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Abstract

For every tensor category % there is a braided tensor category Z(%), the ‘center’ of %. It is
well known to be related to Drinfel’d’s notion of the quantum double of a finite dimensional

Hopf algebra H by an equivalence Z'(H-mod) gbr D(H )-mod of braided tensor categories. In
the Hopf algebra situation, whenever D(H )-mod is semisimple (which is the case iff D(H) is
semisimple iff H is semisimple and cosemisimple iff S*> =id and char Ftdim ) it is modular
in the sense of Turaev, i.e. its S-matrix is invertible. (This was proven by Etingof and Gelaki
in characteristic zero. We give a fairly general proof in the appendix.) The present paper is
concerned with a generalization of this and other results to the quantum double (center) of more
general tensor categories.

We consider [F-linear tensor categories % with simple unit and finitely many isomorphism
classes of simple objects. We assume that % is either a x-category (i.e. F = C and there is a
positive x-operation on the morphisms) or semisimple and spherical over an algebraically closed
field F. In the latter case we assume dim % = }_, d(X; )* # 0, where the summation runs over the
isomorphism classes of simple objects. We prove that Z (%) (i) is a semisimple spherical (or *-)
category and (ii) is weakly monoidally Morita equivalent (in the sense of Miiger (J. Pure Appl.
Algebra 180 (2003) 81-157)) to ¥ ®¢ 6°P. This implies dim (%)= (dim %)°. (iii) We analyze
the simple objects of Z(%) in terms of certain finite dimensional algebras, of which Ocneanu’s
tube algebra is the smallest. We prove the conjecture of Gelfand and Kazhdan according to which
the number of simple objects of Z (%) coincides with the dimension of the state space J# g1, g1
of the torus in the triangulation TQFT built from €. (iv) We prove that Z (%) is modular and
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we compute A+(Z(6)) =), 0(X:)F'd(X;)* = dim %. (v) Finally, if % is already modular then
Z(€) gb, € b £ @ ®F 6P, where % is the tensor category % with the braiding éx.y :c;’)'(.
(© 2003 Elsevier Science B.V. All rights reserved.

MSC: 18D10; 18D05; 46L37

1. Introduction

Define the ‘center’ Zy(X') of a set X to be the monoid of all functions f:X — X
(with composition as product and the identity map as unit). Then the usual center Z; =
Z of the monoid Zy(X) is trivial: Z;(Zy(X))={idx}. The cardinality of Zy(X) is given
by #Zy(X) = #X"*X. The aim of the present work is to prove 1-categorical analogues
of these trivial set theoretic (= 0-categorical) observations. (I owe the above definition
of Zy(X) to J. Baez.)

Given an arbitrary monoidal category (or tensor category) % its center Z(%) is
a braided monoidal category which was defined independently by Drinfel’d (unpub-
lished), Majid [35] and Joyal and Street [19]. (See Section 3 for the definition.) In order
to avoid confusion with another notion of center, we will write Z'|(%) throughout. In
the present work, as in [35,19], we will assume % to be strict, but this is exclusively
for notational convenience. The definition of the center 2| and all results in this paper
extend immediately to the non-strict case. The other assumptions which we must make
on % are more restrictive, but we are still left with a class of categories which appears
in contexts like low dimensional topology and subfactor theory. We assume % to be
linear over a ground field which is algebraically closed. Furthermore, % is semisimple
with simple tensor unit and spherical [6]. (A semisimple category is spherical iff it is
pivotal [6] (=sovereign) and every simple object has the same dimension as its dual,
cf. [37, Lemma 2.8].) See [6] or [37, Section 2] for the precise definitions.

Definition 1.1. Let ¥ be a semisimple spherical tensor category with simple unit
and let I' be the set of isomorphism classes of simple objects. If I' is finite we define
dim% = d(X;),
i€r
otherwise we write dim % = oo.
If € is finite dimensional and braided then the Gauss sums of % are given by

A£(6) =) o(X)*1dX),
ier
where 0(X) = w(X)idy is the twist of the simple object X which is defined by the
spherical structure [56].

We can now state our Main Theorem:

Theorem 1.2. Let F be an algebraically closed field and € a spherical F-linear tensor
category with End(1) = F. We assume that % is semisimple with finitely many simple
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objects and dim € # 0. Then also the center Z1(%) has all these properties and is a
modular category [53]. Furthermore, the dimension and the Gauss sums are given by

dim 7 (%) = (dim %)%,

A(Z1(6))=A(Z1(?)) =dim E.
Defining the center %,(%) of a braided tensor category % to be the full subcategory
whose objects are those X which satisfy

cX,Y)=c(Y,X)"' VYeObj¥,

one easily sees that Z»(%) is stable w.r.t. isomorphisms (thus replete), direct sums,
retractions, tensor products and duals, the inherited braiding obviously being symmetric.
One can show that a braided category satisfying the properties in the theorem (i.c. a
premodular category [8]) is modular iff the center Z,(%) is trivial, in the sense that
all objects of Z»(%) are multiples of the tensor unit. (This was done in [47] for
x-categories and in [7] for spherical categories with dim% # 0, see also Corollary
7.11 below.) Thus Z,(Z (%)) is trivial for all € as in the Main Theorem, which is
the promised analogue of the 0-categorical observation Z;(Zy(X)) = {1}.

The Main Theorem can be generalized slightly: If @ is as before except for [ not
being algebraically closed then there is a finite extension F' O F such that Z1(% QF
') is modular. Concerning the prospects of further generalizations the author is not
optimistic. There is little hope of proving semisimplicity of Z';(%) without assuming
dim & # 0. (Furthermore, it is known [53] that the dimension of a modular category
must be non-zero.) In the non-semisimple case one might hope to prove that the center
of a spherical noetherian category satisfies the non-degeneracy condition on the braiding
introduced in [32]. But the methods of this paper will most likely not apply.

The results of the present work can be considered as generalizations of known results
concerning Hopf algebras and we briefly comment on this in order to put our results
into their context. We recall that the quantum double of a Hopf algebra was introduced,
among many other things, in Drinfel’d’s seminal work [10]. In the following discussion
all Hopf algebras are finite dimensional over some field F. The quantum double D(H)
of a Hopf algebra H is a certain Hopf algebra which contains H and the dual H as
Hopf subalgebras and it is generated as an algebra by these. We refrain from repeating
the well-known definition and refer to [21] for a nice treatment. We only remark that
D(H) = H ®f H as a vector space, thus

dimg D(H ) = (dimg H)*.

Furthermore, D(H ) is quasitriangular, i.e. there is an invertible R € D(H ) ® D(H ) such
that ¢ o 4 = RA(-)R™' where ¢ is the flip automorphism of the tensor product. The
constructions of the quantum double of a Hopf algebra and of the center of a monoidal
category are linked by the equivalence

D(H )-mod gbr % 1(H-mod)

of braided monoidal categories, where H-mod and D(H )-mod are the categories of
finite dimensional left H- and D(H )-modules, respectively, the braiding of D(H )-mod
being provided by the R-matrix. Again, see [21, Chapter XIII.4] for a detailed account.
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Now, the R-matrix of a quantum double D(H) is non-degenerate in a certain sense,
D(H) being ‘factorizable’ [48]. If H is semisimple and cosemisimple then D(H) is
semisimple [46]. It then turns out to be also modular and the category D(H )-mod of
finite dimensional left D(H )-modules is modular in the sense of Turaev [53]. (This
was proved in [12] for algebras over algebraically closed fields of characteristic zero,
but the latter condition can be dropped. In the appendix we give a general proof.)
Furthermore, one clearly has

dim Z(H-mod) = dim D(H )-mod = dim D(H )
= (dim H )* = (dim H-mod )?, (1.1)

where dim % is the dimension of the monoidal category ¢ as defined above.

It is now clear that our Main Theorem can be considered as an extension of the
above results to tensor categories which are not necessarily representation categories of
Hopf algebras. Here one remark on the notation is in order. In [22] Kassel and Turaev
introduced a modified version of the construction of the center Z'1(%) and called it
the quantum double Z(%), see also [52]. Their category is the categorical version of a
construction of Reshetikhin (which adjoins a certain square root 0 to a quasitriangular
Hopf algebra H in order to turn it into a ribbon algebra H(0)) applied to a quantum
double, cf. [22, Theorem 5.4.1]. In the context of [22] the starting point was that even
if € is rigid this need not be true for Z|(%), whereas the category Z(%) is rigid.
As we will see, spherical categories (tensor categories with nice two-sided duals) are
better behaved in the sense that their centers 2’| are again spherical. In addition,
whereas Z1(%) is modular for the categories satisfying the conditions of our Main
Theorem, this is never true for Z(%)! This is why we stick to the original definition
Z1(€). Apart from writing Z1(%) instead of % (%), we do not attempt to change the
established symbols, but we use the expression ‘quantum double’ as a synonym for
Z (%) rather than Z(%).

Unfortunately, the work on Hopf algebras mentioned above provides no clues on
how to prove Theorem 1.2. This is where subfactor theory enters the present story.
Starting from an inclusion N C M of hyperfinite type 1I; factors of finite index and
depth, Ocneanu [42] defined an ‘asymptotic subfactor’ B C 4:

B=MV (Mo NM') C My, = A.

(Here N ¢ M C My C M, C --- is the Jones tower associated with N C M and
Mo, =V;M;.) In [44] he argued that a certain monoidal category associated with B C 4
is braided, concluding that the asymptotic subfactor is an ‘analogue’ of Drinfel’d’s
quantum double of a Hopf algebra. In fact, Ocneanu does not use category language
and does not refer to the quantum double (center) of monoidal categories. In [14]
Evans and Kawahigashi published proofs for most of Ocneanu’s announcements. In
the paper [29], which otherwise has little to do with the asymptotic subfactor, Longo
and Rehren then constructed a subfactor B C 4 from an infinite factor M and a—in our
language—finite dimensional full monoidal subcategory % of End(M) and conjectured
that it is related to Ocneanu’s construction. This conjecture was made precise and
proven in [36]. The author’s involvement in the present story began when in 1998 he
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received a copy of a short preprint [17] by Izumi. In the meantime a full account of
Izumi’s results has appeared in [18]. In [17,18] Izumi gives an in-depth analysis of the
LR-subfactor, in particular its B — B sectors. Seeing [17] the present author was struck
by the fact that its main theorem implicitly contained the definition of the center of a
monoidal category. In fact properly formulated, Izumi’s results provide a precise and
completely general form of Ocneanu’s ‘analogy’ between the asymptotic subfactor (or
the LR-subfactor) and the quantum double, albeit the categorical one instead of the
one for Hopf algebras. In Section 8.3 we will rephrase Izumi’s results in categorical
language to make this evident. Yet, this is not the main purpose of the present work.

In [44] it has been argued that the braided monoidal category associated with B C
A is modular and a complete proof has been provided in [18], where it was also
shown that the dimension of the category in question is given by (dim%)>. As in
our discussion of the Hopf algebra quantum double, it is again natural to ask whether
a purely categorical version of these results can be proven. Here we have to face
the problem that finite-index subfactors have a lot of ‘in-built’ categorical structure
which is not a priori available in a purely categorical setting. (In particular, most of
[18] strongly relies on this structure.) Yet this problem can be overcome once one
realizes that the more algebraic part of subfactor theory can be cast into the language
of 2-categories. This is the content of [37], which in a sense can be considered a
continuation of [30], though in a somewhat more general setting.

The paper is organized as follows. In Section 2 we first recall some of the less stan-
dard definitions from [37]. We then summarize the main results of [37] on Frobenius
algebras in tensor categories, related 2-categories and the notion of weak monoidal
Morita equivalence of tensor categories. This section can by no means replace [37].
Our study of the quantum double %1(%) begins in Section 3, where we show that it
preserves the closedness w.r.t. direct sums and subobjects and sphericity. Most impor-
tantly and least trivially, we prove the semisimplicity of Z'|(%). These results do not
yet rely on the machinery of [37]. In Section 4 we prove the weak monoidal Morita
equivalence Z1(%€) ~ € R €°P, which in particular implies that the double construction
squares the dimension of the category. Section 5 is devoted to the proof of modularity
of Z1(%), equivalent to triviality of the category Z»(Z1(%)). As an important first
step we analyze the structure of the simple objects of the double, providing an explana-
tion for Ocneanu’s ‘tube algebra’. The next two section consider the case of categories
with a positive *-structure (C*-categories or unitary categories) and the special case
where % is already braided. In Section 8 we consider applications to the invariants of
3-manifolds, proving a conjecture of Gelfand and Kazhdan and speculating about a far
stronger result. Finally, we establish the link with subfactor theory, relying heavily on
[zumi’s work, improving on it only slightly.

2. Preliminaries

2.1. Some definitions and notations

We refer to [37, Section 2] for our general conventions and recall only a few
less standard notations. A retract ¥ < X is also called a subobject. A category has
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subobjects if all idempotents split, and every category .« has a canonical completion
/P for which this is the case. A F-linear category is semisimple if it has direct sums
and subobjects and every object is a finite direct sum of simple objects, X being simple
iff End(X') = F. For monoidal categories we require in addition that 1 is simple. A
subcategory of a semisimple category is called semisimple if it is closed w.r.t. direct
sums and retractions, thus in particular replete (stable under isomorphisms).

Since all categories in question are [F-linear we understand the product 4" ®f ¥ of
(tensor) categories in the sense of enriched category theory. Thus

Obj 4 @ ¥ ={K X L, Ke€ObjA#, LeObj ¥},
where X [X Y stands for the pair (X,Y), and
Hom%-&g(l(l & L],Kz & Lz)) = HOI’I],y/(K],Kz) ®[F Homy(Ll,Lz)

with the obvious composition laws. We denote by " X ¥ =H" QF 7% the completion
w.r.t. finite direct sums. If Z,% are monoidal categories the same holds for & X #.
In order to save brackets we declare [X] to bind stronger than ® but weaker than
juxtaposition XY of objects (which abbreviates X ® Y). Note that ® and [X] commute

NRNOLKL=X0XL)K (Y10 Y)=XX K 1.
2.2. Frobenius algebras and 2-categories
Definition 2.1. Let o7 be a (strict) monoidal category. A Frobenius algebra in o7 is a

quintuple Q = (Q,v,v’,w,w’), where Q is an object in .« and v:1 — Q, v': Q0 — 1,
w:Q — 0% w :0%* — Q are morphisms satisfying the following conditions:

w®idgow=1idp @ wow, (2.1)
wow @idg=w' oidg @ W', (2.2)
vV ®@idgow=1idg =1idp @ V' o w, (2.3)
wov®idg=idg =w oidg ® v, (2.4)
w ®idgoidg@w=wow' =idg @ W ow ® idg. (2.5)
A Frobenius algebra Q in a F-linear category is strongly separable if
w ow=/,idy, (2.6)
v ov=/Ayidy 2.7)

with 1;,/, € F*. Q is normalized if 4, = 4.

Let X be an object in a spherical category .«Z. Then the quintuple
(XX, &X), &X),idy ® e(X) ®idg, idy ® &X) ®idg)

is easily seen to be a normalized strongly separable Frobenius algebra in .o/. The
following theorem, which combines the Theorems 3.12 and 5.13 from [37], shows that
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in fact every strongly separable Frobenius algebra in a tensor category arises in this
way, provided one is ready to embed the category as a corner into a bicategory.

Theorem 2.2. Let .o/ be a strict F-linear tensor category and Q = (Q,v,v',w,w') a
strongly separable Frobenius algebra in <f. Then:

(1) There is a bicategory & such that
1. The sets of 2-morphisms in & are finite dimensional F-vector spaces and the
horizontal and vertical compositions are bilinear.
2. Idempotent 2-morphisms in & split.
3. Obj & = {2,B}.
4. There is an equivalence A OM s(U,2) L agr of tensor categories and there-

fore an equivalence A OM (U, A) £ of _if o/ has subobjects. B
5. There are 1-morphisms J :B — A and J : %4 — B such that O =JJ.
6. J and J are mutual two-sided duals, i.e. there are 2-morphisms

ejily —JJ, ¢:le —JJ, dj:JJ — 1y, nJ:Jj_71QL

satisfying the usual equations.
7. We have

v=e;: g — Q=JJ,
V=n 0=JJ — 1y,
w=id; ® ¢ ®@id;: Q=JJ — JIJJ = 0%,
w=id; ®d; ®id;: Q* =JJJJ —JJ =0

and therefore dj o gy = 41 1d1,, 1y 0 ey = Ayidy,.
8. & is uniquely determined up to equivalence by the above properties. Isomor-
phic Frobenius algebras Q,Q give rise to isomorphic bicategories &,&.

(it) If </ has direct sums then & has direct sums of 1-morphisms.

(iii) If the multiplicity of 1 in Q is exactly one (it is at least one due to the existence
of v,v'") then J,J, 1 are simple. (There is a weaker condition implying only
simplicity of 1s.)

(iv) If F =C and o/ has a positive x-operation then & has a positive x-operation
and is semisimple.

(v) If of is strict spherical and Q satisfies (iii) and is normalized then & is spher-
ical. If, furthermore, of is semisimple and F is algebraically closed then & is
semisimple.

(vi) If (iv) or (v) apply then the tensor cateqory B=H O.M ¢(2B,B) satisfies dim B=
dim .o/.

Remark 2.3. (1) If two tensor categories ./, % are ‘corners’ of a 2-category as above
we call them weakly monoidally Morita equivalent. This is an equivalence relation
which is considerably weaker than the usual equivalence, yet it implies that .o/ and
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2 have the same dimension and define the same triangulation invariant [5,15] for
3-manifolds. See [37] for the details.

(2) Unfortunately, the above statement of the theorem will not be sufficient for our
purposes since beginning in Section 4.2 we will make use of the concrete structure of
the bicategory &, which is explicitly constructed in the proof of Theorem 2.2. This is
not the place to explain the latter which occupies the larger part of [37]. We can only
hope that the above statement of the theorem and its role in this paper are sufficient
to motivate the reader to acquire some familiarity with [37].

3. The quantum double of a tensor category
3.1. On half-braidings

We begin with the definition of the quantum double Z;(%) of a (strict) monoidal
category 4.

Definition 3.1. Let % be a strict monoidal category and let X € 4. A half-braiding ey
for X is a family {ex(Y) € Hom¢ (XY, YX), Y € €} of morphisms satisfying

(1) Naturality w.r.t. the argument in brackets, i.e.

tidyoex(Y)=ex(Z)oidy @t Vt: Y — Z (3.1)
(it) The braid relation

ex(Y®Z)=idy ®ex(Z)oex(Y)®idz; VY,Z€E. (3.2)

(iii) All ex(Z) are isomorphisms.
(iv) Unit property:

ex(1) =idy. (3.3)

Lemma 3.2. Let {ex(Y), Y €€} satisfy (i) and (ii). Then (iii) = (iv). If (iv) holds
and Y has a right dual Y* then ex(Y) is invertible.

Proof. Considering (3.2) with ¥ = Z =1 gives ey(1) = ex(1)?>. Thus (iii) implies

ex(1)=1idy. Let Y™ a right dual of ¥ with ey:1 = Y*® Y, ny:Y ® Y* — 1. Then
using (i) and (iv) we find

N
ny ex (¥)
v
() | = (@] =
&y Y X
v X Y X
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Thus ex(Y) has a right inverse, which by a similar computation is seen to be also a
left inverse. [J

For later use we record the following alternative characterization of half-braidings.

Lemma 3.3. Let € be semisimple and {X;, i€T'} a basis of simple objects. Let
Z €%. Then there is a one-to-one correspondence between (i) families of morphisms
{ez(X;) € Homg(ZX;, X;Z), i € I'} such that

t®idz o ez(Xi) =1idy, ® ez(X;) o ez(X;)
®1de oidy ®t Vl',j,k el, te HOl’Il(g(Xk,AX,-X}) (34)

and (ii) families of morphisms {ez(X) € Homy(ZX,XZ), X € €} satisfying (i) and
(i) from Definition 3.1. All ez(X), X €% are isomorphisms iff all ez(X;), i€ are
isomorphisms.

Proof. (ii) = (i). Obvious: just restrict ez(-) to X € {X;, i€I'}. Then (3.1), (3.2)
imply (3.4).

(i) = (ii). Let X = @, n:X; and let {x}, a=1,...,n;}, {x}, a=1,...,n;} be dual
bases in Homg(X;, X) and Homg (X, X;), respectively. Then define

ni
ezZ(X) = x®idz 0 ez(X;)oidz ®x}.
el a=1

Independence of ez(X) € Homy(ZX,XZ) of the choice of the x} follows from duality
of the bases {x?},{x%}. In order to prove naturality (3.2) consider ¥ = P, m:X; and

corresponding intertwiners y7, y% and let € Homg(X,Y). Then yf, tx} € Hom(X;, X)),
which vanishes if i # j. Thus

= Z zn: zmi:c(i7 o, ﬁ)y{jxt%’

iel a=1 p=1

where c(i, o, ) € F. Therefore,

niom;

t®idzoe(X) = D cliu )y} ®idz o ez (X)) 0idz @,

il o=1 p=1

which coincides with ez(Y)oidz ®¢. If now ¢ € Homg (X, X;.X;) then naturality implies
t ®idyz o ez(X;) = ez(X;X;) o idz @ t. Together with (3.4) this implies

ez()(,)(j) oidy ®t=1idy, ® ez()(j) oez(Xi)® ldXJ oidy ® ¢

and since this holds for all # € Hom¢(X;, X;X;) (3.2) follows. (This is a consequence
of

k
N
E E l;f o ZLZ} = id)(l.)(/.,

kel a=1

where the {#}, o= 1,...,]\7,»’;} are bases in Homy (X;, X:X;).) O
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3.2. Elementary properties of the quantum double

Definition 3.4. The center Z' (%) of a strict monoidal category % has as objects pairs
(X,ex), where X € € and ey is a half-braiding. The morphisms are given by

Homy 4)((X,ex),(Y,ey)
={teHomy(X,Y)|idy @ toex(Z)=ey(Z) ot ®idy VZ €€} (3.5)
The tensor product of objects is given by (X,ex) ® (¥, ey) = (XY, exy), where
exy(Z)=ex(Z) ®idy o idy ® ey(Z). (3.6)

The tensor unit is (1,e;) where e;(X) =idy. The composition and tensor product of
morphisms are inherited from %. The braiding is given by

(X ex),(Y,ey)) =ex(Y).

For the proof that Z|(%) is a strict braided tensor category we refer to [21]. The
following is immediate from the definition of the center Z|(%):

Lemma 3.5. If € is F-linear then so is Z1(%). If the unit 1 of € is simple, then
1y, is simple.

In [52, Proposition 1] it is proven that the center of an abelian monoidal category
is abelian. In this paper we do not use the language of abelian categories since the
notions of (co)kernels are not really needed. (Yet semisimple categories are abelian if
we assume existence of a zero object.) Therefore, we prove two lemmas which show
that the center construction behaves nicely w.r.t. direct sums and subobjects. The first
result is contained in [52], but we repeat it for the sake of completeness.

Lemma 3.6. If € has direct sums then also Z1(%) has direct sums.

Proof. Let (Y,ey),(U,ey) be objects in Z(6). Let € > Z = Y & U with mor-
phisms v € Homg(Y,Z),w € Homg(U, Z), v' € Homg(Z, Y),w € Homg(Z, U) satisfying
v ov=idy,w ow=1idy,vo v’ +wow =idz. Defining ez(X) € Homg(ZX,XZ) for all
X €% by

ez(X)=idy Quoey(X)ov ®idy +idy @ woey(X)ow ®idy
we claim that (Z,ez) is an object of Z (%) and
(Z,ez) = (Y,ey) @ (U ep). (3.7)

Naturality of ez(X) w.r.t. X is obvious, and (3.2) is very easily verified using v’ ow=0.
Finally, we have

eZ(X)Ol)@idX:id)(@ery(X),

which is just the statement that v € Homy,()((Y, ey),(Z,ez). The analogous statement
holding for v/, w,w’, (3.7) follows. [J
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Lemma 3.7. If € has subobjects then also Z1(%) has subobjects.
Proof. Let (Y,ey)€ Z1(%) and let e be an idempotent in Endy 4)((Y,ey)). By defi-
nition of % (%) this means that e is an idempotent in End4(Y) such that
dy ®eoey(X)=ey(X)oe®idy VXe€E. (3.8)

Since % has subobjects there are U € 4 and v € Homg(U,Y), v € Homg(Y,U) such
that vo v’ =e and v/ o v =idy. Defining

ey(X)=1idy ® v oey(X) o v ® idy € Homg(UX,XU), X €%,
naturality w.r.t. X is again obvious. Now,
ey(Xi1Xy) =idyx, ® v 0 ey(X1X2) 0 v ® idy,x,
=idyx, ® V' oidy, ® ey(X2) 0 ey(X}) ® idy, 0 v ® idy,x,
=idy,x, ® v’ oidy, ® ey(X2) o idy, ® v ® idy,
oidy, ® v’ ®idy, o ey(X)) ® idy, o v ® idy,x,

= iXm X eU(Xz) (¢] EU(Xl) (29 idXz,

whereby ey is a half-braiding and (U,ey) an object in Z((%). We used vo v =e,
(3.8) and eocv=wvo v ov=nuv. Using the same facts we finally compute

idy ®voey(X)=idy Quoidy ® v/ oey(X)ov ®idy = ey(X) o v ® idy.
Thus UEHomgzl((g)((U, ev),(Y,ey)) and we have (U,ey) < (Y,ey). O

Lemma 3.8. Let € be pivotal and ey a half-braiding satisfying (1)—(iv). Then
ey(X)=idgy @ &(X)oidg ® ey(X) ™' ®idg o e(X) @ idy . (3.9)

Proof. By naturality and the braid relation we have

X)) ®idy = ey(XX)oidy ® e(X) =idy ® ey(X) o ey(X) @ idy o idy @ &(X)
and using the invertibility of ey(X) we get

id; @ ey(X)™' o e(X) ®idy = ey(X) @ idy o idy ® &(X).
Now (3.9) follows by a use of the duality equations, see, e.g., [37, Section 2.3]. [

Proposition 3.9. Let ¢ be (strict) pivotal. Then also Z (%) is (strict) pivotal, the
dual (Y,ey) being given by (Y,ey), where ey(X) is defined by

- idy, ®¢ - - idyQey(X)'®idy = -
Fox Y voxyegyey U200 9 poyeoxe? —
ey v o 7. (3.10)

The evaluation and coevaluation maps are inherited from €
8((Y,€y)):8(Y), 5((YaeY)):§(Y)
If € is spherical then also Z (%) is spherical.
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Proof. We begin by showing that ey(-) is a half-braiding for Y. By construction we
have ey(X) € Homy(YX,XY), and naturality w.r.t. X follows easily from the corre-
sponding property for ey. Now

ep(XiXo) =8V) ®idy vy 0idy @ ey(X1X2) ' @ idy oidyy,y, ® &(Y)
=§Y) ®idy, x5 oidy ®ey(X1) ' ®@idy,y
oidyy, ®ey(Xo) ™' @idy oidyy,y, ® &(Y)
=idy, ® &¥) ®idyyoidy y ® ey(Xo) ™' ®idy oidy 7y, ® &(Y)
0 &(Y) ®idy,py, 0idy ® ey(X)) ™' ®idyy, 0idyy, ® &(¥) ®idy,

=idy, ® ej(X2) 0 ep(X1) ®idy,.

In the third equality we have used the duality equation idy ® &¥)o &(¥) ® idy = idy
and the interchange law.

In view of definition (3.10) of ey(X) together with ey(1) = idy and the duality
equation we have ey(1) = idy. Now Lemma 3.2 implies invertibility of ey(X) for
all X.

It remains to show that &(Y):14 — ¥ ® Y is actually in

Homy,4)(12,(), (Y.ey) ® (¥, ey)) = Homy, 4)((1,id), (Y Y, ey 7)),

which in view of (3.5) amounts to

z Y ¥
AN
z Y ¥ & @)
U/ - \ (3.11)
& (@)
z
z

With definition (3.10) of ey the right-hand side equals
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which coincides with the left-hand side of (3.11) as desired. That &Y) is a morphism
in Z(%) is shown analogously. The composition of morphisms being the same in
Z1(¥) as in €, ¢ X), &X) inherit from % all equations needed to make Z1(%)
pivotal (spherical). If the pivotal structure of % is strict then the same clearly holds
for Z1(¢). O

3.3. Semisimplicity of Z1(%)

Lemma 3.10. Let € be semisimple spherical with simple unit. We assume that there
are only finitely many simple objects and that dim % # 0. Let (X,ex), (Y,ey) € Z1(%).
Then the map Exy: Homg(X,Y) — Homg(X,Y) defined by

2(%) Y
ey (X)
Exy (t) = (dim %) Z d,
iel' X; ]
ex (%)
X S(Xi)

is a projection onto Homy 4((X,ex),(Y,ey)) C Homy(X,Y). Here {X;, i€T'} is a
basis of simple objects and we abbreviate d; = d(X;). The family of maps Exy is a
conditional expectation in the sense that

Exr(coboa)=coEyz(b)oa (3.12)
if ac Homy, (4 ((X,ex),(Y,ey)), b€ Homg(Y,Z), c € Homy,4)((Z,ez), (T, er)).

Proof. We compute

Z Y
(%)

x

dim % . idz ® Ey v (t) © e (2) = ;di
le
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Z Y Z Y ZY
o) J\
%
X%;
= z d, = Z did_j = Z Zd-
i 5 @ X i o
K x X
o) e
X Z X Z X Z
ZY ZY
\

=dim%-ey(Z) o Exy(t) ®idz

Here {p}”, o= 1,...,Né’X/} is, for every j €I, a basis in Homg (X}, ZX;) with dual
basis {p};"} such that p}* o pi¥ =5;;0,5idx, and idzy, = > PP o piY. We used
the fact that ey(-),ey(-) are half-braidings, i.e. natural w.r.t. the second argument.
Furthermore, the basis {g; j} in Homg(Z, X;X;) and its dual basis are normalized such

that trz(qf 7 oq;;)=d(Z)d,p. We used that a basis together with its dual can be replaced
by another one provided the normalizations are the same.

Since the above computation holds for all Z& % we conclude that Eyy(¢) is in
Homy (4)((X,ex),(Y,ey)). Property (3.12) for morphisms a,c in Z(%) is obvious
since by (3.5) a,c can be pulled through the half-braidings, changing the subscript of
the conditional expectation £ appropriately. In order to show that Ey y is idempotent it
thus suffices to show Ey y(idy)=idy, which follows from the definition of dim%. [

Remark 3.11. (1) Since the conditional expectations depend also on the half-braidings
we should in principle denote them Exc,)(ye,). We stick to Eyy in order to keep the
formulae simple.

(2) The role of the assumption on the dimension is obvious: If dim % = 0 then the
map Eyy with the factor (dim % )~! removed is identically zero on End, (4)(X), thus
we cannot use it to obtain a conditional expectation.
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(3) The proof uses a special instance of the ‘handle sliding” which has been formal-
ized in [1], yet the present instance was discovered independently.

Lemma 3.12. For every X € € we have try o Exx =try, where try is the trace on
End¢(X) provided by the spherical structure.

Proof. Let € Homg(X,X). Using the fact that the spherical structure of Z1(%) is
induced from 4 we compute

#(X)

)

dim @ tr o Ex x (t) = 2 d
|

(

¢(X)

=iZdij§ (D, = Zd |- Z:dim(gtr(t).

&(X)

In the first step we have used Proposition 3.9, the second is based on standard prop-
erties of categories with duals. In the next step we use that, given a basis {¢*} in
Homg(X;, X;X) with dual basis {/*}, {ex(X;) o *} is a basis in Hom¢(X;, XX;) with
dual basis {#* o ex(X;)~'}. Replacing one basis by the other leaves the expression
invariant. [

A trace on a finite dimensional [F-algebra 4 is a [F-linear map 4 — F such that
tr(ab) =tr(ba). It is non-degenerate if for every a # 0 there is b such that tr(ab) # 0.

Lemma 3.13. Let A be a finite dimensional F-algebra and tr : A — F a non-degenerate
trace. If tr is vanishes on nilpotent elements then A is semisimple. Conversely, every
trace (not necessarily non-degenerate) on a semisimple algebra vanishes on nilpotent
elements.
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Proof. Well known, but see, e.g., [37]. O

Lemma 3.14. Let A be a finite dimensional semisimple algebra over F with a non-
degenerate trace tr :A — F. Let B be a subalgebra containing the unit of A and
assume there is a conditional expectation E:A — B (i.e. a linear map such that
E(bab’) = bE(a)b’ for a€ A, b,b' € B) such that tr o E =tr. Then B is semisimple.

Proof. Let 0 # x € B. By non-degeneracy of tr there is y € 4 such that tr(xy) # 0.
Now, using the properties of £ we compute 0 # tr(xy) =tro E(xy)=tr(xE(y)). Since
E(y)e B we conclude that the restriction trg = tr [ B is non-degenerate, too. By
Lemma 3.13 tr vanishes on nilpotent elements, thus the same trivially holds for trg.
Now the other half of Lemma 3.13 applies and B is semisimple. [

Remark 3.15. Algebra extensions 4 O B admitting a conditional expectation £: 4 — B
(satisfying certain conditions) are well known as Frobenius extensions, cf., e.g., [20],
and are called Markov extensions if there is an E-invariant trace on 4.

Now we can put everything together:

Theorem 3.16. Let F be algebraically closed and € a F-linear, spherical and semisim-
ple tensor category. We assume that there are only finitely many simple objects and
that dim % # 0. Then the quantum double % (%) is spherical and semisimple.

Proof. Recall that by our definition of semisimplicity, ¥ has direct sums, subobjects
and a simple unit. By our earlier results also Z1(%) has these properties and is spher-
ical. It therefore only remains to show that the endomorphism algebra of every object
of Z (%) is a multi matrix algebra.

Let (X,ex)€ Z1(%). Then Endg(X) is a finite dimensional multi matrix algebra
by semisimplicity of @. The trace on End4(X) provided by the duality structure is
non-degenerate, cf. e.g. [15, Lemma 3.1], and Lemmas 3.10, 3.12 provide us with
a trace preserving conditional expectation Ey: Endg(X) — Endy () ((X,ex)). Thus
Endz,)((X,ex)) is semisimple by Lemma 3.14 and therefore a multi matrix algebra
since [ is assumed algebraically closed. [

Remark 3.17. (1) Even if (X,ey) is simple as an object of Z (%) there is no
reason why X should be simple in %. Usually it is not. Since we do not know
a priori which non-simple objects of & appear in the simple objects of % (%) we
cannot dispense with the assumption that & has all finite direct sums as done, e.g.,
in [53].

(2) We briefly remark on possibilities of generalization of the results of this section
suggested by Etingof. Whenever a tensor category has left and right duals the consid-
erations of Section 3.2 imply that also Z;(%) has left and right duals. Viz., replacing
Y in Proposition 3.9 by the left dual *Y, one obtains a left dual (*Y,e-y) of (¥, ey).
Here e«y(-) is invertible by virtue of the existence of the right dual Y* in 4. Also the
proof of semisimplicity generalizes, provided one makes suitable changes. E.g., in the
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definition of Exy in Lemma 3.10 one replaces
eXi) — ey, &X)— oy, di—dyoey,

where the morphisms ey, 7y, dx, éx, are as in [37, Proposition 2.4]. For the di-
mension dim % one uses [37, Definition 2.5], which does not assume the existence of
a pivotal/spherical structure, but only that % has two sided duals. (In a semisimple
category a left dual *Y is automatically two sided.) Now the proof essentially goes
through as before. Possibly also the results of the remainder of the paper hold in larger
generality, but we do not pursue this.

(3) Note that we do net yet know that Z{(%) has finitely many isomorphism classes
of simple objects. To show this will be our next aim.

4. Weak Morita equivalence of Z'{(%) and ¢ X ¢°P
4.1. A Frobenius Algebra in € X €°P

Throughout this section 4 will be a strict spherical tensor category with simple unit
over an algebraically closed field F. We require that € is semisimple with finite set I’
of isomorphism classes of simple objects and dim @ # 0. The set I" has a distinguished
element 0 representing the tensor unit and an involution i — # which associates with
every class the class of dual objects. We choose objects {X;, i € I'} in these classes,
which are arbitrary except that we require Xo=1. We emphasize that we do not require
X; = X;. This can be achieved by a suitable strictification of the category if and only
if all self-dual objects are orthogonal [5]. (The terms real vs. pseudo-real do not seem
appropriate if F # C.)) We choose once and for all square roots of the d; = d(X;),
as well as A =+/dim% and (dim%)"* = V. Let N} be the dimension of the space
Hom(Xy, X;X;), let {t{‘j", o= 1,...,Ni’;} be a basis in Hom(X;, X;X;) and let {tl]j“,‘} be
the basis in Hom(X;X;, X;) which is dual in the sense of ti/‘].'*f o tf;fﬁ = d,p. Note that this
normalization of the dual basis differs from the one provided by the trace by a factor
of dj. The present choice is more convenient since otherwise the dimensions would
appear in the equation

ko koo __ :
E tij Otl-j/—ld)([)(/.
ko

The choice of the square roots, the X; and of the bases {tfi“ is immaterial but will be
kept fixed throughout the rest of the paper, and the symbols I', X;, N,]J‘, tf‘]l“ will keep
the above meanings.

With these preparations we can embark on the 2-categorical approach to the quantum
double. We define

o =€ X €, 4.1

Xi=X; X X €Obj.o. (4.2)
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By [37, Lemma 2.9], €°°,% Q@F ¢°° and .o/ are strict spherical in a canonical way.
Every X;, i€ is simple and if it is self-dual (i.e. if i = %) then it is orthogonal
irrespective of whether X; is orthogonal or symplectic.

The following is a very slight generalization of [29, Proposition 4.10].

Proposition 4.1. Let F be quadratically closed and let € be F-linear semisimple spher-
ical with dim% # 0. There is a normalized strongly separable Frobenius algebra
Q=(0,v,v',w,w) in .o/ =% X 6 (with i1 =/ = 1) such that

0=Px. (4.3)

iel

Proof. Clearly, d(Q)=dim %. By definition of O there are morphisms

v; € Hom(X;, 0), v.€ Hom(Q,X;), i€T,
such that
Ul{ oV = 51‘]' id)?[, ZU,’ ] Ul/» = ldQ (44)

Defining v = 120y, v/ = AY%vf, (2.7) is trivial. With ti’;?fEHomr,g(Xin,Xk) =
Homgo (X", X;X;") the morphisms

Nk

ij
="t )} € Hom (X}, X X))

=1

are independent of the choices of the bases {#}. Then

-1 ddj %
w=41 i’j’zk;r p Ui ® ;oL 0 v 4.5)
is in Hom ,(Q, 0?), and w' € Hom,g;(QZ,Q_) is defined dually. Eqs. (2.3) and (2.4) of
Definition 2.1 are almost obvious. (Use Nj. = d;;). The proof that w,w’ satisfy (2.1),
(2.2) and (2.5) is omitted since it is entirely analogous to the one in [29, p. 591].
Finally, w’ o w = idg is proven by a simple computation observing 7;, o 7j; = Nfid,
and using

D didNi = didNip =" did; = dy dim 6 = di7’. (4.6)
LJ iJ J

d
k

Thus (Q,v,v’,w,w’) is a strongly separable Frobenius algebra in o/. [J

Thus Theorem 2.2 applies and yields a spherical bicategory &. (& is strict as a
bicategory except for the existence of non-trivial unit constraints for lg and strict
pivotal [6] except for isomorphisms yxy:Y o X — X o ¥ which are non-trivial when-
ever Ran(Y) = Src(X) = B.) In particular, we have a spherical tensor category % =
EN'Dg(*B). In the rest of the paper o7, Q, & and # will have the above meanings.
By construction O contains the identity object of ./ with multiplicity 1, thus J,.J and
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1 are simple by [37, Proposition 5.3] and d(J) = d(J) = 1. (Condition (iii) of that
proposition can also easily be verified directly.)

Lemma 4.2. dim # = (dim %)?.

Proof. Follows from dim # =dim .o/ and dim .«Z =(dim %)?. The former is [37, Propo-
sition 5.16] and the latter is obvious since the simple objects of € [X P are those of
the form X X Y°° with X, Y simple. [

In the sequel we will write 1 instead of 1°P in order to alleviate the notation.
4.2. A fully faithful tensor functor F : Z(€¢) — %

In this subsection we will construct a functor F: % (4) — % and prove that it
is fully faithful and monoidal. This already implies that Z;(%) has finitely many
isomorphism classes of simple objects, which is not at all obvious from Definition 3.4.

Lemma 4.3. Let X,Y € 6. There is a one-to-one correspondence between morphisms
ucHom (X X 1)0,0(Y X 1)) = Homg(J(X X 1)J,J(Y X 1)J) and families
{u[i] € Homy(XX;, X;Y), i€T}. With Z€% and ve Hom,((Y X 1)0,0(Z X 1)) =
Homg(J(Y X 1)J,J(Z X 1)J) we have

kot
t’IJ

ij

@ = (d&N" 2 2 dd (“47)

Proof. Let u € Hom ,((X X 1)Q,0(Y X 1)). Then
UJ{ ®idygi1 ouoidygy ® v;
is in
Hom ., (X X 1)X;,X;(Y K 1)) = Hom(XX;, X;Y) @ Homeen (X", X7,
which vanishes if i # j. Thus
v @ idyg1 ouoidygr @ v; = uli] K id yor
defines u[i] € Hom¢(XX;, X;Y). Conversely, given {u[i] € Homq(XX;, X;Y), i €T},
u=> " 1;®idygs ouli] K idyw oidygs ® V] (4.8)

defines a morphism u € Hom_,((X X 1)0,0(Y X 1)).
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Eq. (4.7) follows easily from (4.8), the definition [37, Proposition 3.8] of the
e-multiplication in & and the formula (4.5) for w,w’. [

Lemma 4.4. Let u€Endy(J(X K 1)J). Then the associated family {uli]} satisfies
the braiding fusion equation

X X X

(4.9)
Sfor all i,j,k €l and all t € Homy(Xy, X:.X;) iff u satisfies
Q Q Xw1 Q Q X1
w
I: J = I: " (4.10)
w
Q
Xx1 Q XX1

Proof. In view of definition (4.5) of w € Hom,_,(Q, Q%) and of (4.8), the left-hand side
of (4.10) is seen to equal

ATy

ik

did; . . . . .
p Ly ® v; ® iy © ld)?, Qul[jl X ldX;m ouli] X lXm."" ® lde

k
: ok : /
oldyg1 ® ti; 0 idyg1 ® v,

whereas the right-hand side equals

did; . . . .
A2 Z y L1 ® 1y @ idygy o 1 @ idygy o ulk] K idyo oidyg1 ® v}

ik k

In view of the orthogonality relation satisfied by the v's, these two expressions are
equal iff

idg, ®ulj] & idyo o uli] K idyr @ idg, 0 idxg1 @ iy

:f{,}@iXmZ’l Ou[k] X iXmfp Vi,j,keF.
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Inserting fkl/ =>, tf;“ X ti’;»o,‘, this becomes
NE
> (idy, ® ulj] o uli] ® idy, 0 idy @ ) K

a=1

Nk
=> (tf @idy o u[k]) K 1f7. (4.11)
a=1

Multiplying from the right with idyx, X t{‘j", we arrive at condition (4.9). Conversely,

X -tensoring (4.9) with tf‘jl%‘ and summing over « we obtain (4.11). O
Proposition 4.5. There is a faithful functor F :Z(€) — 8.

Proof. Let (X,ex)€ Z1(%). By Lemma 4.3 the half braiding {ex(Z),Z € €} provides
us with an element p% in End(J(X X 1)J) = Hom((X X 1)0,0(X K 1)). Since
ex(-) satisfies the braiding fusion relation (4.9), p% satisfies (4.10). Now, multiplying
(4.10) from the left with w’ ® idyx and using (2.6) we obtain

W ®idygr oidp ® p% o pY ®@idg oidygr @ w=1p%, (4.12)
which is just p% e p = Ap% in Endg(J(X X 1)J). Thus with py = A7'p%,
F((X,ex)) = (J(X ® 1), px) (4.13)

is an object in 4, which defines the functor F' on the objects. We will mostly write
F(X,ex) instead of F((X,ex)). Let (X,ex) € Z (%) with the above idempotent py €
Hom_,((X ® 1)0,0(X ®1)) = Endg(J(X X 1)J) and similarly (¥,ey), py. Consider
now s € Homy (%) ((X,ex),(¥,ey)) C Homg(X, Y). Then condition (3.5) implies

idp ® (s ¥ idy) o px = py o (s K idy) ® idp. (4.14)

The element of u € Hom (X X 1)0,0(Y K 1)) = Homg(J(X X 1)J,J(Y X 1)J)
defined by (4.14) clearly satisfies py e u @ py = u and is therefore a morphism in
Homg((J(X X 1)J, px),(J(Y X 1)J, py)). That the map s — u is faithful follows
from the first term in (4.14) and the fact that the ex(X;), i €I, and thus px (as a
morphism in .o/) are invertible. This defines F' on the morphisms, and F is faithful.
The simple argument proving that F respects the composition of morphisms is left to
the reader. [J

Proposition 4.6. The functor F is full.

Proof. We must show that every morphism in Homg4(F (X, ey ), F(Y, ey)), where (X, ex),
(Y,ey) € Z1(%), is of the form F(s) with s€ Homy (4)((X,ex),(Y,ey)). Now, the
morphisms in Homyz((J(X X 1)J, px),(J(Y X 1)J, py)) are those elements s in
Homyz(J(X K 1)J,J(Y X 1)J) which satisfy s = py e s ® px. px,py being
idempotents, every such s obviously is of the form s = py et e py for some 7€
Hom,@(.]_(X X l)J,J_(Y X 1)J). By definition of 4 and by Lemma 4.3, s and ¢ are
represented by elements {s[7]}, {¢[{]} of &,  Hom¢ (XX, X;Y). Given arbitrary ¢ and
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setting s = py e t @ py we will show that s[0]€Homg(X,Y) is in fact in
Homy,(4)((X,ex),(Y,ey)) and that

sm]l=1idy, ® s[0] o ex(X,y) VmeT,

m

which is equivalent to
s =1idp ® (s[0] K idy) o px = F(s[0]).
Starting from the explicit statement of s = py et @ py we compute:

Xm Y

Mo
i

At -oml= 2 2 dididg
iLj.klel op v
k

= 3 ddd nd
ikler K d
o,f
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Xm (X)) Y

= dm Z di d|
ilel’

X Xm

where u € Homy (X, Y) does not depend on m. (On the very left, px, py and each of
the e-operations contribute one factor /. Furthermore, sfn“l-, o= 1,...,N£ 7 is a basis in
Hom(Xy, X;»X;) with dual basis s’. We do not use tﬁf; since we cannot assume X; =X;
without losing generality.) For m =0 we have X,, =1 and thus s[0] = A"*Ex y(u), thus
s[0] € Homy, (4)((X,ex), (Y, ey)). Plugging this into the above equation for m # 0 we
obtain s[m] =idy, ® s[0] o ex(X,») and therefore s = F'(4s[0]). We conclude that the
functor F is full. O

Proposition 4.7. The functor F is strong monoidal.

Proof. First we observe that F(lgl(fg)):F(l(g,idX):(jJ, i_'idQ), which follows from
(4.13) by putting X =1 and ex(X;) =idy, Vi. Comparing with [37, Theorem 3.12] we
S€C F(lgl((g')) = 1%.
Now we have to show that F(X,ex)F(Y,ey) and F((X,ex)(Y,ey)) are naturally
isomorphic. We compute
F(X,ex)F(Y,ey) = (J(X & 1)J, px)(J(Y & 1)J, py)
=X R DO ’ DJ,u(X,Y)),
F((X,ex)(Y,ey)) = F(XY,exy) = (J(XY K 1)J,uz(X,Y)),

where XK1
XX1 YX1
|Q Q
ug (X,Y) = Px Py UZ(X,Y) =1
Q Q

XX1 YX1
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Obviously, F is not strict. But with s(X, Y) € Homg(X X 1)(Y X1), X X 1)O(Y X 1))
and #(X,Y) € Homg((X X 1)O(Y K 1),(X X 1)(Y X 1)) defined by

ngl Q el XK1 YX1
O
P ] Q
= t X,Y =
s(XY) (X.Y) o]
O
Q Q Q
XK1 Y1 XX1 YX1
we compute

0 XX1 YXI 0 YK YR1

Px o —| Px ] Py :|

t(X,Y) e s(X,Y)=2 =1

| ’x l | e I |:I7X [PY

x®l YRl O XX1 YR1 Q@

Here the second equality follows (verify!) by repeated use of Egs. (2.1)—(2.5). Using
Px® px=px, pre py= py and the duality equation for Q we obtain (X, Y)es(X,Y)=
ur(X,Y). Now,

XK1 Y1
Q Q XK1 YKX1
Q Q
Px pY—| |
pr
s(X,Y) m t(XY) =4 =1
Py
pr Py
Q Q
Q Q XK1 YX1
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Here we used that py, py come from half-braidings, implying that we have (4.10) and
its dual version by Lemma 4.4. (Take into account two factors of 4 which come from
the normalization of pyyy.) It is easy to see that the last expression equals u(X,Y).

It remains to verify that the functor F' is coherent in the sense of [34, XI.2]. The
computations present no difficulties and are simplified by the fact that the categories
Z1(%) and A are strict except for the unit in # =Ends(*B). We refrain from spelling
out the details. [

4.3. F is essentially surjective

®
In order to conclude that F' establishes an equivalence #=% (%) of tensor categories
it remains to prove that F is essentially surjective, viz. that for every object ¥ of #
there is (X,ey) € Z1(%) such that F(X,eyx) = Y. We begin with a result due to Izumi
[18].

Lemma 4.8. Let Y €% be simple. Then the 1-morphisms (Y K1)J, (1K YP)J :B —
Aand J(Y X 1), JARX Y°P): A — B are simple. Furthermore,

(YR 1)J =R TP,

JY K 1DH=J1 K YP).

Proof. Let Y,Z € 4. By duality be have the isomorphism
Homg((Y X 1)J,(Z X 1)J) = Homs((¥Y K 1)JJ,Z X 1)

=Hom (Y X 1)0,Z X 1)
of vector spaces. In view of O = @, X; X X; this implies
Homy((Y X 1)J,(Z X 1)J) = Homg(Y, Z).

In particular, if Y €% is simple then (¥ X 1)J € Homg(*B,%) is simple, and so is
(1 X Y°P)J by a similar argument. Furthermore,

Hom((Y X 1)J,(1 K Y*°)J) =2 Homg(Y X Y°°,JJ)=Hom (Y X Y°,0).

Now, ¥ X Y°P is simple and contained in Q with multiplicity one, thus these spaces
are one dimensional and

(YR1DJ AR TP
Similar arguments apply to the A — B-morphisms. [J
Corollary 4.9. Let X,Y € 6. Then there is Z €% such that
JX X YP)J 2J(ZK1)J
and such that the isomorphisms
e € Homg(J(X K YP)J,J(Z X 1)J) = Hom,((X K Y?)0,0(Z K 1)),

f €Homy(J(Z K 1)J,J(X K Y)J) = Hom,((Z X 1)0,0(X K Y*))
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can be chosen such that
e=0®é f=0®/f

with € € Hom (XX Y°P)Q,ZX 1) and j; € Hom&/((ZEE 1)Q, X X Y°P). (Alternatively,
one can find morphisms of the form e=¢éxv, f = f 1)

Proof. Using the lemma we compute
JXRYP)=JXKDAXYP)J=2JXX1)YX1)J=JXY K1)

We put Z=XY and denote by é the isomorphism (1 5 Y°P)J — (¥ X 1)J provided
by the preceding lemma. Now the claim follows with é = idyxgi x é if we keep in
mind that tensoring € with id; (in &) amounts to tensoring with v in 7, as follows
from the definition of &. f is defined similarly. Alternatively, using the isomorphism
J(X X 1)=J( X X°) one obtains a solution with e=¢é ® v/, etc. [J

The lemma implies that every object of # is isomorphic to one of the form (J(X ®
1)J, px). This looks quite promising since also F(X,ey) has this form. In fact, by
Lemma 4.3 and Lemma 3.3 we obtain a family of morphisms {ex(Y): XY — YX,
Y €%} natural w.rt. Y. Yet, in order to conclude that this is a half-braiding (and
therefore (J(X ® 1)J, p) = F(X,eyx)) we need that p satisfies (4.10) and p[0] = idy.
Not every object of # satisfies these conditions as is exemplified, e.g., the object
JX X 1)J =X KX 1)J, p) where

p=idjygry, =v®idygi ® v' € Homy,((X K 1)0, 0(X K 1)).

One easily verifies that p does not satisfy (4.10). In view of p[i] = d,pidy it is also
clear that the corresponding ex(Y') fails to be invertible for all Y.

The following result on the 2-category & is quite general in that it does not rely on
oA =6 X 6.

Lemma 4.10. Let X € </ and p= p O_pEEnd(gv(jXJ). Then there is YE of, q=q e
q €Endg(JYJT) such that (JYJ,q) = (JXJ, p) and in addition

QQy QQy

.

=) 4.15
T (1)

Y Q Y OQ

Remark 4.11. Condition (4.15) implies g ¢ ¢ = g as is seen by multiplication with
w' ®1idy from the left.
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Proof. Using the (non-strict) unit 8 — B morphism 19 = (J.J, 1~ idp) we put (¥,q)=
15(X, p) = (0X, 27 Vidg x p). The isomorphism (JYJ,q) = (JXJ, p) was proven in
[37, Theorem 3.12]. We claim that ¢ satisfies (4.15). In terms of (Y,q) (and keeping
in mind that ¥ = QX!) the left-hand side of (4.15) is given by

Q X Q

For the right-hand side we compute

Q X Q
Q X Q

In the last step we have used p e p = p. That the result coincides with the left-hand
side follows now from a standard computation using the properties of a Frobenius
algebra. [

Proposition 4.12. Every object of % is isomorphic to one of the form J(ZX 1)J,q)
where g € End»x(J(Z X 1)J) satisfies (4.15) (with Y =Z X 1).

Proof. By the preceding lemma every object (J(X X Y°P)J, p) of # is isomorphic
to one which satisfies (4.15), which allows us to assume this property in the rest of
the proof. By Corollary 4.9 there is Z € € such that J(X X Y?)J = J(Z X 1)J. Let
e JJXRYP)Y -JZK 1), f:J(ZK1)J — J(X X YP)J be a pair of mutually
inverse isomorphisms. Then with g =e e pe f we have (J(Z X 1)J,q9) = (J(X X
Y°P)J, p). If we can show that also ¢ satisfies (4.15) Lemma 4.4 applies and the claim
follows. Now by Corollary 4.9 Z, e, f can be chosen such that e=v®ée, f=v® f , where
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¢, f are mutually inverse 2-morphisms between (X ® Y)J and (Z ® 1)J. Therefore,
Q z

X
g=epsf= p =

Z Q

where the four-fold vertices denote triple (co)products. That ¢ satisfies (4.15) is now
obvious from the respective property of p and feé=id. [

Proposition 4.13. The preceding proposition remains true if one adds the requirement
that q[0] = A~'id; (notation of Lemma 4.3).

Proof. Let Z,¢g be as in the preceding proposition. Multiplying (4.15) with v/ ® v/ ®
idzx1 and using v/ ® idzg1 0 ¢ = ¢[0] ® v we obtain /Iq[O]2 = ¢[0] € End4(Z). Let
f:Z —Z, g:Z — Z be a splitting of the idempotent Ag[0]. Then it is easy to verify
that with

G=idp ® (g ¥ idy) o go (f )X idy) ® idg

we have (J(Z X 1)J,§) = (J(Z X 1)J,q). This § still verifies (4.15) and, in addition,
glol=4"4d;. O

Now we are ready to state our first main result.

Theorem 4.14. The tensor categories B and Z1(€) are equivalent as spherical cat-
egories, thus we have the weak monoidal Morita equivalence (in the sense of [37])
Z1(€)~ X €. In particular,

dim Z1(%) = (dim %)*.

Proof. We have shown that every simple object in 4 isomorphic to the image under
F of a simple object in Z((%). Since Z (%) and # are both semisimple (in particular
closed under direct sums and subobjects) we conclude that F' is essentially surjective.
Since F is also fully faithful we have an equivalence of categories by [34, Theorem
IV.4.1]. F being monoidal we have an equivalence of monoidal categories by [50,
1.4.4]. (This already implies that # and Z1(%) have the same dimension, since by
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tX) XX E(XX1) Q Xm1

ex(X) = Pe, =

X X e(X) XK1 Q &(XX1)

Fig. 1. ey(Xi) and pey .

[37, Proposition 2.4] the latter are well-defined independently of the chosen spherical
or x-structure and, of course, invariant under monoidal equivalence.)

It remains to show that the spherical structures are compatible. As to the conjugation
maps, we have

F((X,ex))=F((X,ez)) = (J(X K 1)J, pe,.).

Putting together Proposition 3.9 and Lemma 3.2, ez(X;) is as in Fig. 1, where the
pair of unlabeled morphisms is any solution of the duality equations. In view of the
definition of py in Proposition 4.5 and of p,, in [37, Theorem 5.14], cf. Fig. 1, it is
clear that p., = p., and therefore

F(X,ex) = F((X,ex)).

Now by Proposition 3.9, the spherical structure of & (%) is inherited from %, con-
cretely £z, (4)(X, ex )=¢éx(X ). Considering how the spherical structures of & and & arise
from that of .o/ in [37, Theorem 5.13] it is essentially obvious that F': (%) — £ is
an equivalence of spherical categories irrespective of the fact that the latter is neither
strict monoidal nor strict spherical. We omit the easy details. [

Remark 4.15. (1) In the case where % is the representation category of a finite dimen-
sional involutive semisimple and cosemisimple Hopf algebra H, Z|(%¥) is equivalent
[21, Theorem XIII.5.1] to the representation category of the quantum double D(H ) and
our result is just the fact dim D(H) = (dim H)?.

(2) It seems likely that a simpler proof of the theorem can be given using the
interpretation of the tensor category =& 4" +(°B) as bimodule category 0—Mod—0,
together with the recent work [45].

5. Modularity of the quantum double
5.1. The ‘Tube algebra’

By definition [37] of &, every simple 28 — B morphism is contained in J(X [X] Y°P).J
for some simple X, Y. In view of Lemma 4.8 every simple ‘B — B-morphism is in fact
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contained in J(X [X] 1)J for some simple X € % (as well as in J(1 X X°P).J). Defining
?LZ@Xiﬁl, YR:@IX]X[OP,
ier i€r
we conclude that either of JY,J, JYgJ contains all simple B — B-morphisms. With
5, =Ends(JY . J), Er=Ends(JYrJ)

we thus have a one-to-one correspondence between isomorphism classes of simple
B — B-morphisms and minimal central idempotents in = or, equivalently, in Zz. From
now on we will stick to 5;. By construction of & we have &, = Hom,(Y;0,0Y;)
as a vector space. Thus
E12 (P Hom, (XX, R X", XX ) ;")
ik

= @ Hom (XiX}, X, X;) @ Homeen (X}, X;F)
ikl
= (P Home (X, X;, X;X)).
il
We therefore have
End(JY1/) = Hom.,(¥10,0Y 1) = () Home (XX;, X;X; ) (5.1)
ik
and in complete analogy to the proof of (4.7) one shows that the multiplication in =,
is given by

N
@) @jiK=d Nt 2 Zdnd, (5.2)
! I,mnel’ «=1

Remark 5.1. (1) We observe that up to a different normalization (5.1) and (5.2) co-
incide with Ocneanu’s definition of the ‘tube algebra’, cf. [44,14,18]. (The (ij|X|jk)
of Izumi corresponds to our u[i, j,k]-d;//.) Note, however, that we derive (5.1), (5.2)
from an intrinsic definition of the algebra =, = End,g(j Y 1J), which makes the corre-
spondence between the minimal central idempotents of =; and the isomorphism classes
of simple objects in # completely obvious. (Compare this to the laborious proof in
[18].) The above considerations therefore completely clarify the role of the tube alge-
bra. We suspect that Ocneanu arrived at his definition of the tube algebra by similar
considerations.
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(2) Note that in the definition of 5; we could replace ¥, by

Y =N R 1)

iel’

with arbitrary {N;} € N The algebras Ends(JY).J), of which the tube algebra happens
to be the smallest, all have the same center, thus are Morita equivalent. We emphasize
that only this common center has an invariant meaning, and in fact it has a well-known
interpretation in terms of TQFTs, see Subsection 8.2.

Lemma 5.2. Let (X,ex)€ Z1(%) and Y €%. Then there is a isomorphism between
the vector spaces Homg(X,Y) and Homy(F(X, ex),J(Y X 1)J).

Proof. The proof is similar to the one of Proposition 4.6, but simpler. Let s¢&
Homg (X, Y) and let € Homg(J(X X 1)J,J(Y X 1)J) be defined (using Lemma 4.3)
by t[i] = dips. Then the map m:s +— s =1 ® pxey) € Homy(F(X,ex),J(Y K 1)J)
is injective since (£ ® prxe,))[il = A7 'idy, @ s 0 ex(X;), in particular (£ @ p(x.e,))[0] =
J~ls. Let, conversely, s€Homy(F(X,ex),J(Y X 1)J), ie. s =5 ® D(X,ex) €
Hom(J(X X 1)J,J(Y X 1)J). Then

X (X)) Y

Xk

kot
m,|

Xm

t
k
Nin

A2 s(K= 2 Z dnd
- mlel’ «=1
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Putting £ =0 we obtain

and plugging this back into the preceding equation we obtain
sTk] = idx, ® s[0] 0 ex (X)).

Thus s is in the image of w, which proves that 7 is an isomorphism. [

Proposition 5.3. Let (X,ex) € Z1(6) be simple and let N} = dim Homg(X;,X). Then
the (simple) object F(X,ex)€ A is contained in J(X; X 1)J with multiplicity NX. Let
{p?}, {pi} be bases in Homg(X;, X ), Homg (X, X;), respectively, normalized by pf o
Pl =0,pidx,. Then g € Homa(F(X, ex),J(X; K 1)J), g% € Homs(J(X; K 1)J, F(X, ex))
defined by

dXx)\"*.
¢k = <i§ d)> idy, ® pji o ex(Xi),

CON
qilk] = (izd) ex(Xi) o pf ®idy,
1

. X -
satisfy q% oquéxﬁ idr(x.e ). The idempotent ZéX,eX):ZiV;I g?eq’ in Ends(J(X; X 1)J)
corresponding to the isolypic component of (X,ex) is given by

. d
el = 25 )Z idy, ® pi o ex(Xp) o pi @ idy, (53)

Remark 5.4. The choice of square root of d(X) is immaterial, but it must be the same
in the equations defining ¢ and ¢%.

Proof. In view of the preceding lemma all that remains to be verified is the normal-
ization. Since (X,eyx) is simple we have g o qlﬁ = cupidrxe). Plugging q?lk], q%[k]
into (4.7) and comparing with the middle term of the computation in Lemma 3.10
(with Z = X)) we see that

o B dX)
(@i a1 =

idy, ® Exx(pj o P,/) o ex(Xi)

_trx 0 Exx(pfo plh)
Ad;

ex (X)),
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since Ex x(p} o piﬁ,) is a scalar multiple of idy due to the simplicity of (X, ey). Now,
by definition of the functor F' we have idrxe,)[k] = 4~ 'ex(X;), thus by comparison
we find c,5 = dfl try o Exx(p?o plﬁ, ). Computing

trx 0 Exx(p} o ph) = trx(p} o pl)) = trx(p o pl) = didop,
where we used the invariance of the trace under the conditional expectation and cyclic

permutations, we obtain ¢,z = dyp as claimed.
Now we can compute z(y, ) =>_, g} g} as follows:

X X

Kk
tl,n[1

Xk X

Zixey [K =
(XeJ 220 o=11mer p=1 4%k

20 g=1 X

Xi Xk

X Xky

We have pulled tfrﬁ, through the braiding and used (4.6). [J

Proposition 5.5. Let (X,ex) € Z (%) be simple. The minimal central idempotent z(x )
in By corresponding to F(X,ex) is given by

d(X) -

ZXex) i/, k] = Oix . Zidx_, ® pioex(X;) o pi ®idy,, (5.4)
i a=1

where the {p?}, {p%}, i€, a=1,...,N¥ are bases as in Proposition 5.3.

1

Proof. Since JY.J is a direct sum EBIJ(X,- X 1)J we only need to add up the
idempotents in Ends(J(X; X 1)J), which we identified in Proposition 5.3, inside
Z; =Endg(J Y J). With isomorphism (5.1) the claimed identity follows. [J

As a first application of the tube algebra we can give an easy bound on the ‘size’
of the quantum double:

Corollary 5.6. The number #Z (%) of isomorphism classes of simple objects of Z1(%)
satisfies
#21(%) < ) dim Hom (X.X), X;X)).

i,jer
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Proof. By the equivalence Z'|(%) £ % and the above considerations we have #% 1(6)=
dim Z(Z}). Since the center of Z; is spanned by the zx.,) constructed above and since
Z(x,en)li, j, k] =0 if i # k we have
Z(Z1) C €D Homy (XX}, X,X;),
ij

which implies the bound. [

Remark 5.7. If G is a finite abelian group whose order is non-zero in F then G—mod is
semisimple, symmetric and all simple objects have dimension one. Thus the right-hand

side of the above inequality equals |G|%. In view of Z{(G — mod) ~ D(G) — mod we
have #21(G — mod) = |G|?, which proves that the bound is optimal.

The next two subsections, which do not pretend much originality, will follow [18]
quite closely except for shortcuts in the proofs.

5.2. Invertibility of the S-matrix

In this subsection we will prove that the S-matrix

S(Xex). (Yey) =
X e/ \(Y. &)
&((X.ex)) e((Vev))

of Z1(%) is invertible, thus Z'1(%) is modular in the sense of Turaev [53]. The strategy
will be to define a vector space isomorphism & of the subspace

Zo = @D Homy (X.X;, X;.X;)

ijer

of Z; which we have seen to contain the center of Z;. We will prove that & leaves

Z(Ep) stable and that the S-matrix of (%) is the matrix representation of & [ Z(Z})
w.r.t. the basis {d(X) 'z(xe), (X,ex) simple}.

Lemma 5.8. The application &: 5y — E defined by

X; X

(5.5)
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on the direct summands, where —y \are any solution of the duality equation for

Xj, Xj, is a vector space isomorphism of order four.

Proof. The above map Home(X.X], jX ) — Homg (X X;, XiXz ) is an isomorphism by
duality. The same holds for & which is just a direct sum of such isomorphisms, since
the map (7,j) — (J,7) is a permutation of I' x I'. That & has order four is an obvious
consequence of sphericity of ¢. [

Lemma 5.9. Let (X,ex),(Y,ey) be simple objects in Z(€). Then

dXx)

d(y);zs((X sex),(Y,ey)) - Z(vey)- (5.6)

Z(Y,er)S(Z(X,ex)) =

Proof. With (5.4), (5.5), and (5.2) we compute

(2(v.er)S (2 X.ex) )5 J» 1]

Nj NKONY
_ 1 g 9409 d(Y)
=@ATZ Z 2 2 dd et T

jou
ki
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WS, a0 dm
=gt 2 X 2 2 dedy S S
ki o=1 f=1 y=1 Ad  Ad;

where we have used Lemma 3.8. Replacing

X (X
i

where {sg, is a basis in Hom(X;X;, X;), and correspondingly for the dual basis, pulling

S/l;;' through the half-braiding ey(-) and summing over /, « we obtain

X X
(XY L @
d00dy) 5 W R
- TEAO®
X
D |y,
0%
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By sphericity of €, naturality of the ey(-) and Zk’ 5 p,f o p,f, =1dy this equals

_dody) 5 X
di ;3 =1

&(X)
X X

Using naturality of ey(-) we can pull ¢/ through ey(X;)~!. Furthermore, since (Y, ey)
is simple we have

gX) Y ax) Y

X0 /\e® _ oM _ SXed(Yey) 4

" d(y) '
ex(Y) ( X \ex(Y)

y &X) e(X) v

and (5.6) follows by comparison with (5.4). [J

Proposition 5.10. & maps the center of =, into itself. The modular matrix S is
invertible.

Proof. Summing (5.6) over all classes of simple (¥, ey) and using 3y, ) Z(xer) = 1z,
we obtain

Z(Xex) | _ P T Z(Y,ey)
6(6,()())—(%;)& S(@ex). (Yeer)) i (5.7)

whence the first claim. Therefore the isomorphism &:5y — Z, restricts to Z(Z)
and the matrix A~'S(7-) expresses the action of & | Z(Z;) in terms of the basis
{d(X)™'z(x,ey)}. Thus S is invertible. [



196 M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 159-219

Remark 5.11. (1) Note that 4> =dim % = /dim Z(%). This is the correct normaliza-
tion since (dim.#)~'"2S is known to be of order four in every modular category ./
[53,47].

(2) An alternative proof of the modularity of %(%) and of dim % (%) = (dim %)?
could be given as follows. If & satisfies the assumptions of our Theorem 1.2, there
exists a finite dimensional quantum groupoid H such that ¥ is monoidally equivalent
to the category H —Mod of left modules over H. In [40], the quantum double of finite
dimensional quantum groupoids was defined, and the category D(H)—Mod was shown
to be modular. Modularity of Z (%) follows, provided one proves the equivalence
Z1(%¢) ~ D(H)—Mod of braided tensor categories. Proceeding in analogy to the Hopf
algebra case [21], this should not present any serious difficulty. Yet, we think that a
direct categorical proof which avoids weak Hopf algebras is more satisfactory.

(3) The tensor category B = &N P¢(B) defined in [37] is known to be equivalent
to the category of O — O-bimodules, cf. [37, Remark 3.18]. Combining this with the
ideas of [45], it should be possible to give a considerably simpler proof of the braided
equivalence Z1(%¢) ~ 4.

In order to give the promised analogue of the (rather trivial) observation Z;(Zy(S))=
{ids} from the Introduction we need the following

Definition 5.12. The center %,(%) of a braided monoidal category % is the full sub-
category defined by

Obj Z2(6) = {X €Obj % | c(X,Y) = c(Y,X)~! VY €Obj%}.

Obviously the subcategory Z,(%) is symmetric, contains the monoidal unit and is
stable w.r.t. direct sums, retractions (in particular isomorphisms, thus replete) and duals.

Corollary 5.13. The category Z,(Z1(%)) is trivial, i.e. all objects are direct multiples
of the monoidal unit.

Proof. It is well known that a semisimple braided category .o/ containing a simple
object X 221 in Z,(.e/) is not modular. (X € Z»(.e/) implies S(X,Y)=d(X)d(Y) for
all Y. This is colinear to S(1,Y)=d(Y).) O

Remark 5.14. One can in fact prove [7] that € is modular iff dim % # 0 and the center
Z»(%) consists only of the direct multiples of the unit or, equivalently, iff all simple
objects of Z,(%) are isomorphic to the unit object. We will show this in Section 7 as
a byproduct of a more general computation.

Remark 5.15. There is little doubt that a more conceptual understanding of the above
proof (and of the subsequent subsection) can be gained by looking at them in the
light of Lyubashenko’s works [31,32]. The latter also raise the question whether there
is a generalization to non-semisimple Noetherian categories. We hope to pursue this
elsewhere.
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Remark 5.16. It is natural to ask whether there are higher dimensional analogues
to the above result in d = 1 and the trivial case d = 0 mentioned in the Introduc-
tion. (See [3] for a review of the theory of n-categories.) Thus, considering the cen-
ter constructions in d =2 [4,9], can one show that ffgz)(ffgz)((g)) is trivial? Here
€% 52)((6), Z gz)(g gz)((g )) are (semisimple spherical) braided, sylleptic and symmetric
2-categories, respectively.

5.3. Computation of the Gauss sums

If & is a braided spherical tensor category a theorem of Deligne, cf. [56, Proposition
2.11], implies that 2 (%) is a ribbon category (or balanced). Namely,

X)X
Oy = < for Xe ¥
¢X) X

defines a natural automorphism {0y, X € Obj %} of the identity functor which satisfies
Oxy =0x @Oy oc(Y,X)oc(X,Y) VXY,
0; =0y, VX

(A similar results hold for x-categories, cf. [30].) For the simple objects we have
O0x = oy idy with wy € F*.

The quantum double Z(%) is braided and by the arguments in Section 3 we know
that it has a spherical structure which is induced by the one on ¥. We will show that
the numbers w(x.,) can be computed in terms of the tube algebra and will compute
the Gauss sum

AL(ZN(E) = Y O erydXoex),

(Xeex)

which plays an important role in the construction of topological invariants.
Following [18] we consider the element z € Z; defined by

A
ti, j, k]l = Jéikéij iXm_z. (5.8)

1
It will turn out that ¢ is in the center of Z;.

Lemma 5.17. For simple (X,e,) € Z1(%) we have

—1
Z(X,ex) = Oy e )Z(Xoex)-
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Proof. From (5.2), (5.4) and (5.8) we obtain

NI NE
i d(X) m N dnd

t K] = 6
(o) (K =00 530 2 % 3 S

XoaX) X
ST
| @
Nb; N
&,
¢(%)
X X

Now the claim is a consequence of the following computation:

i X X X
@) @D
G| @ | _ i 4
= = = = =w(x,ex)p,,
X X X

which is justified by the same arguments as in the proof of Lemma 5.9. Here we
used standard properties of the spherical structure in the first and third equalities and
naturality of the half-braiding ey(-) w.r.t. the second argument in the second equality.
The rest follows since (X, ex) is simple. [J
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Proposition 5.18. We have
A4 (Z (%)) = dim %.

Proof. In view of >z, ) =1z, the lemma implies

-1
t= Z D, ex)2(Xex)s
(Xex)

which proves that ¢ is central in Z;. To this equation we apply the linear form ¢ € 57

$(x)=2Y_d;try,(x[i, 0,1]).

iel

On one hand by (5.8) we clearly have ¢(t) = A>. On the other hand with (5.4) we
compute

NviX
Dxer) =dX)D try | Y phopl | =d(X)Y_diNS =d(X).
a=1

iel’ iel’

Putting everything together we obtain A_(Z (%)) = /> = dim %. The equality for 4
follows from dim %1(%)=(dim %)? and the fact A, (.#)A_(.#)=dim .4, which holds
for every modular category .# [53,47]. O

This completes the proof of Theorem 1.2.

Remark 5.19. (1) A modular category satisfying 4.,(%) = A_(%) gives rise to an
anomaly-free surgery TQFT, cf. [53]. Thus for quantum doubles the construction of
the associated TQFTs simplifies considerably.

(2) The representation category of a rational conformal quantum field theory is a
braided *-category and the central charge ¢ € R of the CQFT is related, cf. e.g. [47],
to the Gauss sums 4_(%) by

A4_(6) 27icy
|A%w”m<8>‘

Since the Gauss sum of a quantum double is given by A4_(Z (%)) = dim %, thus
positive, we conclude that the ‘central charge’ of a double satisfies

Cy\(6) = 0 (mod 8)

6. The quantum double of a x-category

Consider the quantum double Z(%) of a x-category ¥. If scHomgy, )
(X ex),(Y,ey)) C Homg(X,Y) then clearly s* € Homyg(Y,X). It does, not, however,
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follow that s* € Homy,(4)((Y,ey),(X,ex)). But there is a suitable full subcategory of
Z1(%) which is a *x-category.

Definition 6.1. Let @ be a tensor *-category. Then the unitary quantum double Z7(%)
is defined as Z1(%) except that the half-braidings ex(Y) are required to be unitary,
not just invertible.

Lemma 6.2. Let € be a tensor x-category. Then Z{(%¥) is a x-category.

Proof. For s € Homy,(4)((X,ex),(Y,ey)) C Homg(X,Y) we have
id;®soex(Z)=ey(Z)os®id; VZ.

Starring this equation and using ey(Z)* = ex(Z)~' we obtain
id; ®s*oey(Z)=ex(Z)os* ®id; VZ,

thus s* € Homz, (4)((Y,ey),(X,ex)). O

In the applications of the quantum double to operator algebras, like to the asymp-
totic subfactor [18] or quantum field theory [24], one is mainly interested in the uni-
tary quantum double. In order for the results of Theorem 1.2 to remain valid for
Z1(¥) C Z (%) one must show Z7(%) that is equivalent to Z (%) as a tensor
category. Given an isomorphism s:X — Y in a W*-category we can use polar de-
composition [16] to obtain a unitary morphism §:X — Y. But we cannot construct
a unitary half-braiding in this way since it is not clear that the unitaries ey(Z2),
Z €% can be chosen such that naturality (3.1) and the braid relation (3.2) hold.
Therefore a global approach is needed, which we develop using our machinery from
Section 4.

Let € be a x-category with conjugates, simple unit and finitely many simple ob-
jects. All dimensions d(X) are positive, and we choose the square roots of the latter
and of dim% to be positive. Reconsidering the constructions of Section 4 we now
choose the bases {tl-kf‘} in Homg(X;, X;.X;) to be orthonormal, i.e. tf‘;,‘ = t;}k“, and sim-
ilarly v/ = v¥. Then v/ =v* and w' = w*, such that the considerations of [37, Section
5.3] apply. We thus obtain a x-bicategory &, C & which is equivalent to &. The
considerations in Sections 4 and 5 of this paper remain essentially unchanged except
for replacing &(X),&(X) by standard solutions ry,7y of the conjugate equations [30]
everywhere.

Lemma 6.3. Let ¢ be a x-category. Let (X,ex)€Z1(¢) and F(Xex) =
(J(X X 1)J, px). Then the idempotent py € Endg(J(X K 1)J) satisfies px = p
iff ex(Z) is unitary for all Z.

Proof. We recall from Proposition 4.5 that py is given by

px =41 v @idygr 0 ex(Xp) K idyer 0 idyg1 ® ).
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In view of the definition [37, Section 5.3] of the involution # on Ends(J(X X 1)J) =
Hom ,(J(X X 1)JO,0J(X X 1)J) we have

0 XX1

XXl Q

where ef = ex(X;)* X idye and r =wowv:1 — Q% In view of (4.3) it is clear that

there are uniquely determined 7#;:1 — X;® X,, i €I such that

rZZUf®UiOfi-

i

Using idp ® ¥* or ® idp = idp one easily shows

idy @7 of;®@idy, =idy .
(Ihis amounts to the identification 7; = 7; which is possible since all the self-conjugate
X;, i eI are orthogonal.) Thus

v; @idgor=idy ®v;orf; idg®@vfor=v;®idg oF;
and we obtain

Q XX1

0 a

XK1 Q
This equals py iff
idyxy ® 7 oldy, @ ex(X;)" ® idy, o r; ® idyy, = ex(X;) Viel.

Considering Lemma 3.8, this is the case iff ex(X;)* =ex(X;)~! for all i € I'. In view of
Lemma 3.3 and the fact that the x} occurring in its proof are automatically isometries,
this is equivalent to unitarity of ey(Z) for all Z. [J
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Theorem 6.4. Let € be a tensor x-category with simple unit, finitely many simple
objects, conjugates, direct sums and subobjects. Then % (%) is monoidally equivalent
to Z(€), thus modular.

Proof. Let (X,ex)€ Z (%) and (J(X ®1)J, py)=F(X,ey). Since Ends(J(X @1)J) is
a finite dimensional von Neumann algebra it contains an orthogonal projection gy =¢%=
¢} and an invertible element s such that s pys~'=qy. It is clear that (J(X X 1)J,qx) =
(J(X X 1)J, px), and by the lemma there is a unitary half-braiding éx(-) such that
F(X,éx)=(J(X K 1)J,qx). Thus

716 L 3. 2 3 L 7(%),

where 4. = Endg, (°B). (The equivalence #. = # has already been demonstrated in
[37, Proposition 5.6].) O

7. The quantum double of a braided category

For the moment, let ¢ be any (strict) braided monoidal category. Given such a
category 4 we denote by ¢ the braided monoidal category which coincides with 4 as
a monoidal category, but has the braiding

X Y)=cY, X)L

It is well known (e.g., [21, Proposition XIII.4.3]) that for a braided monoidal cate-
gory € there is a strict braided monoidal functor /:% — Z (%) given by

I(X)=(X,ex) with ex(:)=c(X,")
1(NH=r

on the objects and morphisms, respectively. / is full, faithful and injective on the
objects, thus an embedding of ¢ into Z(%).
Now, also ¢ embeds into Z1(%) via the functor / defined by

I(X)=(X,éx) with éx(-) =X, "),
i(NH=r
Lemma 7.1. (%) and I(%) are replete full subcategories of % \(%).

Proof. By definition, (Y,ey)€ % (%) being isomorphic to I(X) = (X,ex) (where
ex(Z) = c¢(X,Z)) means that there is an isomorphism u#:X — Y in % such that
ey(Z)=id; @uoe(Z)ou"'®id;. With ex(Z)=c(X,Z) and naturality of the braiding ¢
this implies ey (Z)=c(Y,Z) and thus (Y,ey)=1(Y). Thus /(%) is replete. The proof for
I(%) clearly is the same. That /(%) and [(%) are full subcategories of & (%) follows
from naturality of the braiding in %, which implies that every morphism u: X — Y
in ¢ automatically satisfies condition (3.1) in Definition 3.1 and thus is a morphism
from (X, c(X,-)) to (Y,c(Y,-)). O
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Definition 7.2. Two subcategories .27, % of a braided tensor category are said to com-
mute iff ¢(X,Y) o c(Y,X)=1idyy for all X € .o/, Y € #. For a braided monoidal cate-
gory % and a subcategory ./ the relative commutant 4 N .o/’ is the full subcategory
defined by

Objé¢ N/ ={X€0bj¥|c(X,Y)oc(Y,X)=idyy VY € Obj.o/}.

The properties of the braiding imply that 4 N .o/’ is monoidal and stable under
isomorphisms (thus replete), direct sums, retractions and two-sided duals. When there
is no danger of confusion about the ambient category % we write also simply .7’
Note that Z,(%) =% N %', which justifies the terminology center.

Proposition 7.3. Let € be braided monoidal. Then
Z(6)N1(%) =1(%),
Z(E)NI() =1(%).

Proof. By definition, 2°(%) NI(%) is the full subcategory of Z21(%) whose objects
(X, ex) satisfy

c((X,ex),(Y,ey))oc((Y,ey),(X,ex)) =idye,yxer) V(Y,ey)eI'(6).

Using the definition of / and the definition of the braiding in Z (%) by c((X,ex),
(Y,ey)) =ex(Y) we obtain

Obj Z(E)NI(F) ={(X,ex) € Z1(%) | ex(Y)oc(Y,X)=idyx}.
But this amounts to
Obj () N1(%) = {(X,ex)| X €6, ex(Y)=c(Y,X)™'},
which is nothing but Obj/(%). The second equality is proven in the same way. [

Remark 7.4. As an obvious consequence we see that the subcategories /(%) and 1(%)
of Z (%) are equal to their second commutants: 1(%)” = I(%). Note that this holds
without any technical assumptions on %. See Remark 7.9 below for remarks on a
general double commutant theorem.

The next observation provides another link between the centers 2, and &, (besides
the triviality of Z,(Z (%)) stated by Theorem 1.2). It can be interpreted as saying
that 1(%) V I(%), the monoidal subcategory of % (%) generated by (%) = % and
I(%) = %, is an amalgamated product over their intersection Z»(%).

Lemma 7.5. Let € be braided. Then in Z (%)= Z1(€) we have

I(6)NI(€)=1(Z(F)).
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Proof. Obviously, /(X)=1(Y) is equivalent to X =Y and ¢(X,-)=¢&(X,-) and thus to
XeZy %) O

The following results are stated in somewhat greater generality than needed here
since we have other applications in mind, cf. Remark 7.9.

Lemma 7.6. Let € be monoidal and semisimple with two-sided duals. Let A, &
be full monoidal subcategories which are semisimple (i.e. closed under direct sums
and retractions) and have trivial intersection 4 N ¥ in the sense that every object
contained both in A and & is a multiple of the tensor unit. If K|,K, € A" and
Li,L, €& then

Homg (KL, K>Ly) = Hom 4 (K1, K>) @ Hom g (L1, Lo). (7.1)
More precisely, the linear maps
®: Homy (K1,K>) @ Hom (L, Ly) — Homg (K L1, KoL)

induced by (k,1) — k ® | are isomorphisms for all K,K;, Li,Ly. If Ki,Ky €A,
Li,L, € & are simple then K|L\,K,L, €€ are simple. They are isomorphic iff K| =
K, L) = L.

Proof. By duality we have
Homg (K L1, K>Ly) = Homg (KK, LoLy).

Now K,K; € # and L,L, € ¥, and since 4", ¥ are monoidal subcategories and closed
w.r.t. retractions, all subobjects of KKy, LyL, are in A and %, respectively. Since
the monoidal unit 1 is (up to isomorphism) the only simple object common to #" and
our categories are semisimple, all morphisms f:K,K; — L,L; thus factorize through
the monoidal unit:

Homy(K,K1,LoLy) = Homy(K,K1,1) ®¢ Home(1, LoLy).

Using duality again we obtain (7.1). Thus Homg(KL,K>L,) and Homy (K, K>) ®f
Homg(L,L;) have the same dimension and the ®-product on Hom(K;,K;) X
Hom(L,L;) extends to an isomorphism. The remaining claims are obvious conse-
quences. L[]

Proposition 7.7. Let € be braided monoidal and semisimple with two-sided duals.
Let A, & be semisimple full monoidal subcategories which commute and have
trivial intersection. Then the full monoidal subcategory A NV ¥ of € generated
by A and &£ (by tensor products and direct sums) is equivalent as a braided
monoidal category to A X L. If € is spherical then this is an equivalence of spherical
categories.

Proof. Consider the functor 7:. % Q¢ & — A V ¥ defined by X X ¥V — X ® Y.
By the above it is full and faithful. In order to prove that T is strong monoidal we
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compute
TXRY)QTEZRW)=XQYRZQW,
TIXRNNQURWN=T(XRQRZD)R Y IWN=XQKZQ3Y QW.
Now the family
BAXRY,ZRW)=idx @ «(Y,Z) @ idy

of morphisms TX X Y)QT(ZX W) - T(X X Y)®(Z X W)) clearly is natural
and makes 7 strong monoidal. The easy proof of the coherence condition is left to
the reader. In order to show that 7 is a braided tensor functor we must prove that the
diagram

TXRYNNRTZRW) —— TZRW)RTXKY)

TXRYRZK W) TZRW®XKY)

T(exre)
commutes, where ¢y g, v = cxy X ce is the direct product braiding. Using the def-
inition of 7 and F, and taking into account that »#° and ¥ commute this is an
easy exercise. Now the functor 7' extends uniquely (up to natural isomorphism) to
AR =H QL @, remaining braided monoidal by naturality of the braiding. This
extension is essentially surjective, thus an equivalence of braided spherical categories.
That the equivalence respects spherical structures (if present) is obvious. [

Corollary 7.8. Let € be braided monoidal and semisimple with two-sided duals (and
spherical structure). Let A" C € be a semisimple full monoidal subcategory which
has trivial center ZA(H )= A" N AH". Then we have the equivalence

HRENAY 2 ANV EGNA)CE
of braided (spherical) categories.

Proof. The subcategory ¥ =% N A" commutes with #". Furthermore, /" N.% = 4" N
H' = ZH(A) is trivial by assumption. Thus the proposition applies. [

Remark 7.9. If we knew that 27"V (¢ NA")=%, we could conclude that € is equiv-
alent, as a braided tensor category, to the direct product " X (¢ N .#"). In [39] we
will prove that this is indeed the case if 4 is a modular category. Thus whenever
a modular category % contains a modular category ¢  as a full tensor subcategory

then @ %br A K &, where & =% N A" is also modular. As a consequence, every
modular category is a (finite) direct product of prime (or simple) ones, usually in
a non-unique way. The proof relies on the following double commutant theorem: if
% is a modular category and " is a semisimple monoidal subcategory closed under
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duality then (i) #" =" and (ii) dim ¢ -dim #"’ =dim %. Here we are interested only
in the full inclusion /(%) C Z(%) where € is modular, which can be treated with-
out the full strength of the double commutant theorem. (Recall that we have proven
ZW(E)N(Z(E)NI(E)) =1(%).)

Theorem 7.10. Let € be a modular category. Then there is a canonical equivalence
® ~
ZUC) 2 CRE

of braided tensor categories.

Proof. We apply the corollary to Z(%) and the subcategory /(%). The latter is braided
isomorphic to %, thus has trivial center. Therefore, as braided spherical categories

CRC2NC)RIG)=1(%) R Z1(€)NI(EY ~(F)VI(F).

Thus, we are done if we can show that the full subcategory 1(%) V I(%) exhausts
Z1(%). If we assume ¥ to be a x-category then also Z7(¥¢) ~ Z(%¢) is. By the
above, we have dim (/(4)VI(%))=dim (% X €)= (dim %)?, which coincides with the
dimension of Z(%) by our main theorem. Since dim (1(%)VI(%)) is a full semisimple
subcategory of % 1(%) the categories must coincide. This argument does not work if
% is not a x-category. We therefore give another proof which works in generality.

To this purpose we show that the minimal central idempotents of Z; corresponding
to the simple objects I(X; ) (X;) € Z1(%), k€T sum up to the unit of =;. By the
definitions of 7,7 we have I(X;)I(X;) = (XiX}, ex.x,(-)) with

exx(Z2) = c(Xi, Z) @ idy, o idy, ® ¢(Z, X))~

Thus according to Proposition 5.4 the sum over the corresponding minimal central
idempotents in Z; is given by

Nig

(kZI 20104 T(xl))) =20 5 3 ded

i k|l o=1

T



M. Miiger | Journal of Pure and Applied Algebra 180 (2003) 159-219 207

Computations which are identical to those in Lemma 3.10 (except for turning an over-
into an under-crossing) show that the right-hand side equals

X X

Xj X
=2d = 2
k K k dk
X
/ N _
Xi % ' %

But this is nothing else than

- (deS(Xk,X,o) (X, X)) = (deso(k,xj)) (X X,). (7.2)
k k

Since % is assumed modular we have ), diS(Xi,X;) = 0;0dim% and thus

S 2UXOIX)) | [ivjon] = 6460 dim € idy.
k1

The reader is invited to convince himself that this is the unit of the tube algebra =,
by plugging it into (5.2). [

The method used in the proof allows to prove the following characterization of
modular categories, which appeared in [7].

Corollary 7.11 (of proof). Let € be a F-linear semisimple spherical braided tensor
category with finitely many simple objects. Then € is modular iff dim% # 0 and
ZH(€) is trivial.

Proof. If & is modular then dim% # 0 [53] and Z,(%) is trivial. If, conversely,
Z5(%) is trivial then for every j # 0 there exists i such that c(X;, X;) # c(X;,X;)~".
But then (7.2) implies >, diS(Xs, X;) =0 Vj # 0, which is known to be equivalent
to invertibility of S. [

Remark 7.12. It is well known that a braided tensor category % is monoidally isomor-
phic to its reverse €™V which coincides with & as a category but has the tensor product
reversed: X Ry ¥ := ¥ ®X. On the other hand the duality functor X — X provides a
monoidal equivalence %P £ grev, Putting this together we have % L L gev £ gov,
Thus for modular ¥ we actually have an equivalence Z (%) % X1 €°P of tensor
categories, not just weak monoidal Morita equivalence.
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8. Applications
8.1. An adjoint for the forgetful functor Z(€¢) — €

In Section 4 we proved that the functor F': % (%) — % is fully faithful and essen-
tially surjective. By [34, Theorem IV.4.1] this implies that ' has a two-sided adjoint
G: % — Z1(€). Together with Lemma 5.2 this implies

Homg (X, Y) = Homy(F (X, ex),J (Y K 1)J)
=~ Homy,()(Xex), GU(Y K 1)J)),

where (X,ex) € Z1(%),Y € €. With the forgetful functor H : Z1(¢) — €,(X,ex) — X
this becomes

Homg (H (X, ex),Y) = Homy, ) (X, ex), G (Y K 1)J)). (8.1)
We thus have

Proposition 8.1. The forgetful functor H:2,(%¢) — ¢, (X,ex) — X has a two-sided
adjoint K .6 — Z (%), X — G(J(X X 1)J). On the objects one has

K(Y) = @5 dimHomg (X, Y )(X, ex), (8.2)
(Xex)

where the summation is over the isomorphism classes of simple objects in Z1(€).

Proof. Eq. (8.1) just says that K is a right adjoint of AH. That K is also a left adjoint
of H is proven in the same way. One must also show that the isomorphisms in (8.1)
are natural w.r.t. (X,ex) and Y. We leave this to the reader. For ¥ = X; and (X, ex)
simple, (8.1) implies that K(X;) contains (X,ey) with multiplicity dim Hom (X, X;).
For general Y we have

K(Y) = P dim Hom(X;, Y) @5 dim Homg (X, X;)(X, ex),
ier (Xex)

and (8.2) follows by semisimplicity of . [J

Remark 8.2. By the general theory [37] there is a dual Frobenius algebra Q= 0,..)
in 8, where O =JJ. Under the equivalence % (%) £ A, O corresponds to

G(jJ):K(l) = @ 1dim Homy (X, 1) (X, ex). (8.3)
(Xex)

Thus this object is part of the Frobenius algebra in Z;(%) which establishes the weak
monoidal Morita equivalence Z (%) ~ € X ¢°°. K(1) clearly contains the unit (1,id)
of & 1(%) with multiplicity one. The reader might find it amusing to identify explicitly
the morphisms w,w’ in Z (%) which come with the strongly separable Frobenius
algebra.
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8.2. Invariants of 3-manifolds

There are two classes of invariants of 3-manifolds associated with a modular tensor
category €, cf. [53]. On the one hand we have the surgery invariants RT(M, %) of
Reshetikhin and Turaev [49] which are based on the fact that every connected oriented
closed 3-manifold can be obtained from S* by surgery along a framed link. It turned
out [8] that modularity of the category % is not really necessary, since it suffices that
be ‘modularizable’. Yet, the invariant of the manifold being defined in terms of a link
invariant, the existence of a (non-symmetric) braiding is essential. On the other hand,
there are the state sum invariants based on a triangulation of the manifold. Generalizing
on [54], an invariant TV(M, %) associated with any modular category ¢ was defined in
[53]. Later it was understood that in fact no braiding is necessary for the construction
of a triangulation invariant, cf. [5,15], provided % has two-sided duals. (This had been
anticipated in [43], which was never published.) We denote the corresponding invariant
by Tr(M, € ). Gelfand and Kazhdan formulated a conjecture [15, Conjecture 1] pointing
towards a link between the two invariants being provided by the quantum double. Our
results on the quantum double of semisimple tensor categories allow us to prove this
conjecture.

Proposition 8.3. Let € satisfy the assumptions of Theorem 1.2 and consider the
state-sum TQFT associated with €, as defined in [15]. Then the dimension of the vec-
tor space H g s associated to the two-dimensional torus equals the number #% (%)
of isomorphism classes of simple objects of Z(%).

Proof (Sketch). By the considerations of Section 5.1, #Z1(%) coincides with the di-
mension of the center of the tube algebra Z;. But this center is isomorphic to #gi g1,
as discovered by Ocneanu [44] and explained in more detail in [14, Theorem 3.1]. [

Remark 8.4. The above argument is only a sketch because the triangulation TQFT
in 2 + 1 dimensions considered in [44,14] is derived from a subfactor, see [26] for
a detailed exposition. Here as in [37, Section 7] we use the fact that the latter is
equivalent to the invariant defined in [5,15]. This is more or less clear, but certainly
deserves being made precise, as we plan to do in [38]. Note also that in order for
a spherical category to give rise to a triangulation TQFT—as opposed to just the
invariant—one must assume that it does not contain symplectic self-dual simple objects.
This is done in [53] and [6, p. 4018], but unfortunately ignored in the bulk of the
literature on the subject.

By Theorem 1.2, % (%) is modular, thus gives rise to a surgery TQFT in 2 + 1
dimensions, cf. [53]. For these TQFTs it is known (by construction) that the dimension
of the vector space # g1, 51 associated with the torus equals the number of isomorphism
classes of simple objects in the category. Thus the above result provides support for
the conjecture that the triangulation and surgery TQFTs associated with 4 and Z'1(%),
respectively, are isomorphic. (This conjecture, while very natural, seems to have ap-
peared in print only in [25, Question 5].) In particular, the corresponding invariants of
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closed oriented 3-manifolds should coincide
RT(M, Z(€¢)) =Tr(M,€¢) VM. (8.4)

Presently, we have no proof for this, but we note that Kawahigashi Sato and Wakui
recently provided a proof [51] in the setting of unitary categories arising from a sub-

factor. If € is modular, the braided equivalence Z (%) gbr CRC proven in Section
7 implies

RT(M, Z1(¢))=RT(M,% X ¢)=RT(M,%)-RT(M,%)
=RT(M,%) - RT(—M, %),

and (8.4) follows from [53, Theorem VII.4.1.1], according to which TV(M,%) =
RT(M,%) - RT(—M,%). For non-modular ¥ we only have the following weaker re-
sult:

Proposition 8.5. Let € be as in Theorem 1.2 and M an oriented closed 3-manifold.
Then

RT(M, Z (%)) - RT(—M, Z (%)) = Tt(M, %) - Tr(—M, %).
If € is unitary then |RT(M, Z(%))| = |Tr(M, %)

Proof. We compute
RT(M, Z (%)) - RT(—M, Z(€)) = TV(M, Z (%))
=Tr(M, Z (%))
=Tr(M, % X1 4°°)
=Tr(M,%) - Tr(M,€°P)
=Tr(M,%) - Tr(—M,%).

Here the first equality is due to Turaev’s theorem, which applies since Z(%) is
modular. The second is the equality [6] of TV and Tr for spherical . The third equality
follows from the weak monoidal Morita equivalence Z'|(¢) ~ € X ¢°° together with
the Morita invariance of the invariant Tr, cf. [37, Theorem 7.1]. The last two equalities
follow from general properties of the invariant Tr [6].

If % is unitary we have RT(—M, Z1(%))=RT(M, Z1(%)) and Tr(—M, € )=Tr(M, %),
and we are done. [

8.3. Subfactor theory: the Longo—Rehren subfactor
As stated in the introduction, the present project originated in the author’s observation

that the quantum double of monoidal categories appears implicitly in Izumi’s preprint
[17]. Therefore it seems reasonable to briefly comment on the subfactor setting.
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Let M be a type III factor with separable predual. Then the tensor category End (M)
of (normal unital %-) endomorphisms p of M such that [M : p(M))] < oo is a x-category
with duals, direct sums and subobjects. (Here one uses that every orthogonal projection
p=p*=p* in M is equivalent to 1, i.e. there is ¥ € M such that V*V =1, VV*=p.)
Let 4 C End ;(M) be a full monoidal subcategory with the same completeness proper-
ties and finite dimension. Choosing objects {p;, i € '} in the classes of simple objects,
defining

A=MM®

and picking a direct sum

r=Prip’

iel’

one shows [29] y to be part of a Frobenius algebra (‘Q-system’) (Q,v,v*,w,w*) in
End(4). At this point one applies a beautiful and fundamental result due to Longo
[28], which implies that there is a subfactor B C A such that y is a canonical en-
domorphism for the inclusion B C A. This means that there is a normal morphism
7:A — B which is a dual (in the 2-category of factors, morphisms and intertwiners) of
the embedding morphism ¢+ =1id : B — 4, such that y =1 014. The subfactor B is simply
given by

B = wy(4A)w. (8.5)

(The verification that this really gives a subalgebra is easy.) We call the subfactor thus
obtained from M and % the Longo—Rehren subfactor.

Among the objects of interest in subfactor theory are the monoidal subcategories
Hompc4(4,4) C End/(4) and Homp4(B,B) C End (B) generated by y =207 and
7 =101, respectively, and the categories Homp-4(4,B), Homp4(B,A) of morphisms
which are contained in 70 (2 02)" and 20 (2 012)", respectively, for some n€ Z-. The
reader should appreciate that in this way every subfactor with finite index provides us
with a C-linear x-2-category with two objects and with non-strict spherical structure,
thus in particular with a Morita context for the tensor categories Homp-4(4,4) and
Hompc4(B, B). (The dimension of the four categories of 1-morphisms is finite iff the
subfactor has finite depth.) Our painful construction in [37] just models the categorical
structure implicit in subfactor theory, where thanks to the inbuilt structure one just
needs the simple formula (8.5)!

Alas, the above construction does not necessarily yield (tensor) categories which are
equivalent to the Homg(2(,2A), Homg(*B,B), Homg(2A,B), Homs(B,2A) of Section
4.1. This becomes clear already by comparing our o7 = % [X] ¥°P with

Hompc4(4,4)={p€Ends(4)|p <y, neZ:}.

The latter obviously is (equivalent to) a full subcategory of % [X] 4°P, but they coincide
only if every p;®p;, i,j € I' is contained in y" for some n. This condition can be shown
to be equivalent to connectedness of a certain graph, the fusion graph of €.
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With these preparations a short inspection of [zumi’s work [18], where the categorical
double does not appear explicitly, shows that essentially he has proven the following
theorem:

Theorem 8.6. Let M be a type III factor with separable predual and let € be a full
monoidal subcategory of End s(M) which is closed under duals, direct sums, subobjects
and is finite dimensional, and let B C A be the corresponding LR subfactor. If the
fusion graph of € is connected then we have the following equivalences of tensor
categories:

Homp4(4,4) ~% X €°°,
HOII]BCA(B,B) ~ gl((g)

Proof. The fusion graph is connected iff the objects X X X°P generate all of 4 X
%°P. Thus the statement on Hompc4(A4,4) is contained in [18, Theorem 4.1]. Un-
der the connectedness assumption Izumi’s ‘quantum double of A’ coincides with the
B — B-morphisms Homgc4(B,B). Then our second claim follows from [18, Theorem
4.6], where the quantum double appears in only slightly disguised form. Instead of
half-braidings Z — ey(Z) satisfying the braid relation and naturality Izumi uses maps
1 31— eyx(X;) satisfying the braiding fusion relation. These two pictures are equivalent
by our Lemma 3.3. [

Remark 8.7. The above theorem is the precise formulation of Ocneanu’s remarkable
intuitive insight [44] that his asymptotic subfactor [42] (which is strongly related [36] to
the Longo—Rehren subfactor B C A) is ‘the subfactor analogue of Drinfel’d’s quantum
double’. In view of the fact that irreducible depth-two subfactors are precisely the
subfactors arising from outer actions of a Hopf algebra, the most natural way to make
Ocneanu’s claim precise would be the following: The asymptotic subfactor of M C
M is isomorphic to PP) C P or its dual. Yet, this clearly cannot be the case since
the index of the asymptotic inclusion coincides with the global index of the original
subfactor, which for depth two coincides with the index. Thus for N = M C M,
[A4:B]=[M:N] and B C A4 cannot arise from a D(H )-action.

Using the results of Section 8.1 we can remove the connectedness condition:

Corollary 8.8. Let M, € be as in the theorem, but with possibly disconnected fusion
graph. Then the category Homgc4(A4,A) is equivalent to the monoidal subcategory of
€ X} €°P generated by the X [X X°P, where X runs through the simple objects of 6.
Hompg4(B, B) is braided equivalent to the sub-tensor category of Z (%) generated
by those simple objects (X,ex)€ Z(€) for which X contains the tensor unit 1 of €.

Proof. The first statement is Yvell known. By definition, Homp~4(B,B) is generated
by the dual Frobenius object O. For the LR-subfactor this is the K(1) given in (8.3),
from which the second claim follows. [J
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Appendix A. On quantum doubles of finite dimensional Hopf algebras

The core of this paper was the proof that the quantum doubles of certain tensor
categories are modular. That Rep D(H ) is modular has been proven for H = CG [2],
where G is a finite group, and for semisimple H over an algebraically closed field &
of characteristic zero [12]. A proof which covers also weak Hopf algebras (or finite
quantum groupoids) is given in [40]. Our aim in this appendix is to give a proof which
uses the ideas of Lyubashenko [31,32] and Majid [33] and therefore is more in the
spirit of our proof in the categorical situation. In the sequel A will always be a finite
dimensional Hopf algebra. Since the main application will be to quantum doubles the
following will be useful.

Lemma A.1. Let H be a finite dimensional Hopf algebra H over the field k and let
D(H) be the quantum double. The following are equivalent:

(1) H is semisimple and cosemisimple.

(ii) The antipode of H is involutive and char ktdim H.
(iii) D(H) is semisimple.
(iv) D(H) is cosemisimple.

Remark A.2. If the characteristic of & is zero then H is semisimple iff it is cosemisim-
ple, and the second condition in (ii) is vacuous.

Proof. For the equivalences (i) &< (iii) < (iv), see [46] and for (i) < (ii) see
[13]. O
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In order for the category Rep D(H) to be modular it must be semisimple, which by
the lemma reduces us to the case where H satisfies (i) and (ii).

Lemma A.3. Let H satisfy the (equivalent) conditions of Lemma A.l1. Then there
are two-sided integrals A€ H, pn€ H which are traces in the sense that

(w.ab) = (u,ba), (o, A) = (Ba, A)
for all a,be H, af € H. The category Rep D(H) is a spherical category.
Proof. Semisimple Hopf algebras are unimodular [27], which by definition means that
there are two-sided integrals. By [27, Proposition 8], unimodular Hopf algebras satisfy
(u,ab) = (1, bS*(a)) Va,b€H,

thus (u,-) is tracial by involutivity of S. Sphericity of Rep D(H) is now an obvi-
ous consequence of [6] where it was shown under the weaker assumption that S? is
inner. [J

We briefly recall some results on quasitriangular Hopf algebras. As shown be Drin-
fel’d [11], the antipode of a finite dimensional quasitriangular Hopf algebra H is inner,
i.e. there is an invertible u € H such that S?(4)=uAdu~". One has the explicit formulae

u=mo (S ®id)(Ra),
u ' =mo(id ® S*)(Ry),

(e, u=) ,S(fi)e; if R=7".e; ® f;). Furthermore, Drinfel’d proved
uS(u)=SwyueczZ(H), eu)=1, A@u)=RyR) (u®u).

Recall [53] that a ribbon Hopf algebra is a quasitriangular Hopf algebra H together
with 0 € Z(H) satistying

02 =uS(u), SO)=0, &0)=1, 4(0)=RuR) " (O0). (A.1)

Proposition A.4. Let H be a quasitriangular semisimple and cosemisimple Hopf al-
gebra. Then H is a ribbon Hopf algebra with 0 = u.

Proof. Since S? =id it follows that Drinfel’d’s u is central. Now [23, Proposition 4]
implies that u is a ribbon element. [J

Remark A.5. For a ribbon Hopf algebra H with 0 =u the quantum trace, which for a
representation 7 on a vector space V is defined by

Tré(X) := Tr o n(uf ~' X)
coincides with the usual trace Tr on End V. In particular, all quantum dimensions d(7)
coincide with the classical dimensions dim V. Therefore,

dimRepH =Y "d(m)* =) _ (dim Vy,)* = dimy H.

1
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In order to conclude that Rep A is modular it remains to prove that the S-matrix
of the ribbon category Rep H is invertible. A related notion of non-degeneracy was
introduced in [48], where a quasitriangular Hopf algebra was called factorizable if the
map

H—H:zw (z®id,I), I=RyR

is injective, thus invertible. Furthermore, it was shown that every quantum double
D(H) is factorizable. The notion of factorizability plays an important role in the works
[33,25] where an action of SL(2,7Z) on ribbon Hopf algebras is defined and studied.

Definition A.6 (Lyubashenko and Majid [33]). For a quasitriangular Hopf algebra the
selfdual Fourier transforms ¥, % _ are defined by the linear endomorphisms of H
S (b)) =(id ® p)(R21(1 ® b)R12),
&-(b) = (id @ W(Ry, (1@ HR),
where u is a left integral in A. If H is ribbon the map 7 :H — H is defined by
(b)) = 6b.
Theorem A.7 (Lyubashenko and Majid [33]). For a factorizable ribbon Hopf algebra
the following modular relations hold.
SioS_=id=S_ oS, (Ly0TyY=192, =5, (A.2)
where S(x) = R®S(Ad RV(x)) with Ad Y (x) = Y1 xS(Y2)) is the braided antipode,
and 1 # 0 is defined by & (0)=10"".

Lemma A.8. The following decompositions hold in every finite dimensional Hopf al-
gebra.

a®l=3 (10x)A(y) =Y Ay oS (x)),

where

Y ri®x=(d®Ss ().

Proof. Inserting >, y; ® x; = ag) ® S~ (a(2)) into Y,(1 ® x;)4(y;) we obtain
(1© S5 (a@))4(an)) =1 @ S (a@)Nan) @ aw)
:a(1)®S_1(a(3))a(2)=a®l, (A.3)
and the other equality is verified similarly. [J
Proposition A.9. Let H be a quasitriangular semisimple, cosemisimple Hopf algebra

and pe H a left integral. Then the self-dual Fourier transforms &+ map the center
of H into itself

S (Z(H)) C Z(H). (A4)
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Proof. By [27, Proposition 8] unimodularity is equivalent to the identity
w(ab) = w(bS*(a)) Va,beH, (A.5)
which will be used in the sequel. Let a€ H, b€ Z(H). Then
a1 (b) =a(id ® p)(Ry (1 ® b)R12)
=(id ® p)((a @ DRy R12(1 ® b))

= (id ® p)((1 © x)A(y)RauR12(1 @ b))
=" (id ® ©)((1 @ xRy R12(1 ® b)A(37))

= (d ® W)(RauR12(1 @ b)A(yi)(1 ® §7(x1)))

=(id ® p)(R21R12(1 ® b)(a ® 1))

=(1d ® W) (R Ri2(1 ® b))a =S +(b)a, (A.6)
thus &%, (b) € Z(H). We have used be Z(H), [4(-),R21R12]=0, (A.5) and the lemma.
O

Remark A.10. (1) In restriction to the center, the braided antipode S appearing in
(A.2) equals the antipode S.
(2) For a ribbon algebra H it is trivial that  maps Z(H ) into itself, since 0 € Z(H).

The modularity condition requires invertibility of the matrix
Sij = (Trg, @ Trg )(Ra1R12), (A7)

where i, j range over the equivalence classes of irreducible representations of H. Now,
in the semisimple case the representations are in one-to-one correspondence with the
minimal projections in Z(H ), which leads to the following result.

Theorem A.11. Let H be a factorizable quasitriangular semisimple and cosemisimple
Hopf algebra. Then the category Rep H is modular.

Proof. We have already proven that Rep H is a spherical ribbon category. Thus by
Proposition A.9 the center of H is stable under the Fourier transform % .. By factor-
izability %, 1is invertible, and the same holds for the restriction &, | Z(H). By the
remark after Lemma A.4 the quantum traces on H-modules ¥, in terms of which the
S-matrix is defined, coincide with the usual traces on End V. In terms of the basis for
Z(H) given by the minimal idempotents P; we obtain

y+(Pj):ZyijPia
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where the matrix & = (%;;) is invertible. But % is nothing but the modular matrix
(A.7) as we have

Lij=di wW(P; S (P;))=d; (1@ w)(Ra1R12 (P; @ P}))
1
= E(TY? ® Tr?)(Rlelz).
We have used u(P;)=1/d; and u(xP;)=1/d; Tr;(x) [55]. O

Note that the proof is conceptually quite similar to our proof of modularity for
general semisimple spherical categories. In view of Lemma A.1 the following is now
immediate:

Corollary A.12. Let H be semisimple and cosemisimple. Then Rep D(H) is modular.

We close the appendix with a remark which is meant to aid the reader in appreciating
the ‘self-duality’ of a quantum double D(H), in particular since in general it is not
self-dual in the sense of Hopf algebras: D(H)* % D(H). (For a finite abelian group
G we in fact have D(G) ~ D(G)* ~ CG @ C(G).) For any finite dimensional Hopf
algebra one can use the integrals to define ‘Fourier transforms’ H — H. In [41] Fourier
transforms &, ., o, ¢’ ==, defined as linear maps H — H which intertwine certain
actions of H on H and H by multiplication and translation, respectively, were studied
systematically and used to give a new proof of the invertibility of the antipode. There
is a beautiful relation between these more conventional Fourier transforms, relating H
and H, and the selfdual Fourier transforms [33], which map D(H) onto itself. For
simplicity we restrict ourselves to finite dimensional Kac algebras, where things are
easier since the Haar measures are two-sided invariant traces and since there are unique
Fourier transforms % :H — H and % :H — H:

(F(x),y) = (wxS(y)), Vx,yeH, (A.8)

(o F(B)) = (S()p. A),  Va peH, (A9)
where A, i are the integrals in H,H, respectively. If 2:H — D(H), i:H — D(H) are

the canonical embedding maps then the following diagram commutes:

HeH —2 DH)®DH) —2— DH)

H®H ——— DU)®DH) —— DH)

This nice observation is due to Kerler [25, Proposition 9] (with different conventions),

who, however, did not emphasize the interpretation of %, % as conventional Fourier
transforms.
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