined by Drinfel’d in his famous ICM
lecture [30] there have been several attempts aimed at a clarification of its relevance
to two dimensional quantum field theory. The quantum double appears implicitly in
the work [19] on orbifold constructions in conformal field theory, where conformal
quantum field theories (CQFTs) are considered whose operators are fixpoints under the
of a symmetry group on another CQFT. Whereas the authors emphasize that “the fusion
algebra of the holomorphic G-orbifold theory naturally combines both the representation
and class algebra of the group G” the relevance of the double is fully recognized only in
[20]. There the construction is also generalized by allowing for an arbitrary 3-cocycle in
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H3(G,U (1)) leading only, however, to a quasi quantum group in the sense of [31]. The
quantum double also appears in the context of integrable quantum field theories, e.g.
[7], as well as in certain lattice models (e.g. [67]). Common to these works is the role of
disorder operators or “twist fields” which are “local with respect toA up to the action of
an elementg ∈ G” [19]. Finally, it should be mentioned that the quantum double and its
twisted generalization also play a role in spontaneously broken gauge theories in 2 + 1
dimensions (for a review and further references see [6]).

Regrettably most of these works (with the exception of [67]) are not very precise in
stating the premises and the results in mathematically unambiguous terms. For example
it is usually unclear whether the “twist fields” have to be constructed or are already
present in some sense in the theory one starts with. As a means to improve on this
state of affairs we propose to take seriously the generally accepted conviction that the
physical content of a quantum field theory can be recovered by studying the inequivalent
representations (superselection sectors) of the algebraA of observables (which in the
framework of conformal field theory is known as the chiral algebra). This point of view,
put forward as early as 1964 [45] but unfortunately widely ignored, has proved fruitful
for the model independent study of (not necessarily conformally covariant) quantum
field theories, for reviews see [46, 49]. Using the methods of algebraic quantum field
theory we will exhibit the mechanisms which cause the quantum double to appear in
everyquantum field theory with group symmetry in 1 + 1 dimensions fulfilling (besides
the usual assumptions like locality) only two technical assumptions (Haag duality and
split property, see below) but independent of conformal covariance or exact integrability.

As in [21] we will consider a quantum field theory to be specified by a net of von
Neumann algebras, i.e. a map

O 7→ F(O), (1.1)

which assigns to any bounded region in 1 + 1 dimensional Minkowski space a von Neu-
mann algebra (i.e. an algebra of bounded operators closed under hermitian conjugation
and weak limits) on the common Hilbert spaceH such that isotony holds:

O1 ⊂ O2 ⇒ F (O1) ⊂ F (O2). (1.2)

The quasilocal algebraF defined by the union

F =
⋃

O∈K
F (O)

‖·‖
(1.3)

over the setK of all double cones (diamonds) is assumed to be irreducible, i.e.F ′ = C1.1

The net is supposed to fulfill Bose-Fermi commutation relations, i.e. any local oper-
ator decomposes into a bosonic and a fermionic partF = F+ +F− such that for spacelike
separatedF andG we have

[F+, G+] = [F+, G−] = [F−, G+] = {F−, G−} = 0. (1.4)

The above decomposition is achieved by

F± =
1
2

(F ± α−(F )), (1.5)

1 In generalM′ = {X ∈ B(H)|XY = Y X ∀Y ∈ M} denotes the algebra of all bounded operators
commuting with all operators inM.
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whereα−(F ) = V FV andV = V ∗ = V −1 is the unitary operator which acts trivially
on the space of bosonic vectors and like−1 on the fermionic ones. To formulate this
locality requirement in a way more convenient for later purposes we introduce the twist
operationF t = ZFZ∗, where

Z =
1 + iV
1 + i

, (⇒ Z2 = V ), (1.6)

which leads toZF+Z
∗ = F+, ZF−Z

∗ = iV F− implying [F,Gt] = 0. The (twisted)
locality postulate (1.4) can now be stated simply as

F (O)t ⊂ F (O′)′. (1.7)

Poincaŕe covariance is implemented by assuming the existence of a (strongly con-
tinuous) unitary representation onH of the Poincaŕe groupP such that

α(3,a)(F (O)) = AdU (3, a)(F (O)) = F (3O + a). (1.8)

The spectrum of the generators of the translations (momenta) is required to be contained
in the closed forward lightcone and the existence of a unique vacuum vector� invariant
underP is assumed. Covariance under the conformal group, however, isnot required.

Our last postulate (for the moment) concerns the inner symmetries of the theory.
There shall be a compact groupG, represented in a strongly continuous fashion by unitary
operators onH leaving invariant the vacuum such that the automorphismsαg(F ) =
AdU (g)(F ) of B(H) respect the local structure:

αg(F (O)) = F (O). (1.9)

The action shall be faithful, i.e.αg 6= id ∀g ∈ G. This is no real restriction, for the kernel
of the homomorphismG → Aut(F ) can be divided out. (Compactness ofG need not be
postulated, as it follows [27, Thm. 3.1] from the split property which will be introduced
later.) In particular, there is an elementk ∈ Z(G) of order 2 in the center of the group
G such thatV = U (k). This implies that the observables which are now defined as the
fixpoints under the action ofG

A(O) = F (O)G = F (O) ∩ U (G)′ (1.10)

fulfill locality in the conventional untwisted sense. In 1+1 dimensions the representations
of the Poincaŕe group and of the inner symmetries do not necessarily commute. In
the appendix of [57] it is, however, proved that in theories satisfying the distal split
property the translations commute with the inner symmetries whereas the boosts act
by automorphisms on the groupGmax of all inner symmetries. As we will postulate a
stronger version of the split property in the next section the cited result applies to the
situation at hand. What we still have to assume is that the one parameter group of Lorentz
boosts maps the groupG of inner symmetries, which in general will be a subgroup of
Gmax, into itself and commutes withV = U (k). This assumption is indispensable for
the covariance of the fixpoint netA as well as of another net to be constructed later.

This framework was the starting point for the investigations in [21] where in particular
properties of the observable net (1.10) and its representations on the sectors inH, i.e.
the G-invariant subspaces, were studied, implicitly assuming the spacetime to be of
dimension≥ 2 + 1. While it is impossible to do any justice to the deep analysis which
derives from this early work (e.g. [22–25, 61, 28] and the books [46, 49]) we have
to sketch some of the main ideas in order to prepare the ground for our own work in
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the subsequent sections. One important notion examined in [21] was that ofduality
designating a certain maximality property in the sense that the local algebras cannot be
enlarged (on the same Hilbert space) without violating spacelike commutativity. The
postulate of twisted duality for the fields consists in strengthening the twisted locality
(1.7) to

F (O)t = F (O′)′, (1.11)

which means thatF (O′), the von Neumann algebra generated by allF (O1), O′ ⊃ O1 ∈
K contains all operators commuting withF (O) after twisting. From this it has been
derived [21, Thm. 4.1] that duality holds for the observables when restricted to a simple
sector:

(A(O) � H1)′ = A(O′) � H1. (1.12)

A sectorH1 is called simple if the groupG acts on it via multiplication with a character:

U (g) � H1 = χ(g) · 1 � H1. (1.13)

Clearly the vacuum sector is simple. Furthermore it has been shown [21, Thm. 6.1]
that the irreducible representations of the observables on the charge sectors inH are
strongly locally equivalent in the sense that for any representationπ(A) = A � Hπ and
anyO ∈ K there is a unitary operatorXO : H0 → Hπ such that

XO π0(A) = π(A)XO ∀A ∈ A(O′). (1.14)

The fundamental facts (1.12) and (1.14), which have come to be called Haag duality
and the DHR criterion, respectively, were taken as starting points in [23, 24] where
a more ambitious approach to the theory of superselection sectors was advocated and
developed to a large extent. The basic idea was that the physical content of any quantum
field theory should reside in the observables and their vacuum representation. All other
physically relevant representations as well as unobservable charged fields interpolating
between those and the vacuum sector should be constructed from the observable data.
The vacuum representation and the other representations of interest were postulated to
satisfy

π0(A(O)) = π0(A(O′))′, (1.15)

π � A(O′) ∼= π0 � A(O′) ∀O ∈ K, (1.16)

respectively. It may be considered as one of the triumphs of the algebraic approach that it
has finally been possible to prove [28, and references given there] the existence of an es-
sentially unique net of field algebras with a unique compact groupG of inner symmetries
such that there is an isomorphism between the monoidal (strict, symmetric) category
of the superselection sectors satisfying (1.16) with the product structure established in
[23] and the category of finite dimensional representations ofG. Before turning now to
the two dimensional situation we should remark that the duality property (1.11) upon
which the whole theory hinges has been proved to hold for free massive and massless
fields (scalar [3] and Dirac [21]) in≥ 1 + 1 dimensions (apart from the massless scalar
field in two dimensions) as well as for several interacting theories (P (φ)2, Y2). Further-
more, there is a remarkable link [61] between Haag duality and spontaneous symmetry
breakdown. For the rest of this paragraph we assume that only a subgroupG0 of G is
unbroken, i.e. unitarily implemented onH. Then the netB(O) = F (O)G0 satisfies Haag
duality in restriction toH0 = HG0 whereasA(O) = F (O)G, being a true subnet ofB,
does not. Yet, defining thedual net(onH0) by
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Ad(O) = A(O′)′, (1.17)

the fixpoint netA still satisfiesessential duality:

Ad(O) = Add(O). (1.18)

(Haag duality, by contrast, is simplyA(O) = Ad(O).) Furthermore, one findsAd(O) =
B(O). These matters have been developed further in [28, 15] in the context of recon-
struction of the fields from the observables.

In 1 + 1 dimensions a large part of the analysis sketched above breaks down due to
the following topological peculiarities of 1 + 1 dimensional Minkowski space. Firstly,
there is a Poincaré invariant distinction between left and right, i.e. for a spacelike vector
x the sign ofx1 is invariant under the unit component ofP. This fact accounts for the
existence ofsoliton sectorswhich have been studied rigorously in the frameworks of
constructive and general quantum field theory, see [39] and [37, 38, 63], respectively.
We intend to make use of the latter in a sequel to this work.

In the present paper we focus on the other well known feature of the topology of 1+1
dimensional Minkowski space, viz. the fact that the spacelike complement of a bounded
connected region (in particular, a double cone) consists of two connected components.
The implications of this fact are twofold. On one hand, in the adaption of the DHR
analysis [23, 24] based on (1.15, 1.16) to 1 + 1 dimensions [35, 58, 36] the permutation
groupS∞ governing the statistics is replaced by thebraid groupB∞, as anticipated,
e.g., in [40]. It is still not known by which structure the compact group appearing in the
higher dimensional situation has to be replaced if a completely general solution to this
question exists at all.

Besides the appearance of braid group statistics the disconnectedness ofO′ manifests
itself also if one starts from a field netF with unbroken symmetry groupG. It was
mentioned above that in≥ 2 + 1 dimensions the restriction of the fixpoint netA to the
simple sectors inH satisfies Haag duality provided the field netF fulfills (twisted) Haag
duality. Since questions of Haag duality have been studied only in the framework of the
algebraic approach the third peculiarity of quantum field theories in 1 + 1 dimensions
(besides solitons and braid group statistics/quantum symmetry) is less widely known.
We refer to the fact that the step from (1.11) to (1.15) may fail in 1+1 dimensions. This
means that one cannot conclude from twisted duality of the fields that duality holds for
the observables in simple sectors, which in fact is possible only in conformal theories.
The origin of this phenomenon is easily understood. LetO ∈ K be a double cone. One
can then construct gauge invariant operators inF (O′) which are obviously contained
in A(O)′ but not inA(O′). This is seen remarking that the latter algebra, belonging to
a disconnected region, is defined to be generated by the observable algebras associated
with the left and right spacelike complements ofO, respectively. This algebra does not
contain gauge invariant operators constructed using fields localized in both components.

We now come to the plan of this paper. Our aim will be to explore the relation
between a quantum field theory with symmetry groupG in 1+1 dimensions and the
fixpoint theory. In addition to the general properties of such a theory stated above,
twisted duality (1.11) is assumed to hold for the large theory. As explained above, in
this situation duality of the fixpoint theory fails even in the case of unbroken group
symmetry. Yet there is a local extension which satisfies Haag duality and one would
like to obtain a complete understanding of this dual net. To this end we will need one
additional postulate concerning the causal independence of one-sided infinite regions
(wedges) which are separated from each other by a finite spacelike distance. This property
rules out conformal theories and singles out a (presumably large) class of well-behaved
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massive theories. In Sect. 2 we prove the existence of unitary disorder operators which
implement a global symmetry transformation on one wedge and act trivially on the
spacelike complement of a slightly larger wedge. Using these operators we will in Sect.
3 consider a non-local extension̂F (O) of the field netF (O). The fixpoint netÂ(O)
of the enlarged net̂F (O) under the action ofG is shown to coincide with the dual net
Ad(O) (1.17) in restriction to the simple sectors. In conjunction with several technical
results on actions ofG this leads to an explicit characterization of the dual net. In Sect.
4 we will show that there is an action of the quantum doubleD(G) on the extended net
F̂ and that the spacelike commutation relations are governed by Drinfel’d’sR-matrix.
Since massive free scalar fields satisfy all assumptions we made onF this construction
provides the first mathematically rigorous construction of quantum field theories with
D(G)-symmetry for any finite groupG. The quantum double may be considered a
“hidden symmetry” of the original theory since it is uncovered only upon extending
the latter. TheD(G)-symmetry is spontaneously broken in that only the action of the
subalgebraCG ⊂ D(G) is implemented in the Hilbert spaceH. In analogy to Roberts’
analysis this might be interpreted as the actual reason for the failure of Haag duality for
the fixpoint netA. The aim of the final Sect. 5 is to show that the methods introduced in
the preceding sections are well suited for a discussion of Jordan-Wigner transformations
and bosonization in the framework of algebraic quantum field theory.

Three appendices are devoted in turn to a summary of the needed facts on quantum
groups and quantum doubles, a partial generalization of our results to infinite compact
groups and an indication how an analysis similar to Sects. 2 to 4 can be done for chiral
conformal theories on the circle.

2. Disorder Variables and the Split Property

2.1. Preliminaries.For any double coneO ∈ K we designate the left and right spacelike
complement byWO

LL andWO
RR, respectively. Furthermore we writeWO

L andWO
R for

WO
RR

′
andWO

LL
′
. These regions are wedge shaped, i.e. translates of the standard wedges

WL = {x ∈ R2 | x1 < −|x0|} andWR = {x ∈ R2 | x1 > |x0|}. We will not distinguish
between open and closed regions, for definiteness one may considerO and all W-regions
as open. With these definitions we haveO = WO

L ∩WO
R andO′ = WO

LL ∪WO
RR which

graphically looks as follows:
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(2.1)

Whereas, as we have shown in the introduction, Haag duality for double cones is
violated in the fixpoint theoryA, one obtains the following weaker form of duality.
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Proposition 2.1. The representation of the fixpoint netA fulfills duality for wedges

A(W )′ = A(W ′) (2.2)

and essential duality (1.18) in all simple sectors.

Proof. The spacelike complement of a wedge region is itself a wedge, thus connected,
whereby the proof of [21, Thm. 4.1] applies, yielding the first statement. The second
follows from wedge duality via

Ad(O) = A(O′)′ = (A(WO
LL) ∨ A(WO

RR))′ = A(WO
R ) ∧ A(WO

L ), (2.3)

as locality of the dual net is equivalent to essential duality ofA. �

We will now introduce the central notion for this paper.

Definition 2.2. A family of disorder operators consists, for anyO ∈ K and anyg ∈ G,
of two unitary operatorsUO

L (g) andUO
R (g) verifying

AdUO
L (g) � F (WO

LL) = AdUO
R (g) � F (WO

RR) = αg,

AdUO
L (g) � F (WO

RR) = AdUO
R (g) � F (WO

LL) = id.
(2.4)

In words: the adjoint action ofUO
L/R(g) on fields located in the left and right spacelike

complements ofO, respectively, equals the global group action on one side and is trivial
on the other. As a consequence of (twisted) wedge duality we have at once

UO
L (g) ∈ F (WO

L )t, UO
R (g) ∈ F (WO

R )t. (2.5)

On the other hand it is clear that disorder operators cannot be contained in the local
algebrasF (O),F (O)t nor in the quasilocal algebraF , for in this case locality would
not allow their adjoint action to be as stated on operators located arbitrarily far to the
left or right. Heuristically, assumingU (g) arises from a conserved local current via

U (g) = ei
∫
j0(t=0,x)dx, one may think ofUO

L (g) as given by

UO
L (g) = e

i
∫ x0

−∞ j0(x)dx
, (2.6)

where integration takes place over a spacelike curve from left spacelike infinity to a
point x0 in O. The need for a finitely extended interpolation regionO arises from the
distributional character of the current which necessitates a smooth cutoff. We refrain
from discussing these matters further as they play no role in the sequel. In massive free
field theories disorder operators can be constructed rigorously (e.g. [43, 1]) using the
CCR/CAR structure and the criteria due to Shale.

Lemma 2.3. LetUO
L,1(g), UO

L,2(g) be disorder operators associated with the same dou-
ble cone and the same group element. ThenUO

L,1(g) = F UO
L,2(g) with F ∈ F (O)t

unitary. An analogous statement holds for the right-handed disorder operators.

Proof. ConsiderF = UO
L,1(g)UO∗

L,2(g). By constructionF ∈ F (WO
L )t. On the other hand

AdF � F (WO
LL) = id holds asUO

L,1(g) andUO
L,2(g) implement the same automorphism

of F (WO
LL). By (twisted) wedge duality we haveF ∈ F (WO

R )t and (twisted) duality
for double cones impliesF ∈ F (O)t. �
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Remarks.1. This result shows that disorder operators are unique up to unitary ele-
ments ofF (O)t, the twisted algebra of the interpolation region. The obvious fact that
UO
L (g)UO

L (h) andU (g)UO
L (h)U (g)∗ are disorder operators for the group elementsgh

andghg−1, respectively, implies that a family of disorder operators constitutes a pro-
jective representation ofG with the cocycle taking values inF (O)t.
2. Later on we will consider only bosonic disorder operators, which leads to the stronger
resultF ∈ F (O)+.

For the purposes of the present investigation the mere existence of disorder operators
is not enough, for we need them to obey certain further restrictions. Our first aim will
be to obtain such operators by a construction which is model independent to the largest
possible extent, making use only of properties valid in any reasonable model. To this
effect we reconsider an idea due to Doplicher [26] and developed further in, e.g., [27, 14].
It consists of using the split property [12] to obtain, for anyg ∈ G and any pair of double
cones3 = (O1,O2) such thatO1 ⊂ O2, an operatorU3(g) ∈ F (O2) such that

U3(g)FU3(g)∗ = U (g)FU (g)∗ ∀F ∈ F (O1). (2.7)

In order to be able to do the same thing with wedges we introduce our last postulate.

Definition 2.4. An inclusionA ⊂ B of von Neumann algebras is split [27], if there
exists a type-I factorN such thatA ⊂ N ⊂ B. A net of field algebras satisfies the “split
property for wedges” if the inclusionsF (WO

LL) ⊂ F (WO
L ) andF (WO

RR) ⊂ F (WO
R )

are split for every double coneO. (In our case, where wedge duality holds, the split
property for one of the above inclusions entails the same for the other as is seen by
passing to commutants and twisting.)

This property is discussed at some length in [57] and shown to be fulfilled for the free
massive scalar and Dirac fields. In quantum field theories where there are lots of cyclic
and separating vectors for the local algebras by the Reeh-Schlieder theorem, the split
property is equivalent [27] to the existence, for any double coneO, of a unitary operator
Y O : H → H ⊗ H implementing an isomorphism betweenF (WO

LL) ∨ F (WO
RR)t and

the tensor productF (WO
LL) ⊗ F (WO

RR)t (in the sense of von Neumann algebras)

Y O F1F
t
2 Y

O∗ = F1 ⊗ F t2 ∀F1 ∈ F (WO
LL), F2 ∈ F (WO

RR). (2.8)

That one of the algebrasF (WO
LL) andF (WO

RR), which are associated with spacelike
separated regions, has to be twisted in order for an isomorphism as above to exist is clear
as in general these algebras do not commute while the factors of a tensor product do
commute. Analogously, there is a spatial isomorphism betweenF (WO

LL)t∨F (WO
RR) and

F (WO
LL)t ⊗ F (WO

RR) implemented bỹY O. We will stick to the use ofY O throughout.
In order not to obscure the basic simplicity of the argument we assume for a moment that
the theoryF is purely bosonic, i.e. fulfills locality and duality without twisting. Using
the isomorphism implemented byY O we then have the following correspondences:

F (WO
LL) ∼= F (WO

LL) ⊗ 1,
F (WO

RR) ∼= 1 ⊗ F (WO
RR),

F (WO
L ) ∼= B(H) ⊗ F (WO

L ),
F (WO

R ) ∼= F (WO
R ) ⊗ B(H),

(2.9)

whereas Haag duality for double cones yields

F (O) = F (WO
L ) ∧ F (WO

R ) ∼= F (WO
R ) ⊗ F (WO

L ). (2.10)
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(Taking the intersection separately for both factors of the tensor product is valid in this
situation as can easily be proved using the lattice property of von Neumann algebras
M ∧ N = (M′ ∨ N ′)′ and the commutation theorem for tensor products (M ⊗ N )′ =
M′ ⊗ N ′.) We thus see that in conjunction with the well known fact [29] that the
algebras associated with wedge regions are factors of typeIII1 the split property for
wedges implies that the algebras of double cones are typeIII1 factors, too.

The following property of the mapsY O will be pivotal for the considerations below.
Given any unitaryU implementing a local symmetry (i.e.UF (O)U∗ = F (O) ∀O) and
leaving invariant the vacuum (U� = �) the following identity holds:

Y O U = (U ⊗ U )Y O. (2.11)

For the construction ofY O as well as for the proof of (2.11) we refer to [27, 14], the
difference that those authors work with double cones being unimportant.

2.2. Construction of disorder operators.The operatorsY O will now be used to obtain
disorder operators. To this purpose we give the following

Definition 2.5. For any double coneO ∈ K and anyg ∈ G we set

UO
L (g) = Y O∗ (U (g) ⊗ 1)Y O,

UO
R (g) = Y O∗ (1 ⊗ U (g))Y O.

(2.12)

As an immediate consequence of this definition we have the following

Proposition 2.6. The disorder operators defined above satisfy[
UO
L (g), UO

R (h)
]

= 0, (2.13)

UO
L (g) UO

R (g) = U (g), (2.14)

U (g)UO
L/R(h)U (g)∗ = UO

L/R(ghg−1). (2.15)

Proof. The first statement is trivial and the second follows from (2.11). The covariance
property (2.15) is another consequence of (2.11). �

Remark.We have thus obtained some kind of factorization of the global action of the
groupG into two commutingtrue (i.e. no cocycles) representations ofG such that
the original action is recovered as the diagonal. Furthermore, these operators transform
covariantly under global gauge transformations. In particular they are bosonic since
k ∈ Z(G).

It remains to be shown that theUO
L/R indeed fulfill the requirements of Definition

2.2. The second requirement follows from Definition 2.5, which with (2.9) obviously
yields

UO
L (g) ∈ F (WO

L ), UO
R (g) ∈ F (WO

R ). (2.16)

The first one is seen by the following computation valid forF ∈ F (WO
LL):

UO
L (g)FUO∗

L (g) ∼= (U (g) ⊗ 1)(F ⊗ 1)(U (g) ⊗ 1)∗ (2.17)

= (U (g)FU (g)∗ ⊗ 1) ∼= U (g)FU (g)∗,

appealing to the isomorphism∼= implemented byY O.
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Returning now to the more general case including fermions we have to consider
the apparent problem that there are now two ways to define the operatorsUO

L (g) and
UO
R (g), depending upon whether we chooseY O or Ỹ O. (By contrast, the tensor product

factorization (2.10) of the local algebras is of a purely technical nature, rendering it
irrelevant whether we useY O or Ỹ O.) This ambiguity is resolved by remarking that
the elementk ∈ G giving rise toV by V = U (k) is central, implying that the operators
U (g), g ∈ G, are bosonic (even). For even operatorsF1 ∈ F (WO

LL), F2 ∈ F (WO
RR) we

haveF1 = F t1 , F2 = F t2 and thus

Y O F1F2 Y
O∗ = Ỹ O F1F2 Ỹ

O∗ = F1 ⊗ F2, (2.18)

so that the disorder variables are uniquely defined even operators.
The first two equations of (2.9) are replaced by

F (WO
LL) ∼= F (WO

LL) ⊗ 1,
F (WO

RR)t ∼= 1 ⊗ F (WO
RR)t.

(2.19)

By taking commutants we obtain

F (WO
L ) ∼= B(H) ⊗ F (WO

L ),
F (WO

R )t ∼= F (WO
R )t ⊗ B(H),

(2.20)

and an application of the twist operation to the second equations of (2.19) and (2.20)
yields

F (WO
RR) ∼= 1 ⊗ F (WO

RR)+ + V ⊗ F (WO
RR)−,

F (WO
R ) ∼= F (WO

R ) ⊗ B(H)+ + F (WO
R )V ⊗ B(H)−.

(2.21)

The identityF (O) = F (WO
L )∧F (WO

R ), which is valid in the fermionic case, too, finally
leads to

F (O) ∼= F (WO
R ) ⊗ F (WO

L )+ + F (WO
R )V ⊗ F (WO

L )−. (2.22)

While this is not as nice as (2.10) it is still sufficient for the considerations in the sequel.
ThatF (O), O ∈ K is a factor is, however, less obvious than in the pure Bose case and
will be proved only in Subsect. 3.3.

The following easy result will be of considerable importance later on.

Lemma 2.7. The disorder operatorsUO
L (g) andUO

R (g) associated with the double cone
O implement automorphisms of the local algebraF (O).

Proof. In the pure Bose case this is obvious from Definition 2.5, (2.10) and the fact that
AdU (g) acts as an automorphism on all wedge algebras. In the Bose-Fermi case (2.22)
the same is true sinceU (g) commutes withV = U (k). �
Definition 2.8. αO

g = AdUO
L (g), g ∈ G,O ∈ K.

We close this section with one remark. We have seen that the split property for
wedges implies the existence of disorder operators which constitute true representations
of the symmetry group and which transform covariantly under the global symmetry.
Conversely, one can show that the existence of disorder operators, possibly with group
cocycle, in conjunction with the split property for wedges for the fixpoint netA implies
the split property for the field netF . This in turn allows to remove the cocyle using the
above construction. We refrain from giving the argument which is similar to those in
[26, pp. 79, 85].
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3. Field Extensions and Haag Duality

3.1. The extended field net.Having defined the disorder variables we now take the next
step, which at first sight may seem unmotivated. Its relevance will become clear in the
sequel. We define a new net of algebrasO 7→ F̂ (O) by adding the disorder variables
associated with the double coneO to the fields localized in this region.

Definition 3.1.
F̂ (O) = F (O) ∨ UO

L (G)′′. (3.1)

Remarks.1. In accordance with the common terminology in statistical mechanics and
conformal field theory, the operators which are composed of fields (order variables) and
disorder variables might be calledparafermion operators.
2. We could as well have chosen the disorder operators acting on the right-hand side.
As there is a complete symmetry between left and right there would be no fundamental
difference. We will therefore stick to the above choice throughout this paper. Including
both the left and right-handed disorder operators would, however, have the unpleasant
consequence that there would be translation invariant operators (namely theU (g)’s) in
the local algebras.
3. The local algebrâF (O) of the above definition resembles the crossed product ofF (O)
by the automorphism groupαO

g , the interesting aspect being that the automorphism group
depends on the regionO. These two constructions differ, however, with respect to the
Hilbert space on which they are defined. Whereas the crossed productF (O)oαO G lives
on the Hilbert spaceL2(G,H), our algebrasF̂ (O) are defined on the original spaceH.
For later purposes it will be necessary to know whether these algebras are isomorphic,
but we prefer first to discuss those aspects which are independent of this question.

The first thing to check is, of course, that Definition 3.1 specifies a net of von
Neumann algebras.

Proposition 3.2. The assignmentO 7→ F̂ (O) satisfies isotony.

Proof. Let O ⊂ Ô be an inclusion of double cones. Obviously we haveF (O) ⊂ F̂ (Ô).
In order to proveUO

L (g) ∈ F̂ (Ô) we observe thatUO
L (g) is a disorder operator for the

larger regionÔ, too. Thus, by Lemma 2.3 we haveUO
L (g) = F U Ô

L (g) with F ∈ F (Ô).
Now it is clear thatUO

L (g) ∈ F̂ (Ô). �

Remark.From this we can conclude that the netF̂ (O) is uniquely defined in the sense
that any family of bosonic disorder operators gives rise to the same netF̂ (O) provided
such operators exist at all. For most of the arguments in this paper we will, however,
need the detailed properties proved above which follow from the construction via the
split property.

It is obvious that the net̂F is nonlocal. While the spacelike commutation relations of
fields and disorder operators are known by construction we will have more to say on
this subject later. On the other hand it should be clear that the netsF̂ andA are local
relative to each other. This is simply the fact that the disorder operators commute with
the fixpoints ofαg in both spacelike complements.
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Proposition 3.3. The netF̂ is Poincaŕe covariant with the original representation of
P. In particularαa(UO

L (g)) = UO+a
L (g) whereas for the boosts we have

α3(UO
L (g)) = U3O

L (h), (3.2)

if U (3)U (g)U (3)∗ = U (h) .

Proof. The familyY O : H → H⊗H of unitaries provided by the split property fulfills
the identity

Y 3O+a = (U (3, a) ⊗ U (3, a))Y O U (3, a)∗, (3.3)

as is easily seen to follow from the construction in [27, 14]. This implies

α3,a(UO
L (g)) = U (3, a)Y O∗

(U (g) ⊗ 1)Y O U (3, a)∗

= Y 3O+a∗
(U (3, a)U (g)U (3, a)∗ ⊗ 1)Y 3O+a (3.4)

= U3O+a
L (h),

whereU (3)U (g)U (3)∗ = U (h). �

Proposition 3.4. The vacuum vector� is cyclic and separating for̂F (O).

Proof. Follows from
F (O) ⊂ F̂ (O) ⊂ F (WO

L ) (3.5)

since� is cyclic and separating forF (O) andF (WO
L ). �

Proposition 3.5. The wedge algebras for the netF̂ take the form

F̂ (WO
L ) = F (WO

L ), F̂ (WO
R ) = F (WO

R ) ∨ U (G)′′ = A(WO
LL)′. (3.6)

As a consequence� is not separating forF̂ (WO
R )!

Proof. The first identity is obvious, while the second follows fromF (WO
R ) 3 U Ô

R (g) ∀Ô
∈ WO

R and the factorization property (2.14). The last statement is equivalent to� not
being cyclic forA(WO

LL). �

Proposition 3.6. Let F̂ ∈ F (O)UO
L (g). Then the following cluster properties hold.

w − lim
x→−∞

αx(F̂ ) = 〈�, F̂�〉 · 1, (3.7)

w − lim
x→+∞

αx(F̂ ) = 〈�, F̂�〉 · U (g). (3.8)

Proof. The first identity follows fromF̂ ∈ F̂ (WO
L ) and the usual cluster property. The

second is seen by writinĝF = F UO
R (g−1)U (g) and applying the weak convergence of

UO
R as above, the translation invariance ofU (g) and the invariance of the vacuum under

U (g). �

3.2. Haag duality.Observing by (2.15) that the adjoint action of the global symmetry
group leaves the ‘localization’ (in the sense of Definition 2.2) of the disorder operators
invariant it is clear that the automorphismsαg = AdU (g) extend to local symmetries of
the enlarged net̂F . We are thus in a position to define yet another net, the fixpoint net
of F̂ .
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Definition 3.7.
Â(O) = F̂ (O) ∧ U (G)′. (3.9)

Remark.We then have the following square of local inclusions:

Â(O) ⊂ F̂ (O)
∪ ∪

A(O) ⊂ F (O).
(3.10)

The conditional expectationm(·) =
∫
dg αg(·) from F̂ (O) to Â(O) clearly restricts

to a conditional expectation fromF (O) to A(O). In Sect. 4 we will see that there is
also a conditional expectationγe from F̂ (O) to F (O) which restricts to a conditional
expectation fromÂ(O) to A(O), provided the groupG is finite. Sinceγe commutes
with m the square (3.10) then constitutes a commuting square in the sense of Popa.

Proposition 3.8. The netO 7→ Â(O) is local.

Proof. LetO < Õ be two regions spacelike to each other,Õ being located to the right of
O. FromÂ(O) ⊂ A(WO

L ) and the relative locality of observables and fields we conclude
thatÂ(O) commutes withF (Õ). On the other hand the operatorsU Õ

L (g) commute with
Â(O) ⊂ F̂ (WO

L ) = F (WO
L ) sinceAdU Õ

L (g) � F (WO
L ) = αg andÂ(O) is pointwise

gauge invariant. �
We have just proved that the netÂ constitutes a local extension of the observable net

A, thereby confirming our initial observation thatA does not satisfy Haag duality. The
elements ofÂ being gauge invariant they commute a fortiori with the central projections
in the group algebra, thereby leaving invariant the sectors inH. We will now prove a
nice result which serves as our first justification for Definitions 3.1 and 3.7.

Lemma 3.9.
A(O′)′ = F (O) ∨ UO

L (G)′′ ∨ UO
R (G)′′. (3.11)

Proof. We already know that

A(O′)′ ⊃ F (O) ∨ UO
L (G)′′ ∨ UO

R (G)′′. (3.12)

In order to prove equality we consider the following string of identities, making use of
the spatial isomorphisms due to the split property and omitting the superscriptO on the
wedge regions.

A(O′)′ = (A(WLL) ∨ A(WRR))′

= ((F (WLL) ∧ U (G)′) ∨ (F (WRR) ∧ U (G)′))′

∼=
(
(F (WLL) ∧ U (G)′) ⊗ (F (WRR) ∧ U (G)′)

)′
= (F (WR)t ∨ U (G)′′) ⊗ (F (WL)t ∨ U (G)′′),

= (F (WR) ⊗ F (WL)) ∨ (U (G)′′ ⊗ 1) ∨ (1 ⊗ U (G)′′)
∼= F (O) ∨ UO

L (G)′′ ∨ UO
L (G)′′. (3.13)

In the third step we have used the identitiesF (WLL)∧U (G)′ ∼= F (WLL)∧U (G)′⊗1and
F (WRR) ∧U (G)′ ∼= 1⊗ F (WRR) ∧U (G)′ which are easily seen to follow from (2.20)
and (2.21), respectively. The fourth step is justified byF (·)t ∨ U (G)′′ = F (·) ∨ U (G)′′.
�
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Theorem 3.10. In restriction to a simple sectorH1 the netÂ satisfies Haag duality, i.e.
it coincides with the dual netAd in this representation.

Proof. Let P1 be the projection on a simple sector, i.e. fulfilling

U (g)P1 = P1U (g) = χ(g) · P1, (3.14)

whereχ is a character ofG. Making use ofUO
L (G)′′ ∨ UO

R (G)′′ = UO
L (G)′′ ∨ U (G)′′

and (3.14) we have

P1 (F (O) ∨ UO
L (G)′′ ∨ UO

R (G)′′)P1 =

P1 (F (O) ∨ UO
L (G)′′ ∨ U (G)′′)P1 = P1 F̂ (O)P1. (3.15)

With m(F ) =
∫
dg U (g)FU (g)∗ and once again using (3.14) we obtain

P1 F̂ (O)P1 = P1m(F̂ (O))P1 = P1 Â(O)P1. (3.16)

On the other hand

P1 A(O′)′ P1 � P1H =
(
P1 A(O′)P1 � P1H

)′
. (3.17)

The proof is now completed by applying the preceding lemma.�

Remark.The above arguments make it clear that Haag duality cannot hold for the net
A(O) even in simple sectors. This is not necessarily so if the split property for wedges
does not hold. In conformally invariant theories gauge invariant combinations of field
operators in the left and the right spacelike complements of a double coneO may well
be contained inA(O′) due to spacetime compactification. One would think, however,
that this is impossible in massive theories, even those without the split property.

3.3. Outerness properties and computation ofÂ(O). While the above theorem allows
us in principle to construct the dual netÂ one would like to know more explicitly how
the elements ofÂ look in terms of the fields inF and the disorder operators. In the case
of an abelian groupG this is easy to see. As a consequence of the covariance property
(2.15) we then have

U (g)UO
L/R(h)U (g)∗ = UO

L/R(ghg−1) = UO
L/R(h), (3.18)

that is the disorder operators are gauge invariant and thus contained inÂ(O). It is then
obvious that

Â(O) = A(O) ∨ UO
L (G)′′, (G abelian!) (3.19)

asÂ(O) is spanned by operators of the formFUO
L (g), F ∈ F (O) which are invariant

iff F ∈ A(O).
The case of the groupG being non-abelian is more complicated and we limit our-

selves to finite groups leading already to structures which are quite interesting. In order
to proceed we would like to know that every operatorF̂ ∈ F̂ (O) has a unique represen-
tation of the form

F̂ =
∑
g∈G

F (g)UO
L (g), F (g) ∈ F (O). (3.20)

While this true for the crossed productM oG onL2(G,H) (only for finite groups!) it
is not obvious for the algebraM ∨ U (G)′′ on H. The latter may be considered as the
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image of the former under a homomorphism which might have a nontrivial kernel. In
this case there would be equations of the type∑

g∈G
F (g)UO

L (g) = 0, (3.21)

where not allF (g) vanish. Fortunately at least for finite groups (infinite, thus noncompact,
discrete groups are ruled out by the split property) this undesirable phenomenon can
be excluded without imposing further assumptions using the following result due to
Buchholz [16].

Proposition 3.11. The automorphismsαg = AdU (g) act outerly on the wedge algebras.

Proof. Let W be the standard wedgeW = {x ∈ R2 | x1 > |x0|} and assume there
is a unitaryVg ∈ F (W ) such thatAdVg � F (W ) = αg. DefineVg,x = αx(Vg) for
all x ∈ W . ObviouslyVg,x ∈ F (Wx). By the commutativityαx ◦ αg = αg ◦ αx
of translations and gauge transformations we haveAdVg,x � F (Wx) = αg. By the
computation (forx ∈ W )

Vg Vg,x V
∗
g = αg(Vg,x) = αg ◦ αx(Vg) = αx ◦ αg(Vg)

= αx(Vg Vg V ∗
g ) = αx(Vg) = Vg,x

(3.22)

we obtain
Vg Vg,x = Vg,x Vg ∀x ∈ W. (3.23)

The von Neumann algebra
V = {Vg,x, x ∈ W}′′ (3.24)

is mapped into itself by translationsαx wherex ∈ W and the vacuum vector� it is
separating forV as we haveV ⊂ F (W ). This allows us to apply the arguments in [29]
to conclude thatV is either trivial (i.e.V = C1) or a factor of typeIII1. The assumed
existence ofVg, which cannot be proportional to the identity due to the postulateαg 6= id,
excludes the first alternative whereas the second is incompatible with (3.23) according
to whichVg is central. Contradiction! �

Remark.This result may be interpreted as a manifestation of an ultraviolet problem.
The automorphismαg being inner on a wedgeW , wedge duality would imply it to
be inner on the complementary wedgeW ′, too, giving rise to a factorizationU (g) =
VL(g)VR(g), VL(g) ∈ F (W ), VR(g) ∈ F (W ′). This would be incompatible with the
distributional character of the local current from whichU (g) derives.

We cite the following well known result on automorphism groups of factors.

Proposition 3.12. LetM be a factor andα an outer action of the finite groupG. Then
the inclusionsMG ⊂ M, π(M) ⊂ M o G are irreducible, i.e.M o G ∩ π(M)′ =
M ∩ MG′

= C1. In particularM oG andMG are factors. If the actionα is unitarily
implementedαg = AdU (g) thenM oG andM ∨ U (G)′′ are isomorphic.

Proof. The irreducibility statementsM o G ∩ π(M)′ = M ∩ MG′
= C1 are stan-

dard consequences of the relative commutant theorem [65,§22] for crossed products.
Remarking that finite groups are discrete and compact the proof is completed by an
application of [48, Corr. 2.3] which states thatM oG andM ∨U (G)′′ are isomorphic
if the former algebra is factorial andG is compact. �
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We are now in a position to prove several important corollaries to Prop. 3.11.

Corollary 3.13. The algebrasF (O), O ∈ K are factors also in the Bose-Fermi case.

Proof. SinceAdV acts outerly on the factorF (WO
R ) by Prop. 3.11,M1 = F (WO

R )∨{V }
is a factor and there is an automorphismβ ofM1 leavingF (WO

R ) pointwise invariant such
thatβ(V ) = −V . The automorphismβ⊗αk ofM1⊗F (WO

L ) clearly hasY O F (O)Y O∗

as fixpoint algebra, cf. (2.22). Sinceαk is outer the same holds [65, Prop. 17.6] forβ⊗αk.
Thus the fixpoint algebra is factorial by another application of Prop. 3.12.�

Corollary 3.14. Let O ∈ K. The automorphismsαg = AdU (g) andαO
g = AdUO

L (g)
act outerly on the algebraF (O).

Proof. The pure Bose case is easy.F (O), αO
g and αg are unitarily equivalent to

F (WO
R ) ⊗ F (WO

L ), αg ⊗ id, andαg ⊗ αg, respectively. Sinceαg = AdU (g) is
outer onF (WO

R ) the same holds by [65, Prop. 17.6] for the automorphismsαg ⊗ id and
αg ⊗ αg of the above tensor product.

Turning to the Bose-Fermi case letXg ∈ F (O) be an implementer ofαg orαO
g and

defineX̂g = Y O Xg Y
O∗. Then (1⊗V )X̂g(1⊗V ) also implementsαg⊗ id orαg⊗αg,

respectively, sincek is central.F (O) being a factor this implies (1 ⊗ V )X̂g(1 ⊗ V ) =
cg X̂g with c2

g = ±1 due tok2 = e. X̂g is thus contained either inF (WO
R ) ⊗ F (WO

L )+

or in F (WO
R )V ⊗ F (WO

L )−. In the first case the restriction ofαg ⊗ id or αg ⊗ αg to
F (WO

R )⊗F (WO
L )+ is inner which can not be true by the same argument as for the Bose

case. (Observe thatF (WO
L )+ is factorial.) On the other hand, nôXg ∈ F (WO

R )V ⊗
F (WO

L )− can implementαg ⊗ id or αg ⊗ αg since both automorphisms are trivial on
the subalgebra1 ⊗ F (WO

L ) ∩ U (G)′ which requiresX̂g ∈ B(H) ⊗ F (WO
L )G

′
. This,

however, is impossible:F (WO
L )−∩F (WO

L )G
′

= [F (WO
L )∩F (WO

L )G
′
]− = [C1]− = ∅,

where we have used the irreducibility ofF (WO
L )G ⊂ F (WO

L ). �

Corollary 3.15. Let the symmetry groupG be finite. Then the enlarged algebrâF (O) =
F (O) ∨UO

L (G)′′ is isomorphic to the crossed productF (O) oαO G and the inclusions
A(O) ⊂ F (O), F (O) ⊂ F̂ (O) are irreducible.

Proof. Obvious from Prop. 3.12 and Cors. 3.13, 3.14. �

Remark.If G is a compact continuous group, outerness of the action does not allow us
to draw these conclusions. In this case an additional postulate is needed. It would be
sufficient to assume irreducibility of the inclusionA(W ) ⊂ F (W ), for, as shown by
Longo, this property in conjunction with proper infiniteness ofA(W ) implies dominance
of the action and factoriality of the crossed product.

We are now able to give an explicit description of the dual netÂ.

Theorem 3.16. Every operatorÂ ∈ Â(O) can be uniquely written in the form

Â =
∑
g∈G

A(g)UO
L (g), (3.25)

where theA(g) ∈ F (O) satisfy

A(kgk−1) = αk(A(g)) ∀g, k ∈ G. (3.26)
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Conversely, every choice ofA(g) complying with this constraint gives rise to an element
of Â(O). An analogous representation for the algebrasÂ(WO

R ) is obtained by replacing
UO
L (g) byU (g).

Remark.Condition (3.26) impliesA(g) ∈ F (O)∩U (Ng)′, whereNg = {h ∈ G | gh =
hg} is the normalizer ofg in G.

Proof. By Prop. 3.11 anyÂ ∈ Â(O) can be represented uniquely according to (3.25).
Usingαk(Â) =

∑
g αk(A(g))UO

L (kgk−1) =
∑
g αk(A(k−1gk))UO

L (g), Eq. (3.26) fol-
lows by comparing coefficients. It is obvious that the arguments can be reversed. The
statement on the wedge algebrasÂ(WO

R ) follows from the fact that̂F (WO
R ) is the crossed

product ofF (WO
R ) by the global automorphism group, cf. Prop. 3.5. �

3.4. The split property.The prominent role played by the split property in our investiga-
tions so far gives rise to the question whether it extends to the enlarged netsÂ andF̂ . As
to the netF̂ it is clear that a twist operation is needed in order to achieve commutativity
of the algebras of two spacelike separated regions. LetO1 < O2 be double cones. Then
one hasF̂ (O2)T ⊂ F̂ (O1)′, where(∑

g

F (g)UO
L (g)

)T
:=
∑
g

F (g)t UO
L (g) U (g−1) =

∑
g

F (g)t UO
R (g)∗, (3.27)

and thet on F (g) denotes the Bose-Fermi twist of the introduction. (By the crossed
product nature of the algebraŝF (O) it is clear that this map is well defined and invert-
ible.) That commutativity holds as claimed follows easily from̂F (O1) ⊂ F (WO1

L ) and
F̂ (O2)T ⊂ F (WO2

R )t. It is interesting to observe that the twist has to be applied to the
algebra located to the right for this construction to work. This twist operation lacks, how-
ever, several indispensable features. Firstly, there is no unitary operatorS implementing
the twist as in the Bose-Fermi case. The second, more important objection refers to the
fact that the map (3.27) becomes non-invertible when extended to right-handed wedge
regions, for the operatorsUO

R (g) are contained inF (WO
R ).

Concerning the net̂A which, in contrast, is local there is no conceptual obstruction to
proving the split property. We start by observing thatÂ(WO

LL) = A(WO
LL). Furthermore,

in restriction to a simple sectorH1 wedge duality (Prop. 2.1) implieŝA(WO
RR) � H1 =

A(WO
RR) � H1. As the split property for the fields carries over [26] to the observables

in the vacuum sector there is nothing to do if we restrict ourselves to the latter. We
intend to prove now that the net̂A fulfills the split property on the big Hilbert space
H. To this purpose we draw upon the pioneering work [26] where it was shown that
the split property (for double cones) of a field net with group symmetry and twisted
locality follows from the corresponding property of the fixpoint net provided the group
G is finite abelian. (The case of general groups constitutes an open problem, but given
nuclearity for the observables and some restriction on the masses in the charged sectors
nuclearity and thus the split property for the fields can be proved.)

Proposition 3.17. The netO 7→ Â(O) satisfies the split property for wedge regions,
provided the groupG is finite.

Proof. The split property for wedges is equivalent [11] to the existence, for every double
coneO, of a product stateφO satisfyingφO(AB) = φO(A)·φO(B) ∀A ∈ Â(WO

LL), B ∈
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Â(WO
RR). For the rest of the proof we fix one double coneO and omit it in the formulae.

We have already remarked that for the netA product statesφ0 are known to exist. In
order to construct a product state forÂ we supposeγe is a conditional expectation from
A(WLL) ∨ Â(WRR) to A(WLL) ∨ A(WRR) such thatγe(Â(WRR)) = A(WRR). Then
γe(AB) = γe(A) γe(B), whereA, B are as above, implying thatφ = φ0 ◦γe is a product
state. It remains to find the conditional expectationγe. To make plain the basic idea we
consider abelian groupsG first. In this caseγe is given by

γe(Â) =
1

|G|
∑
χ∈Ĝ

ψ∗
χÂψχ, (3.28)

whereψχ ∈ F (O) is a unitary field operator transforming according toαg(ψχ) =
χ(g) · ψχ under the groupG. This map has all the desired properties. The pointwise
invariance ofÂ(WLL) follows from the fact that this algebra commutes with the unitaries
ψχ. On the other hand

ψ∗
χ U

Õ
L (g)ψχ = χ(g) · U Õ

L (g), Õ ⊂ WO
RR (3.29)

in conjunction with the identity
∑
χ∈Ĝ χ(g) = |G| δg,e (valid also for non-abelian

groups) implies that the operatorsU Õ
L (g) ∈ Â(WRR), g 6= e are annihilated byγe.

Finally, the existence ofψχ ∈ F (O) for all χ (i.e. the dominance of the group action
α on F (O)) is well known to follow from the outerness of the group actionα. The
generalization to non-abelian groups is straightforward. The unitariesψχ are replaced
by multipletsψr,i of isometries for all irreducible representationsr of G. They fulfill
the following relations of orthogonality and completeness:

ψ∗
r,i ψr,j = δi,j1, (3.30)

dr∑
i=1

ψr,i ψ
∗
r,i = 1 (3.31)

and transform according to

αg(ψr,i) =
∑
i′
Dr
i′,i(g)ψr,i′ (3.32)

under the group. That the conditional expectationγe given by

γe(Â) =
1

|G|
∑
r∈Ĝ

dr∑
i=1

ψ∗
r,iÂψr,i, (3.33)

does the job follows from

dr∑
i=1

ψ∗
r,i U

Õ
L (g)ψr,i = tr Dr(g) · U Õ

L (g) = χr(g) · U Õ
L (g). (3.34)

Again the existence of such multiplets is guaranteed by our assumptions.�
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Remark.Tensor multiplets satisfying (3.30, 3.31) were first considered in [25] where
the relation between the charged fields in a net of field algebras and the inequivalent
representations of the observables was studied in the framework of [21]. Multiplets of
this type will play a role in our subsequent investigations, too.

3.5. Irreducibility ofA(O) ⊂ F̂ (O). The inclusionsA(O) ⊂ F (O) ⊂ F̂ (O) are of the
form

N = PK ⊂ P ⊂ P o L = M, (3.35)

whereK andL are finite subgroups of AutP, as studied in [8] (albeit for typeII1
factors). TherePK ⊂ P o L was shown to be irreducible iffK ∩ L = {e} in OutP
and to be of finite depth if and only if the subgroupQ of OutP generated byK and
L is finite. Furthermore, the inclusion has depth two (i.e.N ′ ∧ M2 is a factor where
N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · is the Jones tower corresponding to the subfactor
N ⊂ M) in the special case whenQ = K · L (i.e. everyq ∈ Q can be written as
q = kl, k ∈ K, l ∈ L).

In our situation, whereK = Diag(G × G) andL = G × 1, all these conditions are
fulfilled, as we haveQ = G×G andg × h = (h× h) · (h−1g × e). The interest of this
observation for our purposes derives from the following result, discovered by Ocneanu
and proved, e.g., in [69, 55]. It states that an irreducible inclusionN ⊂ M arises via
N = MH = {x ∈ M | γa(x) = ε(x)1 ∀a ∈ H} from the action of a Hopf algebra
H on M iff the inclusion has depth two. In the next section this Hopf algebra will be
identified and related to our quantum field theoretic setup.

For the irreducibility ofA(O) in F̂ (O) we now give a proof independent of any
sophisticated inclusion theoretic machinery.

Proposition 3.18. For anyO ∈ K we have

F̂ (O) ∧ A(O)′ = C1. (3.36)

Proof. All unitary equivalences in this proof are implemented byY O. With the abbre-
viationsM1 = F (WO

R )t andM2 = F (WO
L ) we haveM′

1 ∨ M′
2

∼= M′
1 ⊗ M′

2. By
(2.10) if F is bosonic or (2.22) in the Bose-Fermi case we have

F̂ (O) ∼= F (WO
R ) ∨ U (G)′′ ⊗ F (WO

L ) = M1 ∨ U (G)′′ ⊗ M2, (3.37)

where we have usedMt∨U (G)′′ = M∨U (G)′′ (which is true for every von Neumann
algebraM). Furthermore,

A(O)′ = F (O)′ ∨ U (G)′′ = (F (WO
LL) ∨ F (WO

RR))t ∨ U (G)′′ (3.38)

= F (WO
LL) ∨ F (WO

RR) ∨ U (G)′′ = F (WO
LL) ∨ F (WO

RR)t ∨ U (G)′′

= M′
1 ∨ M′

2 ∨ U (G)′′ ∼= (M′
1 ⊗ M′

2) ∨ {U (g) ⊗ U (g), g ∈ G}′′.

The relative commutant̂F (O) ∧ A(O)′ is thus equivalent to

(M1 ∨ U (G)′′ ⊗ M2) ∧ [(M′
1 ⊗ M′

2) ∨ {U (g) ⊗ U (g), g ∈ G}′′]. (3.39)

The obvious inclusion (M′
1 ⊗M′

2) ∨{U (g) ⊗U (g), g ∈ G}′′ ⊂ B(H) ⊗M′
2 ∨U (G)′′

in conjunction with the irreducibility propertyM2 ∧ (M′
2 ∨ U (G)′′) = C1 (Cor. 3.15)

yields

[(M′
1 ⊗ M′

2) ∨ {U (g) ⊗ U (g), g ∈ G}′′] ∧ (B(H) ⊗ M2) ⊂ B(H) ⊗ 1. (3.40)
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Now letX be an element of the algebra given by Eq. (3.39). By the same arguments as
used earlier, every operatorX ∈ (M′

1 ⊗ M′
2) ∨ {U (g) ⊗ U (g), g ∈ G}′′ has a unique

representation of the formX =
∑
g Fg (U (g) ⊗ U (g)), whereFg ∈ M′

1 ⊗ M′
2. The

conditionX ∈ B(H) ⊗ 1 impliesFg = 0 for all g 6= e and therebyX ∈ M′
1 ⊗ 1. We

thus haveX ∈ (M′
1 ∧ (M1 ∨ U (G)′′)) ⊗ 1 and, once again using the irreducibility of

the group inclusions,X ∝ 1 ⊗ 1. �

4. Quantum Double Symmetry

4.1. Abelian groups.As we have shown above the algebrasF̂ (O) may be considered as
crossed products ofF (O) with the actions of the respective automorphism groupsαO.
In the case of abelian (locally compact) groups there is a canonical action [70] of the
dual (character-) group̂G onM oG given by

α̂χ(π(x)) = π(x)
α̂χ(Ug) = χ(g) · Ug

, χ ∈ Ĝ. (4.1)

Making use ofUO1(g)UO2(g)∗ ∈ F , ∀Oi one can consistently define an action ofĜ on
the netO 7→ F̂ (O), respecting the local structure and thus extending to the quasilocal
algebraF̂ . The action ofĜ commutes with the original action ofG as extended tôF ,
implying that the locally compact groupG × Ĝ is a group of local symmetries of the
extended theoryO 7→ F̂ (O). The square structure (3.10) can now easily be interpreted
in terms of the larger symmetry:

Â = F̂G, F = F̂ Ĝ, A = F̂G×Ĝ. (4.2)

The symmetry between the subgroupsG andĜ ofG×Ĝ is, however, not perfect, as only
the automorphismsαg, g ∈ G are unitarily implemented on the Hilbert spaceH. That
there can be no unitary implementerU (χ) for α̂χ, χ ∈ Ĝ leaving invariant the vacuum
� is shown by the following computation which would be valid for allA ∈ A(O):

〈�, AUO
L (g)�〉 = 〈�, U (χ)AUO

L (g)U (χ)∗�〉 (4.3)

= 〈�, Aα̂χ(UO
L (g))�〉 = χ(g) · 〈�, AUO

L (g)�〉.

This can only be true ifχ(g) = 1 or〈�, AUO
L (g)�〉 = 0∀A ∈ A(O). The latter, however,

can be ruled out, since the density ofA(O)� in H0 would implyUO
L (g)� ⊥ H0 which is

impossible,� being unitary and gauge invariant. This argument shows that the vacuum
stateω = 〈�, · �〉 is not invariant under the automorphisms ˆα(χ), χ ∈ Ĝ, in other
words, the symmetry under̂G is spontaneously broken.

The preceding argument is just a special case of the much more general analysis in
[61], where non-abelian groups were considered, too. There, to be sure, the field net acted
upon by the group was supposed to fulfill Bose-Fermi commutation relations, whereas
in our case the field net is nonlocal. Furthermore, whereas the netF (O), the point
of departure for our analysis, fulfills (twisted) duality, the extended netF̂ (O) enjoys
no obvious duality properties. Nevertheless the analogy to [61] goes beyond the above
argument. Indeed, as shown by Roberts, spontaneous breakdown of group symmetries is
accompanied by a violation of Haag duality for the observables, restricted to the vacuum
sectorH0. Defining the netB(O) = F (O)G0, the fixpoint net under the action of the
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unbroken partG0 = {g ∈ G |ω0 ◦ αg = ω0} of the symmetry group, a combination of
the arguments in [21] and [61] leads to the conclusion that (in the vacuum sectorH0)
B(O) is just the dual netAd(O) which verifies Haag duality. Our analysis in Sect. 2,
leading to the identification of the dual net asAd = Â = F̂G, is obviously in accord with
the general theory as we have shown above thatG is the unbroken part, corresponding
toG0, of the full symmetry groupG× Ĝ.

In the case of spontaneously broken group symmetries it is known that, irrespective
of the nonexistence of global unitary implementers leaving invariant the vacuum, one can
find local implementers for the whole symmetry group. This means that for each double
coneO there exists a unitary representationG 3 g 7→ VO(g) satisfyingAdVO(g) �
F (O) = αg, the important point being the dependence on the regionO. (Due to the
large commutant ofF (O) such operators are far from unique.) A particularly nice
construction, which applied to an unbroken symmetryg automatically yields the global
implementer (VO(g) = U (g) ∀O), was given in [15]. The construction given there applies
without change to the situation at hand where the action of the dual groupĜ on F̂ (O)
is spontaneously broken.

An interesting example is provided by the free massive Dirac field which as already
mentioned fulfills our postulates, including twisted duality and the split property. Its
symmetry groupU (1) being compact and abelian, the extended netF̂ and the action
of the dual groupZ can be constructed as described above. By restriction of the netÂ
to the vacuum sectorH0 one obtains a local net fulfilling Haag duality with symmetry
groupZ. Wondering to which quantum field theory this net might correspond, it appears
quite natural to think of the sine-Gordon theory at the free fermion pointβ2 = 4π as
discussed, e.g., in [53].

4.2. Non-abelian groups.We refrain from further discussion of the abelian case and turn
to the more interesting case ofG being non-abelian and finite. (Infinite compact groups
will be treated in Appendix B.) For non-abelian groups the dual object is not a group but
either some Hopf algebraic structure or a category of representations. Correspondingly,
the action of the dual group in [70] has to be replaced by a coaction of the group or
the action of a group dual in the sense of [62]. For our present purposes these high-
brow approaches will not be necessary. Instead we choose to generalize (4.1) in the
following straightforward way. We observe that the characters of a compact abelian
group constitute an orthogonal basis of the function spaceL2(G), whereas in the non-
abelian case they span only the subspace of class functions. This motivates us to define
an action ofC(G), the|G|-dimensional space ofall complex valued functions onG, on
F̂ (O) in the following way:

γF

∑
g∈G

x(g)UO
L (g)

 =
∑
g∈G

F (g)x(g)UO
L (g), x(g) ∈ F (O), F ∈ C(G). (4.4)

Again this action ofC(G) is consistent with the local structure of the netO 7→ F̂ (O) and
extends to the quasilocalC∗-algebraF̂ . In general, of course,γF is no homomorphism
but only a linear map. (That the mapsγF are well defined for everyF ∈ C(G) should
be obvious, see also the next section.) Introducing the “deltafunctions”δg(h) = δg,h any
function can be written asF =

∑
g F (g) δg, andγδg will be abbreviated byγg. The latter

are projections, i.e. they satisfyγ2
g = γg. The images ofF̂ (O) andF̂ under these will be
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designatedF̂g(O) andF̂g, respectively. Obviously we havêFg(O) = F (O)UO
L (g) and

F̂g = F UO
L (g) with O ∈ K arbitrary. It should be clear that the decomposition

F̂ =
⊕
g∈G

F̂g (4.5)

represents a grading of̂F by the group, i.e.

F̂g F̂h ⊂ F̂gh ∀g, h ∈ G. (4.6)

(In fact we have equality, but this will play no role in the sequel.) This group grading
which is, of course, not surprising as it holds for every crossed product by a finite group
allows us to state the behavior ofγg under products:

γg(AB) =
∑
h

γh(A) γh−1g(B). (4.7)

The novel aspect, however, is thatF̂ is at the same time acted upon by the groupG,
these two structures being coupled by

αg(F̂h) = F̂ghg−1 (4.8)

as a consequence of (2.15). This is equivalent to the relation

αg ◦ γh = γghg−1 ◦ αg. (4.9)

In this context it is of interest to remark that several years ago algebraists studied (see
[18] and references given there) analogies between group graded algebras and algebras
acted upon by a finite group. Similar studies have been undertaken in the context of
inclusions of von Neumann algebras. As it turns out the situation at hand, which is
rather more interesting, can be neatly described in terms of the action, as defined, e.g.,
in [68], of a Hopf algebra (in our case finite dimensional) onF̂ . The relations fulfilled
by theαg andγh, in particular (4.9), motivate us to cite the following well known

Definition 4.1. LetC(G) be the algebra of (complex valued) functions on the finite group
G and consider the adjoint action ofG on C(G) according toαg : f 7→ f ◦ Ad(g−1).
The quantum doubleD(G) is defined as the crossed productD(G) = C(G) oα G of
C(G) by this action. In terms of generatorsD(G) is the algebra generated by elements
Ug andVh, g, h ∈ G with the relations

Ug Uh = Ugh, (4.10)

Vg Vh = δg,hVg, (4.11)

Ug Vh = Vghg−1 Ug, (4.12)

and the identificationUe =
∑
g Vg = 1.

It is easy to see thatD(G) is of the finite dimension|G|2, where as a convenient basis one
may chooseV (g)U (h), g, h ∈ G, multiplying according toV (g1)U (h1)V (g2)U (h2) =
δg1,h1g2h

−1
1

·V (g1)U (h1h2). This is just a special case of a construction given by Drinfel’d
[30] in greater generality which we do not bother to retain. For the purposes of this work
it suffices to state the following well known properties ofD(G), referring to [30, 59, 20]
for further discussion, see also Appendix A.

In order to define an action of a Hopf algebra on von Neumann algebras we further
need a star structure on the former which in our case is provided by the following
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Proposition 4.2. With the definitionU∗
g = Ug−1, V ∗

h = Vh and the appropriate exten-
sion,D(G) is a *-algebra. D(G) is semisimple.

Proof. Trivial calculation. Finite dimensional *-algebras are automatically semisimple.
�

Before stating how the quantum doubleD(G) acts onF̂ we define precisely the
properties of a Hopf algebra action.

Definition 4.3. A bilinear mapγ : H × M → M is an action of the Hopf *-algebra
H on the *-algebraM iff the following hold for anya, b ∈ H, x, y ∈ M:

γ1(x) = x, (4.13)

γa(1) = ε(a)1, (4.14)

γab(x) = γa ◦ γb(x), (4.15)

γa(xy) = γa(1)(x)γa(2)(y), (4.16)

(γa(x))∗ = γS(a∗)(x
∗). (4.17)

We have used the standard notation1(a) = a(1) ⊗ a(2) for the coproduct where on the
right side there is an implicit summation. The mapγ is assumed to be weakly continuous
with respect toM and continuous with respect to someC∗-norm onH (which is unique
in the case of finite dimensionality).

After these lengthy preparations it is clear how to define the action ofD(G) on F̂ .

Theorem 4.4. Definingγa(F̂ ), F̂ ∈ F̂ for a ∈ {U (g), V (h)|g, h ∈ G} by

γUg (F̂ ) = αg(F̂ ), (4.18)

γVh (F̂ ) = γh(F̂ ), (4.19)

using (4.15) to defineγ on the basisV (g)U (h) and extending linearly toD(G) one
obtains an action in the sense of Definition 4.3.

Proof. Equation (4.13) follows from1D(G) =
∑
g Vg, (4.14) from1F̂ ∈ F̂e and (A.4),

whereas (4.15) is an obvious consequence of the definition. Furthermore, (4.16) is a con-
sequence ofαg being a homomorphism, the coproduct property (4.7) and the definition
(A.5). The statement (4.17) on the *-operation finally follows from (αg(x))∗ = αg(x∗)
andS(U∗

g ) = Ug on the one hand and (F̂g)∗ = F̂g−1 andS(V ∗
g ) = Vg−1 on the other.

�
Remarks.1. It should be obvious that the action ofD(G) on F̂ commutes with the
translations and that it commutes with the boosts iff the groupG does. Otherwise,
U (3)U (g)U (3)∗ = Uh impliesα3 ◦ γg = γh ◦ α3.
2. In the case ofG being abelianUχ =

∑
g∈G χ(g) ·Vg, χ ∈ Ĝ constitutes an alternative

basis for the subalgebraC(G) ⊂ D(G). The resulting formulaeUχ Uρ = Uχρ, 1(Uχ) =
Uχ ⊗ Uχ andγUχ (·) = α̂χ(·) establish the equivalence of the quantum double with the
groupG × Ĝ. The abelian case is special insofar asD(G) is spanned by its grouplike
elements, which is not true forG non-abelian.

4.3. Spontaneously broken quantum symmetry.Having shown in the abelian case that
the symmetry under the dual group̂G is spontaneously broken it should not come as a
surprise that the same holds for non-abelian groupsG where, of course, the notion of
unitary implementation has to be generalized.



160 Michael Müger

Definition 4.5. An actionγ of the Hopf algebraH on the *-algebraM is said to be
implemented by the (homomorphic) representationU : H → B(H) if for all a ∈ H,x ∈
M

U (a)x = γa(1)(x)U (a(2)) (4.20)

or equivalently
γa(x) = U (a(1))xU (S(a(2))). (4.21)

The representation is said to be unitary if the mapU is a *-homomorphism.

In complete analogy to the abelian case we see that only a subalgebra ofD(G), namely the
group algebraCG is implemented in the above sense. A similar phenomenon has already
been observed to occur in the Coulomb gas representation of the minimal models [44] and
in [7] where two dimensional theories without conformal covariance were considered. It
would be interesting to know whether there exists, in some sense, a “quantum version”
of Goldstone’s theorem for spontaneously broken Hopf algebra symmetries.

In an earlier section we defined a twist operation (3.27) which bijectively maps
F̂ (O) into an algebraF̂ (O)T which commutes with all field operators localized in the
left spacelike complementWO

LL of O. With the notation introduced in this chapter this
operation can be written asFT =

∑
g γg(F )t U (g−1). One might wonder whether there

is a mapT̄ which achieves the same thing for the right spacelike complementWO
RR. If

the quantum symmetry were not spontaneously broken, such a map would be given by

F T̄ =
∑
g

αg(F )t V (g), (4.22)

where theV (g) are the projectors implementing the dualC(G) of the groupG. Using
the spacelike commutation relations and the propertyUO(g)V (h) = V (gh)UO(g) this
claim is easily verified.

In the discussion of the abelian case we have mentioned that one can construct, e.g.
by the method given in [15], local implementers of the dual groupĜ. For the quantum
doubleD(G) of a non-abelian groupG, however, which is not spanned by its grouplike
elements, another approach is needed.

Proposition 4.6. For every double coneO ∈ K there is a family of orthogonal projec-
tionsVO(g) fulfilling

VO(g)VO(h) = δg,h VO(g) ,
∑
g

VO(g) = 1, (4.23)

γg � F̂ (O) =
∑
h

VO(gh) · VO(h) (4.24)

and transforming correctly under the (unbroken) groupG,

U (g)VO(h)U (g)∗ = VO(ghg−1). (4.25)

Proof. In order to obtain operators with these properties we make use of the isomor-
phism, for every wedgeW , betweenF (W ) ∨ U (G)′′ and F (W ) oα G. We briefly
recall the construction of the crossed productM o G. It is represented on the Hilbert
spaceH̄ = L2(G,H) of square integrable functions fromG to H. The algebraM acts
according to (π(x)f )(g) = αg−1(x) f (g) whereas the groupG is unitarily represented
by (Ū (k)f )(g) = f (k−1g). With these definitions one can easily verify the equation
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Ū (k)π(x) Ū (k)∗ = π◦αk(x). If the groupG is finite one can furthermore define the pro-
jections (Ē(k)f )(g) = δg,k f (g) for which one obviously has̄U (g) Ē(k) = Ē(gk) Ū (g).
As already discussed above there is, as a consequence of the outerness of the action of
the group, an isomorphism between the algebrasM ∨ U (G)′′ andM oα G sending∑
g xg U (g) to

∑
g π(xg) Ū (g). As both algebras are of type III and live on separable

Hilbert spaces this isomorphism is unitarily implemented and can be used to pull back
the projectionsĒ(k) to the Hilbert spaceH, where we denote them byE(k). (E(e) is
nothing but the Jones projection in the extensionM2 of the inclusionM ⊂ M∨U (G)′′.)
Applying these considerations to the algebras of the wedgesWO

L andWO
R we obtain

the families of projectionsEO
L/R(k), satisfying

U (g)EO
L/R(k)U (g)∗ = EO

L/R(gk), (4.26)

which we use to define

VO(g) = Y O∗ (
∑
h

EO
R (gh) ⊗ EO

L (h))Y O. (4.27)

The properties (4.23) of orthogonality and completeness are obvious whereas covariance
(4.25) follows from (4.26) andU (k) = Y O∗ U (k) ⊗ U (k)Y O as follows:

AdU (k)(VO(g)) = Y O∗ (
∑
h

EO
R (kgh) ⊗ EO

L (kh))Y O

= Y O∗ (
∑
h

EO
R (kgk−1h) ⊗ EO

L (h))Y O (4.28)

= VO(kgk−1).

It remains to show the implementation property (4.24). Using the fact that
EO
L (g) F (WO

L )EO
L (h) = {0} if g 6= h and F̂ (O) ∼= F (WO

R ) ∨ U (G)′′ ⊗ F (WO
L )

we obtain

Y O
∑
h

VO(gh) F̂ VO(h)Y O∗

=
∑
h,k,l

EO
R (ghk) ⊗ EO

L (k)F1 ⊗ F2E
O
R (hl) ⊗ EO

L (l)

=
∑
h,k

EO
R (ghk) ⊗ EO

L (k)F1 ⊗ F2E
O
R (hk) ⊗ EO

L (k)

= (
∑
h

EO
R (gh)F1E

O
R (h)) ⊗ (

∑
k

EO
L (k)F2E

O
L (k))

=
∑
h

EO
R (gh)F1E

O
R (h) ⊗ F2, (4.29)

where we have written (abusively)F1 ⊗F2 for Y O F̂ Y O∗. Since we have
∑
hE

O
R (gh)

U (k)EO
R (h) = δg,kU (k) it is clear that the above map projectsF̂ (O) ontoF (O)UO

L (g),
thus implementing the restriction ofγg to F̂ (O). �

Remark.It should be remarked that the simpler definitionṼO(g) = Y O∗(EO
R (g)⊗1)Y O,

which also satisfies (4.24), does not lead to a representation ofD(G) as theseVO ’s do
not transform according to the adjoint representation (4.25).
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4.4. Spectral properties.The above discussion was to a large extent independent of the
quantum field theoretic application insofar as the action of the quantum double on a
certain class of *-algebras was concerned. As we have seen, any *-algebra which is at
the same time acted upon by a finite groupG and graded byG supports an action of the
double provided the relation (4.8) holds. The converse is also true. LetM be a *-algebra
on which the double acts. ThenMg = γg(M) induces aG-grading satisfying (4.8). It
may however happen thatMg = {0} for g in a normal subgroup. This possibility can
be eliminated by demanding the existence of a unitary representation ofG in M : G 3
g 7→ U (g) ∈ Mg. In the situation at hand this condition is fulfilled by construction.

We now turn to the spectral properties of the action of the double. To this purpose
we introduce the following notion [62], already encountered implicitly in the proof of
Prop. 3.17.

Definition 4.7. A normclosed linear subspaceT of a von Neumann algebraM is called
a Hilbert space inM if x∗x ∈ C1 for all x ∈ T andx ∈ M andxa = 0 ∀a ∈ T
impliesx = 0.

The name is justified as〈x, y〉1 = x∗y defines a scalar product inT . One can thus choose
a basisψi, i = 1, . . . , dT satisfying the requirements (3.30, 3.31). The interest of this
definition stems from the following well known lemma, the easy proof of which we
omit.

Lemma 4.8. LetT be a finite dimensional Hilbert space inM globally invariant under
the actionγH ofH onM. A basis of the above type gives rise to a unitary representation
ofH according to

γa(ψi) =
d∑
i′=1

Di′i(a)ψi′ . (4.30)

Our aim will now be to show that the extended algebrasF̂ (O), O ∈ K in fact
contain such tensor multiplets for every irreducible representation ofD(G). In order
to do this we make use of the representation theory of the double developed in [20].
(D(G) being semisimple, every finite dimensional representation decomposes into a
direct sum of irreducible ones.) The (equivalence classes of) irreducible representations
are labeled by pairs (c, π), wherec ∈ C(G) is a conjugacy class andπ is an irreducible
representation of the normalizer groupNc. HereNc is the abstract group corresponding
to the mutually isomorphic normalizersNg for g ∈ c, already encountered in the remark
following Thm. 3.16. The representation ˆπ labeled by (c, π) is obtained by choosing an
arbitraryg0 ∈ c and inducing up from the representation

π̂(Vg Uh) = δg,g0 π(h) (4.31)

of the subalgebraBg0 of D(G) generated byV (g) , g ∈ G andU (h) , h ∈ Ng0. The
representation space of ˆπ(c,π) is thusV(c,π) = D(G) ⊗Bg0

Vπ. For a more complete
discussion we refer to [20] remarking only that ˆπ(c,π)(Vg Uh) = 0 if g 6∈ c.

Definition 4.9. The actionγ of a group or Hopf algebra on a von Neumann algebraM
is dominant iff the algebra of fixed points is properly infinite and the monoidal spectrum
of γ is complete, i.e. for every finite dimensional unitary representationπ of the group
or Hopf algebra, respectively, there is aγ-invariant Hilbert spaceT in M such that
γ � T is equivalent toπ.
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Proposition 4.10. LetM̂ be a von Neumann algebra supporting an action of the quan-
tum doubleD(G). Assume further that there is a unitary representation ofG in M̂, where
Ū (g) ∈ M̂g andαh(Ū (g)) = Ū (hgh−1). Then the action ofD(G) onM̂ is dominant if
and only if the action ofG onM = γe(M̂) is dominant.

Proof. As a consequence ofMG = M̂D(G) the conditions of proper infiniteness of the
fixpoint algebras coincide. The “only if” statement is easily seen by considering the
representations of the double corresponding to the conjugacy classc = {e}. For these
Nc ∼= G holds, implying that the representations ofD(G) with c = {e} are in one-to-one
correspondence to the representations ofG. A multiplet in M̂ transforming according
to ({e}, π) is nothing but aπ-multiplet inM.

The “if” statement requires more work. We have to show that for every pair (c, π),
whereπ is an irreducible representation of the normalizerNc, there exists a multiplet
of isometries transforming according to ˆπ(c,π). To begin with, chooseg ∈ c arbitrarily
and find inM a multiplet of isometriesψi, i = 1, . . . , d = dim(π) transforming ac-
cording to the representationπ under the action ofNg ⊂ G. The existence of such a
multiplet follows from the dominance of the group action onM. Now, letx1, . . . , xn be
representatives of the cosetsG/Ng, wheren = [G : Ng] = |c|. Furthermore, the proper
infiniteness of the fixpoint algebra allows us to choose a familyV1, . . . , Vn of isometries
in MG = M̂D(G) satisfyingV ∗

i Vj = δi,j ,
∑
i ViV

∗
i = 1. Defining

9ij = Vi αxi (Ū (g)ψj), i = 1, . . . , n, j = 1, . . . , d (4.32)

one verifies that the9ij constitute a complete family of mutually orthogonal isometries
spanning a vectorspace of dimensionnd = dim(π̂(c,π)). That this space is mapped into
itself by the action of the double follows from the fact that, for everyk ∈ G, k xi can
uniquely be written asxj h, h ∈ Ng. Finally, the multiplet transforms according to the
representation (c, π) of D(G), which is evident from the definition of the latter in [20,
(2.2.2)]. �

Remark.Since in our field theoretic application the conditions of the proposition are
satisfied thanks to Lemma 3.14 and the discussion in Subsect. 4.2 we can conclude that
F̂ (O), O ∈ K has fullD(G)-spectrum.

4.5. Commutation relations and statistics.Up to this point our investigations in this
section have focused on the local inclusionA(O) ⊂ F̂ (O) for any fixed double cone
O. Having clarified the relation between these algebras in terms of the action of the
quantum double we can now complete our discussion of the latter. To this purpose we
recall that the double construction has been introduced in [30] as a means of obtaining
quasitriangular Hopf algebras (quantum groups) in the sense defined there, i.e. Hopf
algebras possessing a “universal R-matrix,” cf. Appendix A. As it turns out the latter
appears very naturally in our approach when considering the spacelike commutation
relations of irreducibleD(G)-multiplets as defined in the preceding subsection.

Proposition 4.11. Assume the netO 7→ F (O) is bosonic, i.e. fulfills untwisted local-
ity. Let O2 < O1 and ψ1

i , i = 1, . . . , d1 and ψ2
j , j = 1, . . . , d2 beD(G)-tensors in

F̂ (O1), F̂ (O2), respectively. They then fulfill C-number commutation relations

ψ1
i ψ

2
j =
∑
i′j′

ψ2
j′ ψ1

i′ (D1
i′i ⊗D2

j′j)(R), (4.33)
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whereD1, D2 are the matrices of the respective representations ofD(G) and

R =
∑
g∈G

Vg ⊗ Ug ∈ D(G) ⊗D(G). (4.34)

Proof. The equation
∑
g Vg = 1 in D(G) implies

∑
g γg = id. We can thus compute

ψ1
i ψ

2
j =

∑
g∈G

γg(ψ
1
i )ψ

2
j =

∑
g∈G

αg(ψ
2
j ) γg(ψ

1
i ) (4.35)

=
∑
g∈G

∑
i′j′

ψ2
j′ ψ1

i′ D
2
j′j(Ug)D

1
i′i(Vg),

where the second identity follows fromγg(ψ1
i ) ∈ F (O1)UO1

L (g) andAdUO1
L (g) �

F̂ (O2) = αg. The rest is clear. �
Remarks.1. Commutation relations of the above general type have apparently first been
considered in [40]. For the special case ofZ(N ) order disorder duality they date back
at least to [66].
2. By this result the field extension of Definition 3.1 in conjunction with Thm. 4.4 may
be considered a local version of the construction of the double. (If we had used the
UO
R (g) we would have ended up withR−1 which would do just as well.)

3. If the netO 7→ F (O) is fermionic an additional sign± appears on the right-hand
side of (4.33) depending on the Bose/Fermi nature of the fields. Using the bosonization
prescription of the next section this sign can be eliminated.

We now turn to a discussion of the localized endomorphisms of the observable
algebraA which are implemented by the charged fields inF̂ as in [25]. Letψi, i =
1, . . . , dψ be a multiplet of isometries in̂F (O) transforming according to the irreducible
representationr of D(G). Then the map

ρ(·) =
dψ∑
i=1

ψi · ψ∗
i (4.36)

defines a unital *-endomorphism of̂F . The relative locality ofA and F̂ implies the
restriction ofρ to A to be localized inO in the sense thatρ(A) = A ∀A ∈ A(O′).
Furthermore,ρ mapsA(O1) into itself if O1 ⊃ O as follows from theD(G)-invariance
of ρ(x) for x ∈ A. (The conventional argument using duality would allow us only to
concludeρ(A(O1)) ⊂ Â(O1).)

Proposition 4.12. In restriction toA(O1), O1 ⊃ O the endomorphismρ is irreducible.

Proof. The proof is omitted as it is identical to the proof of [54, Prop. 6.9], where
compact groups are considered. �

Remarks.1. In application to the netÂ the endomorphismsρ are localized only in
wedge regions, i.e. they are of solitonic character.
2. Due to the spontaneous breakdown of the quantum symmetry the endomorphismsρ
which arise from non-group representations ofD(G) should not be considered as true
superselection sectors of the netA � H0. This would be justified if the symmetry were
unbroken. Nevertheless, one can analyze their statistics, as will be done in the rest of
this subsection.
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Whereas the endomorphismsρ defined above need not be invertible one can always
find left inverses [21]φ such thatφ ◦ ρ = id. Forρ as defined by (4.36) the left inverse
is easily verified to be given by

φρ =
1
dψ

dρ∑
i=1

ψ∗
i · ψi. (4.37)

In order to study the statistics of endomorphisms one introduces [23, 35] the statistics
operators

ε(ρ1, ρ2) = U∗
2 ρ1(U2) ∈ (ρ1ρ2, ρ2ρ1), (4.38)

whereU2 is a charge transporter intertwiningρ2 andρ̃2, the latter being localized in the
left spacelike complement of the localization region ofρ1. Such an intertwiner is given
byU2 =

∑
i ψ̃

2
iψ

2∗
i ∈ FG = A, whereψ̃i is a multiplet inF̂ (Õ), Õ < O1 transforming

according the same representation ofD(G) asψi, such thatU2 is D(G)-invariant and
thus inA.

Lemma 4.13. Letψ1
i ∈ F̂ (O1), i = 1, . . . , d1 andψ2

j , j = 1, . . . , d2 beD(G)-multiplets
corresponding to the representationsD1, D2 and letρ1, ρ2 be the associated endomor-
phisms. Then the statistics operator is given by

ε(ρ1, ρ2) =
∑
ijkl

ψ2
i ψ

1
l ψ

2∗
j ψ1∗

k (D1
lk ⊗D2

ij)(R). (4.39)

The statistics parameter [21] for the morphismρwhich is implemented by the irreducible
D(G)-tensorψi, i = 1, . . . , dψ is

λρ =
ωρ
dρ
, (4.40)

with dρ = dψ andDlj(X) = δlj ωρ, whereX =
∑
g Vg Ug is a unitary element in the

center ofD(G).

Proof. With U2 =
∑
i ψ̃

2
iψ

2∗
i we have

ε(ρ1, ρ2) =
∑
ijk

ψ2
i ψ̃

2∗
i ψ1

j ψ̃
2
kψ

2∗
k ψ1∗

j . (4.41)

Then (4.39) follows by an application of (4.33) toψ1
j and ψ̃2

k and appealing to the
orthogonality relationψ̃2∗

i ψ̃
2
j = δij1. With the identificationψ1 = ψ2 = ψ in (4.39),

(4.37) and using once more the orthogonality relation we compute the statistics parameter
as follows:

λρ 1 = φρ(ερ,ρ) =
1
dψ

∑
ijl

ψl ψ
∗
j (Dli ⊗Dij)(R) =

1
dψ

∑
jl

ψl ψ
∗
j Mlj , (4.42)

where
Mlj =

∑
i

(Dli ⊗Dij)(R) = Dlj(
∑
g

Vg Ug). (4.43)

An easy calculation shows thatX =
∑
g Vg Ug is a unitary element in the center of

D(G) such that it is represented by a phase times the unit matrix in the irreducible
representationD: Mlj = δlj ω, ω ∈ S1. �
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Remarks.1. The statistical dimension of the sectorρ, defined asdρ = |λρ|−1 coincides
with the dimension of the corresponding representation of the quantum double. This was
to be expected and is in accord with the fact [55] that the action of finite dimensional
Hopf algebras cannot give rise to non-integer dimensions.
2. Recalling Lemma 4.8 we see that in restriction to a field operator in a multiplet
transforming according to the irreducible representationr the action ofγX amounts
to multiplication byωr. The unitaryX ∈ D(G) may thus be interpreted as the quan-
tum double analogue of the group elementk which distinguishes between bosons and
fermions. This is reminiscent of the notion of ribbon elements in the framework of quan-
tum groups, see Appendix A. In fact, the operatorX defined above is just the inverse of
Drinfel’d’s u =

∑
g Vg Ug−1 which itself is a ribbon element due toS(u) = u.

3. Appealing to the representation theory ofD(G) as expounded in [20] it is easy to
compute the phaseωr for the representationr = (c, π). It is given by the scalar to which
g ∈ c, obviously being contained in the center of the normalizerNg, is mapped by the
irreducible representationπ ofNg. As an immediate consequence [19]ωr is annth root
of unity wheren is the order ofg.

We now turn to the calculation of the monodromy operator

εM (ρ1, ρ2) = ε(ρ1, ρ2) ε(ρ2, ρ1), (4.44)

which measures the deviation from permutation group statistics and of thestatistics
characters[58]

Yij 1 = didj φi(εM (ρi, ρj)
∗). (4.45)

In the latter expressionρi, ρj are irreducible morphisms such that the right-hand side is a
C-number sinceφi(εM (ρi, ρj)∗) is a selfintertwiner ofρj and due to the irreducibility of
the latter, cf. Prop. 4.12.) We thus obtain a square matrix of complex numbers indexed by
the superselection sectors, i.e. in our case the irreducible representations of the quantum
doubleD(G).

Proposition 4.14. In terms of the fields the monodromy operator is given by

εM (ρ1, ρ2) =
∑
ijkl

ψ2
i ψ

1
j ψ

1∗
k ψ2∗

l (D1
jk ⊗D2

il)(I), (4.46)

where
I = Rσ(R). (4.47)

The statistics characters are given by

Yij = (tri ⊗ trj) ◦ (Di ⊗Dj)(I∗). (4.48)

Proof. Inserting the statistics operators according to (4.39) and using twice the orthog-
onality relation we obtain

εM (ρ1, ρ2) =
∑
ijkl
k′l′

ψ2
i ψ

1
j ψ

1∗
k′ ψ2∗

l′ (D1
jl ⊗D2

ik)(R) (D2
kl′ ⊗D1

lk′ )(R). (4.49)

The numerical factor to the right (including the summations overk, l) can be simplified
to
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∑
g,h∈G

D1
jk′ (Vg Uh)D2

il′ (Ug Vh) = (D1
jk′ ⊗D2

il′ )(I). (4.50)

Omitting the primes onk′, l′ we obtain (4.46). The formula (4.48) follows in analogy to
the computation ofλρ from (4.46), (4.37) andYij ∝ 1. �

Remark.I = Rσ(R) can be considered as the quantum group version of the monodromy
operator.

In [2] it was shown thatY is invertible, in fact 1
|G|Y is unitary. In conjunction

with the known facts concerning the representation theory one concludes [2] that the
quantum doubleD(G) is amodular Hopf algebrain the sense of [60]. We are now in
a position to complete our demonstration of the complete parallelism between quantum
group theory and quantum field theory (which we claim only for the quantum double
situation at hand!). What remains to be discussed is the Verlinde algebra structure [71]
behind the fusion of representations of the double and the associated endomorphisms of
F̂ , respectively. The fusion rules are said to be diagonalized by a unitary matrixS if

Nk
ij =

∑
m

Sim Sjm S
∗
km

S0m
. (4.51)

(For a comprehensive survey of fusion structures see [41].) One speaks of a Verlinde
algebra if, in addition,S is symmetric, there is a diagonal matrixT of phases satisfying
TC = CT = T (Cij = δi̄ is the charge conjugation matrix) andS andT constitute a
representation ofSL(2,Z) (in general not ofPSL(2,Z) = SL(2,Z)/Z2), i.e.

S2 = (ST )3 = C. (4.52)

On the one hand the representation categories of modular Hopf algebras are known [60]
to be modular, i.e. to satisfy (4.51) and (4.52), where the phases inT are given by the
values of the ribbon elementX in the irreducible representations.

On the other hand this structure has been shown [58] to arise from the superselection
structure ofeveryrational quantum field theory in 1 + 1 dimensions. In this framework
the phases inT are given by the phases of the statistics parameters (4.40), whereas the
matrixS arises from the statistics characters

T =

(
σ

|σ|

)1/3

Diag(ωi), S = |σ|−1 Y. (4.53)

For nondegenerate theories the numberσ =
∑
i ω

−1
i d2

i satisfies|σ|2 =
∑
i d

2
i . Using the

result [2]σ = |G| this condition is seen to be fulfilled, for the semisimplicity ofD(G)
gives

∑
i d

2
i = dim(D(G)) = |G|2.

We thus observe, for the orbifold theories under study, a perfect parallelism between
the general superselection theory [58] for quantum field theories in low dimensions and
the representation theory of the quantum double [20]. This parallelism extends beyond
the Verlinde structure. One observes, e.g., that Eqs. (2.4.2) of [20] and (2.30) of [58], both
stating that the monodromy operator is diagonalized by certain intertwining operators,
are identical although derived in apparently unrelated frameworks.
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5. Bosonization

In this section we will show how the methods expounded in the preceding sections can
be used to obtain an understanding of the Bose/Fermi correspondence in 1+1 dimensions
in the framework of local quantum theory. This is so say, we will show how one can pass
from a fermionic net of algebras with twisted duality to a bosonic net satisfying Haag
dualityon the same Hilbert space, and vice versa. Our method amounts to a continuum
version of the Jordan-Wigner transformation and is reminiscent of Araki’s approach to
the XY-model [4].

Our starting point is as defined in the introduction, i.e. a net of field algebras with
fermionic commutation relations (1.4) and twisted duality (1.11) augmented by the split
property for wedge regions introduced in Sect. 2. As before there exists a selfadjoint
unitary operatorV distinguishing between even and odd operators. For the present
investigations, however, the existence of further inner symmetries is ignored as they are
irrelevant for the spacelike commutation relations. Therefore we now repeat the field
extension of Sect. 3 replacing the groupG by the subgroupZ2 = {e, k}. This amounts
to simply extending the local algebras by the disorder operator associated with the only
nontrivial group elementk,

F̂ (O) = F (O) ∨ {V O}, (5.1)

whereV O = UO
L (k). Again, the assignmentO 7→ F̂ (O) is isotonous, i.e. a net. This

is of course the simplest instance of the situation discussed at the beginning of Sect. 4
where it was explained that there is an action of the dual groupĜ on the extended net.
We thus have an action ofZ2 × Z2 on the quasilocal algebrâF generated byα = AdV
andβ,

α(F +GV O) = F+ − F− + (G+ −G−)V O, (5.2)

β(F +GV O) = F −GV O, (5.3)

whereF,G ∈ F . We now defineF̃ (O) as the fixpoint algebra under thediagonalaction
α ◦ β = β ◦ α:

F̃ (O) = {x ∈ F̂ (O) | x = α ◦ β(x)}. (5.4)

ObviouslyF̃ (O) can be represented as the following sum:

F̃ (O) = F (O)+ + F (O)− V
O. (5.5)

It is instructive to comparẽF (O) with the twisted algebra

F (O)t = F (O)+ + F (O)− V, (5.6)

the only difference being that in the former expressionV O appears instead ofV . This
reflects just the difference between Jordan-Wigner and Klein transformations. It is well
known that the netF t is local relative toF . That the former cannot be local itself,
however, follows clearly from the fact that it is unitarily equivalent to the latter by
F (O)t = ZF (O)Z∗.

Lemma 5.1. LetWL andWR be left and right wedges, respectively. Then the wedge
algebras ofF̃ are given by

F̃ (WL) = F (WL), (5.7)

F̃ (WR) = F (WR)t. (5.8)

Wedge duality holds for the net̃F .
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Proof. V O is contained inF (WL)+ for anyO ⊂ WL. Thus,F (WL)− V O = F (WL)−,
whence the first identity. Similarly we haveV O

R ∈ F (WR)+ for O ∈ WR, from which
we obtainF (WL)− V O = F (WL)− V . Wedge duality forF̃ now follows immediately
from twisted duality forF . �

Proposition 5.2. The netO 7→ F̃ (O) is local.

Proof. Let O1,O2 be mutually spacelike double cones. We may assumeO1 < O2 such
thatWO1

L andWO2
R are mutually spacelike. The commutativity ofF̃ (O1) andF̃ (O1)

follows from the preceding lemma and twisted locality forF sinceO1 ⊂ WO1
L and

O2 ⊂ WO2
R . �

Remark.A more intuitive proof goes as follows. LetFi ∈ F (Oi)−, i = 1, 2. Then
commutingF1 V

O1 throughF2 V
O2 gives exactly two factors of−1. The first arises

fromF1F2 = −F2F1 and the other fromV O2F1 = −F1V
O2, whereasV O1F2 = F2V

O1.

Proposition 5.3. The netF̃ fulfills Haag duality for double cones.

Proof. We have to proveF̃ (O) = F̃ (WO
L ) ∧ F̃ (WO

L ). Using the lemma the right-hand
side is seen to equalF (WO

L ) ∧ F (WO
R )t which by (2.20) is unitarily equivalent to

F (WO
R )t ⊗ F (WO

L ). On the other hand (2.22) leads to

F̃ (O) = F (O)+ + F (O)− V
O

∼= F (WO
R )+ ⊗ F (WO

L )+ + F (WO
R )− V ⊗ F (WO

L )−
+ [F (WO

R )− ⊗ F (WO
L )+ + F (WO

R )+ V ⊗ F (WO
L )−] V ⊗ 1

= F (WO
R )t ⊗ F (WO

L ), (5.9)

which completes the proof. �

It is obvious that the net̃F is Poincaŕe covariant with respect to the original represen-
tation ofP. Finally, the groupG acts onF̃ via the adjoint representationg 7→ AdU (g).
In particularAdU (k) = AdV acts trivially on the first summand of the decomposition
(5.5) and by multiplication with−1 on the second, i.e. the bosonized theory carries an
action ofZ2 in a natural way.

It should be clear that the same construction can be used to obtain a twisted dual
fermionic net from a Haag dual bosonic net with aZ2 symmetry. It is not entirely
trivial that these operations performed twice lead back to the net one started with, as the
operatorsV O constructed with the original and the bosonized net might differ. That this
is not the case, however, can be derived from Lemma 5.1, the easy argument is left to
the reader.

6. Conclusions and Outlook

In this final section we summarize our results and relate them to some of those in
the literature. Starting from a local quantum field theory in 1 + 1 dimensions with an
unbrokengroup symmetry we have discussed disorder operators which implement a
global symmetry on some wedge region and commute with the operators localized in
the spacelike complement of a somewhat larger wedge. Whereas disorder operators
are only localized in wedge regions, they can in a natural way be associated to the
bounded region where the interpolation between the global group action and the trivial
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action takes place. Extending the local algebrasF (O) of the original theory by the
disorder operators corresponding to the double coneO gives rise to a nonlocal net̂F
which is uniquely defined. We have shown that for every quantum field theory fulfilling
a sufficiently strong version of the split property disorder operators exist and can be
chosen such as to transform nicely under the global group action. As a consequence,
the extended theory supports an action of the quantum doubleD(G) which, however,
is spontaneously broken in the sense that only the subalgebraCG is implemented by
operators on the Hilbert space. Nevertheless, all other aspects of the quantum symmetry,
like R-matrix commutation relations and the Verlinde algebra, show up and correspond
nicely to the structures expected due to the general analysis [35, 58]. The spontaneous
breakdown of the quantum symmetry is in accord with the findings of [50] where it was
argued (in the case of a cyclic groupZ(N )) that the vacuum expectation values of order
and disorder variables can vanish jointly, as they must in the case of unbroken quantum
symmetry, only if there is no mass gap. Massless theories are, however, ruled out by the
postulate of the split property for wedges upon which our analysis hinges.

The fact that in the situation studied in this paper “one half” of the quantum double
symmetry is spontaneously broken hints at an alternative construction which we describe
briefly. Given a local net ofC∗-algebras with group symmetry there may of course
be vacuum states which arenot gauge invariant. Let us assume thatωe is such that
ωg = ωe◦αg 6= ωe ∀g 6= e, i.e. the symmetry is completely broken. One may now consider
the reducible representation⊕gπg of F on the Hilbert spacêH = L2(G,H), whereπg is
the GNS-representation corresponding to a soliton state which connects the vacuaωe and
ωg. The existence of such states follows from the same set of assumptions as was used in
the present investigation [63]. Again, one can construct operatorsUO(g) enjoying similar
algebraic properties as the disorder operators appearing in this paper. Their interpretation
is different, however, in that they are true soliton operators intertwining the vacuum
representation and the soliton sectors. Extending the local algebras according to (3.1)
gives rise to a field net̂F which acts irreducibly onĤ. The details of the construction
outlined above, which is complementary in many ways to the one studied in the present
work, will be given in a forthcoming publication. In the solitonic variant there is also
an action of the quantum doubleD(G), where the action ofC(G) is implemented in the
obvious way, whereas the group symmetry is spontaneously broken.

Although the split property for wedges should be satisfied by reasonable massive
quantum field theories it definitely excludes conformally invariant models, which via
[19, 20] provided part of the motivation for the present investigation. Concerning this
somewhat disturbing point we confine ourselves to the following remarks. It is well
known that quantum field theories in 1 + 1 dimensions, like theP(φ)2 models, possess
a unique symmetric vacuum for some range of the parameters whereas spontaneous
symmetry breakdown and vacuum degeneracy occur for other choices. The construction
sketched above shows that the algebraic structure of order/disorder duality is the same
in both massive regimes. It is furthermore known that theP(φ)2 theory with interaction
λφ4 − δφ2 possesses a critical point at the interface between the symmetric and broken
phases. Unfortunately, little is rigorously known about the possible conformal invariance
of the theory at this point. The case of conformal invariance is quite different anyway,
for Haag duality of the netF and of the fixpoint netA are compatible in contrast to the
massive case.

In the framework of lattice models things are easier as the local degrees of freedom
are amenable to more direct manipulation. The authors of [67] considered a class of
models where the disorder as well as the order operators were explicitly defined by
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specifying their action on the Hilbert space associated to a finite region. They then
had to assume the existence of a vacuum state which is invariant under the action of
the quantum double. In his approach [4] to the XY-model Araki similarly defines an
automorphism of the algebra of order variables which is localized in a halfspace and
then constructs the crossed product. In the continuum solitonic automorphisms can be
defined for some models [39], but for a model independent analysis there seems to be
no alternative to our abstract approach.

As to the interpretation of the structures found in the present work and outlined
above, we have already remarked that they may be considered as a local version of the
construction of the quantum double. The quantum double was invented by Drinfel’d
as a means to obtain quasitriangular Hopf algebras, and in [59] it was shown to be
“factorizable,” see Appendix A. Furthermore, every finite dimensional factorizable Hopf
algebra can be obtained as a quotient of a quantum double by a two-sided ideal. One
may therefore expect that quantum doubles will play an important role in an extension
of the constructions in [28] to low dimensional theories.

A. Quantum Groups and Quantum Doubles

A Hopf algebra is an algebraH which at the same time is a coalgebra, i.e. there are
homomorphisms1 : H → H ⊗H andε : H → C satisfying

(1 ⊗ id) ◦ 1 = (id ⊗ 1) ◦ 1, (A.1)

(ε⊗ id) ◦ 1 = (id ⊗ ε) ◦ 1 = id, (A.2)

with the usual identificationH ⊗ C = C ⊗H = H. Furthermore, there is an antipode,
i.e. an antihomomorphismS : H → H for which

m ◦ (S ⊗ id) ◦ 1 = m ◦ (id ⊗ S) ◦ 1 = ε(·)1, (A.3)

wherem : H ⊗H → H is the multiplication map of the algebra.

Remark.By (A.2) the counit, which is simply a one dimensional representation, is the
“neutral element” with respect to the comultiplication.

For the quantum doubleD(G) defined in Definition 4.1 these maps are given by

ε(V (g)U (h)) = δg,e, (A.4)

1(V (g)U (h)) =
∑
k

V (hk)U (h) ⊗ V (k−1)U (h), (A.5)

S(V (g)U (h)) = V (h−1g−1h)U (h−1) (A.6)

on the basis{V (g)U (h) g, h ∈ G} and extended toD(G) by linearity.
A Hopf algebraH is quasitriangular, or simply a quantum group, if there is an

elementR ∈ H ⊗H satisfying

1′(·) = R1(·)R−1, (A.7)

where1′ = σ ◦ 1 with σ(a⊗ b) = b⊗ a and



172 Michael Müger

(1 ⊗ id)(R) = R13R23, (A.8)

(id ⊗ 1)(R) = R13R12. (A.9)

HereR12 = R ⊗ 1, R23 = 1 ⊗ R andR13 = (id ⊗ σ)(R ⊗ 1). As a consequence,R
satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12. (A.10)

It is easy to verify that the R-matrix (4.34) satisfies these requirements.

Remark.As shown by Drinfel’d, for quantum groups the square of the antipode is inner,
i.e.S2(a) = uau−1, whereu is given byu = m◦ (S⊗ id)◦σ(R). The operatoru satisfies
ε(u) = 1, 1(u) = (σ(R)R)−1 (u ⊗ u) = (u ⊗ u)(σ(R)R)−1. For quantum doubles of
finite groups the antipode is even involutive (S2 = id, equivalentlyu is central). This
holds for all finite dimensional Hopf-* -algebras, whether quantum groups or not.

A quantum group is calledfactorizable[59] if the mapH∗ → H given byH∗ 3 x 7→
〈x⊗ id, I〉 is nondegenerate, whereI is as in (4.47). Quantum doubles are automatically
factorizable.

A quasitriangular Hopf algebra possessing a (non-unique) central elementv satisfy-
ing the conditions

v2 = uS(u), ε(v) = 1, S(v) = v, (A.11)

1(v) = (σ(R)R)−1 (v ⊗ v), (A.12)

whereu is the operator defined in the above remark, is called aribbon Hopf algebra
[60].

Finally,modular Hopf algebrasare defined by some restrictions on their representa-
tion structure, the most important of which is the nondegeneracy of the matrixY defined
in (4.48). Obviously, the conditions of factorizability and modularity are strongly related.

B. Generalization to Continuous Groups

In this appendix we will generalize our considerations on quantum double actions to
arbitrary locally compact groups (the quantum field theoretic framework gives rise only
to compact groups.) In Sect. 4 we identified von Neumann algebras acted upon by the
doubleD(G) of a finite group with von Neumann algebras which are simultaneously
graded by the group and automorphically acted upon by the latter, satisfying in addition
the relation (4.8). The concept of group grading, however, loses its meaning for con-
tinuous groups. This problem is solved by appealing to the well known fact (see e.g.
the introduction to [52]) that an algebraA (von Neumann or unitalC∗) graded by a
finite groupG is the same as an algebra with a coaction of the group. A coaction is a
homomorphismδ fromA intoA⊗ CG satisfying

(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ, (B.1)

whereδG : CG → CG⊗CG is the coproduct given byg 7→ g⊗g. The correspondence
between these notions is as follows. Given aG-graded algebraA = ⊕gAg, AgAh ⊂ Agh
and definingδ(x) = x ⊗ g for x ∈ Ag, one obtains a coaction. The converse is also
true. The relationαg(Ah) = Aghg−1 between the group action and the grading obviously
translates to
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δ ◦ αg = (αg ⊗Ad g) ◦ δ. (B.2)

The concept of coaction extends to continuous groups, where the group algebraCG
is replaced by the von Neumann algebraL(G) (here we will treat only quantum double
actions on von Neumann algebras) of the left regular representation which is generated
by the operators (λ(g)ξ)(h) = ξ(g−1h) on the Hilbert spaceL2(G).

In the next step we give a precise definition of the double of a continuous group.
To this purpose we have to put a topology on the crossed product of some algebra
of functions on the group by the adjoint action of the latter. There are many ways of
doing this, as is generally the case with infinite dimensional vector spaces. For compact
Lie groups two different constructions, one of which appears to generalize to arbitrary
compact groups, have been given in [10]. The most important virtue of this work is that
the topological Hopf algebras obtained there are reflexive as topological vector spaces,
making the duality betweenD(G) andD(G)∗ very explicit. From the technical point
of view, however, the Fŕechet topologies on which this approach relies are not very
convenient.

In the following we will define the quantum double in the framework of Kac algebras
[32, 33]. The latter has been invented as a generalization of locally compact groups which
is closed under duality. As theC∗ and von Neumann versions of Kac algebras have been
proved [33] equivalent (generalizing the equivalence between locally compact groups
and measurable groups) it is just a matter of convenience which formulation we use. We
therefore consider first the von Neumann version which is technically easier.

We start with the von Neumann algebraM = L∞(G) of essentially bounded mea-
surable functions acting on the Hilbert spaceH = L2(G) by pointwise multiplication.
With the coproduct0(f )(g, h) = f (gh) and the involutionκ(f )(g) = f (g−1) it is a
coinvolutive Hopf von Neumann algebra. This means0 is a coassociative isomorphism
of M intoM ⊗M , κ is an anti-automorphism (complex linear, antimultiplicative and
κ(x∗) = κ(x)∗) and0 ◦ κ = σ ◦ (κ ⊗ κ) ◦ 0 holds whereσ is the flip. The weightϕ,
defined onM+ byϕ(f ) =

∫
G
dg f (g), is normal, faithful, semifinite (n.f.s.) and fulfills

1. For allx ∈ M+ one has (ı⊗ ϕ)0(x) = ϕ(x)1.
2. For allx, y ∈ nϕ one has (ı⊗ ϕ)((1 ⊗ y∗)0(x)) = κ((ı⊗ ϕ)(0(y∗)(1 ⊗ x))).
3. κ ◦ σϕt = σϕ−t ◦ κ ∀t ∈ R.

This makes (M,0, κ, ϕ) a Kac algebra in the sense of [32], well known asKA(G). The
dual Kac algebra [32] ofKA(G) isKS(G) = (L(G), 0̂, κ̂, ϕ̂), the von Neumann algebra
of the left regular representation equipped with the coproduct0̂(λ(g)) = λ(g) ⊗ λ(g),
the coinvolution ˆκ(λ(g)) = λ(g−1) and the weight ˆϕwhich we do not bother to state (see
e.g. [47]).

Defining now an action ofG onM by the automorphismsαg(f )(h) = f (g−1hg)
it is trivial to check weak continuity with respect tog. Furthermore,αg is unitarily
implemented byug = λ(g)ρ(g), where (ρ(g)ξ)(h) = 1(g)1/2ξ(hg) is the right regular
representation. We can thus consider the crossed product (in the usual von Neumann
algebraic sense [70])̃M = M oα G onH ⊗ L2(G) (= L2(G) ⊗ L2(G)), generated by
π(M ) andλ1(g) = 1M ⊗ λ(g), g ∈ G.

Proposition B.1. There are mappings̃0, κ̃, ϕ̃onM̃ such that the quadruple(M̃, 0̃, κ̃, ϕ̃)
is a Kac algebra, which we call the quantum doubleD(G). On the subalgebrasπ(M )
andλ1(G)′′ = 1M ⊗ L(G) the coproduct and the coinvolution act according to

0̃(π(x)) = (π ⊗ π)(0(x)), κ̃(π(x)) = π(κ(x)), x ∈ M, (B.3)

0̃(λ1(g)) = λ1(g) ⊗ λ1(g), κ̃(λ1(g)) = λ1(g−1), g ∈ G. (B.4)
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The Haar weightϕ̃ is given by the dual weight [47]

ϕ̃ = ϕ ◦ π−1 ◦ (ıM̃ ⊗ ϕ̂)(δ̃(x)), (B.5)

whereδ̃ is the dual coaction fromM̃ to M̃ ⊗ L(G) which acts according to

δ̃(π(x)) = π(x) ⊗ 1L(G), x ∈ M, (B.6)

δ̃(λ1(g)) = λ1(g) ⊗ λ(g), g ∈ G. (B.7)

Proof. The automorphismsαg ofM are easily shown to satisfy0 ◦αg = (αg ⊗αg) ◦ 0

andκ ◦ αg = αg ◦ κ. (The first identity is justg−1(hk)g = (g−1hg)(g−1kg), the second
(g−1hg)−1 = g−1h−1g.) Thusα : G → AutM constitutes an action ofG on the Kac
algebra (M,0, κ, ϕ) in the sense of [17]. We can now apply [17, Thm. 1] to conclude
that there exist a coproduct, a coinvolution and a Haar weight onM̃ such that the axioms
of a Kac algebra are satisfied. Equations (B.3, B.4) are restatements of [17, Props. 3.1,
3.3] whereas the Haar weight is as in [17, Déf. 1.9]. �

Proposition B.2. The dual Kac algebra of the quantum double iŝD(G) = (L(G) ⊗
L∞(G), ˆ̃0, ˆ̃κ, ϕ̂⊗ ϕ). The coproduct and the counit are

ˆ̃0(x) = R (1 ⊗ σ ⊗ 1) (0̂ ⊗ 0)(x) (1 ⊗ σ ⊗ 1)R∗, (B.8)
ˆ̃κ(x) = V ∗ (κ̂⊗ κ)(x)V, (B.9)

whereR andV are given by

(Rξ)(g, h) = (uh ⊗ 1) ξ(g, h), (B.10)

(V ξ)(g) = ug ξ(g). (B.11)

Proof. This is just the specialization of [17, Thm. 2] to the situation at hand. According
to this theorem the von Neumann algebra underlying the dual of the crossed product
Kac algebraK oα G is M̂ ⊗ L∞(G), whereM̂ is the von Neumann algebra of̂K. In
our caseM = L∞(G) such thatM̂ = L(G). The formulae for̂̃0 and ˆ̃κ are stated in [17,
Prop. 4.10]. �

Remark.If the groupG is not finite the quantum double is neither compact nor discrete,
for the weights ˜ϕ, ˆ̃ϕ = ϕ̂⊗ ϕ are both infinite.

We are now in a position to define a coaction of the dual doublêD(G) on an algebra
A, providedA supports an actionα and a coactionδ satisfying (B.2) (withg replaced
by λ(g)). In order to remove the apparent asymmetry betweenα : A × G → A and
δ : A → A ⊗ L(G) we write the former as the homomorphismα : A → A ⊗ L∞(G)
which mapsx ∈ A into g 7→ αg(x) ∈ L∞(G,A). We now show that the mapsα andδ
can be put together to yield a coaction.

Definition B.3. The map1 : A → A⊗ L(G) ⊗ L∞(G) = A⊗ D̂(G) is defined by

1 = (ıA ⊗ σ) ◦ (α⊗ ıL(G)) ◦ δ, (B.12)

whereσ : x⊗ y 7→ y ⊗ x is the flip map fromL∞(G) ⊗ L(G) to L(G) ⊗ L∞(G).
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Theorem B.4. The map1 is a coaction ofD̂(G) onA, i.e. it satisfies

(1 ⊗ ıD̂) ◦ 1 = (ıA ⊗ ˆ̃0) ◦ 1. (B.13)

Proof. Appealing to the isomorphismA⊗L∞(G) ∼= L∞(G,A) we identifyA⊗L(G)⊗
L∞(G)⊗L(G)⊗L∞(G) withL∞(G×G,A⊗L(G)⊗L(G)). We compute (1⊗ı)◦1(x)
as follows (abbreviatingıL(G) by ıL)

((1 ⊗ ı) ◦ 1(x))(g, h) = (αg ⊗ ıL ⊗ ıL) ◦ (δ ⊗ ıL) ◦ (αh ⊗ ıL) ◦ δ(x)

= (αg ⊗ ıL ⊗ ıL) ◦ (αh ⊗Adλh ⊗ ıL) ◦ (δ ⊗ ıL) ◦ δ(x) (B.14)

= (ıA ⊗Adλh ⊗ ıL) ◦ (αgh ⊗ 0̂) ◦ δ(x).

The second equality follows from the connection (B.2) between the actionα and the
coactionδ whereas the third derives from the defining property (B.1) of the coaction0̂.
Now (αgh⊗ 0̂)◦δ(x) is seen to be nothing but [(1⊗σ⊗1) (0̂⊗0)(x) (1⊗σ⊗1)](g, h),
and the adjoint action ofR in (B.8) is seen to have the same effect asAd (ıA⊗Adλh⊗ıL)
due toρ(g) ∈ L(G)′. �

Proposition B.5. The fixpoint algebra under the coaction1, defined asA1 = {x ∈ A |
1(x) = x⊗ 1D̂}, is given by

A1 = Aα ∩Aδ, (B.15)

whereAα, Aδ are defined analogously.

Proof. Obvious consequence of Definition B.3. �

The coaction of the dual doublêD(G) onA constructed above is exactly the kind
of output the theory of depth-2 inclusions [55, 34] would give when applied to the
inclusionAD(G) ⊂ A, which in the quantum field theoretical application corresponds
to A(O) ⊂ F̂ (O). Nevertheless it is perhaps not exactly what one might have desired
from a generalization of the results of Sect. 4 to compact groups. At least to a physicist,
some kind of bilinear mapγ : A × D(G) → A, as it was defined above for finiteG,
would seem more intuitive. This map should be well defined on the whole algebraA.
Such a map can be constructed, provided the von Neumann doubleD(G) is replaced by
its C∗-variant, which is uniquely defined by the above mentioned results [5, 33]. The
details will be given in a subsequent publication.

The representation theory of the quantum double in the (locally) compact case was
studied in a recent preprint [51] of which I became aware after completion of the present
work. An application of the results expounded there in analogy to Sect. 4 should be
possible but is deferred for reasons of space.

C. Chiral Theories on the Circle

For the foregoing analysis in this chapter the split property for wedges was absolutely
crucial. While this property has been proved only for free massive fields it is expected
to be true for all reasonable theories with a mass gap. For conformally invariant theories
in 1 + 1 dimensions, however, it has no chance to hold. This is a consequence of the fact
that two wedgesW1 ⊂ W2 “touch at infinity.” More precisely, there is an element of the
conformal group transformingW1, W2 into double cones having a corner in common.
For such regions there can be no interpolating typeI factor, see e.g. [11]. On the other
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hand, for chiral theories on a circle, into which a 1+1 dimensional conformal theory
should factorize, an appropriate kind of split property makes sense. For a general review
of the framework, including a proof of the split property from the finiteness of the trace
of e−τL0, we refer to [42]. We restrict ourselves to a concise statement of the axioms.

For every intervalI on the circle such thatI 6= S1, there is a von Neumann algebra
A(I) on the common Hilbert spaceH. The assignmentI 7→ A(I) fulfills isotony and
locality:

I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2), (C.1)

I1 ∩ I2 = ∅ ⇒ A(I1) ⊂ A(I2)′. (C.2)

Furthermore, there is a strongly continuous unitary representation of the Möbius group
SU (1, 1) such thatαg(A(I)) = AdU (g)(A(I)) = A(gI). Finally, the generatorL0 of the
rotations is supposed to be positive and the existence of a unique invariant vector� is
assumed.

Starting from these assumptions one can prove, among other important results, that
the local algebrasA(I) are factors of typeIII1 for which the vacuum is cyclic and
separating. Furthermore, Haag duality [42] is fulfilled automatically:

A(I)′ = A(I ′). (C.3)

Given a chiral theory in its defining (vacuum) representationπ0 one may consider in-
equivalent representations. An important first result [13] states that all positive energy
representations are locally equivalent to the vacuum representation, i.e.π � A(I) ∼= π0 �
A(I) ∀I. This implies that all superselection sectors are of the DHR type and can be
analyzed accordingly [37, 36]. As a means of studying the superselection theory of a
model it has been proposed [64] to examine the inclusion

A(I1) ∨ A(I3) ⊂ (A(I2) ∨ A(I4))′ = A(I341) ∧ A(I123), (C.4)

whereI1,...,4 are quadrants of the circle andIijk = Ii ∪ Ij ∪ Ik:

&%
'$I1

I3

I2 I4

�

@

@

�
(C.5)

At least for strongly additive theories, whereA(I1) ∨ A(I2) = A(I) if I1 ∪ I2 = I, the
inclusion (C.4) is easily seen to be irreducible. In the presence of nontrivial superselection
sectors this inclusion is strict as the intertwiners between endomorphisms localized in
I1, I3, respectively, are contained in the larger algebra of (C.4) by Haag duality but not
in the smaller one. Furthermore, for rational theories the inclusion (C.4) is expected to
have finite index.

While we have nothing to add in the way of model independent analysis the tech-
niques developed in the preceding sections can be applied to a large class of interesting
models. These are chiral nets obtained as fixpoints of a larger one under the action of
a group. I. e. we start with a netI 7→ F (I) on the Hilbert spaceH fulfilling isotony
and locality, the latter possibly twisted. The Möbius groupSU (1, 1) and the groupG
of inner symmetries are unitarily represented with common invariant vector�. Again,
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the netF is supposed to fulfill the split property (with the obvious modifications due
to the different geometry). The netI 7→ A(I) is now defined byA(I) = F (I) ∧ U (G)′

andA(I) = A(I) � H0, whereH0 is the space of G-invariant vectors. The proof of Haag
duality for chiral theories referred to above applies also to the netA, implying that there
is no analogue of the violation of duality for the fixpoint net as occurs in 1+1 dimensions.
This is easily understood as a consequence of the fact that the spacelike complement of
an interval is again an interval, thus connected. However, our methods can be used to
study the inclusion (C.4).

It is clear that due to the split property

A(I1) ∨ A(I3) ∼= F (I1) ⊗ F (I3)G×G � H0 ⊗ H0. (C.6)

Our aim will now be to compute (A(I2)∨A(I4))′. In analogy to the 1+1 dimensional case
we use the split property to construct unitariesY1, . . . , Y4 : H → H ⊗H implementing
the following isomorphisms:

Yi FiF
t
i+2Y

∗
i = Fi ⊗ F ti+2 ∀Fi ∈ F (Ii). (C.7)

(One easily checks thatYi+2 = T Yi, whereT x ⊗ y = y ⊗ x.) These unitaries can in
turn be used to define local implementers of the gauge transformations

Ui(g) = Y ∗
i (U (g) ⊗ 1)Yi (C.8)

with the localizationUi(g) ∈ F (Ii+2)′. (The index arithmetic takes place modulo 4.)
These operators satisfy

AdUi(g) � F (Ii) = αg, (C.9)

[Ui(g), Ui+2(h)] = 0, (C.10)

Ui(g)Ui+2(g) = U (g). (C.11)

In a manner analogous to the proof of Lemma 3.9 one shows (Fi ≡ F (Ii) etc.)

(A2 ∨ A4)′ = (F2 ∨ F4)′ ∨ U2(G)′′ ∨ U4(G)′′. (C.12)

At this point we strengthen the property of Haag duality for the netF by requiring

(F1 ∨ F3)′ = (F2 ∨ F4)t, (C.13)

which by the above considerations amounts toF having no nontrivial superselection
sectors. This condition is fulfilled, e.g., by the CAR algebra on the circle which also
possesses the split property. The chiral Ising model as discussed in [9] is covered by our
general framework (with the groupZ2).

While (C.13) is a strong restriction it is the same as in [19] where the larger theory
was supposed to be “holomorphic.” At this place it might be appropriate to emphasize
that the requirement of (twisted) Haag duality (1.11) made above when considering 1+1
dimensional theories by no means excludes nontrivial superselection sectors.

Making use of (C.13) we can now state quite explicitly how (A2 ∨ A4)′ looks. In
analogy to Thm. 3.10 we obtain

(A2 ∨ A4)′ = m
(
F1 ∨ F3 ∨ U2(G)′′

)
� H0. (C.14)

Again, using (C.13) one can check thatα2(g) = AdU2(g) restrict to automorphisms of
F1 ∨ F3 rendering the algebraF1 ∨ F3 ∨ U2(G)′′ a crossed product. Recalling
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A1 ∨ A3 = m(F1) ∨m(F3) � H0, (C.15)

we have the following natural sequence of inclusions:

A1 ∨ A3 ⊂ m(F1 ∨ F3) � H0 ⊂ (A2 ∨ A4)′, (C.16)

both of which have index|G|. It is interesting to remark that the intermediate algebra
m(F1∨F3) � H0 equals (m(F2∨F4) � H0)′. For general chiral theories the existence of
such an intermediate subfactor betweenA1∨A3 and (A2∨A4)′ is not known. In the case
ofG being abelian where theUi(g) are invariant under global gauge transformations we
obtain a square structure similar to the one encountered in Sect. 3.:

A1 ∨ A3 ∨ U2(G)′′ ⊂ (A2 ∨ A4)′

∪ ∪
A1 ∨ A3 ⊂ m(F1 ∨ F3) � H0.

(C.17)

It may be instructive to compare the above result with the situation prevailing in 2+1
or more dimensions. There, as already mentioned in the introduction, the superselection
theory for localized charges is isomorphic to the representation theory of a (unique)
compact group. Furthermore, there is a net of field algebras acted upon by this group,
such that the observables arise as the fixpoints. The analogue of the inclusion (C.4) then
is

A(O1) ∨ A(O2) ⊂ A(O′
1 ∩ O′

2)′, (C.18)

whereO1, O2 are spacelike separated double cones. Under natural assumptions it can
be shown that the larger algebra equalsm(F (O1) ∨ F (O2)) � H0, implying that the
inclusion (C.18) is of the type (F1 ⊗ F2)G×G ⊂ (F1 ⊗ F2)Diag(G) just as the first one
in (C.16). That the index of the inclusion (C.4) is|G|2 instead of|G| as for (C.18) is a
consequence of the low dimensional topology comparable to the phenomena occurring
in 1 + 1 dimensions.

Acknowledgement.I am greatly indebted to K.-H. Rehren for his stimulating interest, many helpful discussions
and countless critical readings of the evolving manuscript. Special thanks are due to D. Buchholz for the proof
of Prop. 3.11.

Note added in proof.In Appendix C we claimed that the combination of Haag duality
and the split property for wedges is weaker than the requirement of absence of charged
sectors which was made in [19] where conformal orbifold theories were considered. After
submission of this paper we discovered that this claim is wrong! While this does not
affect any result of the present work it shows that the analysis of massive models based
on the former assumptions is even stronger related to the one in [19] than expected.
Furthermore, if the vacuum sector satisfies HD+SPW then Haag duality holds in all
irreducible locally normal representations. In particular, on can replace “simple sector”
by “irreducibleA-stable subspace ofH” in Thm. 3.10. The proofs as well as applications
to the theory of quantum solitons will be found in [56].

I thank Prof. B. Schroer for drawing my attention to [72], where massive quantum
field theories in 1 + 1 have been considered. In particular it has been shown that the
statistics of charged fields is arbitrary in the sense that the same particle states can be
created by Bose and by Fermi fields. Even though scattering theory aspects have not
been discussed in the present work, the cited result fits well with that of our Sect. 5.
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