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We show that a large class of massive quantum field theories in 1 + 1 dimensions,
characterized by Haag duality and the split property for wedges, does not admit locally
generated superselection sectors in the sense of Doplicher, Haag and Roberts. Thereby the
extension of DHR theory to 1 + 1 dimensions due to Fredenhagen, Rehren and Schroer is
vacuous for such theories. Even charged representations which are localizable only in wedge
regions are ruled out. Furthermore, Haag duality holds in all locally normal representations.
These results are applied to the theory of soliton sectors. Furthermore, the extension of
localized representations of a non-Haag dual net to the dual net is reconsidered. It must be
emphasized that these statements do not apply to massless theories since they do not satisfy
the above split property. In particular, it is known that positive energy representations of
conformally invariant theories are DHR representations.

1. Introduction

It is well known that the superselection structure, i.e. the structure of physically
relevant representations or “charges”, of quantum field theories in low dimensional
spacetimes gives rise to particle statistics governed by the braid group and is
described by “quantum symmetries” which are still insufficiently understood. The
meaning of “low dimensional” in this context depends on the localization properties
of the charges under consideration. In the framework of algebraic quantum field
theory [?, ?] several selection criteria for physical representations of the observable
algebra have been investigated. During their study of physical observables obtained
from a field theory by retaining only the operators invariant under the action of a
gauge group (of the first kind), Doplicher, Haag and Roberts were led to singling
out the class of locally generated superselection sectors. A representation is of this
type if it becomes unitarily equivalent to the vacuum representation when restricted
to the observables localized in the spacelike complement of an arbitrary double cone
(intersection of future and past directed light cones):
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T AO) 2w | AO) YOeK. (1.1)

Denoting the set of all double cones by K we consider a quantum field theory to be
defined by its net of observables K 3 O — A(O). This is a map which assigns to
each double cone a C*-algebra A(O) satisfying isotony:

01 C 0y = A01) C AO). (1.2)

This net property allows the quasilocal algebra to be defined by
[l

A= J A©0) (1.3)
OeK
The net is local in the sense that
[A(O1), A(O2)] = {0} (1.4)

if 01, Oy are spacelike to each other. The algebra A(G) associated with an arbitrary
subset of Minkowski space is understood to be the subalgebra of A generated (as a
C*-algebra) by all A(O) where G D O € K. Furthermore, the Poincaré group acts
on A by automorphisms ap , such that

arz(A(0)) = A(AO +z2) VO. (1.5)

This abstract approach is particularly useful if there is more than one vacuum.
One requires of a physically reasonable representation that at least the transla-
tions (Lorentz invariance might be broken) are unitarily implemented:

70 ag(A) = Ur(2)m(A)Ur (2)*, (1.6)

the generators of the representation z +— U(z), i.e. the energy-momentum
operators, satisfying the spectrum condition (positivity of the energy). Vacuum
representations are characterized by the existence of a unique (up to a phase)
Poincaré invariant vector. Furthermore we assume them to be irreducible and to
satisfy the Reeh—Schlieder property, the latter following from the other assumptions
if weak additivity is assumed. In the analysis of superselection sectors satisfying
(?7) relative to a fixed vacuum representation one usually assumes the latter to
satisfy Haag duality®

m0(A(0)) = m(A))" YO EeK, (1.7)

which may be interpreted as a condition of maximality for the local algebras.
In [?, 7], based on (?7?), a thorough analysis of the structure of representations
satisfying (??) was given, showing that the category of these representations

AM' ={X € B(H)|XY =Y XVY € M} denotes the algebra of all bounded operators commuting
with all operators in M. If M is a unital *-algebra then M’ is known to be the weak closure of

a M.
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together with their intertwiners is monoidal (i.e. there is a product or, according to
current fashion, fusion structure), rigid (i.e. there are conjugates) and permutation
symmetric. In particular, the Bose—Fermi alternative, possibly with parastatistics,
came out automatically although the analysis started from observable, i.e. strictly
local, quantities. A lot more is known in this situation (cf. [?]) but we will not
need that. A substantial part of this analysis, in particular concerning permuta-
tion statistics and the Bose—Fermi alternative, is true only in at least 2 4+ 1 space-
time dimensions. The generalization to 1 4+ 1 dimensions, where in general only
braid group statistics obtains, was given in [?] and applied to conformally invariant
theories in [?]. Whereas for the latter theories all positive energy representations
are of the DHR type [?], it has been clear from the beginning that the criterion (?7)
cannot hold for charged sectors in gauge theories due to Gauss’ law.

Implementing a programme initiated by Borchers, Buchholz and Fredenhagen
proved [?] for every massive one-particle representation (where there is a mass gap
in the spectrum followed by an isolated one-particle hyperboloid) the existence of
a vacuum representation my such that

T AC) = m [ AC) YC. (1.8)

Here the C’s are spacelike cones which we do not need to define precisely. In > 3+1
dimensional spacetime the subsequent analysis leads to essentially the same struc-
tural results as the original DHR theory. Due to the weaker localization properties,
however, the transition to braid group statistics and the loss of group symmetry
occur already in 2 + 1 dimensions, see [?]. In the 1 4+ 1 dimensional situation with
which we are concerned here, spacelike cones reduce to wedges (i.e. translates of
Wr = {z € R? | 21 > |29} and the spacelike complement Wy, = Wp). Fur-
thermore, the arguments in [?] allow us only to conclude the existence of two a
priori different vacuum representations 7/, & such that the restriction of 7 to left
handed wedges (translates of W) is equivalent to 7} and similarly for the right
handed ones. As for such representations, of course long well-known as soliton sec-
tors, an operation of composition can only be defined if the “vacua fit together”
[?], there is in general no such thing as permutation or braid group statistics. For
lack of a better name soliton representations with coinciding left and right vacuum,
i.e. representations which are localizable in wedges, will be called “wedge represen-
tations (or sectors)”.

There have long been indications that the DHR criterion might not be applicable
to massive 2d-theories as it stands. The first of these was the fact, known for some
time, that the fixpoint nets of Haag-dual field nets with respect to the action of a
global gauge group do not satisfy duality even in simple sectors, whereas this is true
in > 2+1 dimensions. This phenomenon has been analyzed thoroughly in [?] under
the additional assumption that the fields satisfy the split property for wedges. This
property, which is expected to be satisfied in all massive quantum field theories,
plays an important role also in the present work which we summarize briefly.
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In the next section we will prove some elementary consequences of Haag duality
and the split property for wedges (SPW), in particular strong additivity and the
time-slice property. The significance of our assumptions for superselection theory
derives mainly from the fact that they preclude the existence of locally generated
superselection sectors. More precisely, if the vacuum representation satisfies Haag
duality and the SPW then every irreducible DHR representation is unitarily equi-
valent to the vacuum representation. This important and perhaps surprising result,
to be proved in Sec. 3, indicates that the innocent-looking assumptions of the DHR
framework are quite restrictive when they are combined with the split property for
wedges. Although this may appear reasonable in view of the non-connectedness of
@', our result also applies to the wedge representations which are only localizable
in wedges provided left and right handed wedges are admitted. In Sec. 4 we will
prove the minimality of the relative commutant for an inclusion of double cone
algebras which, via a result of Driessler, implies Haag duality in all locally normal
irreducible representations. In Sec. 5 the facts gathered in the preceding sections
will be applied to the theory of quantum solitons thereby concluding our discussion
of the representation theory of Haag-dual nets. Summing up the results obtained so
far, the representation theory of such nets is essentially trivial. On the other hand,
dispensing completely with a general theory of superselection sectors including com-
position of charges, braid statistics and quantum symmetry for massive theories is
certainly not warranted in view of the host of more or less explicitly analyzed
models exhibiting these phenomena. The only way to accommodate these models
seems to be to relax the duality requirement by postulating only wedge duality. In
Sec. 6 Roberts’ extension of localized representations to the dual net will be recon-
sidered and applied to the theories considered already in [?], namely fixpoint nets
under an unbroken inner symmetry group. In this work we will not attempt to say
anything concerning the quantum symmetry question.

2. Strong Additivity and the Time-Slice Axiom

Until further notice we fix a vacuum representation 7y (which is always faithful)
on a separable Hilbert space Ho and omit the symbol mo(+), identifying A(O) =
mo(A(O)). Whereas we may assume the algebras A(Q), O € K to be weakly closed,
for more complicated regions X, in particular infinite ones like ', we carefully
distinguish between the C*-subalgebra

——1l
AX)=  |J  A©0) (2.1)

Oek,0cX

of A =my(A) and its ultraweak closure R(X) = A(X)".

Definition 2.1. An inclusion A C B of von Neumann algebras is standard [?]
if there is a vector {2 which is cyclic and separating for A, B, A’ A B.

Due to the Reeh—Schlieder property, the inclusion A(O;) C A(O2) (R(W7) C
R(W2)) is standard whenever O; CC Oy (Wy CC W), i.e. the closure of O is
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contained in the interior of Oy. (W7 CC W is equivalent to the existence of a
double cone O such that W73 UW3 = O'.)

Definition 2.2. An inclusion A C B of von Neumann algebras is split [?], if
there exists a type-I factor N such that A C N C B. A net of algebras satisfies
the split property (for double cones) [?] if the inclusion A(O;) C A(O2) is split
whenever @1 CC Os.

The importance of these definitions derives from the following result [?, ?]:

Lemma 2.3. Let A C B be a standard inclusion. Then the following are
equivalent:

(i) The inclusion A C B is split.
(ii) The is a unitary Y such that Y ab'Y* =a®V¥, a € AV € B'.

Remarks. 1. The implication (ii)=-(i) is trivial, an interpolating type-I factor
being given by N = Y*(B(Hy) ® 1)Y.

2. The natural spatial isomorphism A(O1) vV A(O2)" =2 A(O;) ® A(O2)" implied
by the split property whenever O; CC O3 clearly restricts to

A(01) VR(O)) = A(01) @ R(O). (2.2)

As an important consequence, every pair of normal states ¢1 € A(O1)s, P2 €
R(O4), extends to a normal state ¢ € (A(O1) V R(O})).. Physically this amounts
to a form of statistical independence between the regions Oy and O%.

3. We emphasize that in the case where Haag duality fails (A(O) C A(O")),
requiring (??) whenever O; CC Os defines a weaker notion of split property since
one can conclude only the existence of a type-I factor N such that A(O;) C N C
A0} = AY0,).

In 1+ 1 dimensions (and only there, cf. [?, p. 292]) the split property may be
strengthened by extending it to wedge regions. In this paper we will examine the
implications of the split property for wedges (SPW). The power of this assumption
in combination with Haag duality derives from the fact that one obtains strong
results on the relation between the algebras of double cones and of wedges. Some
of these have already been explored in [?], where, e.g., it has been shown that the
local algebras associated with double cones are factors. We recall some terminology
introduced in [?]: the left and right spacelike complements of O are denoted by
W, and WS, respectively. Furthermore, defining WP = W&’ and WS = W'
we have O = WP NWg.

Before we turn to the main subject of this section, we remark on the relation
between the two notions of Haag duality which are of relevance for this paper. In
[?], as apparently in a large part of the literature, it was implicitly assumed that
Haag duality for double cones implies duality for wedges, i.e.

RW) =RW') VWeW, (2.3)
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where W is the set of all wedge regions. Whereas there seems to be no general
proof of this claim, for theories in 1+ 1 dimensions satisfying the SPW we can give
a straightforward argument, thereby also closing the gap in [?]. In view of Remark 3
after Lemma ?7? the following definition of the split property for wedges is slightly
weaker than the obvious modification of Definition ??7, but seems more natural from
a physical point of view (cf. Remark 2):

Definition 2.4. A net of algebras satisfies the split property for wedges if the
map @y — a2y, ¢ € R(W1), y € R(W2) extends to an isomorphism between
R(W1) @ R(W2) and R(W1) V R(W2) whenever Wi CC Wj. By standardness this
isomorphism is automatically spatial in the sense of Lemma ?? (ii). In the case
where W; = WI(?L, Wy = WI({QR the canonical implementer [?] will be denoted Y ©.

Proposition 2.5. Let A(O) be a net of local algebras in 1 + 1 dimensions,
satisfying Haag duality (for double cones) and the SPW. Then A satisfies wedge
duality and the inclusion R(W1) C R(Wa) is split whenever Wi CC Wha.

Proof. Appealing to the definition (??), duality for double cones is clearly
equivalent to

AO)Y =R(W)VR(WER) YOeK. (2.4)

Given a right wedge W, let O;, i € N be an increasing sequence of double cones all
of which have the same left corner as W and satisfying U;O; = W. Then we clearly
have R(W) =V, A(0;) and

ROVY = NA©) = N\ (ROV) VRWER)) (2.5)

(3

Using the unitary equivalence Y01 R(W') V R(Weg) YO = R(W') @ R(Weh),
the right-hand side of (??) is equivalent to

A (R(W’) ® R(ng)) =R R /\ RWO) =R(W)@C1l,  (2.6)

where we have used the consequence /\iR(Wg ") = C1 of irreducibility. This clearly
proves R(W) = R(W'). The final claim follows from Lemma ?7?. O

Now we are prepared for the discussion of additivity properties, starting with
the easy

Lemma 2.6.
R(WEL) V A0) = R(WP), (2.7)
R(WSp) v A(0) = R(WE). (2.8)

Remark. Equivalently, the inclusions R(WS,) € R(WP), R(IWSR) C R(WE)

are normal.
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Proof. Under the unitary equivalence R(WS, )VR(WSR) = R(WE)@R(WER)
we have R(WZ,) = R(WE,) ® 1 and A(O) = R(IWP)NR(WS) = R(WE) ®
R(WP). Thus R(WS,) V AO) = (RWE,) VR(WE)) @ R(IWP). Due to wedge
duality and factoriality of the wedge algebras this equals B(Ho)@R(W ) = R(WP).
We emphasize that all above equivalences are established by the same unitary trans-
formation. The second equation is proved in the same way. O

Remark. The proof of factoriality of wedge algebras in [?] relies, besides the
usual net properties, on the spectrum condition and on the Reeh—Schlieder theorem.
This is the only place where positivity of the energy and weak additivity enter into
our analysis.

Consider now the situation depicted in Fig. 1. In particular, O, O are spacelike
separated double cones the closures of which share one point. Such double cones
will be called adjacent.

Fig. 1. Double cones sharing one point.

Lemma 2.7. Let O = sup(O, @) be the smallest double cone containing O, 0.
Then

A(O)V AO) = A(O). (2.9)

Proof. In the situation of Fig. 1 we have O = wgn W? . Under the unitary
equivalence considered above we have A(0) = 1 ® A(O) sincg O Cc W&s. Thus

A(O)VAO) 2 R(WE)®(R(WP)VA(O)). But now WP = W leads to R(WE )V
A(O) = R(W?) via the preceding lemma. Thus A(O )VAO ) RWE)R(WP)
which in turn is unitarily equivalent to R(WS) A R(WE) = A(O). O

Remark. In analogy to chiral conformal field theory we denote this property
strong additivity.

With these lemmas it is clear that the quantum field theories under consideration
are n-reqular in the sense of the following definition for all n > 2.

Definition 2.8. A quantum field theory is n-regular if

R(W1)V A(O1) V-V A(On_2) V R(Wa) = B(Ho) , (2.10)
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whenever O;, i = 1,...,n — 2 are mutually spacelike double cones such that the
sets O; N O;11,7=1,...,n — 3 each contain one point and where the wedges W7,
Wy are such that

n—2 !
WiUW, = (U Oi> . (2.11)
i=1

Corollary 2.9. A quantum field theory in 1 4+ 1 dimensions satisfying Haag
duality and the SPW fulfills the (von Neumann version of the) time-slice aziom, i.e.

R(S) = B(Ho) , (2.12)
whenever S = {zx € R? |z -n € (a,b)} where n € R? is timelike and a < b.

Proof. The time-slice S contains an infinite string O;, i € Z of mutually space-
like double cones as above. Thus the von Neumann algebra generated by all these
double cones contains each A(O), O € K from which the claim follows by irre-
ducibility. a

Remarks. 1. We wish to emphasize that this statement on von Neumann
algebras is weaker than the C*-version of the time-slice axiom, which postulates
that the C*-algebra A(S) generated by the algebras A(O), O C S equals the
quasilocal algebra A. We follow the arguments in [?, Sec. II1.3] to the effect that
this stronger assumption should be avoided.

2. It is interesting to confront the above result with the investigations concerning
the time-slice property [?] and the split property [?, Theorem 10.2] in the context
of generalized free fields (in 3 + 1 dimensions). In the cited works it was proved
that generalized free fields possess the time-slice property iff (roughly) the spectral
measure vanishes sufficiently fast at infinity. On the other hand, the split property
imposes strong restrictions on the spectral measure, in particular it must be atomic
without an accumulation point at a finite mass. The split property (for double
cones) is, however, neither necessary nor sufficient for the time-slice property.

3. Absence of Localized Charges

Whereas the results obtained so far are intuitively plausible, we will now prove
a no-go theorem which shows that the combination of Haag duality and the SPW
is extremely strong.

Theorem 3.1. Let O — A(O) be a net of observables satisfying Haag duality
and the split property for wedges. Let w be a representation of the quasilocal algebra
A which satisfies

T AW)Zm |AW) VWeW, (3.1)

where W is the set of all wedges (left and right handed). Then 7 is equivalent to
an at most countable direct sum of representations which are unitarily equivalent
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to m :
W:@m, m =g . (3.2)
el

In particular, if ™ is irreducible it is unitarily equivalent to mo.

Remark. A fortiori, this applies to DHR representations (77?).

Wi

Fig. 2. A split inclusion of wedges.

Proof. Consider the geometry depicted in Fig. 2. If 7w is a representation
satisfying (?7?) then there is a unitary V' : H, — Ho such that, setting p = Vr(-)V*,
we have p(A) = A if A € A(W’). Due to normality on wedges and wedge duality, p
continues to normal endomorphisms of R(W), R(W7). By the split property there
are type-I factors M7, Ms such that

R(W) C My C R(W1) C My C R(Wa). (3.3)

Let x € My C R(W1). Then p(x) € R(W1) C M,. Furthermore, p acts trivially
on M{ NR(W2) C R(W) NR(W2) = A(Oz), where we have used Haag duality.
Thus p maps M; into My N (M] N R(W2)) C Mo N (M] N Ms) = M, the last
identity following from My, M> being type-I factors. By [?, Corollary 3.8] every
endomorphism of a type-I factor is inner, i.e. there is a (possibly infinite) family of
isometries V; € My, i € I with V*V; =6, ;, > ,c; ViV;* = 1 such that

p(A)=n(A) VA€M, (3.4)
where

n(A) =) Vi AV}, Ae B(Hy). (3.5)
icl
(The sum over I is understood in the strong sense.) Now, p and thus n act trivially
on M1 NR(W) c R(W1) NR(W) = A(O1), which implies

Vie Min(MiNR(W)) =R(W). (3.6)
Thanks to Lemma 7?7 we know that for every wedge Woow
R(W) =R(W)V AO), (3.7)
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where © = W N W’. From the fact that p acts trivially on A(W’) it follows that
(77) is true also for A € A(O). By assumption, p is normal also on A(W) which
leads to (??) on A(W). As this holds for every W 5> W, we conclude that

m(A) =) VV;AVV VAcA. (3.8)
el

O

Remarks. 1. The main idea of the proof is taken from [?, Proposition 2.3].

2. The above result may seem inconvenient as it trivializes the DHR/FRS
superselection theory [?, 7, ?] for a large class of massive quantum field theories in
1+ 1 dimensions. It is not so clear what this means with respect to field theoretical
models since little is known about Haag duality in nontrivial models.

3. Conformal quantum field theories possessing no representations besides the
vacuum representation, or “holomorphic” theories, have been the starting point
for an analysis of “orbifold” theories in [?]. In [?], which was motivated by the
desire to obtain a rigorous understanding of orbifold theories in the framework of
massive two-dimensional theories, the present author postulated the split property
for wedges and claimed it to be weaker than the requirement of absence of nontrivial
representations. Whereas this claim is disproved by Theorem 7?7, as far as localized
(DHR or wedge) representations of Haag dual theories are concerned, none of the
results of [?] is invalidated or rendered obsolete.

4. Haag Duality in Locally Normal Representations

A further crucial consequence of the split property for wedges is observed in the
following:

Proposition 4.1. Let O — A(O) be a net satisfying Haag duality (for double
cones) and the split property for wedges. Then for every pair O CC O we have

A(O) N A(O) = A(OL) V A(OR), (4.1)

where Or,, Og are as in Fig. 3.

Fig. 3. Relative commutant of double cones.
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Proof. By the split property for wedges there is a unitary operator Y© : #o —
Ho ® Ho such that R(IWS,) V R(WER) = YO (R(WE,) @ RIWSR))YC. More
specifically,

YOuryYo*  =z@y VazeRWS), ye RIWER). (4.2)

By Haag duality A(0)' = R(Wf,) vV R(Wg) = R(WS,) @ R(WS,) and A(O) =
R(WEL) V R(WEgR). Now R(W[(?L/RR) - R(W[(?L/RR) implies A(O) = R(Wf) ®
R(WQR) under the same equivalence 2 provided by Y, and thus

A0) = (RWE,) @ R(WER)) = RWE) @ RIWP) (4.3)

where we have used wedge duality and the commutation theorem for tensor prod-
ucts. Now we can compute the relative commutant as follows:

AO) N AO) = (RWE) @ RIWE)) A (RWE,) © R(IWER))

P

RWE) ARWE,)) ® (RIWE) AR(WSr))
Or) ® A(OR)
OL) \Y A(OR) . (4.4)

A(
A(

1%

We have used Haag duality in the form R(VVI(%9 JAR(WE,) = A(Op) and similarly
for A(Og). O

Remarks. 1. Readers having qualms about the above computation of the
intersection of tensor products are referred to [?, Corollary 5.10], which also provides
the justification for the arguments in Sec. 2.

2. Recalling that R(O) = A(O) and that the algebras of regions other than
double cones are defined by additivity, (??) can be restated as follows:

R(O)NRO) =R(ONO). (4.5)

In conjunction with the assumed properties of isotony, locality and Haag duality
for double cones (??) entails that the map O — R(O) is a homomorphism of
orthocomplemented lattices as proposed in [?, Sec. II1.4.2]. While the discussion
in [?, Sec. II1.4.2] can be criticized, the class of models considered in this paper
provides examples where the above lattice homomorphism is in fact realized.

The proposition should contribute to the understanding of Theorem ?? as far
as DHR representations are concerned. In fact, it already implies the absence of
DHR sectors as can be shown by an application of the triviality criterion for local
1-cohomologies [?] given in [?], see also [?].

Sketch of proof. Let z € Z1(A) be the local 1-cocycle associated according to
[?, 7] with a representation 7 satisfying the DHR criterion. Due to Proposition ?? it
satisfies z(b) € A(|0ob]) V A(|01b]) for every b € ¥1 such that |0pb| CC |01b|’. Thus
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the arguments in the proof of [?, Theorem 3.5] are applicable despite the fact that we
are working in 141 dimensions. We thereby see that there are unique Hilbert spaces
H(0) C A(O), O € 3y = K of support 1 such that z(b)H (01b) = H(9pb) V b € ¥1.
Each of these Hilbert spaces implements an endomorphism pe of A such that po =
m. This implies that p is either reducible or an inner automorphism. O

Remark. This argument needs the split property for double cones. It is not
completely trivial that the latter follows from the split property for wedges. It is
clear that the latter implies unitary equivalence of A(O;) V A(Oz) and A(O;) ®
A(O5) if Oy, Oy are double cones separated by a finite spacelike distance. The split
property for double cones requires more, namely unitary equivalence of A(O)VA(O)
and A(O)®A(O)’ whenever O cC O, which is equivalent to the existence of a type-I
factor N such that A(OQ) ¢ N ¢ A(O).

Lemma 4.2. Let A be a local net satisfying Haag duality and the split property
for wedges. Then the split property for double cones holds.

Proof. Using the notation of the preceding proof we have
A0) = R(WE) @ R(IWY), (4.6)
A(0) = R(WE) 8 ROWE) . (47)

By the SPW there are type-I factors N, Ng such that R(W) C Ni C R(WI?)
and R(WE) C Ng € R(WE). Thus YO*(Ngr ® N1)Y©? is a type-I factor sitting
between A(O) and A(O). O

Having disproved the existence of nontrivial representations localized in double
cones or wedges, we will now prove a result which concerns a considerably larger
class of representations.

Theorem 4.3. Let O — A(O) be a net of observables satisfying Haag duality
and the SPW. Then every irreducible, locally normal representation of the quasilocal
algebra A fulfills Haag duality.

Proof. We will show that our assumptions imply those of [?, Theorem 1]. A
satisfies the split property for double cones (called “funnel property” in [?, ?]) by
Lemma ??, whereas we also assume condition (1) of [?, Theorem 1] (Haag duality
and irreducibility). Condition (3), which concerns relative commutants A(Oz) N
A(01)', O3 DD O; in the vacuum representation, is an immediate consequence of
Proposition ?? (we may even take O = 01, Oz = O3). Finally, Lemma ??7 implies

A(0) = AO) vV AOL) V A(OR), (4.8)

where we again use the notation of Fig. 3. This is more than required by Driessler’s
condition (2). Now [?, Theorem 1] applies and we are done. O
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Remarks. 1. In [?] a slightly simplified version of [?, Theorem 1] is given which
dispenses with condition (2) at the price of a stronger form of condition (3). This
condition is still (more than) fulfilled by our class of theories.

2. Observing that soliton representations are locally normal with respect to
both asymptotic vacua [?, ?], we conclude at once that Haag duality holds for every
irreducible soliton sector where at least one of the vacua satisfies Haag duality and
the SPW. Consequences of this fact will be explored in the next section. We remark
without going into details that our results are also of relevance for the construction
of soliton sectors with prescribed asymptotic vacua in [?].

5. Applications to the Theory of Quantum Solitons

In [?] it has been shown that every factorial massive one-particle representation
(massive one-particle representation) in > 2 4+ 1 dimensions is a multiple of an irre-
ducible representation which is localizable in every spacelike cone. (Here, massive
one-particle representation means that the lower bound of the energy-momentum
spectrum consists of a hyperboloid of mass m > 0 which is separated from the rest
of the spectrum by a mass gap.) In 141 dimensions one is led to irreducible soliton
sectors [?] which we will now reconsider in the light of Theorems ?? and ??. In
this section, where we are concerned with inequivalent vacuum representations, we
will consider a QFT to be defined by a net of abstract C*-algebras instead of the
algebras in a concrete representation. Given two vacuum representations 7T([)’, 7'('(1)%,
a representation 7 is said to be a soliton representation of type (wf,7f) if it is
translation covariant and

w1 AWy R) 2 xd/™ 1 AWL/R), (5.1)

where Wp,, Wg are arbitrary left and right handed wedges, respectively. An obvious
consequence of (??) is local normality of 7f, 7t with respect to each other. In
order to formulate a useful theory of soliton representations [?] one must assume
Wé: R to satisfy wedge duality. After giving a short review of the formalism in [?],
we will show in this section that considerably more can be said under the stronger
assumption that one of the vacuum representations satisfies duality for double cones
and the SPW. (Then the other vacuum is automatically Haag dual, too.)

Let mp be a vacuum representation and W € W a wedge. Then by A(W),, we
denote the W*-completion of the C*-algebra A(W) with respect to the family of
seminorms given by

[Allr = |tr Tmo(A), (5:2)

where T runs through the set of all trace class operators in B(#H,). Furthermore,
we define extensions AL .Afo of the quasilocal algebra A by

o)

Ar = A, (5.3)

WEWL/R
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where Wy, Wpg are the sets of left and right wedges, respectively. Now, it has
been demonstrated in [?] that, given a (7§, mf?)-soliton representation 7, there are
homomorphisms p from .AfR to AfL such that

0 0

T=alop. (5.4)

(Strictly speaking, mf must be extended to A, , which is trivial since A(W )z, is
0

isomorphic to mo(A(W))”.) The morphism p is localized in some right wedge W in
the sense that

p I AW =id | A(W"). (5.5)
Provided that the vacua of two soliton representations 7, 7’ “fit together” mft = mjt

one can define a soliton representation m x 7’ of type 7r0L, 7T6R via composition of

the corresponding morphisms:
axa =2afopp | A. (5.6)

Alternatively, the entire analysis may be done in terms of left localized morphisms
7 from Aﬁ . to Aﬁ r- As proved in [?], the unitary equivalence class of the composed
representaqcion depends neither on the use of left or right localization nor on the
concrete choice of the morphisms.

Whereas for soliton representations there is no analog to the theory of statistics
[?, ?, 7], there is still a “dimension” ind(p) defined by

ind(p) = [A(W), 1z : p(A(W)0)], (5.7)

where p is localized in the right wedge W and [M : N] is the Jones index of the
inclusion N C M.

Proposition 5.1. Let w be an irreducible soliton representation such that at
least one of the asymptotic vacua 7t 7l satisfies Haag duality and the SPW. Then
7w and both vacua satisfy the SPW and duality for double cones and wedges. The
associated soliton-morphism satisfies ind(p) = 1.

Proof. By symmetry it suffices to consider the case where 7{ satisfies HD
+ SPW. By Theorem ?? also the representations 7 and wf’ satisfy Haag duality
since they are locally normal w.r.t. to w(’} . Let now W7 CC W5 be left wedges.
By Proposition ??, wedge-duality holds for 7{ and 7% (A(W1))" C nf (A(W>))" is
split. Since 7&(A(W2))" is unitarily equivalent to 7(A(W>))", also w(A(W1))"” C
m(A(W3))" splits. A fortiori, 7 satisfies the SPW in the sense of Definition ?? and
thus wedge duality by Proposition ?7?. By a similar argument the SPW is carried
over to mf. Now, for a right wedge W we have

5 0 p(AW))™ =g 0 p(AW")) =75 (AW")) =75 (AW)) ™. (5.8)
By ultraweak continuity on A(W) of m{' and of p this implies
PAW ) i) = AW )zt (5.9)

whence the claim. O



SUPERSELECTION STRUCTURE OF MASSIVE QUANTUM FIELD THEORIES ... 1161

This result rules out soliton sectors with infinite index so that [?, Theorem 3.2]
applies and yields equivalence of the various possibilities of constructing antisoliton
sectors considered in [?]. In particular the antisoliton sector is uniquely defined up
to unitary equivalence. Now we can formulate our main result concerning soliton
representations.

Theorem 5.2. Let wf, 7l be vacuum representations, at least one of which
satisfies Haag duality and the SPW. Then all soliton representations of type (7§, nf)
are unitarily equivalent.

Remark. Equivalently, up to unitary equivalence, a soliton representation is
completely characterized by the pair of asymptotic vacua.

Proof. Let m, n’ be irreducible soliton representations of types (m, ) and
(7, mo), respectively. They may be composed, giving rise to a soliton representation
of type (o, mo) (or (mf,m)). This representation is irreducible since the morphisms
p, p/ must be isomorphisms by the proposition. Now, 7 x 7’ is unitarily equivalent
to mg on left and right handed wedges, which by Theorem 7?7 and irreducibility
implies m x 7" 2 m5. We conclude that every (m(,mo)-soliton is an antisoliton of
every (mo,my)-soliton. This implies the statement of the theorem since for every
soliton representation with finite index there is a corresponding antisoliton which

is unique up to unitary equivalence. O

Remark. The above proof relies on the absence of nontrivial representations
which are localizable in wedges. Knowing just that DHR sectors do not exist, as
follows already from Proposition ??, is not enough.

6. Solitons and DHR Representations of Non-Haag Dual Nets
6.1. Introduction and an instructive example

We have observed that the theory of localized representations of Haag-dual nets
of observables which satisfy the SPW is trivial. There are, however, quantum field
theories in 1 + 1 dimensions where the net of algebras which is most naturally
considered as the net of observables does not fulfill Haag duality in the strong form
(?7). As mentioned in the introduction, this is the case if the observables are defined
as the fixpoints under a global symmetry group of a field net which satisfies (twisted)
duality and the SPW. The weaker property of wedge duality (??) remains, however.
This property is also known to hold automatically whenever the local algebras arise
from a Wightman field theory [?]. However, for the analysis in [?, 7, ?] as well as
Sec. 4 above one needs full Haag duality. Therefore it is of relevance that, starting
from a net of observables satisfying only (??), one can define a larger but still local
net

AL 0) = RWE)ARWE) (6.1)
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which satisfies Haag duality, whence the name dual net. Here W,—? , Wg are wedges
such that W N Wg = O and duality is seen to follow from the fact that the wedge
algebras R(W), W € W are the same for the nets A, A%. (For observables arising
as group fixpoints the dual net has been computed explicitly in [?].) It is known
[?, ?] that in > 2+1 dimensions representations 7 satisfying the DHR criterion (?7?)
extend uniquely to DHR representations 7 of the (appropriately defined) dual net.
Furthermore, the categories of DHR representations of A and A%, respectively, and
their intertwiners are isomorphic. Thus, instead of A one may as well study A% to
which the usual methods are applicable. (The original net is needed only to satisfy
essential duality, which is implied by wedge duality.) In 1 + 1 dimensions things
are more complicated. As shown in [?] there are in general two different extensions
7L #E. They coincide iff one (thus both) of them is a DHR representation. Even
before defining precisely these extensions we can state the following consequence of
Theorem ?7.

Proposition 6.1. Let A be a net of observables satisfying wedge duality and
the SPW. Let w be an irreducible DHR or wedge representation of A which is
not unitarily equivalent to the defining (vacuum) representation. Then there is no
extension T to the dual net A? which is still localized in the DHR or wedge sense.

Proof. Assume 7 to be the restriction to A of a wedge-localized representation
# of A%. As the latter is known to be either reducible or unitarily equivalent to 7,
the same holds for 7. This is a contradiction. O

The fact that the extension of a localized representation of A to the dual net A%
cannot be localized, too, partially undermines the original motivation for considering
these extensions. Nevertheless, one may entertain the hope that there is something
to be learnt which is useful for a model-independent analysis of the phenomena
observed in models. Before we turn to the general examination of the extensions

L #% we consider the most instructive example.

T
It is provided by the fixpoint net under an unbroken global symmetry group of a
field net as studied in [?]. We briefly recall the framework. Let O — F(O) be a (for
simplicity) bosonic, i.e. local, net of von Neumann algebras acting on the Hilbert
space H and satisfying Haag duality and the SPW. On H there are commuting
strongly continuous representations of the Poincaré group and of a group G of inner

symmetries. Both groups leave the vacuum €2 invariant. Defining the fixpoint net
A(0) = F(O)¢ = F(O)nU(G) (6.2)
and its restriction
A(0) = A(O) | Ho (6.3)

to the vacuum sector (= subspace of G-invariant vectors) we consider 2(O) as the
observables. It is well-known that the net 2 satisfies only wedge duality. Neverthe-
less, one very important result of [?] remains true, namely that the restrictions of
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A to the charged sectors H, which are labeled by the characters x € G‘, interpreted
as representations of the abstract C*-algebra A, satisfy the DHR criterion and are
connected to the vacuum by charged fields, i.e. the representation of A in #H, is of
the form

T (A) = A My 270 (A) = Ay™ | Ho, (6.4)

where ¢ € F(O) and ay4(v¥) = x(g9)¢.

It was shown in [?, Theorem 3.10] that the dual net in the vacuum sector is
given by

A%(0) = AL(0) | Ho = Ar(0) | Ho, (6.5)
where

Ar/r(0) = Fr/r(0)¢ = Fr/r(0)NU(G)' . (6.6)

Here the nonlocal nets fL/R(O) are obtained by adjoining to F(O) the disorder
operators [?] U9 (G) or US(G), respectively, which satisfy

AdUP (9) | F(WEL) = ag = AdUR(9) [ F(WgR),

(6.7)
AdUP(g) I F(Wig) = id = AdUR (9) [ F(WiL)
and transform covariantly under the global symmetry:
U(g) US)n(h) Ul9)* = US)nlghg™). (68)

For the moment we restrict to the case of abelian groups G. The disorder
operators commuting with G, AL/R(O) is simply A(O) Vv UE/R(G)". On the C*-
algebras Ar and Ag there is an action of the dual group G which acts trivially on
A and via

ay(UP r(9)) = x(9) U rlg) YOEK (6.9)

on the disorder operators. Since this action commutes with the Poincaré group and
since it is spontaneously broken (wood, # wo V x # e ) it gives rise to inequivalent
vacuum states on A via

Wy = wp O @y . (6.10)

The extensions 7,1, 7y,r of T, to the dual net A% can now defined using the
right-hand side of (??) by allowing A to be in Aj or Ag. As is obvious from
the commutation relation (??) between fields and disorder operators, the exten-
sion 7ty 1, (7y,r) is nothing but a soliton sector interpolating between the vacua wq
and wy—1 (wy and wp). The moral is that the net A¢, while not having non-
trivial localized representations by Theorem 7?7, admits soliton representations.
Furthermore, with respect to A%, the charged fields ¢, are creation operators for
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solitons since they intertwine the representations of 4% on Ho and H,. Due to
UP(g9)US(9) =U(g) and U(g) | Hy = x(g9)1 we have

UL (9) | Hy = x(9) UL (g7") T My, (6.11)

so that the algebras AL /r(O) | H, are independent of whether we use the left
or right localized disorder operators. In particular, in the vacuum sector U (g)
and US (g~ 1) coincide, but due to the different localization properties it is relevant
whether UP(g), considered as an element of A%, is represented on H, by U (g) or
by x(9)US(g~'). This reasoning shows that the two possibilities for extending a
localized representation of a general non-dual net to a representation of the dual
net correspond in the fixpoint situation at hand to the choice between the nets AL
and AR arising from the field extensions Fr and F R-

6.2. General Analysis

We begin by first assuming only that 7 is localizable in wedges. Let O be a double
cone and let Wi, Wg be left and right handed wedges, respectively, containing O.
By assumption the restriction of = to A(Wy,), A(Wg) is unitarily equivalent to .
Choose unitary implementers Uy, Ug such that

AdUL | AWL) =7 | AWg),

(6.12)
Ad UR f A(WR) =TT f A(WR) .
Then 7%, 77 are defined for A € A%(O) by
7L (A) = UL AU},
() = U AU; (6.13)

#B(A) =URr AU},

Independence of these definitions of the choice of Wi, Wg and the implementers
Up, Ug follows straightforwardly from wedge duality. We state some immediate
consequences of this definition.

L ~R

are irreducible, locally normal representations of
B are normal on left and right handed wedges,

Proposition 6.2. 7,7
A? and satisfy Haag duality. ¥, #

respectively.

Proof. Irreducibility is a trivial consequence of the assumed irreducibility of
7 whereas local normality is obvious from the definition (??). Thus, Theorem ??
applies and yields Haag duality in both representations. Normality of, say, 4 on
left handed wedges W follows from the fact that we may use the same auxiliary
wedge Wi, O W and implementer Uy, for all double cones O C W. O

Clearly, the extensions #¥, #% cannot be normal w.r.t. 7y on right and left
wedges, respectively, for otherwise Theorem ?? would imply unitary equivalence to
7. In general, we can only conclude localizability in the following weak sense. Given
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an arbitrary left handed wedge W, #” is equivalent to a representation p on g such
that p(A) = AV A € A(W). Furthermore, by duality p is an isomorphism of A(W")
onto a weakly dense subalgebra of R(W') which is only continuous in the norm.
In favorable cases like the one considered above this is a local symmetry, acting
as an automorphism of A(W’). But we will see shortly that there are perfectly
non-pathological situations where the extensions are not of this particularly nice
type. In complete generality, the best one can hope for is normality with respect to
another vacuum representation 7. In particular, this is automatically the case if ™
is a massive one-particle representation [?] which we did not assume so far.

If the representation 7 satisfies the DHR criterion, i.e. is localizable in double
cones, we can obtain stronger results concerning the localization properties of the
extended representations 71y, 7r. By the criterion, there are unitary operators
X9 : H. — Ho such that

19(A) = XOm(A)XO* =A YV Ac AO). (6.14)

(By wedge duality, X© is unique up to left multiplication by operators in .A%(0).)
Considering the representations

#% p = X% p X" (6.15)

on the vacuum Hilbert space Hg, it is easy to verify that
wp TAYWE) =id [ AYWEL), (6.16)
R 1A (Wig) =id [ AY(WER). (6.17)

We restrict our attention to 79, the other extension behaving similarly. If A € A(O)
then #ip(A) =X Or* A X© whenever O, > O. Therefore

#9(4) = XOXO" AXOr X0 (6.18)

where the unitary X© X" intertwines 7€ and 7©r. Associating with every pair
(01, 02) two other double cones by

O = sup(01,0,), (6.19)
Oy=0N0,NO, (6.20)

(Op may be empty) and defining
C(01,0;) = AYO) N A(Oy), (6.21)
we can conclude by wedge duality that
X9Xx9" ec(0,0,). (6.22)

Thus #9(A) as given by (??) is contained in A%(sup(O,0,,)) which already
shows that #¢ maps the quasilocal algebra A¢ into itself (this does not follow if
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7 is only localizable in wedges). Since the double cone O, > O may be chosen
arbitrarily small and appealing to outer regularity of the dual net .A? we even have
#9(A) € A%(sup(O, O0)) and thus finally

#2(A40)) c C(0,0). (6.23)

This result has two important consequences. Firstly, it implies that the representa-

tion fr? maps the quasilocal algebra into itself:

72 (A% c A%, (6.24)

This fact is of relevance since it allows the extensions ﬁSL, frg ;, of two DHR
representations 7, 2 to be composed in much the same way as the endomorphisms
of A derived from DHR representations in the Haag dual case. In this respect, the
extensions 77,/ are better behaved than completely general soliton representations
as studied in [?].

The second consequence of (?7?) is that the representations #¢ (and #9), while
still mapping local algebras into local algebras, may deteriorate the localization.
We will see below that this phenomenon is not just a theoretical possibility but
really occurs. Whereas one might hope that one could build a DHR theory for non-
dual nets upon the endomorphism property of the extended representations, their
weak localization properties and the inequivalence of 7y, and Tz seem to constitute
serious obstacles. It should be emphasized that the above considerations owe a lot
to Roberts’ local 1-cohomology [?, 7, ?], but (??) seems to be new.

6.3. Fixpoint nets: non-abelian case

We now generalize our analysis of fixpoint nets to non-abelian (finite) groups G,
where the outcome is less obvious a priori. Let A = > geG F,U9(g) € AL(O)) (F,
must satisfy the condition given in [?, Theorem 3.16]) and let ¢; € F(Oz), where
0Oy < 07 (ie. O3 C Wf 1) be a multiplet of field operators transforming according
to a finite dimensional representation of G. Then

v [ D FUD(9) zbz‘—Z(Zz/wgwn) FUS(g).  (6.25)
i geG geG \ i

In contrast to the abelian case where ¥ag(¢*) is just a phase, Oy = >, ¥y (¢¥7)
is a nontrivial unitary operator

O,' =0; = ag(whi); (6.26)
satisfying

O{k(Og) = Okgk_l . (627)

In particular (??) is not contained in A%(0;) which implies that the map A
> ¥i AyF does not reduce to a local symmetry on AL(WI%‘%). Rather, we obtain
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a monomorphism into AL(WI? 2). Defining O and Oy as above we clearly see that
(77) is contained in A%(®). Furthermore, due to the relative locality of the net A
with respect to A? and F, (??) commutes with A(Qp). Thus we obtain precisely
the localization properties which were predicted by our general analysis above.

We close this section with a discussion of the duality properties in the extended
representations 7. In the case of abelian groups G Haag duality holds in all charged
sectors since these are all simple. Our abstract result in Theorem ?? to the effect
that duality obtains in all locally normal irreducible representations of the dual net
applies, of course, to the situation at hand. We conclude that Haag duality also
holds for the non-simple sectors which by necessity occur for non-abelian groups G.
Since this result is somewhat counterintuitive (which explains why it was overlooked
in [?]) we verify it by the following direct calculation.

Lemma 6.3. The commutants of the algebras Ar(O) are given by

AL(O) = AL(WE)VFL(WER) YOeKk. (6.28)

Proof. For simplicity we assume F to be a local net for a moment. Then
AL(0) = (FL(O) AU(G)') = FL(0) VU(G)"
= (FL(O) VUL (G)") VU(G)" = (FL(0) ANUE(G)') v U(G)"
= (FLWEL) vV FL(WER)) NUL (G)) v U(G)"
= (FLWip) AUL(G))V FL(Wgg) VU(G)”
= AL (W) VFL(WER) .- (6.29)

The fourth line follows from the third using the split property. In the last step we
have used the identities Ar, (W) = AL (W) and Fr(Wg)VU(G)" = Fr(Wg) which
hold for all left (right) handed wedges Wi, (Wg), cf. [?, Proposition 3.5]. Now, if F
satisfies twisted duality, (2.23) of [?] leads to F(O) VU (G)" = FWS)VU(G)" ®
F(WP) and (F(O)VUL(G)") =2 AWE)@F(WSg)t. Using this it is easy to verify
that (?7?) is still true. O

Proposition 6.4. The net A, satisfies Haag duality in restriction to every
invariant subspace of H on which Ay acts irreducibly.

Proof. We recall that the representation 7w of AL/R on H is of the form = =
Bece deme. Let thus P be an orthogonal projection onto a subspace H¢ C ‘H on

which A7, acts as the irreducible representation me. Since P commutes with Ay, (O)
and Ar(WP,) we have
PAL(0) P =P A (WEL)V FL(Wig) P
AL(WEL) V (P FL(WEg) P)
PAL

(W) Vv AL(WER) P, (6.30)
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which implies

(AL(O) [ He) = AL(WEL) V AL(WEg) | He . (6.31)
O

This provides a concrete verification of Theorem 77 in a special, albeit important
situation.

7. Conclusions and Outlook

We have seen that the combination of Haag duality with the split property
for wedges has remarkable unifying power. It implies factoriality of the double
cone algebras, n-regularity for all n and irreducibility of time-slice algebras. As a
consequence of the minimality of relative commutants of double cone algebras we
obtain Haag duality in all irreducible, locally normal representations. The strongest
result concerns the absence not only of locally generated superselection (DHR)
sectors but also of charges localized in wedges. This in turn implies the uniqueness
up to unitary equivalence of soliton sectors with prescribed asymptotic vacua. In
the following we briefly relate these results to what is known in concrete models in
1+ 1 dimensions.

(a) The free massive scalar field. Since this model is known to satisfy Haag
duality and the SPW, Theorem ?? constitutes a high-brow proof of the well-known
absence of local charges. Furthermore, there are no non-trivial soliton sectors, since
the vacuum representation is unique [?]. Thus, the irreducible representations con-
structed in [?], which are inequivalent to the vacuum, must be rather pathological.
In fact, they are equivalent to the (unique) vacuum only on left wedges.

(b) P(¢p)2-models. These models have been shown [?] to satisfy Haag duality
in all pure phases, but there is no proof of the SPW. Yet, the split property for
double cones, the minimality of relative commutants and strong additivity, thus
also the time slice property, follow immediately from the corresponding properties
for the free field via the local Fock property. These facts already imply the non-
existence of DHR sectors and Haag duality in all irreducible locally normal sectors.
All these consequences are compatible with the conjecture that the SPW holds.
There seems, however, not to be a proof of the absence of wedge sectors.

(¢c) The sine-Gordon/Thirring model. For this model neither Haag duality nor
the SPW are known. In the case 3° = 4m, however, for which the SG model
corresponds to the free massive Dirac field, there seems to be no doubt that the net
A constructed like in Sec. 6 from the free Dirac field is exactly the local net of the
SG model. As shown in [?], also A satisfies Haag duality and the SPW. Since from
the point of view of constructive QFT there is nothing special about 5% = 47 one
may hope that both properties hold for all 8 € [0, 8).

In view of the results of this paper as well as of [?] it is highly desirable to
clarify the status of the SPW in interacting massive models like (b) and (c) as well
as that of Haag duality in case (c). (Also the Gross—Neveu model might be expected
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to satisfy both assumptions.) The most promising approach to this problem should
be identifying conditions on a set of Wightman (or Schwinger) distributions which
imply Haag duality and the SPW, respectively, for the net of algebras generated by
the fields. For a first step in this direction see [?, Sec. IIIB].
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