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Abstract

We consider certain categorical structures that are implicit in subfactor theory. Making the
connection between subfactor theory (at finite index) and category theory explicit sheds light on
both subjects. Furthermore, it allows various generalizations of these structures, e.g. to arbitrary
ground fields, and the proof of new results about topological invariants in three dimensions.

The central notion is that of a Frobenius algebra in a tensor category .7, which reduces to the
classical notion if .«7 = F-Vect, where F is a field. An object X € .« with two-sided dual X gives
rise to a Frobenius algebra in .o/, and under weak additional conditions we prove a converse:

There exists a bicategory & with Obj & = {4[,B} such that Endg(u)g&/ and such that there
are J,J : B = 4 producing the given Frobenius algebra. Many properties (additivity, sphericity,
semisimplicity,...) of .o/ carry over to the bicategory &.

We define weak monoidal Morita equivalence of tensor categories, denoted ./ ~ %, and
establish a correspondence between Frobenius algebras in .o/ and tensor categories # =~ .o7.
While considerably weaker than equivalence of tensor categories, weak monoidal Morita equiv-
alence .o/ ~ % has remarkable consequences: ./ and % have equivalent (as braided tensor cate-
gories) quantum doubles (‘centers’) and (if .o7, 4 are semisimple spherical or x-categories) have
equal dimensions and give rise the same state sum invariant of closed oriented 3-manifolds as re-
cently defined by Barrett and Westbury. An instructive example is provided by finite-dimensional
semisimple and cosemisimple Hopf algebras, for which we prove H — mod ~ H — mod.
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The present formalism permits a fairly complete analysis of the center of a semisimple spher-
ical category, which is the subject of the companion paper (J. Pure Appl. Algebra 180 (2003)
159-219).
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since tensor categories (or monoidal categories), in particular symmetric ones, have
traditionally been part and parcel of the representation theory of groups it is hardly
surprising that they continue to keep this central position in the representation theory
of quantum groups, loop groups and of conformal field theories. See, e.g. [10,30]. The
main new ingredient in these applications is the replacement of the symmetry by a
braiding [28] which suggests connections with topology. Braided tensor categories have
in fact served as an input in new constructions of invariants of links and 3-manifolds
and of topological quantum field theories [68,31]. (Recently it turned out [4,20] that a
braiding is not needed for the construction of the triangulation or ‘state sum’ invariant
of 3-manifolds.)

A particular role in this context has been played by subfactor theory, see e.g.
[24,52,26,16], which has led to the discovery of Jones’ polynomial invariant for knots
[25]. Since the Jones polynomial was quickly reformulated in more elementary terms,
and due to the technical difficulty of subfactor theory, the latter seems to have lost
some of the attention of the wider public. This is deplorable, since operator algebraists
continue to generate ideas whose pertinence extends beyond subfactor theory, e.g.in
[53,15,73,23]. The series of papers of which this is the first aims at extracting the
remarkable categorical structure which is inherent in subfactor theory, generalizing it
and putting it to use for the proof of new results in categorical algebra and low-
dimensional topology. As will be evident to experts, the series owes much to the im-
portant contributions of A. Ocneanu who, however, never advocated a categorical point
of view. We emphasize that our works will not assume any familiarity with subfactor
theory—they are in fact also meant to convey the author’s understanding of what (the
more algebraic side of) the theory of finite index subfactors is about.

The present paper is devoted to the proof of several results relating two-sided adjoint
1-morphisms in 2-categories and Frobenius algebras in tensor categories. Here we are in
particular inspired by A. Ocneanu’s notion of ‘paragroups’ and R. Longo’s description
of type III subfactors in terms of ‘Q-systems’. In order to make the series accessible to
readers with different backgrounds we motivate the constructions of the present paper
by considerations departing from classical Frobenius theory, from category theory and
from subfactor theory. While we will ultimately be interested in semisimple spherical
categories, a sizable part of our considerations holds in considerably greater generality.

1.1. Classical Frobenius algebras

One of the many equivalent criteria for a finite-dimensional algebra 4 over a field
F to be a Frobenius algebra is the existence of a linear form ¢p:4 — [F for which
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the bilinear form b(a,b) = ¢(ab) is non-degenerate. (For a nice exposition of the
present state of Frobenius theory we refer to [29].) Recent results of Quinn and Abrams
[58,1,2] provide the following alternative characterization: A Frobenius algebra is a
quintuple (4,m,n, 4,¢), where (4,m,n) and (4, 4,¢) are a finite-dimensional algebra
and coalgebra, respectively, over [, subject to the condition

m@idgoidy@A=Adom=idy@mo AR idy.

In Section 6 we will say a bit more about the relation between these two definitions.
Since an [F-algebra (coalgebra) is just a monoid (comonoid) in the tensor category
F-Vect, it is clear that the second definition of a Frobenius algebra makes sense in
any tensor category. A natural problem therefore is to obtain examples of Frobenius
algebras in categories other than F-Vect and to understand their significance. The aim
of the next two subsections will be to show how Frobenius algebras arise in category
theory and subfactor theory.

1.2. Adjoint functors and adjoint morphisms

We assume the reader to be conversant with the basic definitions of categories,
functors and natural transformations, [44] being our standard reference. (In the next
section we will recall some of the relevant definitions.) As is well known, the concept
of adjoint functors is one of the most important ones not only in category theory itself
but also in its applications to homological algebra and algebraic geometry. Before we
turn to the generalizations which we will need to consider we recall the definition.
Given categories 4,% and functors F: ¢ — 2, G: 2 — €, F is a left adjoint of G,
equivalently, G is a right adjoint of F, iff there are bijections

¢xy: Homg(FX,Y) = Homy(X,GY), X e€Obj¥€,YecObjZ,

that are natural w.r.t. X and Y. This is denoted ' <4 G. More convenient for the
purpose of generalization is the equivalent characterization, according to which F' is a
left adjoint of G iff there are natural transformations r:idy — GF and s: FG — idgy
satisfying

ide®Rsor®idg=idg, sQidrpoidr @r=idp.

Given an adjunction F' - G, the composite functor 7= GF is an object in the (strict
tensor) category 4 = Fun(%) of endofunctors of 4. (When seen as an object of %',
we denote the identity functor of 4 by 1.) By the above alternative characterization
of adjoint pairs there are = r € Homy(1,T) and m € Homy(T?,T) defined by m =
idg ® s ® idp. These morphisms satisfy

mom@idr =moidr @ m,
mon®idr=moidr @ n=idr;

thus (7,m,n) is a monoid in & = Fun(%), equivalently, a monad in %. Similarly, one
finds that (U, 4,¢) = (FG,idr @ r ® idg,s) is a comonoid in Fun(%) or a comonad
in 2.
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Now, given a monad in a category ¥ one may ask whether it arises from an
adjunction as above. This is always the case, there being two canonical solutions given
by Kleisli and Eilenberg/Moore, respectively. See [44, Chapter VI] for the definitions
and proofs. In fact, considering an appropriate category of all adjunctions yielding the
given monad, the above particular solutions are initial and final objects, respectively.

So far, we have been considering the particular 2-category ¢.</.7 of small cate-
gories. Thanks to the second definition of adjoints most of the above considerations
generalize to an arbitrary 2-category % (or even a bicategory). See [44, Chapter 12]
and [31,22] for introductions to 2- and bi-categories. Given objects (0-cells) 4, % and
I-morphisms (1-cells) F: ¢ — 2,G: < — ¥ we say G is a right adjoint of F iff there
are 2-morphisms (2-cells) 7, s with the above properties. An important special case per-
tains if the 2-category % has only one object, say . By the usual ‘dimension shift’
argument it then is the same as a (strict) tensor category, and the adjoint 1-morphisms
become dual objects in the usual sense.

Now, a monad (comonad) in a general 2-category & is most naturally defined [61]
as an object ¥ in & (the basis) together with a monoid (resp. comonoid) in the
tensor category END4(%). It is clear that an adjoint pair F: 4 — 9,G: 9 — € again
gives rise to a monad (comonad) in & with basis objects ¥ (Z). Again, the natural
question arises whether every monad is produced by an adjoint pair of 1-morphisms.
Without restrictive assumptions on % this will in general not be true. (See [61] for
a property of a 2-category which guarantees that every monad arises from an adjoint
pair of 1-morphisms.) The aim of the present work is to explore a different aspect of
this problem for which we need another preparatory discussion.

Assuming a l-morphism in a 2-category % (or an object in a tensor category) has
both left and right adjoints, there is in general no reason why they should be isomorphic
(i.e. related by an invertible 2-morphism). Yet there are tensor categories where every
object has a two-sided dual, in particular rigid symmetric categories (=closed categories
[44]), rigid braided ribbon categories (=tortile categories [27]), *-categories [42], and
most generally, pivotal categories. (Functors, i.e. 1-morphisms in ¥.</.7, which have
a two-sided adjoint are occasionally called ‘Frobenius functors’.) If a 1-morphism F
happens to have a simultaneous left and right dual G, then not only GF gives rise
to a monad and FG to a comonad, but also vice versa. But in fact, there is more
structure. Let p:idy — FG and q: GF — idg be the 2-morphisms associated with the
adjunction G 4 F and denote T =GF, ¢e=q, A=idg ® p ® idr. Then (T,m,n, 4,¢)
is a monoid and a comonoid in End(%), but in addition we have

drodmoAdQidr=Aom=mQidroidr ® A.
The first half of this equation is proved diagrammatically by

]

F G T

T T FGF G FGFG T T
m U _ U _ A
- ﬂ = = m

F G
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and the other half similarly. Thus, a 1-morphism F:4 — B with a two-sided dual
gives rise to Frobenius algebras in the tensor categories End(il) and End(B). Again,
one may ask whether there is a converse, i.e. if every Frobenius algebra in a tensor
category arises as above. Already in the category ¥ = F-Vect one finds Frobenius
algebras Q =(Q,v,v’,w,w’) that are not of the form Q =XX for X € 4. As one of our
main results (Theorem 3.11), we will see that under certain conditions on a Frobenius
algebra Q in a tensor category .o7 there is a solution if one embeds .o/ as a corner into
a bicategory &. l.e., there are a bicategory &, objects 4,8 € Obj & and a l-morphism
J B — 4l with two-sided dual J such that .o/ ~ END«(l) and Q arises via Q =JJ,
etc. If .o/ is (pre)additive, abelian, [F-linear, (semisimple) spherical or a *-category
then & will have the same properties. Under certain conditions, the bicategory & is
equivalent to the bicategory % containing the 1-morphism J :B — 4 which gave rise
to the Frobenius algebra.

1.3. Subfactors

For some basic definitions concerning subfactors we refer to Section 6.4. For the
purposes of this introduction it is sufficient to know that a factor is a complex unital
x-algebra with center C1, usually infinite dimensional. (Every finite-dimensional factor
is isomorphic to a matrix algebra M,(C) for some n€ N.) A factor ‘has separable
predual’ if it admits a faithful continuous representation on a separable Hilbert space.
We restrict ourselves to such factors, which we (abusively) call separable. In his sem-
inal work [24], Vaughan Jones introduced a notion of index [M : N]€[1, 0], defined
for every inclusion N C M of type II; factors. The index was soon generalized to
factors of arbitrary type by Kosaki [35]. The index shares some basic properties with
the one for groups: [M : N]=1ifft M =N, [P : M]-[M : N]=[P : N] whenever
N C M C P, etc. Yet the index is not necessarily an integer, in fact every /€[4, ]
can occur, whereas in the interval [1,4] only the countable set {4 cos?(n/n), n=3,4,...}
is realized. Given factors P,Q (in fact, for general von Neumann algebras), there is
a notion of P — O bimodule, and for bimodules p# o, # r there is a relative ten-
sor product p#p ® oA r. This gives rise to a bicategory %.#.4 whose objects are
factors, the 1-morphisms being bimodules and the 2-morphisms being the bimodule
homomorphisms. Another bicategory .# 0% arising from factors has as objects all fac-
tors, as l-morphisms the continuous unital x-algebra homomorphisms p: P — O and
as 2-morphisms the intertwiners. Thus if p,o:P — QO then

Hom yo2(p,0) ={x€Q|xp(y)=0a(y)x VyeP}.

Whereas the definition of the tensor product of bimodules is technically involved
(in particular in the non-type II; case, cf. [11, Appendix V.B]), the composition of
I-morphisms p: P — Q, 0: 0 — R in .4 O is just their composition gop as maps and
the unit 1-morphisms are the identity maps. Note that the composition of 1-morphisms
in /OZ is strictly associative, thus .#OZ is a 2-category. Every subfactor N C M
gives rise to a distinguished 1-morphism iy, : N — M, the embedding map N — M.



86 M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 81-157

Both 59 4 and .4 OR are x-bicategories, i.e. come with antilinear involutions on the
2-morphisms which reverse the direction. (For s € Homgs 4(pH 0, pH o) C B(H, H")
and ¢t € Hom_yo2(p,0) C O, where p,c: P — O, s* is given by the adjoint in Z(4", )
and in Q, respectively.) If one restricts oneself to separable type III factors the corre-
sponding full sub-bicategories are equivalent in the sense of [7]: BIM ¥ ~ MORY,
cf. [11,39]. In the following discussion we will focus on the 2-category .#O%;;! .

The relevance of the concept of adjoints in 2-categories to subfactor theory is evident
in view of the following result which is due to Longo [39], though originally not
formulated in this way.

Theorem 1.1. Let N C M be an inclusion of separable type 111 factors. The embed-
ding morphism 1+:N — M has a two-sided adjoint ©:M — N iff [M : N] < co. The
dimensions of 1,7 (in the sense of [42]) are related to the index by d(1) = d(7) =
[M : N]'2.

Since separable type III factors are simple, every morphism P — Q is in fact an
embedding. We thus have the following more symmetric formulation.

Corollary 1.2. Let p: P — Q be a morphism of separable type 111 factors. Then p has
a two-sided adjoint p:Q — P iff [Q: p(P)] < oo. Then d(p)=d(p)=[P: a(0)]V? =
[0: p(P)]'".

If these equivalent conditions are satisfied, an important object of study is the full
sub-bicategory of .# O’ generated by p and p, which consists of all morphisms
between P and Q which are obtained by composition of p,p, the retracts and finite
direct sums of such. (The type II; analog is Ocneanu’s paragroup [52] associated with
NCM.)

In this situation, y=pop:P — P and g:po p:0 — Q are endomorphisms of
P and Q, respectively, the so-called canonical endomorphisms. By the considerations
of the preceding section we know that there is a Frobenius algebra (y,v,v',w,w’) in
End(P) := END ,0%(P) and similarly for ¢. Since we are in a x-categorical setting
we have v/ = v*,w’ = w*. In [40] such triples (y,v,w) were called Q-systems and it
was shown that for every Q-system where y € End(M) there exists a subfactor N C
M such that (y,v,w) arises as above. These results were clearly motivated by the
notion of conjugates (duals) in tensor categories, but the constructions of Kleisli and
Eilenberg/Moore do not seem to have played a role.

Longo’s results can be rephrased by saying that given a separable type III factor
M there is a bijection between subfactors N C M with [M : N] < co and Q-systems
(~ Frobenius algebras) in the tensor category End(M). Given such a Frobenius al-
gebra Q, we can on the one hand construct a subfactor N, an adjoint pair p: M —
N, p:N — M and the 2-category generated by them. On the other hand we can regard
End(M) as an abstract *-category and apply to Q the construction announced in the
preceding subsection. It will turn out that these two procedures give rise to equivalent
2-categories.
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1.4. Organization of the paper

In the following section we will discuss some preliminaries on (tensor) categories,
mostly concerning the notions of duality and dimension. The emphasis in this paper
is on spherical tensor categories, but we also consider *-categories. In Section 3, we
establish the connection between two-sided duals in bicategories and Frobenius al-
gebras in tensor categories. This is used in Section 4 to define the notion of weak
monoidal Morita equivalence. In Section 5 we consider categories that are linear over
some field, in particular spherical and *-categories. We show that the bicategory & con-
structed from a Frobenius algebra in a x-category or a (semisimple) spherical category
is a *-bicategory or (semisimple) spherical bicategory, and we prove the equality of
certain dimensions. Section 6 is devoted to several examples. We begin with classical
Frobenius algebras, i.e. Frobenius algebras in the category F-Vect, and specialize to
finite-dimensional Hopf algebras. Our main result is the weak monoidal Morita equiv-
alence H — mod ~ H — mod whenever H is semisimple and cosemisimple. We also
discuss in more detail the examples provided by subfactor theory. An application to
the subject of quantum invariants of 3-manifolds is given in Section 7. We outline a
proof of the fact that spherical categories that are weakly monoidally Morita equivalent
define the same state sum invariant of 3-manifolds. In the last section, we briefly relate
our results to previous works and conclude with some announcements of further results
and open problems.

2. Categorical preliminaries
2.1. Some basic notions and notations

We assume that the standard definitions of tensor categories and bicategories are
known, cf. [44]. For definiteness all categories in this paper are supposed small. (In the
early stages essential smallness would suffice, whereas later on we will even require the
number of isoclasses to be finite.) We use ‘tensor category’ and ‘monoidal categories’
interchangeably. Tensor categories will usually be assumed strict. (A tensor category is
strict if the tensor product satisfies associativity X @ (Y  Z)=(X ® Y)®Z on the nose
and the unit object 1 satisfies X ® 1 =1® X =X VX. Similarly, in a strict bicategory
(= 2-category) the composition of 1-morphisms is associative.) Since every tensor
category is equivalent to a strict one [44,28] and every bicategory to a 2-category this
does not restrict the generality of our results.

Throughout, (2-)categories will be denoted by calligraphic letters o/, %,%,... and
objects and morphisms in 1-categories by capital and lowercase Latin letters, respec-
tively. In 2-categories objects, 1- and 2-morphisms are denoted by Gothic (4,°B,...),
capital and lowercase Latin letters, respectively. Unit objects and unit morphisms in
tensor categories are denoted by 1 and idy € Hom(X,X), respectively. Similarly, the
unit 1- and 2-morphisms in 2-categories are 1y € Hom(4l,4l) and idy € Hom(X,X). If
3,58 are objects in a bicategory & then Homg(i,B) and HOMg(4,B) denote the
corresponding 1-morphisms as a set and as a (1-)category (whose morphisms are the
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2-morphisms in &), respectively. As is well known, ENDg(U) = HOMg(L,4) is a
tensor category. (The composition o of £l —{-morphisms in & is the tensor product of
objects in .« and the compositions o, ® of 2-morphisms in & are the compositions o, ®
of morphisms in .«/.) Since the use of the composition symbol o for i — {-morphisms
in & as opposed to the tensor product ® of objects in .o/ might lead to confusion (and
there is only one composition for these items anyway) we mostly omit the composition
symbols ® for objects in .7 and o for 1-morphisms in & altogether.

We write Y < X if Y is a retract of X, i.e. there are morphisms e: Y — X, f: X — ¥
such that f oe=idy. We also say Y is a subobject of X, slightly incompatibly with
common usage. In this situation p=eo f € End(X) is idempotent: p?> = p. Categories
in which every idempotent arises in this way are called ‘pseudo-abelian’ (Karoubi),
‘Karoubian’ (SGA) or ‘Cauchy-complete’ [9]. Others say that ‘idempotents split in
o/’ or ‘o/ has subobjects’ [12]. We consider none of these expressions particularly
satisfactory. We will stick to the last alternative since it goes best with .o/ has direct
sums’. Every category .o/ can be embedded as a full subcategory into one which
has subobjects. The latter can be defined as solution to a universal problem, cf. [9],
which implies uniqueness up to equivalence. There is, however, a well-known canonical
solution, which we call .77, cf. e.g. [19]. Its objects are pairs (X, p) where X € Obj .o/
and p = p* € End(X). The morphisms are given by

Hom (X, p),(Y,q)) = {s:X = Y[s=gosop}.

If o7 is a tensor category then so is .77 with (X, p)® (Y,q) =X @Y, p ® q).

A preadditive category (or Ab-category) is a category where all hom-sets are abelian
groups and the composition is additive w.r.t. both arguments. A preadditive category
o/ is said to have direct sums (or biproducts) if for every X;,X; € .o/ there are Y
and morphisms v; € Hom(X;,Y), v € Hom(Y,X;) such that v; o v + v, o vy = idy and
v;ov; = 0;, idy,. We then write ¥ = X; & X,. Note that every ¥’ = Y is a direct sum
of Xi,Xs, too. A preadditive category can always be embedded as a full subcategory
into one with (finite) direct sums. There is a canonical such category, cf. e.g. [19],
which we call .&/®. Again, this construction is compatible with a monoidal structure
on .o/. Constructions completely analogous to .o&/7,.o/® exist for a bicategory &, cf.
[42, Appendix]. (Thus in &7 all idempotent 2-morphisms split and &% has direct sums
for parallel 1-morphisms.) A pre-additive category is additive if it has direct sums and
a zero object. If .o/ is preadditive then .77 is additive: any (X,0) is a zero object.
Furthermore, o/ ?® ~ o79P,

Given a commutative ring k, a (monoidal) category is k-linear if all hom-sets are
finitely generated k-modules and the composition o (and tensor product ®) of mor-
phisms are bilinear. Mostly, & will be a field F. An object in a k-linear category is
called simple if End X = kidy. (This property is often called absolute simplicity or
irreducibility. We drop the attribute ‘absolute’, see the remarks below.) A k-linear cat-
egory € is called semisimple if it has direct sums and subobjects and there are simple
objects X; labeled by a set / which are mutually disjoint (i # j = Hom(X;, X;) = {0})
such that the obvious map

@BHom(Y. X;) @ Hom(X;,Z) — Hom(Y,Z)

iel
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is an isomorphism. Then every object X is a finite direct sum of objects in {X;,i €1}
and is determined up to isomorphism by the function

I —7,, i~ N*=dimHom(X,X;)=dim Hom(X;,X).

If % is monoidal we also require 1 to be simple.

In this paper we will not use the language of abelian categories, since we will not
need the notions of kernels and cokernels. (However, when applied to an abelian cate-
gory the constructions given below give rise to abelian categories. See Remark 3.18.)
We briefly relate our definition of semisimplicity to more conventional terminology.
An abelian category is semisimple if it satisfies the following equivalent properties:
(1) all short exact sequences split, (ii) every monic is a retraction, (iii) every epi is
a section. An object X in an abelian category is indecomposable if it is not a direct
sum of two non-zero objects, equivalently, if End X contains no idempotents besides
0 and idy. If € is semisimple and X € ¢ is indecomposable then End X is a skew
field. Thus, if F is algebraically closed and % is F-linear then X € ¢ is indecomposable
iff it is (absolutely) simple. Since an abelian category has direct sums and subobjects,
% is semisimple in our sense. Conversely, if 4 is semisimple in our sense and has a
zero object then it is semisimple abelian, whether the field F is algebraically closed or
not.

A subcategory & C € is full iff Homy(X,Y) = Homy(X,Y) VX, Y € &, thus it
is determined by Obj.¥. A subcategory is replete iff X € Obj & implies Y € Obj
for all ¥ = X. (In the literature replete full subcategories are also called strictly
full.) Most subcategories we consider will be replete full. Isomorphism of categories is
denoted by = and equivalence by ~. For preadditive (k-linear) categories the functors
establishing the equivalence/isomorphism are required to be additive (k-linear) and
for tensor categories they must be monoidal. In principle one should use qualified

symbols like %+,zk,§, gk, etc., where +,k and ® stand for additivity, k-linearity
and monoidality, respectively, of the equivalence/isomorphism. We will drop the +,k,
hoping that they are obvious from the context, but will write the ®.

The following definition is somewhat less standard. (Recall that we require the cat-
egories to be small.)

Definition 2.1. Two categories .o/, % are Morita equivalent, denoted .o/ = 4, iff the cat-
egories Fun(.o/°P, Sets), Fun(#°, Sets) are equivalent. Preadditive categories are Morita
equivalent iff the categories Fun (/?,Ab), Fun, (%P, Ab) of additive functors are
equivalent as preadditive categories. k-linear categories are Morita equivalent iff the
categories Funi(</P, k-mod, Funi(#°,k-mod) of k-linear functors are equivalent as
k-linear categories.

Proposition 2.2. Let </, % be categories. Then </ = % iff &/_f ~ BP.If AR
are preadditive (k-linear) categories then of = % iff A4P® ~ BP® as preadditive
(k-linear) categories.

Proof. For the first claim see [9, Section 6.5], for the others [19, Chapter 2]. [
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This result motivates the following definition of (strong) Morita equivalence for
monoidal categories.

Definition 2.3. Two tensor categories o7, % are strongly monoidally Morita equivalent
® - ® =
(A=R) iff o rEpr. 1f o/, are preadditive (k-linear) tensor categories then they are

. . B . . .
strongly Morita equivalent iff .o/?®~%P® as preadditive (k-linear) tensor categories.

While useful for certain purposes, this definition is unsatisfactory in that we cannot
offer an equivalent definition in terms of module-categories. In Section 4, we will
define the notion of weak Morita equivalence .« ~ % of (preadditive, k-linear) tensor

. . . . . ®
categories. Is is genuine to tensor categories and satisfies . /=% = o/ ~ %. We
speculate that .o/ ~ % iff suitably defined ‘representation categories’ of .o/, % are
equivalent, but we will leave this problem for future investigations.

2.2. Duality in tensor categories and 2-categories

As explained in the Introduction, the notion of adjoint functors generalizes from
%o/ to an arbitrary 2-category &. Specializing to tensor categories, i.e. one-object
2-categories we obtain the following well-known notions. We recall that a tensor cate-
gory € is said to have left (right) duals if for every X € € there is a *X (X ™) together
with morphisms ey : 1 - X ®*X, dy : "X X — 1 (ex:1 = X" ®X, ny : X®X* — 1)
satisfying the usual duality equations

idy ®dyoex ®idy =idy, dyQ®idgoidy @ ex =idy,

etc. Categories having left and right duals for every object are called autonomous.
Since duals, if they exist, are unique up to isomorphism the conditions *X = X*
and X** = X, which are easily seen to be equivalent, do not involve any choices. If
X* = *X we speak of a two-sided dual of X. We will exclusively consider categories
with two-sided duals, for which we use the symmetric notation X. Assume now that
% 1is linear over the commutative ring k = End(1). Then we have ny oey,dy oexy €k
and we would like to consider them as dimensions of X or X. Yet, if 1 is a unit in k
then replacing ey and dy by Jey, A~ 'dy, respectively, the triangular equations are still
verified while ny oex and dy o ey change. (The product is invariant, though.) We thus
need a way to eliminate this indeterminacy. There are three known solutions to this
problem. If ¥ has a braiding c_ _ and a twist 6(—) we can determine the right duality
in terms of the left duality by SX:(idX®0X)OCX’X oey and nxzdxocxj o(Ox ®idy),
allowing to unambiguously define d(X )=y cey. Since in this paper, we do not require
the existence of braidings this approach is of no use to us. A fairly satisfactory way
to eliminate the indeterminacy exists if % has a x-operation, see Section 2.4. The third
solution, cf. the next subsection, is provided by the notion of spherical categories which
was introduced by Barrett and Westbury [5,4], elaborating on earlier work on pivotal
or sovereign categories. (For categories with braiding the latter approach is related to
the first one, in that there is a one-to-one correspondence between twists and spherical
structures, cf. [77].) We believe that this is the most general setting within which
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results like Proposition 5.17 and those of [47] obtain without a fundamental change of
the methods. (x-categories can be turned into spherical categories, cf. [74], but this is
not necessarily the most convenient thing to do.)

The following result shows that the square of the dimension of a simple object in
a linear category is well defined even in the absence of further structure.

Proposition 2.4. Let € be an F-linear tensor category with simple unit. If X is simple
and has a two-sided dual then d*(X)=(nyoex )(dxoex) € F is a well-defined quantity.
If X,Y,XY are simple then d*(XY) = d*(X)d*(Y). Whenever € has a spherical or
s-structure d*(X) coincides with d(X)* as defined using the latter.

Proof. Let X be simple, X a two-sided dual and ex,dx,ex,nx the corresponding
morphisms. By simplicity of X we have Hom(1,XX) = Hom(X,X) = F, thus
Hom(1,XX) = Fey, Hom(1,XX) = Fey, etc. Therefore, any other solution of the tri-
angular equations is given by

- 5 1 ~ - -1
éx=uwaey, dy=o dy, & =Pex, fx=p nx,

where o, f € F*. Thus (yx o ex)(dx o ex) does not depend on the choice of the mor-
phisms. The independence d@?(X) of the choice of X and the multiplicativity of d>
(only if XY is simple) are obvious. The final claim will follow from the fact that in
spherical and *- categories d(X) is defined as 5y o dy for a certain choice of dy,ny
and the fact that d(X)=d(X). O

By this result the square of the dimension of a simple object is independent of the
chosen spherical or *- structure and can in fact be defined without assuming the latter.
Yet, consistently choosing signs of the dimensions and extending d(X) to an additive
and multiplicative function for all objects is a non-trivial cohomological problem to
which there does not seem to be a simple solution. A x-structure, when available,
provides the most natural way out, spherical structures being the second (but more
general) choice.

The proposition implies that the following definition makes sense.

Definition 2.5. Let ¥ be a semisimple F-linear tensor category with simple unit and
two-sided duals. If € has finitely many isomorphism classes of simple objects then we
define

dim% =Y d*(X)€F,
X
where the summation is over the isomorphism classes of simple objects and d?(X) is

as in the proposition. If % has infinitely many simple objects then we formally posit
dim € = oc.

We recommend the reader to skip the next two subsections until the structures in-
troduced there will be needed in Section 5.
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2.3. Spherical categories

In spherical categories the problem mentioned above is solved by picking a two-sided
dual X for every object X and by specifying morphisms 1 — X®X, X®X — 1 as part
of the given data. This may look unnatural, but in important cases such assignments are
handy. (If, e.g. H is an involutive Hopf algebra then 7 +— 7’ o § gives an involution
on the representation category of H.) We recall that we consider only strict tensor
categories, and by the coherence theorem of [4] we may assume also strict duality.
Since later we will have occasion to construct spherical structures out of other data we
give a redundancy-free definition of spherical categories, which then will be proven
equivalent to that of [4,5].

Definition 2.6. A strict tensor category ¢ is a strict pivotal category if there is a map
Obj € — Obj%,X — X such that

X=X, Xar=7eX, i=1 2.1)

and there are morphisms &(X):1 - X @ X, &X): X ® X — 1,X €% satisfying the
following conditions.
(1) The composites

id®e(X) X )®id

X=Xl XXX 19X =X,
X=10x % ¥y o ¥ ox® yo1=x
coincide with idy.
(2) The diagrams
1 iy, XoX
X ®Y) id®e(Y)Qid
XQYVRXAQY =——— X QY7 eoX
and
1 10 XX
AX®Y) idR&Y)Qid
XQYVRAQY =——— XQYQ7V X

commute for all X Y.



M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 81-157 93

(3) For every s: X — Y the composites

T=7 0199 7 o x @ 19894 5 oy o x 2% 1 o ¥ = X,
T=107- % ¢ ox o799 ¢ oy 7o fo1=X

coincide in Hom(Y,X).

For every X and s:X — X we define morphisms in End(1) by

§(X) s®id 8X)

tri(s): 1 X ®X X X 1,

tra(s)  1—X Fox 2 geox g

Now @ is called spherical iff #r;(s) = trg(s) for all s.

Remark 2.7. 1. If for s € Hom(X,Y) we now define §€ Hom(Y,X) by the formulas in
(3) we easily verify §=s and so7 =7 o0§. Thus the maps X — X,s — § constitute
an involutive contravariant endofunctor of 4. Condition (1) can now be expressed as
E =idy VX.

2. Using conditions (1) one verifies that &X ) = ¢(X) and thus consistency of our
notation.

3. The definition of the map s — § implies that the square

&(X)

1 XoX
oY) s@id (2.2)
Y ® Y id®s Y ®Xv

commutes for every s:X — Y. Thus, our axioms for strict pivotal categories imply
those of [4,5], and the converse is obvious if we put &X) := &(X).

4. Even in those applications where the pivotal category % under study is strict
monoidal, like in type III subfactor theory, the duals are rarely strict. In general one

has natural isomorphisms 7y : X — X, VXY ‘X®Y >Y ®X and v:1 — 1 which must
satisfy a number of compatibility conditions. See [5, Theorem 1.9], where it is proven
that such a category is monoidally equivalent to a strict pivotal category as defined
above. To be sure, in practise one does not really want to strictify the categories under
consideration in order to work with them. Just as the well-known coherence results
on (braided) tensor categories [44,28], [5, Theorem 1.9] can be rephrased as follows:
All computations in a strict pivotal or spherical category remain valid in the non-strict
case, provided one inserts the morphisms 1y, yx,y, v wherever needed. If this is possible
in different ways no possible result depends on the choices one makes in this process.
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In order to travel with slightly lighter luggage we may therefore calmly stick to the
strict case.
5. A pivotal category is called non-degenerate if for all X, Y the pairing

Hom(X,Y) x Hom(Y,X) — F, s x t — (s,t) =trxy(sot)=try(tos)
between Hom(X,Y) and Hom(Y,X) is non-degenerate. In [20, Lemma 3.1] it is proved
that semisimple pivotal categories are non-degenerate.
If € is F-linear pivotal with simple unit 1 then we define dimensions by
d(X)idy =trp(X) = &X) o e(X).
If % is spherical then
dX)=dX) VX

We will show that in the semisimple case this is equivalent to sphericity. Let X =2
EBjEJN,-XI-, thus there are u?:X; — X,u!: X — X/ such that

N,
Z Z ulou'? =idy, u'?o ujﬁ =0, 0y, pidyx,. (2.3)
=1

i o
Using the conjugation functor—we define v¥ := w/*: X — X;, v'¥ :==u?:X; — X, and
clearly

N;
Z Z o't =idy, V%o Ujﬁ =004, pidy;.
i o=l
Lemma 2.8. Let € be a semisimple pivotal tensor category with simple unit. Then €
is spherical iff d(X)=d(X) for all X.
Proof. We compute
tri(s)=&X)os®idyoelX)
:ZZE(X)o(u;’ou’f‘osoufou’f)(@id)gog(X)
o jp
:ZZE(X)o(uf-‘ou'fosouf)@vfoe(X,—)
g jp
:ZZE()(])O(M’f Oul?‘ ou/? osouf)@idyjos()g)

Lo jp

=Y X)) o (W osoul) ®idy; o e(Xy)

i

— Zgg #(X) 0 (X)) = Zs?d(X;),
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where s7 idy, = u'? o s o u? € Hom(X;,X;). We have used (2.2) and the fact that the X;
are simple. In a similar way one computes

trp(s) = s} EX) 0 e(X) =Y sid(X;)
and the result follows from the assumption. [J

We will need the following facts concerning the behavior of sphericity under certain
categorical constructions:

Lemma 2.9. Let o/, % be pivotal (spherical). Then o/, o/ @ % (the product in the
sense of enriched category theory) and the completions </, /P are pivotal (spheri-
cal).

Proof. We only sketch the proof, restricting us to the strict pivotal/spherical case. For
the opposite category the claimed facts are obvious, choose &(X°P) = &(X), etc. As to
/P, recall that its objects are given by pairs (X, p), X € Obj o/, p= p* € End(X) and
those of .&/® by finite sequences (X),...,X;) of objects in .. We define the duality
maps on AP, of Q5 B, AP, A° by

ﬁ:)?op’ X&Y:X&Y_v’ (Xp):(/?sﬁ)a (Xl’-"’Xl):(/?l""a)Tl)’
respectively. Conditions (2.1) are clearly satisfied. We define further
eXP)=8X)P, XK Y)=eX)R &), &(X,p))=p® poeX)

and
!

d(Xioo X)) =) ui @7 0 6(X;),

i=1

where the u; : X; — (X),...,X;) are the injections which together with the {u} satisfy
(2.3). The easy verification of the axioms is left to the reader. It is clear that the new
categories are spherical if .o/, % are spherical. [

The definition of strict pivotal tensor categories can be generalized to 2-categories
& in a straightforward manner. Every 1-morphism X :4 — B has a two-sided dual
X :B — 4. This map has properties which are obvious generalizations of the monoidal
situation. In particular, 1y = 1 for all objects X. For X € Hom(i,B) there are &(X):
1y — XX and &X): XX — 1y satisfying conditions which are analogous to those in
pivotal categories. Again the conjugation can be extended to a 2-functor — : & —
&, where & has the same objects as & and 1- and 2-morphisms are reversed. (This
functor acts trivially on the objects.) All this can be obtained from [43] by ignoring
the monoidal structure on & considered there. There is one difference, however, which
requires attention. For X : 4 — B and s € End(X) the two traces

tri(s)=&X)os®idgoe(X), trr(s)=&X)oidy @so0eX)
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take values in different commutative monoids, viz. End(1y) and End(1y), respectively.
Thus, defining spherical 2-categories as satisfying #r;(s) = trg(s) for all 2-morphisms
s € End(X )—not only those where X has equal source and range—makes sense only
if there is a way to identify the End(1x) for different X. We will restrict ourselves
to 2-categories where 1x is absolutely simple for all objects X, thus all End(1x)
are canonically isomorphic to F via ¢ — cidy, . (The bicategories #.9.4 and .4 OR
of bimodules and *-homomorphisms of factors discussed in the introductions provide
examples.) Under this condition every 1-morphism has an F-valued dimension with the
expected properties.

2.4. Duality in x-categories

In this section, we posit F = C. Many complex linear categories have an additional
piece of structure: a positive x-operation. See [12,70] for two important classes of
examples. A x-operation on a C-linear category is map which assigns to every mor-
phism s:X — Y a morphism s*:Y — X. This map has to be antilinear, involutive
(s** =), contravariant ((s o t)* = ¢* o s*) and monoidal ((s ® t)* = s* ® t*) if the
category is monoidal. A x-operation is called positive if s* os =0 implies s =0. A
tensor x-category is a C-linear tensor category with a positive x-operation. (For a
braided tensor x-category one often requires unitarity of the braiding, but there are
examples where this is not satisfied by a naturally given braiding.) Some relevant
references, where infinite-dimensional Hom-sets are admitted, are [21,12,42], the lat-
ter reference containing a very useful discussion of 2-*-categories. In [46, Proposition
2.1] we showed that C-linear categories with positive *-operation and finite-dimensional
Hom-sets are C*- and W *-categories in the sense of [21,12]. In W*-categories one has
a polar decomposition theorem for morphisms [21, Corollary 2.7], which implies, e.g.
that if Hom(Y,X') contains an invertible morphism then it contains a unitary morphism
(uou* =u*ou=id).

The notion of duality in *-categories as considered in [12,42] has two peculiar
features. First, it is automatically two-sided. Secondly, there is no compelling reason
to fix a duality map X — X and to choose morphisms 1 — XX, etc. Rather it is
sufficient to assume that all objects have a conjugate. We stick to the term ‘conjugate’
from [12,42] in order to underline the conceptual difference.

An object X is said to be a conjugate of X if there are ry € Hom(1,XX),7y €
Hom(1,XX) satisfying the conjugate equations:

f;@ld)(oldx@r)(:ld)(, F;@ld)zold)z@)f)(:ld/\; (24)

A category % has conjugates if every object X € % has a conjugate X € 4. The triple
()? ,rx,Fx) is called a solution of the conjugate equations. It is called normalized if
ry ory =7y ory € Hom(1,1). (Since C is algebraically closed every solution can be
normalized.) A solution of the conjugate equations is called standard if ry =), W; ®
w; o r; where w;,w; are isometries effecting decompositions X = @,X;, X = @.X; into
simple objects, and (X;,r;,7;) are normalized solutions of (2.4) for X;. For any object
X we define a dimension by d(X)=r} ory, where (X' ,I'x,7y) is a normalized standard

solution. Then d(X) is well defined and satisfies d(X)=d(X), d(X ®Y)=d(X)+d(Y)
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and d(X ® Y)=d(X)d(Y) for all X,Y € %. The dimension takes values in the set
{2cosm/n, n=3,4,...}U[2,00). If (X,r,7) is any normalized solution of the conjugate
equations for X then d(X) < »* or and equality holds iff (X,r,7) is standard. For the
proofs we refer to [42].

Furthermore, a braided x-category with conjugates automatically [46] has a canonical
twist [28]. Together with the fact [77] that in braided tensor categories there is a
one-to-one correspondence between sovereign structures and twists this implies that
every braided x-category has a canonical sovereign structure. It is not unreasonable to
believe that this is true even in the absence of a braiding. In fact, in [72] Yamagami
considered spherical structures (‘e-structures’) compatible with a given *-structure, and
in [74] he shows that every x-category can be equipped with an essentially unique
spherical structure. See also [17] for similar considerations. In any case, in the %-case
one does not need a spherical structure since every scalar quantity (i.e. morphism
1 — 1) is unambiguously defined if one sticks to the above normalization rules for the
duality morphisms ry, 7y, cf. [42].

2.5. Graphical notation

In this paper, we will often represent computations with morphisms in a tensor
category in terms of tangle diagrams rather than by formulas or commutative diagrams.
Since this notation is well known, cf. e.g. [30], we just explain our conventions.

Our diagrams are to be read upwards, thus with a: X - Y,b:Y —=Z,c:U—V,
d:V — W we represent

b®doa®c=(boa)®(doc)c Hom(X @ U,Z®@ W)

by
z W
| |
Lo | e ]
v v
L« | [ ]
| |
X U

X X
Representing &(X) by {__J and &X) by ﬂ we depict condition (1) of Definition
2.6 by
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and (3) becomes
X X

Y Y

“i
Il
I

=~
=~

3. Frobenius algebras vs. two-sided duals

3.1. From two-sided duals to Frobenius algebras

Let .o/ be a tensor category which for notational simplicity we assume to be strict.
As is well known this does not restrict the generality of our considerations. Ultimately
we will be interested in linear categories over a field F, but a large part of our con-
siderations is independent of this and will be developed without assuming linearity.

Definition 3.1. Let .o/ be a (strict) tensor category. A Frobenius algebra in o7 is a
quintuple (Q,v,v',w,w’), where Q is an object in .o/ and v:1 — Q,v": Q0 — 1L, w:Q —

Q> w': 0* — Q are morphisms satisfying the following conditions:

w®idgow=idg @ wow,

wow @idg=w oidg®w,

V®idgow=idg=idg @V ow.

wovQidg=idg=w oidg @ v.

W ®idgoidg@w=wow =idg @w ow®idp.
Remark 3.2.

1. Throughout the paper we use the following symbols:

R P

3.1)
(3.2)
(3.3)
(3.4)

(3.5)

For the tangle diagrams corresponding to the above conditions see Figs. 1 and 2.
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10 u

Fig. 1. Comonoids in a category.

Fig. 2. The Frobenius condition.

2. Egs. (3.1)—(3.4) amount to requiring that (Q,w’,v) and (Q,w,v’) are a monoid and
a comonoid, respectively, in the category %. The new ingredient is the Frobenius
condition (3.5), cf. Fig. 2, which can be interpreted as expressing that w:Q — Q?
is a map of O—Q bimodules. This must not be confused with the more familiar
bialgebra condition. The latter makes sense only if ¥ comes with a braiding, which
we do not assume. For this reason we avoid the usual symbols m, 4, ¢, 7.

3. To the best of our knowledge (3.5) makes its first appearance in [58, Appendix
A.3], where it is part of an alternative characterization of symmetric algebras (in
Vect). This is a special case of the alternative characterization of Frobenius algebras
mentioned in the Introduction and discussed in more detail in Section 6.

4. If o is a *-category we will later on require w' = w*, v/ = v*, which obviously
renders (3.2), (3.4) redundant.

Definition 3.3. Frobenius algebras (Q,v, v, w,w’), (Q, 0,0, w, W )~ in the (strict) tensor
category .o/ are isomorphic if there is an isomorphism s’: Q — Q such that

sov=">0, vV=0o0s, sQsow=wos, sow =W osQs.

The above definitions are vindicated by the following.

Lemma 3.4. Let J:B — 4 be a 1-morphism in a 2-category & and let _j:il — ‘B
be a two-sided dual with duality 2-morphisms dj,ey,e5,1;. Positing Q=JJ :.of — o
there are v,v',w,w' such that (Q,v,v',w,w') is a Frobenius algebra in the tensor
category of = HOMg(34,11).
Proof. Since J,J are mutually two-sided duals there are

ey ly—JJ, nyiJJ =1y, e:ilg—JJ, d;j:JJ — 1y
satisfying

idy®dyjoe; ®@idy=id;=n; ®idyoid; @ny,

idi@nroey ®id;=id;=d; ®idjoid; Qey. (3.6)
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Defining
v=-e; € Homg(1y,JJ),
v =ny € Homg(JJ, 1),
w=id; ® ¢ ®id;c Homg(JJ,JJJJ),
w =id; @d; ®id; € Homg(JJJJT,JJ), (3.7)

we have v € Hom.,(1,0), w € Hom.,(Q,0%), v' € Hom_,(0,1) and w' € Hom_,(0?, Q).
Now (3.1) follows simply from the interchange law

JJJJJgJ JJJJJJ
JJ JJ
and (3.3) from the duality equations (3.6):

R

JJ

Conditions (3.2), (3.4) are analogous, and the Frobenius algebra condition (3.5) follows
from

JJ JJ JJJJ JJ J3J

N Sva)

JJ JJ JJJJ JJ JJ

Remark 3.5. 1. By duality we obviously also obtain a Frobenius algebra Q= (0=
JJ,...) in B =HOMs(*8,B).

2. Considering a tensor category % as a 2-category with a single object £ we obtain
the special case of an object Xin % with a two-sided dual X.

3. Since duals are unique up to isomorphism a different choice of J changes Q only
within its isomorphism class. Yet it is in general not true that the Frobenius algebra
(Q,v,0',w,w") is well defined up to isomorphism. [J
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Lemma 3.6. The object Q of a Frobenius algebra is two-sided self-dual, i.e. there
are r € Hom(1,0%), r' € Hom(Q?,1) such that the duality equations are satisfied with

€g =¢& =1, dQ:V[Q:F/.

Proof. Set r =wouv,r =1’ ow'. Then the duality equations follow by

Here the first equality holds by definition, the second follows from (3.5) and the last
from (3.3). O

3.2. A universal construction

Now we prove a converse of Lemma 3.4 by embedding a given tensor category
</ with a Frobenius algebra (0, v, v',w,w’) into a suitably constructed 2-category such
that Q =JJ.

Definition 3.7. An almost-2-category is defined as a 2-category [31] except that we do
not require the existence of a unit 1-morphism 15 for every object X.

Proposition 3.8. Let .o/ be a strict tensor category and Q=(Q,v,v',w,w'") a Frobenius
algebra in of. Then there is an almost-2-category &, satisfying:

1. Obj &y = {41,B}.
2. There is an isomorphism I: .o/ — HOM,(U, L) of tensor categories.
3. There are 1-morphisms J :B — M and J : 30 — B such that JJ =1(Q).

If o/ is F-linear then so is &y. Isomorphic Frobenius algebras give rise to isomorphic
almost 2-categories.

Proof. The proof is constructive, the definition of the objects obviously being forced
upon us: Obj &y = {4, B}.
1-morphisms: We define formally

Homyg, (84, 81) = Obj o/,

Homg,(B,4) = {“XJ”, X € Obj <o/},

Homg,(,B) = {“JX”, X € Obj o/},

Homg,(%8,B) = {“JXJ”, X € Obj .o/}. (3.8)
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For the moment this simply means that Hom, (4, B ), Homs, (B, ) and Homs,(°B,B)
are isomorphic to Hom(4,4) as sets. In particular, with X = 1€ Obj .o/ we obtain
the following distinguished 1-morphisms:

J =“1J” € Homg,(B,4),
J =J1” € Homg,(4,B).

Composition of 1-morphisms: Wherever legal, it is defined by juxtaposition, fol-
lowed by replacing a possibly occurring composite JJ by the underlying object O of
the Frobenius algebra. (The latter is the case whenever one considers X o ¥ where
Y € Homg,(?,°B), X € Homg,(°B,?).) We refrain from tabulating all the possibilities
and give instead a few examples:

“jX” 0“YJ” == “.]_(XY)J” 6[{()’11(?0(%,%)5
“XJ” 0 “JYJ” := “(XQY)J” € Homg,(B, ).

</ being strict by assumption, the composition of 1-morphisms is obviously strictly
associative. With this definition the set of 1-morphisms is the free semigroupoid (=
small category) generated by Obj.«/ U {J,J} modulo JJ = Q and the relations in .o7.
If we had to consider only 1-morphisms we could drop the quotes in (3.8) since now
J,J are legal 1-morphisms and, e.g. “XJ” is just the composition X oJ of X and J.
But in order to define the 2-morphisms and their compositions and to verify that we
obtain a 2-category we must continue to distinguish between “X> “J” and “XJ” for a
while.
2-morphisms as sets: Since we want HOM (4, 41) = o/, we clearly have to set

Homg,(X,Y)=HomX,Y), X, Y¢&Homg (L U)=0bj..

In order to identify the remaining 2-morphisms we appeal to duality which in the end
should hold in &. Applied to Homg,(8,4) this means

Homg,(“X 0J”,“Y oJ”)= Homg,(“X oJ o J”, Y) = Homg,(X0,Y)
= Hom 4(XQ,7Y).

This means that the elements of Homg,(“XJ”,*“YJ”)

[
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where X, Y € Obj o/, are represented by those of Hom ,(XQ,Y), etc:

Y
&
X JJ
~—~
Q

Thus we define
Homg,(“XJ”,“YJ”) = Hom.,(XQ,Y),
Homg,(“JX”,“JY”) = Hom (X, QY ),
Homg,(“JXJ”,“JYJ”) = Hom_,(XQ, QY ),

as sets. Now we must define the vertical and horizontal compositions of the 2-
morphisms in &y, which we denote e and x, respectively, in order to avoid confusion
with the compositions in .o7.

Vertical (e-) Composition of 2-morphisms: Let X,Y,Z€ Obj.<f/. For s¢&
Hom(X,Y) = Hom(X,Y),t € Hom,(Y,Z) = Hom,(Y,Z) it is clear that fes=tos.

Let now s € Homg,(“X o J”,“Y oJ”) = Hom (X0, Y), t € Homg,(“Y 0J”,“Z 0 J”) =
Hom ;(YQ,Z). Then we define t @ s € Homg,(“X 0 J”,“Z 0J”) = Hom.4(X0Q,Z) by

tes=tosQ®idpoidy @w.

Similarly, for s € Homg,(“J 0 X”,“J oY) = Hom4(X,0Y), te Homg,(“J o Y”,“J o
Z2”) = Hom4(Y,0Z) we define t @ s € Homg,(“J 0 X”,*J 0 Z”) = Hom 4(X,0Z) by

tes=w ®idzoidg®tos.

Finall}:, for s € HOngO(“j oXoJ”“JoYoJ’)= Homy/(XQ, oY), te_Hom(,ng(“J_ o
YoJ”,“JoZoJ”) = Hom (YQ,0Z) we define tes € Homg,(“JoX oJ”,“JoZoJ”) =
Hom ,(XQ,0Z) by

tes=w Qidzoidg@tos®idgoidy @ w. (3.9)
See Fig. 3 for diagrams corresponding to these definitions. Associativity of the e-

compositions is easily verified using coassociativity (3.1) and associativity (3.2) of the
Frobenius algebra (Q,v,v’, w,w").
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0 Zz

X 0
A—B A—B A—B

Fig. 3. Vertical (e-) composition of 2-morphisms in &Y.

X
X
S
O
X Q
X Q

Fig. 4. Unit 2-morphism id-«x;».

Unit 2-arrows: 1t is clear idy € Hom ,(X,X) for X € Obj .o/ is the unit 2-arrow for
the 1-morphism X : 4l — ${. Furthermore, using the above rules for the e-composition
of 2-morphisms and Egs. (3.3), (3.4), it is easily verified that

idexy = idy ® v' € Hom ;(X0,X) = Homy,(“XJ”,“XJ”)

is in fact the unit 2-arrow id«y;». Diagrammatically, the equation s e id«y;» = s with
s € Hom ,(X0,X) = Homg,(“XJ”,“XJ”) looks as in Fig. 4. Similarly, we have

id.jy» =0 ® idy € Hom (X, 0X) = Homg,(“JX”,“JX),
idjy =0 ®idy ® v € Hom,(X0,0X) = Homg,(“JXJ”,“JXJ”).

Horizontal (x-) Composition of 2-morphisms. Let &,§,&¢e{,B}, 7,7 €
Homg (€,5), Z»,Z, € Homg,(F,®) and s; € Home,(Z;,Z]),i = 1,2.

1 2
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Then we must define s, x 51 € Homg,(Zy 0 Z,,Z5 o Z{). To this purpose we consider,
as before, s; as morphisms in .. Thus, for € = F = 4l we have Z;,Z € Obj </ and
s1 € Homs(Z,,Z)), and for €=9B, F=.o/ we have Z1=X,J,Z{=X]J with X;,X]| € Obj o/
and sy € Homg(X,1j,X[J) = Hom(X,0,X]), etc. We define

SHXs1=858s if F=4U,
SzXS[:id?®wl®id7OS2®idQ®S]Oid7®W®id? if §=". (3.10)
To illustrate the second equation, consider the case € = § = & = ‘B, thus Zl.(/) =

JoxXVoJi=12, with X" € .o/ and s; € Hom.,(X;0,0X}). Then (3.10) looks like

Q X, Q X

L= J|L=

X, Q X Q

Our task is now twofold. On the one hand, we must convince the reader that this is the
‘right” definition. We remark that definition (3.10) is motivated by the interpretation of
the 2-morphisms of & in terms of morphisms in .oZ. For the horizontal composition
of 2-morphisms where the intermediate object § is B this looks as follows:

J JX JJ X
J JIXJ JX
L= [>]] = [L= 3
XJ JXJJ_
X2\]J_ Xle

It should be clear that for § = 4l the first formula in (3.10) is the correct definition.
The second task is, of course, to prove that our definition renders &y an almost-2-
category. This means the horizontal composition of three 2-morphisms must be asso-
ciative for all legal compositions. Luckily, this is quite obvious from associativity of
the ®-composition in the tensor category .o/ and we refrain from formalizing this. It
remains to show the interchange law, which again we do only for €=§F =& =5, all
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other cases being easier. Let thus Z; = JXJ, s € Homg(Z,Z]) = Hom ,(X,0, 0X/),
etc. We compute the composition

Z A
z; l“ 7 lsz

B B 5B,
7’ 7%

which is in Hom(g‘(ZZZI,Zz”Zl”) = Homy/(XzQXl Q, QXz”QXl ”), in two different ways.
We can first do the horizontal compositions and obtain

Q Xy Q Xj
A |nn | jw
BB
J,tle
Z574 L 51

X2 Q X1 Q

Beginning with the vertical compositions we arrive at

0 x5 Q0 X{

Z, Z,
/\ /—\4
B l’]“ﬂ B J(’z'sz%
\_/‘ \/\
zq z

That the two expressions coincide is again verified easily using (3.1)—(3.5).

Assume now that .o/ is [F-linear. Clearly, the spaces of 2-morphisms in &, are
[F-vector spaces and the compositions e, x are bilinear. Thus &, is F-linear. Finally,
let s:Q — Q be an isomorphism between the Frobenius algebras Q,(':) and consider
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the almost 2-categories 50,6?0 constructed from Q,Q. The objects and 1-morphisms
(as well as the composition of the latter) of &, &, not depending on the Frobenius
algebra, there are obvious bijections. Furthermore, there is a bijection between, e.g.
Homg,(“XJ”,“YJ”) = Homy(XQ,Y) and Homg; (“XJ”, “YJ”)=Hom ;(X0,Y)
given by

Hom 4(XQ,Y)>t—to s~V @idy eHom&/(XQ, Y).

Since these isomorphisms commute with the compositions e, x of 2-morphisms in
&9, &9 we have an isomorphism of almost 2-categories. [

Remark 3.9. 1. It is obvious how to modify the proposition if .o/ is non-strict: The
definition of the objects and 1-morphisms and the composition of the latter are un-
changed. Since we may still require JJ = Q, the associativity constraint of .o/ gives
rise to that of &(. As to the 2-morphisms, the only change are appropriate insertions
of associativity morphisms in the definitions of e, x.

2. If Q=(Q,...) is a Frobenius algebra in a tensor category .o/ then the functor
F =0 ® — is part of a Frobenius algebra in End .o/, thus in particular of a monoid in
End o/, equivalently a monad (Q® —, {w' ®idx},{v®idx}) in /. It is easy to verify
that our construction of the category HOM (U, B) is precisely the Kleisli construction
[44, Section VL.5] starting from .o/ and the monad (F,...). (Alternatively one may
invoke the Kleisli type construction for monoids in 2-categories, cf. e.g. [22].) Similar
statements hold for the categories HOMs(B,4l) and HOMs(*8,°B). But our way of
pasting everything together in order to obtain a bicategory seems to be new.

3. Just as the Kleisli category is the smallest solution to a certain problem (i.e. an
initial object in the category of all adjunctions producing the given monad), it is intu-
itively clear that & is an initial object in the category of all solutions of our problem.
Consider a 2-category &’ with {4/, B’} C Obj &’ such that HOMg (', 81") = o7 (with
given isomorphism) and with mutually dual J' € Homg (98',81'), J ' € Homg (W', B"),
such that 0=J"J ' Then there is a unique functor K of almost-2-categories K : &y — #
such that F(U) =4, F(B)="B', F(J)=J', F(J)=J . We omit the details, since in
Theorem 3.17 we will prove a more useful uniqueness result.

With the preceding constructions & is a 2-category up to one defect: there is no
unit-B — B-morphism. We could, of course, try to add one by hand but that would be
difficult to do in a consistent manner. Fortunately, it turns out that taking the closure of
& in which idempotent 2-morphisms split automatically provides us with a (non-strict)
B — B-unit 1y provided the Frobenius algebra (Q,v,v',w,w’) satisfies an additional
condition.

In all applications we are going to discuss .«7 is linear over a field F and End(1) = F.
Yet we wish to emphasize the generality of our basic construction. This is why we
give the following definition, motivated by considerations in [68, pp. 72-73].

Definition-Proposition 3.10. A4 strict (not necessarily preadditive) tensor category .of
is End(1)-linear if L.Q@s=s® 1 =:1s for all € End(1) and s:X — Y. It then follows
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that J(sot)=(As)ot=s0(At) and AsR1t)=(As) @t =s® (At). (All this generalizes
to non-strict categories.)

Theorem 3.11. Let .o/ be a strict tensor category and Q= (Q,v,v',w,w') a Frobenius
algebra in /. Assume that one of the following conditions is satisfied:

(a) wow=idp.
(b) o/ is End(1)-linear and
wow =4 idp,

where A1 is an invertible element of the commutative monoid End(1).

Then the completion & =&P of the &, defined in Proposition 3.8 is a bicategory such
that

1. Obj & ={U,B}.

2. There is a fully faithful tensor functor I:.o/ — HOMg(34,3L) such that for every
Y € HOMg(8M,5L) there is X € of such that Y is a retract of 1(X). (Thus I is an
equivalence if o/ has subobjects.)

3. There are 1-morphisms J:8 — \ and J : 34 — B such that Q =JJ.

4. J and J are mutual two-sided duals, i.e. there are 2-morphisms

ey ly—JJ, e:lg —JJ, dj:JJ — 1y, n:JJ — g

satisfying the usual relations.
5. We have the identity

IO, v,V wow') = (JJ,es,ny,id; ® &5 ®idy,id; ® dy @ idy)

of Frobenius algebras in ENDg(l). (In particular, dj o ey = Ay id1.)

6. If o/ is a preadditive (F-linear) category then & is a preadditive (F-linear) 2-
category.

7. If of has direct sums then & has direct sums of 1-morphisms.

Isomorphic Frobenius algebras Q,Q give rise to isomorphic bicategories &,&.

Proof. If we are in case (a) put 4; =1 in the sequel. Then End(1)-linearity will not
be needed. We define the bicategory & as the completion &7. Thus, Obj & = {41, B}
and for X, € {U,B} the 1-morphisms are

Homg(X,9) ={(X, p)IX € Homg,(X,2), p=pe p€ Homg,(X,X)}.
Furthermore,
Homg((X, p),(Y,q)) = {s € Homg,(X,Y)|se p=qes=s}
=g e Homg(X,Y) e p.

In order to alleviate the notation we allow X to denote also (X, idy ). With this definition
it is clear that (X, p) < X = (X,idx). (p € Homg(X,X) is an invertible morphism from
(X, p) to X, since also p € Homg(X,(X, p)) and pe p= p=idx p).)
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Exhibiting a unit 8 — B-morphism: Recall that Ends(JJ) = End .,(Q) as a vector
space and consider the morphism p; € Ends(JJ) represented by ifl ido € End /(Q).
(Note that id is the unit of the monoid End ,(Q), but not of End ¢(JJ), whose unit is
vov’!) As a consequence of condition (b) we see that p; e p, :/ll_zw’ow:il_l ido=p1.
Thus, p; is idempotent and (JJ, p;) is a B — B-morphism in &. We claim that
(JJ, p1) is a (non-strict) unit B — B-morphism. In order to see that 1o is a right unit
we have to show that there are isomorphisms

r((XJ, p)) - (XJ, p)l = (XOJ, p X p1) — (X, p),

r((JXI, p)) : (JXJ, p)ls = (JXOJ, p % p1) — (JXJ, p)

for all (XJ,p):B — 4 and (JXJ,p):B — B, respectively. We consider only
r((JXJ, p)) and leave the other case to the reader. (For »((XJ, p)) the only change
is that the upper left O-leg of p disappears.)

By definition of the horizontal composition of 2-morphisms in & we have

QX Q QXQ
pxpl:)\_l W Alﬁ
X Q Q X Q0

Consider
Q X
QX
r(@XJ,p) = [ 5 = % 0 Hom_,(XQQ, QX) = Hom, (JXQJ,JXJ)
XQ Q
X Q Q

QX Q

Qx Q
r((IXJ,p) = — 0 Hom_,(XQ,QXQ) = Hom,(JXJ, J, X QJ)
X Q X Q
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Using p e p= p and the rules of computation in & it is easy to verify that r e /' =
Jip=ruid gy, and r' e r=21p X pi =11 jxps px ) Such that r((JXJ, p)) is an
isomorphism from (JXQJ, p x p1) to (JXJ, p). We leave this computation to the reader
as an exercise. That 7((JXJ, p)) is natural w.r.t. (JXJ, p) is easy, and the coherence law
connecting the unit constraint with the tensor product becomes almost obvious since
& is strict except for the unit morphism under study. That 1y is a left unit is shown
by a similar argument defining /((JXJ, p)) € Homs(JQOXJ,JXJ) = Hom.,(QXQ, 0X)
analogously. Finally, one sees that for (JXJ, p) =1 the left and right unit constraints
coincide: /(1) =r(1n).

Duality of J and J: We refer to [22, Section 1.6] for a discussion of adjoint
1-morphisms in (non-strict) bicategories. In order to show that .J,J are two-sided dual
I-morphisms we must exhibit morphisms

ey ly —JJ, dj:JJ — 1y, gl — JJ, ny:JJ — 1g

satisfying the usual triangular equations. Motivated by Q =JJ and by Lemma 3.4 we
set

e;=v €Homy(1,0)= Homg(lu,Jj),

ny=v  €Homy(0,1) = Homg(JJ,1). (3.11)
Now we observe that

Homg(1gs,JJ) C Homg,(JJ,JJ) = Hom.,(Q,0),

Homg(JJ, 1) C Homg,(JJ,JJ) = Hom ,(Q, Q).

(By construction of &, 1g is the retract of JJ :B — B corresponding to the idempotent
il_l idg € End ,(Q) = Endg,(JJ).) Thus, it is reasonable to consider the following
candidates for d; and ¢; (both of which live in Hom(Q,Q)):

d]zidQ, ;Ll_lgjzidQ. (312)

(Whether d; or ¢; contains the factor il_l is immaterial, but the normalization of the
left and right unit constraints / and » depends on this choice.) With this definition we
have

dJ.SJ:/ALI_IW/OW:idQ:l]p]:i]idl%

as desired. In the verification of the triangular equations we must be aware that & is
only a bicategory since there are non-trivial unit constraints for 1gs. The computations
tend to be somewhat confusing. We prove only one of the four equations, namely
that

ffj®idj id_/@dj V(J)

J=1yJ JJJ Jlg J (3.13)

is the identity 2-morphism id,, the computation being completely analogous in
the other cases. With id; = v/ € Hom,(Q,1) = Homeg(J,J), (3.11), and (3.12) we
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compute

gy xidy = <L T 0 Hom/(Q, Q) = Homg (J,J3J)

idyxd; = % = /LD Hom_,(Q2, Q) = Homg (JJJ, JIJ)

e-Composing these 2-morphisms between B — L-morphisms according to the rules of
Proposition 3.8 we obtain

Q

This is precisely the isomorphism 7/(J):J1ys — J given by r/(J) = idp€
Hom,(Q, Q) = Homg(JJJ,J) provided by Theorem 3.11. Now »(J),r'(J) are mutu-
ally inverse, which proves that (3.13) gives the unit morphism id,. The last statement
is obvious since isomorphic (almost) bicategories &, &, have isomorphic completions
&b, é0r. O

Remark 3.12. 1. The bicategory & fails to be strict (thus a 2-category) only due to
the presence of non-trivial unit constraints for 1gs. This defect could be repaired by
adding a strict unit 1-morphism for B which is isomorphic to (J.J, p;). There will,
however, be no compelling reason to do so.

2. The condition (a/b) in Theorem 3.11 was crucial for identifying the unit
1-morphism 1 as a retract of J.J. Furthermore, we obtained a distinguished retrac-
tion/section 1g3 <« JJ. So far, our assumptions are not symmetric in that they do not
imply 1y < JJ, let alone provide a canonical retraction and section. This is achieved
by the following definition.

Definition 3.13. Let .o/ be an End(1)-linear (but not necessarily a preadditive) cate-
gory. A Frobenius algebra Q = (Q,v,v’,w,w’) in .o/ is ‘strongly separable’ iff

W/OW:ll idQ, (314)

v ov =)y, (3.15)
where A1, Ay € End(1) are invertible. If 11 = J, then Q is called normalized.

Remark 3.14. 1. The term ‘strongly separable’ will find its justification by the classical
case in Proposition 6.5.
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2. If o, f € End(1)* and Q=(Q,v,v',w,w’) is a strongly separable Frobenius algebra
then clearly also Q=(0, 00, V', pw,0~'w') is one. Q is isomorphic to Q (in the sense
of Definition 3.3) iff « = 8, in which case an isomorphism is given by s =widg: Q0 —
0O=0. Yet we consider Frobenius algebras related by this renormalization as equivalent.
Note that 4,4, = A1, thus ¢/ ow’ owouv € End(1) is invariant under isomorphism and

renormalization.

From now on all tensor categories are assumed to be End(1)-linear. Thus, if we
state this explicitly it is only for emphasis.

Proposition 3.15. Let & be a bicategory and J : 5 — U a 1-morphism with two-sided
dual J:$8 — B. Assume that the corresponding 2-morphisms d;,e;,e;,1n; can be
chosen such that nyoe; and dj o ¢y are invertible in the monoids End(1y), End(1s),
respectively. Then the functor F=—®J : HOMg(i, 1) — HOMg(B,4) is faithful and
dominant in the sense that every X :6 — Al is a retract of Y oJ for some Y : 4l — L
The same holds for the other seven functors given by composition with J or J from
the left or right.

Proof. Our conditions obviously imply that ey :1yq — JJ and ey:1y — JJ are re-
tractions, viz. have left inverses. Thus, 1y < JJ and therefore X < X o (J oJ) =2
(X oJ)oJ for any X:B — 4l Since X oJ is a 4 — 4 morphism this implies the
dominance of F'. Faithfulness can be proved using [44, Theorem 1V.3.1], but we prefer
to give a direct argument. Let XY :4 — 4 and s € Homg(X,Y). If s ® id; = 0 then
also s ® id; ® idj = s ® idg = 0. Sandwiching between idy ® v and idy ® v gives
s® (v ov) = s =0 and thus s =0 by invertibility of 4,. O

Corollary 3.16. Let .« be End(1)-linear and (Q,v,v',w,w') a strongly separable
Frobenius algebra in o/ . Then the bicategory & defined above is such that n;oe; and
dy o gy are invertible in the monoids End(1y), End(1sy), respectively. Conversely, if
J B — M has a two-sided dual J such that e;,d;, ;5,1 satisfy these conditions then
the Frobenius algebras (JJ,...) and (JJ,...) in ENDg(1), ENDs(B), respectively, are
strongly separable.

Proof. By Theorem 3.11, d; o g; = A1 idp with 4; € End(1)*. On the other hand, #; o
e; = v/ o v which is invertible in End(1) since Q is strongly separable. The converse
is obvious in view of Lemma 3.4. [J

Now we are in a position to consider the uniqueness of our bicategory &.

Theorem 3.17. Let .o/ be End(1)-linear and (Q,v,v',w,w") a strongly separable Frobe-
nius algebra in of. Let & be as constructed in Theorem 3.11 and let & be any
bicategory such that:

1. Obj & = {44,B}. i
2. Idempotent 2-morphisms in & split.
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3. There is a fully faithful tensor functor I:iod — END; () such that every object
of END () is a retract of 1(X) for some X € o/.

4. There are mutually lwo-sigied dual 1-morphisms J: B — i, J:tl — B and an
isomorphism $:1(Q) — JJ between the Frobenius algebras 1(Q,v,v',w,w') and
(JJ,éj,...) in End z().

Then there is an equivalence E : & — & of bicategories such that there is a monoidal
natural isomorphism between the tensor functors I and (E | ENDg()) o 1.

Proof. Replacing &,& by equivalent bicategories, we may assume that the functors
I:9/ — ENDg(l), I:o4 — END;(4) are injective on the objects. Thus ENDg (L)
and END;(4l) contain .o/ as a full subcategory. In view of the coherence theorem
for bicategories we may replace &,& by equivalent strict bicategories or 2-categories
and we suppress the symbols 7,/. (As a consequence of these replacements, we will
no more have the identity 7(Q) =JJ but only an isomorphism s:0 = I(Q) — JJ
compatible with the Frobenius algebra structures.) In view of Proposition 3.15, every
Y € Homg(%B,41) is a retract of Y.JJ and therefore of XJ for X = YJ € .o/. Similarly,
every Z € Homg(4,B) (Z € Homs(*B,B)) is a retract of JX (JXJ) for some X € .«Z,
and similarly for &. Let &, be the full sub 2-category of & with objects {95}
and 1-morphisms X, XJ,JX,JXJ with X € .7, and similarly for &. Now we can define
E:&y — &g as the identity on objects and 1-morphisms. Composing the obvious
isomorphisms Homg,(XJ,YJ) = Hom 4(XQ,Y) = Homé:O(Xj, YJ), etc., provided by
the duality of J,J and J,J we can define the functor £y on the 2-morphisms. That £
commutes with the horizontal and vertical compositions is obvious by the isomorphism
(JJ,es,...) = (O,v,...) = (jj,éj,...) of Frobenius algebras. In order to obtain a
(non-strict) isomorphism E of (strict) bicategories we need to define invertible 2-cells
¢gr EgoEf — E(go f) satistying the usual conditions [7]. When Ran f =Srcg =4
we choose them to be identities and for Ran f = Src g =B we use the isomorphism
§os~':JJ — JJ. The verification of the coherence conditions is straightforward but
very tedious to write down, and therefore omitted. In view of & ~ éTop ~ £0P ~ & the
isomorphism Ey: &y — @% extends to an equivalence E: &8 — & which has all desired
properties. [

Remark 3.18. 1. The construction of the bicategory & given in this section reflects
the author’s understanding as of 1999. More recently, it has become clear that there
exists an alternative construction which can be stated quite succinctly. Namely, define
a bicategory & with Obj & = {{,B} by positing

HOM (34, 81) = %,
HOM;;(31,%) = 0 — mod,
HOM (B, 81) = mod — 0,
HOM;(%,%8) = 0 — mod — 0,
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where O —mod, mod — O, 0 —mod — Q are the categories of left and right O-modules
and of O —Q-bimodules in &, respectively. It is very easy to prove that these categories
are abelian if ¥ is abelian, in particular they ‘have subobjects’, i.e. idempotents split.
The compositions of 1-morphisms are defined as suitable quotients like in ring theory.
The two different constructions are related to each other as the constructions of Kleisli
and Eilenberg/Moore. That they lead to equivalent bicategories is, at least morally,
due to the completion w.r.t. subobjects which we apply in our construction. (Module
categories automatically have subobjects.) To prove this rigorously it is, in view of
Theorem 3.17, sufficient to prove that & satisfies the requirements of the latter. Inspired
by [18] (which in turn was influenced by ideas of the author), the alternative definition
of & was proposed also by S. Yamagami in [75], which he kindly sent me.

2. By the above remark, our category # = ENDs(*B) is equivalent to the bimodule
category Q —mod — Q. Under certain technical assumptions, which are satisfied if .o/ is
semisimple spherical, [59, Theorem 3.3] then implies the braided monoidal equivalence

Z () gbr Z () claimed in the abstract. We hope to discuss these matters in more
detail in [48].

4. Weak monoidal Morita equivalence ‘=’

Definition 4.1. A Morita context is a bicategory # satisfying

1. Obj 7 = {1, B}.

2. Idempotent 2-morphisms in % split.

3. There are mutually two-sided dual 1-morphisms J:98 — I, J:4 — 9B such that
the compositions #; o ey € idy,, and d; o ¢; €idy,, are invertible.

Definition 4.2. Two (preadditive, k-linear) tensor categories .o/, % are weakly mono-
idally Morita equivalent, denoted .o/ ~ 4, iff there exists a (preadditive, k-linear)

® ®
Morita context & such that .7 = END (i) and 4=~ ENDz(8). We recall that in the
non-additive case this means that there are monoidal equivalences P gENDg()J) and
RBP gENDy(%), whereas for preadditive and k-linear categories we require

AP gEND,;/;(LI) and #r® %END;(%). In this situation # is called a Morita context
for o/, %.

Remark 4.3. 1. If in Definition 4.1 we admit 4=*B the implication .o/ % B = A=K
is obvious.

2. In [56] a notion of Morita equivalence for module categories of Hopf algebras
was considered, which has some similarities with the ours. Furthermore, it was shown
that Hopf algebras with Morita equivalent module categories (in the sense of [56])
have the same dimension. This is reminiscent of our Proposition 5.17.

3. If the structure morphisms v,w of the Frobenius algebra are isomorphisms with
v~'=0/, w™'=w' it is easy to see that the functor X + JXJ is faithful, full, essentially
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surjective and monoidal. Thus .o/ rZ v , viz. o/ and % are strongly monoidally Morita
®
equivalent .o/=%.
4. Additional restrictions on the Morita context will be required if .o/, Z are spherical
or x-categories.

By Lemma 3.4 a Morita context % for tensor categories .o/, 2 provides us with
strongly separable Frobenius algebras (Q =JJ,...) and (Q =JJ,...) in o/ and %,
respectively. Conversely, the construction of the preceding subsection provides us with
a means of constructing tensor categories which are weakly Morita equivalent to a
given one, together with a Morita context:

Lemma 4.4. Let o/ be a strict tensor category, let Q be a Frobenius algebra sat-
isfying (3.14) and let & be as constructed in the preceding subsection. Then % =
HOM¢(%B,*B) is weakly Morita equivalent to </, a Morita context being given by &.

Proof. Obvious by Theorems 3.11 and Definition 4.2. [

Proposition 4.5. Let .o/ ~ % with Morita context # . Let (Q,v,v',w,w") be the Frobe-
nius algebra in </ arising as in Lemma 3.4 and & as in Theorem 3.11. Then there
is an equivalence of bicategories & ~ F. In particular, we have an equivalence
HOMg(95,B) ~ HOM#(*B,B) of tensor categories under which the strongly sepa-
rable Frobenius algebras O =JJ of HOMy(B,B) and HOM#(B,B) go into each
other.

Proof. Obvious in view of Theorem 3.17. [
Our teminology is justified by the following.
Proposition 4.6. Weak monoidal Morita equivalence is an equivalence relation.

Proof. Symmetry and reflexivity of the relation ~ are obvious. Assume &7 ~ %
and # ~ ¥ with respective Morita contexts &,&, whose objects we call 4,8, and
B,, &,, respectively. In order to prove transitivity we must find a Morita context for
o/ and %. Since the definition of weak monoidal Morita equivalence involves only the
subobject-completions, we may assume without restriction of generality that .o/, %, %
have subobjects. We identify ./ and Ends, (4). By definition of a Morita context we
have

END¢, (%)~ B = ENDg,(B,),
and replacing &;,8> by equivalent bicategories we may assume ENDg (°B))

®

= ENDg,(®B7). The bicategories &1, &, come with 1-morphisms J,EHomg, (B1,4), Jr€

Homg,(&,,%B,) and their two-sided duals. We thus have a Frobenius algebra Q, =
_ ®

(J2J 2, 02, Uy, wa,wh) in ENDg,(B7). psing the isomorphism ENDg, (*B1) = ENDg,(8,)

we obtain the Frobenius algebra (Qy, 0,0y, W, Wy) in Endg (%B1). We define O =
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J102J, € Endg (U) and claim that this is part of a Frobenius algebra Q; in o7 =
ENDg, (Y1) if we put

vy =id;, ® U ®idy oy,
vy=vjoid;, ® ) Qidj,
w3 :idJlQ2 ®ey ® idgzj] oidy ® W ®idj1’
Wi =idy, @ Wy ®idj 0id; 5 @ ny @idg, ;.

The verification of (3.1)—(3.5) is straightforward and therefore omitted. (This is quite
similar to [44, Theorem IV.8.1] on the composition of adjoints.) Let &3 be the bicat-
egory obtained from .o/ and Q; and {4, &3} its objects. We denote @3 = ENDg,(€3).
There are functors Fy: X — JoJ 1 X)1J, from o/ to ENDg,(€)) (the composition of
X — J\XJ,o/ — Endg (B)) and X — J,X)5,ENDg,(98;) — ENDg,(¢,)) and
Fy: X — J3XJ; from o/ to ENDg,(€3). In view of the definitions of &, &%, and
of Qz it is clear that the images of F,F, as full subcategories of ENDy,(¢,) and
ENDg,(€3), respectively, are equivalent as tensor categories. Since the tensor categories
ENDy,(€,) and Ends,(C3) are equivalent to the subobject closures of the respective

full subcategories they are themselves equivalent: ENDgZ(Qz)gEndg3(€3). Together
with ¥2ENDg,(€,) and ENDy,(€3) ~ </ this implies € ~ /. [

Remark 4.7. 1. Comparing our notion of weak Morita equivalence with the one for
rings we see that Definition 4.2 is similar (but not quite, see below) to the property
of two rings R, S of admitting an invertible 4 — B bimodule. Now, it is known [6] that
this is the case iff one has either of the equivalences R — mod ~ § — mod, mod — R ~
mod — S. Since there is a notion of representation bicategory of a tensor category, cf.
[55] and [50, Chapter 4], it is very natural to conjecture that two tensor categories are
weakly monoidally Morita equivalent iff their representation categories are equivalent
bicategories. (This would make the transitivity of the relation = obvious.) We hope
to go into this question elsewhere. There is, however, one caveat, viz. in Definition
4.2 we do not require the 1-morphisms to be mutually inverse (in the sense JJ =
1y, JJ = 1x) but only to be adjoint (conjugate). Already as applied to rings this
yields a weaker equivalence relation.

2. It is interesting to note that the usual Morita equivalence of (non-monoidal)
categories can be expressed via the existence of a pair of mutually inverse 1-morphisms
in the 2-category of small categories, distributors and their morphisms, cf. [9, Section
7.9]. One might ask whether a useful generalization is obtained by requiring only the
existence of a two-sided adjoint pair of distributors.

3. Let o/ be a End(1)-linear tensor category. By the definitions and results of the
preceding and the present section, a strongly separable Frobenius algebra Q in .27 gives
rise to a tensor category 4 ~ .o/ together with a Morita context &. Conversely, a Morita
context & for # ~ .o/ gives rise to a strongly separable Frobenius algebra Q in .o7.
It is clear that this correspondence can be formalized as a one-to-one correspondence,
modulo appropriate equivalence relations on both sides, between strongly separable
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Frobenius algebras in .o/ and tensor categories % = .o/ together with a Morita context.
Here we do not pursue this further for lack of space.

5. Linear categories
5.1. Linear categories

From now on all categories are linear over a field F and all hom-sets are finite-
dimensional over F. If 1 is not simple, i.e. End(1) 2 F, we require strongly separable
Frobenius algebras to satisfy i, 4, € F*, not just 41,4, € End(1)*.

Proposition 5.1. Let o/ be F-linear with possibly non-simple unit. Let Q be a strongly
separable Frobenius algebra. Then the following holds for the bicategory & of The-
orem 3.11:

(i) J is simple iff J is simple iff dim Hom.,(Q,1) =1 iff dim Hom_,(1,0) = 1.
(i1) 1o is simple iff

(5.1)
is a multiple F(s) of idg for every s € End(Q).

Furthermore, (1) implies simplicity of 1., =1y and 1.

Proof. J is simple iff Endg(J) = F. By definition of & this is the case iff
dim Hom.,(Q,1) = 1. Similarly, J is simple iff dim Hom_,(1,Q) = 1. The remaining
equivalence in (i) follows from Hom(J,J) = Hom(JJ,1) = Hom(J,J), which is a
trivial consequence of duality of J,.J in &. By Corollary 3.16 all functors J ® —, J ®
—, —®J, —®J are faithful. Thus, both End(1g) and End(1y) embed as subalgebras
into End(J). Thus End(J) = [ implies End(1y) = F and End(1s) = F. O

Remark 5.2. 1. The implication ‘J simple < J simple = 1y simple’ is reminiscent
of the situation for an inclusion B C 4 of von Neumann algebras, where we trivially
have

ANB =Cl < BNMA)Y=Cl = BnNB=Cland A NA=CI.
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2. Note that we did not need a duality between Hom(X,Y) and Hom(Y,X) as it
exists in x-categories and non-degenerate spherical categories in order to conclude
dim Hom(1,Q) =1 iff dim Hom(Q,1) = 1.

Definition 5.3. Let .o/ be an [-linear tensor category. A strongly separable Frobenius
algebra Q in % is irreducible if the equivalent conditions of (i) above hold. (By the
above this is possible only if 1., is simple.)

5.2. x-Categories

We recall that a I-morphism X of a *-2-category (or object in a ®-*-category) is
conjugate to X in the sense of [42] if there are ry:1 — XX, 7y:1 — XX satisfying
(2.4). In the generic notation of Section 2.2 this amounts to ey =7y, ey =ry, dxy =
ry, nx =7y, thus dxy =(ex)*, nx =(ex)*. This implies that the Frobenius algebra Q=
(XX,...) of Lemma 3.4 satisfies the conditions v’ =v*, w'=w* which we mentioned in
Remark 3.2. Therefore, conditions (3.14)—(3.15) of strong separability amount to saying
that v,w are (non-zero) multiples of isometries thus up to renormalization (Q,v,w) is
an ‘abstract Q-system’ in the sense of [42]. In [42] it is shown that, quite remarkably,
in this situation (3.5) holds automatically. Therefore, a strongly separable Frobenius
algebra in a *-category is the same as an algebra (Q,v,w*) where v,w are multiples
of isometries.

Definition 5.4. A QO-system is a strongly separable Frobenius algebra in a x-category
satisfying v’ = v*,w’ = w*. Tt is normalized if the Frobenius algebra (Q,v,v*, w,w*) is
normalized, i.e. if v* ov=w" ow.

Proposition 5.5. Let </ be a tensor x-category and (Q,v,v'=v*,w,w'=w*) a Q-system
in of. Then &y has a positive x-operation # which extends the given one on <. Let
& be the full sub-bicategory of & whose 1-morphisms are (X, p) where p=pe p=p".
Then &, is equivalent to & and has a positive x-operation #.

Proof. Since the 2-morphisms of & are given in terms of l-morphisms in .o/, we
must denote the x-operation of &y by # in order to avoid confusion. For morphisms
in ENDg(U) = .o/ we obviously define s* = s*. Let X,Y € Obj .o/ throughout. For
s € Homg(XJ,YJ) = Hom ,(XQ,Y) we define

s" =idy ® r* os* ®idg € Hom,(YQ,X) = Homg(YJ,XJ)
for s € Homg(JX,JY) = Hom_,(X,0Y) we posit
sF = idg ® s* or @idy € Hom,(Y,0X) = Homg(JY,JX)
and or s € Homg(JXJ,JYJ) = Hom_,(XQ,0Y) we put
s"=idox @ r* oidg ® s* ®idg o r @ idyg € Hom (YO, 0X)
= Homg(JYJ,JXJ).
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(Recall that » = w o v.) Graphically the last definition looks like

QY \# QX
-
X Q Y Q

Antilinearity of these operations is obvious and involutivity follows from the duality
equation satisfied by r,7*. The easy verification of contravariance ((sot)” =¢" os*) and
monoidality ((s x ¢)* =s" x %) are left to the reader. We limit ourselves to showing
that # is positive. We consider only the case of morphisms between 28 — 2B-morphisms,
the others being similar. With s € Homg(JXJ,JYJ) = Hom.,(XQ,QY) we compute

Q

vanish, the latter by positivity of the x-operation in .«7. Now duality implies s =0, thus
# is a positive x-operation.

We now turn to the bicategory &. Let (X, p),(Y,q) be parallel 1-morphisms and
s:X — Y. By definition, s is a morphism (X, p) — (¥, q) iff s=se p=gqes, which is
equivalent to s* = p* es* =5" e ¢*. Thus s*: Y — X is in fact in Home((Y,q"), (X, p*)).
In the full sub-bicategory &, we have p’ = p,q" =gq, thus s* € Homg((Y,q),(X, p)) as
it should. Finally, in a finite-dimensional x-algebra (like Endg(X)) every projection is
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similar to an orthogonal projection. Thus, every (X, p) is isomorphic to (X,qg) where
q is an orthogonal projection. This proves &, ~ &. [J

Remark 5.6. 1. Let .o/ be a x-category which has subobjects and finite-dimensional
hom-sets. Then positivity of the x-operation implies End(X) to be a multi matrix
algebra for every X and therefore semisimplicity of .o/. Since &. by construction
has retracts of 1-morphisms, finite-dimensional hom-sets and a positive x-operation,
we conclude that &, is semisimple (in the sense that all categories HOMg(?,!) are
semisimple).

2. As explained in Section 2.4, the notion of (two-sided) duals in x-categories is
local in that it does not necessitate a conjugation map (or functor) X — X together
with chosen morphisms 1 — X ® X, etc. If X €.o/ has a conjugate X it is easy to see
that XJ:B — 4 has JX as conjugate, etc. Thus, if ./ has conjugates for all objects
then &, has conjugates for all 1-morphisms. Therefore, the above construction of a
x-structure on & completes the discussion of x-categories.

3. A self-conjugate object X in a x-category is called real (or orthogonal) if there
exists a solution (X,ry,7x) of the conjugate equations where ry =7y and pseudo-real
(or symplectic) if we can put ry = —ry. (Every simple self-conjugate object is either
real or pseudo-real, cf. [42].) As already observed in [42] the object of a ‘Q-system’
is real since (Q,r,7) with ¥ =r =wo v is a solution of the conjugate equations. By
minimality of the intrinsic dimension d(Q), this solution of the conjugate equations is
standard iff 7* or =v* ow* owov equals d(Q)id;. This is automatic when (Q,v,w) is
irreducible, i.e. dim Hom(1,Q) =1, as was shown in [42] using the construction of a
subfactor from a Q-system. Our construction of the bicategory & allows to give a simple
purely categorical argument. If the Frobenius algebra Q is irreducible then Proposition
5.1 implies irreducibility of J:9B — 4 and J: B — il in &. Then Homg(1g,JJ) and
Homg(1s,JJ) are one dimensional, which implies v*ov=d(J )idy and w*ow=d(J )id.
Thus v* ow* owov =d(J)?idy =d(Q)idy and (Q,r,F) is standard.

5.3. Spherical categories

In analogy to Frobenius algebras in x-categories, where we required the compatibility
condition v/ =v*,w’' =w*, we need a compatibility of (Q,v,v',w,w’) with the spherical
structure of .oZ. Let O be a 1-morphism in a strict spherical 2-category .%. Then Q=JJ
is strictly selfdual: Q =JJ =JJ = Q. If we consider the Frobenius algebra obtained
from Lemma 3.4 with e; = &(J), ¢y =&(J), d; =&J), n; = &J) then obviously

wov=idy ®8(J_)®idjOS(J):S(JJ_)ZS(Q)
and v/ ow’ = &(Q). Conversely, we have the following.
Lemma 5.7. Let o/ be a strict pivotal F-linear tensor category. Let (Q,...) be a
strongly separable Frobenius algebra such that Q=Q and wov=¢(Q), v ow' =&Q).

Then the bicategory & of Theorem 3.11 has a strict pivotal structure which restricts
to the one of .
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Proof. We extend the conjugation map to &y as follows:
T.]n = “jX”’ “.]_X” = “XJ”, “.]_XJ” = “jXJ”.

Thus “XJ”=“XJ”=“XJ", etc., and conditions (2.1) are obvious consequences of those
for .o/. Using the notations of Theorem 3.11 we define &(J) = e, e(J) = &7,8(J) =
ns,&J)=d;. Since we know &(X) for X € .o, condition (2) of Definition 2.6 enforces
e(XJ)=idy ®e(J)®idz oe(X) and analogously for &(JX),e(JXJ). With this definition
conditions (i) and (ii) of Definition 2.6 are clearly satisfied. (The conditions on w o
v,v"ow’ are necessary and sufficient for ¢, & being well defined for all 1-morphisms since
they guarantee &(JJ) = &(Q).) It remains to verify (iii). Let, e.g. s € Homg(XJ,YJ),
represented by § € Hom_,(XQ,Y). Now an easy computation shows that

J X J X
and
Jy Jy

are represented in .o/ by

Q x QX
:
Y v

respectively. These two expressions coincide since .o/ is pivotal, showing that the
dual of the 2-morphism s &€ Homg (XJ,YJ) = Hom,,(XQ,Y) is precisely given by
§€ Hom(Y,0X) = Homg,(JY,JX), where § is computed in .o/. The same holds
for the other types of 2-morphisms. The completion w.r.t. subobjects in a spherical
tensor category behaves nicely w.r.t. duality ((X, p) := (X, p)), and the same holds
for 1-morphisms in a 2-category. Thus & has strict duals and is pivotal. [

As explained in Section 2.3, the notion of sphericity of a (non-monoidal) 2-category
seems to make sense only if all identity 1-morphisms are simple, which is why we
need more stringent conditions in the following.
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Proposition 5.8. Let .o/ be a strict pivotal F-linear tensor category with simple unit.
Let (Q,...) be a strongly separable Frobenius algebra such that

(i) 0=0.
(i) wov=1¢(Q) and v ow' =& Q).
(ii1) The Frobenius algebra satisfies the equivalent conditions (ii) of Proposition 5.1.

Then & is spherical iff </ is spherical and Q is normalized. If furthermore the trace
on </ is non-degenerate then also its natural extension to & is non-degenerate.

Proof. By the preceding result and Proposition 5.1, & is a bicategory with strict pivotal
structure and simple 1y, 1. Since o7 sits in & as the corner ENDg(2l), sphericity of
o/ is clearly necessary for & to be spherical. Condition (ii) implies

d(Q)=&Q)oe(Q) =1 ow owouv=114.
Next we observe that the F(s) in Proposition 5.1 is given by
2l
F(s)=—tro(s), (5.2)
/2

where ro(s) is the trace in ./ of s € End(Q). (Using (ii), sphericity of <7 and w' o
w =4y idg the trace (in End ,(Q)) of (5.1) is seen to equal A7 tro(s). Since this trace
is also equal to F(s)tro(idg) = F(s)d(Q) = F(s)/41/2, the claimed equation follows.)

In order to check sphericity of & we need to consider the traces on Endg(X) where
X is a A —B-, B — A- or B — B-morphism. Let s € End s(XJ,XJ) represented by
§€ Hom 4(X0Q,X). In view of our definition of & we have

X X £(J)
X Q X J J

and with &(J)=e; =v we have

&(X)

£(X)

trL(s)z x= 1]
X

o

&(X)
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which expresses 7 (s) in terms of a formula in .o/. The computation of

£(J)
trr (s) =

e(J)
is slightly more involved. In order to simplify matters we pretend that X =1 which
eliminates the inner trace over X. Thus

£(J) i)

¢J) e(@) &)

Now, trr(s) € Ends(1) C Endg(JJ) = End .,(Q) is represented by

which by assumption (iii) and (5.2) equals
A / A
I (o §)idg = 47 S Fov)idg = T (5o v)idy,,.
lz V%) },2
Thus, reintroducing the trace over X we have




124 M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 81-157

which, using the sphericity of .7 coincides with #r(s) iff Q is normalized. Completely
analogous considerations hold for the traces on End(JX) and End(JXJ).

Assume now, that the trace on ./ is non-degenerate and let s € Homg,(JX,JY) =
Hom ;(X, QY ). By non-degeneracy of the trace on .o/ there is u € Hom,(QY,X) such
that fry(u o s) # 0. Now defining

Q X
t= 0 Hom,,(Y, QX) = HomgO(J_Y, JX),

Y

one casily verifies trjy(t @ s) = try(u os) # 0. Thus, the pairing Homg,(JX,JY) x
Homg,(JY,JX) — F provided by the trace is non-degenerate. The other cases are
verified similarly.

That the trace on &, extends to a non-degenerate trace on the completion & =&
follows from the following simple argument. Let # be a non-degenerate trace, e, f
idempotents and ex f # 0. Then there is y such that tr(exfy) # 0. By cyclicity of the
trace tr(exfy)=tr((exf)(fye)), thus y can chosen such that y = fye. [

Remark 5.9. 1. If F is quadratically closed every strongly separable Frobenius al-
gebra can be turned into a normalized one by renormalization. The sign of d(J)
depends on the choice of the renormalization, but in the x-case one can achieve
d(J)=++/d(Q) > 0.

2. Every simple self-dual object in a spherical category is either orthogonal or sym-
plectic, cf. [4, p. 4018]. A simple object in a spherical category is orthogonal iff we
can obtain X =X in a suitable strictification of the category. In the latter sense the
object of a Frobenius algebra is orthogonal.

As mentioned in Remark 5.6, x-categories are automatically semisimple and therefore
semisimplicity of .o/ entails semisimplicity of &,. In order to prove an analogous result
for .o/ semisimple spherical we need the following facts, which we include since we
are not aware of a convenient reference.

A trace on a finite-dimensional F-algebra A4 is a linear map 4 — [ such that #r(ab)=
tr(ba). 1t is non-degenerate if for every a # 0 there is b such that tr(ab) # 0.

Lemma 5.10. Let A be a finite-dimensional F-algebra and tr : A — F a non-degenerate
trace. If tr vanishes on nilpotent elements then A is semisimple. Conversely, every
trace (not necessarily non-degenerate) on a semisimple algebra vanishes on nilpotent
elements.

Proof. Let R be the radical and 0 # x € R. By non-degeneracy there is y € 4 such
that #(xy) # 0. On the other hand xy € R and #(xy) =0 since R is nilpotent. Thus
R = {0}. As to the second statement, observe that every trace on a matrix algebra
coincides up to a normalization with the usual trace. (Thus tr(e; ;) = ad;; with a € F.)
The latter vanishes for nilpotent matrices. The trace of a multi matrix algebra is just
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a linear combination of such matrix traces on the simple subalgebras, and for general
semisimple algebras the result follows by passing to an algebraic closure of F. [

Proposition 5.11. Let F be algebraically closed and <f strict spherical F-linear and
semi-simple. Let Q as in Proposition 5.8, including Ay = 4,. Then & is spherical and
semisimple.

Proof. By construction, idempotent 2-morphisms in & split. Since .o/ is semisimple,
thus has direct sums, the same holds for the 1-morphisms in &. In order to prove that
& it remains to show that End¢(X) is a multi matrix algebra for every 1-morphism X.

We begin by proving that Endg (XJ) = Endg(XJ) is semisimple. By Proposition
5.7 the trace trx; on Endg,(XJ) is non-degenerate. By Corollary 3.16 the algebra
homomorphism

— ®idj:Endg(XJ) — Endg,(XJJ) = End .,(XQ)

is injective, such that we can consider Ends, (XJ) as a subalgebra of Ends (XJJ).
Furthermore, by sphericity of & we have for s € End,(XJ)

try7(s ®idy) =d(J) trxs(s).

If s is nilpotent then also s ® id ; € End,(XQ) is nilpotent. Thus, tryo(s ® id;) =0 by
Lemma 5.10 and thus #7x;(s) =0 since d(J) # 0. Therefore, Ends,(XJ) is semisimple
by Lemma 5.10 and a multi matrix algebra by algebraic closedness of F. If 4 is a
matrix algebra and p = p?> €4 then also pAp C A is a matrix algebra. Thus also
the endomorphism algebras End¢((XJ, p)) in the completion & =&," are multi matrix
algebras. Perfectly similar arguments apply to Ends((JX, p)) and Ends((JXJ, p)) for
all X. O

Conditions (i) and (ii) in Proposition 5.8 on the Frobenius algebra are fairly rigid
and probably not satisfied in many applications. Furthermore, the above results should
be generalized to the situation where neither the tensor product nor the duality of .o/
are strict. In the following result we limit ourselves to the degree of generality which
will be needed for the application in [47]. It is fairly obvious that also the strictness
conditions on .o/ can be dropped by inserting the appropriate isomorphisms wherever
needed.

Theorem 5.12. Let T be algebraically closed and <f be F-linear, strict monoidal,
strict spherical and semisimple. Let Q = (Q,v,v',w,w') be a normalized strongly
separable Frobenius algebra in </ satisfying condition (ii) of Proposition 5.1. Then
the bicategory & of Theorem 3.11 has simple B-unit 1w, is semisimple and has a

(non-strict) spherical structure extending that of </ £ ENDg(21).

Proof. The F-linear bicategory & is defined as in Theorem 3.11. We define a conju-
gation map on the 1-morphisms as in Lemma 5.7. Thus we still have X = X for all
I-morphisms. By Lemma 3.6, QO is self-dual, and since duals are unique up to isomor-
phism the conjugation map X — X of .o/ satisfies O = Q. In fact, there is a unique
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isomorphism s: 0 — O such that
idg@sor=idg®@sowov=¢(Q):1 - Q0®0Q. (5.3)
This is seen as follows. If s: Q — O satisfies (5.3) then

Q _
Q 3
— =r'
’ # [
r Q
5 Q

On the other hand, it is equally easy to see that s : O — O as defined by the second
half of this equation satisfies (5.3). In view of OQ=J oJ (which is true by construction

of &) we have “XJ"JY”=XQY=Y Q X. This coincides with “JY”o“XJ"=*“¥.J"J X" =
YOX only if Q =0, which we do not assume. In any case there is an isomorphism

V“XJ”,“‘/_Y” — ldY_ RS R ld/x? :“jY” 0*“XJ” — “XJ” o “jY”

and similar for all other pairs of composable 1-morphisms. This makes &, and &
bicategories with dual data in the sense of an obvious generalization of [5]. The def-
inition of &(J),&J),&(J),&J) and therefore of ¢ and & for all 1-morphisms is as in
Proposition 5.8. Yet the verification of the conditions in Definition 2.6 is slightly more
involved since we must insert appropriate isomorphisms in the lower lines of the com-
mutative diagrams in condition (2). To illustrate this we consider the diagram

") XJ @ XJ

1 o

{XIRJY) idyy Qe(JY)Qidvyy

X)@JY @ X ©JY ———— XIQJY @JY @XJ

dy; 65y @Yy, 7y

In terms of the category .7, where all this ultimately takes place, this is

1 &(X) % idy 0 v O idg XOX
idy 0w O idg
(XQY) XQOX
idyg O &(Y) O idgx
XQYYQX XQYYQX

idXQW O S_l O Id)-<
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which commutes in view of (5.3) and the assumption that .7 is strict pivotal. The other
conditions on ¢, ¢ are verified similarly, concluding that & is a spherical bicategory. The
details are omitted. The proof of semisimplicity is unchanged. [J

We conclude our discussion of spherical categories by showing that a Frobenius
algebra in such a category is determined by almost as little data as in the case of
x-categories.

Proposition 5.13. Let o/ be a non-degenerate spherical category with simple unit.
Let (Q,v,w") be an algebra in </ such that

(i) dim Hom(1,Q) = 1. _
(it) There is an isomorphism s:Q — Q such that
&Q)oidg®s=&Q)os@idg=1 ow (5.4)
with some non-zero v': Q — 1.

Then there is also w:Q — Q? such that (Q,v,v',w,w') is a strongly separable Frobe-
nius algebra.

Proof. We first remark that by (i) a non-zero v': Q — 1 exists and is unique up to a
scalar. If there is a s: Q0 — Q satisfying (5.4) with some v/ then this obviously is the
case for every choice of v'. Since Hom(1,Q),Hom(Q,1) are one dimensional and in
duality we have v’ o v = Ay idy with Ay # 0. We write ' = v’ ow’: Q*> — 1. Using the
fact that v is the unit for the multiplication w’ we find
roidg@v=0vowoidg®v="1. (5.5)
Using (5.4), the duality equations for &, & and property (3) in Definition 2.6 one easily
shows idg ®s log(Q)=s"" ®idgpoe(Q). We take this as the definition of r: 1 — 0.

One readily verifies that r, 7’ satisfy the triangular equations. Using the latter and (5.5)
we compute

v=idg®r orQidgov=idog®@v or (5.6)

and similarly v’ ® idp or =v. In the following computation the first and last equalities
hold by definition of »,7' and the middle by sphericity, viz. property (3) in Definition
2.6.

QQ

=

&(Q)
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This defines a comultiplication w:Q — Q* whose coassociativity is obvious. To-
gether with r = idp ® s7' 0 &(Q) = s~ ®idg o &(Q) and (5.5) one shows wo v =r,
and (5.5) implies v ® idg o w = idp ® V' ow =idgp, thus (Q,v’,w) is a comonoid.
Furthermore,

QQ
|
w
r
Q Q

where we have used 7' = v’ ow’ and associativity of the multiplication. Similarly,

U ol

Therefore,

- -

and the other part of condition (3.5) is proved analogously. Thus (Q,v,v’,w,w) is a
Frobenius algebra. Using the relations proved so far we compute further

w10 4)-4

Now, by assumption (i), w’ o r € Hom(1, Q) satisfies w' or = /v, implying w' ow =
Aridg. Furthermore, v/ ow' or =r" or =&(Q) o &(Q) = d(Q), thus A1l =d(Q) # 0.
Therefore (Q,v,v’,w,w') is a strongly separable Frobenius algebra in .«/ and we are
done. O

(5.7)

Remark 5.14. 1. This result is in perfect accord with the classical definition according
to which an algebra over a field F is Frobenius iff it is isomorphic to 4 as a left
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(equivalently, right) 4-module. Further support for our terminology will be supplied
Section 6.1.

2. Instead of the existence of s: O — O one might assume the existence of r:1 — Q2
satisfying the duality equations together with 7' = v’ o w’. Unfortunately, this approach
meets a problem. One easily shows the existence of isomorphisms s,s,: 0 — O such
that idp @ si or =¢(Q) and s, R idg or = S(Q). Yet, it is unclear whether s; = s, as
required. This condition can in fact be shown if € is braided, ' o ¢(Q,Q) = ' and
0(Q) = id. Here the twist 0 is defined using the spherical structure [77]. These are
precisely the defining properties of a ‘rigid algebra’ in the sense of [33]. In view of
the preceding remark, we find the terminology ‘Frobenius algebra’ more appropriate.

5.4. More on weak monoidal Morita equivalence

In order to maintain the correspondence between strongly separable Frobenius
algebras in ./ and tensor categories 4 ~ .o/ it is clear that we need the following.

Definition 5.15. x-categories .o/, % are Morita equivalent if there is a Morita con-
text & which is a x-bicategory such that the equivalences Ep@gENDg;(QI), B8
END#(®B), are equivalences of x-categories. If .o/, % are spherical categories they are
weakly monoidally Morita equivalent if there is a Morita & which is spherical such

that the above equivalences are equivalences of spherical categories.
We summarize our findings on *- and spherical categories.

Theorem 5.16. If </ is a x-category and (Q,v,v*,w,w*) is a strongly separable Frobe-
nius algebra then &, is a x-bicategory. If </ is spherical (and non-degenerate (and
semisimple)) and (Q,v,v',w,w') is a strongly separable Frobenius algebra then & is
spherical (and non-degenerate (and semisimple)). In both cases % = ENDg, (8) is
weakly monoidally Morita equivalent to /.

As a first application of weak monoidal Morita equivalence for spherical or
x-categories we prove the analog of a well-known result in subfactor theory, cf. e.g.
[26,16]. The proof extends to the present setting without any change.

Proposition 5.17. Let </, % be a finite-dimensional semisimple spherical tensor cat-
egories over F (or x-categories) with simple units. If </,% are weakly monoidally
Morita equivalent (</ =~ 9A) then they have the same dimension in the sense of
Definition 2.5.

Proof. Let & be a Morita context for .o/ ~ 4. Let I,K be (finite) sets labeling the
isomorphism classes of simple 2 — 2-morphisms and B — 2-morphisms, respectively,
and let {X;,iel}, {Y;,k€K} be objects in the respective isomorphism classes. The
integers

NF = dim Homg(Y;, X:J )
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do not depend on the chosen objects, and by duality we have
NF = dim Homg(Y,.J, X;).

Thus X;J = @, N} Y, and Y,J = @, NfX;. Using additivity and multiplicativity of the
dimension function we compute

d(J)> dXY = dX)d(XJ) =Y Nfd(X)d(Yy)
i€l i€l iel
kek

=Y _d(Yo)d(ViJ)=d(J) > d(Yi).
keK kek
Since d(J)=d(J) # 0 we conclude dim HOM¢(2, A)=dim HOM¢(B,2.). Entirely anal-
ogous arguments yield dim HOMg(®B,2) = dim HOMz(*B,*B) and therefore dim .o/ =
dim %4. Of course, also dim HOMg(2,8) has the same dimension. [

Remark 5.18. 1. Note that the categories HOMg(2A,B) and HOM4(B,%2l) are not ten-
sor categories, thus the intrinsic notion of dimension of [4,42] does not apply and
a priori it does not make sense to speak of their dimensions. But every object of
HOMg(2A,°B) or HOM(®8,2l) is a 1-morphism in & and as such has a dimension. It
is this dimension which is intended in the above statement.

2. Given a linear Morita context &, the common dimension of the four categories
HOMg(-,) is also called the dimension of &.

3. A less elementary application of Morita equivalence is the fact that weakly Morita
equivalent spherical categories define the same state sum invariant (in the sense of
[4,20]) for 3-manifolds. The proof is sketched in Section 8.

4. Let o/ be a tensor category and (Q,...) a strongly separable Frobenius algebra
in 7. It should be obvious that the tensor category %4 = Homg(25,B) can be defined
directly, avoiding the construction of the entire bicategory §. When we are interested
only in % we may suppress the J,J in (JXJ, p). Thus the objects of # are pairs
(X, p), where X € Obj o/ and p € Hom.;(XQ, QX)) satisfies p e p= p. The morphisms
are given by

Homy((X, p).(Y.q)) = {s € Hom,(X0,0Y)|s =qes e p},

the tensor product of objects by (X, p) ® (¥,q) = (XQY, p X q), etc. (Here o, x are
defined as in Proposition 3.8.) For many purposes, like the study of the categorical
version [48] of ‘a-induction’ [41,71,8], this is sufficient. But proceeding in this way
the weak monoidal Morita equivalence .o/ ~ % become obscure and even the proof of
Proposition 5.17 (which is an instance of the ‘2 x 2-matrix trick’) seems very difficult
without the Morita context &.

6. Examples

In this section we will consider two classes of examples: Classical Frobenius alge-
bras over a field, in particular Hopf algebras, and subfactors with finite index. Both
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examples are essential for obtaining a deep understanding of categorical Frobenius the-
ory. Whereas most of our discussion essentially amounts to reformulating known facts,
in the final subsection we will obtain a new result, viz. the weak monoidal Morita
equivalence of H —mod and H — mod for certain Hopf algebras. This result relies on
input from both the classical Frobenius theory and subfactor theory. (That the latter
are related is not new and has been discussed, e.g. in [29].)

6.1. Frobenius and Hopf algebras over fields

Here we briefly review a beautiful recent result of Abrams [2] which implies that in
the case .o/ = F-Vect (which we treat as strict, following common usage) our notion
of Frobenius algebras is equivalent to the classical one. This justifies the terminology.
Note, however, that this was not our main motivation for Definition 3.1.

Let A be a finite-dimensional (associative, with unit) algebra over a field F. The
dual vector space 4 comes with two natural coalgebra structures

(A1(0),x @ y) = (. x¥), (A(2),x ® p) = (o1, yx),

both of which have the counit &(o)= (o, 1). Given an isomorphism @:4 — A of vector
spaces we can provide 4 with a coalgebra structure by

A=0"'@d 'odod, c=Eod,

where A = ﬁl or A= ﬁz.

Whenever 4 admits an isomorphism ®: 4 — A of left (equivalently right) 4-modules
(with the natural left or right 4-module structures) A4 is called a Frobenius algebra. We
prefer the following equivalent definition, see [29].

Definition 6.1. A finite-dimensional algebra (associative, with unit) over a field F is a
Frobenius algebra if it admits a linear form ¢: A4 — F which is non-degenerate (in the
sense that the bilinear form b(x, y) = ¢(xy) is non-degenerate).

The linear form ¢ gives rise to two isomorphisms between 4 and its dual A via
Pp:x = P(x-),  Dyix— P(ox).

Clearly, &, =, iff ¢ is a trace. By the preceding discussion we thus have four canon-
ical ways of providing 4 with a coalgebra structure, depending on which combination
of ¢1/@2,ﬂ1/ﬁz we use. (If ¢ is a trace these possibilities reduce to two and if 4 is
commutative we are left with a unique one. The commutative case is discussed in [1].)
In any case, the counit is given by ¢ = ¢.

Theorem 6.2 (Abrams [2]). Let A be a Frobenius algebra with given ¢ €A. Let Ay, 4,
be the coproducts defined as above using the combinations (4, ®1) and (4, ®,),
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respectively. Then Ay = Ay and with A = Ay the following diagrams commute:
A4 —"— 4 Avd —2— 4

id®4 4 AQid 4.

A®A®A4d>A®A A®A®Ad—>A®A
mei id@m

Thus (A,1,e,4,m) is a Frobenius algebra in the sense of Definition 3.1. Every
Frobenius algebra in F-Vect arises in this way.

Remark 6.3. 1. In the proof, one first shows that the first diagram commutes with
A = A, and the second with 4 = A4,. Using these facts one proves A; = 4,, thus
(4,1,¢,4,m) is a Frobenius algebra in Vect. Our version of the converse statement
differs slightly from the one in [2], but it is easily seen to be equivalent.

2. An obvious consequence of the alternative characterization of Frobenius algebras
is that the dual vector space of a Frobenius algebra is again a Frobenius algebra.

3. A special case of this had been shown earlier by Quinn in the little noticed
appendix of [58]. He defines an ‘ambialgebra’ (in the category Vect) as an algebra
and coalgebra satisfying commutativity of the above diagrams plus symmetry conditions
on A(1) and eom. He states that these ambialgebras are the same as symmetric algebras
(i.e. algebras admitting a non-degenerate trace). This result is intermediate in generality
between those of [1,2].

4. Let X be a finite-dimensional F-vector space with dual vector space X. Then the
Frobenius algebra (XX,...) defined as in Lemma 3.4 is well known to be just the
matrix algebra End X. Since there are Frobenius algebras which are not isomorphic to
some M,(F), already the category F-Vect provides an example of a tensor category
where the Frobenius algebras are not exhausted by those of the form (XX,...).

5. In view of dim Homve(1, Q) =dim H, non-trivial Frobenius algebras in Vect are
not irreducible.

In order to understand when a Frobenius algebra in F-Vect is strongly separable we
need the more general notion of a Frobenius extension [29].

Definition 6.4. A ring extension A/S is a Frobenius extension iff there exists a Frobe-
nius system (E,x;, y;), where E € Homs_s(A4,S) (i.e. E(abc)=aE(b)c Ybe A,a,c €S),
|| < oo and x;, y; €4, i €1 such that

> xiE(ya)=a=Y_ E(ax)y; VacA. (6.1)
il iel

We call ) . x; ® y;€A4 ®g A the Frobenius element and [4 : S]; = >, x;yi € Z(4)
the E-index. A Frobenius extension A/S of [F-algebras is called strongly separable iff
E(1)=1and [4:S]; €K"1.

We are interested in the case where [ is a field and A4 is finite-dimensional over F.
Then A/F is a Frobenius extension iff 4 is a Frobenius algebra, cf. [29, Proposition 4.8].
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In this case E = ¢. If {x;} is any basis of A then {y;} satisfies (6.1) iff it is the dual
basis: (j)(yixj) = 5ij-

Proposition 6.5. A Frobenius algebra A in F-Vect is strongly separable in the sense
of Definition 3.13 iff the Frobenius extension A/F is strongly separable modulo renor-
malization.

Proof. It is obvious that the morphism v'ov is given by ¢ — c¢(1). Now, the Frobenius
property (3.5) implies A(x)=A4(1)(1®x)=(x®1)4(1) and therefore mA(x)=(mA(1))x
= x(mA(1)). Thus, the morphism w' o w =m o 4 is given by multiplication with the
central element mA(1). We will show that mA(1) =[4 : F],. Thus, if 4/F is strongly
separable then v/ o v € F*idy and w' o w e F*id4. The converse holds since ¢(1) # 0
allows to renormalize such that ¢(1)=1.

Let {x;} be a basis of 4 and {y;} dual in the sense ¢(yix;) = ;. Then ) . x; ®
yi€A4 ® A is the Frobenius element. For a,b €4 we compute

(@1 ® D) (A1) a® b) = (A2 ®1(1))(a ® b) = B1(1)(ba) = d(ba)
=) lax)(by:),

where we used (6.1). Thus, A(1) equals the Frobenius element and mA(1)=)". x;y;=
[4:F],. O

Remark 6.6. In the commutative case Frobenius algebras satisfying the above equiva-
lent conditions were called ‘superspecial’ in [58]. Note furthermore that semisimplicity
of A is equivalent to the weaker condition of invertibility of ), x;»; (proven in [1]
for the commutative and in [58] for the symmetric case). Thus strongly separable
Frobenius algebras are semisimple.

It is well known [38] that every finite-dimensional Hopf algebra over a field [F is
a Frobenius algebra. Our aim in the remainder of this subsection is to clarify when
these Frobenius algebras are strongly separable. We recall some well-known facts.
For any finite-dimensional Hopf algebra H one can prove [38] that the subspaces
IL(H)={yeH|xy=e(x)yVxeH} and R(H)={y€H | yx=¢(x)y Vx€ H} are one
dimensional satisfy S(/L(H)) = Ix(H). Furthermore, every non-zero ¢ €I (H) and
@r € Ix(H) is a non-degenerate functional on H.

In view of Theorem 6.2, both ¢ and @r give rise to coalgebra structures
(H, AL/R, & /r) on the vector space /{ and therefore to Frobenius algebras Qg = (H,m,
n,AL/R,sL/R) (We denote the Frobenius coproduct by AL/R to avoid confusion with
the Hopf algebra coproduct 4 of H.)

Proposition 6.7. Let H be a finite-dimensional Hopf algebra with non-zero right
integrals A € Ix(H), € Ir(H). Then the following are equivalent:

(i) The Frobenius algebra Q. = (H,m,n, AL, &) in F-Vect is strongly separable in
the sense of Definition 3.13.



134 M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 81-157

(i) {(@,1) #0 and (g, A) # 0.

(iii) H is semisimple and cosemisimple.

Proof. (ii) < (iii). By [38], H is semisimple iff ¢(A4) # 0 and cosemisimple iff
@(1) # 0.

(i) & (ii). By [29, Proposition 6.4], a Frobenius system for H/[F is given by the triple
(q),S*I(A(z)), A(1)). (This is to say that the Frobenius element is given by >, x;® y; =
(S~'®id)A°(A).) But then it is obvious that [H : F1, =S"(A@)) Ay =e(A)1. Thus
mo AL =[H : F] r=2¢&(A)1, and the equivalence (i) < (ii) follows from Proposition
6.5. O

Remark 6.8. In view of S(I.) =/l and S(1) =1 we have (¢pr,1) # 0 < (@g,1) # 0.
Thus, it does not matter where the integrals appearing in condition (ii) are left or right
integrals. Similarly, in (i) we can write Qg instead of Q. In the strongly separable
case these substitutions are vacuous since semisimple Hopf algebras are unimodular,
i.e. IL = IR.

Corollary 6.9. Let H be a finite-dimensional Hopf algebra over F and Q the corre-
sponding Frobenius algebra (in F-Vect). Let A, @ be both either left or right integrals
in H H, respectively. Then there is the following identity of numerical invariants of
Q and H:

(@, 1)(e,4)
(o, 1)

Whenever this number is non-zero H is semisimple and cosemisimple and (6.2) coin-
cides with dim H - 1.

€End(1) = F. (6.2)

vVow owov=

Proof. Eq. (6.2) follows from the above computation of v/ o v and w' o w. If (6.2)
is non-zero then H is semisimple and cosemisimple, and by [14] the antipode is
involutive. By [37, Theorem 2.5], (6.2) coincides with #(S?) and therefore with

By the preceding result semisimple and cosemisimple Hopf algebras provide exam-
ples of strongly separable Frobenius algebras in F-Vect. By Remark 6.3.4 they are
not irreducible. We will now show how one can associate a strongly separable and
irreducible Frobenius algebra with a Hopf algebra which is semisimple and cosemi-
simple.

6.2. Hopf algebras: Frobenius algebras in H — mod

In the theory of quantum groups the following result is known as ‘strong left invari-
ance’ (for b=1 or ¢ =1 it reduces to left invariance: (id ® ¢)(4(b)) = @(b)1), but
it is also true for all finite-dimensional Hopf algebras. We include the proof since we
are not aware of a convenient reference.
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Lemma 6.10. Let H be a finite-dimensional Hopf algebra and ¢ € I (H). Then
(id ® @)((1 ® c)A(b)) = (id ® ¢)((S ®id)(A(c))(1 ® b)) Vb,ccH.

Proof. For every x,y € H we have
XQy= Z(u,- ® 1)A(v;) with Z”f Qu=xx (S ®id)(1)

=x5(y1)) ® ¥

as is verified by a trivial computation. Using this representation and left invariance of
@ we have (id ® p)(x ® y)=3_; ui(id ® ¢)A(vi) =3_; uip(vi) = (id ® 9)(3_; ui @ v;).
Applying this to x ® y = (1 ® ¢)4(b) = by ® cby we find

Z u; @ v; = b1)S((chby)1)) @ (cb2))2) = b1)S(c(1)b2)) ® c2)b3)

= b)S(b@))S(c)) @ c@)bi) = S(ey) @ c)b
and therefore,
(id @ @)(1 ® ¢)A(b)) = (id @ @)(S(cq1y) ® c2yb)
= (id @ ¢)((S ® id)(A(c)(1 ® b))
as desired. [
Proposition 6.11. Let H be a finite-dimensional Hopf algebra and oy € I.(H). We

write 1 for the multiplication of H and define 7 : H — H by 7 (a)(-)= ¢(-a). Then
the map m=F"'i(F @ F): H® H — H satisfies

(i) e(cri(a®b))=(p@ @) A(cNa®b))=(p@e)(1@c) S~ ®@id)(A(b))a®1))=
(@@ @)(c® 1)1 ®S~'(b)A(a)) Va,b,cEH.
(ii) m(A(c)x)=cm(x) VeeHxeH ®H.
(iil) 7ia © b) = p(S ™ (b)a)be) = anye(S ™ (D)aey).
Proof. (i) We compute
p(cri(a ® b)) =(Fm(a®b),c) = (m(F(a) ® F(b)),c)

= (F(a) @ F(b), A(c)) = (¢ @ )(A(c)(a ® b))

= (S [(id @ @)((S ® id)(A(c))(1 @ b))]a)

= o(S7'[(id ® @)((1 @ c)A(b))]a)

=(p® o)1 ®c)S™" @id)(A(b))(a 1))

= (@ ® )(1 @ c)a((S @ id)(AS™ " (B)))a® 1))
= (e ® @)((c @ 1)(S @ id)(AS™ (b)) © a))
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= ¢(c[(id @ @)((S @ id)(AS™'(0)))(1 © a))])

= o(c[(id @ @)((1 @ S~'(b))4(a))])

= (9@ @)((c® (1 ® S~ (b))4(a)).
In the first two lines we used the definitions of % and ni, whereas the sixth and 11th
equalities follow by application of Lemma 6.10 to the expression in square brackets.
The remaining identities result from trivial rearrangements using (¢ ® @)= @(id @ @)=
o(p®id).
(i1) Let x =a ® b. Twofold use of the first equality in (i) yields

p(dm(A(c)x)) = (¢ @ p)(A(d)A(c)x) = (¢ @ )(A(dc)x) = p(dcin(x)),
which holds for all ¢,d € H,x € H ® H. The claim now follows by non-degeneracy of
¢

.(iii) We can rewrite (i) as
p(crii(a @ b)) = p(c(p @ id (S~ @ id)(A(h))(a @ 1))

= p(c(id @ @)((1 © S~ (h))4(a)))-
Now we appeal again to non-degeneracy of ¢ and rewrite in Sweedler notation. [

Theorem 6.12. Let H be a finite-dimensional Hopf algebra over F. Let A, ¢ be left
integrals in H and H, respectively, normalized such that (¢, A)=1. Let Q € H —mod
be the left regular representation, viz. H acting on itself by ng(a)b = ab. The linear
maps

v: F— Q, c—cA,

v 0 —F, x — &(x),
w: 0—-080, x— Ax),
Wi 0®0—0, x@y—m(x®y)

are morphisms in H — mod and (Q,v,v',w,w") is an irreducible Frobenius algebra in
H — mod. It is strongly separable iff H is semisimple and cosemisimple.

(6.3)

Proof. In order to show that the maps defined above are morphisms in the category
H — mod we must show that they intertwine the H-actions. This follows from the
following diagrams, where 7; = ¢ is the tensor unit:

CI—D> cA X —r &(X)
n1(2) “Q(Z) nQ(Z) (2

S(Z)C |—> S(Z)CA = czA. ZX |L‘—'> S(ZX) = E(X)'S(Z)'
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X—Y , A(X) xOy

m(x ['y)
o2 Tono(d Tone(@ (2
X A(2x) = 4@)A(x). A DY) = m(A(@)(x O y) =zm(x O y)

Commutativity of the lower right diagram follows from Proposition 6.11 (ii).

The equations v’ ® idgow =idg @ V' ow =idp and w Q@ idg ow =idyp @ wo w are
obvious since (Q,w,v’) coincides with the coalgebra structure of H. That w':Q* —
O is associative is evident in view of /= F ~'i(F @ F) and associativity of .
Furthermore, & (A)(a) = @(ad)=¢e(a)p(A)=¢e(a), thus F(A)=e=1y is the unit for
m and (Q,v,w") is a monoid.

Applying ¢ to Proposition 6.11 (iii) we obtain (eri)(a®b)=@(S~'(b)a). Comparing
with the formulae for m we find

iia @ b) = @(S~"(ba))a)be) = (eni)(a @ bg1y)be)
=am (S~ (b)aw)) = aq (&) (ap) @ b)

or in diagrams

m = = m
A A
a b a b a b

Using the first of these equalities twice to compute

gigjf\UM

we have proven one of the Frobenius conditions (3.5) and the other one follows in
the same vein.

That the Frobenius algebra Q is irreducible follows from the obvious isomorphism
of vector spaces Hompy _moq(1, Q) = I together with dim /; = 1. Finally, we compute

(mA)(a) = ri(aq) ® apy) = any (S~ (ag))ae)) = ap(1).

Thus Q is strongly separable iff ¢(A) # 0 and (1) # 0, which is the case iff H is
semisimple and cosemisimple. [J
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Example 6.13. Let H =F(G) be the algebra of F-valued functions on a finite group G
with the usual Hopf algebra structure. With / = span{d,, g € G}, where d4(h) = 041,
the integrals A € H,p € H are

A= 563
(@,04) = 1.
Then we find

<*97(5y), 5h> = <QD, 5g5h> = 5y,h<q)’ 5g> = 5g,h
and thus 7 (,) = uy, where {u,,g € G} is the usual basis in A = FG. We obtain
1p =96, =4,
mQ(ég, 5/1) = 59;,

and thus the Frobenius algebra Q associated to H =F(G) by our prescription coincides
with the one given in [58, A.4.5]. In a similar fashion one sees that the Frobenius
algebra associated with FG has the coalgebra structure of FG and the algebra structure
of F(G) under the correspondence u, < J,.

Remark 6.14. Our original proof of Theorem 6.12 has improved considerably as a
consequence of discussions with L. Tuset. In the joint work [49] we examine to which
extent the above results carry over to not necessarily finite-dimensional algebraic quan-
tum groups. If an algebraic quantum group (4, 4) is discrete, there exists a monoid
(7L, m,7) in the category Rep(A4,A) of non-degenerate x-representations. If (4, 4) is
compact (=unital) then there is a comonoid (7, 4,£) in a Rep(4, A). Both the monoid
and comonoid structures exist only if (4, 4) is finite-dimensional, in which case they
coincide with those considered above. Therefore, in the infinite-dimensional situation
one does not obtain a Frobenius algebra in Rep(4,4), but a ‘regularized’ version of
the Frobenius relation (3.5) can still be proven.

6.3. Morita equivalence of H —mod and H — mod

In this subsection, F is an arbitrary algebraically closed field. If H is a finite-
dimensional semisimple and cosemisimple Hopf algebra over F, Theorem 6.12 gives
rise to a strongly separable Frobenius algebra Q in # — mod. Applying Theorem 3.11,
we obtain a Morita context &, and it is natural to ask what can be said about the tensor
category % = ENDg(®8), which is Morita equivalent to H — mod by construction. We
may and will assume & to be strict, i.e. a 2-category. The aim of this subsection is to
prove the following.

Theorem 6.15. Let H be a finite-dimensional semisimple and cosemisimple Hopf alge-
bra over an algebraically closed field F and let Q be the associated strongly separable
Frobenius algebra in H—mod. If & is as in Theorem 3.1 and #=HOMg(8,B) then

. Q A . .
we have the equivalence #~H — mod of spherical tensor categories.
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The theorem will be an easy consequence of the more general Theorem 6.20. In
view of Definition 4.2 we obtain the remarkable.

Corollary 6.16. Let H be a finite-dimensional semisimple and cosemisimple Hopf
algebra. Then we have the weak monoidal Morita equivalence H — mod ~ H — mod
of spherical tensor categories.

We begin with a semisimple spherical F-linear Morita context &. (Recall that we
require 1y and 13 to be simple.) We denote 4=End(JJ), B=End(JJ), C=End(JJJ),
and we write Try, Trg, Trc instead of Tr,;, Trj,, Tr;;,. We define a linear map, the
‘Fourier transform’, by

&(J)
F:A— B, —
33 «d 73

and # : B — A is defined by the same diagram with the obvious changes. The Fourier
transforms are clearly invertible. Furthermore, we define ‘antipodes’ S:4 — 4,5:B —
Bby S= FoF, S=Fo%. The antipodes are easily seen to be antimultiplicative:
S(ab)=S(b)S(a) and analogously for S. Asa consequence of axiom (3) in Definition
2.6, we have SoS=idy, SoS=id 4- Using the Fourier transforms we define ‘convolution
products’ on 4 and B by a % b =F (F(a)F (b)) for a,bc A, and similarly for B.
One easily verifies

axb=| 2 | | b

J J
The Fourier transform further allows to define a bilinear form (-,-):4 ® B — F by

{a,b) = d(J)~' Try(aF ~'(b)). Since F is bijective and Tr, is non-degenerate, this
bilinear form establishes a duality between 4 and B. One verifies

[xx
d(J) @, b= Trg(# ~(a)b) = Try =
=)

For later use we remark that with a,b € A4 we have (a, Z (b)) = d(J)~ ! Try(ab) =
d(J) ' Try(ba) = (b, F(a)). The duality between 4 and B enables us to define
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JJJ J

P(@allb) = d(alb) =

(5]
(&

Fig. 5. @1(a ® b) and Py(a ® b).

coproducts 4: 4 — A ® A, A:B—B®B by
(A(a),x ® y) ={a,xy), a€d,x,yEB,
(a®b, j(x)) = (ab,x), a,beA,xEB.

Associativity of m (m) implies coassociativity of 4 (ﬁ). With
ga)=1{(a,1), &x)=(l,x), acAd, xeB

it is clear that (4,4,¢) and (B,ﬁ,é) are coalgebras. We note that ¢(1) = <l,f> =
d(J)~ ' Tryid; =1, which explains the normalization of (-, -).

The above considerations are valid without further assumptions on the Morita context.
In order to establish 4,B as mutually dual Hopf algebras it remains to show that the
maps A A e & are multiplicative and that the antipodes are coinverses. It is here that
further assumptions are needed.

Definition 6.17. A semisimple F-linear Morita context & has ‘depth two’ if every sim-
ple summand of JJJ € Hom(‘B,%2l) appears as a simple summand of J. & is called
irreducible if the distinguished 1-morphism J : 8 — 2 is simple.

If & is irreducible and has depth two then JJJ is a multiple of J. Here we restrict
ourselves to the irreducible depth two case, which is all we need to prove Theorem 6.15.
Note that we do not assume that J and J generate &, as is the case in subfactor theory.
In a depth two Morita context where this is the case, every simple 8 — 2(-morphism
is isomorphic to J. For results on the reducible depth two case—which leads to finite
quantum groupoids—see [66], where, however, not all proofs are given.

Lemma 6.18. In addition to the above assumptions, let & be irreducible of depth two.
Then

1. The maps
D :A®B—-C, a®b—idj®boa®idy,
D A®B—-C, a®b—a®idyjoid;®b

depicted in Fig. 5, are bijections.
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2. For all a€ A,b € B we have

<D1(a ® b) = <a(2),b(1)> (Dz(d(l) ® b(z)). (64)

Proof. 1. Since & is semisimple and J is the only simple B — 2A-morphism up to

isomorphism, the composition ® : Hom(JJJ,J) @ Hom(J,JJJ) — End(JJJ) is an

isomorphism. Combining this with the isomorphisms End(JJ) = Hom(JJJ,J), etc.,

provided by the spherical structure, this easily implies that @, ®, are isomorphisms.
2. For a,e € A we define x € B by

J J

and claim that x = d(J)! Try(eacry)Z (ag)). To prove this, we compute

v, xd = d@d)™1t \Eﬁ = d(9)L

=d(J) " Try((e k w)a) = (a, F (e k w)) = (a, F (e)F (W))
= (aqy, F (&) {a@), F (w)) = d(J)~" Tra(ea))(w, 7 (a)))-

The equality of the two diagrams follows from a simple computation using the axioms
of a spherical category, which we omit. The claim now holds by non-degeneracy of
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the pairing (-,-). Using our formula for x we find

(6.5)

= d@)™ Tra(ea) = Tra(€a() By #(f),b0

= Tra(eacy)aay ba))(F (f ) b))
=d(J)"" Tra(ean))Tr(fbe)){ae) ba))-

Since J is simple, the partial trace Trs(a)€EndJ of a€EndJJ is given by
d(J)~! Try(a)id;, which implies

= d(9)™ @Byp), bayOTra(eag) Tre ( Fbi)-
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Comparing this with (6.5), we see that multiplying both sides of (6.4) with ®(e ®
f)=id;® f oe®id; and taking traces we obtain an identity for all ec 4, f € B. In
view of 2 and the non-degeneracy of the trace in a spherical category, we conclude
that (6.4) holds for all ae 4,beB. [

Proposition 6.19. Let & be a Morita context which is semisimple, irreducible and has
depth two. Let &,& 4,4 be defined as above. Then

& are multiplicative.

A are multiplicative.

A

1. ¢,

2. A,

3. 8,8 are coinverses, i.e. m(S ® id)A =m(id ® §)4 = ne, etc.

4, A and B are semisimple Hopf algebras in duality, and C is the Weyl algebra of
A, cf. eg. [51].

Proof. 1. Let a,b € A. Since J is simple, Hom(lm,Jj ) is one dimensional and we have
aoe(J)=d(J) "(&(J)oaoe(]))e(J]) = (a 1)a(J) = e(a)e(]).

(There should be no danger of confusion between the duality morphisms &(J),&(J),

which are part of the spherical structure, and the counits ¢ ¢ of 4 and B.) Thus,

elab)e(J) = (ab)e(J) = a(be(J)) = ae(b)e(J) = e(a)e(b)e(J), and & is multiplicative.
2. Let a,b € 4. Using Lemma 6.18 we compute

= [Ag),bayU = [Bp)byE(by)
“ b

~ o0 % |

(6.6)

In an entirely analogous fashion one shows

6.7)
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Let now a,b € A,c,d € B. We compute

D(ab), ¢ Od0= @b.cd = d(@)LTr = dO)™ B, dgy0Tr 5

= d(I)™ B, dyTa),c)Tbe),de)Crr,

=(a@),dm){aq). ) (b d@))(bay c@))
=(amby,c){a@yb@),d) = (4(a)4A(b),c @ d).

(The first and sixth equality hold by definition of A and A, respectively. The second
and fifth are just the definition of (-,-). The third equality follows by Lemma 6.18 and
the fourth is due to (6.6) and (6.7).) Since this holds for all ¢,d, we conclude by
duality that A(ab) = A(a)A(b), as desired.

3. Appealing once more to Lemma 6.18, we have

Tr) = [By),diy)Urr OaOA,b OB.

The left-hand side equals

e(a)Tr; =d(J)e(@)z(b).

The right-hand side equaling d(J){a(), b1y){aq), S(bezy)), we obtain
&(a)é(b) = (a@), bay){aay, S(b@))) = (@ S(b@))bay),
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which is equivalent to S’(b(z))b(l) = é(b)f. Since S is involutive, we find S’(b(l))b(z) =
é(b)1. The other identities are proved similarly.

4. The first statement just summarizes our results so far, and the second is obvious
by definition of the Weyl algebra [51]. [

Given a semisimple irreducible depth two Morita context, the preceding theorem
provides us with a pair 4,B of mutually dual Hopf algebras. It remains to relate
these Hopf algebras to the categorical structure. Here we use Tannaka theory for Hopf
algebras together with a result form [49]. The strategy is (i) to construct a faithful
tensor functor E£:.o/ — Vecty, (ii) to deduce that .o/ is monoidally equivalent to
H — mod for some Hopf algebra H and (iii) to prove that H = 4.

Theorem 6.20. Let & be a semisimple spherical irreducible depth two Morita context.
Consider the full tensor subcategories

oAy C oA :END(g(Q[), By C ngNDé(%)

consisting of the tensor powers of JJ and JJ, respectively, and their retracts. Then
we have the equivalences

® ®
Ag~A°P —mod, HBy~B“° — mod

of spherical tensor categories, where A, B are the Hopf algebras constructed in Propo-
sition 6.19.

Proof. Let O=JJ and consider the Frobenius algebra (Q, v,v’,w, w') with v=e(J), w'=
id ;®@&J)®id, etc. In particular, (O, w’,v) is a monoid in .«Zy. By the depth 2 property,
we have JX = d(X)J for all X € .o/, i.e. there are morphisms 7;:J — JX, 7/ :JX — J
satisfying the usual conditions. Thus, the morphisms s;=id; ®@r;: Q=JJ — JJX =0X
establish an isomorphism QX = d(X)Q. One easily verifies that the s; are O-module
morphisms, i.e. satisfy s; ow =w' ® idy oidp ® s;, and similarly the s/ = id; ® /.
These facts imply that the functor E : .o/y — Vecty defined by E(X)= Hom(1,Q ® X)
and E(s)¢ = (idp ® s) o ¢ for s: X — Y is a faithful (strong) tensor functor, where
the isomorphisms dyy:E(X) K E(Y) — E(X ® Y) are given by dxy(¢ K ) =w' ®
idygyoidg®¢Ridy oy for p € E(X ),y € E(Y). See [49, Section 3] for the details. It
then follows from Tannaka theory there exists a finite-dimensional Hopf algebra H and
an equivalence F: .27y — H —mod such that K o F =E, where K : H —mod — [F-Vect
is the forgetful functor. Here H = Nat E is the [F-algebra of natural transformations
from E to itself. Consider the map o which to a € End Q = A associates the family
o(a) ={o(a)y EEnd E(X), X € o/}, where a(a)yp =(a®idy)o ¢ for ¢ € E(X). It
is obvious that a(a) € Nat E= : H and that o: 4 — H is an algebra homomorphism.
Semisimplicity of .7y and finite dimensionality of A imply that o is an isomorphism,
which we now suppress. It remains to show that the coproduct A4’ of H provided by
Tannaka theory coincides with the one constructed in Proposition 6.19. By definition
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of A'(a) = aqn) ® ap), the diagram
EX)QEY) —™ . EX®Y)

a1),x®agw),y ax@y

EX)QEY) —™ . EXeY)

commutes for all a€ 4 and X, Y € /. In view of the definition of dx y, this is equiv-
alent to aow’ =w'oap)®aq for all a € A=End Q. For arbitrary b,c € A, this implies

Trog(aow ob®cow)=Tro(woan) ®aiyob®cow).

Consistent with previous terminology we write b % c=w' ob® cow €A for b,c €A,
and the fact that Q contains 1 with multiplicity one implies Trg(b * c¢) =
d(J)™! Tro(b)Tro(c). Therefore,

Tro(a(b % ¢)) =d(J) ™" Tro(amb) Tro(agye)  where agy ® apy = 4'(a).

On the other hand, the definition (4(a),b ® ¢) = (a,bc) of A as given above satisfies
Tro(a(b % c)) = dJ)! Tro(aayb) Tro(apyc)  where a1y ® apy = 4(a).

Thus A’ = A°°?, and we are done. [

We briefly recall some facts concerning the (left) regular representation Q; € 4 —mod
of a semisimple Hopf algebra 4. We have O; = $xd(X )X, where the X are the
irreducible representations, and therefore dim Hom(X,(Q;) = d(X) for all simple X.
Furthermore, the regular representation is absorbing: X ® Q; = Q; ® X = d(X)Q,; for
every X € 4 — mod.

Proof of Theorem 6.15. By Barrett and Westburry [5], the category H —mod is spher-
ical and by the coherence theorem [5] we may consider H — mod as strict monoidal
and strict spherical. By Theorem 6.12 we have a strongly separable and irreducible
Frobenius algebra Q in H — mod, which we can normalize such that A, = 4;. Since Q
is irreducible, by Proposition 5.1 the same is true for the Morita context & of Theorem
3.11. By Theorem 5.12 there thus is a spherical structure on & extending that of .o7.
The claim now follows from Theorem 6.20 and the fact H°"°? = H provided we can
show that & has depth 2.

By definition of &, every Y :B — 2 is a retract of XJ for some X € END(2) ~ o/.
By semisimplicity is thus sufficient to show that XJ is a multiple of J for every simple
X €.o/. We have

Hom(J,XJ) = Hom(JJ,X) = Hom ,(0,X),
End(XJ) = Hom(XJJ,X) = Hom,,(XQ0,X).
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By the properties of Q recalled above, we have dim Hom(J,XJ) = d(X), implying
that XJ contains J with multiplicity d(X), thus End(XJ) contains the matrix algebra
Maoy(F). In view of dim End(XJ) = dim Hom(XQ, X ) = dim Hom(d(X)Q,X)=d(X )
we conclude End(XJ) = Myx)(F) and therefore XJ = d(X)J as desired. [

Remark 6.21. If & in Proposition 6.19 is a *x-bicategory then 4, B come with canonical
x-operations. It is then not difficult to show that ¢, 4,S are x-homomorphisms, thus
A and B are Hopf x-algebras. (E.g. the property &(J) = &(J)* immediately implies
&(a) = &(a*).) In the Theorems 6.20 and 6.15 we then have equivalences of tensor
x-categories. We omit the proofs.

6.4. Subfactors

The entire analysis of this paper is motivated by the mathematical structures which
are implicit in subfactor theory. In this subsection we make the link between subfactor
theory and our categorical setting explicit, shedding light on both subjects. The main
aim of this section is in fact to improve the communication between subfactor theorists
and category minded people, the only new result being Theorem 6.28. We begin with
a very brief definition of the notions we will use. For everything else see any textbook
on von Neumann algebras, e.g. [64,67,60] and subfactors [26,16].

A von Neumann algebra (vNa) is a unital subalgebra M C %(#°) of the alge-
bra #(+) of bounded operators on some Hilbert space # which is closed w.r.t. the
hermitian conjugation x — x* and w.r.t. weak convergence. Equivalently, by von Neu-
mann’s double commutant theorem a vNa is a set M C %(°) which is closed under
conjugation and satisfies M” = M, where S’ = {x € B(H#)|xy = yx VyeS} is the
commutant of S. A factor is a vNa with trivial center (M N M’ =C1) and if N,M are
factors such N C M then N is called a subfactor. (By abuse of notation ‘subfactor’
occasionally refers to the inclusion N C M.) Every factor M is of one of the types
I, IT or III, where M is of type I iff M ~ (") for some Hilbert space #". (Every
finite-dimensional factor is of type 1.) If N C M are both of type I then also M NN’
is of type I and M ~ N®(M N N’). Under this isomorphism the embedding N — M
becomes x — x®1, and nothing more of interest is to be said. In our discussion of
the remaining cases we restrict ourselves to vNas on a separable Hilbert space which
simplifies the definitions. Then a factor M is of type III iff every orthogonal projection
e=e>=e* € M is the range of some isometry v € M, i.e. v* =e, v*'v=1. A factor M
which is neither types I or III is of type II, of which there are two subclasses: II; and
IIo. A factor is of type II; iff it admits a tracial state (trace, for short) tr: M — C,
i.e. a weakly continuous linear functional which is positive (4 > 0 = # 4 > 0), nor-
malized (##(1)=1) and vanishes on commutators. (It follows that every isometry in a
type II; factor must be unitary.) A type Il factor is isomorphic to the tensor product
of some II; factor with #(#) where dim # = N;. The tensor product of any factor
with a type III factor is of type III.

In the literature on subfactors the focus has been on type II; factors, which are
technically easiest to deal with thanks to the existence of a trace, cf. the textbooks
[26,16]. Yet, in our discussion we concentrate on the type III case, the technical aspects
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of which have been clarified in particular in the work of Longo [39,40]. Those aspects
of subfactor theory [40,23] which most directly inspired the present investigation and
[47] were in fact done in the type III setting. Anyway, by Popa’s results [57] the
classifications of amenable inclusions of hyperfinite types II; and III; factors amount
to the same thing.

The following is implicit in much of the literature on type III subfactors and explicit
in [42, Section 7].

Definition 6.22. We denote by J the 2-category whose objects are type III factors
with separable predual. The 1-morphisms are normal unital x-homomorphisms with
the obvious composition. For parallel 1-morphisms p,6:M — N the 2-morphisms are
given by

Homgz(p,0)={s€N |sp(x) =a(x)s VxeM}.

The vertical composition of 2-morphisms is multiplication in N and the horizontal
composite

P1 P2
SN TN
M ls N lt o
01 g2
is given by

s Xt =1pa(s) = 02(s)t : p2p1 — 0201.

Lemma 6.23. The 2-category J has direct sums of 1-morphisms idempotent
2-morphisms split. All identity 1-morphisms are simple.

Proof. Let p,0: M — N. Pick an orthogonal projection e € N, put f=1—e and choose
isometries p,q € N such that pp* =e,qq* = f. Then

n(-) = pp(-)p* +qo(-)q"

is a direct sum. Let p: M — N and e = e*> = e* € End 7(p) C N. Picking an isometry
q € N such that gg* = e and setting

a(-)=qp()q"
one obviously has ¢ € Homz (o, p). The last claim follows from factoriality. [

Remark 6.24. This lemma fails for finite factors, which is why one works with bi-
modules in the type II; case.

Since the kernel of a normal *-homomorphism is a closed two-sided ideal and a type
IIT factor with separable predual is simple, all 1-morphisms in .7~ are injective. Thus, a
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morphism p:N — M provides an isomorphism of N with the subalgebra p(N) C M.
Now Longo’s main result in [39] can be rephrased as follows:

Proposition 6.25. Let p:N — M be a 1-morphism in F. The p has a two-sided
adjoint p:M — N in T iff the index [M : p(N)] is finite.

Proof. We identify N with the subalgebra p(N) = N of M, but we insist on writing an
embedding map +: N — M. Longo proves the following: the index [M : N] of N C M
is finite iff there is a triple (y,v,w) where y is a normal x-endomorphism of M with
that p(M) C N such that there are isometries v € M,w € N satisfying

ve Homg(idy,y), we€Homg(idy,y | N), (6.8)

v'w =7y(")w=cl. (6.9)

Then ¢ =[M : N]*l/z, and we refer to [39] for the original definition of the index
[M : N]. In order to translate Longo’s result into categorical language we write 7 =1
and observe that y maps M into N, so that only 207 gives an morphism of M. On the
other hand we see y | N =701 Now (6.8) becomes

ve Homg (idy,12), we Homg(idy,n)

and v*,w* are morphisms in the opposite directions. Finally in view of the definition
of the horizontal composition of 2-morphisms in J the equations (6.9) and their
x-conjugates are—up to a numerical factor which can be absorbed in v or w—the four
triangular equations which make 1,7 two-sided duals. If we normalize v,w such that
v'o=w*w=[M : N]"? then d(2) =d(7)=[M : N]'">. O

Lemma 6.26. Every inclusion of type III factors with finite index defines a
2-*-category T ycy which is a Morita context. The dimension of F (which is well
defined by Proposition 5.17) is finite iff the subfactor has finite depth.

Proof. 7 ycy is the subcategory of 7 whose objects are {N,M} and whose
I-morphisms are generated by ¢,i. More precisely, Homs,_, (N,M) is the replete full
subcategory of Hom (N, M) whose morphisms are retracts of some #(2)", N € NU{0},
and similarly for the other categories of 1-morphisms. In this category the functors
— ® 1, etc. are clearly dominant, thus J yc), is a Morita context for the tensor
categories End s, ,,(N),End 7, , (M). The *-involution obviously it the x-operation
of the algebras. The last claim follows from Proposition 5.17 and the definition ac-
cording to which N C M has finite depth iff the powers of i contain finitely many
simple M — M morphisms up to equivalence. [J

Remark 6.27. 1. In subfactor theory the dimension of # is called the global index (as
opposed to the index [M : N]=d(Q)).

2. 7 ycu having a x-structure it can be made into a spherical category, though not
in a completely unique way. See Section 2.4.
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Now, given an endomorphism y of finite index of a type III factor M it is natural
to ask whether there is a subfactor N C M such that y =2, where ¢ is a two-sided
conjugate of the embedding morphism . The answer, given in [40], is positive iff there
are isometries

v € Hom(idy,y), w € Hom(y,7*)

satisfying
w? = p(w)w, (6.10)
ww™ = y(w*)w, (6.11)
v'w=y@)*'w=cl, ceC". (6.12)

(It turned out that (6.11) is redundant, cf. [42].) Then the subfactor is given by
N =w*p(M)w. (6.13)

Egs. (6.10)—(6.12) together with the requirement that v,w are isometries are, of
course, saying precisely that (y,v,v*,w,w*) is a strongly separable Frobenius algebra
in End M. In a sense, this entire paper is about finding a categorical analog for the
simple formula (6.13), which turned out to be more tedious than one might expect.
This is precisely due to the fact that as seen above subfactor theory comes with a rich
and beautiful inherent categorical structure which we had to model by Theorem 3.11.
The reward for our work is the following result.

Theorem 6.28. Let M be a type 111 factor, let y € End(M) satisfy (6.10)—(6.12) and
let of be the replete full subcategory with subobjects of End(M) generated by y. Let
I nem be the bicategory associated with the subfactor N C M, where N is given
by (6.13). (Obviously, of = HOM4(,20).) If & is obtained from (</,y) by Theorem
3.11 then have an equivalence of bicategories & ~ T ycuy.

Proof. By Lemma 6.26 the 2-category < yc) is a Morita context. Thus the claim
follows directly from Proposition 4.5. [

Remark 6.29. 1. The importance of this theorem is that it allows us to compute the
2-category 7 ycu (up to equivalence) from the data (.7, y) without explicitly working
with subfactors. In the case where .7 is the subcategory generated by a Frobenius
object y in some End M this may seem a rather complicated detour. Yet, we have
gained two things. On one hand we see that the bicategory associated with a subfactor
with finite index is a structure which appears also in other contexts. Equally important
is the fact that our constructions work for arbitrary tensor categories .o/ which are
not subcategories of some End M generated by one object y, in fact for arbitrary
(algebraically closed) ground field. This will be exploited in [47], the results of which
seem hard to prove without our machinery.
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2. The results of Section 6.3 are related to subfactor theory in a very direct way
whenever the Hopf algebra H is a finite-dimensional C*-Hopf algebra. (This means H
is a complex multi-matrix algebra and 4, ¢ respect the natural *x-operation.) As shown
in [76] every finite-dimensional C*-Hopf algebra H admits an action on a type II;
factor M. This action is outer, i.e. (M*) NM = C1. It has long been known [52] that
in this situation the Jones extension M; of the subfactor MY C M carries an outer
action of H. Together with the well-known material in the present section this provides
a von Neumann algebraic proof of the weak Morita equivalence H —mod ~ H — mod.
From the perspective of this paper this proof is, however, quite unsatisfactory. On the
one hand it is restricted to C*-Hopf algebras, on the other it is rather indirect since it
involves infinite dimensional von Neumann algebras. [J

7. Morita invariance of state sum invariants

In this section, we give an interesting and non-trivial application of our notion of
weak monoidal Morita equivalence to the study of triangulation (or state sum) invari-
ants of closed 3-manifolds. We begin with a very brief sketch of the works which are
relevant to our discussion, apologizing to everyone whose contribution is being glossed
over.

In [69] Turaev and Viro used the 6j-symbols of the quantum group SU,(2) to de-
fine a numerical invariant 7Vsy,2)(M,T) for any closed 3-manifold together with a
triangulation 7. They went on to prove that it does not depend on 7 and thus gives
rise to a topological invariant 7Vsy,(2)(M). In [68] this construction was generalized to
an invariant 7V (M, %) associated with any modular category %. (Modular categories
are braided ribbon categories satisfying a certain non-degeneracy condition.) Recently
Gelfand and Kazhdan [20] and Barrett and Westbury [5] defined triangulation invari-
ants for 3-manifolds on the basis of certain tensor categories which are not required
to be braided. In our discussion we focus on the invariant of Barrett and Westbury,
which we call BW (M, %), since it is based on spherical categories and therefore close
in spirit to our work. With appropriate normalizations one has 7V(M, %)= BW (M, %)
if % is modular. The utility of the notion of weak monoidal Morita equivalence is now
illustrated by the following.

Theorem 7.1. Let o/, % be (strict) semisimple spherical categories with simple unit
and finitely many simple objects. If </,% are weakly monoidally Morita equiva-
lent and dim o/ # 0 then we have BW(M,.«/) = BW (M, %) for all closed orientable
3-manifolds M.

Remark 7.2. 1. Before we sketch the proof of this result we point out that it re-
solves a (minor) puzzle concerning the BW invariant. In [36] Kuperberg had defined
a 3-manifold invariant Ku(M,H) for every finite-dimensional Hopf algebra H over
an algebraically closed field F which is involutive (S? = id) and whose characteristic
does not divide the dimension of H. (That these conditions are equivalent to semisim-
plicity of H and H was not known then.) In [3] it was proven that the invariant
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BW is a generalization of Ku in the sense that Ku(M,H) = BW(M,H — mod), again
assuming appropriate normalizations. For Kuperberg’s invariant it had been known that
Ku(M,H) = Ku(M,H), but this becomes obscure when it is expressed in terms of the
invariant BW. This puzzle is resolved by Theorem 7.1 together with Corollary 6.16,
according to which H — mod and A — mod are weakly monoidally Morita equivalent.

Example 7.3. The preceding application of weak monoidal Morita equivalence is not
really new in that the result BW (M, H —mod)=BW (M, H —mod) can be derived from
the connection between the invariants BW and Ku. A less obvious example is provided
in the companion paper [47]. There we prove that the center Z(%) [45,27,62], which
is the categorical version of Drinfel’d’s quantum double, of a semisimple spherical
category with non-zero dimension is again spherical and semisimple (and modular in
the sense of Turaev). Furthermore, we prove the weak monoidal Morita equivalence
Z(€) =~ € X €°°, which by the above theorem implies

BW(M, % (%)) =BW(M,% X ¢°°) =BW (M, %) - BW (M, %)
=BW(M,%) - BW(—M,%)
(=|BW(M,%))* if € is a * —category).

The relation between a category % and its quantum double being quite non-trivial we
are not aware of a simpler proof of this equality.

Sketch of Proof. The proof relies strongly on ideas of Ocneanu which, unfortunately,
found expression only in the unpublished (and unfinished) manuscript [53]. Therefore,
the more complete accounts [15,34] are very useful. In [53] Ocneanu defined a trian-
gulation invariant Oc(M,A C B) of 3-manifolds departing from an inclusion 4 C B
of type II; factors with finite index and finite depth. We recall from Section 6.4 that
subfactors 4 C B with finite index give rise to a Morita context &, whose dimension
is finite iff the subfactor has finite depth. (& is given by bimodules associated with
the subfactor or, alternatively, by *-algebra homomorphisms in the type III case.) Oc-
neanu’s invariant is easily seen to depend only on & and not on other, in particular
analytic properties of the subfactor. Furthermore, as is quite evident from [15], it gen-
eralizes to any spherical (or *-) Morita context of finite, non-zero dimension over an
algebraically closed field. As to the definition of the invariant we only say that one
chooses a triangulation 7 with directed edges and an assignment V € {2(,B}" of labels
{,B} to the vertices V. Then to every edge of T one assigns an isomorphism class
of 1-morphisms in HOMg(X,%)), where X,%) are the labels attached to the initial and
terminal vertices of the edge. Oc(M, &, T,V) is now defined as the sum over the edge
labelings of a product of 6j-symbols. Note that there is no summation over the labeling
V of the vertices! In fact it is shown in [53,15] that Oc(M, &, T,V) depends neither
on the labeling V (for fixed triangulation 7") nor on 7. If one labels all vertices of
T with A one finds that Oc(M, &, T) = BW (M, ENDg(2),T), i.e. the invariant reduces
to the invariant of Barrett and Westbury for the spherical category ENDg(2l). Simi-
larly, by labeling all vertices with B one obtains Oc(M, &,T)=BW (M,ENDs(*8),T).
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By independence of BW and Oc of the triangulation one concludes
Oc(M, &) =BW(M,ENDg(21)) = BW(M,END¢(°B)). (7.1)

Our claim thus follows if we take & to be a Morita context for o/ ~ %4. [

Remark 7.4. 1. The argument sketched above should of course be spelled out in more
detail. In particular, this requires a construction of the TQFT associated with the
invariant BW(-,.</). (In doing so extreme care is required when the tensor category
./ contains simple objects which are self-dual and pseudo-real. Unfortunately, this is
neglected in the bulk of the literature on the subject, with the notable exception of
[68] and the remarks in [4].) We hope to do this in a future part of this series.

2. Let us emphasize the lesson we draw from the above considerations. In view of
(7.1) the invariant Oc(M, &) is already determined by considerably smaller amounts
of data, as contained in the tensor categories ENDg(2) or ENDg(®8). (Therefore, the
observation [4,20] that the Turaev—Viro invariant generalizes to tensor categories with-
out braiding could have been made already by the authors of [53,15].) Despite the
greater generality of [4,20] there is a lasting significance of the invariant Oc which
clearly goes beyond [4,20], viz. precisely the Morita invariance of the invariant BW
which we pointed out above.

8. Discussion and outlook

In various places we have already mentioned closely related works by other authors.
We summarize these references and comment on several other recent works. The rela-
tion between classical Frobenius algebras and Frobenius algebras in F-Vect is due to
Quinn [58] and Abrams [1,2]. The literature on Frobenius algebras in categories other
than Vect is quite small but has begun to grow recently. As mentioned earlier, strongly
separable Frobenius algebras in C*-categories (‘Q-systems’) were first considered in
[42], motivated by subfactor theory. In an algebraic-topological context commutative
Frobenius algebras in symmetric tensor categories appear in [63]. The relation between
Frobenius algebras and two-sided duals (only in ¥.«/.7, though) is hinted at in [32]
but not developed very far. The discussion in [65, Section 3.3] has some relations
to our work, and [66, Section 3] has some overlap with our Section 6.3. Note, how-
ever, that in these references most proofs are omitted, and the discussion in [66] is
limited to C*-bicategories. In [33], module categories of ‘rigid %-algebras’ in braided
tensor categories are considered with the aim of categorifying the considerations on
modular invariants in [8]. In view of Proposition 5.13, rigid %-algebras are nothing
but Frobenius algebras. (Since the Frobenius algebras are assumed to be commutative
(i.e. woc(Q,Q)=w") only ‘type I’ modular invariants are covered by this analysis.)
Similar matters are considered in somewhat greater generality in [18], where Frobenius
algebras in the sense of Definition 3.1 appear explicitly, influenced by a talk of the
author. A recent construction by Yamagami [73] bears some relation to our construction
of the bicategory &. Given a tensor category ./ and a full subcategory .oy ~ H —mod,
he constructs a bicategory which seems to be equivalent to our & in the special case
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of Section 6.2, where the Frobenius algebra arises from the regular representation of a
semisimple and cosemisimple Hopf algebra H.

When the present work was essentially finished we learned that the definition of
the bicategory & via (bi)modules was discovered independently by Yamagami. Fur-
thermore, in a very interesting sequel [54] of [33], Ostrik considers modules .#
over a tensor category %. (Note that, given a bicategory & with 2, B € Obj &, the
categories HOMg(2A,B), HOMs(*B,%l) are left and right, respectively, modules over
o/ = ENDg(21).) He shows that every module over & arises from an algebra 4 in €
and constructs a dual algebra @*. The latter is equivalent to our # = ENDg(2(). He
also considers applications to modular invariants and succeeds in phrasing most results
of [8] in categorical terms, albeit without many proofs.

Results like Theorem 7.1 lead us to believe that all existing (and future) applications
of subfactor theory to low-dimensional topology ‘factor through category theory’—as
is by now well known for the knot invariants of Jones and HOMFLY. More generally,
we are convinced that essentially all algebraic aspects and results of subfactor theory
(at finite index) permit generalization to a considerably wider categorical setting. This
is further vindicated by the subsequent parts of this series whose main results we briefly
outline.

As already mentioned, in part II [47] we prove that the center Z(%) of a finite
semisimple spherical tensor category % of non-zero dimension is weakly monoidally
Morita equivalent to % [X ¢°P. Furthermore, it is a modular category in the sense
of [68]. In view of the relation [30] between the categorical and the Hopf algebraic
quantum double this should be interpreted as a generalization of the fact [13] that
quantum doubles of nice Hopf algebras have modular representation categories.

In Part I1I [48] we will consider the bicategory & mentioned in Remark 3.18. It will
be shown to satisfy the assumptions of Theorem 3.17, which implies its equivalence
with &. In particular, we have .o/ ~ 4 iff there exists a Frobenius algebra Q in .o/ such

that gng—mod-Q. As mentioned in Remark 3.18, the latter implies the equivalance
of the braided tensor categories Z((.o/) ~ Z1(#). It is natural to ask whether the
converse is true.

The programme of identifying the connections between subfactor theory (at finite
index) and category theory is certainly vindicated by the applications to the classifica-
tion of modular invariants, cf. [33,18,54], and to topology, as considered in Section 7
and [47]. The rapprochement of subfactor theory and ‘mainstream’ mathematics which
this foreshadows will undoubtedly be helpful also in the classification programme of
subfactors.
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