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We show that a large class of massive quantum field theories in 1 + 1 dimensions,

characterized by Haag duality and the split property for wedges, does not admit locally

generated superselection sectors in the sense of Doplicher, Haag and Roberts. Thereby the

extension of DHR theory to 1 + 1 dimensions due to Fredenhagen, Rehren and Schroer is

vacuous for such theories. Even charged representations which are localizable only in wedge

regions are ruled out. Furthermore, Haag duality holds in all locally normal representations.

These results are applied to the theory of soliton sectors. Furthermore, the extension of

localized representations of a non-Haag dual net to the dual net is reconsidered. It must be

emphasized that these statements do not apply to massless theories since they do not satisfy

the above split property. In particular, it is known that positive energy representations of

conformally invariant theories are DHR representations.

1. Introduction

It is well known that the superselection structure, i.e. the structure of physically

relevant representations or “charges”, of quantum field theories in low dimensional

spacetimes gives rise to particle statistics governed by the braid group and is

described by “quantum symmetries” which are still insufficiently understood. The

meaning of “low dimensional” in this context depends on the localization properties

of the charges under consideration. In the framework of algebraic quantum field

theory [?, ?] several selection criteria for physical representations of the observable

algebra have been investigated. During their study of physical observables obtained

from a field theory by retaining only the operators invariant under the action of a

gauge group (of the first kind), Doplicher, Haag and Roberts were led to singling

out the class of locally generated superselection sectors. A representation is of this

type if it becomes unitarily equivalent to the vacuum representation when restricted

to the observables localized in the spacelike complement of an arbitrary double cone

(intersection of future and past directed light cones):
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π � A(O′) ∼= π0 � A(O′) ∀ O ∈ K . (1.1)

Denoting the set of all double cones by K we consider a quantum field theory to be

defined by its net of observables K 3 O 7→ A(O). This is a map which assigns to

each double cone a C∗-algebra A(O) satisfying isotony:

O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2) . (1.2)

This net property allows the quasilocal algebra to be defined by

A =
⋃

O∈K

A(O)
‖·‖

. (1.3)

The net is local in the sense that

[A(O1),A(O2)] = {0} (1.4)

if O1, O2 are spacelike to each other. The algebraA(G) associated with an arbitrary

subset of Minkowski space is understood to be the subalgebra of A generated (as a

C∗-algebra) by all A(O) where G ⊃ O ∈ K. Furthermore, the Poincaré group acts

on A by automorphisms αΛ,x such that

αΛ,x(A(O)) = A(ΛO + x) ∀ O . (1.5)

This abstract approach is particularly useful if there is more than one vacuum.

One requires of a physically reasonable representation that at least the transla-

tions (Lorentz invariance might be broken) are unitarily implemented:

π ◦ αx(A) = Uπ(x)π(A)Uπ(x)∗ , (1.6)

the generators of the representation x 7→ U(x), i.e. the energy-momentum

operators, satisfying the spectrum condition (positivity of the energy). Vacuum

representations are characterized by the existence of a unique (up to a phase)

Poincaré invariant vector. Furthermore we assume them to be irreducible and to

satisfy the Reeh–Schlieder property, the latter following from the other assumptions

if weak additivity is assumed. In the analysis of superselection sectors satisfying

(??) relative to a fixed vacuum representation one usually assumes the latter to

satisfy Haag dualitya

π0(A(O))′ = π0(A(O′))′′ ∀ O ∈ K , (1.7)

which may be interpreted as a condition of maximality for the local algebras.

In [?, ?], based on (??), a thorough analysis of the structure of representations

satisfying (??) was given, showing that the category of these representations

aM′ = {X ∈ B(H)|XY = Y X ∀ Y ∈ M} denotes the algebra of all bounded operators commuting
with all operators in M. If M is a unital ∗-algebra then M′′ is known to be the weak closure of
a M.
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together with their intertwiners is monoidal (i.e. there is a product or, according to

current fashion, fusion structure), rigid (i.e. there are conjugates) and permutation

symmetric. In particular, the Bose–Fermi alternative, possibly with parastatistics,

came out automatically although the analysis started from observable, i.e. strictly

local, quantities. A lot more is known in this situation (cf. [?]) but we will not

need that. A substantial part of this analysis, in particular concerning permuta-

tion statistics and the Bose–Fermi alternative, is true only in at least 2 + 1 space-

time dimensions. The generalization to 1 + 1 dimensions, where in general only

braid group statistics obtains, was given in [?] and applied to conformally invariant

theories in [?]. Whereas for the latter theories all positive energy representations

are of the DHR type [?], it has been clear from the beginning that the criterion (??)

cannot hold for charged sectors in gauge theories due to Gauss’ law.

Implementing a programme initiated by Borchers, Buchholz and Fredenhagen

proved [?] for every massive one-particle representation (where there is a mass gap

in the spectrum followed by an isolated one-particle hyperboloid) the existence of

a vacuum representation π0 such that

π � A(C′) ∼= π0 � A(C′) ∀ C . (1.8)

Here the C’s are spacelike cones which we do not need to define precisely. In ≥ 3+1

dimensional spacetime the subsequent analysis leads to essentially the same struc-

tural results as the original DHR theory. Due to the weaker localization properties,

however, the transition to braid group statistics and the loss of group symmetry

occur already in 2 + 1 dimensions, see [?]. In the 1 + 1 dimensional situation with

which we are concerned here, spacelike cones reduce to wedges (i.e. translates of

WR = {x ∈ R2 | x1 ≥ |x0|} and the spacelike complement WL = W ′
R). Fur-

thermore, the arguments in [?] allow us only to conclude the existence of two a

priori different vacuum representations πL0 , πR0 such that the restriction of π to left

handed wedges (translates of WL) is equivalent to πL0 and similarly for the right

handed ones. As for such representations, of course long well-known as soliton sec-

tors, an operation of composition can only be defined if the “vacua fit together”

[?], there is in general no such thing as permutation or braid group statistics. For

lack of a better name soliton representations with coinciding left and right vacuum,

i.e. representations which are localizable in wedges, will be called “wedge represen-

tations (or sectors)”.

There have long been indications that the DHR criterion might not be applicable

to massive 2d-theories as it stands. The first of these was the fact, known for some

time, that the fixpoint nets of Haag-dual field nets with respect to the action of a

global gauge group do not satisfy duality even in simple sectors, whereas this is true

in ≥ 2+1 dimensions. This phenomenon has been analyzed thoroughly in [?] under

the additional assumption that the fields satisfy the split property for wedges. This

property, which is expected to be satisfied in all massive quantum field theories,

plays an important role also in the present work which we summarize briefly.
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In the next section we will prove some elementary consequences of Haag duality

and the split property for wedges (SPW), in particular strong additivity and the

time-slice property. The significance of our assumptions for superselection theory

derives mainly from the fact that they preclude the existence of locally generated

superselection sectors. More precisely, if the vacuum representation satisfies Haag

duality and the SPW then every irreducible DHR representation is unitarily equi-

valent to the vacuum representation. This important and perhaps surprising result,

to be proved in Sec. 3, indicates that the innocent-looking assumptions of the DHR

framework are quite restrictive when they are combined with the split property for

wedges. Although this may appear reasonable in view of the non-connectedness of

O′, our result also applies to the wedge representations which are only localizable

in wedges provided left and right handed wedges are admitted. In Sec. 4 we will

prove the minimality of the relative commutant for an inclusion of double cone

algebras which, via a result of Driessler, implies Haag duality in all locally normal

irreducible representations. In Sec. 5 the facts gathered in the preceding sections

will be applied to the theory of quantum solitons thereby concluding our discussion

of the representation theory of Haag-dual nets. Summing up the results obtained so

far, the representation theory of such nets is essentially trivial. On the other hand,

dispensing completely with a general theory of superselection sectors including com-

position of charges, braid statistics and quantum symmetry for massive theories is

certainly not warranted in view of the host of more or less explicitly analyzed

models exhibiting these phenomena. The only way to accommodate these models

seems to be to relax the duality requirement by postulating only wedge duality. In

Sec. 6 Roberts’ extension of localized representations to the dual net will be recon-

sidered and applied to the theories considered already in [?], namely fixpoint nets

under an unbroken inner symmetry group. In this work we will not attempt to say

anything concerning the quantum symmetry question.

2. Strong Additivity and the Time-Slice Axiom

Until further notice we fix a vacuum representation π0 (which is always faithful)

on a separable Hilbert space H0 and omit the symbol π0(·), identifying A(O) ≡

π0(A(O)). Whereas we may assume the algebras A(O), O ∈ K to be weakly closed,

for more complicated regions X , in particular infinite ones like O′, we carefully

distinguish between the C∗-subalgebra

A(X) ≡
⋃

O∈K,O⊂X

A(O)
‖·‖

(2.1)

of A ≡ π0(A) and its ultraweak closure R(X) = A(X)′′.

Definition 2.1. An inclusion A ⊂ B of von Neumann algebras is standard [?]

if there is a vector Ω which is cyclic and separating for A, B, A′ ∧B.

Due to the Reeh–Schlieder property, the inclusion A(O1) ⊂ A(O2) (R(W1) ⊂

R(W2)) is standard whenever O1 ⊂⊂ O2 (W1 ⊂⊂ W2), i.e. the closure of O1 is
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contained in the interior of O2. (W1 ⊂⊂ W2 is equivalent to the existence of a

double cone O such that W1 ∪W
′
2 = O′.)

Definition 2.2. An inclusion A ⊂ B of von Neumann algebras is split [?], if

there exists a type-I factor N such that A ⊂ N ⊂ B. A net of algebras satisfies

the split property (for double cones) [?] if the inclusion A(O1) ⊂ A(O2) is split

whenever O1 ⊂⊂ O2.

The importance of these definitions derives from the following result [?, ?]:

Lemma 2.3. Let A ⊂ B be a standard inclusion. Then the following are

equivalent:

(i) The inclusion A ⊂ B is split.

(ii) The is a unitary Y such that Y ab′ Y ∗ = a⊗ b′, a ∈ A, b′ ∈ B′.

Remarks. 1. The implication (ii)⇒(i) is trivial, an interpolating type-I factor

being given by N = Y ∗(B(H0)⊗ 1)Y .

2. The natural spatial isomorphism A(O1)∨A(O2)
′ ∼= A(O1)⊗A(O2)

′ implied

by the split property whenever O1 ⊂⊂ O2 clearly restricts to

A(O1) ∨R(O′2)
∼= A(O1)⊗R(O′2) . (2.2)

As an important consequence, every pair of normal states φ1 ∈ A(O1)∗, φ2 ∈

R(O′2)∗ extends to a normal state φ ∈ (A(O1) ∨R(O′2))∗. Physically this amounts

to a form of statistical independence between the regions O1 and O′2.

3. We emphasize that in the case where Haag duality fails (A(O) ( A(O′)′),

requiring (??) whenever O1 ⊂⊂ O2 defines a weaker notion of split property since

one can conclude only the existence of a type-I factor N such that A(O1) ⊂ N ⊂

A(O′2)
′ = Ad(O2).

In 1 + 1 dimensions (and only there, cf. [?, p. 292]) the split property may be

strengthened by extending it to wedge regions. In this paper we will examine the

implications of the split property for wedges (SPW). The power of this assumption

in combination with Haag duality derives from the fact that one obtains strong

results on the relation between the algebras of double cones and of wedges. Some

of these have already been explored in [?], where, e.g., it has been shown that the

local algebras associated with double cones are factors. We recall some terminology

introduced in [?]: the left and right spacelike complements of O are denoted by

WO
LL and WO

RR, respectively. Furthermore, defining WO
L = WO

RR
′ and WO

R = WO
LL
′

we have O = WO
L ∩W

O
R .

Before we turn to the main subject of this section, we remark on the relation

between the two notions of Haag duality which are of relevance for this paper. In

[?], as apparently in a large part of the literature, it was implicitly assumed that

Haag duality for double cones implies duality for wedges, i.e.

R(W )′ = R(W ′) ∀ W ∈ W , (2.3)
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where W is the set of all wedge regions. Whereas there seems to be no general

proof of this claim, for theories in 1 + 1 dimensions satisfying the SPW we can give

a straightforward argument, thereby also closing the gap in [?]. In view of Remark 3

after Lemma ?? the following definition of the split property for wedges is slightly

weaker than the obvious modification of Definition ??, but seems more natural from

a physical point of view (cf. Remark 2):

Definition 2.4. A net of algebras satisfies the split property for wedges if the

map x ⊗ y 7→ xy, x ∈ R(W1), y ∈ R(W2) extends to an isomorphism between

R(W1)⊗R(W2) and R(W1) ∨R(W2) whenever W1 ⊂⊂W
′
2. By standardness this

isomorphism is automatically spatial in the sense of Lemma ?? (ii). In the case

where W1 = WO
LL, W2 = WO

RR the canonical implementer [?] will be denoted Y O.

Proposition 2.5. Let A(O) be a net of local algebras in 1 + 1 dimensions,

satisfying Haag duality (for double cones) and the SPW. Then A satisfies wedge

duality and the inclusion R(W1) ⊂ R(W2) is split whenever W1 ⊂⊂ W2.

Proof. Appealing to the definition (??), duality for double cones is clearly

equivalent to

A(O)′ = R(WO
LL) ∨R(WO

RR) ∀ O ∈ K . (2.4)

Given a right wedge W , let Oi, i ∈ N be an increasing sequence of double cones all

of which have the same left corner as W and satisfying ∪iOi = W . Then we clearly

have R(W ) =
∨

iA(Oi) and

R(W )′ =
∧

i

A(Oi)
′ =

∧

i

(

R(W ′) ∨R(WOi
RR)

)

. (2.5)

Using the unitary equivalence Y O1 R(W ′) ∨ R(WO1
RR)Y O1∗ = R(W ′) ⊗ R(WO1

RR),

the right-hand side of (??) is equivalent to

∧

i

(

R(W ′)⊗R(WOi
R )
)

= R(W ′)
⊗∧

i

R(WOi
R ) = R(W ′)⊗ C1 , (2.6)

where we have used the consequence ∧iR(WOi
R ) = C1 of irreducibility. This clearly

proves R(W )′ = R(W ′). The final claim follows from Lemma ??. �

Now we are prepared for the discussion of additivity properties, starting with

the easy

Lemma 2.6.

R(WO
LL) ∨ A(O) = R(WO

L ) , (2.7)

R(WO
RR) ∨ A(O) = R(WO

R ) . (2.8)

Remark. Equivalently, the inclusions R(WO
LL) ⊂ R(WO

L ), R(WO
RR) ⊂ R(WO

R )

are normal.
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Proof. Under the unitary equivalenceR(WO
LL)∨R(WO

RR) ∼= R(WO
LL)⊗R(WO

RR)

we have R(WO
LL) ∼= R(WO

LL) ⊗ 1 and A(O) = R(WO
L ) ∩ R(WO

R ) ∼= R(WO
R ) ⊗

R(WO
L ). Thus R(WO

LL) ∨ A(O) ∼= (R(WO
LL) ∨ R(WO

R )) ⊗ R(WO
L ). Due to wedge

duality and factoriality of the wedge algebras this equals B(H0)⊗R(WO
L ) ∼= R(WO

L ).

We emphasize that all above equivalences are established by the same unitary trans-

formation. The second equation is proved in the same way. �

Remark. The proof of factoriality of wedge algebras in [?] relies, besides the

usual net properties, on the spectrum condition and on the Reeh–Schlieder theorem.

This is the only place where positivity of the energy and weak additivity enter into

our analysis.

Consider now the situation depicted in Fig. 1. In particular, O, Õ are spacelike

separated double cones the closures of which share one point. Such double cones

will be called adjacent .
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Fig. 1. Double cones sharing one point.

Lemma 2.7. Let Ô = sup(O, Õ) be the smallest double cone containing O, Õ.

Then

A(O) ∨ A(Õ) = A(Ô) . (2.9)

Proof. In the situation of Fig. 1 we have Ô = WO
R ∩W

Õ
L . Under the unitary

equivalence considered above we have A(Õ) ∼= 1 ⊗ A(Õ) since Õ ⊂ WO
RR. Thus

A(O)∨A(Õ) ∼= R(WO
R )⊗(R(WO

L )∨A(Õ)). But now WO
L = W Õ

LL leads toR(WO
L )∨

A(Õ) = R(W Õ
L ) via the preceding lemma. Thus A(O)∨A(Õ) ∼= R(WO

R )⊗R(W Õ
L )

which in turn is unitarily equivalent to R(WO
R ) ∧R(W Õ

L ) = A(Ô). �

Remark. In analogy to chiral conformal field theory we denote this property

strong additivity .

With these lemmas it is clear that the quantum field theories under consideration

are n-regular in the sense of the following definition for all n ≥ 2.

Definition 2.8. A quantum field theory is n-regular if

R(W1) ∨ A(O1) ∨ · · · ∨ A(On−2) ∨R(W2) = B(H0) , (2.10)
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whenever Oi, i = 1, . . . , n − 2 are mutually spacelike double cones such that the

sets Oi ∩ Oi+1, i = 1, . . . , n − 3 each contain one point and where the wedges W1,

W2 are such that

W1 ∪W2 =

(

n−2
⋃

i=1

Oi

)′

. (2.11)

Corollary 2.9. A quantum field theory in 1 + 1 dimensions satisfying Haag

duality and the SPW fulfills the (von Neumann version of the) time-slice axiom, i.e.

R(S) = B(H0) , (2.12)

whenever S = {x ∈ R2 |x · η ∈ (a, b)} where η ∈ R2 is timelike and a < b.

Proof. The time-slice S contains an infinite string Oi, i ∈ Z of mutually space-

like double cones as above. Thus the von Neumann algebra generated by all these

double cones contains each A(O), O ∈ K from which the claim follows by irre-

ducibility. �

Remarks. 1. We wish to emphasize that this statement on von Neumann

algebras is weaker than the C∗-version of the time-slice axiom, which postulates

that the C∗-algebra A(S) generated by the algebras A(O), O ⊂ S equals the

quasilocal algebra A. We follow the arguments in [?, Sec. III.3] to the effect that

this stronger assumption should be avoided.

2. It is interesting to confront the above result with the investigations concerning

the time-slice property [?] and the split property [?, Theorem 10.2] in the context

of generalized free fields (in 3 + 1 dimensions). In the cited works it was proved

that generalized free fields possess the time-slice property iff (roughly) the spectral

measure vanishes sufficiently fast at infinity. On the other hand, the split property

imposes strong restrictions on the spectral measure, in particular it must be atomic

without an accumulation point at a finite mass. The split property (for double

cones) is, however, neither necessary nor sufficient for the time-slice property.

3. Absence of Localized Charges

Whereas the results obtained so far are intuitively plausible, we will now prove

a no-go theorem which shows that the combination of Haag duality and the SPW

is extremely strong.

Theorem 3.1. Let O 7→ A(O) be a net of observables satisfying Haag duality

and the split property for wedges. Let π be a representation of the quasilocal algebra

A which satisfies

π � A(W ) ∼= π0 � A(W ) ∀ W ∈ W , (3.1)

where W is the set of all wedges (left and right handed). Then π is equivalent to

an at most countable direct sum of representations which are unitarily equivalent
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to π0 :

π =
⊕

i∈I

πi , πi ∼= π0 . (3.2)

In particular, if π is irreducible it is unitarily equivalent to π0.

Remark. A fortiori, this applies to DHR representations (??).
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Fig. 2. A split inclusion of wedges.

Proof. Consider the geometry depicted in Fig. 2. If π is a representation

satisfying (??) then there is a unitary V : Hπ → H0 such that, setting ρ = V π(·)V ∗,

we have ρ(A) = A if A ∈ A(W ′). Due to normality on wedges and wedge duality, ρ

continues to normal endomorphisms of R(W ), R(W1). By the split property there

are type-I factors M1, M2 such that

R(W ) ⊂M1 ⊂ R(W1) ⊂M2 ⊂ R(W2) . (3.3)

Let x ∈ M1 ⊂ R(W1). Then ρ(x) ∈ R(W1) ⊂ M2. Furthermore, ρ acts trivially

on M ′
1 ∩ R(W2) ⊂ R(W )′ ∩ R(W2) = A(O2), where we have used Haag duality.

Thus ρ maps M1 into M2 ∩ (M ′
1 ∩ R(W2))

′ ⊂ M2 ∩ (M ′
1 ∩M2)

′ = M1, the last

identity following from M1, M2 being type-I factors. By [?, Corollary 3.8] every

endomorphism of a type-I factor is inner, i.e. there is a (possibly infinite) family of

isometries Vi ∈M1, i ∈ I with V ∗i Vj = δi,j ,
∑

i∈I ViV
∗
i = 1 such that

ρ(A) = η(A) ∀ A ∈M1 , (3.4)

where

η(A) ≡
∑

i∈I

ViAV
∗
i , A ∈ B(H0) . (3.5)

(The sum over I is understood in the strong sense.) Now, ρ and thus η act trivially

on M1 ∩R(W )′ ⊂ R(W1) ∩R(W )′ = A(O1), which implies

Vi ∈M1 ∩ (M1 ∩R(W )′)′ = R(W ) . (3.6)

Thanks to Lemma ?? we know that for every wedge Ŵ ⊃⊃ W

R(Ŵ ) = R(W ) ∨ A(O) , (3.7)
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where O = Ŵ ∩W ′. From the fact that ρ acts trivially on A(W ′) it follows that

(??) is true also for A ∈ A(O). By assumption, ρ is normal also on A(Ŵ ) which

leads to (??) on A(Ŵ ). As this holds for every Ŵ ⊃⊃W , we conclude that

π(A) =
∑

i∈I

V ∗ViAV
∗
i V ∀ A ∈ A . (3.8)

�

Remarks. 1. The main idea of the proof is taken from [?, Proposition 2.3].

2. The above result may seem inconvenient as it trivializes the DHR/FRS

superselection theory [?, ?, ?] for a large class of massive quantum field theories in

1 + 1 dimensions. It is not so clear what this means with respect to field theoretical

models since little is known about Haag duality in nontrivial models.

3. Conformal quantum field theories possessing no representations besides the

vacuum representation, or “holomorphic” theories, have been the starting point

for an analysis of “orbifold” theories in [?]. In [?], which was motivated by the

desire to obtain a rigorous understanding of orbifold theories in the framework of

massive two-dimensional theories, the present author postulated the split property

for wedges and claimed it to be weaker than the requirement of absence of nontrivial

representations. Whereas this claim is disproved by Theorem ??, as far as localized

(DHR or wedge) representations of Haag dual theories are concerned, none of the

results of [?] is invalidated or rendered obsolete.

4. Haag Duality in Locally Normal Representations

A further crucial consequence of the split property for wedges is observed in the

following:

Proposition 4.1. Let O 7→ A(O) be a net satisfying Haag duality (for double

cones) and the split property for wedges. Then for every pair O ⊂⊂ Ô we have

A(Ô) ∧A(O)′ = A(OL) ∨A(OR) , (4.1)

where OL,OR are as in Fig. 3.
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Fig. 3. Relative commutant of double cones.
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Proof. By the split property for wedges there is a unitary operator Y O : H0 →

H0 ⊗ H0 such that R(WO
LL) ∨ R(WO

RR) = Y O∗(R(WO
LL) ⊗ R(WO

RR))Y O. More

specifically,

Y O xy Y O∗ = x⊗ y ∀ x ∈ R(WO
LL), y ∈ R(WO

RR) . (4.2)

By Haag duality A(O)′ = R(WO
LL)∨R(WO

RR) ∼= R(WO
LL)⊗R(WO

RR) and A(Ô)′ =

R(W Ô
LL) ∨R(W Ô

RR). Now R(W Ô
LL/RR) ⊂ R(WO

LL/RR) implies A(Ô)′ ∼= R(W Ô
LL)⊗

R(W Ô
RR) under the same equivalence ∼= provided by Y O, and thus

A(Ô) ∼= (R(W Ô
LL)⊗R(W Ô

RR))′ = R(W Ô
R )⊗R(W Ô

L ) , (4.3)

where we have used wedge duality and the commutation theorem for tensor prod-

ucts. Now we can compute the relative commutant as follows:

A(Ô) ∧ A(O)′ ∼= (R(W Ô
R )⊗R(W Ô

L )) ∧ (R(WO
LL)⊗R(WO

RR))

= (R(W Ô
R ) ∧R(WO

LL))⊗ (R(W Ô
L ) ∧R(WO

RR))

= A(OL)⊗A(OR)

∼= A(OL) ∨ A(OR) . (4.4)

We have used Haag duality in the form R(W Ô
R ) ∧R(WO

LL) = A(OL) and similarly

for A(OR). �

Remarks. 1. Readers having qualms about the above computation of the

intersection of tensor products are referred to [?, Corollary 5.10], which also provides

the justification for the arguments in Sec. 2.

2. Recalling that R(O) = A(O) and that the algebras of regions other than

double cones are defined by additivity, (??) can be restated as follows:

R(Ô) ∩R(O)′ = R(Ô ∩ O′) . (4.5)

In conjunction with the assumed properties of isotony, locality and Haag duality

for double cones (??) entails that the map O 7→ R(O) is a homomorphism of

orthocomplemented lattices as proposed in [?, Sec. III.4.2]. While the discussion

in [?, Sec. III.4.2] can be criticized, the class of models considered in this paper

provides examples where the above lattice homomorphism is in fact realized.

The proposition should contribute to the understanding of Theorem ?? as far

as DHR representations are concerned. In fact, it already implies the absence of

DHR sectors as can be shown by an application of the triviality criterion for local

1-cohomologies [?] given in [?], see also [?].

Sketch of proof. Let z ∈ Z1(A) be the local 1-cocycle associated according to

[?, ?] with a representation π satisfying the DHR criterion. Due to Proposition ?? it

satisfies z(b) ∈ A(|∂0b|) ∨A(|∂1b|) for every b ∈ Σ1 such that |∂0b| ⊂⊂ |∂1b|
′. Thus
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the arguments in the proof of [?, Theorem 3.5] are applicable despite the fact that we

are working in 1+1 dimensions. We thereby see that there are unique Hilbert spaces

H(O) ⊂ A(O), O ∈ Σ0 ≡ K of support 1 such that z(b)H(∂1b) = H(∂0b) ∀ b ∈ Σ1.

Each of these Hilbert spaces implements an endomorphism ρO of A such that ρO ∼=

π. This implies that ρ is either reducible or an inner automorphism. �

Remark. This argument needs the split property for double cones. It is not

completely trivial that the latter follows from the split property for wedges. It is

clear that the latter implies unitary equivalence of A(O1) ∨ A(O2) and A(O1) ⊗

A(O2) if O1, O2 are double cones separated by a finite spacelike distance. The split

property for double cones requires more, namely unitary equivalence of A(O)∨A(Ô)′

andA(O)⊗A(Ô)′ whenever O ⊂⊂ Ô, which is equivalent to the existence of a type-I

factor N such that A(O) ⊂ N ⊂ A(Ô).

Lemma 4.2. Let A be a local net satisfying Haag duality and the split property

for wedges. Then the split property for double cones holds.

Proof. Using the notation of the preceding proof we have

A(O) ∼= R(WO
R )⊗R(WO

L ) , (4.6)

A(Ô) ∼= R(W Ô
R )⊗R(W Ô

L ) . (4.7)

By the SPW there are type-I factors NL, NR such that R(WO
L ) ⊂ NL ⊂ R(W Ô

L )

and R(WO
R ) ⊂ NR ⊂ R(W Ô

R ). Thus Y O∗(NR ⊗ NL)Y O is a type-I factor sitting

between A(O) and A(Ô). �

Having disproved the existence of nontrivial representations localized in double

cones or wedges, we will now prove a result which concerns a considerably larger

class of representations.

Theorem 4.3. Let O 7→ A(O) be a net of observables satisfying Haag duality

and the SPW. Then every irreducible, locally normal representation of the quasilocal

algebra A fulfills Haag duality.

Proof. We will show that our assumptions imply those of [?, Theorem 1]. A

satisfies the split property for double cones (called “funnel property” in [?, ?]) by

Lemma ??, whereas we also assume condition (1) of [?, Theorem 1] (Haag duality

and irreducibility). Condition (3), which concerns relative commutants A(O2) ∩

A(O1)
′, O2 ⊃⊃ O1 in the vacuum representation, is an immediate consequence of

Proposition ?? (we may even take O = O1, O2 = O3). Finally, Lemma ?? implies

A(O)′ = A(Ô)′ ∨ A(OL) ∨ A(OR) , (4.8)

where we again use the notation of Fig. 3. This is more than required by Driessler’s

condition (2). Now [?, Theorem 1] applies and we are done. �
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Remarks. 1. In [?] a slightly simplified version of [?, Theorem 1] is given which

dispenses with condition (2) at the price of a stronger form of condition (3). This

condition is still (more than) fulfilled by our class of theories.

2. Observing that soliton representations are locally normal with respect to

both asymptotic vacua [?, ?], we conclude at once that Haag duality holds for every

irreducible soliton sector where at least one of the vacua satisfies Haag duality and

the SPW. Consequences of this fact will be explored in the next section. We remark

without going into details that our results are also of relevance for the construction

of soliton sectors with prescribed asymptotic vacua in [?].

5. Applications to the Theory of Quantum Solitons

In [?] it has been shown that every factorial massive one-particle representation

(massive one-particle representation) in ≥ 2 + 1 dimensions is a multiple of an irre-

ducible representation which is localizable in every spacelike cone. (Here, massive

one-particle representation means that the lower bound of the energy-momentum

spectrum consists of a hyperboloid of mass m > 0 which is separated from the rest

of the spectrum by a mass gap.) In 1+1 dimensions one is led to irreducible soliton

sectors [?] which we will now reconsider in the light of Theorems ?? and ??. In

this section, where we are concerned with inequivalent vacuum representations, we

will consider a QFT to be defined by a net of abstract C∗-algebras instead of the

algebras in a concrete representation. Given two vacuum representations πL0 , πR0 ,

a representation π is said to be a soliton representation of type (πL0 , π
R
0 ) if it is

translation covariant and

π � A(WL/R) ∼= π
L/R
0 � A(WL/R) , (5.1)

where WL, WR are arbitrary left and right handed wedges, respectively. An obvious

consequence of (??) is local normality of πL0 , πR0 with respect to each other. In

order to formulate a useful theory of soliton representations [?] one must assume

π
L/R
0 to satisfy wedge duality. After giving a short review of the formalism in [?],

we will show in this section that considerably more can be said under the stronger

assumption that one of the vacuum representations satisfies duality for double cones

and the SPW. (Then the other vacuum is automatically Haag dual, too.)

Let π0 be a vacuum representation and W ∈ W a wedge. Then by A(W )π0 we

denote the W ∗-completion of the C∗-algebra A(W ) with respect to the family of

seminorms given by

‖A‖T = |tr Tπ0(A)| , (5.2)

where T runs through the set of all trace class operators in B(Hπ0). Furthermore,

we define extensions ALπ0 , A
R
π0 of the quasilocal algebra A by

AL/Rπ0 =
⋃

W∈WL/R

A(W )π0
‖·‖

, (5.3)
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where WL, WR are the sets of left and right wedges, respectively. Now, it has

been demonstrated in [?] that, given a (πL0 , π
R
0 )-soliton representation π, there are

homomorphisms ρ from AR
πR
0

to AR
πL
0

such that

π ∼= πL0 ◦ ρ . (5.4)

(Strictly speaking, πL0 must be extended to AR
πL
0

, which is trivial since A(W )π0 is

isomorphic to π0(A(W ))′′.) The morphism ρ is localized in some right wedge W in

the sense that

ρ � A(W ′) = id � A(W ′) . (5.5)

Provided that the vacua of two soliton representations π, π′ “fit together” πR0
∼= π′L0

one can define a soliton representation π × π′ of type πL0 , π′R0 via composition of

the corresponding morphisms:

π × π′ ∼= πL0 ◦ ρρ
′ � A . (5.6)

Alternatively, the entire analysis may be done in terms of left localized morphisms

η from AL
πL
0

to AL
πR
0

. As proved in [?], the unitary equivalence class of the composed

representation depends neither on the use of left or right localization nor on the

concrete choice of the morphisms.

Whereas for soliton representations there is no analog to the theory of statistics

[?, ?, ?], there is still a “dimension” ind(ρ) defined by

ind(ρ) ≡ [A(W )πL
0

: ρ(A(W )πR
0

)] , (5.7)

where ρ is localized in the right wedge W and [M : N ] is the Jones index of the

inclusion N ⊂M .

Proposition 5.1. Let π be an irreducible soliton representation such that at

least one of the asymptotic vacua πL0 , π
R
0 satisfies Haag duality and the SPW. Then

π and both vacua satisfy the SPW and duality for double cones and wedges. The

associated soliton-morphism satisfies ind(ρ) = 1.

Proof. By symmetry it suffices to consider the case where πL0 satisfies HD

+ SPW. By Theorem ?? also the representations π and πR0 satisfy Haag duality

since they are locally normal w.r.t. to πL0 . Let now W1 ⊂⊂ W2 be left wedges.

By Proposition ??, wedge-duality holds for πL0 and πL0 (A(W1))
′′ ⊂ πL0 (A(W2))

′′ is

split. Since πL0 (A(W2))
′′ is unitarily equivalent to π(A(W2))

′′, also π(A(W1))
′′ ⊂

π(A(W2))
′′ splits. A fortiori, π satisfies the SPW in the sense of Definition ?? and

thus wedge duality by Proposition ??. By a similar argument the SPW is carried

over to πR0 . Now, for a right wedge W we have

πL0 ◦ ρ(A(W ))− = πL0 ◦ ρ(A(W ′))′ = πL0 (A(W ′))′ = πL0 (A(W ))− . (5.8)

By ultraweak continuity on A(W ) of πL0 and of ρ this implies

ρ(A(W )πR
0

) = A(W )πL
0

, (5.9)

whence the claim. �
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This result rules out soliton sectors with infinite index so that [?, Theorem 3.2]

applies and yields equivalence of the various possibilities of constructing antisoliton

sectors considered in [?]. In particular the antisoliton sector is uniquely defined up

to unitary equivalence. Now we can formulate our main result concerning soliton

representations.

Theorem 5.2. Let πL0 , π
R
0 be vacuum representations, at least one of which

satisfies Haag duality and the SPW. Then all soliton representations of type (πL0 , π
R
0 )

are unitarily equivalent.

Remark. Equivalently, up to unitary equivalence, a soliton representation is

completely characterized by the pair of asymptotic vacua.

Proof. Let π, π′ be irreducible soliton representations of types (π0, π
′
0) and

(π′0, π0), respectively. They may be composed, giving rise to a soliton representation

of type (π0, π0) (or (π′0, π
′
0)). This representation is irreducible since the morphisms

ρ, ρ′ must be isomorphisms by the proposition. Now, π × π′ is unitarily equivalent

to π0 on left and right handed wedges, which by Theorem ?? and irreducibility

implies π × π′ ∼= π0. We conclude that every (π′0, π0)-soliton is an antisoliton of

every (π0, π
′
0)-soliton. This implies the statement of the theorem since for every

soliton representation with finite index there is a corresponding antisoliton which

is unique up to unitary equivalence. �

Remark. The above proof relies on the absence of nontrivial representations

which are localizable in wedges. Knowing just that DHR sectors do not exist, as

follows already from Proposition ??, is not enough.

6. Solitons and DHR Representations of Non-Haag Dual Nets

6.1. Introduction and an instructive example

We have observed that the theory of localized representations of Haag-dual nets

of observables which satisfy the SPW is trivial. There are, however, quantum field

theories in 1 + 1 dimensions where the net of algebras which is most naturally

considered as the net of observables does not fulfill Haag duality in the strong form

(??). As mentioned in the introduction, this is the case if the observables are defined

as the fixpoints under a global symmetry group of a field net which satisfies (twisted)

duality and the SPW. The weaker property of wedge duality (??) remains, however.

This property is also known to hold automatically whenever the local algebras arise

from a Wightman field theory [?]. However, for the analysis in [?, ?, ?] as well as

Sec. 4 above one needs full Haag duality. Therefore it is of relevance that, starting

from a net of observables satisfying only (??), one can define a larger but still local

net

Ad(O) ≡ R(WO
L ) ∧R(WO

R ) (6.1)
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which satisfies Haag duality, whence the name dual net . Here WO
L , WO

R are wedges

such that WO
L ∩W

O
R = O and duality is seen to follow from the fact that the wedge

algebras R(W ), W ∈ W are the same for the nets A, Ad. (For observables arising

as group fixpoints the dual net has been computed explicitly in [?].) It is known

[?, ?] that in ≥ 2+1 dimensions representations π satisfying the DHR criterion (??)

extend uniquely to DHR representations π̂ of the (appropriately defined) dual net.

Furthermore, the categories of DHR representations of A and Ad, respectively, and

their intertwiners are isomorphic. Thus, instead of A one may as well study Ad to

which the usual methods are applicable. (The original net is needed only to satisfy

essential duality, which is implied by wedge duality.) In 1 + 1 dimensions things

are more complicated. As shown in [?] there are in general two different extensions

π̂L, π̂R. They coincide iff one (thus both) of them is a DHR representation. Even

before defining precisely these extensions we can state the following consequence of

Theorem ??.

Proposition 6.1. Let A be a net of observables satisfying wedge duality and

the SPW. Let π be an irreducible DHR or wedge representation of A which is

not unitarily equivalent to the defining (vacuum) representation. Then there is no

extension π̂ to the dual net Ad which is still localized in the DHR or wedge sense.

Proof. Assume π to be the restriction to A of a wedge-localized representation

π̂ of Ad. As the latter is known to be either reducible or unitarily equivalent to π0,

the same holds for π. This is a contradiction. �

The fact that the extension of a localized representation of A to the dual net Ad

cannot be localized, too, partially undermines the original motivation for considering

these extensions. Nevertheless, one may entertain the hope that there is something

to be learnt which is useful for a model-independent analysis of the phenomena

observed in models. Before we turn to the general examination of the extensions

π̂L, π̂R we consider the most instructive example.

It is provided by the fixpoint net under an unbroken global symmetry group of a

field net as studied in [?]. We briefly recall the framework. Let O 7→ F(O) be a (for

simplicity) bosonic, i.e. local, net of von Neumann algebras acting on the Hilbert

space H and satisfying Haag duality and the SPW. On H there are commuting

strongly continuous representations of the Poincaré group and of a group G of inner

symmetries. Both groups leave the vacuum Ω invariant. Defining the fixpoint net

A(O) = F(O)G = F(O) ∩ U(G)′ (6.2)

and its restriction

A(O) = A(O) � H0 (6.3)

to the vacuum sector (= subspace of G-invariant vectors) we consider A(O) as the

observables. It is well-known that the net A satisfies only wedge duality. Neverthe-

less, one very important result of [?] remains true, namely that the restrictions of
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A to the charged sectors Hχ which are labeled by the characters χ ∈ Ĝ, interpreted

as representations of the abstract C∗-algebra A, satisfy the DHR criterion and are

connected to the vacuum by charged fields, i.e. the representation of A in Hχ is of

the form

πχ(A) = A � Hχ ∼= πOχ (A) = ψAψ∗ � H0 , (6.4)

where ψ ∈ F(O) and αg(ψ) = χ(g)ψ.

It was shown in [?, Theorem 3.10] that the dual net in the vacuum sector is

given by

A
d(O) = ÂL(O) � H0 = ÂR(O) � H0 , (6.5)

where

ÂL/R(O) = F̂L/R(O)G = F̂L/R(O) ∩ U(G)′ . (6.6)

Here the nonlocal nets F̂L/R(O) are obtained by adjoining to F(O) the disorder

operators [?] UOL (G) or UOR (G), respectively, which satisfy

AdUOL (g) � F(WO
LL) = αg = AdUOR (g) � F(WO

RR) ,

AdUOL (g) � F(WO
RR) = id = AdUOR (g) � F(WO

LL)
(6.7)

and transform covariantly under the global symmetry:

U(g)UOL/R(h)U(g)∗ = UOL/R(ghg−1) . (6.8)

For the moment we restrict to the case of abelian groups G. The disorder

operators commuting with G, ÂL/R(O) is simply A(O) ∨ UOL/R(G)′′. On the C∗-

algebras ÂL and ÂR there is an action of the dual group Ĝ which acts trivially on

A and via

α̂χ(UOL/R(g)) = χ(g)UOL/R(g) ∀ O ∈ K (6.9)

on the disorder operators. Since this action commutes with the Poincaré group and

since it is spontaneously broken (ω0 ◦ α̂χ 6= ω0 ∀ χ 6= eĜ) it gives rise to inequivalent

vacuum states on Â via

ωχ = ω0 ◦ α̂χ . (6.10)

The extensions π̂χ,L, π̂χ,R of πχ to the dual net Ad can now defined using the

right-hand side of (??) by allowing A to be in ÂL or ÂR. As is obvious from

the commutation relation (??) between fields and disorder operators, the exten-

sion π̂χ,L (π̂χ,R) is nothing but a soliton sector interpolating between the vacua ω0
and ωχ−1 (ωχ and ω0). The moral is that the net Ad, while not having non-

trivial localized representations by Theorem ??, admits soliton representations.

Furthermore, with respect to Ad, the charged fields ψχ are creation operators for
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solitons since they intertwine the representations of Ad on H0 and Hχ. Due to

UOL (g)UOR (g) = U(g) and U(g) � Hχ = χ(g)1 we have

UOL (g) � Hχ = χ(g)UOR (g−1) � Hχ , (6.11)

so that the algebras ÂL/R(O) � Hχ are independent of whether we use the left

or right localized disorder operators. In particular, in the vacuum sector UOL (g)

and UOR (g−1) coincide, but due to the different localization properties it is relevant

whether UOL (g), considered as an element of Ad, is represented on Hχ by UOL (g) or

by χ(g)UOR (g−1). This reasoning shows that the two possibilities for extending a

localized representation of a general non-dual net to a representation of the dual

net correspond in the fixpoint situation at hand to the choice between the nets ÂL
and ÂR arising from the field extensions F̂L and F̂R.

6.2. General Analysis

We begin by first assuming only that π is localizable in wedges. LetO be a double

cone and let WL, WR be left and right handed wedges, respectively, containing O.

By assumption the restriction of π to A(WL), A(WR) is unitarily equivalent to π0.

Choose unitary implementers UL, UR such that

AdUL � A(WL) = π � A(WL) ,

AdUR � A(WR) = π � A(WR) .
(6.12)

Then π̂L, π̂R are defined for A ∈ Ad(O) by

π̂L(A) = ULAU
∗
L ,

π̂R(A) = URAU
∗
R .

(6.13)

Independence of these definitions of the choice of WL, WR and the implementers

UL, UR follows straightforwardly from wedge duality. We state some immediate

consequences of this definition.

Proposition 6.2. π̂L, π̂R are irreducible, locally normal representations of

Ad and satisfy Haag duality. π̂L, π̂R are normal on left and right handed wedges,

respectively.

Proof. Irreducibility is a trivial consequence of the assumed irreducibility of

π whereas local normality is obvious from the definition (??). Thus, Theorem ??

applies and yields Haag duality in both representations. Normality of, say, π̂L on

left handed wedges W follows from the fact that we may use the same auxiliary

wedge WL ⊃W and implementer UL for all double cones O ⊂W . �

Clearly, the extensions π̂L, π̂R cannot be normal w.r.t. π0 on right and left

wedges, respectively, for otherwise Theorem ?? would imply unitary equivalence to

π0. In general, we can only conclude localizability in the following weak sense. Given
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an arbitrary left handed wedge W , π̂L is equivalent to a representation ρ onH0 such

that ρ(A) = A ∀ A ∈ A(W ). Furthermore, by duality ρ is an isomorphism of A(W ′)

onto a weakly dense subalgebra of R(W ′) which is only continuous in the norm.

In favorable cases like the one considered above this is a local symmetry, acting

as an automorphism of A(W ′). But we will see shortly that there are perfectly

non-pathological situations where the extensions are not of this particularly nice

type. In complete generality, the best one can hope for is normality with respect to

another vacuum representation π′0. In particular, this is automatically the case if π

is a massive one-particle representation [?] which we did not assume so far.

If the representation π satisfies the DHR criterion, i.e. is localizable in double

cones, we can obtain stronger results concerning the localization properties of the

extended representations π̂L, π̂R. By the criterion, there are unitary operators

XO : Hπ → H0 such that

πO(A) ≡ XO π(A)XO∗ = A ∀ A ∈ A(O′) . (6.14)

(By wedge duality, XO is unique up to left multiplication by operators in Ad(O).)

Considering the representations

π̂OL/R = XOπ̂L/RX
O∗ (6.15)

on the vacuum Hilbert space H0, it is easy to verify that

π̂OL � A
d(WO

LL) = id � Ad(WO
LL) , (6.16)

π̂OR � A
d(WO

RR) = id � Ad(WO
RR) . (6.17)

We restrict our attention to π̂OL , the other extension behaving similarly. If A ∈ A(Õ)

then π̂L(A) = XOr
∗
AXOr whenever Or > Õ. Therefore

π̂OL (A) = XOXOr
∗
AXOrXO∗ , (6.18)

where the unitary XOXOr
∗

intertwines πO and πOr . Associating with every pair

(O1,O2) two other double cones by

Ô = sup(O1,O2) , (6.19)

O0 = Ô ∩ O′1 ∩ O
′
2 (6.20)

(O0 may be empty) and defining

C(O1,O2) = Ad(Ô) ∩A(O0)
′ , (6.21)

we can conclude by wedge duality that

XOXOr
∗
∈ C(O,Or) . (6.22)

Thus π̂OL (A) as given by (??) is contained in Ad(sup(O, Õ,Or)) which already

shows that π̂OL maps the quasilocal algebra Ad into itself (this does not follow if
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π is only localizable in wedges). Since the double cone Or > O may be chosen

arbitrarily small and appealing to outer regularity of the dual net Ad we even have

π̂OL (A) ∈ Ad(sup(O, Õ)) and thus finally

π̂OL (Ad(Õ)) ⊂ C(O, Õ) . (6.23)

This result has two important consequences. Firstly, it implies that the representa-

tion π̂OL maps the quasilocal algebra into itself:

π̂OL (Ad) ⊂ Ad . (6.24)

This fact is of relevance since it allows the extensions π̂O1,L, π̂O2,L of two DHR

representations π1, π2 to be composed in much the same way as the endomorphisms

of A derived from DHR representations in the Haag dual case. In this respect, the

extensions π̂L/R are better behaved than completely general soliton representations

as studied in [?].

The second consequence of (??) is that the representations π̂OL (and π̂OR ), while

still mapping local algebras into local algebras, may deteriorate the localization.

We will see below that this phenomenon is not just a theoretical possibility but

really occurs. Whereas one might hope that one could build a DHR theory for non-

dual nets upon the endomorphism property of the extended representations, their

weak localization properties and the inequivalence of π̂L and π̂R seem to constitute

serious obstacles. It should be emphasized that the above considerations owe a lot

to Roberts’ local 1-cohomology [?, ?, ?], but (??) seems to be new.

6.3. Fixpoint nets: non-abelian case

We now generalize our analysis of fixpoint nets to non-abelian (finite) groups G,

where the outcome is less obvious a priori. Let Â =
∑

g∈G FgU
Õ
L (g) ∈ ÂL(Õ1) (Fg

must satisfy the condition given in [?, Theorem 3.16]) and let ψi ∈ F(O2), where

O2 < O1 (i.e. O2 ⊂ WO1
LL) be a multiplet of field operators transforming according

to a finite dimensional representation of G. Then

∑

i

ψi





∑

g∈G

FgU
O1
L (g)



ψ∗i =
∑

g∈G

(

∑

i

ψiαg(ψ
∗
i )

)

FgU
O1
L (g) . (6.25)

In contrast to the abelian case where ψαg(ψ
∗) is just a phase, Og ≡

∑

i ψiαg(ψ
∗
i )

is a nontrivial unitary operator

O−1g = O∗g =
∑

i

αg(ψi)ψ
∗
i (6.26)

satisfying

αk(Og) = Okgk−1 . (6.27)

In particular (??) is not contained in Ad(O1) which implies that the map Â 7→
∑

i ψi Â ψ
∗
i does not reduce to a local symmetry on ÂL(WO2

RR). Rather, we obtain
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a monomorphism into ÂL(WO2
R ). Defining Ô and O0 as above we clearly see that

(??) is contained in Ad(Ô). Furthermore, due to the relative locality of the net A

with respect to Ad and F , (??) commutes with A(O0). Thus we obtain precisely

the localization properties which were predicted by our general analysis above.

We close this section with a discussion of the duality properties in the extended

representations π̂. In the case of abelian groups G Haag duality holds in all charged

sectors since these are all simple. Our abstract result in Theorem ?? to the effect

that duality obtains in all locally normal irreducible representations of the dual net

applies, of course, to the situation at hand. We conclude that Haag duality also

holds for the non-simple sectors which by necessity occur for non-abelian groups G.

Since this result is somewhat counterintuitive (which explains why it was overlooked

in [?]) we verify it by the following direct calculation.

Lemma 6.3. The commutants of the algebras ÂL(O) are given by

ÂL(O)′ = ÂL(WO
LL) ∨ F̂L(WO

RR) ∀ O ∈ K . (6.28)

Proof. For simplicity we assume F to be a local net for a moment. Then

ÂL(O)′ = (F̂L(O) ∧ U(G)′)′ = F̂L(O)′ ∨ U(G)′′

= (FL(O) ∨ UOL (G)′′)′ ∨ U(G)′′ = (FL(O)′ ∧ UOL (G)′) ∨ U(G)′′

= ((FL(WO
LL) ∨ FL(WO

RR)) ∧ UOL (G)′) ∨ U(G)′′

= (FL(WO
LL) ∧ UOL (G)′) ∨ FL(WO

RR) ∨ U(G)′′

= ÂL(WO
LL) ∨ F̂L(WO

RR) . (6.29)

The fourth line follows from the third using the split property. In the last step we

have used the identities ÂL(WL) = AL(WL) and FL(WR)∨U(G)′′ = F̂L(WR) which

hold for all left (right) handed wedges WL (WR), cf. [?, Proposition 3.5]. Now, if F

satisfies twisted duality, (2.23) of [?] leads to F(O)∨UOL (G)′′ ∼= F(WO
R )∨U(G)′′⊗

F(WO
L ) and (F(O)∨UOL (G)′′)′ ∼= A(WO

R )⊗F(WO
RR)t. Using this it is easy to verify

that (??) is still true. �

Proposition 6.4. The net ÂL satisfies Haag duality in restriction to every

invariant subspace of H on which ÂL acts irreducibly.

Proof. We recall that the representation π of ÂL/R on H is of the form π =

⊕ξ∈Ĝ dξπξ. Let thus P be an orthogonal projection onto a subspace Hξ ⊂ H on

which ÂL acts as the irreducible representation πξ. Since P commutes with AL(O)

and AL(WO
LL) we have

P ÂL(O)′ P = P ÂL(WO
LL) ∨ F̂L(WO

RR)P

= ÂL(WO
LL) ∨ (P F̂L(WO

RR)P )

= P ÂL(WO
LL) ∨ ÂL(WO

RR)P , (6.30)
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which implies

(ÂL(O) � Hξ)
′ = ÂL(WO

LL) ∨ ÂL(WO
RR) � Hξ . (6.31)

�

This provides a concrete verification of Theorem ?? in a special, albeit important

situation.

7. Conclusions and Outlook

We have seen that the combination of Haag duality with the split property

for wedges has remarkable unifying power. It implies factoriality of the double

cone algebras, n-regularity for all n and irreducibility of time-slice algebras. As a

consequence of the minimality of relative commutants of double cone algebras we

obtain Haag duality in all irreducible, locally normal representations. The strongest

result concerns the absence not only of locally generated superselection (DHR)

sectors but also of charges localized in wedges. This in turn implies the uniqueness

up to unitary equivalence of soliton sectors with prescribed asymptotic vacua. In

the following we briefly relate these results to what is known in concrete models in

1 + 1 dimensions.

(a) The free massive scalar field . Since this model is known to satisfy Haag

duality and the SPW, Theorem ?? constitutes a high-brow proof of the well-known

absence of local charges. Furthermore, there are no non-trivial soliton sectors, since

the vacuum representation is unique [?]. Thus, the irreducible representations con-

structed in [?], which are inequivalent to the vacuum, must be rather pathological.

In fact, they are equivalent to the (unique) vacuum only on left wedges.

(b) P(φ)2-models . These models have been shown [?] to satisfy Haag duality

in all pure phases, but there is no proof of the SPW. Yet, the split property for

double cones, the minimality of relative commutants and strong additivity, thus

also the time slice property, follow immediately from the corresponding properties

for the free field via the local Fock property. These facts already imply the non-

existence of DHR sectors and Haag duality in all irreducible locally normal sectors.

All these consequences are compatible with the conjecture that the SPW holds.

There seems, however, not to be a proof of the absence of wedge sectors.

(c) The sine-Gordon/Thirring model . For this model neither Haag duality nor

the SPW are known. In the case β2 = 4π, however, for which the SG model

corresponds to the free massive Dirac field, there seems to be no doubt that the net

Â constructed like in Sec. 6 from the free Dirac field is exactly the local net of the

SG model. As shown in [?], also Â satisfies Haag duality and the SPW. Since from

the point of view of constructive QFT there is nothing special about β2 = 4π one

may hope that both properties hold for all β ∈ [0, 8π).

In view of the results of this paper as well as of [?] it is highly desirable to

clarify the status of the SPW in interacting massive models like (b) and (c) as well

as that of Haag duality in case (c). (Also the Gross–Neveu model might be expected
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to satisfy both assumptions.) The most promising approach to this problem should

be identifying conditions on a set of Wightman (or Schwinger) distributions which

imply Haag duality and the SPW, respectively, for the net of algebras generated by

the fields. For a first step in this direction see [?, Sec. IIIB].
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