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The main aim of this appendix is to discuss, for any finite group G, a close connection
between braided crossed G-categories and ribbon categories containing the representation cat-
egory of G as a full braided subcategory. In fact, in the context of finite semisimple categories,
this will turn out to be a bijection (modulo suitable equivalences). As an application we prove
that every braided G-crossed fusion category is equivalent to a strict monoidal category with
strict G-action, justifying the strictness assumption made in Chapters VI and VII of this book.
In the last section we touch upon the open problem of obtaining braided crossed G-categories
as ‘crossed products’ of braided categories by finite group actions. The existence of such crossed
products is shown to be equivalent to the conjectured existence of embeddings of braided fusion
categories into modular categories of minimal size.

The original references on which this appendix is based are [4] by Bruguières, [20, 21] by
Kirillov Jr. and [24, 27, 28] by the author. For a more extensive treatment of some of the
matters discussed in this appendix, cf. [12], in particular Section 4, “Equivariantization and
de-equivariantization”.

1 Braided crossed G-categories

1.1 Definition Let (C,⊗,1, a, l, r) be a monoidal category (with associativity constraint a
and left and right unit constraints l, r). An automorphism of C is a monoidal functor (β, γ, σ)
from C to itself, where β is a self-equivalence of C, γ is a natural family {γX,Y : β(X ⊗ Y ) →
β(X) ⊗ β(Y )} of isomorphisms and σ : β(1) → 1 an isomorphism. For the exact conditions
on β, γ, σ, cf. [23]. The composition (β, γ, σ) ◦ (β′, γ′, σ′) is defined as (β ◦ β′, γ′′, σ′′) with
σ′′ = σ ◦ β(σ′) and γ′′ defined by the composition

γ′′X,Y : β(β′(X ⊗ Y ))
β(γ′X,Y )

- β(β′(X)⊗ β′(Y ))
γβ′(X),β′(Y )- β(β′(X))⊗ β(β′(Y )).

When C is braided, automorphisms of C are also required to respect the braiding, i.e. satisfy
β(cX,Y ) = cβ(X),β(Y ). The set of (braided) automorphisms of C is denoted by Aut C.

Now Aut C is the categorical group (i.e. monoidal category where every morphism is invert-
ible and for every object X there is an object Y such that X ⊗ Y ∼= 1) having automorphisms
of C as objects and natural monoidal isomorphisms (i.e. monoidal natural transformations all
components of which are isomorphisms) of monoidal functors as morphisms.

The most concise way of defining an action of a (discrete) group on a monoidal category is
as a monoidal functor:
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1.2 Definition If G is a group, let G be the discrete category (the only morphisms are the
identity morphisms) with Obj G = G and the obvious strict tensor product. An action β of G
on a (braided) tensor category C is a monoidal functor β : G → Aut C, g 7→ βg. We usually
abbreviate by writing gX = βg(X), etc.

Since each βg is a monoidal functor, it comes with natural isomorphisms

γg,X,Y : βg(X ⊗ Y ) → βg(X)⊗ βg(Y ) and σg : βg(1) → 1.

On the other hand, the monoidality of the functor β : G → Aut C provides natural monoidal
isomorphisms δg,h : βgh → βg ◦ βh and ε : βe → idC, or in terms of components, δg,h,X : (gh)X →
g(hX) and εX : eX → X. One can easily unpack the definition to obtain the identities satisfied
by these isomorphisms.

1.3 Definition A G-action β on a strict monoidal category is called strict if all isomorphisms
γg,X,Y , δg,h,X , σg, εX are identities.

1.4 Definition If C is a monoidal category and G a group, a G-grading on C is a map
∂ : Obj C → G such that ∂(X ⊗ Y ) = ∂X · ∂Y and ∂X = ∂Y whenever X ∼= Y . The image of
∂ is called the G-spectrum of the G-graded monoidal category C. The grading is called trivial
or full if the G-spectrum equals {e} or G, respectively.

1.5 Remark 1. In the categorical literature, also G-gradings on the morphisms are considered.
We, however, consider only gradings on the objects.

2. One could try to define a G grading to be a monoidal functor ∂ : C → G, but in the
k-linear case, where Hom(X, Y ) is never empty, this does not work since it would imply that
all objects have degree e.

3. The above definition rules out direct sums of objects of different degrees. Often, however,
it is desirable to work with semisimple categories, which includes having all direct sums. This
can be accommodated by only requiring the existence of a full monoidal subcategory Chom ⊂ C
of homogeneous objects such that that (a) Chom satisfies Definition 1.4, and (b) every object in
C is a finite direct sum of objects in Chom. 2

The following two definitions first appeared in [34], underlying Chapter VI of this book. Cf.
also [5].

1.6 Definition A crossed G-category is a monoidal category together with a G-action β and
a G-grading ∂ such that ∂(gX) = g ∂Xg−1. We define full subcategories by Cg = ∂−1(g) and
notice that the G-action leaves Ce stable.

1.7 Remark The spectrum of a rigid G-graded monoidal category is a subgroup of G. In the
case of a crossed G category it is a normal subgroup. 2

1.8 Definition A braiding on a crossed G-category (C, β, ∂) is a family of natural isomor-
phisms {cX,Y : X ⊗ Y → ∂XY ⊗X}X,Y ∈Chom

satisfying naturality in the sense that

X ⊗ Y
cX,Y- ∂XY ⊗X

X ′ ⊗ Y ′

s⊗ t

? cX′,Y ′
- ∂X′

Y ′ ⊗X ′

∂Xt⊗ s

?
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commutes for all s ∈ Hom(X, X ′), t ∈ Hom(Y, Y ′), as well as commutativity of

(X ⊗ Y )⊗ Z
cX⊗Y,Z- ghZ ⊗ (X ⊗ Y )

a−1
- (ghZ ⊗X)⊗ Y

X ⊗ (Y ⊗ Z)

a

?

id⊗ cY,Z

- X ⊗ (hZ ⊗ Y )
a−1

- (X ⊗ hZ)⊗ Y
cX,hZ ⊗ id

- (g(hZ)⊗X)⊗ Y

(δg,h,Z ⊗ id)⊗ id
-

for all X ∈ Cg, Y ∈ Ch, Z ∈ Ck and of a similar diagram involving cX,Y⊗Z .

1.9 Remark Imposing naturality, one can uniquely extend cX,Y to the situation where X ∈
Chom, Y ∈ C, but the requirement X ∈ Chom cannot be relaxed. 2

2 The G-fixed category of a braided crossed G-category

The following construction is well known, but it is hard to find the first reference.

2.1 Definition/Proposition Let (C,⊗,1, a, l, r) be a monoidal category. Let β be an action
of the group G on C. Then CG is the monoidal category (C,⊗,1, a, l, r)G = (CG,⊗G,1G, aG, lG, rG)
defined as follows: Its objects are pairs (X, {ug}g∈G), where X ∈ Chom and, for each g ∈ G,
ug : gX → X is an isomorphism such that the diagram

ghX
δg,h,X- g(hX)

X

ugh

?
�

ug

gX

g(uh)

?

(2.1)

commutes for all g, h ∈ G. The Hom-sets are defined by

HomCG((X, u), (Y, v)) = {s ∈ HomC(X, Y ) |

gX
gs

- gY

X

ug

?

s
- Y

vg

?

commutes ∀g ∈ G.}

The tensor product of objects is defined by (X, u)⊗ (Y, v) = (X ⊗ Y,w), where w• is given by

wg : g(X ⊗ Y )
γg,X,Y- gX ⊗ gY

ug ⊗ vg- X ⊗ Y.

The tensor product of morphisms is inherited from C. The monoidal unit 1G is given by
(1, {σg}), where σg : g1 → 1 is the isomorphism g1 → 1 coming with the monoidal functor
β : G → Aut C. The associativity constraint aG is given by

aG((X, wX), (Y,wY ), (Z,wZ)) = a(X, Y, Z),

and similarly for the unit constraints lG, rG.
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2.1 Remark The correct name for CG would be ‘category of G-modules in C’, but it seems to
be more customary to speak of the ‘G-fixed’ category. In [12], the passage C ; CG is called
‘equivariantization’. 2

2.2 Proposition Let (C, β, ∂, c) be a braided crossed G-category. Then CG is braided with
braiding cG given by

cG
(X,u),(Y,v) : X ⊗ Y

cX,Y- ∂XY ⊗X
v∂X ⊗ idX- Y ⊗X.

Proof. One must show that cG is natural w.r.t. both variables and satisfies both braid (or
hexagon) equations. This amounts to straightforward combinations of the properties of c and
the definition of CG and of cG. We omit the details. �

The notation gX for β(g)(X) used above is convenient, but it hides the dependence on the
choice of a functor β : G → Aut C. In principle, we should write C(G,β) instead of CG. We will
do so only in the formulation of the following result.

2.3 Lemma Let β1, β2 : G → Aut C be actions of a group G on a monoidal category C. A
natural monoidal isomorphism β1

∼= β2 of monoidal functors induces a monoidal equivalence
C(G,β1) ' C(G,β2) between the respective fixpoint categories.

Defining functors of categories carrying a G-action is not entirely trivial, but for our purposes
it is sufficient to have a notion of equivalence of monoidal G-categories. To this purpose,
we observe that given a monoidal equivalence F : C → D, there is an adjoint equivalence
G : D → C, unique up to natural monoidal isomorphism. Therefore, if E ∈ Aut C then
F ◦ E ◦G ∈ AutD, and this gives rise to a monoidal equivalence F̃ : Aut C → Aut D.

2.4 Definition Let C,D be monoidal categories carrying G-actions β, β′. Then an equivalence
of C,D (as monoidal G-categories) is a monoidal equivalence F : C → D such that the monoidal

functors F̃ ◦ β and β′ (both from G to Aut D) are monoidally equivalent.
A functor of G-graded monoidal categories is a monoidal functor F : C → D such that

F (Chom) ⊂ Dhom and ∂DF (X) = ∂CX ∀X ∈ Ch.

Combining Lemma 2.3 with Definition 2.4, one finds:

2.5 Proposition An equivalence E : C → D of braided crossed G-categories gives rise to an
equivalence EG : CG → DG of braided categories.

Up to this point, our considerations were completely general in that we made no further
assumptions on the categories or the groups. From now on we will restrict ourselves to finite
groups and semisimple k-linear categories over an algebraically closed field k of characteristic
zero.

2.6 Proposition Let G be a finite group, k an algebraically closed field of characteristic zero
and C a semisimple k-linear monoidal category carrying a G-action. Then CG is a semisimple
monoidal category having a full monoidal subcategory S ' RepkG. If C is braided or, more
generally braided G-crossed, then S is a braided subcategory of CG. Cf. [20, 12].

We see that a braided G-crossed category gives rise to a braided category CG containing
RepkG as full subcategory. In the next section, we will consider a construction that goes the
opposite way. We will limit ourselves to the setting of the following definition:
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2.7 Definition Let k be an algebraically closed field of characteristic zero. A fusion category
over k is a k-linear semisimple ribbon braided tensor category with simple unit, i.e. EndC(1) =
kid1, and finitely many isomorphism classes of simple objects.

2.8 Remark 1. One may also consider non-braided fusion categories, in which case the def-
inition of rigidity requires attention, one approach being the spherical categories of [1]. Cf.
Appendix

2. In fact, braided spherical categories are the same as ribbon categories. 2

3 From braided categories containing Rep G to braided

G-crossed categories

The following definition is a straightforward generalization of notions from ordinary algebra:

3.1 Definition Let C be a strict monoidal category. An algebra (=monoid) in C is a triple
(A, m, η), where A is an object and m : A ⊗ A → A, η : 1 → A are morphisms satisfying
m ◦ (m⊗ idA) = m ◦ (idA⊗m) and m ◦ (η⊗ idA) = m ◦ (idA⊗ η) = idA. (In the non-strict case,
one has to insert the associativity constraint at the obvious place.) If C has a braiding c, then
an algebra in C is called commutative if m ◦ cA,A = m. A commutative algebra is called étale
if there is a morphism ∆ : A → A ⊗ A that satisfies m ◦ ∆ = idA and is a morphism of A-A
bimodules, i.e.

(idA ⊗m) ◦ (∆⊗ idA) = m ◦∆ = (m⊗ idA) ◦ (idA ⊗∆).

The study of (commutative) algebras in monoidal categories, e.g. those associated to quan-
tum groups, is a very interesting subject and was used to great effect in [7]. However, we will
only need the following example arising from representation categories of finite groups:

3.2 Proposition Let G be a finite group and k an algebraically closed field of characteristic
zero. The symmetric monoidal category S = RepkG of finite dimensional representations of G
on k-vector spaces contains a commutative algebra (A, m, η) with the following properties:

(i) dimk A = |G|.

(ii) dim HomS(1, A) = 1.

(iii) The object A is ‘absorbing’: A⊗X ∼= A⊕ dim X ∀X ∈ S.

(iv) There is an isomorphism G
∼=−→ Aut (A, m, η) ≡ {s ∈ Aut A |m◦(s⊗s) = s◦m, s◦η = η}.

(v) The algebra (A, m, η) is étale.

Proof. Let A = Fun(G, k) with algebra structure given by pointwise multiplication with the
constant function 1 as unit. With the G-action (πl(g)f)(h) = f(g−1h), this is the left reg-
ular representation πl of G, which is well known to have properties (i) through (iii). ((i) is
obvious, (ii) holds since the subspace of G-stable elements of A is one-dimensional (the con-
stant functions), and (iii) follows from the fact that A ∼= ⊕i dim(Xi) · Xi, where Xi runs
through the irreducible representations Xi.) For claim (iv), cf. e.g. [27, Remark 2.9]. With
∆(f)(g, h) = δg,hf(g) for f ∈ A = Fun(G, k), the last statement holds by easy computations.
�
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3.3 Remark For most applications in this appendix, Proposition 3.2 will be sufficient. In
several other, but closely related, applications we are confronted by symmetric monoidal cate-
gories that are not a priori known to be of the form Rep G. It is therefore important that every
k-linear rigid symmetric monoidal category with simple unit, finitely many simple objects and
trivial twists is equivalent to Rep G for a finite group G that is unique up to isomorphisms.
(For stronger results without finiteness assumption cf. [7] and, in the case of ∗-categories, [10].
An exposition of the result for ∗-categories can be found in [29].) As to the last requirement,
recall that every object in a symmetric ribbon category comes with a twist automorphism θ(X)
of order two. In particular, for a simple object X we have θ(X) = ±idX , and the category
is called even if all twists are identities. All these results have suitable generalizations to the
non-even case. 2

Again, as in commutative algebra, one defines

3.4 Definition A (left) module over an algebra (A, m, η) is a pair (X, µ) where X ∈ C and
µ : A ⊗ X → X satisfies µ ◦ (idA ⊗ µ) = µ ◦ (m ⊗ idX). The left modules form a category

AC = A−ModC with hom-sets defined by

HomA−ModC((X, µ), (X ′, µ′)) = {s ∈ Hom(X, X ′) | s ◦ µ = µ′ ◦ (idA ⊗ s)}.

Under a very weak condition on a braided category C (existence of coequalizers), which is
satisfied in any abelian category, one finds that the category of modules over a commutative
algebra in C is monoidal, the definition of the tensor product being a natural generalization of
the usual one. The monoidal unit of AC is (A, m), and there is a canonical monoidal functor
F : C → AC such that X 7→ (A ⊗ X, m ⊗ idX). Assuming EndC(1) = k, one finds that
End

AC(A) = k holds if and only if dim Hom(1, A) = 1.
In order that AC be semisimple, some technical condition on the algebra A is needed.

One suitable notion is the étaleness defined above, the terminology being motivated by the
corresponding notion in commutative algebra, cf. [6]. Similar, but slightly differently formulated
conditions were considered in [4, 22, 25]. In the context of fusion categories, these conditions
are equivalent, and they imply in particular that the functor F is dominant, i.e. every simple
object of AC is a direct summand of F (X) for some X ∈ C.

However, the braiding of C does not unconditionally descend to a braiding on AC.

3.5 Definition [24] The symmetric center Z2(C) of a braided monoidal category C is the full
subcategory consisting of those objects X that satisfy

c(X, Y ) ◦ c(Y,X) = idY⊗X ∀Y ∈ C.

3.6 Remark 1. The symmetric center is a symmetric monoidal category. It coincides with C
if and only if C is symmetric.

2. One can show that a braided fusion category is modular if and only if its symmetric
center is trivial, in that it contains only direct multiples of the unit object. (The ‘only if’
direction is immediate; for the ‘if’, see [3]. Cf. also [32] for a similar result in the context of
endomorphisms of a C∗-algebra.) 2

As shown in [24], the obvious candidate for a braiding AC actually is a braiding if and
only if A ∈ Z2(C). If this is not the case, naturality of the putative braiding w.r.t. one of the
arguments fails.
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Let now C be a braided monoidal category with a full braided monoidal subcategory S '
RepkG. Now Proposition 3.2 gives rise to a commutative étale algebra (A, m, η) in S and thus
in C. Since A has every simple object of S as a direct summand, we have A ∈ Z2(C) if and
only if S ⊂ Z2(C). Under this assumption, AC is braided. The functor F : C → AC has the
property that it trivializes S, in the sense that F (X) is a direct multiple of 1 for every X ∈ S.
What is more, when S = Z2(C) then AC has trivial center Z2(AC) and thus is modular. For
this reason, this AC (which is non-trivial if and only if Z2(C) 6= C, i.e. C is not symmetric) is
called the modularization of C, cf. [4, 24].

For the purposes of this appendix, the case S 6⊂ Z2(C) is more interesting:

3.7 Theorem If C is a braided fusion category, S ' RepkG a full monoidal subcategory and
(A, m, η) the corresponding commutative étale algebra, then

(i) AC is a braided G-crossed fusion category, which we denote as C o S.

(ii) (C o S)G ' C as braided fusion category.

(iii) If D is a braided G-crossed fusion category and Rep G ' S ⊂ DG as in Section 1 then
DG o S ' D as braided G-crossed fusion category.

The G-spectrum and the degree-zero subcategory of C o S can be described quite explicitly:

3.8 Proposition Under the assumptions of Theorem 3.7, we have:

(i) The degree zero part of C o S is given by (C o S)e = S ′ o S = ACloc. (Here S ′ ⊂ C is the
‘centralizer’ of S, i.e. the full subcategory of objects X such that c(X, Y )◦c(Y,X) = idX⊗Y

for all Y ∈ S. In particular C ′ = Z2(C). Furthermore, ACloc ⊂ AC is the full subcategory
consisting of A-modules (X, µ) that are dyslexic or local, i.e. satisfy µ◦c(X, A)◦c(A, X) =
µ. It is known [31] that ACloc is always braided.) The braided category (CoS)e is modular
if and only if Z2(S ′) = S.

(ii) The G-spectrum of C o S is given by

Spec(C o S) = {g ∈ G | π(g) = idV ∀(V, π) ∈ S ∩ Z2(C)},

where we use S ' RepkG. In particular, the grading is trivial if and only if S ⊂ Z2(C)
and full if and only if S ∩ Z2(C) is trivial, i.e. contains only multiples of the identity.

3.9 Remark 1. In particular, if C is modular then Z2(C) is trivial and thus C o S has full
G-spectrum for any S. Furthermore, the double centralizer theorem [26] gives S ′′ = S, thus
Z(S ′) := S ′ ∩ S ′′ = S ′ ∩ S = S (since S ⊂ S ′), and therefore S ′ o S is modular.

2. The proofs are too long to be given here. Cf. [20, 21, 27]. We only remark that statement
4 of Proposition 3.2 is crucial for obtaining both the G-action on and the G-grading of C o S
and for showing that the natural candidate for a braiding (which really is a braiding when
S ⊂ Z2(C)) actually is a braiding in the G-crossed sense.

3. In [12], the passage C ; C o S is called ‘de-equivariantization’. 2

The final unsurprising result shows that C o S depends on S ⊂ C only up to equivalence:

3.10 Proposition Let E : C → D be an equivalence of braided fusion categories and RepkG '
S ⊂ C a full braided monoidal subcategory. Then there is an equivalence C oS ' Do E(S) of
braided crossed G-categories.
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The proof relies on the fact that the commutative étale algebra in Rep G corresponding to
the regular representation of G is unique up to isomorphism.

4 Classification and Coherence for Braided Crossed G-

Categories

Combining the results of the two preceding sections we arrive at the following result:

4.1 Theorem (i) The operations D ; DG and C ; C o S give rise to a bijection be-
tween {braided G-crossed fusion categories D, modulo equivalence of braided G-crossed
categories} and {braided fusion categories C containing a full symmetric subcategory
S ' Rep G, modulo braided equivalence}.

(ii) Under this correspondence, C ' DG is modular if and only if De is modular and D has
full G-spectrum.

Proof. (i) is contained in the results of the preceding sections.
(ii): That modularity of C implies modularity of (C o S)e and full G-spectrum of C o S is

contained in Theorem 3.7. As to the converse, let D have full G-spectrum and De be modular.
Defining C = CG and C0 = (De)

G we have C ⊃ C0 ⊃ S ' Rep G. Modularity of De ' C0 o S
implies

S = Z2(C0) = C0 ∩ C ′0. (4.1)

Since C0 ⊂ C is the maximal subcategory for which C0 o S has trivial grading, we have

C ∩ S ′ = C0. (4.2)

The fullness of the G spectrum of D ' C o S implies that

S ∩ Z2(C) = S ∩ C′ is trivial. (4.3)

If now X ∈ Z2(C) = C ∩ C′ is simple, (4.2) implies X ∈ C0, upon which (4.1) implies X ∈ S.
But now (4.3) entails that X is trivial. Thus Z2(C) is trivial, to wit C is modular. �

4.2 Remark 1. A more satisfactory statement of the above correspondence would be in terms
of a 2-equivalence of certain bicategories, cf. [12].

2. An interesting alternative characterization of braided G-crossed fusion categories D
satisfying the two conditions of (ii) is given in [21]. 2

We are now in a position to obtain a straightforward but useful application, which shows
that no restriction of generality is entailed by the limitation to G-categories with strict G-action:

4.3 Theorem Let G be a finite group and ((D, . . .), β, ∂, c) a braided G-crossed fusion cate-
gory. Then there is a strict braided fusion category (D′, β′, ∂′, c′) with a strict G-action and
an equivalence F : D → D′ of braided crossed G-categories. (Thus in particular, F is G-
equivariant.)
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Proof. Given a braided G-crossed fusion category D, we have an equivalence D ' DG o S of
braided crossed G-categories, where RepkG ' S ⊂ DG. By the coherence theorem for braided

monoidal categories, there is a strict braided monoidal category C̃ ' DG with a distinguished
strict symmetric subcategory S̃. By Proposition 3.10, we have D ' C̃ o S̃ as braided crossed
G-categories. The claim now follows from the fact that there is a model for C̃o S̃ that is strict
as a monoidal category and has a strict G-action. This is the category C̃A (A ∈ S̃ again being
the left regular representation) discussed in [24, 27], where also the equivalence with AC was
proven. �

It would be quite interesting to prove the theorem in a more direct way, hopefully extending
its domain of validity.

5 Braided crossed G-categories as crossed products

The axioms of a crossed G-category D imply that the part De in trivial degree is a monoidal
category with G-action β. In the case where D is a fusion category one can prove that dimDg ≡∑

X∈Dg
d(X)2 = dimDe (the sum being over the classes of simple objects in Dg), whenever Dg

is non-trivial, see Chapter VII, Section 1.7. This makes it reasonable to consider D as a
crossed product of De with G: “D ' De oβ G”. The question therefore arises whether, given a
monoidal category with G-action there exists a crossed G-category D with full G-spectrum (i.e.
Dg 6= ∅ ∀g) and a G-equivariant equivalence C → De. Similarly, if C is braided and β an action
G y C by braided automorphisms, one can ask for D to be a braided crossed G-category.

In the non-braided case it is easy to give an affirmative answer, discovered independently
in the preprint [34], cf. Section 2.1 of Chapter VIII of this book, and in [33]. For simplicity
of exposition, we assume C and the G-action to be strict. (As we know by Theorem 4.3, this
is justified in the case of fusion categories, but everything can also be done without strictness
assumptions. Cf. in particular [15].) We define a monoidal category D by Obj D = Obj C ×G
with tensor product (X, g)⊗(Y, h) = (X⊗gY, gh). The Hom-set HomD((X, g), (Y, h)) is defined
as HomC(X, Y ) when g = h and by ∅ or {0} (in the k-linear case) for g 6= h, composition
being inherited from C. Finally, if s ∈ Hom((X, g), (X ′, g)) and t ∈ Hom((Y, h), (Y ′, h)) then
s ⊗ t := s ⊗ gt ∈ HomC(X ⊗ gY,X ′ ⊗ gY ′) = HomD((X, g) ⊗ (Y, h), (X ′, g) ⊗ (Y ′, h)). D has
an obvious G-grading ∂ : (X, g) 7→ g and G-action g(X, h) = (gX, ghg−1) w.r.t. which it is a
crossed G-category. (Notice that C o G is not closed under direct sums of objects of different
degrees. While this can easily be remedied, this is not needed for the discussion that follows.)
The question arises whether a braiding for C can be lifted to a braiding for D = C o G. The
following simple observation in [28] provides an obstruction:

5.1 Lemma Let D be a braided crossed G-category. If there exists an invertible object in Dg

then gX ∼= X for every X ∈ De.

Proof. Let Y ∈ Dg be invertible and X ∈ De. The braiding of D provides isomorphisms
Y ⊗X ∼= gX ⊗ Y ∼= Y ⊗ gX. Invertibility of Y implies X ∼= gX. �

Since CoG has invertible objects (1, g) for every g ∈ G, the lemma implies that the crossed
G-category C o G can have a braiding only if X ∼= gX for all g ∈ G, X ∈ C. In many
situations, this is an unacceptable restriction. Nevertheless, it is interesting to say a bit more
about braidings on C o G. The following result is essentially a converse of the construction of
a braiding on C o G given in Chapter VIII, Theorem 2.3.1.
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5.2 Proposition A braiding on C o G gives rise to a full and faithful monoidal functor F :
C → CG such that K ◦F = idC, where K : CG → C is the forgetful functor (X, {ug}) 7→ X, and
therefore to an identification of C with a full monoidal subcategory of CG.

Proof. In C o G, we have (1, g) ⊗ (X, e) = (gX, g) and (X, e) ⊗ (1, e) = (X, g). Thus

the braiding c(1,g),(X,e) : (gX, g)
∼=−→ (X, g) provides an isomorphism uX,g : gX → X. The

braid identity for c(1,g)⊗(1,h),(X,e) implies that {uX,g}g∈G satisfies (2.1), thus (X, {uX,g}) is
an object in CG. The naturality of the braiding c implies that F : X 7→ (X, {uX,g}) is a
functor C → CG. This functor is faithful by construction, and it is full since by definition
HomCG((X, {ug}), (Y, {vg})) ⊂ HomC(X, Y ). By construction, it is clear that K ◦ F = idC.
Finally, the braid identity for c(1,g),(X,e)⊗(Y,e) is equivalent to uX⊗Y,g = uX,g⊗uY,g, which implies
that F is strict monoidal. �

Lemma 5.1 shows that the straightforward crossed product C o G in general cannot be
equipped with a braiding. (For a much more extensive discussion of C o G, including the non-
strict case, and braidings on it, cf. [15].) In order to construct braided crossed G-categories,
one needs to adopt a more sophisticated approach, starting from the observation that each
category Eg is a bimodule category over Ee. However, this is not the place to do so. Instead,
we point out that the problem of defining braided crossed products C o G is closely related to
one raised in an earlier conjecture of the author. In the remainder of this section, we assume
the ground field to be C, which implies d(X)2 ≥ 0 for every object X, cf. [13]. Thus, if C ⊂ D
is a full subcategory, we have dim C ≤ dimD, and equality holds if and only if the categories
are equivalent.

In [26], it was proven that if D is a modular category and C ⊂ D a full monoidal subcat-
egory, then dimD ≥ dim C · dimZ2(C) holds. Thus, there is a lower bound on the size (as
measured by the dimension) of a modular category containing a given braided fusion category
as a full subcategory. Furthermore, the following general conjecture was formulated, motivated
by situations where it is true:

5.3 Conjecture [27] Every braided fusion category C embeds fully into a modular category
D with dimD = dim C · dimZ2(C).

Now one has:

5.4 Theorem The following are equivalent:

(i) Conjecture 5.3 holds for every braided fusion category C whose symmetric center Z2(C)
is even (and therefore equivalent to Rep G for a finite group G).

(ii) For every modular category M acted upon by a finite group G there is a braided crossed
G-category E with full G-spectrum and a G-equivariant equivalence Ee 'M.

Proof. (ii)⇒(i): Let C be a braided fusion category with even center. By the reconstruction
theorem, there is a finite group G such that S = Z2(C) ' RepkG. Being the modularization
[4, 24] of C, M = CoS is modular, and it carries a G-action such that MG ' C. By assumption
(i), there is a braided crossed G-category E with full G-spectrum and G-equivariant equivalence
Ee 'M. This implies dim E = |G| dimM = dim C. Now D = EG is a braided fusion category
containing MG ' C as a full braided subcategory. We have dimD = |G| dim E = |G| dim C =
dim C · dimZ2(G). Finally, D is modular by Theorem 4.1.ii.
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(i)⇒(ii): Let M be a modular category with G-action. Then C = MG is a braided fusion
category with S ' RepkG as full braided subcategory. Since M' C o S has trivial G-grading
and is modular, we have Z2(C) = S. By assumption (ii), there is a full braided embedding
C ↪→ D with D modular of dimension dim C · dimZ2(C) = |G| dim C = |G|2 dimM. In view of
S ⊂ C ⊂ D, we can consider the braided crossed G-category E = DoS. Since D is modular, E
has full G-spectrum, and we have the G-equivariant equivalence Ee = (D∩S ′)oS = CoS 'M.
�

The significance of this result is that the problem of minimal embeddings into modular
categories, for which no direct approach is in sight, can be reduced to the crossed product
problem which appears more amenable, if by no means easy. However it seems that this
problem does not always have a solution: According to V. Ostrik and collaborators (private
communication concerning as-yet-unpublished work), there exists a cohomological obstruction.
However this may turn out, there is a special situation where there is reason to believe that
the mentioned obstruction vanishes:

5.5 Conjecture Let C be a modular category and N a positive integer. Then there exists a
distinguished braided crossed G-category C oSN with G = SN , full spectrum and an equivalence
(C o SN)e ' C�N that is equivariant w.r.t. the obvious SN -action on C�N .

Unfortunately, no good formulation in terms of a universal property is known. However,
there is a hypothetical application to quantum field theory, which we will state at the end of
the next section.

6 Remarks on applications in conformal field theory

In the concluding section of this appendix, we briefly outline the connection of the results
described in this appendix to conformal field theory. In fact, much of the author’s work was
motivated by such applications, and the same is probably true of [20, 21]. Since it is not possible
to go into technical details, we limit ourselves to indicating the broad line of ideas and giving
some pertinent references. A complete account can be found in [28].

In 1971, Doplicher, Haag and Roberts (DHR) studied [9] a class of representations of a
quantum field theory defined on 3+1 dimensional Minkowski space in the context of the operator
algebraic approach to axiomatic quantum field theory. (The latter had been founded by Haag
and others around 1960. For a recent review of some aspects, cf. [16].) DHR showed that the
category of the representations under consideration is a rigid semisimple unitary symmetric
monoidal category, and they conjectured that such a category always is equivalent to the
representation category of a compact (super)group. In the late 1980s, this was proven by
Doplicher and Roberts [10], and Deligne independently arrived at an analogous result [7] for
pro-algebraic groups. (He did not require the categories to be unitary.) Doplicher and Roberts
also proved [11] that, given a quantum field theory A and the compact group G such that
RepA ' Rep G, there exists an extended quantum field theory F acted upon by G such that
FG ∼= A and such that RepF is trivial (at least when G is second countable and RepA is
even, i.e. the supergroup is a group). Thus, the existence of non-trivial representations of a
quantum field theory A can be understood as a consequence of A being the G-fixed subtheory
FG of some ‘bigger’ quantum field theory F . Furthermore, there is a one-to-one correspondence
between quantum field theories B such that A ⊂ B ⊂ F and closed subgroups H ⊂ G, given
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by H 7→ FH and
B 7→ HB = {g ∈ G | g � B = id}.

These results amount to a beautiful Galois theory for local fields, where the Doplicher-Roberts
extension F corresponds to the algebraic closure. As a consequence of this theory, the rep-
resentation categories of the extensions B ⊃ A can be understood in purely group theoretic
terms, without any rôle for the dynamics of the quantum fields.

All the results described above remain valid in 2 + 1 spacetime dimensions, but in 1 + 1
dimensions (or on ‘the lightray’ R) the situation changes considerably. As shown in [14], a
quantum field theory still gives rise to a rigid semisimple unitary braided monoidal category
of representations, but one can no more prove that the braiding is a symmetry, quite in line
with the theoretical physics literature. A host of ‘rational’ models studied in conformal field
theory suggested that the representation category RepA should be a modular category under
suitable assumptions. In [19], a very simple and natural set of axioms for a chiral conformal
field theory, known to be satisfied by several infinite families of interesting examples associated
with loop groups, was shown to imply modularity of the representation category. (A similar
result was also proven in the context of vertex operator algebras, cf. [17].) Since a non-trivial
modular category cannot be the representation category of a group, it is clear that analogues
of the results of [10, 11] cannot be expected. Not even replacing the group by a more general
algebraic structure, e.g. Hopf algebra, is very promising. Cf. [30] for a discussion of this issue.

While groups thus lose the distinguished rôle they played in higher spacetime dimensions,
it is perfectly natural to study group actions on conformal field theories and the corresponding
fixpoint theories FG, called ‘orbifold theories’. One classical result of DHR remains true,
namely the representation category RepFG still contains a full symmetric monoidal subcategory
equivalent to Rep G. On the other hand, given a full symmetric subcategory S ⊂ RepA,
the construction in [11] applies and provides an extension F = A o S ⊃ A acted upon by
the compact group dual to the symmetric category S. As in high dimensions, the passages
A ; AoS to the extended theory and the orbifolding F ; FG are essentially inverses of each
other, i.e. (Ao S)G ∼= A and FG o S ∼= F .

However, the relationship between the categories RepA and RepAG on the one hand and
between RepA and Rep(AoS) will be more complicated than in the high dimensional situation.
In the context of completely rational conformal field theories [19], it was shown in [28] that the
representation category of an extension A o S of a quantum field theory A by a symmetric
subcategory of RepA is given by

Rep(Ao S) ' (Rep(A) ∩ S ′) o S. (6.1)

(Here as in all that follows, we must assume that G is finite. Otherwise the theories A and
A o S cannot both be completely rational.) While we saw in Section 3 that that a braided
fusion category C can be recovered from its extension C o S by a full symmetric subcategory
via (C o S)G ' C, there is little reason to hope that RepA can be recovered from Rep(A o
S), since this is given by (6.1) and some information was lost in the passage from RepA to
Rep(A) ∩ S ′. Since the Doplicher-Roberts construction and orbifolding are inverse operations,
it follows that also the representation category RepFG of an orbifold quantum field theory is
not determined by RepF . This was already understood in the early works on orbifolds, e.g. [8].
(This phenomenon can be seen even in the simplest case, the one where RepF is trivial, i.e.
equivalent to VectC. In this specific situation, it turns out that RepFG ' Dω(G)-Mod, where
Dω(G) is the twisted quantum double. The cohomology class [ω] ∈ H3(G, U(1)) is encoded in
F , but clearly not in the trivial category RepF .)
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The solution to the problem of computing RepFG in terms of categorical information per-
taining to F was found in [28]:

6.1 Theorem To a completely rational conformal field theory F acted upon freely by a finite
group G, one can associate a braided crossed G-category G−RepF with full G-spectrum. The
degree zero subcategory is the category of ordinary representations as considered by Doplicher,
Haag and Roberts [9] (known to be modular by [19]).

The non-trivially graded objects correspond to ‘twisted representations’ of F . While they
do not satisfy the DHR criterion, they do so upon restiction to the orbifold theory FG, which
explains their relevance for the determination of Rep(FG). With these preparations, one can
prove [28]:

6.2 Theorem If F is a completely rational CFT carrying a free action of a finite group G,
then there is an equivalence

Rep(FG) ' (G− RepF)G

of braided monoidal categories. Conversely, one has the equivalence

G− RepF ' Rep(FG) o S

of braided crossed G-categories, where S ⊂ Rep(FG) is the symmetric subcategory of repre-
sentations of FG arising from the vacuum representations of F .

Thus, the braided G-crossed category of twisted representations of F and the representation
category RepFG, together with its symmetric subcategory S ⊂ RepFG, contain the same
information. In particular, this clarifies the phenomenon [8] that RepF does not determine
RepFG.

Now we are in a position to connect Conjecture 5.5 to conformal field theory. Let A be
a completely rational conformal field theory and N a positive integer. Now the N -fold direct
tensor power B = A�N of A carries an obvious SN -action and it is natural to conjecture the
following:

6.3 Conjecture If A is a completely rational CFT (thus RepA is modular) then the (braided
SN -crossed) category of SN -twisted representations ofA�N is equivalent to the category (Rep A)o
SN of Conjecture 5.5. (Thus SN -Rep(A�N) depends on A only via RepA.)

This conjecture is compatible with the rigorous work that has been done on CFTs of the
form A�N and the fixpoint theories (‘orbifolds’) (A�N)G for G ⊂ SN , cf. e.g. [2, 18], but to our
understanding the Conjectures 5.5 and 6.3 are still open.
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