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Abstract

For every tensor category C there is a braided tensor category Z(C), the ‘center’ of C. It is
well known to be related to Drinfel’d’s notion of the quantum double of a 7nite dimensional

Hopf algebra H by an equivalence Z(H -mod)
⊗�br D(H)-mod of braided tensor categories. In

the Hopf algebra situation, whenever D(H)-mod is semisimple (which is the case i: D(H) is
semisimple i: H is semisimple and cosemisimple i: S2 = id and char FA dimH) it is modular
in the sense of Turaev, i.e. its S-matrix is invertible. (This was proven by Etingof and Gelaki
in characteristic zero. We give a fairly general proof in the appendix.) The present paper is
concerned with a generalization of this and other results to the quantum double (center) of more
general tensor categories.
We consider F-linear tensor categories C with simple unit and 7nitely many isomorphism

classes of simple objects. We assume that C is either a ∗-category (i.e. F = C and there is a
positive ∗-operation on the morphisms) or semisimple and spherical over an algebraically closed
7eld F. In the latter case we assume dimC ≡∑i d(Xi)2 �= 0, where the summation runs over the
isomorphism classes of simple objects. We prove that Z(C) (i) is a semisimple spherical (or ∗-)
category and (ii) is weakly monoidally Morita equivalent (in the sense of M,uger (J. Pure Appl.
Algebra 180 (2003) 81–157)) to C⊗FC

op. This implies dimZ(C)= (dimC)2. (iii) We analyze
the simple objects of Z(C) in terms of certain 7nite dimensional algebras, of which Ocneanu’s
tube algebra is the smallest. We prove the conjecture of Gelfand and Kazhdan according to which
the number of simple objects of Z(C) coincides with the dimension of the state space HS1×S1

of the torus in the triangulation TQFT built from C. (iv) We prove that Z(C) is modular and
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we compute �±(Z(C)) ≡∑i �(Xi)±1d(Xi)2 = dimC. (v) Finally, if C is already modular then

Z(C)
⊗�br C⊗F C̃

⊗� C⊗F C
op, where C̃ is the tensor category C with the braiding c̃X;Y = c−1Y;X .

c© 2003 Elsevier Science B.V. All rights reserved.

MSC: 18D10; 18D05; 46L37

1. Introduction

De7ne the ‘center’ Z0(X ) of a set X to be the monoid of all functions f :X → X
(with composition as product and the identity map as unit). Then the usual center Z1 ≡
Z of the monoid Z0(X ) is trivial: Z1(Z0(X ))={idX }. The cardinality of Z0(X ) is given
by #Z0(X ) = #X #X . The aim of the present work is to prove 1-categorical analogues
of these trivial set theoretic (= 0-categorical) observations. (I owe the above de7nition
of Z0(X ) to J. Baez.)
Given an arbitrary monoidal category (or tensor category) C its center Z(C) is

a braided monoidal category which was de7ned independently by Drinfel’d (unpub-
lished), Majid [35] and Joyal and Street [19]. (See Section 3 for the de7nition.) In order
to avoid confusion with another notion of center, we will write Z1(C) throughout. In
the present work, as in [35,19], we will assume C to be strict, but this is exclusively
for notational convenience. The de7nition of the center Z1 and all results in this paper
extend immediately to the non-strict case. The other assumptions which we must make
on C are more restrictive, but we are still left with a class of categories which appears
in contexts like low dimensional topology and subfactor theory. We assume C to be
linear over a ground 7eld which is algebraically closed. Furthermore, C is semisimple
with simple tensor unit and spherical [6]. (A semisimple category is spherical i: it is
pivotal [6] (= sovereign) and every simple object has the same dimension as its dual,
cf. [37, Lemma 2.8].) See [6] or [37, Section 2] for the precise de7nitions.

De�nition 1.1. Let C be a semisimple spherical tensor category with simple unit
and let � be the set of isomorphism classes of simple objects. If � is 7nite we de7ne

dimC =
∑
i∈�

d(Xi)2;

otherwise we write dimC =∞.
If C is 7nite dimensional and braided then the Gauss sums of C are given by

�±(C) =
∑
i∈�

!(Xi)±1d(Xi)2;

where �(X ) = !(X )idX is the twist of the simple object X which is de7ned by the
spherical structure [56].

We can now state our Main Theorem:

Theorem 1.2. Let F be an algebraically closed 1eld and C a spherical F-linear tensor
category with End(1) ∼= F. We assume that C is semisimple with 1nitely many simple
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objects and dimC �= 0. Then also the center Z1(C) has all these properties and is a
modular category [53]. Furthermore, the dimension and the Gauss sums are given by

dimZ1(C) = (dimC)2;

�+(Z1(C)) = �−(Z1(C)) = dimC:

De7ning the center Z2(C) of a braided tensor category C to be the full subcategory
whose objects are those X which satisfy

c(X; Y ) = c(Y; X )−1 ∀Y ∈ObjC;

one easily sees that Z2(C) is stable w.r.t. isomorphisms (thus replete), direct sums,
retractions, tensor products and duals, the inherited braiding obviously being symmetric.
One can show that a braided category satisfying the properties in the theorem (i.e. a
premodular category [8]) is modular i: the center Z2(C) is trivial, in the sense that
all objects of Z2(C) are multiples of the tensor unit. (This was done in [47] for
∗-categories and in [7] for spherical categories with dimC �= 0, see also Corollary
7.11 below.) Thus Z2(Z1(C)) is trivial for all C as in the Main Theorem, which is
the promised analogue of the 0-categorical observation Z1(Z0(X )) = {1}.
The Main Theorem can be generalized slightly: If C is as before except for F not

being algebraically closed then there is a 7nite extension F′ ⊃ F such that Z1(C ⊗F
F′) is modular. Concerning the prospects of further generalizations the author is not
optimistic. There is little hope of proving semisimplicity of Z1(C) without assuming
dimC �= 0. (Furthermore, it is known [53] that the dimension of a modular category
must be non-zero.) In the non-semisimple case one might hope to prove that the center
of a spherical noetherian category satis7es the non-degeneracy condition on the braiding
introduced in [32]. But the methods of this paper will most likely not apply.
The results of the present work can be considered as generalizations of known results

concerning Hopf algebras and we brieTy comment on this in order to put our results
into their context. We recall that the quantum double of a Hopf algebra was introduced,
among many other things, in Drinfel’d’s seminal work [10]. In the following discussion
all Hopf algebras are 7nite dimensional over some 7eld F. The quantum double D(H)
of a Hopf algebra H is a certain Hopf algebra which contains H and the dual Ĥ as
Hopf subalgebras and it is generated as an algebra by these. We refrain from repeating
the well-known de7nition and refer to [21] for a nice treatment. We only remark that
D(H) ∼= H ⊗F Ĥ as a vector space, thus

dimF D(H) = (dimF H)2:

Furthermore, D(H) is quasitriangular, i.e. there is an invertible R∈D(H)⊗D(H) such
that � ◦ � = R�(·)R−1 where � is the Tip automorphism of the tensor product. The
constructions of the quantum double of a Hopf algebra and of the center of a monoidal
category are linked by the equivalence

D(H)-mod
⊗�br Z1(H -mod)

of braided monoidal categories, where H -mod and D(H)-mod are the categories of
7nite dimensional left H - and D(H)-modules, respectively, the braiding of D(H)-mod
being provided by the R-matrix. Again, see [21, Chapter XIII.4] for a detailed account.
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Now, the R-matrix of a quantum double D(H) is non-degenerate in a certain sense,
D(H) being ‘factorizable’ [48]. If H is semisimple and cosemisimple then D(H) is
semisimple [46]. It then turns out to be also modular and the category D(H)-mod of
7nite dimensional left D(H)-modules is modular in the sense of Turaev [53]. (This
was proved in [12] for algebras over algebraically closed 7elds of characteristic zero,
but the latter condition can be dropped. In the appendix we give a general proof.)
Furthermore, one clearly has

dimZ1(H -mod) = dimD(H)-mod = dimD(H)

= (dimH)2 = (dimH -mod)2; (1.1)

where dimC is the dimension of the monoidal category C as de7ned above.
It is now clear that our Main Theorem can be considered as an extension of the

above results to tensor categories which are not necessarily representation categories of
Hopf algebras. Here one remark on the notation is in order. In [22] Kassel and Turaev
introduced a modi7ed version of the construction of the center Z1(C) and called it
the quantum double D(C), see also [52]. Their category is the categorical version of a
construction of Reshetikhin (which adjoins a certain square root � to a quasitriangular
Hopf algebra H in order to turn it into a ribbon algebra H (�)) applied to a quantum
double, cf. [22, Theorem 5.4.1]. In the context of [22] the starting point was that even
if C is rigid this need not be true for Z1(C), whereas the category D(C) is rigid.
As we will see, spherical categories (tensor categories with nice two-sided duals) are
better behaved in the sense that their centers Z1 are again spherical. In addition,
whereas Z1(C) is modular for the categories satisfying the conditions of our Main
Theorem, this is never true for D(C)! This is why we stick to the original de7nition
Z1(C). Apart from writing Z1(C) instead of Z(C), we do not attempt to change the
established symbols, but we use the expression ‘quantum double’ as a synonym for
Z1(C) rather than D(C).
Unfortunately, the work on Hopf algebras mentioned above provides no clues on

how to prove Theorem 1.2. This is where subfactor theory enters the present story.
Starting from an inclusion N ⊂ M of hyper7nite type II1 factors of 7nite index and
depth, Ocneanu [42] de7ned an ‘asymptotic subfactor’ B ⊂ A:

B=M ∨ (M∞ ∩ M ′) ⊂ M∞ = A:

(Here N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · is the Jones tower associated with N ⊂ M and
M∞=∨iMi.) In [44] he argued that a certain monoidal category associated with B ⊂ A
is braided, concluding that the asymptotic subfactor is an ‘analogue’ of Drinfel’d’s
quantum double of a Hopf algebra. In fact, Ocneanu does not use category language
and does not refer to the quantum double (center) of monoidal categories. In [14]
Evans and Kawahigashi published proofs for most of Ocneanu’s announcements. In
the paper [29], which otherwise has little to do with the asymptotic subfactor, Longo
and Rehren then constructed a subfactor B ⊂ A from an in7nite factor M and a—in our
language—7nite dimensional full monoidal subcategory C of End(M) and conjectured
that it is related to Ocneanu’s construction. This conjecture was made precise and
proven in [36]. The author’s involvement in the present story began when in 1998 he



M. M�uger / Journal of Pure and Applied Algebra 180 (2003) 159–219 163

received a copy of a short preprint [17] by Izumi. In the meantime a full account of
Izumi’s results has appeared in [18]. In [17,18] Izumi gives an in-depth analysis of the
LR-subfactor, in particular its B−B sectors. Seeing [17] the present author was struck
by the fact that its main theorem implicitly contained the de7nition of the center of a
monoidal category. In fact properly formulated, Izumi’s results provide a precise and
completely general form of Ocneanu’s ‘analogy’ between the asymptotic subfactor (or
the LR-subfactor) and the quantum double, albeit the categorical one instead of the
one for Hopf algebras. In Section 8.3 we will rephrase Izumi’s results in categorical
language to make this evident. Yet, this is not the main purpose of the present work.
In [44] it has been argued that the braided monoidal category associated with B ⊂

A is modular and a complete proof has been provided in [18], where it was also
shown that the dimension of the category in question is given by (dimC)2. As in
our discussion of the Hopf algebra quantum double, it is again natural to ask whether
a purely categorical version of these results can be proven. Here we have to face
the problem that 7nite-index subfactors have a lot of ‘in-built’ categorical structure
which is not a priori available in a purely categorical setting. (In particular, most of
[18] strongly relies on this structure.) Yet this problem can be overcome once one
realizes that the more algebraic part of subfactor theory can be cast into the language
of 2-categories. This is the content of [37], which in a sense can be considered a
continuation of [30], though in a somewhat more general setting.
The paper is organized as follows. In Section 2 we 7rst recall some of the less stan-

dard de7nitions from [37]. We then summarize the main results of [37] on Frobenius
algebras in tensor categories, related 2-categories and the notion of weak monoidal
Morita equivalence of tensor categories. This section can by no means replace [37].
Our study of the quantum double Z1(C) begins in Section 3, where we show that it
preserves the closedness w.r.t. direct sums and subobjects and sphericity. Most impor-
tantly and least trivially, we prove the semisimplicity of Z1(C). These results do not
yet rely on the machinery of [37]. In Section 4 we prove the weak monoidal Morita
equivalence Z1(C) ≈ C⊗FC

op, which in particular implies that the double construction
squares the dimension of the category. Section 5 is devoted to the proof of modularity
of Z1(C), equivalent to triviality of the category Z2(Z1(C)). As an important 7rst
step we analyze the structure of the simple objects of the double, providing an explana-
tion for Ocneanu’s ‘tube algebra’. The next two section consider the case of categories
with a positive ∗-structure (C∗-categories or unitary categories) and the special case
where C is already braided. In Section 8 we consider applications to the invariants of
3-manifolds, proving a conjecture of Gelfand and Kazhdan and speculating about a far
stronger result. Finally, we establish the link with subfactor theory, relying heavily on
Izumi’s work, improving on it only slightly.

2. Preliminaries

2.1. Some de1nitions and notations

We refer to [37, Section 2] for our general conventions and recall only a few
less standard notations. A retract Y ≺ X is also called a subobject. A category has
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subobjects if all idempotents split, and every category A has a canonical completion
ZAp for which this is the case. A F-linear category is semisimple if it has direct sums
and subobjects and every object is a 7nite direct sum of simple objects, X being simple
i: End(X ) ∼= F. For monoidal categories we require in addition that 1 is simple. A
subcategory of a semisimple category is called semisimple if it is closed w.r.t. direct
sums and retractions, thus in particular replete (stable under isomorphisms).
Since all categories in question are F-linear we understand the product K⊗F L of

(tensor) categories in the sense of enriched category theory. Thus

ObjK⊗F L= {K � L; K ∈ObjK; L∈ObjL};
where X � Y stands for the pair (X; Y ), and

HomK⊗FL(K1� L1; K2� L2)) = HomK(K1; K2)⊗F HomL(L1; L2)

with the obvious composition laws. We denote by K�L=K⊗F L
⊕
the completion

w.r.t. 7nite direct sums. If X;Y are monoidal categories the same holds for X�Y.
In order to save brackets we declare � to bind stronger than ⊗ but weaker than
juxtaposition XY of objects (which abbreviates X ⊗ Y ). Note that ⊗ and � commute

X1� Y1 ⊗ X2� Y2 = (X1 ⊗ X2)� (Y1 ⊗ Y2) = X1X2� Y1Y2:

2.2. Frobenius algebras and 2-categories

De�nition 2.1. Let A be a (strict) monoidal category. A Frobenius algebra in A is a
quintuple Q = (Q; v; v′; w; w′), where Q is an object in A and v : 1 → Q, v′ :Q → 1,
w :Q → Q2, w′ :Q2 → Q are morphisms satisfying the following conditions:

w ⊗ idQ ◦ w = idQ ⊗ w ◦ w; (2.1)

w′ ◦ w′ ⊗ idQ = w′ ◦ idQ ⊗ w′; (2.2)

v′ ⊗ idQ ◦ w = idQ = idQ ⊗ v′ ◦ w; (2.3)

w′ ◦ v ⊗ idQ = idQ = w′ ◦ idQ ⊗ v; (2.4)

w′ ⊗ idQ ◦ idQ ⊗ w = w ◦ w′ = idQ ⊗ w′ ◦ w ⊗ idQ: (2.5)

A Frobenius algebra Q in a F-linear category is strongly separable if
w′ ◦ w = �1 idQ; (2.6)

v′ ◦ v= �2 id1 (2.7)

with �1; �2 ∈ F∗. Q is normalized if �1 = �2.

Let X be an object in a spherical category A. Then the quintuple

(X ZX ; �(X ); Z�(X ); idX ⊗ �( ZX )⊗ id ZX ; idX ⊗ Z�( ZX )⊗ id ZX )
is easily seen to be a normalized strongly separable Frobenius algebra in A. The
following theorem, which combines the Theorems 3.12 and 5.13 from [37], shows that
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in fact every strongly separable Frobenius algebra in a tensor category arises in this
way, provided one is ready to embed the category as a corner into a bicategory.

Theorem 2.2. Let A be a strict F-linear tensor category and Q = (Q; v; v′; w; w′) a
strongly separable Frobenius algebra in A. Then:

(i) There is a bicategory E such that
1. The sets of 2-morphisms in E are 1nite dimensional F-vector spaces and the

horizontal and vertical compositions are bilinear.
2. Idempotent 2-morphisms in E split.
3. ObjE= {A;B}.
4. There is an equivalence HOME(A;A)

⊗� ZAp of tensor categories and there-

fore an equivalence HOME(A;A)
⊗� A if A has subobjects.

5. There are 1-morphisms J :B → A and ZJ :A → B such that Q = J ZJ .
6. J and ZJ are mutual two-sided duals, i.e. there are 2-morphisms

eJ : 1A → J ZJ ; �J : 1B → ZJJ; dJ : ZJJ → 1B; "J : J ZJ → 1A

satisfying the usual equations.
7. We have

v= eJ : 1A → Q = J ZJ ;

v′ = "J : Q = J ZJ → 1A;

w= idJ ⊗ �J ⊗ id ZJ : Q = J ZJ → J ZJJ ZJ = Q2;

w′ = idJ ⊗ dJ ⊗ id ZJ : Q2 = J ZJJ ZJ → J ZJ = Q

and therefore dJ ◦ �J = �1 id1B
, "J ◦ eJ = �2id1A

.
8. E is uniquely determined up to equivalence by the above properties. Isomor-

phic Frobenius algebras Q; Q̃ give rise to isomorphic bicategories E; Ẽ.
(ii) If A has direct sums then E has direct sums of 1-morphisms.
(iii) If the multiplicity of 1 in Q is exactly one (it is at least one due to the existence

of v; v′) then J; ZJ ; 1B are simple. (There is a weaker condition implying only
simplicity of 1B.)

(iv) If F = C and A has a positive ∗-operation then E has a positive ∗-operation
and is semisimple.

(v) If A is strict spherical and Q satis1es (iii) and is normalized then E is spher-
ical. If, furthermore, A is semisimple and F is algebraically closed then E is
semisimple.

(vi) If (iv) or (v) apply then the tensor category B=HOME(B;B) satis1es dimB=
dimA.

Remark 2.3. (1) If two tensor categories A;B are ‘corners’ of a 2-category as above
we call them weakly monoidally Morita equivalent. This is an equivalence relation
which is considerably weaker than the usual equivalence, yet it implies that A and
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B have the same dimension and de7ne the same triangulation invariant [5,15] for
3-manifolds. See [37] for the details.
(2) Unfortunately, the above statement of the theorem will not be su[cient for our

purposes since beginning in Section 4.2 we will make use of the concrete structure of
the bicategory E, which is explicitly constructed in the proof of Theorem 2.2. This is
not the place to explain the latter which occupies the larger part of [37]. We can only
hope that the above statement of the theorem and its role in this paper are su[cient
to motivate the reader to acquire some familiarity with [37].

3. The quantum double of a tensor category

3.1. On half-braidings

We begin with the de7nition of the quantum double Z1(C) of a (strict) monoidal
category C.

De�nition 3.1. Let C be a strict monoidal category and let X ∈C. A half-braiding eX
for X is a family {eX (Y )∈HomC(XY; YX ); Y ∈C} of morphisms satisfying

(i) Naturality w.r.t. the argument in brackets, i.e.

t ⊗ idX ◦ eX (Y ) = eX (Z) ◦ idX ⊗ t ∀t: Y → Z: (3.1)

(ii) The braid relation

eX (Y ⊗ Z) = idY ⊗ eX (Z) ◦ eX (Y )⊗ idZ ∀Y; Z ∈C: (3.2)

(iii) All eX (Z) are isomorphisms.
(iv) Unit property:

eX (1) = idX : (3.3)

Lemma 3.2. Let {eX (Y ); Y ∈C} satisfy (i) and (ii). Then (iii)⇒ (iv). If (iv) holds
and Y has a right dual Y ∗ then eX (Y ) is invertible.

Proof. Considering (3.2) with Y = Z = 1 gives eX (1) = eX (1)2. Thus (iii) implies
eX (1) = idX . Let Y ∗ a right dual of Y with �Y : 1 → Y ∗ ⊗ Y; "Y :Y ⊗ Y ∗ → 1. Then
using (i) and (iv) we 7nd

Y
Y Y

Y*

X
X

X

eX (1)

eX (Y )

eX (Y
*)

�Y

= =

�Y
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Thus eX (Y ) has a right inverse, which by a similar computation is seen to be also a
left inverse.

For later use we record the following alternative characterization of half-braidings.

Lemma 3.3. Let C be semisimple and {Xi; i∈�} a basis of simple objects. Let
Z ∈C. Then there is a one-to-one correspondence between (i) families of morphisms
{eZ(Xi)∈HomC(ZXi; XiZ); i∈�} such that

t ⊗ idZ ◦ eZ(Xk) = idXi ⊗ eZ(Xj) ◦ eZ(Xi)

⊗idXj ◦ idZ ⊗ t ∀i; j; k ∈�; t ∈HomC(Xk; XiXj) (3.4)

and (ii) families of morphisms {eZ(X )∈HomC(ZX; XZ); X ∈C} satisfying (i) and
(ii) from De1nition 3.1. All eZ(X ); X ∈C are isomorphisms i> all eZ(Xi); i∈� are
isomorphisms.

Proof. (ii) ⇒ (i). Obvious: just restrict eZ(·) to X ∈{Xi; i∈�}. Then (3.1), (3.2)
imply (3.4).
(i) ⇒ (ii). Let X ∼=⊕i niXi and let {x(i ; ( = 1; : : : ; ni}, {x(i′ ; ( = 1; : : : ; ni} be dual

bases in HomC(Xi; X ) and HomC(X; Xi), respectively. Then de7ne

eZ(X ) =
∑
i∈�

ni∑
(=1

x(i ⊗ idZ ◦ eZ(Xi) ◦ idZ ⊗ x(i′ :

Independence of eZ(X )∈HomC(ZX; XZ) of the choice of the x(i follows from duality
of the bases {x(i }; {x(i′}. In order to prove naturality (3.2) consider Y ∼=⊕i miXi and
corresponding intertwiners y(

i ; y
(
i′ and let t ∈HomC(X; Y ). Then y+

j′ tx
(
i ∈Hom(Xi; Xj),

which vanishes if i �= j. Thus

t =
∑
i∈�

ni∑
(=1

mi∑
+=1

c(i; (; +)y+
i x

(
i′ ;

where c(i; (; +)∈ F. Therefore,

t ⊗ idZ ◦ eZ(X ) =
∑
i∈�

ni∑
(=1

mi∑
+=1

c(i; (; +)y+
i ⊗ idZ ◦ eZ(Xi) ◦ idZ ⊗ x(i′ ;

which coincides with eZ(Y )◦ idZ ⊗ t. If now t ∈HomC(Xk; XiXj) then naturality implies
t ⊗ idZ ◦ eZ(Xk) = eZ(XiXj) ◦ idZ ⊗ t. Together with (3.4) this implies

eZ(XiXj) ◦ idZ ⊗ t = idXi ⊗ eZ(Xj) ◦ eZ(Xi)⊗ idXj ◦ idZ ⊗ t

and since this holds for all t ∈HomC(Xk; XiXj) (3.2) follows. (This is a consequence
of

∑
k∈�

Nk
ij∑

(=1

t(k ◦ t(k′ = idXiXj ;

where the {t(k ; (= 1; : : : ; N k
ij} are bases in HomC(Xk; XiXj).)
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3.2. Elementary properties of the quantum double

De�nition 3.4. The center Z1(C) of a strict monoidal category C has as objects pairs
(X; eX ), where X ∈C and eX is a half-braiding. The morphisms are given by

HomZ1(C)((X; eX ); (Y; eY )

= {t ∈HomC(X; Y ) | idX ⊗ t ◦ eX (Z) = eY (Z) ◦ t ⊗ idX ∀Z ∈C}: (3.5)

The tensor product of objects is given by (X; eX )⊗ (Y; eY ) = (XY; eXY ), where
eXY (Z) = eX (Z)⊗ idY ◦ idX ⊗ eY (Z): (3.6)

The tensor unit is (1; e1) where e1(X ) = idX . The composition and tensor product of
morphisms are inherited from C. The braiding is given by

c((X; eX ); (Y; eY )) = eX (Y ):

For the proof that Z1(C) is a strict braided tensor category we refer to [21]. The
following is immediate from the de7nition of the center Z1(C):

Lemma 3.5. If C is F-linear then so is Z1(C). If the unit 1 of C is simple, then
1Z1(C) is simple.

In [52, Proposition 1] it is proven that the center of an abelian monoidal category
is abelian. In this paper we do not use the language of abelian categories since the
notions of (co)kernels are not really needed. (Yet semisimple categories are abelian if
we assume existence of a zero object.) Therefore, we prove two lemmas which show
that the center construction behaves nicely w.r.t. direct sums and subobjects. The 7rst
result is contained in [52], but we repeat it for the sake of completeness.

Lemma 3.6. If C has direct sums then also Z1(C) has direct sums.

Proof. Let (Y; eY ); (U; eU ) be objects in Z1(C). Let C � Z ∼= Y ⊕ U with mor-
phisms v∈HomC(Y; Z); w∈HomC(U; Z), v′ ∈HomC(Z; Y ); w′ ∈HomC(Z; U ) satisfying
v′ ◦ v= idY ; w′ ◦ w= idU ; v ◦ v′ + w ◦ w′ = idZ . De7ning eZ(X )∈HomC(ZX; XZ) for all
X ∈C by

eZ(X ) = idX ⊗ v ◦ eY (X ) ◦ v′ ⊗ idX + idX ⊗ w ◦ eU (X ) ◦ w′ ⊗ idX
we claim that (Z; eZ) is an object of Z1(C) and

(Z; eZ) ∼= (Y; eY )⊕ (U; eU ): (3.7)

Naturality of eZ(X ) w.r.t. X is obvious, and (3.2) is very easily veri7ed using v′◦w=0.
Finally, we have

eZ(X ) ◦ v ⊗ idX = idX ⊗ v ◦ eY (X );

which is just the statement that v∈HomZ1(C)((Y; eY ); (Z; eZ). The analogous statement
holding for v′; w; w′, (3.7) follows.
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Lemma 3.7. If C has subobjects then also Z1(C) has subobjects.

Proof. Let (Y; eY )∈Z1(C) and let e be an idempotent in EndZ1(C)((Y; eY )). By de7-
nition of Z1(C) this means that e is an idempotent in EndC(Y ) such that

idX ⊗ e ◦ eY (X ) = eY (X ) ◦ e ⊗ idX ∀X ∈C: (3.8)

Since C has subobjects there are U ∈C and v∈HomC(U; Y ), v′ ∈HomC(Y; U ) such
that v ◦ v′ = e and v′ ◦ v= idU . De7ning

eU (X ) = idX ⊗ v′ ◦ eY (X ) ◦ v ⊗ idX ∈HomC(UX; XU ); X ∈C;

naturality w.r.t. X is again obvious. Now,

eU (X1X2) = idX1X2 ⊗ v′ ◦ eY (X1X2) ◦ v ⊗ idX1X2
= idX1X2 ⊗ v′ ◦ idX1 ⊗ eY (X2) ◦ eY (X1)⊗ idX2 ◦ v ⊗ idX1X2
= idX1X2 ⊗ v′ ◦ idX1 ⊗ eY (X2) ◦ idX1 ⊗ v ⊗ idX2

◦ idX1 ⊗ v′ ⊗ idX2 ◦ eY (X1)⊗ idX2 ◦ v ⊗ idX1X2
= idX1 ⊗ eU (X2) ◦ eU (X1)⊗ idX2 ;

whereby eU is a half-braiding and (U; eU ) an object in Z1(C). We used v ◦ v′ = e,
(3.8) and e ◦ v= v ◦ v′ ◦ v= v. Using the same facts we 7nally compute

idX ⊗ v ◦ eU (X ) = idX ⊗ v ◦ idX ⊗ v′ ◦ eY (X ) ◦ v ⊗ idX = eY (X ) ◦ v ⊗ idX :
Thus v∈HomZ1(C)((U; eU ); (Y; eY )) and we have (U; eU ) ≺ (Y; eY ).

Lemma 3.8. Let C be pivotal and eY a half-braiding satisfying (i)–(iv). Then

eY ( ZX ) = id ZXY ⊗ Z�(X ) ◦ id ZX ⊗ eY (X )−1 ⊗ id ZX ◦ �( ZX )⊗ idY ZX : (3.9)

Proof. By naturality and the braid relation we have

�( ZX )⊗ idY = eY ( ZXX ) ◦ idY ⊗ �( ZX ) = id ZX ⊗ eY (X ) ◦ eY ( ZX )⊗ idX ◦ idY ⊗ �( ZX )

and using the invertibility of eY (X ) we get

id ZX ⊗ eY (X )−1 ◦ �( ZX )⊗ idY = eY ( ZX )⊗ idX ◦ idY ⊗ �( ZX ):

Now (3.9) follows by a use of the duality equations, see, e.g., [37, Section 2.3].

Proposition 3.9. Let C be (strict) pivotal. Then also Z1(C) is (strict) pivotal, the
dual (Y; eY ) being given by ( ZY ; e ZY ), where e ZY (X ) is de1ned by

ZY ⊗ X
id ZYX⊗�(Y )−−−−−→ ZY ⊗ X ⊗ Y ⊗ ZY

id ZY⊗eY (X )−1⊗id ZY−−−−−−−−−→ ZY ⊗ Y ⊗ X ⊗ ZY →
Z�( ZY )⊗idX ZY−−−−−→ X ⊗ ZY : (3.10)

The evaluation and coevaluation maps are inherited from C:

�((Y; eY )) = �(Y ); Z�((Y; eY )) = Z�(Y ):

If C is spherical then also Z1(C) is spherical.
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Proof. We begin by showing that e ZY (·) is a half-braiding for ZY . By construction we
have e ZY (X )∈HomC( ZYX; X ZY ), and naturality w.r.t. X follows easily from the corre-
sponding property for eY . Now

e ZY (X1X2) = Z�( ZY )⊗ idX1X2 ZY ◦ id ZY ⊗ eY (X1X2)−1 ⊗ id ZY ◦ id ZYX1X2 ⊗ �(Y )

= Z�( ZY )⊗ idX1X2 ZY ◦ id ZY ⊗ eY (X1)−1 ⊗ idX2 ZY
◦ id ZYX1 ⊗ eY (X2)−1 ⊗ id ZY ◦ id ZYX1X2 ⊗ �(Y )

= idX1 ⊗ Z�( ZY )⊗ idX2 ZY ◦ idX1 ZY ⊗ eY (X2)−1 ⊗ id ZY ◦ idX1 ZYX2 ⊗ �(Y )

◦ Z�( ZY )⊗ idX1 ZYX2 ◦ id ZY ⊗ eY (X1)−1 ⊗ id ZYX2 ◦ id ZYX1 ⊗ �(Y )⊗ idX2
= idX1 ⊗ e ZY (X2) ◦ e ZY (X1)⊗ idX2 :

In the third equality we have used the duality equation idY ⊗ Z�( ZY ) ◦ �(Y )⊗ idY = idY
and the interchange law.
In view of de7nition (3.10) of e ZY (X ) together with eY (1) = idY and the duality

equation we have e ZY (1) = id ZY . Now Lemma 3.2 implies invertibility of e ZY (X ) for
all X .
It remains to show that �(Y ) : 1C → Y ⊗ ZY is actually in

HomZ1(C)(1Z1(C); (Y; eY )⊗ ( ZY ; e ZY )) = HomZ1(C)((1; id); (Y ZY ; eY ZY ));

which in view of (3.5) amounts to

=

Z

Z

Z

Z

Y

Y

Y
_

Y
_

eY (Z )

eY (Z )_
(3.11)

With de7nition (3.10) of e ZY the right-hand side equals
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which coincides with the left-hand side of (3.11) as desired. That Z�(Y ) is a morphism
in Z1(C) is shown analogously. The composition of morphisms being the same in
Z1(C) as in C, �(X ); Z�(X ) inherit from C all equations needed to make Z1(C)
pivotal (spherical). If the pivotal structure of C is strict then the same clearly holds
for Z1(C).

3.3. Semisimplicity of Z1(C)

Lemma 3.10. Let C be semisimple spherical with simple unit. We assume that there
are only 1nitely many simple objects and that dimC �= 0. Let (X; eX ), (Y; eY )∈Z1(C).
Then the map EX;Y : HomC(X; Y )→ HomC(X; Y ) de1ned by

t

Y

X

Xi
Xi

_

eY (Xi)

eX (Xi)

�(Xi)

�(Xi)

_

_

EX,Y (t) = (dim C)-1 Σ di
i ��

is a projection onto HomZ1(C)((X; eX ); (Y; eY )) ⊂ HomC(X; Y ). Here {Xi; i∈�} is a
basis of simple objects and we abbreviate di = d(Xi). The family of maps EX;Y is a
conditional expectation in the sense that

EX;T (c ◦ b ◦ a) = c ◦ EY;Z(b) ◦ a (3.12)

if a∈HomZ1(C)((X; eX ); (Y; eY )), b∈HomC(Y; Z), c∈HomZ1(C)((Z; eZ); (T; eT )).

Proof. We compute
Z Y

X Z
X Z

Z Y

Xi

_

Xi =
_

Xj

Xi
 Σ di

�(Xi)
_

�(Xi)

Σ   Σ di
i j,�

p ′ j
i
,�

dim C . idZ    EX,Y (t) � eX (Z ) =
i��

t
t
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Σ Σ di
i j,�

Σ 
i,j,�

Σ  Σ dj
i j,�

Z Y Y Y

X Z X XZ

Z Z

Z

Xi

Xj

_

t

Xj

Xj

Xi

_Xi

_

t

q�
i,j

q′�i,j

didj
d(Z)

t ===

r′j
i�

Σ  Σ  dj
j i,�

YY

XX ZZ

ZZ

Xj

_
Xi

_
XjXj

t

Σ dj
i

t

= dim C . eY (Z ) � EX,Y (t)     idZ ==

Here {pj;(
i ; ( = 1; : : : ; NXj

Z;Xi
} is, for every j∈�, a basis in HomC(Xj; ZXi) with dual

basis {pj;(
i′ } such that pj;(

i′ ◦ pk;+
i = 1j;k1(+ idXj and idZXi =

∑
j;( p

j;(
i ◦ pj;(

i′ . We used
the fact that eX (·); eY (·) are half-braidings, i.e. natural w.r.t. the second argument.
Furthermore, the basis {q(

i; j} in HomC(Z; XjX Z–) and its dual basis are normalized such

that trZ(q
+
i; j′ ◦q(

i; j)=d(Z)1(+. We used that a basis together with its dual can be replaced
by another one provided the normalizations are the same.
Since the above computation holds for all Z ∈C we conclude that EX;Y (t) is in

HomZ1(C)((X; eX ); (Y; eY )). Property (3.12) for morphisms a; c in Z1(C) is obvious
since by (3.5) a; c can be pulled through the half-braidings, changing the subscript of
the conditional expectation E appropriately. In order to show that EX;Y is idempotent it
thus su[ces to show EX;X (idX )=idX , which follows from the de7nition of dimC.

Remark 3.11. (1) Since the conditional expectations depend also on the half-braidings
we should in principle denote them E(X;eX );(Y;eY ). We stick to EX;Y in order to keep the
formulae simple.
(2) The rôle of the assumption on the dimension is obvious: If dimC = 0 then the

map EX;X with the factor (dimC)−1 removed is identically zero on EndZ1(C)(X ), thus
we cannot use it to obtain a conditional expectation.
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(3) The proof uses a special instance of the ‘handle sliding’ which has been formal-
ized in [1], yet the present instance was discovered independently.

Lemma 3.12. For every X ∈C we have trX ◦ EX;X = trX , where trX is the trace on
EndC(X ) provided by the spherical structure.

Proof. Let t ∈HomC(X; X ). Using the fact that the spherical structure of Z1(C) is
induced from C we compute

dim C tr � EX,X (t) = Σ di 
i

 Σ di 
i

 Σ di 
i

 Σ
j,�XiXi

XX

Xi

_

Xi

_ Xi

_

Xj Xj

_

=t t

X

X
t�_

t

� (X)
__

� (X)
_

� (X)
_

� (Xj)
_

� (Xi)

=

Σ di Σ 
i j,�

= t t
Xi Xi Xi

_
Xi

_
X
_ = dim C tr (t) .Σ di

i
=

� (Xi)

In the 7rst step we have used Proposition 3.9, the second is based on standard prop-
erties of categories with duals. In the next step we use that, given a basis {t(} in
HomC(Xj; XiX ) with dual basis {t̂(}, {eX (Xi) ◦ t(} is a basis in HomC(Xj; XXi) with
dual basis {t̂( ◦ eX (Xi)−1}. Replacing one basis by the other leaves the expression
invariant.

A trace on a 7nite dimensional F-algebra A is a F-linear map A → F such that
tr(ab) = tr(ba). It is non-degenerate if for every a �= 0 there is b such that tr(ab) �= 0.

Lemma 3.13. Let A be a 1nite dimensional F-algebra and tr :A → F a non-degenerate
trace. If tr is vanishes on nilpotent elements then A is semisimple. Conversely, every
trace (not necessarily non-degenerate) on a semisimple algebra vanishes on nilpotent
elements.
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Proof. Well known, but see, e.g., [37].

Lemma 3.14. Let A be a 1nite dimensional semisimple algebra over F with a non-
degenerate trace tr :A → F. Let B be a subalgebra containing the unit of A and
assume there is a conditional expectation E :A → B (i.e. a linear map such that
E(bab′) = bE(a)b′ for a∈A; b; b′ ∈B) such that tr ◦ E = tr. Then B is semisimple.

Proof. Let 0 �= x∈B. By non-degeneracy of tr there is y∈A such that tr(xy) �= 0.
Now, using the properties of E we compute 0 �= tr(xy)= tr ◦E(xy)= tr(xE(y)). Since
E(y)∈B we conclude that the restriction trB ≡ tr � B is non-degenerate, too. By
Lemma 3.13 tr vanishes on nilpotent elements, thus the same trivially holds for trB.
Now the other half of Lemma 3.13 applies and B is semisimple.

Remark 3.15. Algebra extensions A ⊃ B admitting a conditional expectation E :A → B
(satisfying certain conditions) are well known as Frobenius extensions, cf., e.g., [20],
and are called Markov extensions if there is an E-invariant trace on A.

Now we can put everything together:

Theorem 3.16. Let F be algebraically closed and C a F-linear, spherical and semisim-
ple tensor category. We assume that there are only 1nitely many simple objects and
that dimC �= 0. Then the quantum double Z1(C) is spherical and semisimple.

Proof. Recall that by our de7nition of semisimplicity, C has direct sums, subobjects
and a simple unit. By our earlier results also Z1(C) has these properties and is spher-
ical. It therefore only remains to show that the endomorphism algebra of every object
of Z1(C) is a multi matrix algebra.
Let (X; eX )∈Z1(C). Then EndC(X ) is a 7nite dimensional multi matrix algebra

by semisimplicity of C. The trace on EndC(X ) provided by the duality structure is
non-degenerate, cf. e.g. [15, Lemma 3.1], and Lemmas 3.10, 3.12 provide us with
a trace preserving conditional expectation EX : EndC(X ) → EndZ1(C)((X; eX )). Thus
EndZ1(C)((X; eX )) is semisimple by Lemma 3.14 and therefore a multi matrix algebra
since F is assumed algebraically closed.

Remark 3.17. (1) Even if (X; eX ) is simple as an object of Z1(C) there is no
reason why X should be simple in C. Usually it is not. Since we do not know
a priori which non-simple objects of C appear in the simple objects of Z1(C) we
cannot dispense with the assumption that C has all 7nite direct sums as done, e.g.,
in [53].
(2) We brieTy remark on possibilities of generalization of the results of this section

suggested by Etingof. Whenever a tensor category has left and right duals the consid-
erations of Section 3.2 imply that also Z1(C) has left and right duals. Viz., replacing
ZY in Proposition 3.9 by the left dual ∗Y , one obtains a left dual (∗Y; e∗Y ) of (Y; eY ).
Here e∗Y (·) is invertible by virtue of the existence of the right dual Y ∗ in C. Also the
proof of semisimplicity generalizes, provided one makes suitable changes. E.g., in the
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de7nition of EX;Y in Lemma 3.10 one replaces

�(Xi)→ eXi ; Z�(Xi)→ "Xi ; di → dXi ◦ �Xi ;

where the morphisms eXi ; "Xi ; dXi ; �Xi are as in [37, Proposition 2.4]. For the di-
mension dimC one uses [37, De7nition 2.5], which does not assume the existence of
a pivotal/spherical structure, but only that C has two sided duals. (In a semisimple
category a left dual ∗Y is automatically two sided.) Now the proof essentially goes
through as before. Possibly also the results of the remainder of the paper hold in larger
generality, but we do not pursue this.
(3) Note that we do net yet know that Z1(C) has 7nitely many isomorphism classes

of simple objects. To show this will be our next aim.

4. Weak Morita equivalence of Z1(C) and C� Cop

4.1. A Frobenius Algebra in C� Cop

Throughout this section C will be a strict spherical tensor category with simple unit
over an algebraically closed 7eld F. We require that C is semisimple with 7nite set �
of isomorphism classes of simple objects and dimC �= 0. The set � has a distinguished
element 0 representing the tensor unit and an involution i �→ Z– which associates with
every class the class of dual objects. We choose objects {Xi; i∈�} in these classes,
which are arbitrary except that we require X0=1. We emphasize that we do not require
Xi = X Z–. This can be achieved by a suitable stricti7cation of the category if and only
if all self-dual objects are orthogonal [5]. (The terms real vs. pseudo-real do not seem
appropriate if F �= C.)) We choose once and for all square roots of the di = d(Xi),
as well as � =

√
dimC and (dimC)1=4 =

√
�. Let Nk

ij be the dimension of the space
Hom(Xk; XiXj), let {tk(ij ; ( = 1; : : : ; N k

ij} be a basis in Hom(Xk; XiXj) and let {tk(ij′} be
the basis in Hom(XiXj; Xk) which is dual in the sense of tk(ij′ ◦ tk;+ij = 1(+. Note that this
normalization of the dual basis di:ers from the one provided by the trace by a factor
of dk . The present choice is more convenient since otherwise the dimensions would
appear in the equation∑

k;(

tk(ij ◦ tk(ij′ = idXiXj :

The choice of the square roots, the Xi and of the bases {tk(ij } is immaterial but will be
kept 7xed throughout the rest of the paper, and the symbols �; Xi; N k

ij ; tk(ij will keep
the above meanings.
With these preparations we can embark on the 2-categorical approach to the quantum

double. We de7ne

A= C� Cop; (4.1)

X̂ i = Xi � X opi ∈ObjA: (4.2)
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By [37, Lemma 2.9], Cop;C ⊗F C
op and A are strict spherical in a canonical way.

Every X̂ i; i∈� is simple and if it is self-dual (i.e. if i = Z–) then it is orthogonal
irrespective of whether Xi is orthogonal or symplectic.
The following is a very slight generalization of [29, Proposition 4.10].

Proposition 4.1. Let F be quadratically closed and let C be F-linear semisimple spher-
ical with dimC �= 0. There is a normalized strongly separable Frobenius algebra
Q= (Q; v; v′; w; w′) in A= C� Cop (with �1 = �2 = �) such that

Q ∼=
⊕
i∈�

X̂ i: (4.3)

Proof. Clearly, d(Q) = dimC. By de7nition of Q there are morphisms

vi ∈Hom(X̂ i; Q); v′i ∈Hom(Q; X̂ i); i∈�;

such that

v′i ◦ vj = 1ij idX̂ i
;

∑
i

vi ◦ v′i = idQ: (4.4)

De7ning v = �1=2v0; v′ = �1=2v′0, (2.7) is trivial. With tk(ij′ ∈HomC(XiXj; Xk) ≡
HomCop (X

op
k ; X opi X opj ) the morphisms

t̂kij =

Nk
ij∑

(=1

tk(ij � tk(ij′ ∈HomA(X̂ k ; X̂ iX̂ j)

are independent of the choices of the bases {tk(ij }. Then

w = �−1=2
∑

i; j; k∈�

√
didj

dk
vi ⊗ vj ◦ t̂kij ◦ v′k (4.5)

is in HomA(Q;Q2), and w′ ∈HomA(Q2; Q) is de7ned dually. Eqs. (2.3) and (2.4) of
De7nition 2.1 are almost obvious. (Use Nj

0i = 1ij). The proof that w; w′ satisfy (2.1),
(2.2) and (2.5) is omitted since it is entirely analogous to the one in [29, p. 591].
Finally, w′ ◦ w = �idQ is proven by a simple computation observing t̂kij′ ◦ t̂kij = Nk

ij idX̂ k

and using∑
i; j

didjN k
ij =

∑
i; j

didjN Z–
j Zk =

∑
j

dkd2j = dk dimC = dk�2: (4.6)

Thus (Q; v; v′; w; w′) is a strongly separable Frobenius algebra in A.

Thus Theorem 2.2 applies and yields a spherical bicategory E. (E is strict as a
bicategory except for the existence of non-trivial unit constraints for 1B and strict
pivotal [6] except for isomorphisms 5X;Y : ZY ◦ ZX → X ◦ Y which are non-trivial when-
ever Ran(Y ) = Src(X ) =B.) In particular, we have a spherical tensor category B =
ENDE(B). In the rest of the paper A; Q; E and B will have the above meanings.
By construction Q contains the identity object of A with multiplicity 1, thus J; ZJ and
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1B are simple by [37, Proposition 5.3] and d(J ) = d( ZJ ) = �. (Condition (iii) of that
proposition can also easily be veri7ed directly.)

Lemma 4.2. dimB= (dimC)2.

Proof. Follows from dimB=dimA and dimA=(dimC)2. The former is [37, Propo-
sition 5.16] and the latter is obvious since the simple objects of C�Cop are those of
the form X � Y op with X; Y simple.

In the sequel we will write 1 instead of 1op in order to alleviate the notation.

4.2. A fully faithful tensor functor F :Z1(C)→ B

In this subsection we will construct a functor F :Z1(C) → B and prove that it
is fully faithful and monoidal. This already implies that Z1(C) has 7nitely many
isomorphism classes of simple objects, which is not at all obvious from De7nition 3.4.

Lemma 4.3. Let X; Y ∈C. There is a one-to-one correspondence between morphisms
u∈HomA((X � 1)Q;Q(Y � 1)) ≡ HomE( ZJ (X � 1)J; ZJ (Y � 1)J ) and families
{u[i]∈HomC(XXi; XiY ); i∈�}. With Z ∈C and v∈HomA((Y � 1)Q;Q(Z � 1)) ≡
HomE( ZJ (Y � 1)J; ZJ (Z � 1)J ) we have

Xk

Xi

Xi

Xj

Xj

XkX

Z

Y

v[ j]

u[i]

tk
ij
�

t ′ki
�
j

(v . u )[k] = (dk λ)-1  Σ   Σ  di dj
i, j�� �=1

Nij
k

(4.7)

Proof. Let u∈HomA((X � 1)Q;Q(Y � 1)). Then

v′j ⊗ idY�1 ◦ u ◦ idX�1 ⊗ vi

is in

HomA((X � 1)X̂ i; X̂ j(Y � 1)) = HomC(XXi; XjY )⊗F HomCop (X
op
i ; X opj );

which vanishes if i �= j. Thus

v′i ⊗ idY�1 ◦ u ◦ idX�1 ⊗ vi = u[i]� idX opi
de7nes u[i]∈HomC(XXi; XiY ). Conversely, given {u[i]∈HomC(XXi; XiY ); i∈�},

u=
∑
i

vi ⊗ idY�1 ◦ u[i]� idX opi ◦ idX�1 ⊗ v′i (4.8)

de7nes a morphism u∈HomA((X � 1)Q;Q(Y � 1)).
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Eq. (4.7) follows easily from (4.8), the de7nition [37, Proposition 3.8] of the
•-multiplication in E and the formula (4.5) for w; w′.

Lemma 4.4. Let u∈EndB(J (X � 1) ZJ ). Then the associated family {u[i]} satis1es
the braiding fusion equation

Xi
Xi

Xj

Xj

Xk
Xk

XjXi

Xk

X
X

X

X

X

t

t

u [i]

u [ j]

u [k]

= (4.9)

for all i; j; k ∈� and all t ∈HomC(Xk; XiXj) i> u satis1es

u

uu

w

w

Q
Q

Q QQ Q

=

X    1 X    1

X    1X    1

(4.10)

Proof. In view of de7nition (4.5) of w∈HomA(Q;Q2) and of (4.8), the left-hand side
of (4.10) is seen to equal

�−1=2
∑
i; j; k

√
didj

dk
vi ⊗ vj ⊗ idX�1 ◦ idX̂ i

⊗ u[j]� idX opj ◦ u[i]� idX opi ⊗ idX̂ j

◦ idX�1 ⊗ t̂kij ◦ idX�1 ⊗ v′k ;

whereas the right-hand side equals

�−1=2
∑
i; j; k

√
didj

dk
vi ⊗ vj ⊗ idX�1 ◦ t̂kij ⊗ idX�1 ◦ u[k]� idX opk ◦ idX�1 ⊗ v′k :

In view of the orthogonality relation satis7ed by the v′s, these two expressions are
equal i:

idX̂ i
⊗ u[j]� idX opj ◦ u[i]� idX opi ⊗ idX̂ i

◦ idX�1 ⊗ t̂kij

=t̂kij ⊗ idX�1 ◦ u[k]� idX opk ∀i; j; k ∈�:
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Inserting t̂kij =
∑

( t
k(
ij � tk(ij′ , this becomes

Nk
ij∑

(=1

(idXi ⊗ u[j] ◦ u[i]⊗ idXj ◦ idX ⊗ tk(ij )� tk(ij′

=

Nk
ij∑

(=1

(tk(ij ⊗ idX ◦ u[k])� tk(ij′ : (4.11)

Multiplying from the right with idXXk � tk(ij , we arrive at condition (4.9). Conversely,
�-tensoring (4.9) with tk(ij′ and summing over ( we obtain (4.11).

Proposition 4.5. There is a faithful functor F :Z1(C)→ B.

Proof. Let (X; eX )∈Z1(C). By Lemma 4.3 the half braiding {eX (Z); Z ∈C} provides
us with an element p0X in EndB( ZJ (X � 1)J ) ≡ HomA((X � 1)Q;Q(X � 1)). Since
eX (·) satis7es the braiding fusion relation (4.9), p0X satis7es (4.10). Now, multiplying
(4.10) from the left with w′ ⊗ idX�1 and using (2.6) we obtain

w′ ⊗ idX�1 ◦ idQ ⊗ p0X ◦ p0X ⊗ idQ ◦ idX�1 ⊗ w = �p0X ; (4.12)

which is just p0X • p0X = �p0X in EndE( ZJ (X � 1)J ). Thus with pX = �−1p0X ,

F((X; eX )) := ( ZJ (X � 1)J; pX ) (4.13)

is an object in B, which de7nes the functor F on the objects. We will mostly write
F(X; eX ) instead of F((X; eX )). Let (X; eX )∈Z1(C) with the above idempotent pX ∈
HomA((X ⊗ 1)Q;Q(X ⊗ 1)) ≡ EndE( ZJ (X � 1)J ) and similarly (Y; eY ); pY . Consider
now s∈HomZ1(C)((X; eX ); (Y; eY )) ⊂ HomC(X; Y ). Then condition (3.5) implies

idQ ⊗ (s� id1) ◦ pX = pY ◦ (s� id1)⊗ idQ: (4.14)

The element of u∈HomA((X � 1)Q;Q(Y � 1)) ≡ HomE( ZJ (X � 1)J; ZJ (Y � 1)J )
de7ned by (4.14) clearly satis7es pY • u • pX = u and is therefore a morphism in
HomE(( ZJ (X � 1)J; pX ); ( ZJ (Y � 1)J; pY )). That the map s �→ u is faithful follows
from the 7rst term in (4.14) and the fact that the eX (Xi); i∈�, and thus pX (as a
morphism in A) are invertible. This de7nes F on the morphisms, and F is faithful.
The simple argument proving that F respects the composition of morphisms is left to
the reader.

Proposition 4.6. The functor F is full.

Proof. We must show that every morphism in HomB(F(X; eX ); F(Y; eY )), where (X; eX ),
(Y; eY )∈Z1(C), is of the form F(s) with s∈HomZ1(C)((X; eX ); (Y; eY )). Now, the
morphisms in HomB(( ZJ (X � 1)J; pX ); ( ZJ (Y � 1)J; pY )) are those elements s in
HomB( ZJ (X � 1)J; ZJ (Y � 1)J ) which satisfy s = pY • s • pX . pX ; pY being
idempotents, every such s obviously is of the form s = pY • t • pX for some t ∈
HomB( ZJ (X � 1)J; ZJ (Y � 1)J ). By de7nition of B and by Lemma 4.3, s and t are
represented by elements {s[i]}; {t[i]} of ⊕i∈� HomC(XXi; XiY ). Given arbitrary t and
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setting s = pY • t • pX we will show that s[0]∈HomC(X; Y ) is in fact in
HomZ1(C)((X; eX ); (Y; eY )) and that

s[m] = idXm ⊗ s[0] ◦ eX (Xm) ∀m∈�;

which is equivalent to

s= idQ ⊗ (s[0]� id1) ◦ pX = F(s[0]):

Starting from the explicit statement of s= pY • t • pX we compute:

YXm

t ′mkl
�

t m
k l

�

Xm

Xl

Xk Xi Xj

X

t [i]dm�4 . s[m] =        Σ    Σ di dj dk
    i,j,k,l,�,� �,�

Xm

Xl

Xi

Y�(Xl)
__

s j
�
�
l-

XiXk

Xj

Xl�(Xi)

t[i]
t[i]

s′j�
�
l-

s′j�
�
l

s j
�
�
l

-

s′km
�
l
-

s′km
�
l
-

�(Xl)
_

�(Xl)
_

X

X

Xm

Xm

i, j, k,l��
�,�

  Σ   di dj dk
dm
dk dj

dl sk
m
�
l
-=

i,j,k,l��
�,�

  Σ  di dm dl
= sk

m
�
l
-

Xk

-

Xl

Xj

Xi

Xl

Xm �(Xl)− −
Y
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Xm

Xm

Xm

Xm

Xl

Y

Y

�(Xl)

�(Xi)

�(Xl)

Xi

_ _

X

X

_

= dm= dm
EX,Y (u)

i,l��
di dlΣ

t[i]

where u∈HomC(X; Y ) does not depend on m. (On the very left, pX ; pY and each of
the •-operations contribute one factor �. Furthermore, sk(

m Zl
, ( = 1; : : : ; N k

m Zl
is a basis in

Hom(Xk; XmXl) with dual basis s′. We do not use tk(
m Zl
since we cannot assume Xl = X Zl

without losing generality.) For m=0 we have Xm= 1 and thus s[0]= �−4EX;Y (u), thus
s[0]∈HomZ1(C)((X; eX ); (Y; eY )). Plugging this into the above equation for m �= 0 we
obtain s[m] = idXm ⊗ s[0] ◦ eX (Xm) and therefore s = F(�s[0]). We conclude that the
functor F is full.

Proposition 4.7. The functor F is strong monoidal.

Proof. First we observe that F(1Z1(C))=F(1C; idX )=( ZJJ; �−1idQ), which follows from
(4.13) by putting X = 1 and eX (Xi) = idXi ∀i. Comparing with [37, Theorem 3.12] we
see F(1Z1(C)) = 1B.
Now we have to show that F(X; eX )F(Y; eY ) and F((X; eX )(Y; eY )) are naturally

isomorphic. We compute

F(X; eX )F(Y; eY ) = ( ZJ (X � 1)J; pX )( ZJ (Y � 1)J; pY )

= ( ZJ (X � 1)Q(Y � 1)J; u1(X; Y ));

F((X; eX )(Y; eY )) = F(XY; eXY ) = ( ZJ (XY � 1)J; u2(X; Y ));

where

X    1 Y    1

Q Q

Q
Q

Q

Q

Q

u2(X,Y ) = �u1(X,Y ) = pX

pX

pY

pY

X    1

X    1X    1

Y    1

Y    1
Y    1
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Obviously, F is not strict. But with s(X; Y )∈HomE((X�1)(Y�1); (X�1)Q(Y�1))
and t(X; Y )∈HomE((X � 1)Q(Y � 1); (X � 1)(Y � 1)) de7ned by

X    1 Y    1

Q

Q

Q Q

QQ

s(X,Y ) =

pX pY

pX pY
t (X,Y ) = �

X    1 Y    1
X    1 Y    1

X    1 Y    1

we compute

Here the second equality follows (verify!) by repeated use of Eqs. (2.1)–(2.5). Using
pX •pX =pX , pY •pY =pY and the duality equation for Q we obtain t(X; Y )•s(X; Y )=
u2(X; Y ). Now,

pX

pX

pX

pY

pY

pY

X    1
X    1

Y    1
Y    1Q Q

Q Q

QQ

QQ

s (X,Y ) . t(X,Y ) = � = �-1

X    1 Y    1
X    1 Y    1



M. M�uger / Journal of Pure and Applied Algebra 180 (2003) 159–219 183

Here we used that pX ; pY come from half-braidings, implying that we have (4.10) and
its dual version by Lemma 4.4. (Take into account two factors of � which come from
the normalization of pX=Y .) It is easy to see that the last expression equals u1(X; Y ).
It remains to verify that the functor F is coherent in the sense of [34, XI.2]. The

computations present no di[culties and are simpli7ed by the fact that the categories
Z1(C) and B are strict except for the unit in B=EndE(B). We refrain from spelling
out the details.

4.3. F is essentially surjective

In order to conclude that F establishes an equivalence B
⊗∼=Z1(C) of tensor categories

it remains to prove that F is essentially surjective, viz. that for every object Y of B
there is (X; eX )∈Z1(C) such that F(X; eX ) ∼= Y . We begin with a result due to Izumi
[18].

Lemma 4.8. Let Y ∈C be simple. Then the 1-morphisms (Y�1)J , (1�Y op)J :B →
A and ZJ (Y � 1), ZJ (1� Y op) :A → B are simple. Furthermore,

(Y � 1)J ∼= (1� ZY op)J;

ZJ (Y � 1)∼= ZJ (1� ZY op):

Proof. Let Y; Z ∈C. By duality be have the isomorphism

HomE((Y � 1)J; (Z � 1)J )∼=HomE((Y � 1)J ZJ ; Z � 1)

= HomA((Y � 1)Q; Z � 1)

of vector spaces. In view of Q ∼=⊕i Xi � X opi this implies

HomE((Y � 1)J; (Z � 1)J ) ∼= HomC(Y; Z):

In particular, if Y ∈C is simple then (Y � 1)J ∈HomE(B;A) is simple, and so is
(1� Y op)J by a similar argument. Furthermore,

HomE((Y � 1)J; (1� ZY op)J ) ∼= HomE(Y � Y op; J ZJ ) = HomA(Y � Y op; Q):

Now, Y � Y op is simple and contained in Q with multiplicity one, thus these spaces
are one dimensional and

(Y � 1)J ∼= (1� ZY op)J:

Similar arguments apply to the A − B-morphisms.

Corollary 4.9. Let X; Y ∈C. Then there is Z ∈C such that
ZJ (X � Y op)J ∼= ZJ (Z � 1)J

and such that the isomorphisms

e ∈HomE( ZJ (X � Y op)J; ZJ (Z � 1)J ) ≡ HomA((X � Y op)Q;Q(Z � 1));

f ∈HomE( ZJ (Z � 1)J; ZJ (X � Y op)J ) ≡ HomA((Z � 1)Q;Q(X � Y op))
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can be chosen such that

e = v ⊗ ẽ; f = v ⊗ f̃

with ẽ∈HomA((X�Y op)Q; Z�1) and f̃∈HomA((Z�1)Q; X�Y op). (Alternatively,
one can 1nd morphisms of the form e = ẽ ⊗ v′, f = f̃ ⊗ v′.)

Proof. Using the lemma we compute

ZJ (X � Y op)J = ZJ (X � 1)(1� Y op)J ∼= ZJ (X � 1)( ZY � 1)J = ZJ (X ZY � 1)J:

We put Z = X ZY and denote by ê the isomorphism (1� Y op)J → ( ZY � 1)J provided
by the preceding lemma. Now the claim follows with ẽ = idX�1 × ê if we keep in
mind that tensoring ẽ with id ZJ (in E) amounts to tensoring with v in A, as follows
from the de7nition of E. f̃ is de7ned similarly. Alternatively, using the isomorphism
ZJ (X � 1) ∼= ZJ (1� ZX op) one obtains a solution with e = ẽ ⊗ v′, etc.

The lemma implies that every object of B is isomorphic to one of the form ( ZJ (X ⊗
1)J; pX ). This looks quite promising since also F(X; eX ) has this form. In fact, by
Lemma 4.3 and Lemma 3.3 we obtain a family of morphisms {eX (Y ): XY → YX ,
Y ∈C} natural w.r.t. Y . Yet, in order to conclude that this is a half-braiding (and
therefore ( ZJ (X ⊗ 1)J; p) = F(X; eX )) we need that p satis7es (4.10) and p[0] = idX .
Not every object of B satis7es these conditions as is exempli7ed, e.g., the object
ZJ (X � 1)J = ( ZJ (X � 1)J; p) where

p= id ZJ (X�1)J = v ⊗ idX�1 ⊗ v′ ∈HomA((X � 1)Q;Q(X � 1)):

One easily veri7es that p does not satisfy (4.10). In view of p[i] = 1i0idX it is also
clear that the corresponding eX (Y ) fails to be invertible for all Y .
The following result on the 2-category E is quite general in that it does not rely on

A= C� Cop.

Lemma 4.10. Let X ∈A and p = p • p∈EndE( ZJXJ ). Then there is Y ∈A, q = q •
q∈EndE( ZJYJ ) such that ( ZJYJ; q) ∼= ( ZJXJ; p) and in addition

Q Q

Q Q

Q QY Y

YY

= �
q q

q

(4.15)

Remark 4.11. Condition (4.15) implies q • q = q as is seen by multiplication with
w′ ⊗ idY from the left.
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Proof. Using the (non-strict) unit B−B morphism 1B=( ZJJ; �−1 idQ) we put (Y; q)=
1B(X; p) = (QX; �−1 idQ × p). The isomorphism ( ZJYJ; q) ∼= ( ZJXJ; p) was proven in
[37, Theorem 3.12]. We claim that q satis7es (4.15). In terms of (Y; q) (and keeping
in mind that Y = QX !) the left-hand side of (4.15) is given by

Q QX

p�-1

For the right-hand side we compute

= �-1 = �-1 � . �-2

Q Q
Q

Q Q

QX

X

X

p
p

p

p

p

In the last step we have used p • p = p. That the result coincides with the left-hand
side follows now from a standard computation using the properties of a Frobenius
algebra.

Proposition 4.12. Every object of B is isomorphic to one of the form ( ZJ (Z� 1)J; q)
where q∈EndB( ZJ (Z � 1)J ) satis1es (4.15) (with Y = Z � 1).

Proof. By the preceding lemma every object ( ZJ (X � Y op)J; p) of B is isomorphic
to one which satis7es (4.15), which allows us to assume this property in the rest of
the proof. By Corollary 4.9 there is Z ∈C such that ZJ (X � Y op)J ∼= ZJ (Z � 1)J . Let
e : ZJ (X � Y op)J → ZJ (Z� 1)J , f : ZJ (Z� 1)J → ZJ (X � Y op)J be a pair of mutually
inverse isomorphisms. Then with q = e • p • f we have ( ZJ (Z � 1)J; q) ∼= ( ZJ (X �
Y op)J; p). If we can show that also q satis7es (4.15) Lemma 4.4 applies and the claim
follows. Now by Corollary 4.9 Z; e; f can be chosen such that e=v⊗ ẽ; f=v⊗f̃, where
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ẽ; f̃ are mutually inverse 2-morphisms between (X ⊗ Y )J and (Z ⊗ 1)J . Therefore,

Q
Q

Z
Z

Z
Z

Q
Q

e

p

p

X

f

f

e

X

X

X

~

~
q = e .p .f = =

where the four-fold vertices denote triple (co)products. That q satis7es (4.15) is now
obvious from the respective property of p and f̃ • ẽ = id.

Proposition 4.13. The preceding proposition remains true if one adds the requirement
that q[0] = �−1idZ (notation of Lemma 4.3).

Proof. Let Z; q be as in the preceding proposition. Multiplying (4.15) with v′ ⊗ v′ ⊗
idZ�1 and using v′ ⊗ idZ�1 ◦ q = q[0] ⊗ v we obtain �q[0]2 = q[0]∈EndC(Z). Let
f : Z̃ → Z; g :Z → Z̃ be a splitting of the idempotent �q[0]. Then it is easy to verify
that with

q̃= idQ ⊗ (g� id1) ◦ q ◦ (f� id1)⊗ idQ
we have ( ZJ (Z̃� 1)J; q̃) ∼= ( ZJ (Z� 1)J; q). This q̃ still veri7es (4.15) and, in addition,
q̃[0] = �−1idZ̃ .

Now we are ready to state our 7rst main result.

Theorem 4.14. The tensor categories B and Z1(C) are equivalent as spherical cat-
egories, thus we have the weak monoidal Morita equivalence (in the sense of [37])
Z1(C) ≈ C� Cop. In particular,

dimZ1(C) = (dimC)2:

Proof. We have shown that every simple object in B isomorphic to the image under
F of a simple object in Z1(C). Since Z1(C) and B are both semisimple (in particular
closed under direct sums and subobjects) we conclude that F is essentially surjective.
Since F is also fully faithful we have an equivalence of categories by [34, Theorem
IV.4.1]. F being monoidal we have an equivalence of monoidal categories by [50,
I.4.4]. (This already implies that B and Z1(C) have the same dimension, since by
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X    1

� (X    1)

� (X    1)

X    1 Q

Q
_ _-� (X )

� (X )

eX(Xi )  =

_ _
- Xi

Xi

X

_ _
X

_
r ′

r

eX (X�)
_ peX 

= peX 

Fig. 1. e ZX (Xi) and peX .

[37, Proposition 2.4] the latter are well-de7ned independently of the chosen spherical
or ∗-structure and, of course, invariant under monoidal equivalence.)
It remains to show that the spherical structures are compatible. As to the conjugation

maps, we have

F(X; eX ) = ( ZJ (X � 1)J; peX ) = ( ZJ ( ZX � 1)J; peX );

F((X; eX )) = F(( ZX ; e ZX )) = ( ZJ ( ZX � 1)J; pe ZX ):

Putting together Proposition 3.9 and Lemma 3.2, e ZX (Xi) is as in Fig. 1, where the
pair of unlabeled morphisms is any solution of the duality equations. In view of the
de7nition of pX in Proposition 4.5 and of peX in [37, Theorem 5.14], cf. Fig. 1, it is
clear that peX = pe ZX and therefore

F(X; eX ) = F((X; eX )):

Now by Proposition 3.9, the spherical structure of Z1(C) is inherited from C, con-
cretely �Z1(C)(X; eX )=�C(X ). Considering how the spherical structures of E0 and E arise
from that of A in [37, Theorem 5.13] it is essentially obvious that F :Z1(C)→ B is
an equivalence of spherical categories irrespective of the fact that the latter is neither
strict monoidal nor strict spherical. We omit the easy details.

Remark 4.15. (1) In the case where C is the representation category of a 7nite dimen-
sional involutive semisimple and cosemisimple Hopf algebra H , Z1(C) is equivalent
[21, Theorem XIII.5.1] to the representation category of the quantum double D(H) and
our result is just the fact dimD(H) = (dimH)2.
(2) It seems likely that a simpler proof of the theorem can be given using the

interpretation of the tensor category B=ENDE(B) as bimodule category Q−Mod−Q,
together with the recent work [45].

5. Modularity of the quantum double

5.1. The ‘Tube algebra’

By de7nition [37] of E, every simple B−B morphism is contained in ZJ (X�Y op)J
for some simple X; Y . In view of Lemma 4.8 every simple B−B-morphism is in fact
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contained in ZJ (X�1)J for some simple X ∈C (as well as in ZJ (1� ZX op)J ). De7ning

Ŷ L =
⊕
i∈�

Xi � 1; Ŷ R =
⊕
i∈�

1� X opi ;

we conclude that either of ZJ Ŷ LJ; ZJ Ŷ RJ contains all simple B − B-morphisms. With

;L = EndE( ZJ Ŷ LJ ); ;R = EndE( ZJ Ŷ RJ )

we thus have a one-to-one correspondence between isomorphism classes of simple
B−B-morphisms and minimal central idempotents in ;L or, equivalently, in ;R. From
now on we will stick to ;L. By construction of E we have ;L = HomA(Ŷ LQ; QŶ L)
as a vector space. Thus

;L
∼=
⊕
i; j; k;l

HomA(XiXj � X opj ; XkXl � X opk )

∼=
⊕
i; j; k;l

HomC(XiXj; XkXl) ⊗F HomCop (X
op
j ; X opk )

∼=
⊕
i; j;l

HomC(XiXj; XjXl):

We therefore have

EndE( ZJ Ŷ LJ ) ≡ HomA(Ŷ LQ; QŶ L) ∼=
⊕
i; j; k

HomC(XiXj; XjXk) (5.1)

and in complete analogy to the proof of (4.7) one shows that the multiplication in ;L

is given by

Xj

Xm Xn

Xl

Xm Xn

Xk

XjXi

u(i,m,l)

v(l,n,k)

t ′ j
m
�
n

Nm
j
n

t j
m
�
n

(v .u) (i, j,k) = (dj �)-1 Σ   Σ dm dn
l,m,n�� �=1

(5.2)

Remark 5.1. (1) We observe that up to a di:erent normalization (5.1) and (5.2) co-
incide with Ocneanu’s de7nition of the ‘tube algebra’, cf. [44,14,18]. (The (ij|X |jk)
of Izumi corresponds to our u[i; j; k] ·dj=�.) Note, however, that we derive (5.1), (5.2)
from an intrinsic de7nition of the algebra ;L = EndE( ZJ Ŷ LJ ), which makes the corre-
spondence between the minimal central idempotents of ;L and the isomorphism classes
of simple objects in B completely obvious. (Compare this to the laborious proof in
[18].) The above considerations therefore completely clarify the role of the tube alge-
bra. We suspect that Ocneanu arrived at his de7nition of the tube algebra by similar
considerations.
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(2) Note that in the de7nition of ;L we could replace Ŷ L by

Ŷ N
L =

⊕
i∈�

Ni (Xi � 1)

with arbitrary {Ni}∈N�. The algebras EndE( ZJ Ŷ N
L J ), of which the tube algebra happens

to be the smallest, all have the same center, thus are Morita equivalent. We emphasize
that only this common center has an invariant meaning, and in fact it has a well-known
interpretation in terms of TQFTs, see Subsection 8.2.

Lemma 5.2. Let (X; eX )∈Z1(C) and Y ∈C. Then there is a isomorphism between
the vector spaces HomC(X; Y ) and HomB(F(X; eX ); ZJ (Y � 1)J ).

Proof. The proof is similar to the one of Proposition 4.6, but simpler. Let s∈
HomC(X; Y ) and let t ∈HomB( ZJ (X � 1)J; ZJ (Y � 1)J ) be de7ned (using Lemma 4.3)
by t[i] = 1i0s. Then the map < : s �→ s = t • p(X;eX ) ∈HomB(F(X; eX ); ZJ (Y � 1)J )
is injective since (t • p(X;eX ))[i] = �−1idXi ⊗ s ◦ eX (Xi), in particular (t • p(X;eX ))[0] =
�−1s. Let, conversely, s∈HomB(F(X; eX ); ZJ (Y � 1)J ), i.e. s = s • p(X;eX ) ∈
HomB( ZJ (X � 1)J; ZJ (Y � 1)J ). Then

Xk

Xm

Xk

Xk

Xl XlXm

Y
Y

X

X

s(l)

s(l)

Nm
k

n

dk �
2 . s(k) = Σ  Σ dm dl

m,l�� m,l���=1
=    Σ  Σ dm dl

�

dk
dm

t ′km
�
,l

s′mk,
�
l

tk
m
�
,l

sk
m
,
�
l

_

�(Xl)
_

Xk   �(Xl)
_

-

_

_

_
_

Xk Xk

Xm

Y Y

Xl Xl

Xk XkX X

 �(Xl)

 �(Xl)

_
-

s[l]__s [l]

_

= dk   Σ   Σ dl = dk  Σ  dl
 m,l�� � l��
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Putting k = 0 we obtain

Y

X

Xl

s [l]_
�2. s(0) = Σ dl_

l

and plugging this back into the preceding equation we obtain

s[k] = idXi ⊗ s[0] ◦ eX (Xi):

Thus s is in the image of <, which proves that < is an isomorphism.

Proposition 5.3. Let (X; eX )∈Z1(C) be simple and let NX
i =dimHomC(Xi; X ). Then

the (simple) object F(X; eX )∈B is contained in ZJ (Xi�1)J with multiplicity NX
i . Let

{p(
i }, {p(

i′} be bases in HomC(Xi; X ), HomC(X; Xi), respectively, normalized by p(
i′ ◦

p+
i =1(+ idXi . Then q(

i ∈HomE(F(X; eX ); ZJ (Xi�1)J ), q(
i′ ∈HomE( ZJ (Xi�1)J; F(X; eX ))

de1ned by

q(
i [k] =

(
d(X )
�2 di

)1=2
idXk ⊗ p(

i′ ◦ eX (Xk);

q(
i′ [k] =

(
d(X )
�2 di

)1=2
eX (Xk) ◦ p(

i ⊗ idXk

satisfy q(
i′ •q+

i =1(+ idF(X;eX ). The idempotent zi(X;eX )=
∑NX

i
(=1 q

(
i •q(

i′ in EndE( ZJ (Xi�1)J )
corresponding to the isotypic component of (X; eX ) is given by

zi(X;eX )[k] =
d(X )
�di

NX
i∑

(=1

idXk ⊗ p(
i′ ◦ eX (Xk) ◦ p(

i ⊗ idXk (5.3)

Remark 5.4. The choice of square root of d(X ) is immaterial, but it must be the same
in the equations de7ning q(

i and q(
i′ .

Proof. In view of the preceding lemma all that remains to be veri7ed is the normal-
ization. Since (X; eX ) is simple we have q(

i′ • q+
i = c(+ idF(X;eX ). Plugging q(

i [k]; q
(
i′ [k]

into (4.7) and comparing with the middle term of the computation in Lemma 3.10
(with Z = Xk) we see that

(q(
i′ • q+

i )[k] =
d(X )
�di

idXk ⊗ EX;X (p(
i ◦ p+

i′) ◦ eX (Xk)

=
trX ◦ EX;X (p(

i ◦ p+
i′)

�di
eX (Xk);
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since EX;X (p(
i ◦ p+

i′) is a scalar multiple of idX due to the simplicity of (X; eX ). Now,
by de7nition of the functor F we have idF(X;eX )[k] = �−1eX (Xk), thus by comparison
we 7nd c(+ = d−1

i trX ◦ EX;X (p(
i ◦ p+

i′). Computing

trX ◦ EX;X (p(
i ◦ p+

i′) = trX (p
(
i ◦ p+

i′) = trXi(p
(
i′ ◦ p+

i ) = di1(+;

where we used the invariance of the trace under the conditional expectation and cyclic
permutations, we obtain c(+ = 1(+ as claimed.
Now we can compute zi(X;eX ) =

∑
( q

(
i • q(

i′ as follows:

Xk

Xk

Xl Xm

X

Xk

Xk

Xl Xm

Xi

Xi

Xi

Xi

X

p′i
�

p′�i

p�
i

p�
i

t k
l
,
,
�
m

t ′l,
k,
m
�

=
d(X)
�di

	
�=1

Ni
X

d(X)

�2di
Σ
�=1�=1

Nlm
kNi

X

dldm

�dk
zi

(X,eX) [k] = ΣΣ
l,m��

We have pulled tk+lm′ through the braiding and used (4.6).

Proposition 5.5. Let (X; eX )∈Z1(C) be simple. The minimal central idempotent z(X;eX )
in ;L corresponding to F(X; eX ) is given by

z(X;eX )[i; j; k] = 1ik
d(X )
�di

NX
i∑

(=1

idXj ⊗ p(
i′ ◦ eX (Xj) ◦ p(

i ⊗ idXj ; (5.4)

where the {p(
i }, {p(

i′}, i∈�, (= 1; : : : ; NX
i are bases as in Proposition 5.3.

Proof. Since ZJ Ŷ LJ is a direct sum
⊕

i
ZJ (Xi � 1)J we only need to add up the

idempotents in EndE( ZJ (Xi � 1)J ), which we identi7ed in Proposition 5.3, inside
;L = EndE( ZJ Ŷ LJ ). With isomorphism (5.1) the claimed identity follows.

As a 7rst application of the tube algebra we can give an easy bound on the ‘size’
of the quantum double:

Corollary 5.6. The number #Z1(C) of isomorphism classes of simple objects of Z1(C)
satis1es

#Z1(C)6
∑
i; j∈�

dimHomC(XiXj; XjXi):
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Proof. By the equivalence Z1(C)
⊗� B and the above considerations we have #Z1(C)=

dim Z(;L). Since the center of ;L is spanned by the z(X;eX ) constructed above and since
z(X;eX )[i; j; k] = 0 if i �= k we have

Z(;L) ⊂
⊕
i; j

HomC(XiXj; XjXi);

which implies the bound.

Remark 5.7. If G is a 7nite abelian group whose order is non-zero in F then G−mod is
semisimple, symmetric and all simple objects have dimension one. Thus the right-hand
side of the above inequality equals |G|2. In view of Z1(G −mod) � D(G)−mod we
have #Z1(G −mod) = |G|2, which proves that the bound is optimal.

The next two subsections, which do not pretend much originality, will follow [18]
quite closely except for shortcuts in the proofs.

5.2. Invertibility of the S-matrix

In this subsection we will prove that the S-matrix

(Y, eY)(X, eX)

�((Y,eY))�((X,eX))

S((X,eX), (Y,eY))  =

of Z1(C) is invertible, thus Z1(C) is modular in the sense of Turaev [53]. The strategy
will be to de7ne a vector space isomorphism S of the subspace

;0 =
⊕
i; j∈�

HomC(XiXj; XjXi)

of ;L which we have seen to contain the center of ;L. We will prove that S leaves
Z(;L) stable and that the S-matrix of Z1(C) is the matrix representation of S � Z(;L)
w.r.t. the basis {d(X )−1z(X;eX ); (X; eX ) simple}.

Lemma 5.8. The application S :;0 → ;0 de1ned by

(5.5)
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on the direct summands, where are any solution of the duality equation for
Xj, X Z3, is a vector space isomorphism of order four.

Proof. The above map HomC(XiXj; XjXi) → HomC(X Z3Xi; XiX Z3) is an isomorphism by
duality. The same holds for S which is just a direct sum of such isomorphisms, since
the map (i; j) �→ (Z3; i) is a permutation of �×�. That S has order four is an obvious
consequence of sphericity of C.

Lemma 5.9. Let (X; eX ); (Y; eY ) be simple objects in Z1(C). Then

z(Y;eY )S(z(X;eX )) =
d(X )
d(Y )�2

S((X; eX ); (Y; eY )) · z(Y;eY ): (5.6)

Proof. With (5.4), (5.5), and (5.2) we compute

(z(Y;eY )S(z(X;eX )))[i; j; i]

Xj Xi

Xk

XlXk

XjXi

XiX

Y

t ′ jk
�
l

t j
k
�
l

qi



q ′i



p ′k
�

pk
�

= (dj �)-1 Σ  Σ  Σ  Σ
k,l �=1 �=1 
=1

Nk
j
l NX

k NY
i

dk dl
d(X) d(Y )
�dk �di
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qi



q ′i



p′k
�

pk
�

Xj

Xi Xj

Xi

t ′ jk
�
l

t j
k
�
l

Xk

Xl

X

Y eY(Xl)

eX(Xi)
-1

= (dj �)-1 	  	  	  	
k,l �=1 �=1 
=1

Nk
j
l NX

k NY
i

dk dl
d(X) d(Y )
�dk �di

where we have used Lemma 3.8. Replacing

Xk

Xk

Xj

Xl

Xl

Xj

byt j
k
�
l

s′lk
�
j

_
dj

dl(     )
1/2

�(Xk)

where {sl(Zkj′} is a basis in Hom(XkXj; Xl), and correspondingly for the dual basis, pulling

sl(Zkj′ through the half-braiding eY (·) and summing over l, ( we obtain
Xj Xi

Xk

Xi Xj

Xk

X

�(Xk)

� (Xk)
_

Y

q′
i

q

ip′�k

p�
k

= 
d(X ) d(Y )

di �
3 	  	  	

k

NX
k NY

i

�=1 
=1
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By sphericity of C, naturality of the eY (·) and
∑

k;+ p
+
k ◦ p+

k′ = idX this equals

Xj Xi

Xi Xj

�(X)

�(X)

X

X Y

X
_

_

=
d(X) d(Y )

di �
3

  	
NY

i


=1

q′
i

q

i

Using naturality of eX (·) we can pull q5
i through eX (Xi)−1. Furthermore, since (Y; eY )

is simple we have

�(X)
_

�(X)

�(X) �(X)

_

X

X

Y

YY

Y

eX(Y )-1

eY (X)
=

_
eY (X)

_

eX(Y)_
=

S((X,eX),(Y,eY))

d (Y)
idY ,

and (5.6) follows by comparison with (5.4).

Proposition 5.10. S maps the center of ;L into itself. The modular matrix S is
invertible.

Proof. Summing (5.6) over all classes of simple (Y; eY ) and using
∑
(X;eX ) z(X;eX ) =1;L

we obtain

S

(
z(X;eX )
d(X )

)
=
∑
(Y;eY )

�−2S((X; eX ); (Y; eY ))
z(Y;eY )
d(Y )

; (5.7)

whence the 7rst claim. Therefore the isomorphism S :;0 → ;0 restricts to Z(;L)
and the matrix �−1S(Z·; ·) expresses the action of S � Z(;L) in terms of the basis
{d(X )−1z(X;eX )}. Thus S is invertible.
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Remark 5.11. (1) Note that �2 =dimC=
√
dimZ1(C). This is the correct normaliza-

tion since (dimM)−1=2S is known to be of order four in every modular category M
[53,47].
(2) An alternative proof of the modularity of Z1(C) and of dimZ1(C) = (dimC)2

could be given as follows. If C satis7es the assumptions of our Theorem 1.2, there
exists a 7nite dimensional quantum groupoid H such that C is monoidally equivalent
to the category H −Mod of left modules over H . In [40], the quantum double of 7nite
dimensional quantum groupoids was de7ned, and the category D(H)−Mod was shown
to be modular. Modularity of Z1(C) follows, provided one proves the equivalence
Z1(C) � D(H)−Mod of braided tensor categories. Proceeding in analogy to the Hopf
algebra case [21], this should not present any serious di[culty. Yet, we think that a
direct categorical proof which avoids weak Hopf algebras is more satisfactory.
(3) The tensor category B= ENDE(B) de7ned in [37] is known to be equivalent

to the category of Q − Q-bimodules, cf. [37, Remark 3.18]. Combining this with the
ideas of [45], it should be possible to give a considerably simpler proof of the braided
equivalence Z1(C) � B.

In order to give the promised analogue of the (rather trivial) observation Z1(Z0(S))=
{idS} from the Introduction we need the following

De�nition 5.12. The center Z2(C) of a braided monoidal category C is the full sub-
category de7ned by

ObjZ2(C) = {X ∈ObjC | c(X; Y ) = c(Y; X )−1 ∀Y ∈ObjC}:

Obviously the subcategory Z2(C) is symmetric, contains the monoidal unit and is
stable w.r.t. direct sums, retractions (in particular isomorphisms, thus replete) and duals.

Corollary 5.13. The category Z2(Z1(C)) is trivial, i.e. all objects are direct multiples
of the monoidal unit.

Proof. It is well known that a semisimple braided category A containing a simple
object X �∼= 1 in Z2(A) is not modular. (X ∈Z2(A) implies S(X; Y ) = d(X )d(Y ) for
all Y . This is colinear to S(1; Y ) = d(Y ).)

Remark 5.14. One can in fact prove [7] that C is modular i: dimC �= 0 and the center
Z2(C) consists only of the direct multiples of the unit or, equivalently, i: all simple
objects of Z2(C) are isomorphic to the unit object. We will show this in Section 7 as
a byproduct of a more general computation.

Remark 5.15. There is little doubt that a more conceptual understanding of the above
proof (and of the subsequent subsection) can be gained by looking at them in the
light of Lyubashenko’s works [31,32]. The latter also raise the question whether there
is a generalization to non-semisimple Noetherian categories. We hope to pursue this
elsewhere.
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Remark 5.16. It is natural to ask whether there are higher dimensional analogues
to the above result in d = 1 and the trivial case d = 0 mentioned in the Introduc-
tion. (See [3] for a review of the theory of n-categories.) Thus, considering the cen-
ter constructions in d = 2 [4,9], can one show that Z(2)

3 (Z
(2)
2 (C)) is trivial? Here

C;Z(2)
2 (C);Z

(2)
3 (Z

(2)
2 (C)) are (semisimple spherical) braided, sylleptic and symmetric

2-categories, respectively.

5.3. Computation of the Gauss sums

If C is a braided spherical tensor category a theorem of Deligne, cf. [56, Proposition
2.11], implies that Z1(C) is a ribbon category (or balanced). Namely,

�(X )

�(X )

_

_

_
X

X

X
_ for X � C�X  =

de7nes a natural automorphism {�X ; X ∈ObjC} of the identity functor which satis7es
�XY = �X ⊗ �Y ◦ c(Y; X ) ◦ c(X; Y ) ∀X; Y;
� ZX = �X ; ∀X:

(A similar results hold for ∗-categories, cf. [30].) For the simple objects we have
�X = !X idX with !X ∈ F∗.
The quantum double Z1(C) is braided and by the arguments in Section 3 we know

that it has a spherical structure which is induced by the one on C. We will show that
the numbers !(X;eX ) can be computed in terms of the tube algebra and will compute
the Gauss sum

�±(Z1(C)) =
∑
(X;eX )

!±1
(X;eX )d(X; eX )

2;

which plays an important role in the construction of topological invariants.
Following [18] we consider the element t ∈;L de7ned by

t[i; j; k] =
�
di

1ik1ij idX 2i : (5.8)

It will turn out that t is in the center of ;L.

Lemma 5.17. For simple (X; ex)∈Z1(C) we have

tz(X;eX ) = !−1
(X;eX )z(X;eX ):
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Proof. From (5.2), (5.4) and (5.8) we obtain

Xj Xi

Xi
Xm

Xm

Xi Xj

X

t ′ jm
�
i

t j
m
�
i

p′i
�

pi
�

	  	  	
�=1 �=1

Nj
mi NX

i

�ik
d(X)�
�di dj�di

dm di 

m��
(tz(X,eX)) [i,j,k]  =

p′k
�

p′i
�

pi
�

pi
�

�=1 �=1 �=1m��
	  	  	  	�ik

d(X)
�di

=�ik
d(X)
�di

=
N X

iNX
iNj

mi

X

X

m

Xi XiXj Xj

Xj Xi

sj
m
i
�_

�(Xi)
__

Xj Xi�(Xi)

�(Xi)

�(Xi)

_

_

_

_

Now the claim is a consequence of the following computation:

Xi Xi Xi Xi Xi

XXXXX

p′i
�

pi
�

pi
�

p′i
� p′i

�

==== = 
-1
(X,eX) p′�i  ,

which is justi7ed by the same arguments as in the proof of Lemma 5.9. Here we
used standard properties of the spherical structure in the 7rst and third equalities and
naturality of the half-braiding eX (·) w.r.t. the second argument in the second equality.
The rest follows since (X; eX ) is simple.
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Proposition 5.18. We have

�±(Z1(C)) = dimC:

Proof. In view of
∑

z(X;eX ) = 1;L the lemma implies

t =
∑
(X;eX )

!−1
(X;eX )z(X;eX );

which proves that t is central in ;L. To this equation we apply the linear form ?∈;∗
L

?(x) = �
∑
i∈�

di trXi(x[i; 0; i]):

On one hand by (5.8) we clearly have ?(t) = �2. On the other hand with (5.4) we
compute

?(z(X;eX )) = d(X )
∑
i∈�

trXi


 NX

i∑
(=1

p(
i′ ◦ p(

i


= d(X )

∑
i∈�

diNX
i = d(X )2:

Putting everything together we obtain �−(Z1(C)) = �2 = dimC. The equality for �+
follows from dimZ1(C)=(dimC)2 and the fact �+(M)�−(M)=dimM, which holds
for every modular category M [53,47].

This completes the proof of Theorem 1.2.

Remark 5.19. (1) A modular category satisfying �+(C) = �−(C) gives rise to an
anomaly-free surgery TQFT, cf. [53]. Thus for quantum doubles the construction of
the associated TQFTs simpli7es considerably.
(2) The representation category of a rational conformal quantum 7eld theory is a

braided ∗-category and the central charge c∈R of the CQFT is related, cf. e.g. [47],
to the Gauss sums �−(C) by

�−(C)
|�−(C)| = exp

(
2<icC
8

)
:

Since the Gauss sum of a quantum double is given by �−(Z1(C)) = dimC, thus
positive, we conclude that the ‘central charge’ of a double satis7es

cZ1(C) ≡ 0 (mod 8):

6. The quantum double of a ∗-category

Consider the quantum double Z1(C) of a ∗-category C. If s∈HomZ1(C)

((X; eX ); (Y; eY )) ⊂ HomC(X; Y ) then clearly s∗ ∈HomC(Y; X ). It does, not, however,
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follow that s∗ ∈HomZ1(C)((Y; eY ); (X; eX )). But there is a suitable full subcategory of
Z1(C) which is a ∗-category.

De�nition 6.1. Let C be a tensor ∗-category. Then the unitary quantum double Z∗
1 (C)

is de7ned as Z1(C) except that the half-braidings eX (Y ) are required to be unitary,
not just invertible.

Lemma 6.2. Let C be a tensor ∗-category. Then Z∗
1 (C) is a ∗-category.

Proof. For s∈HomZ1(C)((X; eX ); (Y; eY )) ⊂ HomC(X; Y ) we have

idZ ⊗ s ◦ eX (Z) = eY (Z) ◦ s ⊗ idZ ∀Z:
Starring this equation and using eX (Z)∗ = eX (Z)−1 we obtain

idZ ⊗ s∗ ◦ eY (Z) = eX (Z) ◦ s∗ ⊗ idZ ∀Z;
thus s∗ ∈HomZ1(C)((Y; eY ); (X; eX )).

In the applications of the quantum double to operator algebras, like to the asymp-
totic subfactor [18] or quantum 7eld theory [24], one is mainly interested in the uni-
tary quantum double. In order for the results of Theorem 1.2 to remain valid for
Z∗
1 (C) ⊂ Z1(C) one must show Z∗

1 (C) that is equivalent to Z1(C) as a tensor
category. Given an isomorphism s :X → Y in a W ∗-category we can use polar de-
composition [16] to obtain a unitary morphism s̃ :X → Y . But we cannot construct
a unitary half-braiding in this way since it is not clear that the unitaries eX (Z),
Z ∈C can be chosen such that naturality (3.1) and the braid relation (3.2) hold.
Therefore a global approach is needed, which we develop using our machinery from
Section 4.
Let C be a ∗-category with conjugates, simple unit and 7nitely many simple ob-

jects. All dimensions d(X ) are positive, and we choose the square roots of the latter
and of dimC to be positive. Reconsidering the constructions of Section 4 we now
choose the bases {tk(ij } in HomC(Xk; XiXj) to be orthonormal, i.e. tk(ij′ = t∗k(ij , and sim-
ilarly v′i = v∗i . Then v′ = v∗ and w′ = w∗, such that the considerations of [37, Section
5.3] apply. We thus obtain a ∗-bicategory E∗ ⊂ E which is equivalent to E. The
considerations in Sections 4 and 5 of this paper remain essentially unchanged except
for replacing �(X ); Z�(X ) by standard solutions rX ; ZrX of the conjugate equations [30]
everywhere.

Lemma 6.3. Let C be a ∗-category. Let (X; eX )∈Z1(C) and F(X; eX ) =
( ZJ (X � 1)J; pX ). Then the idempotent pX ∈EndE( ZJ (X � 1)J ) satis1es pX = p#X
i> eX (Z) is unitary for all Z .

Proof. We recall from Proposition 4.5 that pX is given by

pX = �−1
∑
i

vi ⊗ idX�1 ◦ eX (Xi)� idX opi ◦ idX�1 ⊗ v′i :
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In view of the de7nition [37, Section 5.3] of the involution # on EndE( ZJ (X � 1)J ) ≡
HomA( ZJ (X � 1)JQ;Q ZJ (X � 1)J ) we have

where e∗i ≡ eX (Xi)∗ � idX opi and r = w ◦ v : 1 → Q2. In view of (4.3) it is clear that
there are uniquely determined r̂i : 1 → X̂ Z– ⊗ X̂ i; i∈� such that

r =
∑
i

v Z– ⊗ vi ◦ r̂i :

Using idQ ⊗ r∗ ◦ r ⊗ idQ = idQ one easily shows
idX̂ i

⊗ r̂∗i ◦ r̂ Z– ⊗ idX̂ i
= idX̂ i

:

(This amounts to the identi7cation r̂i= r̂ Z– which is possible since all the self-conjugate
X̂ i; i∈� are orthogonal.) Thus

v∗i ⊗ idQ ◦ r = idX̂ i
⊗ v Z– ◦ r̂ Z–; idQ ⊗ v∗i ◦ r = v Z– ⊗ idX̂ i

◦ r̂i

and we obtain

X    1

X    1

Q

Q

vi

e*
i

v*
i

Xi
ˆ

Xi
ˆ

p#
X = �-1 	

i

ri
*ˆ_

rî

_

_

This equals pX i:

idX Z–X ⊗ Zr∗i ◦ idX Z– ⊗ eX (Xi)∗ ⊗ idX Z– ◦ ri ⊗ idXX Z– = eX (X Z–) ∀i∈�:

Considering Lemma 3.8, this is the case i: eX (Xi)∗=eX (Xi)−1 for all i∈�. In view of
Lemma 3.3 and the fact that the x(i occurring in its proof are automatically isometries,
this is equivalent to unitarity of eX (Z) for all Z .
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Theorem 6.4. Let C be a tensor ∗-category with simple unit, 1nitely many simple
objects, conjugates, direct sums and subobjects. Then Z∗

1 (C) is monoidally equivalent
to Z1(C), thus modular.

Proof. Let (X; eX )∈Z1(C) and ( ZJ (X ⊗1)J; pX )=F(X; eX ). Since EndE( ZJ (X ⊗1)J ) is
a 7nite dimensional von Neumann algebra it contains an orthogonal projection qX=q2X=
q∗X and an invertible element s such that spX s−1=qX . It is clear that ( ZJ (X�1)J; qX ) ∼=
( ZJ (X � 1)J; pX ), and by the lemma there is a unitary half-braiding ẽX (·) such that
F(X; ẽX ) = ( ZJ (X � 1)J; qX ). Thus

Z∗
1 (C)

⊗� B∗
⊗� B

⊗� Z1(C);

where B∗ ≡ EndE∗(B). (The equivalence B∗ ∼= B has already been demonstrated in
[37, Proposition 5.6].)

7. The quantum double of a braided category

For the moment, let C be any (strict) braided monoidal category. Given such a
category C we denote by C̃ the braided monoidal category which coincides with C as
a monoidal category, but has the braiding

c̃(X; Y ) = c(Y; X )−1:

It is well known (e.g., [21, Proposition XIII.4.3]) that for a braided monoidal cate-
gory C there is a strict braided monoidal functor I :C → Z1(C) given by

I(X ) = (X; eX ) with eX (·) = c(X; ·)
I(f) = f

on the objects and morphisms, respectively. I is full, faithful and injective on the
objects, thus an embedding of C into Z1(C).
Now, also C̃ embeds into Z1(C) via the functor Ĩ de7ned by

Ĩ(X ) = (X; ẽX ) with ẽX (·) = c̃(X; ·);
Ĩ(f) = f:

Lemma 7.1. I(C) and Ĩ(C) are replete full subcategories of Z1(C).

Proof. By de7nition, (Y; eY )∈Z1(C) being isomorphic to I(X ) = (X; eX ) (where
eX (Z) = c(X; Z)) means that there is an isomorphism u :X → Y in C such that
eY (Z)= idZ ⊗u◦ex(Z)◦u−1⊗ idZ . With eX (Z)=c(X; Z) and naturality of the braiding c
this implies eY (Z)=c(Y; Z) and thus (Y; eY )=I(Y ). Thus I(C) is replete. The proof for
Ĩ(C̃) clearly is the same. That I(C) and Ĩ(C) are full subcategories of Z1(C) follows
from naturality of the braiding in C, which implies that every morphism u :X → Y
in C automatically satis7es condition (3.1) in De7nition 3.1 and thus is a morphism
from (X; c(X; ·)) to (Y; c(Y; ·)).
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De�nition 7.2. Two subcategories A;B of a braided tensor category are said to com-
mute i: c(X; Y ) ◦ c(Y; X ) = idYX for all X ∈A; Y ∈B. For a braided monoidal cate-
gory C and a subcategory A the relative commutant C ∩ A′ is the full subcategory
de7ned by

ObjC ∩A′ = {X ∈ObjC | c(X; Y ) ◦ c(Y; X ) = idYX ∀Y ∈ObjA}:
The properties of the braiding imply that C ∩ A′ is monoidal and stable under

isomorphisms (thus replete), direct sums, retractions and two-sided duals. When there
is no danger of confusion about the ambient category C we write also simply A′.
Note that Z2(C) = C ∩ C′, which justi7es the terminology center.

Proposition 7.3. Let C be braided monoidal. Then

Z1(C) ∩ I(C)′ = Ĩ(C̃);

Z1(C) ∩ Ĩ(C̃)′ = I(C):

Proof. By de7nition, Z1(C) ∩ I(C)′ is the full subcategory of Z1(C) whose objects
(X; eX ) satisfy

c((X; eX ); (Y; eY )) ◦ c((Y; eY ); (X; eX )) = id(Y;eY )(X;eX ) ∀(Y; eY )∈�(C):

Using the de7nition of I and the de7nition of the braiding in Z1(C) by c((X; eX );
(Y; eY )) = eX (Y ) we obtain

ObjZ1(C) ∩ I(C)′ = {(X; eX )∈Z1(C) | eX (Y ) ◦ c(Y; X ) = idYX }:

But this amounts to

ObjZ1(C) ∩ I(C)′ = {(X; eX ) |X ∈C; eX (Y ) = c(Y; X )−1};

which is nothing but Obj Ĩ(C̃). The second equality is proven in the same way.

Remark 7.4. As an obvious consequence we see that the subcategories I(C) and Ĩ(C̃)
of Z1(C) are equal to their second commutants: I(C)′′ = I(C). Note that this holds
without any technical assumptions on C. See Remark 7.9 below for remarks on a
general double commutant theorem.

The next observation provides another link between the centers Z1 and Z2 (besides
the triviality of Z2(Z1(C)) stated by Theorem 1.2). It can be interpreted as saying
that I(C) ∨ Ĩ(C̃), the monoidal subcategory of Z1(C) generated by I(C) ∼= C and
Ĩ(C̃) ∼= C̃, is an amalgamated product over their intersection Z2(C).

Lemma 7.5. Let C be braided. Then in Z1(C) =Z1(C) we have

I(C) ∩ Ĩ(C̃) = I(Z2(C)):
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Proof. Obviously, I(X )= Ĩ(Y ) is equivalent to X = Y and c(X; ·)= c̃(X; ·) and thus to
X ∈Z2(C).

The following results are stated in somewhat greater generality than needed here
since we have other applications in mind, cf. Remark 7.9.

Lemma 7.6. Let C be monoidal and semisimple with two-sided duals. Let K, L
be full monoidal subcategories which are semisimple (i.e. closed under direct sums
and retractions) and have trivial intersection K ∩ L in the sense that every object
contained both in K and L is a multiple of the tensor unit. If K1; K2 ∈K and
L1; L2 ∈L then

HomC(K1L1; K2L2) ∼= HomK(K1; K2)⊗F HomL(L1; L2): (7.1)

More precisely, the linear maps

⊗ : HomK(K1; K2)⊗F HomL(L1; L2)→ HomC(K1L1; K2L2)

induced by (k; l) �→ k ⊗ l are isomorphisms for all K1; K2; L1; L2. If K1; K2 ∈K;
L1; L2 ∈L are simple then K1L1; K2L2 ∈C are simple. They are isomorphic i> K1 ∼=
K2, L1 ∼= L2.

Proof. By duality we have

HomC(K1L1; K2L2) ∼= HomC( ZK2K1; L2 ZL1):

Now ZK2K1 ∈K and L2 ZL1 ∈L, and since K;L are monoidal subcategories and closed
w.r.t. retractions, all subobjects of ZK1K1; L2 ZL1 are in K and L, respectively. Since
the monoidal unit 1 is (up to isomorphism) the only simple object common to K and
our categories are semisimple, all morphisms f : ZK2K1 → L2 ZL1 thus factorize through
the monoidal unit:

HomC( ZK2K1; L2 ZL1) ∼= HomC( ZK2K1; 1)⊗F HomC(1; L2 ZL1):

Using duality again we obtain (7.1). Thus HomC(K1L1; K2L2) and HomK(K1; K2) ⊗F
HomL(L1; L2) have the same dimension and the ⊗-product on Hom(K1; K2) ×
Hom(L1; L2) extends to an isomorphism. The remaining claims are obvious conse-
quences.

Proposition 7.7. Let C be braided monoidal and semisimple with two-sided duals.
Let K; L be semisimple full monoidal subcategories which commute and have
trivial intersection. Then the full monoidal subcategory K ∨ L of C generated
by K and L (by tensor products and direct sums) is equivalent as a braided
monoidal category to K�L. If C is spherical then this is an equivalence of spherical
categories.

Proof. Consider the functor T :K ⊗F L → K ∨ L de7ned by X � Y �→ X ⊗ Y .
By the above it is full and faithful. In order to prove that T is strong monoidal we
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compute

T (X � Y )⊗ T (Z �W ) = X ⊗ Y ⊗ Z ⊗ W;

T ((X � Y )⊗ (Z �W )) = T ((X ⊗ Z)� (Y ⊗ W )) = X ⊗ Z ⊗ Y ⊗ W:

Now the family

F2(X � Y; Z �W ) = idX ⊗ c(Y; Z)⊗ idW
of morphisms T (X � Y ) ⊗ T (Z �W ) → T ((X � Y ) ⊗ (Z �W )) clearly is natural
and makes T strong monoidal. The easy proof of the coherence condition is left to
the reader. In order to show that T is a braided tensor functor we must prove that the
diagram

T (X � Y )⊗ T (Z �W )
cC−−−−−→ T (Z �W )⊗ T (X � Y )

F2

� F2

�
T (X � Y ⊗ Z �W ) −−−−−→

T (cK�L)
T (Z �W ⊗ X � Y )

commutes, where cK�FL = cK � cL is the direct product braiding. Using the def-
inition of T and F2 and taking into account that K and L commute this is an
easy exercise. Now the functor T extends uniquely (up to natural isomorphism) to
K�L=K⊗F L

⊕
, remaining braided monoidal by naturality of the braiding. This

extension is essentially surjective, thus an equivalence of braided spherical categories.
That the equivalence respects spherical structures (if present) is obvious.

Corollary 7.8. Let C be braided monoidal and semisimple with two-sided duals (and
spherical structure). Let K ⊂ C be a semisimple full monoidal subcategory which
has trivial center Z2(K) =K ∩K′. Then we have the equivalence

K� (C ∩K′)
⊗�br K ∨ (C ∩K′) ⊂ C

of braided (spherical) categories.

Proof. The subcategory L=C∩K′ commutes with K. Furthermore, K∩L=K∩
K′ =Z2(K) is trivial by assumption. Thus the proposition applies.

Remark 7.9. If we knew that K∨ (C∩K′)=C, we could conclude that C is equiv-
alent, as a braided tensor category, to the direct product K� (C ∩ K′). In [39] we
will prove that this is indeed the case if C is a modular category. Thus whenever
a modular category C contains a modular category K as a full tensor subcategory

then C
⊗�br K�L, where L = C ∩ K′ is also modular. As a consequence, every

modular category is a (7nite) direct product of prime (or simple) ones, usually in
a non-unique way. The proof relies on the following double commutant theorem: if
C is a modular category and K is a semisimple monoidal subcategory closed under
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duality then (i) K′′=K and (ii) dimK ·dimK′=dimC. Here we are interested only
in the full inclusion I(C) ⊂ Z1(C) where C is modular, which can be treated with-
out the full strength of the double commutant theorem. (Recall that we have proven
Z1(C) ∩ (Z1(C) ∩ I(C)′)′ = I(C).)

Theorem 7.10. Let C be a modular category. Then there is a canonical equivalence

Z1(C)
⊗�br C� C̃

of braided tensor categories.

Proof. We apply the corollary to Z1(C) and the subcategory I(C). The latter is braided
isomorphic to C, thus has trivial center. Therefore, as braided spherical categories

C� C̃ ∼= I(C)� Ĩ(C̃) = I(C)�Z1(C) ∩ I(C)′ � I(C) ∨ I(C)′:

Thus, we are done if we can show that the full subcategory I(C) ∨ Ĩ(C̃) exhausts
Z1(C). If we assume C to be a ∗-category then also Z∗

1 (C) � Z1(C) is. By the
above, we have dim (I(C)∨ Ĩ(C̃))=dim (C� C̃)=(dimC)2, which coincides with the
dimension of Z1(C) by our main theorem. Since dim (I(C)∨ Ĩ(C̃)) is a full semisimple
subcategory of Z1(C) the categories must coincide. This argument does not work if
C is not a ∗-category. We therefore give another proof which works in generality.
To this purpose we show that the minimal central idempotents of ;L corresponding

to the simple objects I(Xk)Ĩ(Xl)∈Z1(C); k; l∈� sum up to the unit of ;L. By the
de7nitions of I; Ĩ we have I(Xk)Ĩ(Xl) = (XkXl; eXkXl(·)) with

eXkXl(Z) = c(Xk; Z)⊗ idXl ◦ idXk ⊗ c(Z; Xl)−1:

Thus according to Proposition 5.4 the sum over the corresponding minimal central
idempotents in ;L is given by

Xj

Xj

XlXk

Xi

Xi

	 z(I(Xk) I (Xl))
~

k,l
[i, j,n] =

�in
di

	  	
k,l �=1

dk dl

Ni
kl
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Computations which are identical to those in Lemma 3.10 (except for turning an over-
into an under-crossing) show that the right-hand side equals

Xj
Xj

Xk Xk

XjXj

Xi
Xi

Xk Xk

XiXi

_
_

= 	 dk
k

 	 dk
k

=

But this is nothing else than

=

(∑
k

dkS(Xk; Xj)

)
c(Xj; Xi)−1 =

(∑
k

dkS(Xk; Xj)

)
c(Xi; Xj): (7.2)

Since C is assumed modular we have
∑

k dkS(Xk; Xj) = 1j;0 dimC and thus
∑

k;l

z(I(Xk)Ĩ(Xl))


 [i; j; n] = 1in1j;0 dimC idXi :

The reader is invited to convince himself that this is the unit of the tube algebra ;L

by plugging it into (5.2).

The method used in the proof allows to prove the following characterization of
modular categories, which appeared in [7].

Corollary 7.11 (of proof). Let C be a F-linear semisimple spherical braided tensor
category with 1nitely many simple objects. Then C is modular i> dimC �= 0 and
Z2(C) is trivial.

Proof. If C is modular then dimC �= 0 [53] and Z2(C) is trivial. If, conversely,
Z2(C) is trivial then for every j �= 0 there exists i such that c(Xi; Xj) �= c(Xj; Xi)−1.
But then (7.2) implies

∑
k dkS(Xk; Xj) = 0 ∀j �= 0, which is known to be equivalent

to invertibility of S.

Remark 7.12. It is well known that a braided tensor category C is monoidally isomor-
phic to its reverse Crev which coincides with C as a category but has the tensor product
reversed: X ⊗rev Y := Y ⊗X . On the other hand the duality functor X �→ ZX provides a

monoidal equivalence Cop
⊗� Crev. Putting this together we have C̃

⊗� C
⊗� Crev

⊗� Cop.

Thus for modular C we actually have an equivalence Z1(C)
⊗� C� Cop of tensor

categories, not just weak monoidal Morita equivalence.
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8. Applications

8.1. An adjoint for the forgetful functor Z1(C)→ C

In Section 4 we proved that the functor F :Z1(C)→ B is fully faithful and essen-
tially surjective. By [34, Theorem IV.4.1] this implies that F has a two-sided adjoint
G :B → Z1(C). Together with Lemma 5.2 this implies

HomC(X; Y )∼=HomB(F(X; eX ); ZJ (Y � 1)J )

∼=HomZ1(C)((X; eX ); G( ZJ (Y � 1)J ));

where (X; eX )∈Z1(C); Y ∈C. With the forgetful functor H :Z1(C)→ C; (X; eX ) �→ X
this becomes

HomC(H (X; eX ); Y ) ∼= HomZ1(C)((X; eX ); G( ZJ (Y � 1)J )): (8.1)

We thus have

Proposition 8.1. The forgetful functor H :Z1(C)→ C, (X; eX ) �→ X has a two-sided
adjoint K :C → Z1(C), X �→ G( ZJ (X � 1)J ). On the objects one has

K(Y ) ∼=
⊕
(X;eX )

dimHomC(X; Y )(X; eX ); (8.2)

where the summation is over the isomorphism classes of simple objects in Z1(C).

Proof. Eq. (8.1) just says that K is a right adjoint of H . That K is also a left adjoint
of H is proven in the same way. One must also show that the isomorphisms in (8.1)
are natural w.r.t. (X; eX ) and Y . We leave this to the reader. For Y = Xi and (X; eX )
simple, (8.1) implies that K(Xi) contains (X; eX ) with multiplicity dimHomC(X; Xi).
For general Y we have

K(Y ) ∼=
⊕
i∈�

dimHom(Xi; Y )
⊕
(X;eX )

dimHomC(X; Xi)(X; eX );

and (8.2) follows by semisimplicity of C.

Remark 8.2. By the general theory [37] there is a dual Frobenius algebra Q̂= (Q̂; : : :)

in B, where Q̂ = ZJJ . Under the equivalence Z1(C)
⊗� B, Q̂ corresponds to

G( ZJJ ) = K(1) ∼=
⊕
(X;eX )

1dimHomC(X; 1) (X; eX ): (8.3)

Thus this object is part of the Frobenius algebra in Z1(C) which establishes the weak
monoidal Morita equivalence Z1(C) ≈ C�Cop. K(1) clearly contains the unit (1; id)
of Z1(C) with multiplicity one. The reader might 7nd it amusing to identify explicitly
the morphisms w; w′ in Z1(C) which come with the strongly separable Frobenius
algebra.
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8.2. Invariants of 3-manifolds

There are two classes of invariants of 3-manifolds associated with a modular tensor
category C, cf. [53]. On the one hand we have the surgery invariants RT(M;C) of
Reshetikhin and Turaev [49] which are based on the fact that every connected oriented
closed 3-manifold can be obtained from S3 by surgery along a framed link. It turned
out [8] that modularity of the category C is not really necessary, since it su[ces that C
be ‘modularizable’. Yet, the invariant of the manifold being de7ned in terms of a link
invariant, the existence of a (non-symmetric) braiding is essential. On the other hand,
there are the state sum invariants based on a triangulation of the manifold. Generalizing
on [54], an invariant TV(M;C) associated with any modular category C was de7ned in
[53]. Later it was understood that in fact no braiding is necessary for the construction
of a triangulation invariant, cf. [5,15], provided C has two-sided duals. (This had been
anticipated in [43], which was never published.) We denote the corresponding invariant
by Tr(M;C). Gelfand and Kazhdan formulated a conjecture [15, Conjecture 1] pointing
towards a link between the two invariants being provided by the quantum double. Our
results on the quantum double of semisimple tensor categories allow us to prove this
conjecture.

Proposition 8.3. Let C satisfy the assumptions of Theorem 1.2 and consider the
state-sum TQFT associated with C, as de1ned in [15]. Then the dimension of the vec-
tor space HS1×S1 associated to the two-dimensional torus equals the number #Z1(C)
of isomorphism classes of simple objects of Z1(C).

Proof (Sketch). By the considerations of Section 5.1, #Z1(C) coincides with the di-
mension of the center of the tube algebra ;L. But this center is isomorphic to HS1×S1 ,
as discovered by Ocneanu [44] and explained in more detail in [14, Theorem 3.1].

Remark 8.4. The above argument is only a sketch because the triangulation TQFT
in 2 + 1 dimensions considered in [44,14] is derived from a subfactor, see [26] for
a detailed exposition. Here as in [37, Section 7] we use the fact that the latter is
equivalent to the invariant de7ned in [5,15]. This is more or less clear, but certainly
deserves being made precise, as we plan to do in [38]. Note also that in order for
a spherical category to give rise to a triangulation TQFT—as opposed to just the
invariant—one must assume that it does not contain symplectic self-dual simple objects.
This is done in [53] and [6, p. 4018], but unfortunately ignored in the bulk of the
literature on the subject.

By Theorem 1.2, Z1(C) is modular, thus gives rise to a surgery TQFT in 2 + 1
dimensions, cf. [53]. For these TQFTs it is known (by construction) that the dimension
of the vector spaceHS1×S1 associated with the torus equals the number of isomorphism
classes of simple objects in the category. Thus the above result provides support for
the conjecture that the triangulation and surgery TQFTs associated with C and Z1(C),
respectively, are isomorphic. (This conjecture, while very natural, seems to have ap-
peared in print only in [25, Question 5].) In particular, the corresponding invariants of



210 M. M�uger / Journal of Pure and Applied Algebra 180 (2003) 159–219

closed oriented 3-manifolds should coincide

RT(M;Z1(C)) = Tr(M;C) ∀M: (8.4)

Presently, we have no proof for this, but we note that Kawahigashi Sato and Wakui
recently provided a proof [51] in the setting of unitary categories arising from a sub-

factor. If C is modular, the braided equivalence Z1(C)
⊗�br C� C̃ proven in Section

7 implies

RT(M;Z1(C)) = RT(M;C� C̃) = RT(M;C) · RT(M; C̃)

= RT(M;C) · RT(−M;C);

and (8.4) follows from [53, Theorem VII.4.1.1], according to which TV(M;C) =
RT(M;C) · RT(−M;C). For non-modular C we only have the following weaker re-
sult:

Proposition 8.5. Let C be as in Theorem 1.2 and M an oriented closed 3-manifold.
Then

RT(M;Z1(C)) · RT(−M;Z1(C)) = Tr(M;C) · Tr(−M;C):

If C is unitary then |RT(M;Z1(C))|= |Tr(M;C)|.

Proof. We compute

RT(M;Z1(C)) · RT(−M;Z1(C)) = TV(M;Z1(C))

= Tr(M;Z1(C))

= Tr(M;C� Cop)

= Tr(M;C) · Tr(M;Cop)

= Tr(M;C) · Tr(−M;C):

Here the 7rst equality is due to Turaev’s theorem, which applies since Z1(C) is
modular. The second is the equality [6] of TV and Tr for spherical C. The third equality
follows from the weak monoidal Morita equivalence Z1(C) ≈ C�Cop together with
the Morita invariance of the invariant Tr, cf. [37, Theorem 7.1]. The last two equalities
follow from general properties of the invariant Tr [6].
If C is unitary we have RT(−M;Z1(C))=RT(M;Z1(C)) and Tr(−M;C)=Tr(M;C),

and we are done.

8.3. Subfactor theory: the Longo–Rehren subfactor

As stated in the introduction, the present project originated in the author’s observation
that the quantum double of monoidal categories appears implicitly in Izumi’s preprint
[17]. Therefore it seems reasonable to brieTy comment on the subfactor setting.
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Let M be a type III factor with separable predual. Then the tensor category Endf(M)
of (normal unital ∗-) endomorphisms C of M such that [M : C(M))]¡∞ is a ∗-category
with duals, direct sums and subobjects. (Here one uses that every orthogonal projection
p=p2 =p∗ in M is equivalent to 1, i.e. there is V ∈M such that V ∗V =1, VV ∗=p.)
Let C ⊂ Endf(M) be a full monoidal subcategory with the same completeness proper-
ties and 7nite dimension. Choosing objects {Ci; i∈�} in the classes of simple objects,
de7ning

A=M Z⊗M op

and picking a direct sum

5=
⊕
i∈�

Ci ⊗ Copi

one shows [29] 5 to be part of a Frobenius algebra (‘Q-system’) (Q; v; v∗; w; w∗) in
Endf(A). At this point one applies a beautiful and fundamental result due to Longo
[28], which implies that there is a subfactor B ⊂ A such that 5 is a canonical en-
domorphism for the inclusion B ⊂ A. This means that there is a normal morphism
Z– :A → B which is a dual (in the 2-category of factors, morphisms and intertwiners) of
the embedding morphism –= id :B → A, such that 5= – ◦ Z–. The subfactor B is simply
given by

B= w∗5(A)w: (8.5)

(The veri7cation that this really gives a subalgebra is easy.) We call the subfactor thus
obtained from M and C the Longo–Rehren subfactor.
Among the objects of interest in subfactor theory are the monoidal subcategories

HomB⊂A(A; A) ⊂ Endf(A) and HomB⊂A(B; B) ⊂ Endf(B) generated by 5 = – ◦ Z– and
5̂ = Z– ◦ –, respectively, and the categories HomB⊂A(A; B), HomB⊂A(B; A) of morphisms
which are contained in Z– ◦ (– ◦ Z–)n and – ◦ (Z– ◦ –)n, respectively, for some n∈Z¿. The
reader should appreciate that in this way every subfactor with 7nite index provides us
with a C-linear ∗-2-category with two objects and with non-strict spherical structure,
thus in particular with a Morita context for the tensor categories HomB⊂A(A; A) and
HomB⊂A(B; B). (The dimension of the four categories of 1-morphisms is 7nite i: the
subfactor has 7nite depth.) Our painful construction in [37] just models the categorical
structure implicit in subfactor theory, where thanks to the inbuilt structure one just
needs the simple formula (8.5)!
Alas, the above construction does not necessarily yield (tensor) categories which are

equivalent to the HomE(A;A), HomE(B;B), HomE(A;B), HomE(B;A) of Section
4.1. This becomes clear already by comparing our A= C� Cop with

HomB⊂A(A; A) = {C∈Endf(A) | C ≺ 5n; n∈Z¿}:
The latter obviously is (equivalent to) a full subcategory of C�Cop, but they coincide
only if every Ci⊗Cj, i; j∈� is contained in 5n for some n. This condition can be shown
to be equivalent to connectedness of a certain graph, the fusion graph of C.
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With these preparations a short inspection of Izumi’s work [18], where the categorical
double does not appear explicitly, shows that essentially he has proven the following
theorem:

Theorem 8.6. Let M be a type III factor with separable predual and let C be a full
monoidal subcategory of Endf(M) which is closed under duals, direct sums, subobjects
and is 1nite dimensional, and let B ⊂ A be the corresponding LR subfactor. If the
fusion graph of C is connected then we have the following equivalences of tensor
categories:

HomB⊂A(A; A)�C� Cop;

HomB⊂A(B; B)�Z1(C):

Proof. The fusion graph is connected i: the objects X � X op generate all of C�
Cop. Thus the statement on HomB⊂A(A; A) is contained in [18, Theorem 4.1]. Un-
der the connectedness assumption Izumi’s ‘quantum double of �’ coincides with the
B − B-morphisms HomB⊂A(B; B). Then our second claim follows from [18, Theorem
4.6], where the quantum double appears in only slightly disguised form. Instead of
half-braidings Z �→ eX (Z) satisfying the braid relation and naturality Izumi uses maps
I � i �→ eX (Xi) satisfying the braiding fusion relation. These two pictures are equivalent
by our Lemma 3.3.

Remark 8.7. The above theorem is the precise formulation of Ocneanu’s remarkable
intuitive insight [44] that his asymptotic subfactor [42] (which is strongly related [36] to
the Longo–Rehren subfactor B ⊂ A) is ‘the subfactor analogue of Drinfel’d’s quantum
double’. In view of the fact that irreducible depth-two subfactors are precisely the
subfactors arising from outer actions of a Hopf algebra, the most natural way to make
Ocneanu’s claim precise would be the following: The asymptotic subfactor of MH ⊂
M is isomorphic to PD(H) ⊂ P or its dual. Yet, this clearly cannot be the case since
the index of the asymptotic inclusion coincides with the global index of the original
subfactor, which for depth two coincides with the index. Thus for N = MH ⊂ M ,
[A :B] = [M :N ] and B ⊂ A cannot arise from a D(H)-action.

Using the results of Section 8.1 we can remove the connectedness condition:

Corollary 8.8. Let M; C be as in the theorem, but with possibly disconnected fusion
graph. Then the category HomB⊂A(A; A) is equivalent to the monoidal subcategory of
C� Cop generated by the X � X op, where X runs through the simple objects of C.
HomB⊂A(B; B) is braided equivalent to the sub-tensor category of Z1(C) generated
by those simple objects (X; eX )∈Z1(C) for which X contains the tensor unit 1 of C.

Proof. The 7rst statement is well known. By de7nition, HomB⊂A(B; B) is generated
by the dual Frobenius object Q̂. For the LR-subfactor this is the K(1) given in (8.3),
from which the second claim follows.



M. M�uger / Journal of Pure and Applied Algebra 180 (2003) 159–219 213

Acknowledgements

During the long time of preparation of this work I was 7nancially supported by the
European Union, the NSF and the NWO and hosted by the universities “Tor Vergata”
and “La Sapienza”, Rome, the IRMA, Strasbourg, the School of Mathematical Sciences,
Tel Aviv, the MSRI, Berkeley, and the Korteweg-de Vries Institute, Amsterdam, to all
of which I wish to express my sincere gratitude.
The results of this paper and of [37] were presented at an early stage at the confer-

ence Category Theory 99 at Coimbra, July 1999, at the conference C∗-algebras and
tensor categories at Cortona, August 1999, and at the workshop Quantum groups and
knot theory at Strasbourg, September 1999.
On these and other occasions I received a lot of response and encouragement. The

following is a long but incomplete list of people whom I want to thank for their interest
and/or useful conversations: J. Baez, J. Bernstein, A. Brugui]eres, P. Etingof, D.E.
Evans, J. Fuchs, F. Goodman, M. Izumi, V.F.R. Jones, C. Kassel, Y. Kawahigashi, G.
Kuperberg, R. Longo, G. Maltsiniotis, G. Masbaum, J.E. Roberts, N. Sato, V. Turaev,
L. Tuset, P. Vogel, A. Wassermann, H. Wenzl and S. Yamagami.

Appendix A. On quantum doubles of �nite dimensional Hopf algebras

The core of this paper was the proof that the quantum doubles of certain tensor
categories are modular. That RepD(H) is modular has been proven for H = CG [2],
where G is a 7nite group, and for semisimple H over an algebraically closed 7eld k
of characteristic zero [12]. A proof which covers also weak Hopf algebras (or 7nite
quantum groupoids) is given in [40]. Our aim in this appendix is to give a proof which
uses the ideas of Lyubashenko [31,32] and Majid [33] and therefore is more in the
spirit of our proof in the categorical situation. In the sequel H will always be a 7nite
dimensional Hopf algebra. Since the main application will be to quantum doubles the
following will be useful.

Lemma A.1. Let H be a 1nite dimensional Hopf algebra H over the 1eld k and let
D(H) be the quantum double. The following are equivalent:

(i) H is semisimple and cosemisimple.
(ii) The antipode of H is involutive and char kAdim H .
(iii) D(H) is semisimple.
(iv) D(H) is cosemisimple.

Remark A.2. If the characteristic of k is zero then H is semisimple i: it is cosemisim-
ple, and the second condition in (ii) is vacuous.

Proof. For the equivalences (i) ⇔ (iii) ⇔ (iv), see [46] and for (i) ⇔ (ii) see
[13].
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In order for the category RepD(H) to be modular it must be semisimple, which by
the lemma reduces us to the case where H satis7es (i) and (ii).

Lemma A.3. Let H satisfy the (equivalent) conditions of Lemma A.1. Then there
are two-sided integrals H∈H , I∈ Ĥ which are traces in the sense that

〈I; ab〉= 〈I; ba〉; 〈(+; H〉= 〈+(; H〉
for all a; b∈H , (+∈ Ĥ . The category RepD(H) is a spherical category.

Proof. Semisimple Hopf algebras are unimodular [27], which by de7nition means that
there are two-sided integrals. By [27, Proposition 8], unimodular Hopf algebras satisfy

〈I; ab〉= 〈I; bS2(a)〉 ∀a; b∈H;

thus 〈I; ·〉 is tracial by involutivity of S. Sphericity of RepD(H) is now an obvi-
ous consequence of [6] where it was shown under the weaker assumption that S2 is
inner.

We brieTy recall some results on quasitriangular Hopf algebras. As shown be Drin-
fel’d [11], the antipode of a 7nite dimensional quasitriangular Hopf algebra H is inner,
i.e. there is an invertible u∈H such that S2(A)=uAu−1. One has the explicit formulae

u= m ◦ (S ⊗ id)(R21);
u−1 = m ◦ (id ⊗ S2)(R21);

(i.e., u=
∑

i S(fi)ei if R=
∑

i ei ⊗ fi). Furthermore, Drinfel’d proved

uS(u) = S(u)u∈Z(H); �(u) = 1; �(u) = (R21R)−1(u ⊗ u):

Recall [53] that a ribbon Hopf algebra is a quasitriangular Hopf algebra H together
with �∈Z(H) satisfying

� 2 = uS(u); S(�) = �; �(�) = 1; �(�) = (R21R)−1(� ⊗ �): (A.1)

Proposition A.4. Let H be a quasitriangular semisimple and cosemisimple Hopf al-
gebra. Then H is a ribbon Hopf algebra with �= u.

Proof. Since S2 = id it follows that Drinfel’d’s u is central. Now [23, Proposition 4]
implies that u is a ribbon element.

Remark A.5. For a ribbon Hopf algebra H with �= u the quantum trace, which for a
representation < on a vector space V is de7ned by

Trq<(X ) := Tr ◦ <(u� −1 X )

coincides with the usual trace Tr on End V . In particular, all quantum dimensions d(<)
coincide with the classical dimensions dim V<. Therefore,

dim RepH =
∑
i

d(<i)2 =
∑
i

(dim V<i)
2 = dimk H:
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In order to conclude that RepH is modular it remains to prove that the S-matrix
of the ribbon category RepH is invertible. A related notion of non-degeneracy was
introduced in [48], where a quasitriangular Hopf algebra was called factorizable if the
map

Ĥ → H : z �→ 〈z ⊗ id; I〉; I = R21R

is injective, thus invertible. Furthermore, it was shown that every quantum double
D(H) is factorizable. The notion of factorizability plays an important role in the works
[33,25] where an action of SL(2;Z) on ribbon Hopf algebras is de7ned and studied.

De�nition A.6 (Lyubashenko and Majid [33]). For a quasitriangular Hopf algebra the
selfdual Fourier transforms S+; S− are de7ned by the linear endomorphisms of H

S+(b) = (id ⊗ I)(R21(1⊗ b)R12);

S−(b) = (id ⊗ I)(R−1
12 (1⊗ b)R−1

21 );

where I is a left integral in Ĥ . If H is ribbon the map T :H → H is de7ned by
T(b) = �b.

Theorem A.7 (Lyubashenko and Majid [33]). For a factorizable ribbon Hopf algebra
the following modular relations hold:

S+ ◦S− = id =S− ◦S+; (S+ ◦T)3 = �S2
+; S2

+ = S; (A.2)

where S(x) = R(2)S(AdR(1)(x)) with AdY (x) = Y(1)xS(Y(2)) is the braided antipode,
and � �= 0 is de1ned by S+(�) = �� −1.

Lemma A.8. The following decompositions hold in every 1nite dimensional Hopf al-
gebra.

a ⊗ 1=
∑
i

(1⊗ xi)�(yi) =
∑
i

�(yi)(1⊗ S2(xi));

where∑
i

yi ⊗ xi = (id ⊗ S−1)�(a):

Proof. Inserting
∑

i yi ⊗ xi = a(1) ⊗ S−1(a(2)) into
∑

i(1⊗ xi)�(yi) we obtain

(1⊗ S−1(a(2)))�(a(1)) = (1⊗ S−1(a(3)))(a(1) ⊗ a(2))

= a(1) ⊗ S−1(a(3))a(2) = a ⊗ 1; (A.3)

and the other equality is veri7ed similarly.

Proposition A.9. Let H be a quasitriangular semisimple, cosemisimple Hopf algebra
and I∈ Ĥ a left integral. Then the self-dual Fourier transforms S± map the center
of H into itself:

S±(Z(H)) ⊂ Z(H): (A.4)
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Proof. By [27, Proposition 8] unimodularity is equivalent to the identity

I(ab) = I(bS2(a)) ∀a; b∈H; (A.5)

which will be used in the sequel. Let a∈H , b∈Z(H). Then

aS+(b) = a(id ⊗ I)(R21(1⊗ b)R12)

= (id ⊗ I)((a ⊗ 1)R21R12(1⊗ b))

=
∑
i

(id ⊗ I)((1⊗ xi)�(yi)R21R12(1⊗ b))

=
∑
i

(id ⊗ I)((1⊗ xi)R21R12(1⊗ b)�(yi))

=
∑
i

(id ⊗ I)(R21R12(1⊗ b)�(yi)(1⊗ S2(xi)))

= (id ⊗ I)(R21R12(1⊗ b)(a ⊗ 1))

= (id ⊗ I)(R21R12(1⊗ b))a=S+(b)a; (A.6)

thus S+(b)∈Z(H). We have used b∈Z(H), [�(·); R21R12]=0, (A.5) and the lemma.

Remark A.10. (1) In restriction to the center, the braided antipode S appearing in
(A.2) equals the antipode S.
(2) For a ribbon algebra H it is trivial that T maps Z(H) into itself, since �∈Z(H).

The modularity condition requires invertibility of the matrix

Si; j = (Trq<i
⊗ Trq<j

)(R21R12); (A.7)

where i; j range over the equivalence classes of irreducible representations of H . Now,
in the semisimple case the representations are in one-to-one correspondence with the
minimal projections in Z(H), which leads to the following result.

Theorem A.11. Let H be a factorizable quasitriangular semisimple and cosemisimple
Hopf algebra. Then the category RepH is modular.

Proof. We have already proven that RepH is a spherical ribbon category. Thus by
Proposition A.9 the center of H is stable under the Fourier transform S+. By factor-
izability S+ is invertible, and the same holds for the restriction S+ � Z(H). By the
remark after Lemma A.4 the quantum traces on H -modules V , in terms of which the
S-matrix is de7ned, coincide with the usual traces on End V . In terms of the basis for
Z(H) given by the minimal idempotents Pi we obtain

S+(Pj) =
∑
i

Sij Pi;
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where the matrix S = (Sij) is invertible. But S is nothing but the modular matrix
(A.7) as we have

Sij = di I(Pi S+(Pj)) = di (I ⊗ I)(R21R12 (Pi ⊗ Pj))

=
1
dj
(Trqi ⊗ Trqj )(R21R12):

We have used I(Pi) = 1=di and I(x Pi) = 1=di Tri(x) [55].

Note that the proof is conceptually quite similar to our proof of modularity for
general semisimple spherical categories. In view of Lemma A.1 the following is now
immediate:

Corollary A.12. Let H be semisimple and cosemisimple. Then RepD(H) is modular.

We close the appendix with a remark which is meant to aid the reader in appreciating
the ‘self-duality’ of a quantum double D(H), in particular since in general it is not
self-dual in the sense of Hopf algebras: D(H)∗ �� D(H). (For a 7nite abelian group
G we in fact have D(G) � D(G)∗ � CG ⊗ C(G).) For any 7nite dimensional Hopf
algebra one can use the integrals to de7ne ‘Fourier transforms’ H → Ĥ . In [41] Fourier
transforms F�;�′ ; �; �′ =±, de7ned as linear maps H → Ĥ which intertwine certain
actions of H on H and Ĥ by multiplication and translation, respectively, were studied
systematically and used to give a new proof of the invertibility of the antipode. There
is a beautiful relation between these more conventional Fourier transforms, relating H
and Ĥ , and the selfdual Fourier transforms [33], which map D(H) onto itself. For
simplicity we restrict ourselves to 7nite dimensional Kac algebras, where things are
easier since the Haar measures are two-sided invariant traces and since there are unique
Fourier transforms F :H → Ĥ and F̂ : Ĥ → H :

〈F(x); y〉= 〈I; xS(y)〉; ∀x; y∈H; (A.8)

〈(; F̂(+)〉= 〈Ŝ(()+; H〉; ∀(; +∈ Ĥ ; (A.9)

where H; I are the integrals in H; Ĥ , respectively. If – :H → D(H); –̂ : Ĥ → D(H) are
the canonical embedding maps then the following diagram commutes:

Ĥ ⊗ H –̂⊗–−−−−−→ D(H)⊗ D(H) m−−−−−→ D(H)

F̂⊗F

�
� S−

H ⊗ Ĥ −−−−−→
–⊗–̂

D(H)⊗ D(H) −−−−−→
m

D(H)

This nice observation is due to Kerler [25, Proposition 9] (with di:erent conventions),
who, however, did not emphasize the interpretation of F; F̂ as conventional Fourier
transforms.
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