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Abstract. After a brief review of recent rigorous results concerning the
representation theory of rational chiral conformal field theories (RC-
QFTs) we focus on pairs (A, F) of conformal field theories, where F
has a finite group G of global symmetries and A is the fixpoint theory.
The comparison of the representation categories of A and F is strongly
intertwined with various issues related to braided tensor categories. We
explain that, given the representation category of A, the representation
category of F can be computed (up to equivalence) by a purely cate-
gorical construction. The latter is of considerable independent interest
since it amounts to a Galois theory for braided tensor categories. We
emphasize the characterization of modular categories as braided tensor
categories with trivial center and we state a double commutant theo-
rem for subcategories of modular categories. The latter implies that a
modular category M which has a replete full modular subcategory M1
factorizes as M ~ M; ®c M2 where M2 = M N M) is another mod-
ular subcategory. On the other hand, the representation category of A
is not determined completely by that of F and we identify the needed
additional data in terms of soliton representations. We comment on
‘holomorphic orbifold’ theories, i.e. the case where F has trivial repre-
sentation theory, and close with some open problems.

We point out that our approach permits the proof of many conjec-
tures and heuristic results on ‘simple current extensions’ and ‘holomor-
phic orbifold models’ in the physics literature on conformal field theory.
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1 Introduction

As is well known and will be reviewed briefly in the next section, quantum field
theories in Minkowski space of not too low dimension give rise to representation
categories which are symmetric C*-tensor categories with duals and simple unit.
(The minimum number of space dimensions for this to be true depends on the class
of representations under consideration.) As Doplicher and Roberts have shown,
such categories are representation categories of compact groups [17] and every QF T
is the fixpoint theory under a compact group action [18] of a theory admitting only
the vacuum representation [9]. Thus the theory of (localized) representations of
QFTs in higher dimensional spacetimes is essentially closed.

Though this is still far from being the case for low dimensional theories there
has been considerable recent progress, of which we will review two aspects. The
first of these concerns the general representation theory of rational chiral conformal
theories, which have been shown [33] to give rise to unitary modular categories in
perfect concordance with the physical expectations. See also [46] for a more self-
contained and (somewhat) more accessible review. In this contribution we restrict
ourselves to stating the main results insofar as they serve to motivate the subsequent
considerations which form the core of this paper.

We will then study pairs (F,.4) of quantum field theories in low dimension,
mostly rational conformal, where A is the fixpoint theory of F w.r.t. the action of a
finite group G of global symmetries. This scenario may seem quite special, as in fact
it is, but it is justified by several arguments. First of all, as already alluded to, the
fixpoint situation is the generic one in high dimensions. Whereas this is definitely
not true in the case at hand, every attempt at classifying rational conformal field
theories (or at least modular categories) will most likely make use of constructions
which produce new conformal field theories from given ones. (Besides those we
focus on there are, of course, other such procedures like the ‘coset construction’.)
The converse of the passage to G-fixpoints is provided by the construction [18]
of Doplicher and Roberts, which in the case of abelian groups has appeared in
the CQFT literature as ‘simple current extension’. The latter are of considerable
relevance in the classification of ‘modular invariants’, i.e. the construction of two-
dimensional CQFTs out of chiral ones. It is therefore very satisfactory that we are
able to provide rigorous proofs for many results in this area.

Finally the analysis of quantum field theories related by finite groups leads to
many mathematical results which can be phrased in a purely categorical manner.
As such they have applications to other areas of mathematics like subfactor theory
or low-dimensional topology.

2 ‘Many’ Spacetime Dimensions: Symmetric Categories

2.1 Global Symmetry Groups in > 2 + 1 Spacetime Dimensions. In
this section we consider quantum field theories in Minkowski space with d = s + 1
dimensions where the number s of space dimensions is at least two. (See [27, 32]
for more details.) We denote by K the set of double cones. Let O — F(O),0 € K
be a net (inclusion preserving assignment) of von Neumann algebras on a Hilbert
space H satisfying irreducibility, locality (O; C Of = [F(01),F(02)] = {0})
and covariance w.r.t. a positive energy representation of the Poincaré group with
invariant vacuum vector 2. We sharpen the locality requirement by imposing Haag
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duality

|-l
F(O) =F(O') where F(O') =Ugex 6coF(O) -

We assume that there is a compact group G with a strongly continuous faithful
unitary representation U on ‘H commuting with the representation of the Poincaré
group, leaving 2 invariant and implementing global symmetries of F:

ay(F(0)) =F(O) Vge G,0 € K where oy = AdU(g).

Consider the subnet A(O) = F(0)% together with its vacuum representation m on
the subspace Ho of G-invariant vectors. 7y can be shown to satisfy Haag duality
[15]. The Hilbert space H decomposes as

H = @Hg ®(Cd(5),
£eé

where G is the set of isomorphism classes of irreducible representation of G and the

group G and the C*-algebra A = UOGK.A(O)”.”

H as follows:

Ulg) =P 10 Uc(g), m(A) =P re(4)®1, geG AcA
ecG 1€l

(the ‘quasi-local algebra’) act on

The representations m¢ of A on H¢ are irreducible and satisfy [15]
me [ A(O') 2 m [ AO') VO €K, (2.1)

where 7g is the representation of A on Hy.

These observations motivate the analysis of the positive energy representations
satisfying the ‘DHR criterion’ (2.1) for any irreducible local net A of algebras
satisfying Haag duality and Poincaré covariance.

Definition 2.1 Let O — A(O) C B(Ho) be a Haag dual net of algebras which

is covariant w.r.t. a positive energy vacuum representation of P. Then DH R(A) is
the category of Poincaré covariant representations satisfying (2.1) (7 is the defining
representation) together with their (bounded) intertwining operators.

For the purposes of the development of the theory another category is much
more convenient.

Definition 2.2 Let A be as above. Then DHR(A) denotes the category of
localized transportable morphisms, i.e. bounded unital *-algebra endomorphisms p
of the quasi-local algebra .4 such that p [ A(O') = id for some O € K and such that
for every O € K there is P& localized in O such that p and P are inner equivalent.
The morphisms are the intertwiners in .A.

Theorem 2.3 [16] DHR(A) is canonically isomorphic to a full subcategory
of BI\-IT?(.A) which is equivalent to 171\{/R(.A) DHR(A) is a strict symmetric C*-
tensor category with simple tensor unit. There is an additive and multiplicative
dimension function on the objects with values in N U oco. (If the local algebras
A(0),0 € K are assumed to be factors then d(p)? = [A(O) : p(A(O))] if p
is localized in O.) The full monoidal subcategory DHR;(A) of the p with finite
statistics (i.e. d(p) < oo) has conjugates in the sense of [35]. Viz. for every
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p € DHR;(A) there are p € DHR;(A) and r, € Hom(1,pp), 7, € Hom(1, pp)
satisfying s or, =T, 0T, = d(p)idy and

id, ® 1, 0T, ® id, = id,, id; ®T, o1, ® id; = idp.

DHRy;(A) is a ribbon category, i.e. has a twist, which on simple objects takes the
values +1 (Bose-Fermi alternative).

Applying the general formalism to fixpoint nets as above one obtains:

Proposition 2.4 [15] Let A be a fixpoint net as above. Then DHR;(A) con-
tains a full monoidal subcategory S which is equivalent (as a symmetric monoidal
category) to the category G — mod of finite dimensional continuous unitary repre-
sentations of G. For a simple object p¢ € S the dimension d(p¢) coincides with the
dimension d(£) of the associated representation Uy of G.

Now the question arises under which circumstances one obtains all DHR rep-
resentations of A in this way.

Proposition 2.5 [51] Assume F has trivial representation category DH R(F)
(in the sense of quasi-trivial one-cohomology). Then A has no irreducible DHR
representations of infinite statistics and DHR(A) ~ G — mod.

It is thus natural to conjecture that every net A satisfying the above axioms
is the fixpoint net under the action of a compact group G of a net F with trivial
representation structure.

2.2 The Reconstruction Theory of Doplicher and Roberts.

Theorem 2.6 [17] Let S be a symmetric C*-tensor category with conjugates
and simple unit such that every simple object has twist +1. Then there is a compact
group G, unique up to isomorphism, such that one has an equivalence S ~ G — mod
of symmetric tensor x-categories with conjugates.

Remark 2.7 1. If there are objects with twist —1 then there is a compact
group G together with a central element k of order two such that S ~ G — mod
as a tensor category and the twist of a simple object equals the value of k in the
corresponding irreducible representation of G.

2. Most categories in this paper will be closed w.r.t. direct sums and subobjects
(i.e. all idempotents split). Yet, in order not to have to require this everywhere,
all equivalences of ((braided/symmetric) monoidal) categories in this paper will
be understood as equivalences of the respective categories after completion w.r.t.
direct sums and subobjects. See, e.g., [25] for these constructions and note that
equivalence of the completed categories is equivalent to Morita equivalence [25]. We
believe that this is the appropriate notion of equivalence for semisimple k-linear
categories. By the coherence theorem for braided tensor categories [30] we may
and do assume that all tensor categories are strict. (In fact, most of the categories
under consideration here are so by construction.)

Theorem 2.8 [18] Let O — A(O) C B(Ho) as above. Then there is a net of
algebras O — F(O) C B(H) where H D Ho such that

o F is a graded local net (which is local iff all objects in DHR(A) have twist
+1),
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e the group G corresponding to the symmetric tensor category DHR;(A) is
unitarily and faithfully represented on H, implementing global symmetries
of F,

o F(O)Y | Ho = AO) YO €K,

o the reducible representation of A on H contains every irreducible DHR sector
me of A (of finite dimension d(m¢)) with multiplicity d(me),

o the charged (non-G-invariant) fields intertwine the vacuum and the DHR
sectors.

The net F, which we denote F = A x DHR¢(A), is unique up to unitary equiv-
alence. (One may also consider the crossed product A x S with a full monoidal

subcategory S of DHR;(A).)

It is natural to ask whether there is a converse to Prop. 2.5 to the effect that
F = Ax DHR;(A) has trivial representation theory. A first result was proved
independently in [8] and [39]:

Proposition 2.9 Assume that A has finitely many unitary equivalence classes
of irreducible DHR representations of finite statistics, all with twist +1. Then the
local net ¥ = A x DHRy(A) has no non-trivial DHR representations of finite
statistics.

This result has the obvious weakness of being restricted to theories with finite
representation theory. On the positive side, we do not need to make assumptions
on potential representations of 4 with infinite statistics. For most purposes of the
present paper this result is sufficient, but we cite the following recent result.

Theorem 2.10 [9] Assume A lives on a separable Hilbert space and all DHR
representations are direct sums of irreducible DHR representations with finite sta-
tistics and twist +1. Then F = A x DHR(A) has no non-trivial sectors of finite
or infinite statistics.

In 1 + 1-dimensional Minkowski space or on R (i.e. no time: ‘1 4+ 0 dimen-
sions’) the DHR analysis must be modified [20] since there one can only prove that
DHR(A) is braided. We will therefore give a brief discussion of some pertinent
results on braided tensor categories. (See [30] or [31] for the basic definitions.)

3 Few Spacetime Dimensions and Modular Categories

3.1 Categorical Interlude 1: Braided Tensor Categories and Their
Center. Throughout we denote morphisms in a category by small Latin letters
and objects by capital Latin or, in the quantum field context, by small Greek
letters. We often write XY instead of X @ Y.

Definition 3.1 A TC* is a C*-tensor category [35] with simple unit and con-
jugates (and therefore finite dimensional hom-spaces). A BTC* is a TC* with
unitary braiding. A STC* is a symmetric BTC*.

A TC* (more generally, a semisimple spherical category) will be called finite
dimensional if the set I' of isomorphism classes of simple objects is finite. Then its
dimension is defined by

dimC =" d(X;)?,

i€l
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where the X;,i € ' are representers for these classes. If C is braided then there is
another numerical invariant, which we call the Gauss sum, defined by

Ac =) d(Xi) w(X:)™
i€l
The dimensions in a TC* (not necessarily braided!) are quantized [35] in the same
way as the square roots of indices in subfactor theory:

d(p) € {2cos %,n > 3} U [2, 00).

The twist w(p) of a simple object may a priori take any value in the circle group T.
In a finite dimensional TC*, every d(p) is a totally real algebraic integer and w(p)
is a root of unity. In the braided case there is no known replacement for Thm. 2.6.

The deviation of a braided category C from being symmetric is measured by
the monodromies

em(X,Y) =¢(Y,X)oc(X,Y) € Hom(XY, XY), X,Y € ObjC.
If C has conjugates (in the sense of Thm. 2.3) and the unit 1 is simple then
S'(X,Y)idy = (rk ®Ty) o (idg ® e (X,Y) ® idy) o (rx @ Ty)

defines a number which depends only on the isomorphism classes of X,Y. These
numbers, for irreducible X,Y, were called statistics characters in [49]. (They also
give the invariant for the Hopf link with the two components colored by X,Y".) Pick-
ing arbitrary representers X;,i € ' we define the matrix S} ; = S'(X;, X;), i,j € I.
The matrix of statistics characters is of particular interest if the category is finite
dimensional.

Then, as proved independently be Rehren [49] and Turaev [54], if S’ is invertible
then

Ac

1/3
S = (dimC)fl/z.S", T = (m) DZ(lg(wz)

are unitary and satisfy the relations
S?=(ST)*=C, TC =CT,

where C;; = §; 7 is the charge conjugation matrix (which satisfies C? = 1). (Whereas
the dimension of a TC* is always non-zero, this is not true in general. Yet, when
S’ is invertible then dim C # 0, cf. [54].) Since these relations give a presentation of
the modular group SL(2,Z) we obtain a finite dimensional unitary representation
of the latter, which motivated the terminology ‘modular category’ [54]. Further-
more, the ‘fusion coefficients’ Nilg- = dim Hom(X; X, X}) are given by the Verlinde
relation [56]
SimSim Sy
Nj = Z S:)m _

m

The assumption that S’ is invertible is not very conceptual and therefore unsat-
isfactory. A better understanding of its significance is obtained from the following
considerations.

Definition 3.2 Let C be a braided monoidal category and K a full subcategory.
Then the relative commutant C N K’ of K in C is the full subcategory defined by

ObJCﬂ’CI:{XEC|CM(X7Y)=1dXY VYEIC}
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(CNK' is automatically monoidal and replete.) The center of a braided monoidal

category C is Z(C) =CNC'.

Remark 3.3 1. If there is no danger of confusion about the ambient category
C we will occasionally write K' instead of C N K'.

2. Z(C) is a symmetric tensor category for every C. C is symmetric iff Z(C) = C.

3. The objects of the center have previously been called degenerate (Rehren),
transparent (Bruguiéres) and pseudotrivial (Sawin). Yet, calling them central seems
the best motivated terminology since the above definition is the correct analogue
for braided tensor categories of the center of a monoid, as can be seen appealing to
the theory of n-categories.

4. We say a semisimple category (thus in particular a BTC*) has trivial center,
denoted symbolically Z(C) = 1, if every object of Z(C) is a direct sum of copies of
the monoidal unit 1 of if, equivalently, every simple object in Z(C) is isomorphic
to 1.

5. Note that the center of a braided tensor category as given in Defin. 3.2 must
not be confused with another notion of center [29, 36] which is defined for all tensor
categories (not necessarily braided) and which in a sense generalizes the quantum
double of Hopf algebras. See also Subsect. 5.2.

Proposition 3.4 [49] Let C be a BTC* with finitely many classes of simple
objects. Then the following are equivalent:

(i) The S'-matrix is invertible, thus C is modular.
(ii) The center of C is trivial.

(i) |Ac|? = dimC.

Remark 3.5 The direction (i) = (i7) is obvious, and (i¢) = (i) has been
generalized by Bruguiéres [6] to a class of categories without *-operation, in fact
over arbitrary fields. He proves that a ‘pre-modular’ category [4] is modular iff
its dimension is non-zero (which is automatic for *-categories) and its center is
trivial. This provides a very satisfactory characterization of modular categories and
we see that modular categories are related to symmetric categories like factors to
commutative von Neumann algebras. Recalling that finite dimensional symmetric
BTC"s are representation categories of finite groups by the DR duality theorem, one
might say that modular categories (Z(C) = 1) differ from finite groups (Z(C) = C)
by the change of a single symbol in the respective definitions!

3.2 General Low Dimensional Superselection Theory. As already men-
tioned, in low dimensions the category DH R(.A) is only braided. As a consequence
the proofs [49, 26] of the existence of conjugate (dual) representations have to pro-
ceed in a fashion completely different from [16, IT]. More importantly, Thm. 2.6 and,
a fortiori, Thm. 2.8 are no more applicable. (There is a weak substitute for the DR
field net, cf. [21, 26] for the reduced field bundle, which however is not very useful
in practice.) The facts expounded in the Categorical Interlude imply that every
low dimensional QFT whose DHR category has finitely many simple objects and
trivial center gives rise to a unitary representation of SL(2,Z). This is consistent
with the physics literature on rational conformal models but at first sight rather
surprising in non-conformal models. (Note, however, that Haag dual theories which
are massive in a certain strong sense have trivial DHR representation theory [38],
implying that for them the question concerning the réle of SL(2,Z) does not arise.)
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What remains is the issue of triviality of the center of DH R;(.A) which does not
obviously follow from the axioms. A first result in this direction was the following
which proves a conjecture in [49].

Theorem 3.6 [39] Let A be a Haag dual theory on 1+1 dimensional Minkowski
space or on R. Assume that DHR(A) is finite and that all objects in Z(DHRy(A))
are even, i.e. bosonic. Then F = A x Z(DHR;(A)) is local and Haag dual and
DHR¢(F) has trivial center, thus is modular.

In other terms, every rational QFT whose representation category has non-
trivial center is the fixpoint theory of a theory with modular representation category
under the action of a finite group of global symmetries. In the next subsection
we will cite results according to which a large class of models automatically has a
modular representation category. For these models the above theorem is empty, but
the analysis of [39] is still relevant for the study of F = AxS where S C DHR;(A)
is any full symmetric subcategory, not necessarily contained in Z(DHRy(A)).

3.3 Completely Rational Chiral Conformal Field Theories. In this sec-
tion we consider chiral conformal field theories, i.e. quantum field theories on the
circle. We refer to [46] for a more complete and fairly self-contained account. Let
T be the set of intervals on S!, i.e. connected open non-dense subsets of S'. For
every J C S1, J' is the interior of the complement of J, and for M C B(H,) we
posit M' = {z € B(Ho) | zy = yz Vy € M }.

Definition 3.7 A chiral conformal field theory consists of

1. A Hilbert space Hy with a distinguished non-zero vector (2,

2. an assignment Z 5 I — A(I) C B(H,o) of von Neumann algebras to intervals,

3. a strongly continuous unitary representation U on Hg of the Mobius group
PSU(1,1) = SU(1,1)/{1,—1}, i.e. the group of those fractional linear maps
C — C which map the circle into itself.

These data must satisfy

Isotony: I CcJ = A(I) C A(J),

Locality: I Cc J' = A(I) C A(J),

Irreducibility: Vicst A(I) = B(Ho) (equivalently, Nyez A(I)' = C1),
Covariance: U(a)A(I)U(a)* = A(al) Va € PSU(1,1), I € T,

Positive energy: Lo > 0, where Ly is the generator of the rotation subgroup
of PSU(1,1),

e Vacuum: every vector in o which is invariant under the action of PSU(1,1)

is a multiple of Q.

For consequences of these axioms see, e.g., [24]. We limit ourselves to pointing
out some facts:

e Reeh-Schlieder property: A(I)Q = A(I)!'Q=Ho VI€T.

e Type: The von Neumann algebra A(T) is a factor of type ITI; for every
Iel.

o Haag duality: A(I)' = A(I') VI e T.

e The modular groups and conjugations associated with (A(I), ) have a geo-
metric meaning, cf. [7, 24].
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Now one studies coherent representations 7 = {m;,I € Z} of A on Hilbert
spaces H, where 7y is a representation of A(I) on H such that

IcJ = =y Ad)=mnr.

One can construct [21] a unital C*-algebra C*(A), the global algebra of A, such
that the coherent representations of A are in one-to-one correspondence with the
representations of C*(A). We therefore simply speak of representations. A repre-
sentation is covariant if there is a positive energy representation U, of the universal

o —

covering group PSU(1,1) of the Mobius group on H such that

Uy (@)1 (2)Un(a)* = mar(U(a)zU(a)*) Va € PSU(1,1),1 € 7.
A representation is locally normal iff each 7y is strongly continuous.
In order to obtain further results we introduce additional axioms.

Definition 3.8 Two disjoint intervals I, J € 7 are called adjacent if they have
exactly one common boundary point. A chiral CQFT satisfies strong additivity if

I,J adjacent = A(I)V A(J) = A((IUJ)").

A chiral CQFT satisfies the split property if I, J € Z such that I N.J = @ implies
the existence of an isomorphism

n: AI) Vv A(J) - A(I) @ A(J)
of von Neumann algebras satisfying n(zy) =z ®y Vz € A(I),y € A(J).

Remark 3.9 By Modbius covariance strong additivity holds in general if it
holds for one pair I, J of adjacent intervals. Strong additivity has been verified in
all known rational models. Furthermore, every CQFT can be extended canonically
to one satisfying strong additivity. If the split property holds then Hg is separable,
and thanks to the Reeh-Schlieder theorem A(I)V.A(J) and A(I)®.A(J) are actually
unitarily equivalent. The split property follows if Tre?X° < oo for all 3 > 0, which
is satisfied in all reasonable models.

Lemma 3.10 [33] Let A be a CQFT satisfying strong additivity and the split
property. Let Iy, € T,k = 1,... ,n be intervals with mutually disjoint closures and
denote E = Ul,. Then A(E) C A(E') is an irreducible inclusion (of type IT11;
factors) and the index [A(E') : A(E)] depends only on the number n but not on
the choice of the intervals. Let p, be the index for the n-interval inclusion. These
numbers are related by

pn =2t VneN.

(In particular p; = 1, which is just Haag duality.) Thus every CQFT satisfying
strong additivity and the split property comes along with a numerical invariant
U2 € [1,00] whose meaning is elucidated by the main result of [33] stated below.

Definition 3.11 A chiral CQFT is completely rational if it satisfies (a) strong
additivity, (b) the split property and (c) pa < oo.

All known classes of rational CQFTs are completely rational in the above sense,
see [57, 58] for the WZW models connected to loop groups and [59, 43] for orbifold
models. Very strong results on both the structure and representation theory of
completely rational theories can be proved. (All representations are understood to
be non-degenerate.)

Theorem 3.12 [33, 46] Let A be a completely rational CQFT. Then
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o FEwvery representation of C*(A) on a separable Hilbert space is locally normal
and completely reducible, i.e. the direct sum of irreducible representations.

o Fuvery irreducible separable representation has finite statistical dimension
d. = [n(AI")) : ©(AI))]*/? (independent of I € T). It therefore [26]
has a conjugate representation ™ and is automatically Mobius covariant with
positive energy.

e For a representation 7 the following are equivalent: (a) w is Mobius covari-
ant with positive energy, (b) m is locally normal, (c) 7 is a direct sum of
separable representations.

e The category Rep(.A) of finite direct sums of separable irreducible representa-
tions has a monoidal structure with simple unit and duals (conjugates). The
number of unitary equivalence classes of separable irreducible representations
1s finite and

dim Rep(A) = pa(A).

Furthermore, there is a non-degenerate braiding. Rep(A) thus is a unitary
modular category in the sense of Turaev [54].

Remark 3.13 1. In the way of structure theoretical results we mention that
for completely rational theories the subfactors A(E) C A(E')', E = U™, I; can be
analyzed quite explicitly, generalizing some of the results of [58]. Yet [33] by no
means supersedes the ingenious computation in [58] of the indices [A(E")" : A(E)]
in the case of loop group models.

2. In view of the above results we do not need to worry about representations
with infinite statistics when dealing with completely rational CQFTs. From now
on we will write Rep(.A) instead of DHR(A) since the (separable) representation
theory can be developed without any selection criterion [46]. Some of our results
hold for low-dimensional theories without the assumption of complete rationality.
For this we refer to [43].

4 From Rep(A) to Rep(F)

4.1 Pairs of Quantum Field Theories Related by a Symmetry Group.
In the rest of this paper we will be concerned with pairs (F,.A) of quantum field
theories in one or two dimensions where F has a compact group G of global symme-
tries (acting non-trivially for g # e) and A = FY | Ho. We assume that both A and
F satisfy Haag duality. Then there is a full symmetric subcategory S C Rep(.A)
such that S ~ G — mod and F = A x S. This situation is summarized in the
quadruple (F,G;A,S). Our aim will be to compute the representation category
of F from that of A and vice versa. The nicest case clearly is the one where both
A and F are completely rational CQFTs (then G must be finite), but some of our
results hold in larger generality.

Theorem 4.1 [59, 33, 43] Consider a pair (F,G;A,S) of chiral theories. If A
is completely rational then F is completely rational. With F completely rational,
A is completely rational iff G is finite. In this case pz(A) = |G|>u2(F), thus

dim Rep(A) = |G|* dim Rep(F). (4.1)

Remark 4.2 That fixpoint nets inherit the split property from field nets is
classical [14], and that F satisfies strong additivity if A does is almost trivial.
The converses of these two implications are non-trivial and require the full force of
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complete rationality. The implication F completely rational = A satisfies strong
additivity is proved in [59], and A completely rational = F satisfies split will be
proved below. The computation of the invariant ps(A) is done already in [33].

Remark 4.3 The completely different structure (symmetric instead of modu-
lar) of the representation categories in > 2 + 1 dimensions is reflected in a replace-
ment of |G|? in (4.1) by |G].

In Subsect. 4.3 we will show that the representation category of F depends only
on Rep(A) and the symmetric subcategory S. More precisely, let A;,. 4> be QFTs
such that Rep(A;) ~ Rep(.A2) and let S; C Rep(A;),i = 1,2 be replete full sym-
metric subcategories which correspond to each other under the above equivalence.
Then we claim Rep(F;) ~ Rep(F2) where F; = A; x S;. The most natural way to
prove such a result clearly is to construct a braided tensor category from Rep(.A)
and S and to prove that it is equivalent to Rep(A x S) independently of the fine
structure of A. The next categorical interlude will provide such a construction.

4.2 Categorical Interlude 2: Galois Extensions of Braided Tensor
Categories. The following result realizes a conjecture in [39].

Theorem 4.4 [4, 41] Let C be a BTC*. Let S C C be a replete full monoidal
subcategory which is symmetric (with the braiding of C). Then there ezists a
TC* C % S together with a tensor functor F':C — C xS such that

o I is faithful and injective on the objects, thus an embedding.

e F is dominant, i.e. for every simple object X € C X S there is Y € C such
that X is a subobject of F(Y).

o F trivializes S, i.e. X €S = F(X)=1®...® 1, where 1 appears with
multiplicity d(X) (which is in N by [17]).

e The pair (C X S, F) is the universal solution for the above problem, i.e. if
F':C — & has the same properties then F' factorizes through F.

Remark 4.5 This result was arrived at independently by the author [41] and
(somewhat earlier) by Bruguiéres [4]. The above statement incorporates some re-
sults of [4]. The construction in [4] relying on Deligne’s duality theorem [10] instead
of the one of [18] it is slightly more general, but one must assume that the objects
in S have integer dimension since this is no more automatic if there is no positivity.
On the other hand, in [4] S is assumed finite dimensional (thus G is finite) and
to be contained in Z(C), restrictions which are absent in [41]. Applications of the
above construction to quantum groups and invariants of 3-manifolds are found in
[4] and [52], the latter reference considering also relations with products of braided
categories and of TQFTs.

Remark 4.6 By the universal property C X S is unique up to equivalence. The
existence is proved by explicit construction. Essentially, one adds morphisms to C
which trivialize the objects in §. (Then one completes such that all idempotents
split, but this is of minor importance.) Here essential use is made of the fact that
there is a compact (respective finite) group G such that & ~ G — mod.

Many facts are known about the category C x S:
Proposition 4.7 [4, 42] If C is finite dimensional then
dimC  dimC

(4.2)
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Remark 4.8 Heuristically, the passage from C to C X S amounts to dividing
out the subcategory S, an idea which is further supported by (4.2). Yet, this is
not done by killing the objects of § in a quotient operation but rather by adding
morphisms which trivialize them. Therefore the notation C x &, which is also in
line with [18], seems more appropriate. We consider C x S as a Galois extension of
C as is amply justified by the following result.

Proposition 4.9 [41, 5] We have G = Aut¢(C x S) and there is a Galois
correspondence between closed subgroups H of G and TC*s &£ satisfying C C £ C
Cx S. (The correspondence is given by £ = (C xS) and H = Autg(C x S).) Here
H is normal iff £ = C x T with T a replete full subcategory of S, in which case
Autc(£) 2 G/H.

Theorem 4.10 [41] The braiding of C lifts to a braiding of C xS iff S C Z(C).
In this case C xS has trivial center iff S = Z(C). C x Z(C) is called the modular

closure C* of C since it is modular if C is finite dimensional.

Remark 4.11 This result has obvious applications to the topology of 3-mani-
folds since it provides a means of constructing a modular category out of every
finite dimensional braided tensor category (which must not be symmetric). In fact,
ad hoc versions of the above constructions in simple special cases motivated by
topology had appeared before.

If S ¢ Z(C) then C x S fails to have a braiding in the usual sense. Yet, there

is a braiding in the following generalized sense.

Definition 4.12 Let C be a semisimple k-linear category over a field k. If G
is a group then C is G-graded if
1. With every simple object X is associated an element gr(X) € G.
2. If X,Y are simple and isomorphic then gr(X) = gr(Y).
3. Let Cy4 be the full subcategory of C whose objects are finite direct sums of
objects with grade g. Then X € C;,Y € Cp implies X ® Y € Cyp,.
If C is G-graded and carries a G-action such that

0ay(Ch) =Cypg-1 Vg,h € G,

then C is a crossed G-category. A crossed G-category is braided if there are iso-
morphisms ¢(X,Y) : X ® Y = ay.(x)(Y) ® X for all Y and all homogeneous X,
i.e. X € C, for some g € G. For the relations which ¢ must satisfy cf. [55].

ghg

Remark 4.13 Our definitions are slightly more general than those given by
Turaev in [55] in that we allow for direct sums of objects of different grade. This
complicates the definition of the braiding, but the gained generality is needed in
our applications.

Theorem 4.14 [42] Let C be a BTC* and S a replete full symmetric subcat-
egory. Then C X S is a crossed G-category. The zero-grade part of C x S is given
by

(Cx8)e=(CNS") xS,
which is always a BTC* and has trivial center iff Z(C) C 8. The set H of g € G for

which C, is non-empty is a closed normal subgroup which corresponds to SN Z(C)
under the bijection between closed normal subgroups of G and replete full monoidal

subcategories of S. Thus the grading is full (CxS), #0 Vg€ G) iff SNZ(C) =1
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and trivial C xS =(CxS8).) iff S C Z(C). If C is modular then C x S is modular
in the sense of [55] with full grading for every S.

This result will be relevant when we compute Rep(A) in Sect. 5.

Proposition 4.15 [41] Let X € C be simple. Then all simple subobjects X;
of F(X) € C xS occur with the same multiplicity and have the same dimension.
If S C Z(C), thus C x S is braided, then all X; have the same twist as X, and
they are either all central or all non-central according to whether X is central or
non-central.

Given irreducible objects X 2 Y in C we should also understand whether they
can have equivalent subobjects in C x S. We have

Proposition 4.16 [42] Let X,Y be simple objects in C. We write X ~ Y iff
there is Z € S such that Hom(ZX,Y') # {0}. This defines an equivalence relation
which is weaker than isomorphism X =Y. If X ~ Y then F(X) and F(Y) contain
the same (isomorphism classes of) simple objects of C x S (whose multiplicity in

F(X) and F(Y) need not be the same), otherwise Hom(F(X), F(Y)) = {0}.

In the case of abelian extensions one can give a more complete analysis. Re-
call that G is abelian iff every simple object in & =2 G — mod has dimension one
(equivalently, is invertible up to isomorphism). In this case the set of isomorphism
classes of simple objects in S is an abelian group K & G (as opposed to an abelian
semigroup in the general case). Since the tensor product of a simple and an in-
vertible object is simple, K acts on the set I' of isomorphism classes of simple
objects of C (by tensoring of representers). For every simple X € C we define
Kx = {[Z] € K | [Z][X] = [X]}, the stabilizer of X, which is a finite subgroup of

K. (Non-trivial stabilizers can exist since generically there is no cancellation in I'!)

Proposition 4.17 [41] For every simple X € C there is a subgroup Lx C Kx
such that Nx = [Kx : LX]1/2 € N and

F(X)=Nx P X,
xef;
where the X, are mutually inequivalent simple objects in CxS. Kx and Lx depend
only on the image X of X in I'/K (i.e. the K-orbit in I which contains [X]). The

isomorphism classes of simple objects in C X S are labeled by pairs (X, x), where
X el'/K and x € Ly.

Proposition 4.18 [42] Assume § C Z(C). (If necessary enforce this by replac-

ing C = CNS'.) There are unitary matrices (SI?1(X,Y))x,y where X,Y € T/K

are Z-fixpoints (i.e. [Z] € Kx N Ky), such that
|G|

SC)«S((K: X)7 (X7 V)) = |K£||L£||KX||LZ| Ze;[{y X(Z)U(Z) S[Z] (K; X) (43)

Together with the (appropriately restricted) T-matrix of C the matrices S (7] satisfy
the relations of the mapping class group of the torus with a puncture [1].

The two preceding propositions are abstract versions of heuristically derived
results in [23] which provided decisive motivation.
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4.3 Computation of Rep(F). Given a p € Rep(A) of A which is localized
in some double cone O there exists [50, 39] an extension p to an endomorphism of
F = A xS which commutes with the action of G. It is determined by

pA(’L/)) = C(Wap)@/]: where d] € %’77

where 7 € § and the spaces
Hy = {b € F | $A = (A VA€ A}

generate F linearly. In > 2 + 1 dimensions this extension is unique and again
localized in O since c(v, p) = 1 whenever p,v have spacelike localization regions.
For theories in 1 + 1 dimensional Minkowski space or on R, however, there is an a
priori different extension obtained by replacing c(vy, p) by ¢(p,~)*, and for spacelike
localized p,v a priori only one of these equals 1. Thus the two extensions are
solitonic, i.e. localized in left and right, respectively, wedges or half-lines. They
coincide and are localized in O iff the two braidings are the same for all v € S, thus
precisely if p € Rep(A) NS'. For theories on S! an extension j does not even exist
as a representation of C*(A) if p ¢ S'. The map Rep(A) NS’ — Rep(F), p— p
being functorial, it follows easily from the definition of F = A x S and C x S that
(Rep(A)N'S') x S is (equivalent as a braided monoidal category to) a replete full
monoidal subcategory of Rep(F). In fact, by an argument similar to the one used
in Sect. 2.2 one can prove that this exhausts the sectors of F and one obtains:

Theorem 4.19 [43] The representation category of F is given (up to equiva-
lence of braided tensor x-categories) by

Rep(F) ~ (Rep(A)NS') x S. (4.4)
Thus Rep(F) depends only on Rep(A) and the symmetric subcategory S.

(This result together with Thm. 4.10 provides another proof of Thm. 3.6.)

The operation A - F = A xS where G is abelian is called a simple current
ezxtension. Bringing to bear our results on abelian Galois extensions we obtain the
following theorem which proves most of the observations of [23] many of which were
based on consistency checks rather than proofs.

Theorem 4.20 [43] Consider (F,G; A, S) with G abelian. Then the equiva-
lence classes of irreducible localized representations of F are labeled by pairs (X, x),
where X € Obj(Rep(A)NS')/ = /K and x € I& Here K = G is the set of iso-
morphism classes of simple objects in S and Lx is as in Prop. 4.17. The modular

S-matriz of Rep(F) is given by formula (4.3).

Contrary to the fixpoint problem F — A = F%, non-abelian ertensions
A —- F = A xS seem not to have been considered in the physics literature.
(This is perhaps not surprising since they require the duality theorems either of
Doplicher/Roberts or Deligne.)

Assuming that A4 is completely rational we know by Thm. 4.1 that F is com-
pletely rational, thus Rep(F) is modular. In view of the ‘explicit’ formula (4.4) for
Rep(F) and of Thm. 4.10 we can conclude that

Z(Rep(A)nS') =S. (4.5)
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Furthermore, the dimension of Rep(F) is given by dim Rep(A)/|G|?. Comparing
this with (4.2) we infer
) ~  dim Rep(A)
dim(Rep(A)NS') = dms (4.6)
There should clearly be a purely categorical proof of these two observations. In
fact, the result holds in considerably larger generality and is the subject of our next
categorical interlude.

4.4 Categorical Interlude 3: Double Commutants in Modular Cate-
gories. For obvious reasons the following result will be called the (double) com-
mutant theorem for modular categories.

Theorem 4.21 [42] Let C be a modular BTC* and let K C C be a replete full
sub TC* closed w.r.t. direct sums and subobjects (as far as they exzist in C). Then
we have

(a) K" =K,
(b) dimK - dimK' = dimC.

Remark 4.22 The double commutant property (a) appears first (without pub-
lished proof) in the notes [48] in connection with Ocneanu’s asymptotic subfactor
[47]. In the subfactor setting (a) and (b) are proved in [28]. A simple argument
proving (a) and (b) in one stroke in the more general setting of C*-categories ap-
pears in [42]. Finally, the theorem was then extended [6] to categories C which are
semisimple spherical with non-zero dimension. It seems likely that this is the most
general setting where it holds.

Thm. 4.21 has many applications, the first of which is the desired purely cate-
gorical proof of (4.5). Let thus C be modular and S a replete full monoidal subcat-
egory. Then

ZenS)=CcnS'NniCNn(CnS))=8"nS"=8nS=Z(S). (4.7)
If S is symmetric, thus Z(S) = S, (4.5) follows at once, and (4.6) is just a special
case of (b).

Consider now a modular category C with a replete full modular subcategory /.
Modularity being equivalent to triviality of the center by Prop. 3.4, (4.7) implies
the following.

Corollary 4.23 Let C be a modular BTC* and let I C C be a replete full
modular sub TC*. Then £ = C N K' is modular, too.

A surprisingly easy argument now proves:

Theorem 4.24 [42] Let K C C be a replete full inclusion of modular BTC*s
and let L=CNK'. Then there is an equivalence of braided monoidal categories:

C~K®cL,
where Q¢ is the product in the sense of enriched category theory.

Remark 4.25 This result implies that every modular category is a direct
product of prime ones, the latter being defined by the absence of proper replete
full modular subcategories. Again this holds beyond the setting of *-categories [6].
The question in which sense this factorization might be unique is quite non-trivial.
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It is also interesting to note the analogy with the well-known result from the
theory of von Neumann algebras where an inclusion A C B of type I factors gives
rise to an isomorphism B = A ® (BN A4').

5 From Rep(F) to Rep(.A)

5.1 Does Rep(F) Determine Rep(A)? By the results of Subsect. 4.3 we
have

Rep(F) ~ (Rep(A)NS') x S.

The Galois group G (which is determined up to isomorphism by G — mod ~ &)
acts on Rep(F) and the fixpoints are given by

Rep(F)€ ~ Rep(A) NS’ C Rep(A).

Thus the category Rep(F), which consists just of those localized transportable
endomorphisms of F which commute with all a4, is only a full subcategory of
Rep(A), viz. precisely Rep(A) NS'. The latter cannot coincide with Rep(.A) since
this would mean S C Z(Rep(A)), whereas we know that Rep(.A) has trivial center.

Abstractly the situation is the following. We have a non-modular category
Co = Rep(A) NS’ and its modular closure Gy~ = Co x Z(Co) = Rep(F) familiar
from Sect. 4.2. But we also have a modular category C = Rep(.A) which contains
Co as a full subcategory. The dimensions of the categories in question are:

dmC = ToZEY
dimC = dimCp -dim Z(Co). (5.1)

This suggests the conjecture that every non-modular category Co embeds as a full
subcategory into a modular category C such that (5.1) holds. We will look into this
problem in the next Categorical Interlude, without however giving a proof.

5.2 Categorical Interlude 4: Constructing Modular Categories. In
Categorical Interlude 2 we have constructed modular categories out of braided
categories by adding morphisms, which heuristically amounts to dividing out the
center. In Subsection 4.3 we have seen that this categorical construction reflects
what happens in the passage from Rep(A) to Rep(F).

Given a braided tensor category C with non-trivial center one might wish to
construct a modular category M into which C is embedded as a full subcategory,
i.e. without tampering with C as done in Subsect. 4.2.

Lemma 5.1 Let M be a modular BTC* and C C M a replete full sub TC*.
Then

dim M > dimC - dim Z(C). (5.2)
Proof. The obvious inclusion
MncC' >Cnc' = 2(C)
in conjunction with Thm. 4.21 implies for any modular extension M

dim

dim(MnNC') =

> dim Z(C)

im
and thus the bound (5.2). u
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Conjecture 5.2 For every BTC* C of finite dimension there exists a modular
extension M of dimension

dim M = dim C - dim Z(C). (5.3)

An equivalent conjecture was formulated, in fact claimed to be true without
proof, by Ocneanu [48]. We do not have any doubt concerning its correctness but,
unfortunately, we are not aware of a proof. The considerations of the preceding
subsection show that the conjecture is in fact true for all categories of the form
Rep(A)NS’, where A is a CQFT and S is a full symmetric subcategory of Rep(A).
Since we do not know that all BTC*s actually appear as representation categories
of some CQFT this provides evidence for the conjecture, but no proof.

If C is already modular, i.e. dim Z(C) = 1, then M = C clearly is a minimal
modular extension. On the other hand, if Z(C) = C then C ~ G — mod for a finite
group G and a modular extension of dimension |G|> = (dim(C)?, thus minimal, is
given by D“(G) — mod, where w € Z3(G,T) and D“(G) is the twisted quantum
double [12]. Since D**(G)—mod % D“2(G)—mod if [w;] # [w] this example shows
already that the minimal extension need not be unique. But apart from these easy
cases it is a priori not obvious that it is at all possible to fully embed braided tensor
categories into modular ones, even in a non-minimal way. This is proven by the
‘center construction’ for tensor categories [29, 36|, a construction which produces a
braided tensor category D(C) out of any (not necessarily braided!) tensor category
C. If C happens to be braided then it imbeds into D(C) as a replete full subcategory.
The category D(C) generalizes the quantum double D(H) of a finite dimensional
Hopf algebra H in the sense that there is an equivalence of braided tensor categories

D(H — mod) ~ D(H) — mod.

(See [31, Sect. XIII.4] for a nice presentation of all this.) For this reason — and
also in order to avoid confusion with the center Z(C) of a braided tensor category
as defined in Sect. 3.1 — we refer to D(C) as the quantum double of C. In [19] it
has been shown D(C) is a modular category if C ~ H — mod where H is a finite
dimensional semisimple Hopf algebra over a field of characteristic zero. This can
been generalized to the much wider setting of tensor categories:

Theorem 5.3 [45] Let C be a semisimple spherical tensor category C with
non-zero dimension over an algebraically closed field (of arbitrary characteristic).
(Finite dimensional BTC* belong to this class). Then D(C) is semisimple, spherical
and modular with

dim D(C) = (dim C)>. (5.4)

Remark 5.4 Eq. (5.4) clearly is the only identity which is compatible with the
special case C ~ H — mod. Concerning the proofs we must limit ourselves to the
remark that they are based on the adaption [44] of results from subfactor theory to
category theory. These works owe much to [28] which provides not only the crucial
motivation but also bits of the proof.

By the above, D(C) provides a modular extension of C, which is minimal iff
C = Z(C), i.e. if C is symmetric, as one sees comparing (5.4) with (5.3). One might
hope that a minimal modular extension can be constructed by a modification of
the quantum double.
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As another application of the double commutant theorem we exhibit a con-
struction which provides many examples of BTC*s which admit a minimal modular
extension.

Proposition 5.5 [42] Let C be a finite dimensional BTC* and let £ be the full
monoidal subcategory of the quantum double D(C) which is generated by C and
D(C)NC'. Then Z(€) = Z(C) and dim & = (dim C)?/dim Z(C), thus dim D(C) =
dim € - dim Z(€) and the quantum double D(C) is a minimal modular extension of

£.

5.3 Computing Rep(A): Soliton Endomorphisms. We have seen that
it is not possible to compute Rep(A) knowing just Rep(F). Thus we must use
properties of F which go beyond the localized representations. The aim of this
subsection is to identify the additional information we need. We have already used
the fact that every localized endomorphism p of A extends to an endomorphism p
of F which is localized iff p € S'. Thus, trivially, every p € Rep(.A) is obtained as
restriction of p to A. This makes clear that we should understand the nature of p
forpg S'.

In the following discussion we consider theories on R or 1 + 1 dimensional
Minkowski space. (In the case of theories living on S! one must remove an arbitrary
point ‘at infinity’ in order for p to be well defined.) For any double cone O (or
interval I) we denote by Oy, (resp. Og) its left (resp. right) spacelike complement.
A endomorphism of F which acts on F(Og) like ay for some g € G and as the
identity on F(Oy,) is called a right handed g-soliton endomorphism associated with
in O. (Left handed soliton endomorphisms are of course defined analogously, but
it is sufficient to consider one species.) A G-soliton endomorphism is a g-soliton
associated with some O € K for some g € G. We emphasize that for p € &,
p is a bona fide superselection sector (possibly reducible) of F, but the soliton
endomorphisms p of the quasilocal algebra F arising if p ¢ &' provably do not
admit extension to locally normal representations on S'. Heuristically this is clear
since they ‘act discontinuously at infinity’.

Lemma 5.6 [43] Consider (F,G; A,S) with G compact but not necessarily fi-
nite. Let p be an irreducible transportable endomorphism of A localized in a double
cone O. Let p be its (right hand localized) extension to F and let py be an irre-
ducible submorphism of p. (If E € FNp(F) C F(O) is the corresponding minimal
projection we pick an isometry in F(QO) in order to define p1.) Then thereisg € G
such that

ﬁl r]:(OR) = Oég.
In particular, if p is irreducible then there is g € Z(G) such that
51 F(Or) = ay.
The latter is, a fortiori, the case if p is a localized automorphism of A.

Lemma 5.6 shows that every irreducible localized endomorphism of A is the
restriction to A of a direct sum of G-soliton endomorphisms of F. The following is
more precise.

Proposition 5.7 [43] Let A, F,p,p be as in Lemma 5.6. Then there is a
conjugacy class ¢ of G such that p contains an irreducible g-soliton endomorphism
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iff g € c¢. The adjoint action of the group G on the (equivalence classes of) irre-
ducible submorphisms of p is transitive. Thus all irreducible soliton endomorphisms
contained in p have the same dimension and appear with the same multiplicity.

Now we make the connection between Thm. 4.14 and the case of QFT at hand.

Definition 5.8 Let F be a CQFT with compact global symmetry group G.
The category G — Sol(F) is the category whose objects are transportable G-soliton
endomorphisms with finite index and all finite direct sums of them (not necessarily
corresponding to the same g € G). The morphisms are the intertwiners in F.

Proposition 5.9 [43] The category G — Sol(F) is a crossed G-catgory in the
sense of Defin. 4.12. (The action of G is by p — agzo0po a;l on the objects and by
s — ag(s) on the morphisms s € F.)

Theorem 5.10 [43] Consider a pair (F,G; A,S) with G finite. Then we have
the equivalences

G — Sol(F) =~ Rep(A)xS,
Rep(A) =~ [G — Sol(F)|¢

of braided G-crossed tensor categories and braided tensor categories, respectively.

2

The situation can be neatly summarized in the following diagram, where the
horizontal inclusions of categories are full. (A very similar diagram appeared in [37]
in a massive context where, however, one has to do with partially broken quantum
symmetries.)

0 — grade

Rep(F) C G—Sol(F)
xS U U G — fixpoints
Rep(A)NS' C Rep(A)

In view of these results it is clearly desirable to know which soliton endomor-
phisms a theory F with global symmetry G admits. This is partially answered by
the following result. We say that F admits g-soliton endomorphisms if for every
O € K there is an irreducible g-soliton endomorphism associated with O.

Corollary 5.11 Let F be completely rational and let a, be a global sym-
metry of finite order, i.e. aév = id for some N € N. Then F admits g-soliton
endomorphisms.

Proof. Let G be the finite cyclic group generated by a, and A = F¢. By
Thm. 4.1 and Thm. 3.12 we have Z(Rep(A)) = 1. Then Thm. 4.14 implies that
the grading of G — Sol(F) ~ Rep(A) x § is full. [ |

Remark 5.12 1. Now we can complete the proof of the implication A com-
pletely rational = F satisfies split (thus complete rationality). By Thm. 3.12,
Rep(A) is modular, thus the grading of Rep(A) x S is full by Thm. 4.14. Let
I,J € Tsatisfty INJ =0 and z ¢ TUJ. By Thm. 5.10 (whose proof does not
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assume complete rationality of F!) F | S — {z} admits g-soliton endomorphisms
for all g € G. Using the latter one can construct a normal conditional expectation

ma : FI)V F(J) — F(I) vV A(J).

The rest of the proof works as in [14, Sect. 5].
2. If ps(F) = 1 one can prove that F admits soliton automorphisms, see the next
subsection. We expect that there are direct proofs of Coro. 5.11 and the above fact
which avoid the detour through the fixpoint theory and its modularity and thus
might work without the periodicity restriction.

Putting everything together we have the following generalization of Thm. 3.12:

Theorem 5.13 Let F be a completely rational CQFT with finite group G of
global symmetries. Then G — Sol(F) is a modular crossed G-category in the sense
of [55] with full grading.

We end this section with the computation of Rep(A) in a relatively simple
albeit non-trivial and instructive example.

5.4 An Example: Holomorphic Orbifold Models. In order to illustrate
the computation of the representation category of a fixpoint theory we consider
the simplest possible example, namely the case where the net F is completely
rational with po(F) = 1, i.e. without non-trivial sectors. Even though the analysis
of this particular case reduces essentially to an exercise in low dimensional group
cohomology it is quite instructive and allows us to clarify, prove and extend the
results of the heuristic discussion in [11] and to expose the link with [12] and - to
a lesser extent — with [13].

By the analysis in Subsect. 5.3 we know that the grading of G — Sol(F) is
full, thus dim[G — Sol(F)], > 1 Vg € G. Together with dimG — Sol(F) =
|G| - dim Rep(F) = |G| this clearly implies that each of the categories [G — Sol(F)],
has exactly one isomorphism class of simple objects, all of dimension one and thus
invertible. Therefore G — Sol(F) is (equivalent to) the monoidal category C(G, ®)
determined (up to equivalence) by G and ® € H3(G, T), which is considered in [22,
Chap. 7.5] and [55, Ex. 1.3]. (In our field theoretic language this means that F
admits G-soliton automorphisms which are unique up to inner unitary equivalence.
In an operator algebraic setting it is long known [53] that ‘G-kernels’, i.e. homomor-
phisms G = OutM = AutM/InnM are classified by H*(G,T) if M is a factor.
This analysis is immediately applicable to the present approach to CQFTs.) Now,
in [12] starting from a finite group G and a 3-cocycle ¢ € Z3(G,T) a quasi-Hopf
algebra D?(G) was defined, the ‘twisted quantum double’. For the trivial cocycle
this is just the ordinary quantum double. For cocycles in the same cohomology class
the corresponding twisted quantum doubles are related by a twist of the coproduct
which induces an equivalence as rigid braided tensor categories of the representation
categories.

To make a long story short we state the following result:

Theorem 5.14 [43] Let F be completely rational with ps(F) = 1, let G be a
finite group of symmetries and let A = FC. Then there is ® € H*(G,T) such that
the following equivalences of braided crossed G-categories and braided categories,
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respectively, hold:
G —Sol(F) ~ C(G,d),
Rep(A) ~ D?(G)—mod,

where [p] = ®. In particular, Rep(A) and D?(G) — mod give rise to the same
representation of SL(2,7).

The proof proceeds by explicitly constructing (typically reducible if G is non-
abelian) endomorphisms of F as direct sums of soliton automorphisms and consid-
ering their restriction to \A. One finds enough inequivalent irreducible sectors of A
to saturate the bound dim Rep(A) < |G|? and concludes that there are no others.
Then modularity of Rep(A) follows by an easy argument based on [39, Coro. 4.3]
even without invoking the main theorem of [33].

We conclude this discussion by emphasizing that the above analysis, satisfac-
tory as it is, holds only if F is a local, i.e. purely bosonic, theory. If F is fermionic
(graded local) then new phenomena may appear, as is illustrated by the following
well known example [3]. Let F be a theory of N free real fermions on S! and
let A= F¢ where G = Z/2 acts by ¢ — —1. F satisfies twisted duality for all
disconnected intervals E, thus p2(F) = 1 (in a generalized sense) and pa(A) = 4.
One finds |H3(G, T)| = 2, corresponding to the fusion rules Z /2 x Z /2 and Z /4 for
D?(G), which in fact govern the cases N = 4M and N = 4M — 2, respectively.
For odd N, however, Rep(A) has only three simple objects (of dimensions 1, 1,+/2)
with Ising fusion rules [2]. The latter case clearly is not covered by [11] and our
elaboration [43] of it. While the appearance of the object with non-integer dimen-
sion can be traced back to the fact that F does not admit soliton automorphisms
for g # e but rather soliton endomorphisms, a general model independent analysis
of the fermionic case is still lacking and seems desirable.

6 Summary and Open Problems

At least on an abstract level the relation between the representation categories
of rational CQFTs F and A = F¢ for finite G has been elucidated in quite a sat-
isfactory way by Thm. 4.19 and Thm. 5.10. We have seen that this leads to fairly
interesting structures, results and conjectures of an essentially categorical nature.
When considering concrete QFT models the computations can, of course, still be
quite tedious as is amply demonstrated by [59] and [43].

We close with a list of important open problems.

1. Extend the results from Props. 4.17, 4.18 to extensions C X & where G
is non-abelian. Thus, (i) given a simple object X € C, understand how
F(X) € C x § decomposes into simple objects. (ii) Clarify the structure of
the set of isomorphism classes of simple objects in C X S. (iii) Compute the
fusion rules of C X S and the S-matrix of (CNS') x S.

2. Prove a form of unique factorization for modular categories into prime ones.

Prove Conjecture 5.2 on the existence of minimal modular extensions.

4. Give a more direct proof of Coro. 5.11 on the existence of soliton endomor-
phisms.

w

We cannot help remarking that the results of our Categorical Interludes strongly
resemble well-known facts in Galois theory and algebraic number theory. (Note,
e.g., the striking similarity between our Prop. 4.15 and Coro. 2-3 of [34, §1.7] on the
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decomposition of prime ideals in Galois extensions of quotient fields of Dedekind
rings, thus in particular algebraic number fields.) The same remark applies to
questions 1-3 above.
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