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Abstract

The subject of this dissertation is the superselection structure of quantum field theories
in 1+ 1 dimensions in the framework of Algebraic QFT, or Local Quantum Physics. The
present work decomposes into two parts. In the first one, Chapter 2, which is concerned
with massless models, we investigate the phenomenon of ‘degenerate statistics characters’,
which is equivalent to non-invertibility of Verlinde’s matrix .S. We give a sufficient criterion
for the absence of degenerate sectors. Then we prove Rehren’s conjecture to the effect
that an application of the construction of charged fields due to Doplicher and Roberts
yields a non-degenerate theory. The methods which we use for doing so also lead to new
results pertaining to the ‘classical’ situation in > 2 + 1 dimensions.

The larger part of this work is concerned with massive models which satisfy the split
property for wedges (SPW). In Chapter 3 we prove in a model independent way that nets
of local observables, which satisfy Haag duality and the SPW in the vacuum represen-
tation, are quite rigid. They permit neither nontrivial DHR sectors nor representations
which are equivalent to the vacuum upon restriction to wedge regions. Furthermore, Haag
duality holds in all irreducible locally normal representations. These results are applied
to soliton sectors, which by the above are the only remaining representations of physical
relevance.

In Chapter 4 we start from the well-known phenomenon that in 1 + 1 dimensions
the fixpoint net of a massive theory F under the action of an inner symmetry group G
violates Haag duality. Using disorder operators we construct a non-local extension F
of the field net F, which is interesting in two respects. Firstly, it allows for an explicit
computation of the dual net A? of the fixpoint net A. On the other hand, F carries an
action of Drinfel’d’s quantum double D(G) as an inner symmetry. This symmetry, which
describes the spacelike commutation relations via the R-matrix, is non-degenerate in the
above sense but spontaneously broken. In analogy to Roberts’ treatment of spontaneously
broken group symmetries, the violation of Haag duality by A can be interpreted as a
consequence of this spontaneously broken ‘hidden’ symmetry.
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Zusammenfassung

Gegenstand dieser Dissertation ist die Superauswahlstruktur von Quantenfeldtheorien in
1 4+ 1 Raum-Zeit Dimensionen im Rahmen der Algebraischen Quantenfeldtheorie. Die
vorliegende Untersuchung zerfallt in zwei Teile. Im ersten Teil, Kapitel 2, der sich auf
masselose Modelle bezieht, wird das Phanomen der ‘Entartung von Statistikcharakteren’,
d.h. der Nicht-Invertierbarkeit der Verlinde-Matrix S, naher untersucht. Zunéchst wird
ein hinreichendes Kriterium fiir die Abwesenheit entarteter Sektoren angegeben. An-
schlieflend wird Rehrens Vermutung bewiesen, daf§ man durch Anwendung der Konstruk-
tion geladener Felder von Doplicher und Roberts eine nichtentartete Theorie erhalt. Hier-
zu werden Methoden entwickelt, die auch in der ‘klassischen’ Situation von > 2 4+ 1
Dimensionen neue Aussagen erlauben.

Der grofiere Teil dieser Arbeit widmet sich massiven Modellen, die die Split-Eigenschaft
fiir Keilgebiete (SPW) erfiillen. In Kapitel 3 wird in modellunabhéngiger Weise gezeigt,
dal Netze lokaler Observablen, die Haag-Dualitdt und die SPW in der Vakuum-Darstel-
lung erfiillen, eine sehr rigide Struktur besitzen. Sie lassen weder nichttriviale DHR-
Sektoren zu, noch Darstellungen, die eingeschrankt auf Keilgebiete dquivalent zum Vaku-
um sind. Dariiber hinaus gilt Haag-Dualitat in allen irreduziblen, lokal normalen Darstel-
lungen. Anwendungen auf Soliton-Sektoren, die somit die einzig moglichen Darstellungen
von physikalischer Relevanz sind, werden gegeben.

Als Ausgangspunkt fiir Kapitel 4 dient das bekannte Phénomen, dafl das Fixpunktnetz
A einer massiven Theorie F unter einer inneren Symmetriegruppe G in 14+1 Dimensionen
die Haag-Dualitat verletzt. Unter Verwendung von Disorder-Operatoren wird eine nicht-
lokale Erweiterung F des Feldnetzes F konstruiert, die zwei interessante Eigenschaften
besitzt. Zum einen erlaubt sie die explizite Berechnung des zum Fixpunktnetz gehorenden
dualen Netzes A%. Zum anderen trigt F eine Aktion von Drinfel’ds Quantendoppel D(G)
als innerer Symmetrie. Diese Symmetrie, die vermittels der R-Matrix auch die raumartig-
en Vertauschungsrelationen beschreibt, ist nicht-entartet im obigen Sinne, aber spontan
gebrochen. In Analogie zu Roberts’ Behandlung spontan gebrochener Gruppensymme-
trien kann man die Verletzung der Haag-Dualitat von A als Konsequenz dieser spontan
gebrochenen ‘verborgenen’ Symmetrie interpretieren.
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Chapter 1

Introduction and Prerequisites

1.1 Why should anyone want to study QFT in 1+ 1
dimensions?

The present dissertation is concerned with several aspects of the superselection structure
(=representation theory) for quantum field theories in 1+ 1 dimensional Minkowski space.
This class of theories has been studied for several decades despite the fact that the lessons
they provide for the study of QFTs in 341 dimensions may appear limited. In constructive
quantum field theory the investigation of theories in less than three space dimensions has
been motivated by the less violent nature of the ultraviolet divergences in low dimensional
toy worlds. Thus, one begins with low dimensional theories and proceeds to (ultimately)
four dimensions via successive improvements of one’s technical arsenal. This argument
does, however, not apply to general quantum field theory, where one anyhow circumvents
the thorny task of proving the existence of a specific model by studying large classes of
models which satisfy a reasonably small set of physically meaningful axioms. (To be sure,
one of the ultimate aims of general QFT, namely classifying all reasonable quantum field
theories, is at least as difficult as the construction of individual models.) As it turns out,
this axiomatic analysis exhibits a number of phenomena which do not appear in higher
dimensions, like braid group statistics, quantum symmetries and exact integrability. In the
case of massive models these peculiarities can be traced back to the fact that the spacelike
complement of a bounded region (e.g. a double cone ) decomposes into two connected
components. Stated alternatively, there is a Lorentz invariant distinction between left and
right, which in particular explains the existence of soliton representations. For conformally
covariant models, which live on a compactified spacetime manifold, this is not true. There
the non-simply connectedness of the latter is responsible for the appearance of the above
mentioned phenomena.

The importance of topological peculiarities or ‘pathologies’ of two dimensional space-
time for the respective models might lead practically minded physicists to the judgment
that there is little to be learnt from them for four dimensional physics. In the author’s
opinion, this point of view is not warranted. In fact, most aspects of two dimensional
theories show up in some way in four dimensional gauge theories, albeit in a much more
complicated form. The nontrivial commutation relations between ‘order’ and ‘disorder’

7



operators (cf. Chapter 4), e.g., reappear in the guise of commutation relations between
Wilson and ’t Hooft loops, whereas solitons become magnetic monopoles, etc. Further-
more, we mention the recent upsurge of interest of QCD phenomenologists in conformally
covariant and/or exactly integrable two dimensional models, e.g. [79]. This is due to the
fact that 4d QCD effectively turns into a two dimensional theory in certain asymptotic
regimes.

The aim of the present work is to extend the existing body of knowledge on QFT in
1+ 1 dimensions in several respects. A short overview of our results will be given in the
final section of this introductory chapter. Since our work takes place in the framework
of general QFT, more specifically Algebraic QFT, the next section will provide a short
introduction to the concepts of the latter as well as some well known results as far as they
are independent on the dimension of spacetime. In order to prepare the stage, the third
section is devoted to those results which have been proved for theories in > 2+1 dimensions
(or > 3 + 1, depending on certain localization properties). They are of relevance since
several techniques which have been developed for the high dimensional analysis will be
brought to bear on two dimensional models later on. In the next-to-last section we will
survey the results on two dimensional models which are rigorously known. It will be
apparent that there are still many open questions.

1.2 Algebraic Quantum Field Theory

Conceptually, Algebraic Quantum Field Theory is based on two fundamental ingredients.
On the technical or mathematical side it is characterized by its reliance on topological (C*
and von Neumann) -algebras of bounded operators instead of the unbounded operator
valued distributions of the older Wightman framework [104]. This is motivated by the
desire to circumvent the physically meaningless domain problems which plagued the latter.
Since every self-adjoint operator is uniquely characterized by its family of (bounded)
spectral projections, no information is lost by this shift of perspective. Furthermore,
algebras of bounded operators are much more convenient when the action of symmetries
on a quantum field theory are studied, as is made plain, e.g., by the solution of the
reconstruction problem for charged fields in [47], see also Chapter 2. In particular in the
context of conformal QFT it is occasionally said that CQFT is somehow related to Galois
theory. While there may in fact be relations to the Galois theory for fields, it is seldom
appreciated that it is mainly the Galois theory for algebras which is relevant for QFT,
irrespective of conformal covariance. Hopefully, our results in Chapter 4 contribute to
establishing this insight.

The second pillar on which Algebraic Quantum Field Theory, or Local Quantum
Physics [71], rests is its emphasis on observable quantities, however problematic this
notion may be. The history of QFT has shown that unobservable objects, introduced
purely for technical convenience, are by no means unique since they can be submitted to
transformations a la Klein, Jordan-Wigner, Bogolubov etc. Furthermore, the existence
of superselection sectors is nicely interpreted [70] in terms of inequivalent representations
of an (abstract) algebra of observables. This point of view, while put forward as early as
1964 and pursued vigorously in [37, 39], has, unfortunately, become widely accepted only



in the 80s in the context of CQFT (where one speaks of the chiral algebra).

We now turn to a short overview of some aspects of local quantum physics, for more
detailed introductions see [71, 9, 74]. We consider a quantum field theory to be defined
by its net of observables:

O — A(O). (1.2.1)

This is a map which assigns to each subset O of Minkowski space a C*-algebra A(O)
of observables measurable in 0. Commonly it is sufficient to restrict oneself to certain
classes of regions, mostly the open double cones O € I, which are intersections of forward
and backward lightcones:

K={Vi+2nV_+y|y—xzeVi} (1.2.2)
The assignment (1.2.1) is inclusion preserving (isotonous)
O, C Oy = A<O1) C A(OQ), (1.2.3)

which allows to define the quasilocal algebra by

e 7U A(O)n-n'

Oek

(1.2.4)

The algebra A(G) associated to an arbitrary subset of Minkowski space is then understood
to be the subalgebra of A generated (as a C*-algebra) by all A(O) where G D O € K.
The principle of Einstein causality is implemented by requiring the net to be local in the
sense that

[A(Oy), A(Oy)] = {0} (1.2.5)

if Oy, Oy are spacelike to each other. Furthermore, the Poincaré group P acts on A by
automorphisms ay , such that

an o (A(0)) = AAO + z) YO. (1.2.6)

Up to now our algebraic definitions have been abstract, insofar as no specific repre-
sentations in some Hilbert space have been involved. This approach is particularly useful
if there is more than one vacuum representation.

Now, the basic physical idea of AQFT is that the physical content of any quantum
field theory resides in the observables (and their vacuum representation(s)). All other
physically relevant representations as well as unobservable charged fields interpolating
between those and the vacuum sector should be constructed from the observable data.
This requires the specification of a class of representations which are considered as phys-
ically significant. Of a reasonable representation 7 of A one requires that at least the
translations (Lorentz invariance might be broken) are unitarily implemented

o ay(A) = Ur(z)r(A) U, ()", (1.2.7)

the generators of the representation x — U(x), i. e. the energy-momentum operators,
satisfying the spectrum condition. Vacuum representations are then characterized by the



existence of a unique (up to a phase) translation invariant vector €. Furthermore, they
should be irreducible, i.e. m(A) = C1 *.

The requirement of positive energy (stability) is, however, not sufficiently selective
and an early attempt by Borchers was plagued by technical problems. Only in 1982,
Buchholz and Fredenhagen succeeded in analyzing a large class of physically relevant
representations from first principles. Improving on earlier ideas of Swieca they proved
[18] for every massive one-particle representation (i.e. there is a mass gap in the spectrum
followed by an isolated one-particle hyperboloid) in > 2 4+ 1 dimensions the existence of
a vacuum representation my such that

7l AC) 27 | A(C") VC. (1.2.8)

(22 means unitary equivalence.) The C’s are spacelike cones which we do not need to
define precisely; essentially they are half-lines which thicken as they go to infinity. In
1+1 dimensions (here the spacelike cones reduce to wedges, i. e. translates of Wr = {x €
R? | ' > |2°|} and the spacelike complement W, = W}) things are more complicated.
In this case the arguments in [18] allow only to conclude the existence of two a priori
different vacuum representations 7{, 7 such that the restriction of m to left handed
wedges (translates of W) is equivalent to 7y and similarly for the right handed ones.
Such representations are of course well known as soliton representations. In analogy to
the situation in > 2+ 1 dimensions we will speak of ‘BF representations’ should the vacua
7o, e happen to coincide. Since the analysis of statistics which builds upon the BF
localization or, alternatively, on the earlier DHR criterion is strongly dependent on the
dimensionality of spacetime we defer its further exposition to the subsequent sections.

With the exception of our discussion of soliton sectors in Chapter 3 we pick some
definite vacuum representation my and identify the local algebras with their images in
B(Hy) : A(O) = mo(A(O)). Since the quasilocal algebra is simple [3], all representations
are faithful and no information is lost in this way. From now on we will mostly omit the
symbol my. In algebraic QFT one usually may assume that any two representations 7y, mo
are unitarily equivalent upon restriction to every double cone O (local normality). It thus
makes sense to require 7(A(O)) to be a von Neumann algebra (i.e. ultraweakly closed) for
all 7 under consideration and all @ € K. For infinite regions like spacelike complements
O'" and wedges W, one must, however, carefully distinguish between the C*-subalgebras
AW) = mo(A(W)) of mo(A) and their weak closures R(W) = A(W)".

For reasons which will become clear later, one usually further assumes [69, 70] that
vacuum representations satisfy Haag duality:

To(A(O)) = mo(A(O))" YO € K. (1.2.9)

This property, which strengthens the locality postulate in the sense that the local algebras
cannot be enlarged without violating spacelike commutativity, plays a prominent role in
superselection theory. In the context of conformally covariant theories [16] in suitably
compactified [84] Minkowski space (> 1+ 1 dimensions), as well as for Mobius covariant

*In general M' = {X € B(H)|XY = YXVY € M} denotes the algebra of all bounded operators
commuting with all operators in M.



theories on the circle [64], Haag duality can be proved from first principles. As to non-
conformal models, this duality property (or its adaption for fermions, see below) has up
to now only been proved for free massive and massless fields (scalar [5] and Dirac [35]) in
> 1+ 1 dimensions (apart from the massless scalar field in two dimensions) as well as for
several interacting theories (P(¢)s, Y>).

Therefore it is advisable to be prepared for the case where Haag duality does not hold
in the first place. Introducing the dual net by

AN 0) = A(O'Y, (1.2.10)

one has A%(0) D A(O) and Haag duality amounts to A%(O) = A(O) VO € K. A is said
to satisfy essential duality if the extended net A is still local. In this case one can easily
prove A% to satisfy Haag duality: A%(0) = A%(O). Now, for nets of local observables
which arise from a Wightman theory one can prove [12] another duality property, namely
wedge duality:

RW) =R(W') YW € W. (1.2.11)

Here W denotes the set of all wedges, i.e. regions arising from the standard wedges W, Wg
(defined exactly as above for the two dimensional case) via Poincaré transformations.
Wedge duality can be shown to imply essential duality, and the dual net is given by the
intersection of all wedge algebras containing a given double cone:

AlO0)= () RW). (1.2.12)

wWew,W>0

Thus the property of Haag duality can always be obtained. A priori, it is, however, unclear
how the superselection structures of the nets A and A% are related. This question will
play an important role in this work.

In the rest of this section we introduce another technical property which will play
an equally important role in our investigations as Haag duality does. This is motivated
by the observation that the postulates of local quantum physics as described up to now,
i.e. isotony, locality, covariance etc., are not sufficient to guarantee that a quantum field
theory is physically acceptable insofar as particle states exist and there is a reasonable
thermodynamical behavior. Therefore Borchers (unpublished) proposed the split property
which formalizes the idea that the local algebras of two regions which are separated by
a finite spacelike distance are statistically independent in a sense which goes beyond
local commutativity. For a detailed review of the numerous concepts which exist in the
literature we refer to [106]. The notion which will be of relevance for us is the one of W*-
independence. We say that the split property (for double cones) holds in a representation
7, provided that

T(A(O) V T (AON)" = 7(A(O))) @ 7(AOY))", (1.2.13)

whenever O; CC ,, which is an abbreviation for O; C (9. This means that the von
Neumann algebra on H, generated by 7(A(0;)) and 7(A(O5))"” is algebraically isomor-
phic to the tensor product 7(A(O0;)) @ 7(A(O)))" (which, of course, lives on H, ® H,).
Again, we will typically omit the symbol m whenever we mean the vacuum representation.



The following obvious consequence should make plain the physical relevance of this prop-
erty and justify the interpretation in terms of statistical independence. Given any pair of
normal (ultraweakly continuous) states ¢1, g2 on 7(A(O,)), 7(A(O5))", there is a normal
state ¢ on m(A(O1)) V 7 (A(O)))" which restricts to ¢; on the respective subalgebras. In
[4] several other characterizations of the split property are given.

Now, in the vacuum sector of quantum field theories one has more structure, in that the
vacuum vector € (in fact every vector which is analytic for the energy) is cyclic and sep-
arating for the local algebras by the Reeh-Schlieder theorem (see, e.g., [3]). In particular,
2 is cyclic and separating for A(O;), A(O3) and the relative commutant A(Oy) NA(O, ),
rendering A(0O;) C A(O;) a ‘standard split inclusion’ [41]. This entails that the isomor-
phism (1.2.13) is spatial, i.e. unitarily implemented. There is even a canonical choice of
this implementer, cf. [41, 20] and Subsection 4.3.6. Given an inclusion of double cones
A= (0,,0,), O CC O, there is a unitary YA Hy — Ho @ Ho such that

YAA A YM = A @ Ay VA, € A(O)), Ay € A(O))". (1.2.14)

Under this unitary mapping we have the following spatial isomorphisms:

(01) = AO) ® 1,
A0 = 1 @ AL, (1.2.15)
(02) = B(Hoy) @ A(O2),

where we have used Haag duality to obtain the last identity. In particular, one can see that
there is a type I factor (i.e. a von Neumann algebra, which is isomorphic to B(H) for H
appropriate) N = Y2 (B(Hy) ® 1)Y* sitting between A(O;) and A(O,). This fact is well
known to imply hyperfiniteness of the local algebras, and it will play an important role
also in our investigations. One of the most important applications of the split property
is the construction of local charges [20] for field nets, which gives rise to a version of
Noether’s theorem in general quantum field theory. This will play an important role in
Chapter 4.

The split property has been proved for free massive [17] and massless [21] scalar fields
as well as for massive Dirac fields in two and four dimensions. For the superrenormalizable
theories in two dimensions it follows then by local normality. Physically intuitive as the
postulate of statistical independence for spacelike separated regions, i.e. the split property,
is, one would like to derive it from a more fundamental notion. To this purpose the
‘nuclearity criterion’ has been put forward by Buchholz and Wichmann [19], strengthening
an earlier compactness criterion due to Haag and Swieca. Besides implying the split
property, this condition entails [23] the existence of KMS- (i.e. thermal) states for all
temperatures. This is particularly gratifying as thermodynamic considerations had played
an important role [19] in motivating the nuclearity criterion. For further developments
see, e.g., [24, 25, 26]). Since in Chapters 3-4 we will make use of a stronger version of
the split property than the one described above, we will in Appendix B give an adapted
nuclearity-type criterion which implies this variant.



1.3 Superselection Theory in > 2+ 1 Dimensions

Despite the fact that in this work we are concerned with quantum field theories in low
spacetime dimensions (mainly 1 + 1), some familiarity with the results pertaining to
higher dimensions is indispensable. This is due to the fact that, of course, part of the
analysis for the physical spacetime (d = 3 + 1) carries over to the situation under study.
On the other hand, this knowledge is necessary in order to appreciate the specifically
low-dimensional phenomena. Therefore, this section is intended as a review of the most
important known facts concerning the superselection theory of quantum field theories
in at least two space dimensions. For such theories there is a large amount of beautiful
results, which nicely exemplify the harmony between ideas arising in quantum field theory
on one hand and in the mathematical areas of operator algebras and abstract harmonic
analysis on the other. Particular instances will be the statistical dimension [37, 56] vs.
Jones index [81] and fusion of sectors [37, 39] vs. abstract group duality [46, 47]. It should,
however, be mentioned that there are very important unsolved problems, in particular the
superselection structure of theories containing massless particles, and even the notion of
local gauge invariance is ill understood. (It should perhaps be emphasized that these
problems are not just shortcomings of the algebraic approach. Quite to the contrary, the
number of rigorous results on these matters is scarce whatever framework is used for the
analysis, e. g. constructive quantum field theory.)

More than ten years before the results on massive one-particle representations [18]
were established, Doplicher, Haag, and Roberts initiated a first approach to superselection
theory, implicitly assuming the physical 3 + 1-dimensional spacetime. The starting point
for the preliminary analysis conducted in [35] is a net of field algebras O — F(O) acted
upon by a compact group G of inner symmetries (gauge group of the first kind):

ay(F(O)) = F(O) Vg € G. (1.3.1)

The field algebra acts irreducibly on a Hilbert space H and the gauge group is unbro-
ken, i.e. represented by unitary operators U(g) in a strongly continuous way: ayz(F) =
AdU(g)(F). (Compactness of G need in fact not be postulated, as it follows by [41,
Theorem 3.1] if the field net satisfies the split property.)

The field net is supposed to fulfill Bose-Fermi commutation relations, i.e. any local
operator decomposes into a bosonic and a fermionic part ' = F, + F_ such that for
spacelike separated F' and GG we have

[F,,Gy] =[F.,G]=[F_,Gy]={F ,G_}=0. (1.3.2)

The above decomposition is achieved by
1
Fi = §(F + ax(F)), (1.3.3)

where £ is an element of order 2 in the center of the group G. V = Uy is the unitary
operator which acts trivially on the space of bosonic vectors and like —1 on the fermionic
ones. To formulate this locality requirement in a way more convenient for later purposes
we introduce the twist operation F* = ZFZ*, where

144V

7 = 72 =V). 1.3.4
(= ) (13.4)




This leads to ZF, Z* = F,, ZF_Z* = iV F_, implying [F, G'] = 0. The (twisted) locality
postulate (1.3.2) can now be stated simply as

F(O) c F(O'). (1.3.5)
In analogy to the bosonic case, this can be strengthened to twisted duality:
F(O) = F(O). (1.3.6)
The observables are now defined as the fixpoints under the action of G
A(0) = F(O)¢ = F(O)NU(G)". (1.3.7)
The Hilbert space H decomposes as follows:

H=EHe o C, (1.3.8)
cca

where £ runs through the equivalence classes of finite dimensional continuous unitary
representations of G' and d¢ is the dimension of . The observables and the group G act
reducibly according to

A = GBEEC;' 71'5(14) ® 1,
Ulg) = Decc e © Uely),

where ¢ and Ug are irreducible representations of .4 and G, respectively. As a consequence
of twisted duality for the fields, the restriction of the observables A to a simple sector
(subspace H¢ with de = 1), in particular the vacuum sector, satisfies Haag duality. Since
the unitary representation of the Poincaré group commutes with G, the restriction of A
to Hy satisfies all requirements for a net of observables in the vacuum representation in
the sense of Section 2.

One can furthermore prove that the representations ¢, though mutually inequivalent,
are ‘strongly locally equivalent’, i.e. unitarily equivalent when restricted to the algebra
A(O") of the causal complement of any double cone. In particular they satisfy the ‘DHR-
criterion’:

(1.3.9)

Te TA(OI) = i) r.A(OI) YO e K. (1310)

In [37, 39] the perspective was reversed, starting with a net of observables in a vacuum
representation satisfying Haag duality (1.2.9). A first class of interesting representations
was singled out by imposing the DHR criterion (1.3.10). In the case of a fixpoint net as
above it is not necessarily true that the representations m¢ in (1.3.9) exhaust all equivalence
classes of DHR representations (as is seen by taking, e.g., F = A and G = {e}). This
is, however, the case [98] whenever the field net does not possess nontrivial localized
representations (equivalently, F has ‘quasitrivial 1-cohomology’). It is clear that the
DHR criterion is more restrictive than the BF localization property (1.2.8), which in turn
does not cover charged representations in QED due to Gauss’ law. On the other hand,
for conformally covariant theories in compactified Minkowski space (> 1+ 1 dimensions),
as well as on the circle one can in fact prove [22] that all positive energy representations



are of the DHR type. Essentially, this is due to local normality in conjunction with the
fact that the spacelike complement of a double cone or interval is again a double cone or
interval, respectively. Combined with the automatic validity of Haag duality in conformal
models this fact shows that at least these models fit perfectly into the DHR framework.
In this introduction, we restrict ourselves to indicating a few steps of the DHR analysis
in > 2+ 1 dimensions, referring to [37, 39] for the whole story.

Let m be a DHR representation and @ € K a double cone. By (1.3.10) there is a
unitary operator X© : Hy — H, such that X my(A) = 7(A) X© VA € A(O'). Thus the
equivalent representation

p(-) = X9 1(A) X°, (1.3.11)

which lives on H, satisfies
p(A) =A VA e A(O"). (1.3.12)

The importance of Haag duality in the vacuum representation 7y arises from the following
easy consequence: Let O; be a double cone containing . Then p maps A(QO) into itself,
which implies that p is an endomorphism of the quasilocal algebra A, localized in the
sense of (1.3.12) . Furthermore, given another double cone Oy there is an endomorphism
p2 of A which is localized in Oy and which is equivalent to p: There is a unitary 7" such
that Tp(A) = po(A)T VA € A. By Haag duality, T is contained in A(O) whenever
K30 >OUO,. In this brief discussion we have ignored the subtleties which arise in
conformal theories due to the compactified spacetime, cf. [57].

The importance of these findings stems from the fact that endomorphisms can be
composed, providing the set of DHR representations with a monoidal (product) structure.
Physically the composition of morphisms amounts to an ‘addition’ of charges. One can
prove that two localized endomorphisms p;, po commute if their localization regions are
mutually spacelike. Even if this is not the case, pips and psp; are equivalent up to an
inner automorphism, i.e., there is a unitary (py, p2) € A such that

e(p1, p2) p1p2(+) = p2p1(+) e(p1, p2), (1.3.13)

or £(p1, p2) € (p1p2, p2p1). These statistics operators are defined as follows. Let pf, ph
be mutually spacelike localized, thus commuting, endomorphisms which are equivalent
to p1, pa2, respectively, with intertwiners U; € (p;, p;). Then a short computation shows
that the unitary operator po(U;)UsU;p1(Us) intertwines p;ps and pap; as required. This
operator is canonically defined in that it is independent of the choice of the auxiliary
objects p}, U. Furthermore, it satisfies the following important identities (among others):

e(p,id) =e(id,p) = 1, (1.3.14)
e(p1, p2) e(p2, 1) = 1, (1.3.15)
e(p1p2, p3) = p1(e(p2; p3)) e(p1, p3)- (1.3.16)

Deﬁning g; = pi_l(g(p, ,0)), 1 € N one has O'i2 = 1, 0;0;410; = 0441040441 Vi and [O'i, O'j] =
0, |i—j| > 2, such that the o; constitute a presentation of the infinite permutation group
Ss by unitary operators in A.

Whereas p is not invertible if it is a true endomorphism, one can prove the existence
of left inverses ¢, such that ¢, o p = id. Then po ¢, is a conditional expectation of



A onto p(A). Using the left inverse one obtains, for p irreducible, a number A, via
o(e(p, p)) = A,1. As a consequence of permutation group statistics, the absolute value of
A, turns out to be zero or the inverse of an integer, the statistical dimension d,, whereas
the modulus, the statistics phase w,, equals £1 and distinguishes representations with
bosonic and fermionic character. The statistical dimension measures the deviation from
Haag duality in the representation 7 and has an interpretation in terms of the Jones index
of certain inclusions of von Neumann algebras due to Longo [81]:

d, = [1(A(0")": 7(A(0))] = [A(O) : p(A(0))], (1.3.17)

p

where in the first equation @ € K is arbitrary and in the second equation p = 7 is
an endomorphism localized in O. Representations with infinite statistics (i.e. A, = 0)
are considered pathological, and in fact massive one particle representations have finite
statistics [55].

In the case of observables arising as group fixpoints and a DHR-representation ¢
obtained as in (1.3.9), d, equals the dimension d¢ of the representation Uy in (1.3.8) and,
equivalently, the multiplicity of the representation 7 in the Hilbert space H. Thus, d,
measures the degree of parastatistics. Furthermore [38], p is the restriction to A of an
inner endomorphism of F. An inner endomorphism is of the form

p() =D i1y, (1.3.18)

iel
where {1);, i € I} is a multiplet of isometries with support one, i.e. satisfies

Vi = 041, (1.3.19)
Wik = 1. (1.3.20)

el

In [38] it was conjectured that the fixpoint situation is generic in the following sense.
Let a net of observables A satisfying Haag duality be given. Then the strict symmetric
monoidal C*-category of DHR, sectors together with their intertwiners is equivalent to
the representation category of a compact group G. One can construct a field net F
with normal (i.e. Bose/Fermi) commutation relations acted upon by G such that the
decomposition (1.3.8, 1.3.9) contains all equivalence classes of DHR representations of
A. The charged fields in F implement the DHR endomorphisms in the above way. In
the case where all DHR representations correspond to localized automorphisms, G thus
being abelian, this was proved already in [36]. In complete generality the proof turned out
quite difficult, and constitutes one of the triumphs of the algebraic approach. From the
mathematical point of view it amounts to a new duality theory for compact groups [46]
which considerably improves on the old Tannaka-Krein theory. A crucial role was played
by the Cuntz algebra 4, which is the abstract C*-algebra generated by d isometries
satisfying (1.3.19,1.3.20), see [43]. We refrain from going into details and refer to the
series of papers by Doplicher and Roberts [42, 43, 44, 45, 46, 47] for the whole story and
to the first two sections of [47] for a relatively nontechnical introduction.

As stated above, the fixpoint net A = F¢ of a (twisted) dual field net satisfies Haag
duality in the vacuum sector if the group G is unbroken, ie. wyoay, = wy Vg € G



where wy = (£2,- Q). If only a subgroup Gy C G is unbroken, the same argument yields
duality for B(O) = F(0O)% in restriction to H. Clearly, the smaller net A(O) = F(O)¢
violates duality, but essential duality is still true [95] and B(O) = A%(O) (on HE°). Based
on these observations, one interprets the weaker property of essential duality as a sign of
spontaneous symmetry breakdown even in the case of nets of observables which are not
known (a priori) to arise from a field net. In this situation it is known [98, 99] that one
can extend every DHR representation of A in a unique way to a DHR representation of
the dual net A¢. Applying the DR reconstruction to the dual net one obtains the field net
and the unbroken part GGy of the symmetry group G. The full group G is then obtained as
the group of all local symmetries of F which leave the observables A pointwise invariant,
cf. [47, 29].

Concerning the split property, it is known that it is fulfilled by the observables provided
it is true for the fields. The conjecture that the converse is also true has, however, been
proved only for the case of finite abelian gauge groups [40].

All of the above results hold in at least 2 + 1 spacetime dimensions. The DR con-
struction of charged fields works also for the less restrictive BF criterion (1.2.8), provided
the number of space dimensions is at least three. (Due to the weaker localization proper-
ties the transition to braid group statistics and the loss of group symmetry, cf. the next
section, occur already in 2 4+ 1 dimensions, see [62].)

1.4 Known Results on Low Dimensions

As explained in the first section, quantum field theories in 1 4+ 1 dimensions permit phe-
nomena which differ markedly from those in higher dimensions. It is well known [61] that
the possibility of a Lorentz invariant distinction between left and right allows the com-
mutation relations between charge carrying fields to depend in an essential way on the
ordering of the fields. The same fact is responsible for the existence of solitons which, in
contrast to DHR- and BF- representations, cannot be considered as localizable excitations
with respect to a single vacuum representation. Solitons will be discussed in more detail
below.

For the moment we will stick to the study of localized charges. The analysis of rep-
resentations satisfying the DHR criterion [56, 91, 57] proceeds in analogy to the higher
dimensional case up to the definition of statistics operators. Due to the fact that the
spacelike complement of a bounded region has two components, there are two choices for
the relative localization of the auxiliary morphisms pf, ph. For definiteness, one defines
e(p1, p2) by choosing p) to be localized to the right of p). Then &(p1, p2) and &(p2, p1)*
are two a priori different statistics operators. In particular, £(p, p)? = 1 will typically
be false, such that the o; only give a presentation of the braid group B,. Under these
circumstances the result of [37], according to which the statistical dimension d, must be
an integer, is no more true, yet the relation (1.3.17) stays valid. It is still not known by
which structure the compact group appearing in the higher dimensional situation has to
be replaced, if a completely general solution to this question exists at all.

The deviation from permutation group statistics can be measured by the monodromy



operators
6M<p17p2) = 5(/01,02)5(P2,/01)- (141)

An irreducible morphism p is said to be degenerate if p/(p,0) = 1 for all 0. Given two
irreducible morphisms py, p2 one obtains the C-number valued statistics character [91] via

Yij1 = did; (e m(pis p5)")- (1.4.2)

(The factor d;d; has been introduced for later convenience.) These numbers depend only
on the sectors and satisfy the following identities:

Yoi = Yio = d;, (1.4.3)
Yij =Y =Y; =Yy, (1.4.4)
Yy =S NEEg,, (1.4.5)

k Wk
1
7 Yii Vi = Y NV (1.4.6)
J m

Here [p;] is the conjugate morphism of [p;] and NJ; € Ny is the multiplicity of [pg] in the
decomposition of [p;p;] into irreducible morphisms. The matrix of statistics characters is
of particular interest if the theory is rational, i.e. has only a finite number of inequivalent
irreducible representations. Then, as proved by Rehren [91], the matrix Y is invertible iff
there is no degenerate morphism besides the trivial one which corresponds to the vacuum
representation. In the nondegenerate case the number o = Y, d?w; " satisfies 0| = Y, d?
and the matrices

S=\lol7ty, T= <‘0—|> Diag(w;) (1.4.7)
o
are unitary and satisfy the relations
S?=(ST)*=C, TC=CT =T, (1.4.8)

where C;; = 0; 7 is the charge conjugation matrix. I.e., S and T constitute a representation
of the modular group SL(2, Z). Furthermore, the ‘fusion coefficients’ N}; are given by the
Verlinde relation [113]
SimSimSy
NE =y T mThm, 1.4.9
=2 (1.4.9)

m

As was emphasized in [91], these relations hold independently of conformal covariance in
every (nondegenerate) two dimensional theory with finitely many DHR sectors. This is
remarkable, since the equation (1.4.9) first appeared in the context of conformal quantum
field theory on the torus, where the S-matrix has the additional (and in [113], defin-
ing) property of describing the behavior of the conformal characters ¢r,,e"720 under the
inversion 7 — —1/7.

The equations (1.4.8, 1.4.9) do not hold if the matrix Y fails to be invertible, i.e. when
there are degenerate sectors. On can show that the set of degenerate sectors is stable
under composition and reduction into irreducibles (Lemma 2.4.2). It thus constitutes a



closed subcategory of the category of DHR endomorphisms to which one can apply the
DR construction of charged fields. It was conjectured in [91] that the resulting ‘field’
net is nondegenerate, the above Verlinde-type analysis thus being applicable (provided
the enlarged theory is rational). These matters will be examined in detail in Chapter
2. The apparent generality of the analysis in [56, 91] can lead (and so it did) to the
impression that, from the point of view of superselection theory, there are no essential
differences between conformal and massive models in 1 4+ 1 dimensions. In Chapter 3 we
will, however, see that there are considerable differences.

Besides the appearance of braid group statistics another well known consequence of the
topology of low dimensional Minkowski space is the existence of soliton sectors. Rigorous
treatments in the frameworks of constructive and general quantum field theory were first
given in [60] and [58, 59], respectively. A short review of Fredenhagen’s analysis of solitons
in the algebraic framework will be given in Section 3.6. As for solitons an operation of
composition can only be defined if the ‘vacua fit together’ [58], there is in general no such
thing as permutation or braid group statistics.

1.5 Overview of the Present Work

In this section we give an overview of the results obtained in this thesis. Our results
can be divided naturally into two parts. The first part consists of several studies which
are primarily of relevance for conformally covariant models in 1 + 1 dimensions whereas
the second is concerned with massive models, as characterized by the split property for
wedges. Whereas the usual split property (for double cones) as defined in Section 2
makes perfect sense in conformally covariant models, the analogous statement for wedges
is considerably stronger and can hold only in massive models. The reader is advised to
keep this fact in mind, in order not to confuse the results in the Chapters 2 and 3-4,
respectively.

In Chapter 2 we begin with the proof of a few new results on the Doplicher-Roberts
construction of charged fields in > 2 + 1 dimensions. They are of independent interest
since they contribute to the clarification of the relation between observable and field alge-
bras. We then turn to 1+ 1 dimensional theories, giving a characterization of degenerate
endomorphisms and proving a sufficient condition for the absence of degenerate sectors.
In sufficiently regular theories this condition is probably also necessary, but this remains
conjectural. Finally we give a proof of Rehren’s conjecture that the net which is obtained
by applying the DR construction to the degenerate sectors is nondegenerate. This result
shows that the symmetry of a two dimensional theory ‘factorizes’ into a ‘classical’, i.e.
group-, part and a purely quantum one. In Chapter 4 we will see that the role of the latter
can be played by modular C*-Hopf algebras. There, however, the quantum symmetry is
spontaneously broken.

Chapter 3 is devoted to the proof of a number of structural results on quantum field
theories which satisfy the split property for wedges. In particular we show that a net of
observables satisfying the latter condition and Haag duality (HD)

e satisfies several nice additivity properties, in particular n-regularity [68] and the
time slice axiom.



e does not admit DHR and BF sectors. More precisely, every representation which is
equivalent to my upon restriction to every wedge is equivalent to a multiple of 7.

A

e The relative commutants A(O) N A(O) for © cc O are minimal, i.e. equal to
AONO).

e Every irreducible locally normal representation, in particular every soliton represen-
tation, satisfies Haag duality.

e Soliton representations are characterized, up to unitary equivalence, by their left
and right vacua.

e The extension of a DHR representation of a wedge-dual net to the dual net is at
best a soliton representation. The localization properties of these extensions are
studied.

In short, these results show that the only interesting non-vacuum representations of a net
which satisfies HD+SPW are soliton representations. Thus, assuming the SPW, DHR
sectors can exist only for nets which satisfy only wedge duality. For these, however, one
loses the one-to-one correspondence between (equivalence classes of ) DHR representations
and endomorphisms of the quasilocal algebra. A general theory which takes this fact into
account does not yet exist.

In Chapter 4, the largest part of this work, we consider ‘orbifold’ nets A, i.e. nets of
algebras which arise as fixpoint nets of a Haag dual net F under the action of a compact
group G of inner symmetries. (This is just the scenario which is generic in the classical
case (> 2+ 1 dimensions) by the work of Doplicher and Roberts.) Assuming the larger
(or ‘field’-) net to satisfy the SPW we know that it has no sectors. For the fixpoint
net this is not true, since it does not satisfy Haag duality, in contrast to the higher
dimensional situation. It is then quite natural to ask what the dual net looks like, and
in analogy to the situation in higher dimensions one may even ask whether the failure
of Haag duality for the fixpoint net has an interpretation in terms of some spontaneous
symmetry breakdown. Both questions will be resolved by the introduction of disorder
operators, which play an important role in statistical mechanics. Using these operators
we will consider a nonlocal extension F of the field net and show that there is a canonical
action of Drinfel’d’s quantum double D(G) on the enlarged theory. We will explicitly
exhibit a local subnet A which coincides with the dual net in every abelian sector. If
(G is abelian, things are particularly transparent, for then we obtain a canonical action
of the dual group G on the dual net. Since this action is spontaneously broken it must
give rise to the existence of soliton sectors due to the results of [101]. Establishing the
relation to the more general discussion in Chapter 3, we show that these soliton sectors
are just the extensions of the DHR sectors of A to the dual net A% = A | #,. Finally,
we partially extend our analysis, which in the case of non-abelian groups was confined
to finite ones, to the compact case. The technique of disorder operators also allows for
a transparent discussion of bosonization, i.e. the passage from bosonic nets satisfying
duality to fermionic nets with twisted duality, and vice versa, on the same Hilbert space.
We conclude this chapter with a short sketch of how similar methods can be brought to
bear on chiral models on the circle.



In Appendix A we prove for quantum field theories in 1 + 1 dimensions the commuta-
tivity of inner symmetries with the translations, but not necessarily the Lorentz boosts.
Appendix B is devoted to a derivation of the SPW from a modified nuclearity condition,
where the time translations are replaced by the Lorentz group. Appendix C gives a very

short introduction to the terminology pertaining to quantum groups and quantum doubles
which we need in Chapter 4.






Chapter 2

On the Construction of Field Nets
and a Conjecture by Rehren

2.1 Introduction

As mentioned in Chapter 1, a few years ago a long standing problem in local quantum
physics was solved in [47]. There the conjecture [35, 38] was proved that the superselection
structure of the local observables can always be described in terms of a compact group.
This group (gauge group of the first kind) acts by automorphisms on a net of field algebras
which generate the charged sectors from the vacuum and obey normal Bose and Fermi
commutation relations. Here superselection structure refers to DHR representations in
> 2 + 1 dimensions or BF representations in > 3 + 1 dimensions. In this chapter we
consider only DHR representations.

In the next section we prove a few complementary results concerning the DR-construc-
tion. In particular, we show that the DR field net does not possess localized superselection
sectors provided it is complete, i.e. contains charged fields generating all sectors of the
observables. While this may appear to be an obvious consequence of the uniqueness result
[47] for the complete normal field net, the proof relies upon a number of preparatory
facts which are of independent interest. Our main result, however, pertains to the low
dimensional case to which we turn now.

As we will see in the next chapter, sufficiently regular massive models in 1+ 1 dimen-
sions do not have DHR sectors at all if one insists in the assumption of Haag duality,
which, of course, is needed for the DHR analysis. Therefore, the considerations in this
chapter are aimed primarily at conformally covariant models, where the situation is quite
different. For these it is known [22] that all positive-energy representations are automati-
cally of the DHR type, while Haag duality holds in the vacuum sector [16]. Nevertheless,
the conformal covariance will play no role in the following investigations. In particular,
everything takes place in the usual uncompactified Minkowski space, cf. the remarks at
the end of this chapter.

As explained in Chapter 1, DHR theory in 1 + 1 dimensions differs markedly from
that in higher dimensions. Yet, the more familiar structures known from the Doplicher-
Roberts analysis can also be of relevance in two dimensions. This is the case whenever
there exist degenerate sectors. Before we enter into the discussion of this possibility we
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give in Section 3 a sufficient criterion for the absence of degenerate sectors.

In Section 4 we prove Rehren’s conjecture to the effect that the field net obtained by
applying the DR construction to the degenerate sectors does no more possess degenerate
sectors. This presumably constitutes a precise version of the claim that the Verlinde S-
matrix is invertible ‘if the symmetry algebra is maximally extended’, which can be found
in the CQFT folklore. In the attempt to understand the quantum symmetries one can
thus restrict oneself to the nondegenerate situation.

2.2 On the Reconstruction of Fields from Observ-

ables

Our first aim in this section will be to prove the intuitively reasonable fact that a complete
field net associated (in > 2 4 1 dimensions) to a net of observables does not possess
localized superselection sectors. This result, which may not be too important in itself,
will be the basis of our proof of a conjecture by Rehren (Theorem 2.4.4). Furthermore,
we show that the construction of the complete field net ‘can be done in steps’. lL.e. one
also obtains the complete field net by applying the DR construction to an intermediate,
thus incomplete, field net and its DHR sectors. For the sake of simplicity we defer the
treatment of the general case for a while and begin with the purely bosonic case.

2.2.1 Purely Bosonic Case

The superselection theory of a net of observables is called purely bosonic if all DHR sectors
have statistics phase +1. In this case the charged fields which generate these sectors from
the vacuum are local and the fields associated with different sectors can be chosen to be
relatively local. Then the Doplicher-Roberts construction [47] gives rise to a local field
net F, which in addition satisfies Haag duality. Thus it makes sense to consider the DHR
sectors of F and to apply the DR construction to these. (In analogy to [37, 39] one
needs F to satisfy the technical ‘property B’ [37], which can be derived [3] from standard
assumptions, in particular positive energy. Since a DR field net is Poincaré covariant with
positive energy [47, Sect. 6], provided this is true for the vacuum sector and the DHR
representations of the observables, we may take the property B for granted also for F.)
We cite the following definitions from [47].

Definition 2.2.1 Given a net A of observables and a vacuum representation my, a normal
field system with gauge symmetry, {m,F,G}, consists of a representation ™ of A on a
Hilbert space H containing my as a subrepresentation on Ho C H, a compact group G of
unitaries on H leaving Ho pointwise fized and a net O — F(O) C B(H) of von Neumann
algebras such that

a) the g € G induce automorphisms oy of F(O), O € K with m(A(O)) as fized-point
algebra,

B) the field net F is irreducible,
v) Ho is cyclic for F(O) VO € K,



8) there is an element k in the center of G with k* = e such that the net F obeys graded
local commutativity for the Zo-grading defined by k, cf. (1.3.2, 1.3.3).

Definition 2.2.2 A field system with gauge symmetry {m, F,G} is complete if each equiv-
alence class of irreducible representations of A satisfying (1.3.10) and having finite statis-
tics 1s realized as a subrepresentation of w, i.e. w describes all relevant superselection
sectors.

For a given net of observables A we denote by A the set of all transportable local-
ized morphisms with finite statistics. Let I' be a closed semigroup of localized bosonic
endomorphisms and let F be the associated local field net. Now let ¥ be a closed semi-
group of localized endomorphisms of F. After iterating the DR construction again we
are faced with the following situation. There are three nets A, F, F acting faithfully and
irreducibly on the Hilbert spaces Hy C H C A, respectively, such that Haag duality holds
(twisted duality in the case of F ). The nets F and F are normal field nets with respect
to the nets F and A, respectively, in the sense of Definition 2.2.1. Thus there are repre-
sentations 7 of A on H and 7 of F on H, respectively, such that 7 o 7w(A) C #(F) C F.
Furthermore, there are compact groups G and G acting on F and F, respectively, such
that F(O)¢ = n(A(O)) and F(O)¢ = 7#(F(O)). The following result is crucial:

Lemma 2.2.3 The net F is a normal field net w.r.t. the observables A. In particular,
there is a compact group G acting on F and containing G as a closed normal subgroup

such that F(O)% = 7 o 1(A(O)).

Proof. Since the groups G' and G consist of all automorphisms of F and F which leave
A and F, respectively, pointwise stable, we are precisely in the situation studied in [29,
Sec. 3]. Thus we can apply [29, Prop. 3.1] and obtain a short exact sequence

1-G—-G—G—1, (2.2.1)

where G is just the group of all symmetries of F which leaves the net A pointwise stable.
Furthermore, G is unitarily implemented since G' and G are (on H and H, respectively).
It remains to prove the requirements ) — ¢) of Definition 2.2.1. Now, () and 4) are
automatically true by [47, Thm. 3.5]. Finally, v), viz. the cyclicity of H, for F(O), O € K
is also easy: in application to Ho, #(F(O)) C F(O) gives a dense subset of 7, the image
of which under the action of the charged (w.r.t. F) fields in F is dense in H. M

Let now I' = A, the set of all transportable localized morphisms with finite statistics.
Using the above lemma it is easy to prove the following.

Theorem 2.2.4 The complete (local) field net F associated with a purely bosonic theory
has no DHR sectors with finite statistics.

Proof. Assuming the converse, the above lemma gives us a field net F on a larger Hilbert
space H, which obviously is also complete, since the representation m of A on H is a
subrepresentation of 7 o w. Thus, by [47, Thm. 3.5] both field systems are equivalent.



Le., there is a unitary operator W : H — # such that Wr(A) = 7 o 7(A)W VA € A etc.
In view of the decomposition
™=@ de e, (2.2.2)

ted

where the irreducible representations ¢ are mutually inequivalent, and similarly for 7o,
7 and 7 can be unitary equivalent only if G = G and thus F = F. N

We have thus, in the purely bosonic case, reached our first goal. Before we turn to the
general situation we show that the construction of the complete field net ‘can be done in
steps’. L.e., one also obtains the complete field net by applying the DR construction to
an intermediate field net and its DHR sectors, again assuming that the intermediate net
is local (this is not required for the complete field net).

The following lemma is more or less obvious and is stated here since it does not appear
explicitly in [45, 47].

Lemma 2.2.5 Let I'1, 'y be subsemigroups of A which are both closed under direct sums,
subobjects and conjugates and let F;, i = 1,2 be the associated normal field nets on the
Hilbert spaces H; with symmetry groups G; and w; the representations of A. If T'y C I'y
then there 1s an isometry V : Hy — Ho such that

Vm(A) = m(A)V, A€ A, (2.2.3)
VG\V* = G4E, (2.2.4)
VFV* = (Fn{E})E, (2.2.5)

where E = VV*. Furthermore, there is a closed normal subgroup N of G such that
E is the projection onto the subspace of N-invariant vectors in Hs and {m,G1, F1} is
equivalent to {m5,Gy/N,F]}.

Proof. As usual the field theory F; is constructed by applying [47, Cor. 6.] to the
quadruple (A, Ay, e,m) and by defining F(O) to be the von Neumann algebra on Hs
generated by the Hilbert spaces H,, p € Ay(O). Let E be the projection [B;H,] where B;
is the C*-algebra generated by H,, p € A,. Trivially, B; maps E'H, into itself. B, is stable
under Gy as each of the Hilbert spaces H, is. This implies that G, leaves E'H, stable.
Restricting By and Gy to E'H, the system (EH,, Emy(-)E, EU,E,p € Ay — EH,E)
which satisfies a) to g) of [47, 6.2]. With the exception of g) all of these are trivially
obtained as restrictions. Property g) follows by appealing to [44, Lemma 2.4]. We can
thus conclude from the uniqueness result of [47, Cor. 6.2] that (EHs, EmoE, EUSE, p €
Ay — H,) is equivalent to the system (Hi,71,Us,p € Ay — H,) obtained from the
quadruple (A, Ay, e,m) . Le. there is a unitary V' from H; to EHy such that Vi (A) =
mo(A)V, VF = BV, VU; = UsV. Interpreting V' as an isometry mapping H; into Hs
we have (2.2.3-2.2.5). The rest follows from [47, Prop. 3.17]. W

Lemma 2.2.6 Let O +— F(QO) be the field net associated to a subsemigroup I' of A, closed
under direct sums, subobjects and conjugates. Then every localized endomorphism n € A
of A extends to an endomorphism 7 of F commuting with the action of the gauge group.
If n 1s localized in O the same holds for 7.



Remark. This result is of interest only if n & I'. Otherwise we already know that n extends
to an inner endomorphism of F by definition of the field algebra.

Proof. By the preceding result we know that the field net F = Fr is equivalent to a subnet,
of the complete field net F = Fa. We identify F with this subnet. By construction every
localized endomorphism n € A(O) of A extends to an inner endomorphism of F. Le. there
is a multiplet of isometries ¢; € F(O), i =1,...,d satisfying >, 7 = 1, ¢f¢; = ; ;1
such that 7o m(A) = 7 o n(A) where

() =D v Ui (2.2.6)

7 commuting with the action of G, it is easy to verify that n leaves F = F" stable
and thus restricts to an endomorphism of F which extends 7. This extension is not

necessarily local, for f)(F') = —F if F is a fermionic operator localized spacelike to O and
n is a fermionic endomorphism. This defect is easily remedied by defining

. n ifw(n) =1

= { AdV o if w(n) = —1 (2.2.7)

Clearly, 7 has the desired localization properties and coincides with 7 on A. Transporta-
bility of 7 is automatic as W € (n,n') implies 7#(W) € (7,7'). Finally the statistical
dimensions of 7 and 7 coincide as is seen using, e.g., the arguments in [81]. W

Remark. The preceding lemmas do not depend on the restriction to bosonic families I' of
endomorphisms.

Lemma 2.2.7 Let D' be a semigroup of bosonic endomorphisms and let F be the associated
(incomplete) local field net. Let Y be the semigroup of all localized endomorphisms of F.
Then the associated DR-field net F is a complete field net with respect to A.

Proof. Let n be a localized endomorphism of A. By the preceding lemma there is an
extension (typically reducible) to a localized endomorphism 7 of F. By completeness of
F with respect to endomorphisms of F, 7 is implemented by a Hilbert space in F and
there is a subspace H; of H such that 7 | H; = 7 as a representation of F. Restricting

to A and choosing an irreducible subspace H, we have s, [ Hz = myon. Thus F is a
complete field net for 4. W

Theorem 2.2.8 Let A be a net of observables and let I be a bosonic subsemigroup of A
with the associated field net Fr. Then the complete normal field net Fr 5, obtained from the
net Fr and its semigroup X of all localized endomorphisms is equivalent to the complete
normal field net Fa. In particular the group G obtained in Lemma 2.2.83 is isomorphic to
the one belonging to Fa.

Proof. By Lemmas 2.2.3 and 2.2.7, Frx; is a complete normal field net for .A. The same
trivially holding for Fa we are done since two such nets are isomorphic by [47, Thm. 3.5].
|



2.2.2 General Case, Including Fermions

In the attempt to prove generalizations of Theorem 2.2.4 for theories possessing fermionic
sectors and of Theorem 2.2.8 for fermionic intermediate nets F we are faced with the
problem that it is not entirely obvious what these generalizations should be. We would like
to show the representation theory of a complete normal field net, which is now assumed to
comprise Fermi fields, to be trivial in some sense. It is not clear a priori that the methods
used in the purely bosonic case lead to more than, at best, a partial solution. Yet we will
adopt a conservative strategy and try and adapt the DHR/DR theory to Zo-graded nets.
The fermionic version of Theorem 2.2.8 will vindicate this approach.

Clearly, the criterion (1.3.10) makes sense also for Zy-graded nets. Since things are
complicated by the spacelike anticommutativity of fermionic operators, the assumption of
twisted duality for F is, however, not sufficient to deduce that representations satisfying
(1.3.10) are equivalent to (equivalence classes) of transportable endomorphisms of F. To
make this clear, assume 7 satisfies (1.3.10), and let X© : Hy — H, be such that X©A =
7(A)X® VA € F(O'). We would like to show that p(A) = X*1(A) X maps F(O,)
into itself if O; D O. Now, let x € F(O1), y € F(O])!, which implies zy = yz. We would
like to apply p on both sides and use p(y) = y to conclude p(F(0,)) C F(O)Y = F(O,).
As it stands, this argument does not work, since 7 and thus p are defined only on the
quasilocal algebra F, but not on the operators VF_ € F* which result from the twisting
operation. Assume, for a moment, that the representation p lifts to an endomorphism p
of the C*-algebra FonH generated by F and the unitary V', such that p(V) =V or,
alternatively, (V) = —V. Using triviality of p in restriction to F(O}) we then obtain
p(F(ONY) = F(O)), which justifies the above argument. Now, in order for p(V) = £V
to be consistent, we must have

poag(A) = p(VAV) = p(V)p(A)p(V) = Vp(A)V = ai 0 p(A), (2.2.8)

o

i.e. poay = agop. In view of p(A) = X9*1(A)X© we can now claim:

Lemma 2.2.9 There is a one-to-one correspondence between equivalence classes of

a) Representations of F which are, for every O € K, unitarily equivalent to a rep-
resentation p on Ho such that p [ F(O') = id and po ay = ax o p (where
Aut B(Hp) 2 oy, = Ad V).

b) Transportable localized endomorphisms of F commuting with o,.

Remark. In a) covariance of m with respect to oy is not enough. We need that upon
transferring the representation to the vacuum Hilbert space via p(A) = X9*1(A) X, a
is implemented by the grading operator V.

Proof. The direction b)=-a) is trivial. As to the converse, by the above all that remains to
prove is extendibility of p to p. By the arguments in [105, p. 121] the C*-crossed product
(covariance algebra) F X,, Z, is simple such that the actions of F and Z, on H, and
H, via my =1id, V and 7w, V, can be considered as faithful representations of the crossed
product. Thus there is an isomorphism between C*(F, V) and C*(w(F), V) which maps
F e Finto n(F) and V into V;. N



Definition 2.2.10 DHR-Representations and transportable endomorphisms are called
even iff they satisfy a) and b) of Lemma 2.2.9, respectively.

We have thus singled out a class of representations which gives rise to localized endomor-
phisms of the field algebra F. But this class is still too large in the sense that unitarily
equivalent even representations need not be inner equivalent. Let p be an even endomor-
phism of F, localized in O. Then ¢ = Adyy o p with U € F _(O) is even and equivalent
to p as a representation, but (p, o) N F = {0}, which precludes an extension of the DHR
analysis of permutation statistics etc. Furthermore, p and o, while equivalent as repre-
sentations of F, restrict to inequivalent endomorphisms of .. This observation leads us
to confine our attention to the following class of representations.

Definition 2.2.11 An even DHR representation of F s called bosonic if it restricts to a
bosonic DHR representation (in the conventional sense) of the even subnet F.

A better understanding of this class of representations is gained by the following lemma.

Lemma 2.2.12 There is a bijective correspondence between the equivalence classes of
bosonic even DHR representations of F and bosonic DHR representations of Fy. ILe.,
equivalent bosonic even DHR representations of F restrict to equivalent bosonic DHR
representations of Fy. Conversely, every bosonic DHR representation of F. extends
uniquely to a bosonic even DHR representation of F.

Remark. It will become clear in Theorem 2.2.14 that nothing is lost by considering only
representations which restrict to bosonic sectors of F,.

Proof. Clearly, the restriction of a bosonic even DHR representation of F to F, is a
bosonic DHR representation. Let p, o be irreducible even DHR morphisms of F, localized
in O, and let T € (p,0). Twisted duality implies T € F(O)!, i.e., T =Ty +T_V where
T, € F4. Now both sides of

o(F) =T p(F)T7 + T ago p(F)T* + T p(F)VT* + T_V p(F)T7 (2.2.9)

must commute with ay. The first two terms on the right hand side obviously having this
property, we obtain Ty p(F)VT* + T_V p(F)Tf =0 VF € F. For F' = F* this reduces to
T, p(F)T* = 0, which can be true only if T, = 0 or 7_ = 0 since p is irreducible. The case
T =T_V is ruled out by the requirement that the restrictions of p and o to F, are both
bosonic. Thus we conclude 7' € F,(O) and the restrictions p; and o, are equivalent.
As to the converse, a bosonic DHR representation 7, of F, gives rise to a local 1-
cocycle [97, 98] in F,, i.e. a mapping z : ¥; — U(F,) satisfying the cocycle identity
2(0pc)2(02¢) = 2(01c), ¢ € Ty and the locality condition z(b) € F,(]b]), b € ¥;. This
cocycle can be used as in [98, 99] to extend 7, to a representation m of F which has all
desired properties. We omit the details. By this construction, the extensions of equivalent
representations are equivalent, an intertwiner 7" € (p, o) lifting to 7(7) on H. W

Theorem 2.2.13 Let F be a complete normal field net associated with the pair (A, A).
Then F does not possess non-trivial bosonic even DHR representations with finite statis-
tics. Equivalently, there are no non-trivial bosonic DHR representations of the even sub-
algebra F, with finite statistics.



Proof. Assume that F has non-trivial bosonic even DHR representations which by the
lemma is equivalent to the existence of bosonic sectors of F,. For the latter the conven-
tional DHR analysis goes through and gives rise to a semigroup X of endomorphisms of
F, with permutation symmetry etc. These morphisms lift to F and we can apply the DR
construction to (F,X). Since all elements of ¥ are bosonic, no bosonization in the sense
of [47, (3.19)] is necessary. All this works irrespective of the fact that F is not a local net
since the fermionic fields are mere spectators. That the resulting field net again satisfies
normal commutation relations is more or less evident since the ‘new’ fields are purely
bosonic. Furthermore, Lemma 2.2.3 is still true when the ‘observable net’ is Zs-graded.
Now the rest of the argument works just as in Theorem 2.2.4. H

Remarks. 1. In the fermionic case, the even subnet F, has exactly one fermionic sector.
This sector is simple and its square is equivalent to the identity, as follows from the fact
that bosonic sectors of F, do not exist.

2. At this point one might be suspicious that there exist relevant DHR-like representa-
tions of F which are not covered by this theorem. In particular the restriction to bosonic
even DHR representations was made for reasons which may appear purely technical and
physically weakly motivated. The next theorem shows that this is not the case.

Theorem 2.2.14 Let I' C A be a subsemigroup of DHR sectors containing not only
bosonic sectors and let Fr be the incomplete Zs-graded field net associated with (A,T).
Then an application of the DR construction with respect to the bosonic even sectors X of
Fr, as described above, leads to a field net Fr 5, which is equivalent to the complete normal
field net Fa.

Proof. Since F is assumed to contain fermions, every F () contains unitaries which are
odd under ay, giving rise to fermionic automorphisms of 4. By composition with one of
these, every irreducible endomorphism of A can be made bosonic. It is thus clear that it
suffices to extend F by Bose fields which implement these bosonic sectors (more precisely,
their extensions to F). The rest of the argument goes as in the preceding subsection. B

It is thus the existence of bosonic sectors of the even subnet which indicates that a
fermionic field net is not complete, and only such sectors need to be considered when
enlarging the field net in order to obtain the complete field net.

2.3 Degenerate Sectors in 1+ 1 Dimensions

Let O — A(O) be a net of observables in 1 + 1 dimensions satisfying Haag duality. As
shown in [56] to each pair of localized endomorphisms there are associated two a priori
different statistics operators e(p,n),&(n, p)* € (pn,np).

Definition 2.3.1 ([91]) Two DHR sectors have trivial monodromy iff the corresponding
morphisms satisfy €(p,n)= e(n, p)* or, equivalently, €y (p,n) = 1 (this is independent of
the choice of p,n within their equivalence classes). A DHR sector is degenerate iff it has
trivial monodromy with all sectors (it suffices to consider the irreducible ones).

A convenient criterion for triviality of the monodromy of two morphisms is given by the
following



Lemma 2.3.2 Let p,n be irreducible localized endomorphisms. Furthermore, let np,ng be
equivalent to n localized to the spacelike left and right of p, respectively, with the (unique
up to a constant) intertwiner T € (np,nr). Then triviality of the monodromy ex(p,n) is
equivalent to p(T) =T.

Proof. Using the intertwiners Tp,r € (1,mr/r) the statistics operators are given by
e(p,n) =T;p(Tr) and e(n, p) = Trp(Tr). The monodromy operator is given by ex(p, 1) =
Trp(TLT5)TR. Thus, ep(p,n) = 1 is equivalent to p(111%) = T Tj. The proof is com-
pleted by the observation that T;7T% equals 7™ up to a phase. W

At first sight one might be tempted to erroneously conclude from this lemma that there
is no nontrivial braid statistics as follows: The above charge transporting intertwiner
T commutes with A(Q) which, appealing to Haag duality, implies that it is contained
in the algebra of the spacelike complement (. On this algebra every morphism local-
ized in O acts trivially, so that the lemma implies permutation group statistics. The
mistake in this argument is, of course, that T is contained in the weakly closed alge-
bra R(O') = A(O")" = A(O)' but not necessarily in the C*-subalgebra A(Q’) of the
quasilocal algebra A. It is only the latter on which p is known to act trivially.

The results of this section depend on an additional axiom, the split property.

Definition 2.3.3 An inclusion A C B of von Neumann algebras is split [41], if there
exists a type-I factor N such that A C N C B. A net of algebras satisfies the ‘split
property for double cones’ if the inclusion A(Oq) C A(Os) is split whenever O; CC Os,
1. e. the closure of O is contained in the interior of O,.

The importance of this property derives from the fact [106, 4, 41] that it is equivalent to the
following formulation: For each pair of double cones O; CC O, the algebra A(O;)V.A(Os)’
is unitarily equivalent to the tensor product A(O;) ® A(O;)". It is believed that this form
of the split property is satisfied in all reasonable quantum field theories.

In the rest of this section we will give a sufficient criterion for the absence of degenerate
sectors. The following result is independent, of the number of space dimensions.

Proposition 2.3.4 Let O — A(O) be a net of observables fulfilling Haag duality and
the split property for double cones. Let p be an endomorphism of the quasilocal algebra
A which is localized in O and acts identically on the relative commutant A(O) N A(O)
whenever @ > O. Then p is an inner endomorphism of A, i. e. a direct sum of copies
of the identity morphism.

Proof. Choose double cones Oy, O, fulfilling O cC O, CcC O, CC O. Thanks to the
split property there exist type I factors M, M, such that

A(0) C A(Oy) € My C A(O,) C M, € A(O). (2.3.1)

We first show p(M;) C M,. If A € M; we have p(A) € A(O;). Due to A(O) C M, and
the premises p acts trivially on M; N A(O). Thus

p(A) € (M} N A(O)) N M, C (M. N M) N M, = M. (2.3.2)

The last identity follows from M;, M, being type I factors. Thus p restricts to an endomor-
phism of M;. Now every endomorphism of a type I factor is inner [80, Cor. 3.8], i. e. there



is a (possibly infinite) family of isometries V; € My, i € I with V*V; =6,,,>
such that

e ViVt =1

pIMy=n(A)=> V- V. (2.3.3)
icl

(The sums over I are understood in the strong sense.) Now by (2.3.3) and the premises,

n | A(O) N M; =id, implying V; € (A(O)' N M) N M; = A(O) Vi € I. Therefore p =1

on A(O;) and p = n = id on A(Q’). In order to prove p = n on all of A it suffices to

show p(A) =n(A) VA € A(O;) where we may, of course, assume O, D O;. For a second

we take for granted that

A(Os) = A(O) V (A(O5) A AO)). (2.3.4)

Having just proved p [ A(O;) = n and remarking that p | A(O2) A A(O) = id = n is
true by assumption we conclude by local normality that p [ A(Oz) = n. In order to prove
(2.3.4) apply the split property to the inclusion O CC O;. Under the split isomorphism
we have

=
S
R

A(O)® 1,
B(Ho) @ A(Oy), i=1,2. (2.3.5)

=
S
R

Thus A(O) =2 A(O)' @ B(Hy) and A(Oy) A A(O) = A(O) @ A(O3) from which (2.3.4)
follows at once. W
Remark. The first part of the proof is essentially identical to [40, Prop. 2.3]. There it was
stated only for automorphisms but the possibility of the above extension was remarked.
In [40] the C*-version of the time-slice axiom was used to conclude p =1 on A. We have
dispensed with this assumption by requiring triviality of p on the relative commutant
A(O) N A(O) for all © DD O. For our purposes this will be sufficient.

We are now in the position to state our criterion for the absence of degenerate sectors
in 1 + 1 dimensions:

Corollary 2.3.5 Assume in addition to the conditions of the proposition that for each
pair O CC O the algebra A(O) N A(O) is generated by the charge transporters from
O to Og (and vice versa). Here Op,Or are the connected components of ONO, see
the figure below. Then there are no degenerate sectors. More precisely, every degenerate
endomorphism 1s inner in the above sense.

Proof. Due to Lemma 2.3.2 a degenerate morphism localized in O acts trivially on the
charge transporters between Oy to Og. As these are weakly dense in A(Q) N A(O)
by assumption and due to local normality the morphism acts trivially on the relative
commutant. This is true for every @ 5> . The statement now follows from Proposition
2.34. 1

Remarks. 1. In the next chapter (see also [88]) we will show that a much more far-
reaching result can be proved if one requires the split property not only for double cones
but also for wedge regions. This property can, however, hold only in massive quantum
field theories.

2. Admittedly the condition on the relative commutant seems difficult to verify. One



Figure 2.1: Relative commutants of double cones

may perhaps hope that something can be said in the case of rational theories, which have
finitely many sectors.

3. It is likely that the condition on the relative commutant made in the corollary is also
necessary. The argument goes as follows. If there are degenerate sectors then there is a
field net F with group symmetry such that the net A is the restriction of the invariant
subnet to the vacuum sector, cf. the next section. Assuming that the field net also satisfies
the split property one can define localized implementers of the gauge group as in [20]. In
particular, for every inclusion A = (O cC O) and every z € U(G)" N U(G)" one obtains
an operator Uy (z) € A(O)NA(O). There is no reason to assume that U, (x) is contained
in the algebra generated by A(Op), A(Og) and the charge transporters.

2.4 On Degeneracies of Verlinde’s Matrix S

2.4.1 Proof of a Conjecture by Rehren
We begin with two easy but crucial results on the set of degenerate DHR sectors.

Lemma 2.4.1 A reducible DHR representation w is degenerate iff all irreducible subrep-
resentations are degenerate.

Proof. Let p be equivalent to 7 and localized in O, decomposing into irreducibles according
top =2, Vipi(-) Vi. Le., the p; are localized in O and V; € A(O) with V;*V; = §; ;1 and
> ViVi¥ = 1. By Lemma 2.3.2, 7 is degenerate iff p(T") = T for every unitary intertwiner
between (irreducible) morphisms o, ¢’ which are localized in the two different connected
components of O'. Now, p(T) = > . V;pi(T)V;* equals T iff ‘all matrix elements are
equal’, i.e., V¥ TV}, = 6;, p;(T) Vj, k € I. But due to T' € A(O)' the left hand side equals
TV}!Vy, = Té; which leads to the necessary and sufficient condition p; (T)=TVj e,
which in turn is equivalent to all p; being degenerate. W

Lemma 2.4.2 Let Ap be the set of all degenerate morphisms with finite statistical di-
mension. Then (Ap,e) is a permutation symmetric, specially directed semigroup with



subobjects and direct sums.

Proof. Let p1, p2 be degenerate, i.e. €5r(p;,0) = 1 Yo. Due to the identities [57]

e(pip2,0) = elpr,0)pi(e(p2,0)), (2.4.1)
(o, p1p2) = pi(e(o, p2))e(o, p1) (2.4.2)

we have

SM(pIPQ’ 0) = 5(:01:027 0)5(‘7’ P1,02) = 6(/)1, U)pl (E(p% O)E(Ua ,02))6(0', :01) =1 (2'4'3)

Thus Ap is closed under composition. By the preceding lemma the direct sum of degen-
erate morphisms is degenerate, and every irreducible morphism contained in a degenerate
one is again degenerate. That (Ap,¢) is specially directed in the sense of [45, Sec. 5]
follows as in [47, Lemma 3.7] from the fact that the degenerate sectors have permutation
group statistics. W

It is now clear that the spatial version [45, Cor. 6.2] of the construction of the crossed
product can be applied to the quasilocal observable algebra and a semigroup A as above.
As the proofs in [47, Sec. 3] were given for > 2+1 spacetime dimensions it seems advisable
to reconsider them in order to be on the safe side, in particular as far as (twisted) duality
for the field net is concerned.

Proposition 2.4.3 Let F be the spatial crossed product [47, Cor. 6.2] of A by (A, ¢)
where A is as in Lemma 2.4.2 and let F(O) be defined as in the proof of [47, Thm.
3.5]. Then O w— F(O) is a normal field system with gauge symmetry and satisfies twisted
duality.

Proof. The proof of existence in [47, Thm. 3.5] goes through unchanged as it relies only
on algebraic arguments independent of the dimension. The same holds for [47, Thm. 3.6]
with the possible exception of the argument leading to twisted duality on p. 73. The latter
boils down algebraically to the identity F(O) NG’ = 7(A(O'))~, O € K. Finally, the
proof of this formula in [47, Lemma 3.8] is easily verified to be correct in 1+ 1 dimensions,
too. N

Remarks. 1. The reader who feels uneasy with these few remarks is encouraged to study
the proofs of [47, Thms. 3.5, 3.6] himself, for it would make no sense to reproduce them
here.

2. It may be confusing that in theories with group symmetry satisfying the split property
for wedges (SPW), Haag duality for a field net F and the G-fixpoint net A (in the vacuum
sector) are in fact incompatible [87]. The SPW has been verified for massive free scalar
and Dirac fields and is probably true in all reasonable massive theories. On the other
hand, a net of observables which satisfies Haag duality and the SPW does not admit
DHR sectors anyway, cf. the next chapter. In view of this result, we implicitly assume
in this section that the observables do not satisfy the SPW. The point is that one must
be careful to distinguish between conformally covariant or at least massless theories, with
which we are concerned here, and massive ones since the scenarios are quite different.



Theorem 2.4.4 If the set Ap of all degenerate sectors with finite statistics is purely
bosonic, the local field net F constructed from A and Ap does not have degenerate sectors
with finite statistics. If Ap contains fermionic sectors, the normal field net F does not
have degenerate bosonic even sectors with finite statistics. Fquivalently, the even subnet
has no degenerate bosonic sectors with finite statistics.

Proof. The proofs of the Theorems 2.2.4, 2.2.13 are valid also in the 2-dimensional situa-
tion since neither the argument of Lemma 2.2.3 on the extendibility of local symmetries
nor the uniqueness result of [47, Thm. 3.5 require any modification. W

This result, which was conjectured by Rehren in [91], is quite interesting and poten-
tially useful for the analysis of superselection structure in 1 + 1 dimensions. It seems
worthwhile to restate it in the following form.

Corollary 2.4.5 Every degenerate quantum field theory in 1 + 1 dimensions (in the
sense that there are degenerate sectors, which in the rational case is equivalent to non-
invertibility of S) arises as the fixpoint theory of a non-degenerate theory under the action
of a compact group of inner symmetries. Ie., all degenerate theories are orbifold theories
in the sense of [33].

2.4.2 Relating the Superselection Structures of A and F

In the preceding subsection we have seen, that whenever there are degenerate sectors one
can construct an extended theory which is non-degenerate. The larger theory has a group
symmetry such that the original theory is reobtained by retaining only the invariant oper-
ators. Equivalently, all degenerate theories are orbifold theories. By this result, a general
analysis of the superselection structure in 1+ 1 dimensions may begin by considering the
nondegenerate case. It remains, however, to clarify the relation between the superselec-
tion structures of the degenerate and the extended theory. This will not be attempted
here, but we will provide some results going in this direction.

Lemma 2.4.6 All irreducible morphisms contained in the product of a degenerate and a
non-degenerate morphism are non-degenerate.

Proof. The fact that the composition of degenerate morphisms yields a sum of degenerate
morphisms can be expressed in terms of the fusion coefficients Ni’;- as

i and j degenerate, k non-degenerate = Nikj =0. (2.4.4)
By Frobenius reciprocity N¥ = N7 this implies
¢ and j degenerate, k non-degenerate =- N,fk =0. (2.4.5)

(We have used that the conjugate p is degenerate iff pis.) W

Being able to apply the DR construction also in 1+ 1 dimensions provided we consider
only semigroups of degenerate endomorphisms, we are led to reconsider Lemma 2.2.6 con-
cerning the extension of localized endomorphisms of the observable algebra to the field



net. The construction given in Section 2 can not be used for the extension of nondegener-
ate morphisms 7 since we do not have a complete field net at our disposal. A prescription
which does not rely on the existence of a complete field net was given by Rehren [92].
The claim of uniqueness made there has, however, to made more precise. Furthermore,
it is not completely trivial to establish the existence part. Fortunately, both of these
questions can be clarified in a relatively straightforward manner by generalizing results
by Doplicher and Roberts. In [45, Sec. 8] they considered a similar extension problem,
namely the extension of automorphisms of A to automorphisms of F commuting with the
gauge group. The application these authors had in mind was the extension of spacetime
symmetries to the field net [47, Sec. 6] under the provision that the endomorphisms im-
plemented by the fields are covariant. For a morphism p € A the inner endomorphism of
F which extends p will also be denoted by p.

Lemma 2.4.7 Let B be the crossed product [45] of the C*-algebra A with center C1 by
the permutation symmetric, specially directed semigroup (A, e) of endomorphisms and
let G be the corresponding gauge group. Let I' be a semigroup of unital endomorphisms
of A. Then there is a one-to-one correspondence between actions of I' on B by unital
endomorphisms 1) which extend n € I' and commute elementwise with G and mappings
(p,n) = W,(n) from A x T to unitaries of A satisfying

W,(n) € (pn,np),
Wy(mITW,(n)* = n(T), T € (p,rp),

Wop(m) = W,(n) p(Wy(m)),

W,(m') = n(W,(n)W,(n)

for alln,n' € T, p,p' € A. The correspondence is determined by

() =W,(n)v, ve€H, peAnel. (2.4.10)
Furthermore, if a unitary S € (n,n'), n,n’ € ' satisfies
SW,(n) = W,(n")p(S) Vp e A, (2.4.11)
then S € (7,7').

Proof. An inspection of the proofs of [45, Thm. 8.2, Cor. 8.3], where groups of automor-
phisms were considered, makes plain that they are valid also for the case of semigroups of
true endomorphisms and we refrain from repeating them. Besides 1 not necessarily being
onto, the only change occurred in (2.4.6) which replaces the property W, € (p, BpS 1)
which does not make sense for a proper endomorphism 3. Given 7} and setting

d

W, =Y i)}, (2.4.12)

1=1

where ;, 7 = 1,...,d is a basis of H),, it is clear that W, satisfies (2.4.6). The other
properties of the W’s are proved as in [45]. As to the converse direction, we are done
provided we can show that [45, Thm. 8.1] concerning the extension of 7 to the cross



product of A by a single endomorphism p generalizes to the case of 7 an endomorphism.
We give only that part of the argument which differs from the one in [45].

Let thus A and p satisfy the assumptions of [45, Thm. 8.1], let n be an injective
unital endomorphism of A and let W € (pn,np) satisfy [45, (8.1), (8.2)]. As in [45,
Thm. 8.1] we consider the monomorphisms of A and O, into A ®, O4, defined by
A= nA)®,1and (' ¢ — W ®, ¢, ¥ € H, respectively. The calculation leading
to ¢'(Y)r'(A) = 7" o p(A)(' (1) is correct also for n a true endomorphism. Furthermore,
with ¢ = ¢' | Osu() we have ({(Osu)) € n(A) thanks to the conditions on W and
the fact that Ogy(q) is generated by the elements S and 6, see [43]. Thus npn~' o (] is
well defined and equals (] o o, where o is the canonical endomorphism of Ogy(a). As in
[45] we conclude that (" [ Ogy) = 1o p. Thus by the universality of A ®, Oy there
is an isomorphism between A ®, O, and the subalgebra generated by 7'(A) and ¢'(¢).
Equivalently, there is an endomorphism + of A ®, O, such that

YA®,1) = nA)®,1, AcA, (2.4.13)
11@u) = Weue, ¢eH (2.4.14)

Now the rest of the proof goes exactly as in [45, Thm. 8.1], i.e. after factoring out the
ideal Jy we obtain an endomorphism 7 of the crossed product B = (A ®, Oq4)/J, which
commutes with the action of the gauge group G.

Let now S € (n,7n') satisfy (2.4.11). Then for ¢y € H, we have

Si() = SW,(n)y = W,(n)p(S) = W,(n)S = 7' (¥)S. (2.4.15)

Since 7, are determined by their action on the spaces H, this implies S € (7,7'). W
We are now prepared to consider the wanted extensions of localized endomorphisms.
Motivated by Lemma 2.2.6 where we had (in the case of bosonic 1)

Apr) =Y Wl eyl = (Z w?w;-’w?*w;’*) WP = e(p,n) Y’ (2.4.16)
i 1,9

we appeal to the preceding lemma with W,(n) = e(p, n).

Proposition 2.4.8 Let O — F(O) be the field net obtained via the Doplicher-Roberts
construction from the algebra A of observables and a semigroup of degenerate morphisms,
closed under direct sums, subobjects and conjugates. Then every localized (unital) endo-
morphism 1 of A extends to a localized endomorphism 7 of F commuting with the action

of the gauge group. If n is localized in O the same holds for 7j. Every S € (n, o) lifts to
S e (7,5).

Proof. We set W,(n) = ¢(p,n) and verify the requirements (2.4.6-2.4.9). Obviously (2.4.6)
is fulfilled by definition of the statistics operator. (2.4.8) and (2.4.9) follow from (2.4.1)
and (2.4.2), respectively. Finally, (2.4.9) is just e(p/,n)T = n(T)e(p,n) which holds for
T € (p,p'). The statement on the localizations follows from the fact that £(p,n) = 1 if
p,n are spacelike localized. Finally, with S € (n, o) one has £(p,n)S = p(S)e(p, o) such
that the condition (2.4.11) is satisfied. Thus S € (7,5). W



Remarks. 1. It is surprising that the result of [45, Sec. 8] in the guise of Lemma 2.4.7
finds an application quite different from the one in [47, Sec. 6] for which it was designed.
2. The above result is unaffected if the field net is fermionic. In this case the identitity 7o
oy = agof where k € G is the grading element (which distinguishes bosonic and fermionic
fields) shows that 7 leaves the statistics of fields invariant. In fact, this observation
provided the motivation for introducing the notion of even DHR sectors in Section 2.2.2.
3. In principle, the construction of the field algebra works for every family of sectors
with permutation group statistics which is closed under direct sums and subobjects. As
emphasized by Rehren [92], the extension 7} is localized in a double cone only if the charged
fields in F correspond to degenerate sectors, for otherwise £(p,n) = 1 holds only if p is
localized to the right of n (or left, if €(n, p)* is used).

In the special case where 7 is an automorphism, the extension 7 can be defined via [45,
Thm. 8.2], using W,(n) as above. Clearly, 7 is irreducible since it is an automorphism.
In general, however, the extension 7 will not be irreducible. Rehren’s description [92] of
the relative commutant can also be given a rigorous proof by adapting earlier results [44,
Lemma 5.1].

Lemma 2.4.9 The relative commutant F N7j(F)" is generated as a closed linear space by
sets of the form (pn,n)H,, p € A.

Proof. By twisted duality, an operator in 7j(F)’ is contained in F(O)!, where O is the
localization region of 7. Due to F N F' = F,, the selfintertwiners of 7 in F are bosonic.
Obviously, (pn,n)y, ¥ € H, is in F N n(A)’. Now, just as 7, pn can be extended to an
endomorphism pn of F by the proposition. Furthermore, T' € (pn, n) lifts to an intertwiner
between gn and 7. Thus (pn, n)Y” isin FNH(F)'. As to the converse, 7j(F) NF is globally
stable under the action of G since 7 commutes with G. Thus 7j(F)'NF is generated linearly
by its irreducible tensors under G. If T7,...,T, is such a tensor from F N 7(F)’, then
there is a multiplet v;,2 = 1,...,d of isometries in F and transforming in the same way,
since the field algebra has full Hilbert G-spectrum. With X = Z?Zl T € FC we have
T; = X; and we must prove X € (pn,n). Now T;F = FT, for F' € 7j(F) implies

Multiplying the second identity with ¢} and summing over ¢ we obtain Xp(7j(F)) =
n(F)X, F € Fsince ), ¢ =1 by construction of the field algebra. Thus X € (pn,n).
|

Corollary 2.4.10 7 is irreducible iff the endomorphism ni of A does not contain a non-
trivial morphism p € A.

Proof. By the lemma, the existence of a morphism p € A with (np,n) # {0} is necessary
and sufficient for the nontriviality of F N 7(F)". But by Frobenius reciprocity, np > 7 is
equivalent to nip > p. M

Remark. The irreducible endomorphisms obtained by decomposing an extension 7 are
even, provided we use bosonic isometric intertwiners. This can always be done as the
relative commutant is contained in F, by Lemma 2.4.9.



We close this section with another remark. The considerations in this section were
aimed primarily at conformally covariant theories in 1 4+ 1 dimensions, since the super-
selection structure of massive models is quite different, see the next chapter. On the
other hand, it is well known [84] that conformal theories live on a suitably compactified
Minkowski space. This compactification renders the spacetime non-simply connected,
which in turn implies the existence of a center in the algebra of observables [57]. Triviality
of the center was however an essential requirement for the Doplicher-Roberts analysis, in
particular [42, 45]. In a first approach one may circumvent this problem by working with
the restriction of the net to Minkowski space. Since this ‘removal of a point at infinity’
may destroy Haag duality [27], an analysis on the compactified spacetime seems desirable.
It should be obvious that in this case the DR construction may produce fields which live
only on a covering space.






Chapter 3

Superselection Structure of Massive
Quantum Field Theories in 1+ 1
Dimensions

3.1 Introduction

There have long been indications that the DHR criterion might not be applicable to
massive 2d-theories as it stands. The first of these was the fact, known for some time,
that the fixpoint nets of Haag-dual field nets with respect to the action of a global gauge
group do not satisfy duality even in simple sectors, whereas this is true in > 2 + 1
dimensions. This phenomenon will be analyzed thoroughly in the next chapter (see also
[87]) under the additional assumption that the fields satisfy the split property for wedges.
This property plays an important role also in the present chapter which is devoted to
deriving a number of new results on the superselection structure of massive quantum field
theories in 1 4+ 1 dimensions, not necessarily arising as fixpoint nets.

The split property for wedges (SPW), which will be defined precisely in the next
section, is satisfied by free theories containing finitely many massive scalar and Dirac
fields in 1 + 1 dimensions, but is definitely violated by massless fields. Generalized free
fields, even with mass-gap, are also incompatible with the split property if the mass
spectrum is not discrete [41]. Whereas this shows the SPW to be more restrictive than
the existence of a mass gap, massive theories without the SPW are considered pathological.
In particular, the usual models like P(¢)s, Y5, sine-Gordon, Gross-Neveu etc. are expected
to satisfy this requirement, but this remains to be proved. As explained in Chapter 1,
the split property (for double cones) can be derived from various criteria which limit the
number of degrees of freedom in bounded regions of phase space. An analogous argument
tailored to the SPW will be given in Appendix B.

In the next section we will prove some elementary consequences of Haag duality and the
split property for wedges, in particular strong additivity and the time-slice property. The
significance of our assumptions for superselection theory derives mainly from the fact that
they preclude the existence of locally generated superselection sectors. More precisely, if
the vacuum representation satisfies Haag duality and the SPW then every irreducible
DHR representation is unitarily equivalent to the vacuum representation. This important
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and perhaps surprising result, to be proved in Section 4, indicates that the innocently
looking assumptions of the DHR framework are quite restrictive when they are combined
with the split property for wedges. While this may appear reasonable in view of the
non-connectedness of (O, our result also applies to the BF representations which are only
localizable in wedges provided left and right handed wedges are admitted. In Section
5 we will prove the minimality of the relative commutant for an inclusion of double
cone algebras which, via a result of Driessler, implies Haag duality in all locally normal
irreducible representations. In Section 6 the facts gathered in the preceding sections will
be applied to the theory of quantum solitons thereby concluding our discussion of the
representation theory of Haag-dual nets. Summing up the results obtained so far, the
representation theory of such nets is essentially trivial. On the other hand it is well
known that charged representations, braid statistics and quantum symmetry exist in a
host of more or less explicitly analyzed models. In order to accommodate these models,
the only way seems to be to relax the duality requirement by postulating only wedge
duality. In the final Section 7 Roberts’ extension of localized representations to the dual
net will be reconsidered. In this chapter we will not attempt to say anything concerning
the quantum symmetry question.

3.2 Geometric Preliminaries and the Split Property
for Wedges

Until further notice we fix a vacuum representation my (which is always faithful) and omit
the symbol 7y identifying A(O) = m(A(O)). Whereas we may assume the algebras A(O)
to be weakly closed, for infinite regions like W, 0" we carefully distinguish between the
C*-subalgebras A(W) = mo(A(W)) of my(A) and their weak closures R(W) = A(W)".

For any double cone O € K we designate the left and right spacelike complement by
WE, and W&, respectively. Furthermore we write W¢ and W¢ for W&, and W&, '.
These regions are wedge shaped, i.e. translates of the standard wedges W, = {z € R? |
! < —|2%} and W = {z € R? | 2! > |2°|}. We will not distinguish between open
and closed regions, for definiteness one may consider O and all W-regions as open. With
these definitions we have O = WP NWg and O’ = W, U Wy, which graphically looks
as follows.

wg, Wk (3.2.1)

Whereas we have already once made use of the split property in the preceding chapter,
this property will play a more prominent role in this chapter and the following one.

Definition 3.2.1 A net of algebras satisfies the split property for wedges if the inclusion
R(W1) C R(Ws) is split whenever Wi CC W, i. e. the closure of Wy is contained in



the interior of Wy (which is equivalent to the existence of a double cone O such that

W,UW,=0").

We will now examine the implications of the split property for wedges (SPW). The
power of this assumption in combination with Haag duality derives from the fact that
one obtains strong results on the relation between the algebras of double cones and of
wedges. In quantum field theories, where there are lots of cyclic and separating vectors
for the local algebras by the Reeh-Schlieder theorem, the split property for wedges is
equivalent [41] to the existence, for any double cone O, of a unitary operator Y© : Hy —
Ho®Ho implementing an isomorphism between R(WS, )VR(WSy) and the tensor product
R(WE,) @ R(WSs) (in the sense of von Neumann algebras):

YO AL A YO = A, @ Ay YA, € R(IWE,), Ay € R(IWS,). (3.2.2)

Using the isomorphism implemented by Y© we then have the following correspondences:

R(WE) = RWE) ®
RO 2 ey o v (3.2.3)
RWEP) = B(Ho) © R(WP) o
RWR) = R(WE) ® B(Ho),
whereas Haag duality for double cones yields
A(0) = R(WE) AR(WE) 2 R(WE) @ R(WP). (3.2.4)

In conjunction with the well known fact [48] that the algebras associated with wedge
regions are factors of type I11; we see that our assumptions imply that the algebras of
double cones are type [11; factors, too.

Remark. This computation of the intersection of tensor products is justified by [112, Cor.
5.10], which will be used quite frequently. Namely, for arbitrary von Neumann algebras
My, M5 on ‘Hy and Ny, Ny on H, the following identities hold:

(M; @ N))V (My @ Ny) = (MyV M,)® (NyV Ny), (3.2.5)
(M; @ N)) A (My @ No) = (My A M) @ (Ny A No). (3.2.6)

3.3 Strong Additivity and the Time-Slice Axiom

Starting with the following easy lemma we will now show several further consequences of
the pair of axioms Haag duality (HD) and SPW.

Lemma 3.3.1



o
Wrp

Figure 3.1: Double cones sharing one point

Remark. Equivalently, the inclusions R(W,) C R(WP), R(Wgg) C R(WE) are normal.
Proof. Under the unitary equivalence R(WF) VR(WEg) = R(WE,) @ R(Wgg) we have
RWE,) =& RWE,) @1 and A(O) = RIWP)NR(WE) &2 RWET) @ R(WP). Thus
RWE)VAO) 2 (RWE)VR(WE)) @ R(WP). Due to wedge duality and factoriality
of the wedge algebras [48] this equals B(Hy) @ R(WP) = R(WF). The second equation
is proved in the same way. W

Consider now the situation depicted in Figure 3.1. In particular, O, O are spacelike
separated double cones the closures of which share one point. Such double cones will be
called adjacent.

Lemma 3.3.2 Let O = sup(O, @) be the smallest double cone containing O, . Then

A(O) v A(O) = A(O). (3.3.3)

Proof. In the situation of Figure 3.1 we have O :NWS n WL@ ). Under the unitary equiv-
alence considered above we have A(O) 21 ® A(O) as O C Wg. Thus A(O) V A(O) &

RWE) @ (R(WE)V A(O)). But now WP = W&, leads to R(IWP)V A(O) = R(WP) via

the preceding lemma. Thus A(O)V A(0) = R(WE) @ R(WE) which in turn is unitarily
equivalent to R(WQ) AR(WP) = A(O). M
Remark. In analogy to chiral conformal field theory we denote this property strong addi-
tavity.

With these lemmas it is clear that the quantum field theories under consideration are
n-reqular in the sense of the following definition for all n > 2.

Definition 3.3.3 A quantum field theory is n-reqular if

whenever O;, 1 = 1,...,n — 2 are mutually spacelike double cones such that the sets
0;NO;iq, 1 =1,...,n—3 each contain one point and where the wedges W1, Wy are such

that /
) (3.3.5)

n—2
Wi U W, = (U 0,-)
=1



Corollary 3.3.4 A quantum field theory in 1+ 1 dimensions satisfying Haag duality and
the SPW fulfills the (von Neumann version of the) time-slice axiom, i. e.

R(S) = B(Ho), (3.3.6)
whenever S = {z € R* |z -n € (a,b)} where n € R? is timelike and a < b.

Proof. The timeslice S contains an infinite string O;, ¢ € Z of mutually spacelike double
cones as above. Thus the von Neumann algebra generated by all these double cones
contains each A(Q), O € K from which the claim follows by irreducibility. W

Remarks. 1. We wish to emphasize that this statement on von Neumann algebras is
weaker than the C*-version of the timeslice axiom, which postulates that the C*-algebra
A(S) generated by the algebras A(Q), O C S equals the quasilocal algebra A. We follow
the arguments in [71, Sec. IIL.3] to the effect that this stronger assumption should be
avoided.

2. The above result fits well with the investigations [69, 86] concerning the time-slice
property in the context of generalized free fields (in 3+ 1 dimensions). In the cited works
it was proved that generalized free fields possess the time-slice property iff (roughly) the
spectral measure vanishes sufficiently fast at infinity. On the other hand, the split property
imposes restrictions on the spectral measure [41, Thm. 10.2] which are considerably
stronger. In particular, it is clear that the split property is by no means a necessary
condition for the time-slice property.

3.4 Absence of Localized Charges

Whereas the results obtained so far are intuitively plausible, we will now prove a no-go
theorem which shows that the combination of Haag duality and the SPW is extremely
strong.

Theorem 3.4.1 Let O — A(O) be a net of observables satisfying Haag duality and the
split property for wedges. Let w be a representation of the quasilocal algebra A which
satisfies

T AW)=Zm [AW) YW e W, (3.4.1)

where W is the set of all wedges (left and right handed). Then 7 is equivalent to an at
most countable direct sum of representations which are unitarily equivalent to my:

™= @ﬂ'i, ™ =2 . (3.4.2)

In particular, if © is irreducible it is unitarily equivalent to m.

Remark. A fortiori, this applies to DHR representations (1.3.10).

Proof. Consider the geometry depicted in Figure 3.2. If 7 is a representation satisfying
(3.4.1) then there is a unitary V' : H, — Hg such that, setting p = Vr(-)V*, we have
p(A) = Aif A € A(W’). Due to normality on wedges and wedge duality, p continues to



Figure 3.2: A split inclusion of wedges

normal endomorphisms of R(W), R(W;). By the split property there are type-I factors
My, My such that
R(W) C M, C R(Wy) C My C R(Ws). (3.4.3)

Let z € My C R(W;). Then p(z) € R(Wy) C M,. Furthermore, p acts trivially on
M NR(W,) C R(IW) NR(Wy) = A(O;), where we have used Haag duality. Thus p
maps M; into My N (M] NR(W2)) C My N (M N M,)' = My, the last identity following
from M, My being type-I factors. By [80, Cor. 3.8] every endomorphism of a type I
factor is inner, i. e. there is a (possibly infinite) family of isometries V; € My, i € I with
VitV =64, > e ViVi = 1 such that

p(A) =n(A) VA € M, (3.4.4)
where
n(A) =Y ViAV?, A€ B(H,). (3.4.5)

(The sum over I is understood in the strong sense.) Now, p and thus 7 act trivially on
MiNnRW) Cc R(W,)nR(W)" = A(O;), which implies

Vie Min (M NR(W)) =R(W). (3.4.6)

Thanks to Lemma 3.3.1 we know that for every wedge Woo W
R(W) =R(W) V A(O), (3.4.7)
where @ = WNW’. From the fact that p acts trivially on A(W') it follows that (3.4.4) is

true also for A € A(O). By assumption, p is normal also on A(W) which leads to (3.4.4)
on A(W). As this holds for every W DD W, we conclude that

m(A) =) VVAV]V, VA€ A (3.4.8)

el
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Remarks. 1. The main idea of the proof is taken from [40, Prop. 2.3].

2. The above result may seem inconvenient as it trivializes the DHR/FRS superselection
theory [37, 39, 56] for a large class of massive quantum field theories in 1 + 1 dimensions.
It is not so clear what this means with respect to field theoretical models since there is
little known about Haag duality in nontrivial models.

3. Conformal quantum field theories possessing no representations besides the vacuum
representation, or ‘holomorphic’ theories, have been the starting point for an analysis of
‘orbifold’ theories in [33]. In [87], which was motivated by the desire to obtain a rigorous
understanding of orbifold theories in the framework of massive two dimensional theories,
the present author postulated the split property for wedges and claimed it to be weaker
than the requirement of absence of nontrivial representations. Whereas this claim is
disproved by Theorem 3.4.1, as far as localized (DHR or BF) representations of Haag
dual theories are concerned, none of the results of [87] is invalidated or rendered obsolete.

3.5 Haag Duality in Locally Normal Representations

A further crucial consequence of the split property for wedges is observed in the following

Proposition 3.5.1 Let O — A(O) be a net satisfying Haag duality (for double cones)
and the split property for wedges. Then for every pair O CC O we have

A(O) N A(O) = A(OL) V A(OR). (3.5.1)

Proof. By the split property for wedges there is [20, 87] a unitary operator YO :Hy—
Ho @ Hg such that R(W.) vV R(Wg) = YO (R(W,) @ R(Wg))Y©. More concretely,

YOryYo* =z @y Yo e R(WL), y € R(Wxg). (3.5.2)

By Haag duality A(O)' = R(W.) V R(Wg) 2 R(W,) @ R(Wg) and A(O) = R(W.) V
R(WR) Now R(WL/R) C R(WL/R) implies A(O)I = R(WL) & R(WR) and thus

A(O) = (R(WL) @ R(Wg)) = R(W}) @ R(WE), (3.5.3)

where we have used wedge duality and the commutation theorem for tensor products.
Now we can compute the relative commutant as follows:

A(O) A AO) =

R(W) @ R(Wg)) A
R(WL) ANR(WL)) @
= A(Op) @ A(Or) =2 A
We have used Haag duality in the form R(W.) A R(W}) = A(OL) and similarly for

A(Og). All unitary equivalences = are, of course, implemented by the same operator Y ©.
|

(R(Wy) @ R(WrR))
(R(Wg) AR(Wp)) (3.5.4)
(Or) VvV A(Og).

—~~



Figure 3.3: Relative commutant of double cones

This result should contribute to the understanding of Theorem 3.4.1 as far as DHR
representations are concerned. In fact, it already implies the absence of DHR sectors as
can be shown by an application of the triviality criterion for local 1-cohomologies [97]
given in [98], see also [99].

Sketch of proof. Let z € Z'(A) be the local 1-cocycle associated according to [97, 98]
with a representation 7 satisfying the DHR criterion. Due to Proposition 3.5.1 it satisfies
z(b) € A(|0gb|) V A(|01b]) for every b € ¥y such that |9yb| CC |01b|". Thus the arguments
in the proof of [98, Thm. 3.5] are applicable despite the fact that we are working in 141
dimensions. We thereby see that there are unique Hilbert spaces H(O) C A(O), O €
Yo = K of support I such that z(b)H(0,b) = H(0sb) Vb € ;. Each of these Hilbert
spaces implements an endomorphism peo of A such that po = 7. This implies that p is
either reducible or an inner automorphism. M

Remarks. 1. A third proof of the absence of DHR sectors results by combining Proposition
3.5.1 with Lemma 2.3.4.

2. The above argument needs the split property for double cones. It is not completely
trivial that this follows from the split property for wedges. It is clear that the latter
implies unitary equivalence of A(O;) vV A(O2) and A(O;) @ A(O,) if Oy, Oy are double
cones separated by a finite spacelike distance. The split property for double cones requires
more, namely unitary equivalence of A(O)V.A(O) and A(O)® A(O) whenever O cc O,
which is equivalent to the existence of a type I factor N such that A(0Q) ¢ N c A(O).

Lemma 3.5.2 Let A be a local net satisfying Haag duality and the split property for
wedges. Then the split property for double cones holds.

Proof. Using the notation of the preceding proof we have
AO) = R(WL) @ R(Wh), (3.5.5)
AO) = R(WL) @ R(Wp). (3.5.6)

By the SPW there are type I factors Ny, Np such that R(W:) € N, € R(W}) and
R(Wg) C Np C R(Wg). Thus YO*(N, ® Ng)Y© is a type I factor sitting between A(O)
and A(O). B



Having disproved the existence of nontrivial representations localized in double cones
or wedges, we will now prove a result which concerns a considerably larger class of repre-
sentations.

Theorem 3.5.3 Let O — A(O) be a net of observables satisfying Haag duality and the
SPW. Then every irreducible, locally normal representation of the quasilocal algebra A
fulfills Haag duality.

Proof. We will show that our assumptions imply those of [49, Thm. 1]. A satisfies the
split property for double cones (called ‘funnel property’ in [49, 105]) by Lemma 3.5.2,
whereas we also assume condition (1) of [49, Theor. 1] (Haag duality and irreducibility).
Condition (3), which concerns relative commutants A4(Oy) N A(O;)", Oz DD Oy in the
vacuum representation, is an immediate consequence of Proposition 3.5.1 (we may even
take O = Oy, 0y = Oj;). Finally, Lemma 3.3.1 implies

A(O) = A(O) v A(OL) V AOR), (3.5.7)

where we again use the notation of Figure 3.3. This is more than required by Driessler’s
condition (2). Now [49, Theor. 1] applies and we are done. W

Remarks. 1. In [105] a slightly simplified version of [49, Theor. 1] is given which dispenses
with condition (2) at the price of a stronger form of condition (3). This condition is still
(more than) fulfilled by our class of theories.

2. Observing that soliton representations are locally normal with respect to both asymp-
totic vacua [58, 101], we conclude at once that Haag duality holds for every irreducible
soliton sector where at least one of the vacua satisfies Haag duality and the SPW. Con-
sequences of this fact will be explored in the next section. We remark without going into
details that our results are also of relevance for the construction of soliton sectors with
prescribed asymptotic vacua in [101].

3.6 Applications to the Theory of Quantum Solitons

In [18] it has been shown that every factorial massive one-particle representation (MOPR)
in > 241 dimensions is a multiple of an irreducible representation which is localizable in
every spacelike cone. (Here, MOPR means that the lower bound of the energy-momentum
spectrum consists of a hyperboloid of mass m > 0 which is separated from the rest of the
spectrum by a mass gap.) In 1+ 1 dimensions one is led to irreducible soliton sectors
[68] which we will now reconsider in the light of Theorems 3.4.1, 3.5.3. In this section,
where we are concerned with inequivalent vacuum representations, we will consider a
QFT to be defined by a net of abstract C*-algebras instead of the algebras in a concrete
representation. Given two vacuum representations ’ﬂ'é’, 7T§, a representation 7 is said to

be a soliton representation of type (7§, &) if it is translation covariant and
~ _L/R
™ r .A(WL/R) = Ty r A(WL/R), (361)

where Wy, Wg are arbitrary left and right handed wedges, respectively. An obvious
consequence of (3.6.1) is local normality of 7§, 7 with respect to each other. In order



to formulate a useful theory of soliton representations [58, 59| one must assume 7r(I)“ % to
satisfy wedge duality. After giving a short review of the formalism in [58, 59|, we will
show in this section that considerably more can be said under the stronger assumption
that one of the vacuum representations satisfies duality for double cones and the SPW.
(Then the other vacuum is automatically Haag dual, too.)

Let 7y be a vacuum representation and W € W a wedge. Then by A(W),, we denote
the W*-completion of the C*-algebra A(W') with respect to the family of seminorms given
by

|A||lr = |tr T'mo(A)], (3.6.2)

where T runs through the set of all trace class operators in B(H,,). Furthermore, we
define extensions AL | AR of the quasilocal algebra A by

o ?

AR = | Ay (3.6.3)

WEWL/R

where Wy, Wy are the sets of left and right wedges, respectively. Now, it has been demon-
strated in [59] that, given a (7', 7{)-soliton representation , there are homomorphisms
p from A%, to A%, such that

0 0

r2qalo 3.64
0 °p

(strictly speaking, m§ must be extended to A%, , which is trivial since A(W )y, is isomorphic
0
to mo(A(W))"). The morphism p is localized in some right wedge W in the sense that

p LAWY = id | AWY). (3.6.5)

Provided that the vacua of two soliton representations 7, 7’ ‘fit together’ 7 = 7," one can
define a soliton representation 7 X 7/ of type 7%, 7r6R via composition of the corresponding
morphisms:

Txn 2rfopd | A (3.6.6)

Alternatively, the entire analysis may be done in terms of left localized morphisms 7
from Aﬁg to Aﬁ(,)z. As proved in [59], the unitary equivalence class of the composed
representation depends neither on the use of left or right localization nor on the concrete
choice of the morphisms.
Whereas for soliton representations there is no analog to the theory of statistics [37,
39, 56|, one can still define a ‘dimension’ d, via
d?, = [A(W)ﬁé : p(A(W)Wéz)], (3.6.7)

where p is localized in the right wedge W and [M : N] is the Jones index of the inclusion
N CM.

Proposition 3.6.1 Let m be an irreducible soliton representation such that at least one
of the asymptotic vacua §, wlt satisfies Haag duality and the SPW. Then the associated
morphism satisfies ind(p) = 1.



Proof. Since the representation 7 satisfies Haag duality by Theorem 3.5.3 we have in
particular 7(A(W))~ = n(A(W’"))". Thus

5 0 p(AW)™ = 75 0 p(A(W'))" = 75 (AW"))" = 5/ (A(W))~. (3.6.8)
By ultraweak continuity on A(W) of n§ and of p this implies

PAW)zp) = AW)x

0 0

(3.6.9)

whence the claim. H

This result rules out soliton sectors with infinite index so that [100, Thm. 3.2] ap-
plies and yields equivalence of the various possibilities of constructing antisoliton sectors
considered in [100]. In particular the antisoliton sector is uniquely defined up to unitary
equivalence. Now we can formulate our main result concerning soliton representations.

Theorem 3.6.2 Let nf,nf be vacuum representations, at least one of which satisfies
Haag duality and the SPW. Then all soliton representations of type (rf, 7ft) are unitarily

equivalent.

Remark. Equivalently, up to unitary equivalence, a soliton representation is completely
characterized by the pair of asymptotic vacua.

Proof. Let m, 7' be irreducible soliton representations of types (mo,my) and (my, 7o), re-
spectively. They may be composed, giving rise to a soliton representation of type (g, 7o)
(or (m§, mp)). This representation is irreducible since the morphisms p, p’ must be isomor-
phisms by the proposition. Now, 7 X 7’ is unitarily equivalent to my on left and right
handed wedges, which by Theorem 3.4.1 and irreducibility implies 7 x 7’ & 5. We con-
clude that every (my,mo)-soliton is an antisoliton of every (mg, mg)-soliton. This implies
the statement of the theorem since for every soliton representation with finite index there
is a corresponding antisoliton which is unique up to unitary equivalence. W

Remark. The above proof relies on the absence of nontrivial representations which are
localizable in wedges. Knowing just that DHR sectors do not exist, as follows already
from Proposition 3.5.1, is not enough.

3.7 DHR Representations of Nets without Haag Du-
ality

We have observed that the theory of localized representations of Haag-dual nets of ob-
servables which satisfy the SPW is trivial. There are, however, quantum field theories in
1+ 1 dimensions where the net of algebras which is most naturally considered as the net
of observables does not fulfill Haag duality in the strong form (1.2.9). As mentioned in
Chapter 1, this is the case if the observables are defined as the fixpoints under a global
symmetry group of a field net which satisfies (twisted) duality and the SPW. The weaker
property of wedge duality, namely

RWY =R(W') YW € W, (3.7.1)



remains, however. This property is also known to hold whenever the local algebras arise
from a Wightman field theory [12]. However, for the analysis in [37, 39, 57] as well as
Section 4 above one needs full Haag duality. Therefore it is of relevance that, starting
from a net of observables satisfying only (3.7.1), one can define a larger but still local net

AYO) = RWP) AR(WE) (3.7.2)

which satisfies Haag duality, whence the name dual net. Here WP, W are wedges such
that W2 N WS = O and duality is seen to follow from the fact that the wedge algebras
R(W),W € W are the same for the nets A, A?%. (For observables arising as group fixpoints
the dual net has been computed explicitly in [87].) Now, for > 2+1 dimensionsit is known
[98, 99] that representations 7 satisfying the DHR criterion (1.3.10) extend uniquely to
DHR representations 7 of the dual net. Here the original net is required to satisfy essential
duality. Furthermore, the categories of DHR representations of A and A¢, respectively,
and their intertwiners are isomorphic. Thus, instead of A one may as well study A¢ to
which the usual methods are applicable. In 1+1 dimensions things are more complicated.
As shown in [97] there are in general two different extensions #”, #f. They coincide iff
one (thus both) of them is a DHR representation. Even before defining precisely these
extensions we can state the following consequence of Theorem 3.4.1.

Proposition 3.7.1 Let A be a net of observables satisfying wedge duality and the SPW.
Let w be an irreducible DHR or BF representation of A which is not unitarily equivalent

to the defining (vacuum) representation. Then there is no extension # to the dual net A%
which s still localized in the DHR or BF sense.

Proof. Assume 7 to be the restriction to A of a wedge-localized representation 7 of A%
As the latter is known to be either reducible or unitarily equivalent to g, the same holds
for . This is a contradiction. W

The fact that the extension of a localized representation of A to the dual net .44
cannot be localized, too, partially undermines the original motivation for considering
these extensions. Nevertheless, one may entertain the hope that there is something to
be learnt which is useful for a model-independent analysis of the phenomena observed
in exactly soluble models. Therefore, we now turn to the examination of the extensions
#L &% assuming first that 7 is localizable only in wedges.

Let O be a double cone and let W, Wx be left and right handed wedges, respectively,
containing @. By assumption the restriction of 7 to A(Wp), A(Wpg) is unitarily equivalent
to mg. Choose unitary implementers Uy, Ur such that

AdULrA(WL) = 7Tr

A
AdUR [ A(Wy) = 7 [ (W) 313
Then 7L, #% are defined for A € A%(O) by
AL(A) = UL AUE,
#R(A) = Uq AU, (3.7.4)

Independence of these definitions of the choice of W, Wg and the implementers U, Ugr
follows straightforwardly from wedge duality. We state some immediate consequences of
this definition.



B are irreducible, locally normal representations of A% and sat-

are normal on left and right handed wedges, respectively.

Proposition 3.7.2 71, #
isfy Haag duality. 7%, #f

Proof. Trreducibility is a trivial consequence of the assumed irreducibility of 7 whereas
local normality is obvious from the definition (3.7.4). Thus, Theorem 3.5.3 applies and
yields Haag duality in both representations. Normality of, say, 7% on left handed wedges
W follows from the fact that we may use the same auxiliary wedge W, D W and imple-
menter Uy, for all double cones O Cc W. N

Clearly, the extensions 4%, #% cannot be normal to 7y on right and left wedges, respec-
tively, for otherwise Theorem 3.4.1 would imply unitary equivalence to my. In general, we
can only conclude localizability in the following weak sense. Given an arbitrary left handed
wedge W, #l is equivalent to a representation p on H, such that p(A) = A VA € A(W).
Furthermore, by duality p is an isomorphism of A(W’) onto a weakly dense subalgebra of
R(W') which is only continuous in the norm. In favorable cases this is a local symmetry,
acting as an automorphism of A(W’). But we will see shortly that there are perfectly
non-pathological situations where the extensions are not of this particularly nice type.
In complete generality, the best one can hope for is normality with respect to another
vacuum representation my. In particular, this is automatically the case if 7 is a massive
one-particle representation [18] which we did not assume so far.

If the representation 7 satisfies the DHR criterion, i.e. is localizable in double cones,
we can obtain stronger results concerning the localization properties of the extended
representations 7, 7z. By the criterion, there are unitary operators X© : Hy — #H, such
that

m9(A) = X" 1(A) X® = A, VA€ AO). (3.7.5)

(By wedge duality, X© is unique up to right multiplication by operators in A%(0).)
Considering the representations

o r = X R rX° (3.7.6)
on the vacuum Hilbert space H,, it is easy to verify that

A7 1A WE) = id 1 AN W), (3.7.7)
g A Wgg) = id | AYWZs). (3.7.8)

We restrict our attention to 7{, the other extension behaving similarly. If A € A(O) then
7r(A) = X9 A X9* whenever O, > O. Therefore

#P(A) = XX A XO*XO, (3.7.9)

where the unitary X©* X" intertwines 7° and 7. Associating with every pair (01, 05)
two other double cones by

O = sup(0y,0y), (3.7.10)
O = ONONO, (3.7.11)

(Op may be empty) and defining
C(O1,05) = AYO) N A(Oy), (3.7.12)



we can conclude by wedge duality that
X9* X% €(0,0,). (3.7.13)

Thus 7#9(A) as given by (3.7.9) is contained in A%(sup(Q, @, ,)) which already shows
that #¢ maps the quasilocal algebra A¢ into itself (this does not follow if 7 is only
localizable in wedges). Since the double cone O, > O may be chosen arbitrarily small
and appealing to outer regularity of the dual net A% we even have 79 (A) € A%(sup(0, O))
and thus finally

#2(AY0)) C C(0,0). (3.7.14)

This result shows the representation 7#¢ (and 78) deteriorates the localization but still

maps local algebras into local algebras. We will see shortly that this phenomenon is not
just a theoretical possibility but really occurs. The above considerations are similar to
Roberts’ local 1-cohomology [97, 98, 99|, but (3.7.14) seems to be new. In Section 4.4.6
we will return to the considerations of this chapter and apply them to the fixpoint nets
of a field net under the action of a symmetry group, which are known to violate Haag
duality. We will see that the weak localization property (3.7.14) is in fact realized if the
group G is non-abelian, whereas in the abelian case one obtains soliton representations
of a more familiar type.

We conclude this section by giving an example of a representation which is equivalent
to a vacuum representation only on one side. Consider, e.g., two free massive scalar fields
¢1, @2 of different masses. In [65] the automorphism Ay of the quasilocal algebra A which
arises from the transformation

(4)wn=0e (2 )@, (§)eo=ew (3 w0 6y

of the time-zero fields, where

_ [ cosB(z) sinf(x)
Ox) = ( sinf(z) cosf(x) ) (3.7.16)

and 0 € D(R), 6(—o0) = 0, O(c0) # nmw, was shown not to be unitarily implemented
in the vacuum representation and was conjectured to lead to a superselection sector via
w9 = mpoAy. But, by Theorem 3.4.1 there are no representations of DHR or BF type since
the vacuum representation of massive free (scalar and Dirac) fields is known to satisfy
Haag duality and the SPW. On the other hand, Ay is easily seen to be spatial in restriction
to left handed wedges. (Thus, by Theorem 3.5.3 Haag duality holds in the representation
mg due to irreducibility and local normality.) Finally, 7 cannot be a soliton state since

wr = lim wpo Ag ooy =wp o Ay, (3.7.17)
r—r+00
where the global SO(2) rotation Ag.) of ¢1, ¢, commutes only with the space translations
but not with the time evolution. It seems doubtful that representations of this type are
physically meaningful.



Chapter 4

On Massive Orbifold Theories

4.1 Introduction

Since the notion of the ‘quantum double’ was coined by Drinfel’d in his famous ICM
lecture [50] there have been several attempts aimed at a clarification of its relevance to
two dimensional quantum field theory. The quantum double appears implicitly in the
work [33] on orbifold constructions in conformal field theory, where conformal quantum
field theories (CQFTs) are considered whose operators are fixpoints under the action of
a symmetry group on another CQFT. Whereas the authors emphasize that ‘the fusion
algebra of the holomorphic G-orbifold theory naturally combines both the representation
and class algebra of the group G’ the relevance of the double is fully recognized only in
[34]. There the construction is also generalized by allowing for an arbitrary 3-cocycle in
H3(G,U(1)) leading only, however, to a quasi quantum group in the sense of [51]. The
quantum double also appears in the context of integrable quantum field theories, e.g. [10],
as well as in certain lattice models (e.g. [108]). Common to these works is the role of
disorder operators or ‘twist fields’ which are ‘local with respect to A up to the action of
an element g € G’ [33]. Finally, it should be mentioned that the quantum double and
its twisted generalization also play a role in spontaneously broken gauge theories in 2+ 1
dimensions (for a review and further references see [8]).

Regrettably most of these works (with the exception of [108]) are not very precise in
stating the premises and the results in mathematically unambiguous terms. For example
it is usually unclear whether the ‘twist fields’ have to be constructed or are already
present in some sense in the theory one starts with. The aim of this chapter is to improve
on this state of affairs by using the methods of algebraic quantum field theory. We will
demonstrate the role of the quantum double as a hidden symmetry in every quantum field
theory with group symmetry in 1+ 1 dimensions fulfilling (besides the usual assumptions
like locality) only two technical assumptions (Haag duality and split property for wedges)
but independent of conformal covariance or exact integrability.

As explained in Chapter 1, the category of DHR representations of a Haag dual net
of observables in > 2 + 1 dimensions is isomorphic to the representation category of a
compact group G and, furthermore, there exists a field net with symmetry group G such
that the reducible representation of the fixpoint net contains all equivalence classes of
DHR representations. This result is definitely not true in 1+ 1 dimensions due to the role
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of braid group statistics and quantum symmetries. Nevertheless one may, of course, study
nets of local algebras which arise as fixpoint nets or ‘orbifold theories’. Thus, as in [35] our
starting point will be a net O — F(O) of von Neumann algebras on the common Hilbert
space H, satisfying the properties of a field algebra as described in Section 3 of Chapter 1.
I.e. we assume irreducibility of the quasilocal algebra, Bose/Fermi commutation relations
with twisted duality, and Poincaré covariance with spectrum condition. Covariance under
the conformal group, however, is not required. Finally, there shall be a compact group G,
represented in a strongly continuous fashion by unitary operators on H leaving invariant
the vacuum vector € such that the automorphisms o, (F) = AdU(g)(F) of B(H) respect
the local structure: ay(F(O)) = F(O). The action shall be faithful, i.e. AutF 3 o, #
id Vg € G. This is no real restriction, for the kernel of the homomorphism G — Aut(F)
can be divided out. (Compactness of G need in fact not be postulated, as it follows [41,
Theorem 3.1] from the split property which we will also require.)

One remark on the commutativity of inner and spacetime symmetries is in order.
Assuming the (distal) split property one can show, for quantum field theories in > 2 +1
dimensions, that inner symmetries automatically commute with the action of the Poincaré
group [41]. Since this result hinges on the non-existence of finite dimensional unitary
representations of the latter, it is not necessarily true in 141 dimensions. In Appendix A
we will, however, prove that in theories satisfying the distal split property the translations
commute with the inner symmetries whereas the boosts act by automorphisms on the
group Gmax of all inner symmetries. As we will postulate a stronger version of the split
property in the next section the cited result applies to the situation at hand. What we
still have to assume is that the one parameter group of Lorentz boosts maps the subgroup
G C Gmax which we consider as the inner symmetries into itself and commutes with
V = U(k). This assumption is indispensable for the covariance of the fixpoint net A as
well as of another net to be constructed later.

We will now comment on another two dimensional peculiarity which is less known and
at first sight of interest only within the algebraic approach to quantum field theory. We
refer to the fact that the step from (1.3.6) to (1.2.9) fails in 141 dimensions. This means
that one cannot conclude from twisted duality of the fields that duality holds for the
observables in simple sectors, which in fact is violated. The origin of this phenomenon is
easily understood. Let O € K be a double cone. One can then construct gauge invariant
operators in F(O') which are obviously contained in A(O)" but not in A(O’). This is
seen remarking that the latter algebra, belonging to a disconnected region, is defined
to be generated by the observable algebras associated to the left and right spacelike
complements of (O, respectively. This algebra does not contain gauge invariant operators
constructed using fields localized in both components.

This is reminiscent of Roberts’ analysis [95] of spontaneously broken symmetry sym-
metries, which was mentioned in Chapter 1. There nets of observables (in at least 2+1
dimensions) which arise as fixpoints under a group of inner symmetries from a field theory
were shown to violate Haag duality whenever the symmetry is spontaneously broken in
the sense that the vacuum is not invariant under the whole group. In this case the ob-
servables fulfill only essential duality, i.e. A%(O0) = A4(O) with (1.2.10). In the present
situation, however, Haag duality is violated even though the group symmetry is unbroken!

We now come to the plan of this chapter. The aim will be to explore the relation



between a quantum field theory with symmetry group G in 141 dimensions and the
fixpoint theory. In addition to the general properties of such a theory stated above,
twisted duality (1.3.6) is assumed to hold for the large theory. As explained above, in
this situation duality of the fixpoint theory fails even in the case of unbroken group
symmetry. As we will show in the next two sections essential duality holds, however, and
we will compute the dual net quite explicitly. To this end we will need as an additional
postulate the split property for wedges, which has already played an important role in the
preceding chapter. In Section 4 we will uncover a hidden symmetry under the action of the
quantum double D(G) whose spontaneous breakdown one might interpret as the actual
reason for the failure of Haag duality. The construction given there allows in particular
the mathematically rigorous construction of quantum field theories with D(G)-symmetry
for any finite group G. The final Section 5 contains a partial extension of the results of
Section 4 to infinite compact groups, a treatment of Jordan-Wigner transformations and
bosonization with our methods, and the first steps of an analysis of chiral orbifold nets
on the circle. We refer to Appendix C of this thesis for a summary of the needed facts on
quantum groups and quantum doubles.

4.2 Disorder Variables and the Split Property

4.2.1 Disorder Operators: Definition

Whereas, as we have remarked in Chapter 1, Haag duality for double cones is violated in
the fixpoint theory A, one obtains the following weaker form of duality. (In this chapter
all algebras associated with infinite regions (', W are meant to be weakly closed, i.e.
F (W) stands for mo(F(W))".)

Proposition 4.2.1 The representation of the fizpoint net A fulfills duality for wedges
AW = AW (4.2.1)
and essential duality in all simple sectors.

Proof. The spacelike complement of a wedge region is itself a wedge, thus connected,
whereby the proof of [35, Theorem 4.1] applies, yielding the first statement. The second
follows from wedge duality via

AN0) = A(O) = (A(W[L) vV A(Wig))' = AWE) A AWD), (4.2.2)

as locality of the dual net is equivalent to essential duality of 4. W
We will now introduce the central notion for this paper.

Definition 4.2.2 A family of disorder operators consists, for any O € K and any g € G,
of two unitary operators U2 (g) and US (g) verifying

AdUP(9) 1 F(WEL) = AdUR (9) | FWgg) = ay,

AdU®(g) | FIWE) = AdUS(g) | F(IWE) = id. (4.2.3)



In words: the adjoint action of Uf/ =(9) on fields localized in the left and right spacelike
complements of O, respectively, equals the global group action on one side and is trivial
on the other. As a consequence of (twisted) wedge duality we have at once

UL (9) € F(WL)', Ug(g) € FWE)" (4.2.4)

On the other hand it is clear that disorder operators cannot be contained in the local
algebras F(0), F(O)! nor in the quasilocal algebra F, for in this case locality would
not allow their adjoint action to be as stated on operators localized arbitrarily far to
the left or right. Heuristically, assuming U(g) arises from a conserved local current via
Ul(g) = ¢/ °t=02)dx _one may think of U®(g) as given by

Uf (g) = e /70", (4.2.5)

where integration takes place over a spacelike curve from left spacelike infinity to a point
o in O. The need for a finitely extended interpolation region O arises from the dis-
tributional character of the current which necessitates a smooth cutoff. We refrain from
discussing these matters further as they play no role in the sequel. In massive free field the-
ories disorder operators can be constructed rigorously (e.g. [65, 1]) using the CCR/CAR
structure and the criteria due to Shale.

Lemma 4.2.3 Let U, (g),Up5(g) be disorder operators associated with the same double
cone and the same group element. Then U, (g9) = FUP,(g) with F € F(O)" unitary.
An analogous statement holds for the right handed disorder operators.

Proof. Consider F' = UP,(g) Up5(g). By construction F € F(W)". On the other hand
AdF | F(Wg}) = id holds as Uf,(g) and UP,(g) implement the same automorphism
of F(WP,). By (twisted) wedge duality we have F' € F(WS)! and (twisted) duality for
double cones implies F' € F(O).. A

Remark. This result shows that disorder operators are unique up to unitary elements
of F(O)! where O is the interpolation region. The obvious fact that UP(g) UP(h) and
U(g)UP(h)U(g)* are disorder operators for the group elements gh and ghg™!, respec-
tively, implies that a family of disorder operators constitutes a projective representation
of G with the cocycle taking values in F(O)".

For the purposes of the present investigation the mere existence of disorder operators
is not enough, for we need them to obey certain further restrictions. Our first aim will
be to obtain such operators by a construction which is model independent to the largest
possible extent, making use only of properties valid in any reasonable model. To this
effect we reconsider an idea due to Doplicher [40] and developed further in, e.g., [41, 20].
It consists of using the split property [19] to obtain, for any g € G and any pair of double
cones A = (Oy, 0y) such that O; C O,, an operator Up(g) € F(O,) such that

Upn(9)FUx(g)" =U(g)FU(g)* VF € F(Oy). (4.2.6)

In order to be able to do the same thing with wedges we complete our list of postulates
by requiring the net F to satisfy the split property for wedges (SPW) as defined in the
preceding chapter (Definition 3.2.1). (In our case, where wedge duality holds, the split



property for inclusions of left handed wedges entails the same for the right handed ones).
This property is known to be fulfilled for the free massive scalar and Dirac fields and
should be true in all reasonable massive theories in 1 + 1 dimensions.

Before we proceed one remark is in order. Asshown in the preceding chapter (Theorem
3.4.1) (bosonic) nets of algebras satisfying Haag duality and the SPW do not possess non-
trivial representations corresponding to charges which are localizable in the DHR or BF
sense. This fact, which was discovered after completing [87], shows that the analysis in
this chapter (and the latter reference) is related to the one in [33] even stronger than
originally expected. These authors explicitly required the conformal theory they started
with to be ‘holomorphic’ in the sense that the chiral algebra has no representations besides
the vacuum representation. Keeping in mind that here we are concerned with massive
models, the combination of Haag duality and the SPW is just a very convenient way of
characterizing theories with trivial representation theory.

In analogy to the preceding chapter one has, for any double cone O, a unitary operator
Y9 :H — H ® H implementing an isomorphism between F(WS,) V F(WS)! and the
tensor product F(WF,) @ F(W&g)t:

YORFY? =F @F VF, € FWS,),F, € F(Wgy). (4.2.7)

That one of the algebras F(W5), ) and F (W), which are associated to spacelike separated
regions, has to be twisted in order for an isomorphism as above to exist is clear as in
general these algebras do not commute while the factors of a tensor product do commute.
Analogously, there is a spatial isomorphism between F(WS, ) v F(WS) and F(WE, ) @
F(Wy) implemented by Y©. We will stick to the use of Y© throughout. In order not
to obscure the basic simplicity of the argument we assume for a moment that the theory
F is purely bosonic, i.e. fulfills locality and duality without twisting. Then the equations
(3.2.3), (3.2.4) hold when F is replaced by A everywhere. Furthermore, the following
property of the maps Y'© will be pivotal for the considerations below. Given any unitary
U implementing a local symmetry (i.e. UF(O)U* = F(O) VO) and leaving invariant the
vacuum (UQ = Q) the following identity holds:

YOU=UoU)Y°. (4.2.8)
For the construction of Y© as well as for the proof of (4.2.8) we refer to [41, 20], the

difference that those authors work with double cones being unimportant.

4.2.2 Disorder Operators: Construction

The operators Y'© will now be used to obtain disorder operators. To this purpose we give
the following

Definition 4.2.4 For any double cone O € K and any g € G we set

UP(g) = YO (U(g)@1)Y°,

US(g9) = YO*(1@U(g)) Y°. (4.2.9)



As an immediate consequence of this definition we have the following

Proposition 4.2.5 The disorder operators defined above satisfy

[UF(9), UR(h)] = 0, (4.2.10)
UP(9) UR(g) = Ulg), (4.2.11)
U(g) Urp(h)U(g)* = Up)r(ghg™). (4.2.12)

Proof. The first statement is trivial and the second follows from (4.2.8). The covariance
property (4.2.12) is another consequence of (4.2.8). W
Remark. We have thus obtained some kind of factorization of the global action of the group
G into two commuting true (i.e. no cocycles) representations of G such that the original
action is recovered as the diagonal. Furthermore, these operators transform covariantly
under global gauge transformations. In particular they are bosonic since k € Z(G).

It remains to be shown that the US/ r indeed fulfill the requirements of Definition 4.2.2.
The second requirement follows from Definition 4.2.4, which with (3.2.3) obviously yields

UL (9) € F(WE), UR(9) € F(WE). (4.2.13)
The first one is seen by the following computation valid for F' € F(W ;)

UL (9)FUL*(9) = (U(g) @ 1)(F @ 1)(U(g) ® 1)* (4.2.14)
= (U(g9)FU(g9)" @ 1) 2 U(g)FU(g)"

appealing to the isomorphism = implemented by Y©.

Returning now to the more general case including fermions we have to consider the
apparent problem that there are now two ways to define the operators UP (¢g) and U (g),
depending upon whether we choose Y or YO, (By contrast, the tensor product fac-
torization (3.2.4) of the local algebras is of a purely technical nature, rendering it irrel-
evant whether we use Y© or Y©.) This ambiguity is resolved by remarking that the
element k£ € G giving rise to V by V = U(k) is central, implying that the operators
U(g), g € G, are bosonic (even). For even operators F; € F(WS,), F» € F(Wgy) we
have Fy = F}, F, = F} and thus

YOREY> =Y°FRRY=FQF, (4.2.15)

so that the disorder variables are uniquely defined even operators.
The first two equations of (3.2.3) are replaced by

FWgp) = 1 @ F(Wgy) -
By taking commutants we obtain
FWE) = FWR) © B(H) -



and an application of the twist operation to the second equations of (4.2.16) and (4.2.17)
yields

F(Wir)
FWR)

1 ® FWg)+ + |4 ® F(Wgk)-,

FWE) © BH). + FWV © BH)-. (4.2.18)

R 1R

The identity F(O) = F(WP) A F(W§) which is valid in the fermionic case, too, finally
leads to
FO) = FWR) e FWP): + FIWR)V o FWP)_. (4.2.19)

While this is not as nice as (3.2.4) it is still sufficient for the considerations in the sequel.
That F(O), O € K is a factor is, however, less obvious than in the pure Bose case and
will be proved only in Subsection 4.3.3.

The following easy result will be of considerable importance later on.

Lemma 4.2.6 The disorder operators UP(g) and US (g) associated with the double cone
O implement automorphisms of the local algebra F(O).

Proof. In the pure Bose case this is obvious from Definition 4.2.4, equation (3.2.4) and
the fact that AdU(g) acts as an automorphism on all wedge algebras. In the Bose-Fermi
case (4.2.19) the same is true since U(g) commutes with V =U(k). R

Definition 4.2.7 o = AdUP(9), g€ G,0 K.

We close this section with one remark. We have seen that the split property for wedges
implies the existence of disorder operators which constitute true representations of the
symmetry group and which transform covariantly under the global symmetry. Conversely,
one can show that the existence of disorder operators, possibly with group cocycle, in
conjunction with the split property for wedges for the fixpoint net A implies the split
property for the field net F. This in turn allows to remove the cocyle using the above
construction. We refrain from giving the argument which is similar to those in [40, pp.
79, 85].

4.3 Field Extensions and Haag Duality

4.3.1 The Extended Field Net

Having defined the disorder variables we now take the next step, which at first sight may
seem unmotivated. Its relevance will become clear in the sequel. We define two new nets
of algebras O — J:"L/R(O) by adding the disorder variables associated with the double
cone O to the fields localized in this region.

Definition 4.3.1

A

F(O)ryr = F(O) Vv UL)R(G)". (4.3.1)



Remarks. 1. In accordance with the common terminology in statistical mechanics and
conformal field theory the operators which are composed of fields (order variables) and
disorder variables might be called parafermion operators.

2. As there is a complete symmetry between left and right there is no fundamental
difference between the extensions F;, and Fr. With the exception of Subsection 4.4.6,
we will therefore stick to Fp, throughout this paper, writing F = F for simplicity.
Including both the left and right handed disorder operators would have the unpleasant
consequence that there would be translation invariant operators (namely the U(g)’s) in
the local algebras.

3. The local algebra F(O) of the above definition resembles the crossed product of
F(O) by the automorphism group af, the interesting aspect being that the automorphism
group depends on the region O. These two constructions differ, however, with respect to
the Hilbert space on which they are defined. Whereas the crossed product F(O) x,0 G
lives on the Hilbert space L*(G,H), our algebras F(O) are defined on the original space
‘H. For later purposes it will be necessary to know whether these algebras are isomorphic,
but we prefer first to discuss those aspects which are independent of this question.

The first thing to check is, of course, that the Definition 4.3.1 specifies a net of von
Neumann algebras.

Proposition 4.3.2 The assignment O — .7}((’)) satisfies isotony.

Proof. Let @ C O be an inclusion of double cones. Obviously we have F(O) c F(O). In
order to prove U9(g) € F(O) we observe that U®(g) is a disorder operator for the larger
region @, too. Thus, by Lemma 4.2.3 we have US(g) = FU9(g) with F € F(O)'. Since
the disorder operators are bosonic by construction we even have F' € F (@) Now it is
clear that U9(g) € F(O). W

Remark. From this we can conclude that the net F(O) is uniquely defined in the sense
that any family of bosonic disorder operators gives rise to the same net F (O) provided
such operators exist at all. For most of the arguments in this paper we will, however,
need the detailed properties proved above which follow from the construction via the split
property.

It is obvious that the net F is nonlocal. While the spacelike commutation relations
of fields and disorder operators are known by construction we will have more to say on
this subject later. On the other hand it should be clear that the nets F and A are local
relative to each other. This is simply the fact that the disorder operators commute with
the fixpoints of o in both spacelike complements.

Proposition 4.3.3 The net F is Poincaré covariant with the original representation of
P. In particular o, (US (9)) = UPT(g) whereas for the boosts we have

an(UE (9)) = UL (h), (4.3.2)
if UM U(g) UM = U(h) .

Proof. The family Y© : # — H ® H of unitaries provided by the split property fulfills
the identity
Y29t — (U(A,a) @ U(A,a)) YO U(A, a)*, (4.3.3)



as is easily seen to follow from the construction in [41, 20]. This implies

ana(UF(9)) = UM a) Y (U(g) @ 1) YOU(A, a)*
= YA (U(A,a)U(g) U(A,a)* @ 1) YAO+e (4.3.4)
ULt (h),

where U(A) U(g)U(A)* =U(h). 1
Proposition 4.3.4 The vacuum vector §2 is cyclic and separating for .7:“((9)

Proof. Follows from

F(O) C F(O) c F(WP) (4.3.5)
since € is cyclic and separating for F(0) and F(W?). &

Proposition 4.3.5 The wedge algebras for the net F take the form
FWP) =FWP), FOVR)=FWR)VUG)" = AWLL). (4.3.6)
As a consequence ) is not separating for f(ng)’

Proof. The first identity is obvious, while the second follows from F(W§) Ug(g) VO €
WE and the factorization property (4.2.11). The last statement is equivalent to  not
being cyclic for A(WS,). N

Proposition 4.3.6 Let F' € F(O)UP(g). Then the following cluster properties hold.

w— lim a(F) = (Q,FQ)-1, (4.3.7)
r——00

w— lirf ap(F) = (Q,FQ)-Uly). (4.3.8)
T—+00

Proof. The first identity follows from FeF (WP2) and the usual cluster property. The
second is seen by writing F' = FUg (g7 ') U(g) and applying the weak convergence of U§

as above, the translation invariance of U(g) and the invariance of the vacuum under U(g).
|

4.3.2 Haag Duality

Observing by (4.2.12) that the adjoint action of the global symmetry group leaves the
‘localization’ (in the sense of Definition 4.2.2) of the disorder operators invariant it is
clear that the automorphisms oy, = AdU(g) extend to local symmetries of the enlarged
net F. We are thus in a position to define yet another net, the fixpoint net of F

Definition 4.3.7

A A

A(0) = F(O) AU(GY, (4.3.9)



whereby we have the following square of local inclusions

A(0) ¢ F(O)

U U (4.3.10)
AO) c F(O).
Remark. The conditional expectation m(-) = [dga,(-) from F(O) to A(O) clearly

restricts to a conditional expectation from F ( ) to A( ). In Section 4 we will see
that there is also a conditional expectation 7, from F(O) to F(O) which restricts to a
conditional expectation from A(O) to A(O), provided the group G is finite. Since 7,
commutes with m the square (4.3.10) then constitutes a commuting square in the sense
of Popa.

Proposition 4.3.8 The net O — A(O) is local.

Proof. Let @ < O be two regions spacelike to each other, O being located to the right of
O. From A(O) c A(WP) and the relative locality of observables and fields we conclude
that A(©) commutes with F(©O). On the other hand the operators U9 (g) commute with
A(O) ¢ F(WP) = F(WP) since AdUC(g) | F(WP) = a, and A(0O) is pointwise gauge
invariant. W

We have just proved that the net A constitutes a local extension of the observable net
A, thereby confirming our initial observation that A does not satisfy Haag duality. Using
ideas from the proof of [35, Thm. 4.1], we demonstrated in [87] that A satisfies Haag
duality in all simple sectors, which provides justification for the Definitions 4.3.1 and 4.3.7.
Now, since A [ Ho satisfies the SPW, see below, our abstract result in Theorem 3.5.3 to
the effect that Haag duality obtains in all locally normal irreducible representations of
the dual net applies to the situation at hand. We can thus conclude that Haag duality
also holds for the non-simple sectors of A which by necessity occur for non-abelian groups
G. Since this result is somewhat counterintuitive (which explains why it was overlooked
in [87]) we verify it by the following direct calculation, which replaces Lemma 3.9 and
Theorem 3.10 of [87].

Lemma 4.3.9 The commutants of the algebras AL(O) are given by
AL(O) = AL(WP) Vv FL(WS,) YO e K. (4.3.11)
Proof. For simplicity we assume JF to be a local net for a moment. Then

FL(0) ANU(G)) = FL(0) vU(G)"

FO)VUL(G)") VU(G)" = (F(O) AU (G)) vV U(G)"
(FW) VFWgg) AUP(G)) VU(G)" (4.3.12)
FWi) AUP(G))V F(Wgg) vV U(G)"

= AL(WE)V Fr(Wgs).

AL(O)I = (
(
(
(

The fourth line follovys from the third using the split property. In thAe last step we have
used the identities AL(WL) = AL(WL) and fL(WR) V U(G)” = fL(WR) which hold



for all left (right) handed wedges W (Wg), cf. Proposition 4.3.5. Now, if F satisfies
twisted duality, (4.2.19) leads to F(O) v UP(G)" =2 F(WE) Vv U(G)" @ F(WP) and
(FO)VUL(G)") 2 AWE,) @ F(WSR)!. Using this it is easy to verify that (4.3.11) is
still true. W

Theorem 4.3.10 The net Ar satisfies Haag duality in restriction to every invariant
subspace of H on which Ay, acts irreducibly (e.g., in particular the vacuum sector).

Proof. We recall that the representation 7 of ./lL/R on H is of the form m = @, ¢ deme.

Let thus PP be an orthogonal projection onto a subspace H¢ C H on which A; acts as the
irreducible representation 7. Since P commutes with Az(QO) and AL (WS,) we have

PAL(O)P = PA,(WE)VFL (W) P
AL (WE) v (P FL(WEy) P) (4.3.13)
— PAL(W[(?L) V AL(WSR) P’

which implies
(AL(O) I He)' = AL(Wip) V AL(WER) | He. (4.3.14)
[ |

This provides a concrete verification of Theorem 3.5.3 in a special, albeit important sit-
uation. The above arguments make it clear that Haag duality cannot hold for the net
A(QO) even in simple sectors. This is not necessarily so if the split property for wedges
does not hold. In conformally invariant theories gauge invariant combinations of field
operators in the left and the right spacelike complements of a double cone O may well be
contained in A(O’) due to spacetime compactification. One would think, however, that
this is impossible in massive theories, even those without the split property.

4.3.3 Computation of A(0)

While Theorem 4.3.10 allows us in principle to construct the dual net .4 one would like
to know more explicitly how the elements of A look in terms of the fields in F and the
disorder operators. In the case of an abelian group G this is easy to see. As a consequence
of the covariance property (4.2.12) we then have

U(g) U r(h) U(9)" = Up r(ghg™") = Up)r(h), (4.3.15)

that is the disorder operators are gauge invariant and thus contained in A(©). It is then
obvious that

A(0) = A(O)vUP(GR)", (G abelian!) (4.3.16)

as A(0O) is spanned by operators of the form FU?(g), F € F(O) which are invariant iff
F e A(O).

The case of the group G being non-abelian is more complicated and we limit ourselves
to finite groups leading already to structures which are quite interesting. In order to



proceed we would like to know that every operator FeF (O) has a unique representation
of the form
F=> F(g)UP(g), Flg) e F(O). (4.3.17)

geG

While this true for the crossed product M x G on L?(G,H) (only for finite groups!) it is
not obvious for the algebra MV U(G)" on H. The latter may be considered as the image
of the former under a homomorphism which might have a nontrivial kernel. In this case
there would be equations of the type

> Fg)UP(9) =0, (4.3.18)

geG

where not all F'(¢) vanish. Fortunately at least for finite groups (infinite, thus noncompact,
discrete groups are ruled out by the split property) this undesirable phenomenon can be
excluded without imposing further assumptions using the following result due to Buchholz
[30].

Proposition 4.3.11 The automorphisms oy = AdU(g) act outerly on the wedge alge-
bras.

Proof. Let W be the standard wedge W = {z € R? | 2! > [2°|} and assume there is a
unitary V, € F(W) such that AdV, [ F(W) = o,. Define V,, = a,(V,) for all z € W.
Obviously V,, € F(W,). By the commutativity o, o oy = oy 0 , of translations and
gauge transformations we have AdV, , [ F(W,) = o,. By the computation (for x € W)

VoVou VS = ag(Vy) = aqgoax(Vy) = azoay(Vy) (4.3.19)
= aw(V,V,Vy) = (V) = Voo
we obtain
Vo Voo =V Vg Yo € W. (4.3.20)
The von Neumann algebra
V={V,s, t€W}" (4.3.21)

is mapped into itself by translations a, where x € W and the vacuum vector € it is
separating for V as we have V C F(W). This allows us to apply the arguments in [48]
to conclude that V is either trivial (i.e. V = C1) or a factor of type III;. The assumed
existence of V;, which cannot be proportional to the identity due to the postulate o, # id,
excludes the first alternative whereas the second is incompatible with (4.3.20) according
to which V} is central. Contradiction! N

Remark. This result may be interpreted as a manifestation of an ultraviolet problem.
The automorphism «a, being inner on a wedge W, wedge duality would imply it to
be inner on the complementary wedge W', too, giving rise to a factorization U(g) =
Vi(9) Vr(g), Vi(g) € F(W), Vr(g) € F(W'). This would be incompatible with the
distributional character of the local current from which U(g) derives.

We cite the following well known result on automorphism groups of factors.



Proposition 4.3.12 Let M be a factor and o an outer action of the finite group G.
Then the inlusions M% C M, m(M) C M x G are irreducible, i.e. M x GN7(M) =
MNME =C1. In particular M x G and MEC are factors. If the action o is unitarily
implemented ay = AdU(g) then M x G and MV U(G)" are isomorphic.

Proof. The irreducibility statements M x GN7w(M)' = MNME = Cl are standard con-
sequences of the relative commutant theorem [103, §22] for crossed products. Remarking
that finite groups are discrete and compact the proof is completed by an application of
[73, Corollary 2.3] which states that M x G and M V U(G)" are isomorphic if the former
algebra is factorial and G is compact. W

We are now in a position to prove several important corollaries to Proposition 4.3.11.

Corollary 4.3.13 The algebras F(O), O € K are factors also in the Bose-Fermi case.

Proof. Since AdV acts outerly on the factor F(W§) by Proposition 4.3.11 M, = F(WS)V
{V'} is a factor and there is an automorphism 3 of M; leaving F(WS) pointwise invariant
such that 3(V) = —V. The automorphism S®aqy, of Mi@F (WP) clearly has Y© F(O) Y©*
as fixpoint algebra, cf. (4.2.19). Since oy is outer the same holds [103, Prop. 17.6] for

B®ay. Thus the fixpoint algebra is factorial by another application of Proposition 4.3.12.
[ |

Corollary 4.3.14 Let O € K. The automorphisms ay = AdU(g) and of = AdUP(g)
act outerly on the algebra F(O).

Proof. The pure Bose case is easy. F(O), ag’ and «, are unitarily equivalent to F(W§g)®
FWP), a,®1id, and a, ® oy, respectively. Since oy = AdU(g) is outer on F(W§) the
same holds by [103, Prop. 17.6] for the automorphisms ¢, ® id and ay @ oy of the above
tensor product.

Turning to the Bose-Fermi case let X, € F(O) be an implementer of oy or o and

define X, = Y° X, Y°*. Then (1® V)X,(1® V) also implements a, ® id or oy @ o,
respectively, since k is central. F(Q) being a factor this implies (10 V)X,(10V) = ¢, X,
with ¢2 = 41 due to k? = e. X, is thus contained either in F(WS) @ F(WP), or in
J—“(ng) V @ F(WP)-. In the first case the restriction of ay, ® id or oy ® oy to F(WF) @
F(WP), is inner which can not be true by the same argument as for the Bose case.
(Observe that F(W?), is factorial.) On the other hand, no X, € F(W)V @ F(WP)_
can implement a, @ id or ay ® oy since both automorphisms are trivial on the subalgebra
1@ F(WP)NU(G) which requires X, € B(H) @ F(WE)E'. This, however, is impossible:
FWP)_nFWPEE = [FWP)n FIWP)E]_ = [C1]- = 0, where we have used the
irreducibility of F(WP)¢ c F(WP). N

Corollary 4.3.15 Let the symmetry group G be finite. Then the enlarged algebra .7}((’)) =
F(O) v UP(G)" is isomorphic to the crossed product F(O) X0 G and the inclusions
A(O) C F(O), F(O) C F(O) are irreducible (i.e. the relative commutants are trivial).

Proof. Obvious from Proposition 4.3.12 and Corollaries 4.3.13, 4.3.14. W
Remark. If G is a compact continuous group outerness of the action does not allow us
to draw these conclusions. In this case an additional postulate is needed. It would be



sufficient to assume irreducibility of the inclusion A(W) C F (W), for, as shown by Longo,
this property in conjunction with proper infiniteness of A(W) implies dominance of the
action and factoriality of the crossed product. Irreducibility of A(O) C F(O), O € K
follows as above.

We are now able to give an explicit description of the dual net A.

Theorem 4.3.16 Every operator A € A(O) can be uniquely written in the form

A= Z A(g)UP(g), (4.3.22)
where the A(g) € F(O) satisfy
A(kgk™") = ai(A(g)) Vg,k €G. (4.3.23)

Con})ersely, every choice of A(g) complying with this constraint gives rise to an element
of A(O). An analogous representation for the algebras A(WS) is obtained by replacing
UP(9) by U(g).

Remark. Condition (4.3.23) implies
A(g) € F(O)NU(N,), (4.3.24)

where Ny, = {h € G | gh = hg} is the normalizer of g in G.

Proof. By Proposition 4.3.11 any Ae ~/Zl((’)) can be represented uniquely according to
(4.3.22). Since ay(A) is given by >, ak(A(9) UP (kgk™") = >, caw(A(k™"gk)) UP (9)
equation (4.3.23) follows by comparing coefficients. It is obvious that the arguments
can be reversed. The statement on the wedge algebras A(Wg ) follows from the fact
that F (Wg) is the crossed product of F(W§) by the global automorphism group, cf.
Proposition 4.3.5. W

4.3.4 The Split Property

The prominent role played by the split property in our investigations so far gives rise
to the question whether it extends to the enlarged nets A and F. As to the net F
it is clear that a twist operation is needed in order to achieve commutativity of the
algebras of two spacelike separated regions. Let ;1 < O be double cones. Then one has
F(0,)" C F(O,) where

(Z F(g) Uf(g)) = _F(9)'UP(9) Ulg ") =D _F(9)' UL (9)", (4.3.25)

g

and the * on F(g) denotes the Bose-Fermi twist of Chapter 1. (By the crossed product
nature of the algebras F(©) it is clear that this map is well defined and invertible.) That
commutativity holds as claimed follows easily from F(O;) ¢ F(WP") and F(O,)T

F(W2)t. Tt is interesting to observe that the twist has to be applied to the algebra
located to the right for this construction to work. This twist operation lacks, however,



several indispensable features. Firstly, there is no unitary operator S implementing the
twist as in the Bose-Fermi case. The second, more important objection refers to the
fact that the map (4.3.25) becomes noninvertible when extended to right-handed wedge
regions, for the operators U9 (g) are contained in F(WS).

Concerning the net A which, in contrast, is local there is no conceptual obstruction to
proving the split property. We start by observing that A(WS,) = A(WS,). Furthermore,
in restriction to a simple sector H; wedge duality (Proposition 4.2.1) implies fl(WgR) i
Hi = A(WEg) | Hi. As the split property for the fields carries over [40] to the observables
in the vacuum sector there is nothing to do if we restrict ourselves to the latter. We intend
to prove now that the net A fulfills the split property on the big Hilbert space ‘H. To this
purpose we draw upon the pioneering work [40] where it was shown that the split property
(for double cones) of a field net with group symmetry and twisted locality follows from
the corresponding property of the fixpoint net provided the group G is finite abelian.
(The case of general groups constitutes an open problem, but given nuclearity for the
observables and some restriction on the masses in the charged sectors nuclearity and thus
the split property for the fields can be proved.)

Proposition 4.3.17 The net O — fl((?) satisfies the split property for wedge regions,
provided the group G is finite.

Proof. The split property for wedges is equivalent [17] to the existence, for every double
cone O, of a product state ¢© satisfying ¢©(AB) = ¢°(A) - ¢°(B) VA € AWE,),B €
A(WSy). For the rest of the proof we fix one double cone @ and omit it in the formulae.
We have already remarked that for the net A product states ¢y are known to exist.
In order to construct a product state for A we suppose 7. is a conditional expectation
from .A(WLL) \% A(WRR) to A(WLL) \% A(WRR) such that ’Ye(A(WRR)) = A(WRR) Then
Ye(AB) = 7.(A) 7.(B) where A, B are as above, implying that ¢ = ¢ o 7. is a product
state. It remains to find the conditional expectation .. To make plain the basic idea we
consider abelian groups G first. In this case 7, is given by

~ 1 ~
’YC(A) = @ Z@wa, (4326)

xe@G

where ¢, € F(O) is a unitary field operator transforming according to o, (1) = x(g) - ¥y
under the group G. This map has all the desired properties. The pointwise invariance of

A(Wpr) follows from the fact that this algebra commutes with the unitaries 1. On the
other hand

W U(9) vy = x(9) - US(9), O c Wy (4.3.27)

in conjunction with the identity ) .4 Xx(9) = |G| dg. (valid also for non-abelian groups)

implies that the operators U9 (g) € A(Wgkg), g # e are annihilated by 7,. Finally, the
existence of ¢, € F(O) for all x (i.e. the dominance of the group action o on F(O))
is well known to follow from the outerness of the group action a. The generalization to
non-abelian groups is straightforward. The unitaries 1), are replaced by multiplets v, ; of
isometries for all irreducible representations r of G. They fulfill the following relations of



orthogonality and completeness:

Yritrj = 0igl, (4.3.28)
dy
> iy = 1 (4.3.29)
i=1
and transform according to
¢7‘Z ZD ; ¢7‘ 2! (4330)

under the group. That the conditional expectation v, given by

= 1@ ZZ% Uiy (4.3.31)

re@ =1

does the job follows from

ZwMUL ) ri = tr D7 (9) - UL (9) = x»(9) - UF (9)- (4.3.32)

Again the existence of such multiplets is guaranteed by our assumptions. H

Remark. Tensor multiplets satisfying (4.3.28, 4.3.29) were first considered in [45] where
the relation between the charged fields in a net of field algebras and the inequivalent
representations of the observables was studied in the framework of [35]. Multiplets of this
type will play a role in our subsequent investigations, too.

4.3.5 Irreducibility of A(OQ) C F(O)
The inclusions A(Q) € F(O) € F(O) are of the form
N=PKcPcPxL=M, (4.3.33)

where K and L are finite subgroups of AutP, as studied in [11] (albeit for type II; factors).
There P* C P x L was shown to be irreducible iff KN L = {e} in OutP and to be of finite
depth if and only if the subgroup ) of Out’P generated by K and L is finite. Furthermore,
the inclusion has depth two (i.e. N/ A M, is a factor where N C M C M; C My C ---
is the Jones tower corresponding to the subfactor ' C M) in the special case when
Q = K - L (ie. every g € @ can be written as g =kl, k € K,l € L).

In our situation, where K = Diag(G x G) and L = G x 1, all these conditions are
fulfilled, as we have @ = G x G and g X h = (h x h) - (h™'g x €). The interest of this
observation for our purposes derives from the following result, discovered by Ocneanu
and proved, e.g., in [110, 82]. Tt states that an irreducible inclusion N' C M arises via
N =M% ={xe M| ~,(z) =¢c(z)l Va € H} from the action of a Hopf algebra H on
M iff the inclusion has depth two. In the next section this Hopf algebra will be identified
and related to our quantum field theoretic setup.

For the irreducibility of A(O) in F(O) we now give a proof independent of any so-
phisticated inclusion theoretic machinery.



Proposition 4.3.18 For any O € K we have
F(O) A A(O) = C1. (4.3.34)

Proof. All unitary equivalences in this proof are implemented by Y©. With the abbrevi-
ations M; = F(Wg)! and My = F(WF) we have M} V M, 2 M| @ M). By (3.24) if
F is bosonic or (4.2.19) in the Bose-Fermi case we have

FO) =2 FW) VUG @ FIWE) = My VU(G)" @ M,, (4.3.35)

where we have used M* Vv U(G)" = M Vv U(G)" (which is true for every von Neumann
algebra M). Furthermore,

AO0) = FOYVUG) = (FWE)VFWZN VUG (4.3.36)
= FW5)VFWge) VU(G)" = FWip) vV F(Wrp)' v U(G)"
MV MV U(G)" = (M@ M) v{U(g) @ U(g), g € G}".

The relative commutant F(OQ) A A(O)" is thus equivalent to
(M VU(G)" @ M) AN[(My@ My Vv {U(9) @ Ulyg), g € G}']. (4.3.37)

The obvious inclusion (M} @ ML) vV {U(g) ® U(g), g € G} C B(H) @ M4,V U(G)" in
conjunction with the irreducibility property My A (M4 V U(G)") = C1 (Corollary 4.3.15)
yields

(M@ M) V{U(g)@Ul(g), g € G} N (B(H) @ My) C B(H)® 1. (4.3.38)

Now let X be an element of the algebra given by eq. (4.3.37). By the same arguments
as used earlier, every operator X € (M| ® Mj) V{U(g9) ® U(g), g € G}" has a unique
representation of the form X =3 F,; (U(g)®@U(g)) where F; € M{®Myj. The condition
X € B(H) ® 1 implies F, = 0 for all g # e and thereby X € M| ® 1. We thus have
X e (MyAN(M;VU(G))) ®1 and, once again using the irreducibility of the group
inclusions, X «x1® 1. W

4.3.6 The Operators Y° and Jones Theory

As witnessed by this chapter and the preceding one, the unitary operators Y© which map
H onto H®@H and implement the isomorphisms F(WS )V F(WEs) 2 F(WE )@ F(WER)
play an important role in the analysis of quantum field theories satisfying the SPW. Since
the restriction of the fixpoint net A to H, also satisfies wedge duality and the SPW, it
makes sense to compare Y{ and Y2 | Hy, where the suffixes .4, F indicate which net
was used in the construction of Y'©. In this subsection we assume F to be a local net for
simplicity.

The tempting conjecture Y2 | Ho = Y is easily seen to be false. If U is a local
symmetry of F (i.e. AdU(F(0)) = F(O) VO € K, UQ = Q) then YU = (U@ U)YF.
With the projector on H,

Py = /dg Ulg), (4.3.39)



where the integration takes place over a compact group G of inner symmetries, we have
YP Py = PpYP with Pp = [dg U(g) @ U(g). But Pp projects onto the subspace
HS HDlag(G) C H ® H which is strictly larger than Hy @ Ho = H @ HE*¢. Thus, Ye
does not map Hy into Ho ® Hy.

Considering the operator 19 : Hy — H, defined by

I = (Y2 | Ho®@ Ho) YS (4.3.40)

it is easy to verify that I is an isometry. The range projection E© = I9I°* can be
computed as follows. Even if (G is non-abelian, Py ® Py commutes with Pp, such that
PO = YP* (P, ® Py) YP restricts to a projection on Hy, and P° | Hy = E°. Now,
U(g) | Ho = id implies

E° = (/ dg Uf(g)) I Ho, (4.3.41)

where U? (g) = Y2*(U(g9) ® 1)Y£ is the disorder operator introduced in Definition 4.2.4,
and in particular E€ € A% ). That I € A%0O) is also true is seen as follows. Let
Ae AWE,),B € A(Wgg). Then

(YE* | Ho@ Ho) YY AB = (YP* [Ho®@Ho) (A® B) YY
= AB (YF* [ Ho® Ho) Y2,

where the second identity follows from Y2 n(AB) = w(A) @ n(B)YE and [r(A) ®
7(B), Py ® Py] = 0. Thus, I € (AWS,) VvV AWZR)) = A%O) as claimed.

In order to understand better the significance of I© and E©, we recall the construction
of the operators Y2 [20], for simplicity assuming F to be local. By the isomorphism
between F(W§, )VF(Wgy) and F(WE, ) @F (W) there is a normal state w, on F(W§), )V
F(WEr) such that

wy(AB) = (Q,AQ) - (2, BQ), Ae FWS,),Be FWgy)- (4.3.43)

Since F(WPS, )V F(Wgy) admits a separating vector (e.g., Q) and w,, is faithful, there is a
unique cyclic and separating vector n € PHF(WF, )V F(WSg), ) such that w, = (n,-n).
(Here PH(F(WE,)VF(WEr), Q) = AVAF(WE,) vV F(WS,))+Q is the natural cone, see,
e.g., the appendix of [41] for a review and references.) As a consequence of the obvious
gauge invariance of w, we have n € H, (and in fact, n € P*(M,Q) C H,). Making an
analogous construction with the net A4 = F¢ in the vacuum sector we obtain a vector
no € PH(N,Q) C Hoy, where N = AWPE,) vV AWE,). With these vectors the definition
(4.3.40) of the isometry I© takes the form

I°ABny= ABn, Aec F(WS,),B e F(Wg). (4.3.44)

We thus have E© = [Nn| which provides another proof of E© € N' = A%0). We
will now prove that E© is just the Jones projection ey € M; of the inclusion N C
M = (FWE)VFWER) NU(G). (See, e.g., [83, Sec. 2] for a review of inclusion
theory for infinite factors.) Firstly, the conditional expectation u: F(WF,)V F(Ws) —
AWEL) Vv A(Wgg) given by

(4.3.42)

u(z) = / dg dh U (q)US(h) z US (h)* UL (g)" (4.3.45)



restricts to a conditional expectation p : M — N. Clearly, u | M is ‘implemented’ by
E°:

ECzE® = u(z) E°, z€ M. (4.3.46)
Furthermore, w, o 1 = w, follows from the invariance of Q ® Q under U(g) ® U(h). But
now it is clear that E® = ey, since the latter operator is defined through

ex = [N¢], (4.3.47)

where § is a cyclic and separating vector for M such that wg is a p-invariant faithful
normal state on M. For the dual inclusion M’ = A(O) C A4O) = N’ there is a normal
conditional expectation u' : N' — M’ (given by 7. in the notation of the next section) iff
the group G is finite. In this case one can easily check explicitly that u/(E°) = 1/|G| -1
as follows also from the general inclusion theory. Furthermore, the general theory tells us
that F€ = ey € A%(O) is also the Jones projection for the inclusion M| C M’ = A(O).

4.4 Quantum Double Symmetry

4.4.1 Abelian Groups

As we have shown above the algebras F (O) may be considered as crossed products of
F(O) with the actions of the respective automorphism groups a®. In the case of abelian
(locally compact) groups there is a canonical action [111] of the dual (character-) group

A

G on M x (G given by
@i‘<7r(x)) = _rla) £} (4.4.1)
(U, = x(9) U,
Making use of U (g) U?2(g)* € F, YO, one can consistently define an action of G on
the net O — F (0), respecting the local structure and thus extending to the quasilocal
algebra F. The action of G commutes with the original action of G as extended to F,
implying that the locally compact group G x G is a group of local symmetries of the
extended theory O — F(O). The square structure (4.3.10) can now easily be interpreted
in terms of the larger symmetry:

A= FO F= 6 A= FOxC (4.4.2)

The symmetry between the subgroups G' and GofGxG is, however, not perfect, as only
the automorphisms o, g € G' are unitarily implemented on the Hilbert space . That
there can be no unitary implementer U(x) for é,, x € G leaving invariant the vacuum
is shown by the following computation which would be valid for all A € A(O)

(0, AU (9)92) = (2, U (x) AUL (9) U(x)"Q) (4.4.3)
= (Q, A4, (UF (9)) = x(9) - (2, AUF (9)2).
This can only be true if x(g) = 1 or (Q, AU?(¢)Q2) = 0 VA € A(O). The latter, however,

can be ruled out, since the density of A(Q)Q in H, would imply UP(g)Q2 L Ho which is
impossible, 2 being unitary and gauge invariant. This argument shows that the vacuum



state w = (£, - Q) is not invariant under the automorphisms (), x € G, in other words,
the symmetry under G is spontaneously broken.

The preceding argument is just a special case of the much more general analysis in
[95], where non-abelian groups were considered, too. There, to be sure, the field net acted
upon by the group was supposed to fulfill Bose-Fermi commutation relations, whereas
in our case the field net is nonlocal. Furthermore, whereas the net F(Q), the point
of departure for our analysis, fulfills (twisted) duality, the extended net F(O) enjoys
no obvious duality properties. Nevertheless the analogy to [95] goes beyond the above
argument. Indeed, as shown by Roberts, spontaneous breakdown of group symmetries is
accompanied by a violation of Haag duality for the observables, restricted to the vacuum
sector Hy. Defining the net B(O) = F(O)%, the fixpoint net under the action of the
unbroken part Gy = {g € G |wp 0 ay = wp} of the symmetry group, a combination of the
arguments in [35] and [95] leads to the conclusion that (in the vacuum sector Hy) B(O)
is just the dual net A%(Q) which verifies Haag duality. Our analysis in Section 2, leading
to the identification of the dual net as A? = A = FC, is obviously in accord with the
general theory as we have shown above that G is the unbroken part, corresponding to Gy,
of the full symmetry group G' x G.

In the case of spontaneously broken group symmetries it is known [28] that, irrespective
of the nonexistence of global unitary implementers leaving invariant the vacuum, one
can find local implementers for the whole symmetry group. This means that for each
double cone O there exists a unitary representation G 3 g — Vio(g) satisfying Ad Vp(g) |
F(O) = oy, the important point being the dependence on the region O. (Due to the large
commutant of F () such operators are far from unique.) A particularly nice construction,
which applied to an unbroken symmetry g automatically yields the global implementer
(Vo(g) = U(g) YO), was given in [29]. The construction given there applies without change
to the situation at hand where the action of the dual group Gon F (O) is spontaneously
broken.

An immediate consequence of the above and Theorem 4.3.10 is that the dual net .44
corresponding to the non-dual fixpoint net A = F¢ has a G symmetry. We will return
to this in Subsection 4.4.6. An interesting example is provided by the free massive Dirac
field which as already mentioned fulfills our postulates, including twisted duality and the
split property. Its symmetry group U(1) being compact and abelian, the extended net F
and the action of the dual group Z can be constructed as described above. By restriction
of the net A to the vacuum sector H, one obtains a local net fulfilling Haag duality with
symmetry group Z. Wondering to which quantum field theory this net might correspond,
it appears quite natural to think of the sine-Gordon theory at the free fermion point
% = 47 as discussed, e.g., in [78].

4.4.2 Non-abelian Groups

We refrain from a further discussion of the abelian case and turn over to the more inter-
esting case of G being non-abelian and finite. (Infinite compact groups will be treated in
Subsection 4.5.1.) For non-abelian groups the dual object is not a group but either some
Hopf algebraic structure or a category of representations. Correspondingly, the action of
the dual group in [111] has to be replaced by a coaction of the group or the action of



a group dual in the sense of [96]. For our present purposes these high-brow approaches
will not be necessary. Instead we choose to generalize (4.4.1) in the following straight-
forward way. We observe that the characters of a compact abelian group constitute an
orthogonal basis of the function space L?*(G), whereas in the non-abelian case they span
only the subspace of class functions. This motivates us to define an action of C(G), the
|G|-dimensional space of all complex valued functions on G, on F(©) in the following
way:

Vr (Z z(g) Uf(Q)) =Y F(9)z(9) U (9), z(g) € F(0),F €C(G).  (44.4)

gea@ geG

Again this action of C(G) is consistent with the local structure of the net O — F(O) and
extends to the quasilocal C*-algebra F. In general, of course, vp is no homomorphism
but only a linear map. (That the maps vy are well defined for every F € C(G) should
be obvious, see also the next section.) Introducing the ‘deltafunctions’ 6,(h) = 6, any
function can be written as F' = F(g) d,, and 5, will be abbreviated by 7,. The latter
are projections, i.e. they satisfy 73 = 7, The images of F (O) and F under these will
be designated F,(0) and F,, respectively. Obviously we have F,(0) = F(O) U?(g) and
fg = FU?P(g) with O € K arbitrary. It should be clear that the decomposition

F=E7 (4.4.5)

9eG
represents a grading of F by the group, i.e.
FyFn C Fp Vg, h €G. (4.4.6)

(In fact we have equality, but this will play no role in the sequel.) This group grading
which is, of course, not surprising as it holds for every crossed product by a finite group
allows us to state the behavior of v, under products:

W(AB) = 3 () 1(B). (4.47)

The novel aspect, however, is that F is at the same time acted upon by the group G,
these two structures being coupled by

ag(Fn) = Fong (4.4.8)
as a consequence of (4.2.12). This is equivalent to the relation

Qg OV = Yghg—1 © Q4. (4.4.9)

In this context it is of interest to remark that several years ago algebraists studied (see [32]
and references given there) analogies between group graded algebras and algebras acted
upon by a finite group. Similar studies have been undertaken in the context of inclusions
of von Neumann algebras. As it turns out the situation at hand, which is rather more
interesting, can be neatly described in terms of the action, as defined, e.g., in [109], of a
Hopf algebra (in our case finite dimensional) on F. The relations fulfilled by the ag and
Yh, in particular (4.4.9), motivate us to cite the following well known



Definition 4.4.1 Let C(G) be the algebra of (complex valued) functions on the finite

group G and consider the adjoint action of G on C(Q) according to ay —ffio Ad(g™1).
The quantum double D(Q) is defined as the crossed product D(G) = C(G) x, G of C(G)
by this action. In terms of generators D(G) is the algebra generated by elements U, and
Vi, g, h € G with the relations

U,Up = Ugp, (4.4.10)
VoVie = gV, (4.4.11)
U Vi = Vyng-1 Uy (4.4.12)

and the identification U =3 Vy = 1.

It is easy to see that D(G) is of the finite dimension |G|?, where as a convenient basis
one may choose V(g)U(h), g,h € G, multiplying according to V(g1)U(h1) V(g2)U(ha) =
Ogy higshTt * V(g1)U(h1hs). This is just a special case of a construction given by Drinfel’d
[50] in greater generality which we do not bother to retain. For the purposes of this work
it suffices to state the following well known properties of D(G), referring to [50, 93, 34]
for further discussion, see also Appendix C.

In order to define an action of a Hopf algebra on von Neumann algebras we further
need a star structure on the former which in our case is provided by the following

Proposition 4.4.2 With the definition U; = Uy-1, V' =V}, and the appropriate exten-
sion, D(G) is a *-algebra. D(G) is semisimple.

Proof. Trivial calculation. Finite dimensional *-algebras are automatically semisimple.
[ |

Before stating how the quantum double D(G) acts on F we define precisely the prop-
erties of a Hopf algebra action.

Definition 4.4.3 A bilinear map v : H x M — M is an action of the Hopf *-algebra H
on the *-algebra M iff the following hold for any a,b € H, x,y € M:

) = =z, (4.4.13)
) = e(a)1, (4.4.14)
Yab(T) = Va0 W(T); (4.4.15)
) (4.4.16)
' (4.4.17)

= Ya® <x)7a(2)(y)7
= Y5(ar)(2")-

We have used the standard notation A(a) = o'V @ a® for the coproduct where on the
right side there is an implicit summation. The map 7y is assumed to be weakly continuous
with respect to M and continuous with respect to some C*-norm on H (which is unique
in the case of finite dimensionality).

After these lengthy preparations it is clear how to define the action of D(G) on F.



Theorem 4.4.4 Defining v,(F), F € F for a € {U(g), V(h)|g,h € G} by

A

10, (F) = oy(F) (44.18)
: 3

W) = (), (4.4.19)

using (4.4.15) to define v on the basis V(g)U(h) and extending linearly to D(G) one
obtains an action in the sense of Definition 4.4.3.

Proof. (4.4.13) follows from 1p) = >, V;, (4.4.14) from 14 € F, and (C.1.4), whereas
(4.4.15) is an obvious consequence of the definition. Furthermore, (4.4.16) is a consequence
of ay being a homomorphism, the coproduct property (4.4.7) and the definition (C.1.5).
The statement (4.4.17) on the *-operation finally follows from (oy(x))* = a4(z*) and

A A

S(Uy) = Uy on the one hand and (F,)* = Fy-1 and S(V,") = V-1 on the other. M
Remarks. 1. It should be obvious that the action of D(G) on F commutes with the
translations and that it commutes with the boosts iff the group G does. Otherwise,
U(A)U(g) U(A)* = Uy, implies ap 0 74 = 74 © aa.

2. In the case of GG being abelian U, = deGw-Vg, X € G constitutes an alternative
basis for the subalgebra C(G) C D(G). The resulting formulae U, U, = U,,, A(Uy) =
Uy ® Uy and vy, () = () establish the equivalence of the quantum double with the
group G X G. The abelian case is special insofar as D(() is spanned by its grouplike
elements, which is not true for G non-abelian.

4.4.3 Spontaneously Broken Quantum Symmetry

Having shown in the abelian case that the symmetry under the dual group G is spon-
taneously broken it should not come as a surprise that the same holds for non-abelian
groups G where, of course, the notion of unitary implementation has to be generalized.

Definition 4.4.5 An action v of the Hopf algebra H on the *-algebra M is said to be
implemented by the (homomorphic) representation U : H — B(H) if for alla € Hyxz € M

Ula) x = v,0 () U(a®) (4.4.20)

or equivalently
Yo(2) = U(aW) 2U(S(a?)). (4.4.21)

The representation is said to be unitary if the map U is a *-homomorphism.

In complete analogy to the abelian case we see that only a subalgebra of D(G), namely the
group algebra CG is implemented in the above sense. A similar phenomenon has already
been observed to occur in the Coulomb gas representation of the minimal models [67] and
in [10] where two dimensional theories without conformal covariance were considered. It
would be interesting to know whether there exists, in some sense, a ‘quantum version’ of
Goldstone’s theorem for spontaneously broken Hopf algebra symmetries.

In an earlier section we defined a twist operation (4.3.25) which bijectively maps
F(O) into an algebra F(O)T which commutes with all field operators localized in the
left spacelike complement WS, of . With the notation introduced in this chapter this



operation can be written as F7 =37 ~,(F)'U(g"). One might wonder whether there is
a map T which achieves the same thing for the right spacelike complement Wy. If the
quantum symmetry were not spontaneously broken, such a map would be given by

FT =" a,(F)'V(g), (4.4.22)

where the V' (g) are the projectors implementing the dual C(G) of the group G. Using the
spacelike commutation relations and the property U®(g) V(h) = V(gh) U®(g) this claim
is easily verified.

In the discussion of the abelian case we have mentioned that one can construct, e.g.
by the method given in [29], local implementers of the dual group G. For the quantum
double D(G) of a non-abelian group G, however, which is not spanned by its grouplike
elements, another approach is needed. What we are looking for is, for every double cone
O, a family of orthogonal projections Vp(g) fulfilling

Vo(g) Vo(h) = 64n Volg) , Y Volg) =1, (4.4.23)

Yo [ F(O) = ZVo(gh) - Vo(h) (4.4.24)
h
and transforming correctly under the (unbroken) group G
U(g) Vo(h) U(g)" = Volghg™). (4.4.25)

In order to obtain operators with these properties we make use of the isomorphism,
for every wedge W, between F(W) V U(G)" and F(W) x, G. We shortly remind the
construction of the crossed product M x G. It is represented on the Hilbert space H =
L?*(G,H) of square integrable functions from G to H. The algebra M acts according to

(m(z)f)(g9) = ag-1(z) f(g) whereas the group G is unitarily represented by (U(k)f)(g) =

f(k7'g). With these definitions one can easily verify the equation U(k)n(z)U(k)* =
moay(z). If the group G is finite one can furthermore define the projections (E(k)f)(g) =
4.5 f(g) for which one obviously has U(g) E(k) = E(gk) U(g). As already discussed above

there is, as a consequence of the outerness of the action of the group, an isomorphism

between the algebras M V U(G)" and M X, G sending > x,U(g) to > m(xg) U(g).
As both algebras are of type III and live on separable Hilbert spaces this isomorphism is
unitarily implemented and can be used to pull back the projections E(k) to the Hilbert
space H where we denote them by E(k). (E(e) is nothing but the Jones projection in
the extension My of the inclusion M C M Vv U(G)".) Applying these considerations to
the algebras of the wedges W2 and W we obtain the families of projections Ef/ r(k),
satisfying

U(g) ES, nk) U(9)" = ES,n(gh), (4.4.26)

which we use to define

Volg) =Y (Y ER(gh) ® EL (h) Y°. (4.4.27)



The properties (4.4.23) of orthogonality and completeness are obvious whereas covariance
(4.4.25) follows from (4.4.26) and U(k) = YO*U (k) @ U(k) Y© as follows

AdU(K)(Vo(9)) = Y (D ER(kgh) ® EP(kh)) Y
= Y (O Ef(kgk 'h) @ Ef(h))Y° (4.4.28)
= V(:)(kgk_l).

It remains to show the implementation property (4.4.24). Using EP (g) F(W') Ef (h) =
{0} if g # h and F(O) X F(WS)VU(G)" @ F(WP) we obtain

YOS Volgh) FVo(h)Y?* = ) ER(ghk)® Ef (k) Fy ® F, EZ(hl) ® E(I)
h h,k,l
= Y ER(ghk) ® E{ (k) F\ ® F, ER(hk) ® EY (k)

hk

= () _Ef(gh) R ER(h)) @ (> Ef (k) Fy EY (k)

= ) ER(gh) RER(h) © F (4.4.29)

where we have written (abusively) Fy @ F, for YO F'Y©*. With =, E9(gh) U(k) E9(h) =
8,xU (k) it is clear that the above map projects () onto F(O)UP(g), thus implementing
the restriction of v, to F(O). Tt should be remarked that the apparently simpler definition
Vo(g) = Y°9* E9(g)®1 Y, which also satisfies (4.4.24), does not lead to a representation
of D(G) as these Vi’s do not transform according to the adjoint representation (4.4.25).

4.4.4 Spectral Properties

The above discussion was to a large extent independent of the quantum field theoretic
application insofar as the action of the quantum double on a certain class of *-algebras
was concerned. As we have seen, any *-algebra which is at the same time acted upon by
a finite group G and graded by G supports an action of the double provided the relation
(4.4.8) holds. The converse is also true. Let M be a *-algebra on which the double acts.
Then M, = v,(M) induces a G-grading satisfying (4.4.8). It may however happen that
M, = {0} for g in a normal subgroup. This possibility can be eliminated by demanding
the existence of a unitary representation of G in M : G 3 g — U(g) € M,. In the
situation at hand this condition is fulfilled by construction.

We now turn to the spectral properties of the action of the double. To this purpose
we introduce the following notion [96], already encountered implicitly in the proof of
Proposition 4.3.17.

Definition 4.4.6 A normclosed linear subspace T of a von Neumann algebra M 1is called
a Hilbert space in M if x*x € C1 for allx € T and v € M and xa = 0 Va € T implies
xz=0.



The name is justified as (z,y)1 = z*y defines a scalar product in 7. One can thus choose
a basis ¢;, i = 1...dr satisfying the requirements (4.3.28, 4.3.29). The interest of this
definition stems from the following well known lemma, the easy proof of which we omit.

Lemma 4.4.7 Let T be a finite dimensional Hilbert space in M globally invariant under
the action vy of the Hopf algebra H on M. A basis of the above type gives rise to a
unitary representation of H according to

d
Ya(¥i) = Z Dii(a) ¢ir. (4.4.30)
=1

Our aim will now be to show that the extended algebras F(O), O € K in fact contain
such tensor multiplets for every irreducible representation of D(G). In order to do this
we make use of the representation theory of the double developed in [34]. (D(G) being
semisimple, every finite dimensional representation decomposes into a direct sum of ir-
reducible ones.) The (equivalence classes of) irreducible representations are labeled by
pairs (¢, ), where ¢ € C(G) is a conjugacy class and 7 is an irreducible representation of
the normalizer group N.. Here N, is the abstract group corresponding to the mutually
isomorphic normalizers N, for g € ¢, already encountered in Theorem 4.3.16. The repre-
sentation 7 labeled by (¢, 7) is obtained by choosing an arbitrary go € ¢ and inducing up

from the representation

#(V, Up) = 6,4, 7(h) (4.4.31)

of the subalgebra B,, of D(G) generated by V(g),g € G and U(h),h € Ny. The
representation space of (. ) is thus V. ) = D(G)@lgg0 V.. For a more complete discussion
we refer to [34] remarking only that 7(c.)(V,Uy) =01if g & c.

Definition 4.4.8 The action v of a group or Hopf algebra on a von Neumann algebra M
18 dominant iff the algebra of fixed points is properly infinite and the monoidal spectrum
of v is complete, i.e. for every finite dimensional unitary representation m of the group or
Hopf algebra, respectively, there is a y-invariant Hilbert space T in M such that v [ T is
equivalent to .

Proposition 4.4.9 Let M be a von Neumann algebra supporting an action of thﬁ quan-
tum double D(G). Assume further that there s a unitary representation of G in M where
U(g) € My and ap(U(g)) = U(hgh™t). Then the action of D(G) on M is dominant if

A

and only if the action of G on M = ~.(M) is dominant.

Proof. As a consequence of MY = MP( the conditions of proper infiniteness of the
fixpoint algebras coincide. The ‘only if’ statement is easily seen by considering the repre-
sentations of the double corresponding to the conjugacy class ¢ = {e}. For these N, =2 G
holds, implying that the representations of D(G) with ¢ = {e} are in one-to-one cor-
respondence to the representations of G. A multiplet in M transforming according to
({e}, ) is nothing but a w-multiplet in M.

The ‘if’ statement requires more work. We have to show that for every pair (c, ),
where 7 is an irreducible representation of the normalizer N,, there exists a multiplet of
isometries transforming according to (.. To begin with, choose g € ¢ arbitrarily and



find in M a multiplet of isometries v;, i = 1,...,d = dim(7) transforming according to
the representation m under the action of N, C G. The existence of such a multiplet follows
from the dominance of the group action on M. Now, let xy,...,x, be representatives of
the cosets G/N, where n = [G : Ny| = |c|. Furthermore, the proper infiniteness of the
fixpoint algebra allows us to choose a family Vi,...,V, of isometries in M% = MP(G)
satisfying V;*V; = 6,5, >, ViVi* = 1. Defining

Vi =Viag, (Ulg)v)), i=1,...,n,5=1,...,d (4.4.32)

one verifies that the ¥;; constitute a complete family of mutually orthogonal isometries
spanning a vectorspace of dimension nd = dim(# (). That this space is mapped into
itself by the action of the double follows from the fact that, for every £ € G, kx; can
uniquely be written as x; h, h € N,. Finally, the multiplet transforms according to the
representation (c,7) of D(G), which is evident from the definition of the latter in [34,
(2.2.2). ®

Remark. Since in our field theoretic application the conditions of the proposition are
satisfied thanks to Lemma 4.3.14 and the discussion in Subsection 4.4.2 we can conclude
that F(O), O € K has full D(G)-spectrum.

4.4.5 Commutation Relations and Statistics

Up to this point our investigations in this section have focused on the local inclusion
A(0) c F(O) for any fixed region @. Having clarified the relation between these algebras
in terms of the action of the quantum double we can now complete our discussion of
the latter. To this purpose we recall that the double construction has been introduced
in [50] as a means of obtaining quasitriangular Hopf algebras (quantum groups) in the
sense defined there, i.e. Hopf algebras possessing a ‘universal R-matrix’. As it turns
out the latter appears quite naturally in our approach when considering the spacelike
commutation relations of irreducible D(G)-multiplets as defined above.

Proposition 4.4.10 Assume the net O — F(O) is bosonic, i.e. fulfills untwisted locality.
Let Oy < Oy (i.e. Oy CWEY) and Y1, 12 be D(G)-tensors in F(Oy), F(Os), respectively.
They then fulfill C-number commutation relations

wigi =) Wi (Dj; © D3 (R), (4.4.33)
Z'Ijl
where D', D? are the matrices of the respective representations and
R=Y"V,®U, € D(G) @ D(G). (4.4.34)
geG

Proof. The equation »_ V=1 in D(G) implies }_ 7, = id. We can thus compute

it = > v vl =) ag(v?) v(¢)) (4.4.35)

geG geG

= DD Ui D3y(Uy) Diu(Vy),

geG 4!



where the second identity follows from 7,(1}) € F(Oy) UP (g) and AdU (g) | F(O,) =
ag. The rest is clear. W

Remarks. 1. Commutation relations of the above general type have apparently first been
considered in [61]. For the special case of Z(NN) order disorder duality they date back at
least to [107].

2. By this result the field extension of Definition 4.3.1 in conjunction with Theorem
4.4.4 may be considered a local version of the construction of the double. (If we had used
the Ug (g) we would have ended up with R~* which would do just as well.)

3. If the net O — F(O) is fermionic an additional sign 4+ appears on the right hand
side of (4.4.33) depending on the Bose/Fermi nature of the fields. Using the bosonization
prescription of the next section this sign can be eliminated.

Let ¢, 1 =1...d, be a multiplet of isometries in F (O) transforming according to the
irreducible representation r of D(G). Then the map

p() = Z¢ i (4.4.36)

defines a unital *-endomorphism of F. The relative locality of A and F implies the
restriction of p to A to be localized in O in the sense that p(A) = A VA € A(O').
Furthermore, p maps A(O;) into itself if O; D O as follows from the D(G)-invariance
of p(x) for x € A. (The conventional argument using duality would allow us only to

conclude p(A(O,)) C A(0y).)
Proposition 4.4.11 In restriction to A(O1), O1 D O the endomorphism p is irreducible.

Proof. The proof is omitted as it is identical to the proof of [81, Prop. 6.9] where compact
groups are considered. W
Remarks. 1. In application to the net A the endomorphisms p are localized only in wedge
regions, i.e. they are of solitonic character.

2. Due to the spontaneous breakdown of the quantum symmetry the endomorphisms
p which arise from non-group representations of D(G) should not be considered as true
superselection sectors of the net A [ Hy. This would be justified if the symmetry were
unbroken. Nevertheless, one can analyze their statistics, as will be done in the rest of this
section.

In order to study the statistics of endomorphisms one introduces [37, 56| the statistics
operators

e(pr, p2) = Us p1(Uz) € (p1p2, p2p1), (4.4.37)

where Us is a charge transporter intertwining ps and po, the latter being localized in the
left spacelike complement of the localization region of p;. With Uy = ), ¢§2) 7,[11(2)* and
using the spacelike commutation relations (4.4.33) we obtain

elprp2) = > 0P vl Pl (D), © DE)(R). (4.4.38)

ijkl



Introducing the left inverse [35] of an endomorphism, which for morphisms implemented
by a multiplet of field operators [45] is given by

Z¢ i, (4.4.39)

f’z‘1

one obtains for the statistics parameter [35]

p

1 *
Ao = p(ep.0) sz (Du® D) (R) = — vt My, (4.4.40)
14 4

a5l

where

My; = Dij(m(R)) = D)V, Uy)). (4.4.41)

An easy calculation shows that X = m(R) = > V, U, is a unitary element in the center of
D(G). This implies that it is represented by a phase w, in every irreducible representation
r of D(G), i.e. M;; = 6;; w, which, applying the completeness relation (4.3.29), gives

(4.4.42)

Recalling Lemma 4.4.7 we see that in restriction to a field operator in a multiplet trans-
forming according to the irreducible representation r the action of vx amounts to multi-
plication by w,. The unitary X € D(G) may thus be interpreted as the quantum double
analogue of the group element k£ which distinguishes between bosons and fermions. This
is reminiscent of the notion of ribbon elements in the framework of quantum groups,
see Appendix C. In fact, the operator X defined above is just the inverse of Drinfel’d’s
u =7, VyUgr which itself is a ribbon element due to S(u) =

Appealing to the representation theory of D(G) as expounded in [34] it is easy to
compute the phase w, for the representation r = (¢, 7). It is given by the scalar to which
g € ¢, obviously being contained in the center of the normalizer Ny, is mapped by the
irreducible representation m of Ny. As an immediate consequence [33] w, is an n-th root
of unity where n is the order of g.

Another consequence of (4.4.42) is that the statistical dimension of the sector p, defined
as d, = |\, ! coincides with the dimension of the corresponding representation of the
quantum double. This was to be expected and is in accord with the fact [81] that the
action of finite dimensional Hopf algebras cannot give rise to noninteger dimensions.

We now turn to the calculation of the monodromy operator

m(p1, p2) = €(p1, p2) €(p2, p1), (4.4.43)

which measures the deviation from permutation group statistics. Inserting the statistics
operators according to (4.4.38) and using twice the orthogonality relation we obtain

m(p1, p2) Z e ¢1 v (D; i @ D})(R) (Diy © Dy )(R). (4.4.44)
17kl
k'l



The numerical factor to the right can be simplified to

g,heG

where

I=Ro(R) (4.4.46)

can be considered as the quantum group version of the monodromy operator. Finally we
define the statistics characters [91] by

Yij = did; ¢i(em(pi, pj)")- (4.4.47)

Due to the fact that ¢;(ep(ps, p;)*) is a selfintertwiner of p; and the irreducibility of the
latter, this gives a square matrix of c-numbers indexed by the superselection sectors, i.e.
in our case the representations of the double. Inserting (4.4.44) and using Y;; o< 1 we
obtain

Y = (tr; @ trj) o (D' @ D?)(I*). (4.4.48)
1
Gl
known facts concerning the representation theory one concludes [2] that the quantum
double D(G) is a modular Hopf algebra in the sense of [94]. We are now in a position to
complete our demonstration of the complete parallelism between quantum group theory
and quantum field theory (which we claim only for the quantum double situation at hand!).
What remains to be discussed is the Verlinde algebra structure [113] behind the fusion of
representations of the double and the associated endomorphisms of F, respectively. The
fusion rules are said to be diagonalized by a unitary matrix S if

In [2] it was shown that Y is invertible, in fact =Y is unitary. In conjunction with the

Sim Sjm Sk
k __ mm ~Mgm MEm
Nf = zm: g (4.4.49)
(For a comprehensive survey of fusion structures see [63].) One speaks of a Verlinde
algebra if, in addition, S is symmetric, there is a diagonal matrix 7" of phases satisfying
TC = CT =T (C;; = 6;; is the charge conjugation matrix) and S and T constitute a
representation of SL(2,Z) (in general not of PSL(2,Z) = SL(2,Z)/Z,), i.e.

S? = (ST)* = C. (4.4.50)

On the one hand the representation categories of modular Hopf algebras are known [94]
to be modular, i.e. to satisfy (4.4.49) and (4.4.50), where the phases in T are given by the
values of the ribbon element X in the irreducible representations.

On the other hand this structure has been shown [91] to arise from the superselection
structure of every rational quantum field theory in 1 4+ 1 dimensions. In this framework
the phases in T are given by the phases of the statistics parameters (4.4.42), whereas the
matrix S arises from the statistics characters

1/3
T= (%) Diag(w;), S = |o|'Y (4.4.51)



For nondegenerate theories the number o = 3. w; ' d? satisfies |o|> = >, d?. Using the
result [2] ¢ = |G| this condition is seen to be fulfilled, for the semisimplicity of D(G) gives
>, & = dim(D(G) = |G

We thus observe, for the orbifold theories under study, a perfect parallelism between
the general superselection theory [91] for quantum field theories in low dimensions and
the representation theory of the quantum double [34]. This parallelism extends beyond
the Verlinde structure. One observes, e.g., that the equations (2.4.2) of [34] and (2.30) in
[91], both stating that the monodromy operator is diagonalized by certain intertwining
operators, are identical although derived in apparently unrelated frameworks.

4.4.6 Complements on Fixpoint Nets and Solitons

In this subsection we apply the considerations of Section 3.7, where the extension of DHR
representations of wedge-dual nets to the dual net were discussed in an abstract way, to
the fixpoint net 4 = F¢. For simplicity we assume the net F to be bosonic, i.e. local.
Considering A(Q) = A(O) | Hy as the observables, we have seen that 2 satisfies only
wedge duality. Nevertheless, the result of [35] that the restrictions of A to the charged
sectors, interpreted as representations of the abstract C*-algebra A satisfy the DHR
criterion and are connected to the vacuum by charged fields, remains true. Furthermore,
we know that the dual net in the vacuum sector is given by

AN O) = AL(O) | Ho = Ar(O) | Ho, (4.4.52)

where

Apjr(0) = Frjr(0)¢ = Frr(0)NU(GY, (4.4.53)

the nonlocal nets ]:"L/ r(O) being obtained by adjoining to F(QO) the disorder operators
UP(G) or UL(QG), respectively.

We will first discuss the case of abelian groups GG. The disorder operators commuting
with G, AL/R((’)) is simply A(O) Vv US/R(G)". On the C*-algebra AL/R there is an action

of the dual group G which acts trivially on A and via
& (Ug)r(9)) = x(9) UL r(g) YO €K (4.4.54)

on the disorder operators, cf. Section 4.4.1. Since this action commutes with the Poincaré
group and since it is spontaneously broken (wp o &, # wo Vx # eg) it gives rise to
inequivalent vacuum states on A via

Wy = Wp O Gy,. (4.4.55)

Now, the sectors in H are labeled by the characters y € G and the representation of A
in H, is of the form

m(A) = A | Hy 2 70(A) = Ay* | H, (4.4.56)

where ¢ € F(O) and a4(¢) = x(g)¢. We can now consider the extensions 7 r, Ty r
of m, to the dual net A% As is obvious from (4.4.56) and the commutation relation



(4.2.2) between fields and disorder operators, the extension 7, j (7, g) is nothing but a
soliton sector interpolating between the vacua wy and wy-1 (w, and wp). The moral is
that the net A% while not having nontrivial localized representations by Theorem 3.4.1,
admits soliton representations. Furthermore, with respect to A% the charged fields 1,
are creation operators for solitons since they intertwine the representations of A% on H,
and H,.

Due to U (9) UR (9) = U(g) and U(g) | Hy = x(g)1 we have

UL (9) I Hy = x(9) UR(g7") I Hy, (4.4.57)

so that the algebras Aj /r(O) | H, are independent of whether we use the left or right
localized disorder operators. In particular, in the vacuum sector U (g) and US(g71)
coincide, but due to the different localization properties it is relevant whether Uf (g),
considered as an element of A%, is represented on H, by Uy (g) or by x(9) US(g™"). This
reasoning shows that the two possibilities for extending a localized representation of a
general non-dual net to a representation of the dual net correspond in the fixpoint situation
at hand to the choice between the nets AL and AR arising from the field extensions .7-'L
and TR.

We now turn to non-abelian (ﬁnite) groups (G where the outcome is less obvious a
priori. Let A = > ge F,U%(g) € AL(O) (F, must satisfy the conditions given in Theorem
4.3.16 and let ¢; € F(O), where O < O be a multiplet of field operators transforming
according to a finite dimensional representation of G. Then

sz ZFUL w Z szag FUL( ) (4458)

geG geG 1

In contrast to the abelian case where 1 ay(¢*) is just a phase, Oy = > . ¢a,(¢7F) is a
nontrivial unitary operator

=D oy (w)] (4.4.59)

satisfying
@k(Og) = Okgkfl. (4460)

In particular (4.4.58) is not contained in .A%(Q) which implies that the map A — 3 v; A 7
does not reduce to a local symmetry on AL(WgR). Rather, we obtain a monomorphism
into AL(WS). Defining @ and Oy as in Section 3.7 of Chapter 3 we clearly see that
(4.4.58) is contained in A%(O). Furthermore, due to the relative locality of the net .4
with respect to A% and F, (4.4.58) commutes with A(Op). Thus we obtain precisely the
localization properties which were predicted by our general analysis in Section 3.7.

4.5 Further Directions

4.5.1 Generalization to Continuous Groups (partial)

In this subsection we will generalize our considerations on quantum double actions to
arbitrary locally compact groups (the quantum field theoretic framework gives rise only



to compact groups.) In Section 4 we identified von Neumann algebras acted upon by
the double D(G) of a finite group with von Neumann algebras which are simultaneously
graded by the group and automorphically acted upon by the latter, satisfying in addi-
tion the relation (4.4.8). The concept of group grading, however, loses its meaning for
continuous groups. This problem is solved by appealing to the well known fact (see e.g.
the introduction to [77]) that an algebra A (von Neumann or unital C*) graded by a
finite group G is the same as an algebra with a coaction of the group. A coaction is a
homomorphism 6 from A into A ® CG satisfying

(6 ®id)od = (id ® dg) o6, (4.5.1)

where 0g : CG — CG ® CGE is the coproduct given by g — g ® g. The correspondence
between these notions is as follows. Given a G-graded algebra A = @©,A4,, AgA, C Ay,
and defining §(x) = z®g for x € A, one obtains a coaction. The converse is also true. The
relation ay(Ap) = Agng—1 between the group action and the grading obviously translates
to

doay,=(ag®Adg)od. (4.5.2)

The concept of coaction extends to continuous groups, where the group algebra CG
is replaced by the von Neumann algebra £(G) (here we will treat only quantum double
actions on von Neumann algebras) of the left regular representation which is generated
by the operators (A(g)¢)(h) = (g 'h) on the Hilbert space L?(G).

In the next step we give a precise definition of the double of continuous group. To this
purpose we have to put a topology on the crossed product of some algebra of functions
on the group by the adjoint action of the latter. There are many ways of doing this, as
is generally the case with infinite dimensional vector spaces. For compact Lie groups two
different constructions, one of which appears to generalize to arbitrary compact groups,
have been given in in [14]. The most important virtue of this work is that the topological
Hopf algebras obtained there are reflexive as topological vector spaces, making the duality
between D(G) and D(G)* very explicit. From the technical point of view, however, the
Fréchet topologies on which this approach relies are not very convenient. Yet another
interesting approach can be found in [76] where also the representation theory of the
quantum double in the (locally) compact case was studied. An application of the results
expounded there in analogy to Section 4 should be possible but is deferred for reasons of
space.

In the following we will define the quantum double in the framework of Kac algebras
[52, 53]. The latter has been invented as a generalization of locally compact groups which
is closed under duality. As the C* and von Neumann versions of Kac algebras have been
proved [53] equivalent (generalizing the equivalence between locally compact groups and
measurable groups) it is just a matter of convenience which formulation we use. We
therefore consider first the von Neumann version which is technically easier.

We start with the von Neumann algebra M = L*(G) of essentially bounded measur-
able functions acting on the Hilbert space H = L?(G) by pointwise multiplication. With
the coproduct I'(f)(g,h) = f(gh) and the involution &(f)(g) = f(g~!) it is a coinvolu-
tive Hopf von Neumann algebra. This means I' is a coassociative isomorphism of M into
M ® M, k is an anti-automorphism (complex linear, antimultiplicative and x(z*) = k(x)*)



and ok = 00 (k ® k) oI" holds where o is the flip. The weight ¢, defined on M, by
o(f) = [, dg f(g), is normal, faithful, semifinite (n.f.s.) and fulfills

1. For all z € M, one has (: ® ¢)I'(z) = p(x)1.
2. For all z,y € n, one has (: ® ¢)((1 @ y*)I'(z)) = k((: @ ¢)(T'(y*)(1 @ x))).
3. koof =0%, 0k VtER

This makes (M, T, k, p) a Kac algebra in the sense of [52], well known as K A(G). The
dual Kac algebra [52] of KA(G) is KS(G) = (£(G),T, %, ¢), the von Neumann algebra
of the left regular representation equipped with the coproduct T'(A(g)) = A(g) ® A(g), the
coinvolution #(A(g)) = A(g™!) and the weight ¢ which we do not bother to state (see e.g.
[72]).

Defining now an action of G on M by the automorphisms ay(f)(h) = f(g " hg) it is
trivial to check weak continuity with respect to g. Furthermore, oy is unitarily imple-
mented by u, = A(g)p(g), where (p(9)€)(h) = A(g)"/2¢(hg) is the right regular represen-
tation. We can thus consider the crossed product (in the usual von Neumann algebraic
sense [111]) M = M x, G on H ® [*(G) (= L*(G) ® L*(G)), generated by (M) and
M(9) =1y ®@A(g), g €G.

Proposition 4.5.1 There are mappings L, &, ® on M such that the quadruple (M, L, &, Q)
is a Kac algebra, which we call the quantum double D(G). On the subalgebras (M) and
M(G)" =1y @ L(G) the coproduct and the coinvolution act according to

?(W(ﬂf)) = (ron)((z)), Er(z))=r(kz)), z€M, (4.5.3)
L'(Ai(g)) = Ailg) @ Mig), E(Milg)) = M(g7h), g€G. (4.5.4)

The Haar weight ¢ is given by the dual weight [72]
g=por 'o(iy @) d(x)), (4.5.5)

where & is the dual coaction from M to M ® L(G) which acts according to

S(n(x)) = w(@)®1lye, z€M (4.5.6)

(M(g) = Mg ®@AMg), geq. (4.5.7)

Proof. The automorphisms a, of M are easily shown to satisfy I' o oy = (0 ® og) o T
and k o ay; = oy 0 k. (The first identity is just g '(hk)g = (¢ *hg)(g 'kg), the second
(g7 hg)™' = g7'h'g.) Thus a : G — Aut M constitutes an action of G on the Kac
algebra (M, T, k, ) in the sense of [31]. We can now apply [31, Théoreme 1] to conclude
that there exist a coproduct, a coinvolution and a Haar weight on M such that the
axioms of a Kac algebra are satisfied. The equations (4.5.3,4.5.4) are restatements of [31,
Propositions 3.1, 3.3] whereas the Haar weight is as in [31, Définitions 1.9]. W

Proposition 4.5.2 The dual Kac algebra of the quantum double is

D(G) = (L(G) @ L®(G), T, &, ¢ ® o). (4.5.8)



The coproduct and the counit are

Iz) = RAeoo) (o) (@) (1eoo1)R, (4.5.9)
) = V' (kok)(2)V, (4.5.10)

where R and V' are given by

(R&)(g9,h) = (un@1)&(g,h), (4.5.11)
(VE)(9) = uy&lg). (4.5.12)

Proof. This is just the specialization of [31, Théoréme 2] to the situation at hand. Accord-
ing to this theorem the von Neumann algebra underlying the dual of the crossed product
Kac algebra K x, G is M @ L*(G) where M is the von Neumann algebra of K. In our

case M = L°(G) such that M = £(G). The formulae for ' and & are stated in [31,
Proposition 4.10]. W
Remark. If the group G is not finite the quantum double is neither compact nor discrete,
for the weights @, » = ¢ ® ¢ are both infinite. -

We are now in a position to define a coaction of the dual double D(G) on an algebra
A, provided A supports an action « and a coaction ¢ satisfying (4.5.2) (with g replaced
by A(g)). In order to remove the apparent asymmetry between o : A x G — A and
d:A— A® L(G) we write the former as the homomorphism a : A — A® L*(G) which
maps ¢ € A into g — ay(x) € L*(G, A). We now show that the maps o and § can be
put together to yield a coaction.

—

Definition 4.5.3 The map A: A — A® L(G) ® L*(G) = A® D(G) is defined by
A=(4®0)0(a®igq)) 00, (4.5.13)

where 0 : x @y — y @ x is the flip map from L®(G) @ L(G) to L(G) @ L*(G).

—

Theorem 4.5.4 The map A is a coaction of D(G) on A, i.e. it satisfies
(A®15)0A = (14 @) 0 A. (4.5.14)

Proof. Appealing to the isomorphism A ® L*®(G) = L*®(G, A) we identify A @ L(G) ®
L>*(G)® L(G) ® L*(G) with L*®(G x G, A® L(G) ® L(G)). We compute (A ®1) o A(x)
as follows (abbreviating v.(q) by c)

(A®1) o Ax))(g,h) = (ag @1, @1z) 0 (6 Dg) 0 (ap, @12z) 0 0()
=(a,@1®1z) 0 (v, @ Ad A, @ 12) 0 (0 @ 22) 0 6(x) (4.5.15)
= (14 ® Ad Ay @12) 0 (gn ® T) 0 6(2).

The second equality follows from the connection (4.5.2) between the action « and the
coaction § whereas the third derives from the defining property (4.5.1) of the coaction I
Now (az, @T')0d(x) is seen to be nothing but [(1®e®1) (F@T)(z) (1®0®1)](g, h), and
the adjoint action of R in (4.5.9) is seen to have the same effect as Ad (14 @ Ad A\, @ 1)
due to p(g) € L(G)'. A



Proposition 4.5.5 The fizpoint algebra under the coaction A, defined as A® = {x € A |
A(z) =z ® 13}, is given by
AA = AN A, (4.5.16)

where A%, A% are defined analogously.

Proof. Obvious consequence of Definition 4.5.3. W

—

The coaction of the dual double D(G) on A constructed above is exactly the kind
of output the theory of depth-2 inclusions [82, 54] would give when applied to the in-
clusion AP(G) C A, which in the quantum field theoretical application corresponds to
A(0) € F(0). Nevertheless it is perhaps not exactly what one might have desired from
a generalization of the results of Section 4 to compact groups. At least to a physicist,
some kind of bilinear map v : A x D(G) — A, as it was defined above for finite G, would
seem more intuitive. This map should be well defined on the whole algebra A. Such
a map can be constructed, provided the von Neumann double D(G) is replaced by its
C*-variant, which is uniquely defined by the above mentioned results [7, 53]. The details
will be given in a subsequent publication.

4.5.2 Bosonization

In this section we will show how the methods expounded in the preceding sections can be
used to obtain an understanding of the Bose/Fermi correspondence in 141 dimensions in
the framework of local quantum theory. This is so say, we will show how one can pass
from a fermionic net of algebras with twisted duality to a bosonic net satisfying Haag
duality on the same Hilbert space, and vice versa. Our method amounts to a continuum
version of the Jordan-Wigner transformation and is reminiscent of Araki’s approach to
the XY-model [6].

Our starting point is as defined in Chapter 1, i.e. a net of field algebras with fermionic
commutation relations (1.3.2) and twisted duality (1.3.6) augmented by the split property
for wedge regions introduced in Section 2. As before there exists a selfadjoint unitary
operator V distinguishing between even and odd operators. For the present investigations,
however, the existence of further inner symmetries is ignored as they are irrelevant for the
spacelike commutation relations. Therefore we now repeat the field extension of Section 3
replacing the group G by the subgroup Zs = {e, k}. This amounts to simply extending the
local algebras by the disorder operator associated with the only nontrivial group element
k

F(O) = F(O) v {V°}, (4.5.17)

where VO = UP(k). Again, the assignment @ — F(O) is isotonous, i.e. a net. This is
of course the simplest instance of the situation discussed at the beginning of Section 4
where it was explained that there is an action of the dual group G on the extended net.
We thus have an action of Zs X Zy on the quasilocal algebra F generated by a = AdV
and [

aF+GV®) = F, - F +(G, -G )V°, (4.5.18)
B(F+GV®) = F-GV° (4.5.19)



where F,G € F. We now define F(0) as the fixpoint algebra under the diagonal action
aoff=pPoa:

FO)={z e FO)|z=aop(x))} (4.5.20)
Obviously F(©O) can be represented as the following sum:
F(O)=F(O); + F(O)_V°. (4.5.21)

It is instructive to compare F(O) with the twisted algebra
F(O)Y =F(O),+FO)_V, (4.5.22)

the only difference being that in the former expression V¢ appears instead of V. This
reflects just the difference between Jordan-Wigner and Klein transformations. It is well
known that the net F! is local relative to F. That the former cannot be local itself,
however, follows clearly from the fact that it is unitarily equivalent to the latter by

F(O) = ZF(0)Z*.

Lemma 4.5.6 Let Wy, and Wg be left and right wedges, respectively. Then the wedge
algebras of F are given by

FWy) = F(Wy), (4.5.23)
FWr) = F(Wg)". (4.5.24)

Wedge duality holds for the net F.

Proof. V© is contained in F(Wp), for any O C Wy. Thus, F(W;)_V° = F(W.)_,
whence the first identity. Similarly we have V¥ € F(Wg), for O € Wk, from which we
obtain F(W.,)_V® = F(W.)_ V. Wedge duality for F now follows immediately from
twisted duality for 7. W

Proposition 4.5.7 The net O — F(O) is local.

Proof. Let O1, 05 be mutually spacelike double cones. We may assume OJ; < O, such that
WS and W2 are mutually spacelike. The commutativity of F(O;) and F(O,) follows
from the preceding lemma and twisted locality for F since Oy C WL(9 Yand Oy C ng 2,
[ |

Remark. A more intuitive proof goes as follows. Let F; € F(O;) ,i = 1,2. Then
commuting Fy VO through F, V©? gives exactly two factors of —1. The first arises from
F\F, = —F,F, and the other from V2 F, = —F,V?2, whereas Vo1 F, = F,V 1.

Proposition 4.5.8 The net F fulfills Haag duality for double cones.

Proof. We have to prove F(O) = F(WE)AF(WP). Using the lemma the right hand side
is seen to equal F(WP) A F(WE)! which by (4.2.17) is unitarily equivalent to F(W§)! @
F(WP). On the other hand (4.2.19) leads to
F(O)=F(0), + F(O)_V°
= FWR)+ @ F(WE )y + F(WE)-V @ F(Wr)-
+ [FWE) @ FWP)y + FWR) Vo FWY) Vel
= F(WE) @ F(WP) (4.5.25)



which completes the proof. W

It is obvious that the net F is Poincaré covariant with respect to the original represen-
tation of P. Finally, the group G acts on F via the adjoint representation g — AdU (9).
In particular AdU (k) = AdV acts trivially on the first summand of the decomposition
(4.5.21) and by multiplication with —1 on the second, i.e. the bosonized theory carries an
action of Zs in a natural way.

It should be clear that the same construction can be used to obtain a twisted dual
fermionic net from a Haag dual bosonic net with a Z, symmetry. It is not entirely
trivial that these operations performed twice lead back to the net one started with, as the
operators V' constructed with the original and the bosonized net might differ. That this
is not the case, however, can be derived from Lemma 4.5.6, the easy argument is left to
the reader.

4.5.3 Chiral Theories on the Circle

For the foregoing analysis in this Chapter the split property for wedges was absolutely
crucial. While this property has been proved only for free massive fields it is expected to
be true for all reasonable theories with a mass gap. For conformally invariant theories in
1 4+ 1 dimensions, however, it has no chance to hold. This is a consequence of the fact
that two wedges W7 C W, ‘touch at infinity’. More precisely, there is an element of the
conformal group transforming Wi, W5 into double cones having a corner in common. For
such regions there can be no interpolating type I factor, see e.g. [17]. On the other hand,
for chiral theories on a circle, into which a 141 dimensional conformal theory should
factorize, an appropriate kind of split property makes sense. For a general review of the
framework, including a proof of the split property from the finiteness of the trace of e 710,
we refer to [64]. We restrict ourselves to a concise statement of the axioms.

For every interval I on the circle such that I # S, there is a von Neumann algebra
2A(I) on the common Hilbert space . The assignment I — 2((I) fulfills isotony and
locality:

L clL = A1) c2A), (4.5.26)
LNl = 0 = Q[(Il) C 2[([2)1 (4527)

Furthermore, there is a strongly continuous unitary representation of the Mobius group
SU(1,1) such that a,(A(I)) = AdU(g)(A(I)) = A(gI). Finally, the generator L of the
rotations is supposed to be positive and the existence of a unique invariant vector € is
assumed.

Starting from these assumptions one can prove, among other important results, that
the local algebras 2A(I) are factors of type I1I; for which the vacuum is cyclic and sepa-
rating. Furthermore, Haag duality [64] is fulfilled automatically:

A1) = A(L'). (4.5.28)

Given a chiral theory in its defining (vacuum) representation 7w one may consider inequiva-
lent representations. An important first result [22] states that all positive energy represen-
tations are locally equivalent to the vacuum representation, i.e. 7 [ (1) = mo [ A(I) V1.



This implies that all superselection sectors are of the DHR type and can be analyzed
accordingly [55, 57]. As a means of studying the superselection theory of a model it has
been proposed [102] to examine the inclusion

A(L) v AL) C (A(L) VA(L)) = A(T341) A UA(L193), (4.5.29)
where I, 4 are quadrants of the circle and I, = I; U I; U I:
I
I Q I (4.5.30)
I3

At least for strongly additive theories, where 2A(I1) vV (L) = A(I) if Iy U, = I, the
inclusion (4.5.29) is easily seen to be irreducible. In the presence of nontrivial superselec-
tion sectors this inclusion is strict as the intertwiners between endomorphisms localized in
I, I3, respectively, are contained in the larger algebra of (4.5.29) by Haag duality but not
in the smaller one. Furthermore, for rational theories the inclusion (4.5.29) is expected
to have finite index.

While we have nothing to add in the way of model independent analysis the techniques
developed in the preceding sections can be applied to a large class of interesting models.
These are chiral nets obtained as fixpoints of a larger one under the action of a group. I. e.
we start with a net I — F(I) on the Hilbert space # fulfilling isotony and locality, the
latter possibly twisted. The Mébius group SU(1, 1) and the group G of inner symmetries
are unitarily represented with common invariant vector 2. Again, the net F is supposed
to fulfill the split property (with the obvious modifications due to the different geometry).
The net I — () is now defined by A(I) = F(I)AU(G)" and A(I) = A(I) | Hy where H,
is the space of G-invariant vectors. The proof of Haag duality for chiral theories referred
to above applies also to the net 2, implying that there is no analogue of the violation of
duality for the fixpoint net as occurs in 141 dimensions. This is easily understood as a
consequence of the fact that the spacelike complement of an interval is again an interval,
thus connected. However, our methods can be used to study the inclusion (4.5.29).

It is clear that due to the split property

A(L) vV A(Ls) = F(I) @ F(I)*C | Ho @ Ho. (4.5.31)

Our aim will now be to compute (2(/3) V(I4))". In analogy to the 1+1 dimensional case
we use the split property to construct unitaries Yi,..., Yy : H — H ® H implementing
the following isomorphisms:

Y; FiF't+2 Y'=F® th+2 VF; € F(I;). (4.5.32)

2

(One easily checks that Y; 1o =TY; where Tx @ y = y ® 2.) These unitaries can in turn
be used to define local implementers of the gauge transformations

U(g) =Y (U(g) ® 1) Y; (4.5.33)



with the localization U;(g) € F(I;12)'. (The index arithmetic takes place modulo 4.)
These operators satisfy

[Ui(g)a Ui+2(h ] = 0, (4535)
Ui(9) Ui+2(g) = U(g). (4.5.36)

By calculations similar to those in Section 4.3 one shows (F; = F(I;) etc.)
(A V Ay)' = (F vV F)' ' VUL(G)' Vv Uy(G)". (4.5.37)
At this point we strengthen the property of Haag duality for the net F by requiring
(FLV Fs) = (FV Fu), (4.5.38)

which by the above considerations amounts to JF having no nontrivial superselection
sectors. This condition is fulfilled, e.g., by the CAR algebra on the circle which also
possesses the split property. The chiral Ising model as discussed in [13] is covered by our
general framework (with the group Z,).

While (4.5.38) is a strong restriction, it is the same as in [33] where the larger theory
was supposed to be ‘holomorphic’, i.e. devoid of nontrivial representations. As we have
seen, the assumptions (HD+SPW) made in the preceding sections of this chapter, where
we studied massive theories, also imply the absence of charged sectors which, however, is
much less obvious.

Making use of (4.5.38) we can now state quite explicitly how (A V 244)" looks. In
analogy to Theorem 4.3.10 we obtain

Ao VA =m (FLV FVU(G)) | Ho. (4.5.39)

Again, using (4.5.38) one can check that ay(g) = AdU(g) restrict to automorphisms of
F1 V Fs rendering the algebra F; V F3 V Us(G)" a crossed product. Recalling

Qll vV 2[3 = m(]:l) V m(.ng) T/Ho (4540)
we have the following natural sequence of inclusions:
2[1 V 2[3 C m(fl V fg) r H() C (2[2 vV 2[4)1 (4541)

both of which have index |G|. It is interesting to remark that the intermediate algebra
m(F1L V Fs) | Ho equals (m(Fz2V Fy) [ Ho)'. For general chiral theories the existence of
such an intermediate subfactor between 2d; V243 and (2 vV 2(4)" is not known. In the case
of G being abelian where the U;(g) are invariant under global gauge transformations we
obtain a square structure similar to the one encountered in Section 3.

A, VAV UL(G) C Az v Ay)
U U (4.5.42)
AV 2[3 C m(.7—"1 V f3) r Ho.



It may be instructive to compare the above result with the situation prevailing in 2+1
or more dimensions. There, as already mentioned in Chapter 1, the superselection theory
for localized charges is isomorphic to the representation theory of a (unique) compact
group. Furthermore, there is a net of field algebras acted upon by this group, such that
the observables arise as the fixpoints. The analogue of the inclusion (4.5.29) then is

A(O) V A(Oz) C AO, N O, (4.5.43)

where O, Oy are spacelike separated double cones. Under natural assumptions it can
be shown that the larger algebra equals m(F(O;) V F(Os)) | Ho, implying that the
inclusion (4.5.43) is of the type (F; @ F2)9%¢ C (F1 ® fg)Dlag(G) just as the first one in
(4.5.41). That the index of the inclusion (4.5.29) is |G|? instead of |G| as for (4.5.43) is a
consequence of the low dimensional topology comparable to the phenomena occurring in
1+ 1 dimensions.

Finally, we should mention that results similar to those of this subsection have been
announced by Wassermann [114].






Chapter 5

Summary and Outlook

In this final chapter we summarize our results and indicate several directions for further
investigations. We begin our discussion with Chapter 3 which was independent of aspects
of group symmetry. There we have examined nets of observables satisfying the split
property for wedges. Taking this property for granted for a moment, we have seen that in
combination with Haag duality it has remarkable unifying power. Firstly, this combination
of axioms implies several very desirable structural properties, to wit factoriality of the
double cone algebras, n-regularity for all n, and the time-slice property. Even more
remarkable are the implications for the superselection structure. As a consequence of the
minimality of relative commutants of double cone algebras we obtain Haag duality in all
irreducible, locally normal representations. The strongest result concerns the absence not
only of locally generated superselection (DHR) sectors but also of charges localized in
wedges. This in turn implies that soliton representations are characterized up to unitary
equivalence by their asymptotic vacua.

The bulk of this dissertation was concerned with aspects of group symmetry in quan-
tum field theories in 141 dimensions. The starting point for the investigations of Chapter
4 was a field theory with an unbroken symmetry group, satisfying otherwise the same as-
sumptions as the observables in Chapter 3 (Haag duality and the SPW). Under these
conditions the fixpoint is easily proved not to satisfy Haag duality in the simple sectors.
This argument does not apply to conformally covariant models since they cannot satisfy
the SPW. In fact, in the conformal case duality does hold for fixpoint net [16]. Since
in higher dimensions the fixpoint net always satisfies duality — irrespective of conformal
covariance — one may wonder why things are different in two dimensions. The point is
that in > 2 + 1 dimensions the spacelike complement of a double cone O is connected in
Minkowski space as well as in the ‘conformal spacetime’ of [84], whereas in 1 + 1 dimen-
sions (@' is connected only in the latter spacetime. Although these considerations already
hint at qualitative differences between the superselection structures of massive and con-
formally covariant models in 1 + 1 dimensions, it is only Theorem 3.4.1 which makes this
precise. It shows that massive models can have non-trivial DHR sectors only if Haag
duality is violated, whereas in the conformal case Haag duality is automatically satisfied
in the vacuum sector and all positive energy representations are of the DHR type. (As
always, massless models without conformal covariance, in particular gauge theories, are
the most difficult, and we have nothing to say with respect to these.)
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The basic tool for the investigations on massive fixpoint nets in Chapter 4 were disorder
operators. They implement a global symmetry transformation on the fields localized in
some wedge region and commute with the operators localized in the spacelike complement
of a somewhat larger wedge. The canonical existence of such operators as well as their
behavior under global gauge transformations follow from the SPW. Whereas disorder
operators are only localized in wedge regions, they can in a natural way be associated
to the bounded region where the interpolation between the global group action and the
trivial action takes place. Extending the local algebras F(O) of the original theory by
the disorder operators corresponding to the double cone O gives rise to a nonlocal net
F. (This net is uniquely defined even if the SPW does not hold, provided disorder
operators exist.) This nonlocal net is useful in two respects. Firstly, we have obtained
an explicit characterization of the dual net A% which is just the fixpoint net A = F¢
corresponding to the nonlocal extension F. Secondly, the net F provides a very instructive
example of a quantum field theory with quantum symmetry. It supports an action of the
quantum double D(G) which, however, is spontaneously broken in the sense that only
the subalgebra CG is implemented by operators on the Hilbert space. Nevertheless, all
other aspects of the quantum symmetry, like R-matrix commutation relations and the
Verlinde algebra, show up and correspond nicely to the structures expected due to the
general analysis [56, 91]. The spontaneous breakdown of the quantum symmetry is by no
means a pathological phenomenon. On one hand, it allows for a deeper understanding
of the violation of Haag duality for the fixpoint net A4 in analogy to Roberts’ analysis in
the group case. On the other hand it is in accord with the findings of [75] where it was
argued (in the case of a cyclic group Z(N)) that the vacuum expectation values of order
and disorder variables can vanish jointly, as they must in the case of unbroken quantum
symmetry, only if there is no mass gap. This, however, is excluded by the SPW.

In view of the fact that in the situation studied in this paper ‘one half’ of the quantum
double symmetry is spontaneously broken, it is natural to study also the dual situation,
where one starts with a Haag dual net B(Q) of C*-algebras with abelian (for the moment)
symmetry group K and a vacuum state wy which is not gauge invariant. Let H, be the
associated GNS-Hilbert space and let us assume that the symmetry is completely broken,
ie. wry = wooay # wy Vk # e. (Examples for this situation are provided by the dual
nets associated with the fixpoint nets under abelian groups G, cf. Section 4.4.1. lLe.
B(O) := A(O) | Ho and K := G.) Assuming again the SPW, it is known [101] that there
are soliton states interpolating any two of these inequivalent vacua. One may then consider
the reducible representation m = @7 of B on the Hilbert space H = ®rexHyr wWhere
7, is the GNS-representation corresponding to a soliton state which connects the vacua
wo and wg. (Of these representations only 7, is a vacuum representation.) Furthermore,
in strong analogy to [36] one can define ‘soliton creation operators’ Wy, k£ € K which
intertwine m, and 7, and which generate an irreducible ‘field algebra’ D on H. Finally,
there is an action f3; of K on D via

Bi(Wg) = (LK) Uy, ke K,l€ K (5.1.1)

which commutes with the action of K. The operators ¥, are true soliton operators since
their vacuum expectation values vanish —in contrast to the ‘fields’ ¢/; in B which transform



nontrivially under K via
() = Lk Yy, ke K le K. (5.1.2)

Finally, the operators ¢y, ¥y, k € K,l € K obey order-disorder commutation relations.
Thus, the resulting situation is in a sense the mirror image — or ‘dual’ — of that in Section
4.4.1, K and K playing the roles of G and G, respectively. In fact, we claim that in this
situation the following is true. Forgetting about the net F on the large Hilbert space
H and retaining only B(O) := A(O) | M, and the action of K := G, the construction

sketched above just recovers the original net F and the action of G. Namely, K= G =G
and F(O) = D(O)%. Using the methods of [35] the proof should be straightforward, but
is deferred to a future publication. Instead, we refer to Section 4.4.6 where it was shown
that the extension to the dual net A% of the DHR representation 7, x € G of the fixpoint
net A leads just to a soliton sector which interpolates wy and wg o &,. In this context we
should mention that we did not yet study the residual symmetry of A% = A in the case
where (G is non-abelian.

The duality between the scenario sketched above and the one in Section 4.4 can easily
be understood in physical terms. It is well known that quantum field theories in 1 + 1
dimensions, like the P(¢$), models, typically possess a unique symmetric vacuum for
some range of the parameters whereas spontaneous symmetry breakdown and vacuum
degeneracy occur for other choices. In both cases either the order or the disorder symmetry
is spontaneously broken in accordance with the result of [75]. Yet, the construction
sketched above shows that the algebraic structure of order-disorder duality is the same in
both massive regimes.

From a mathematical point of view the construction of disorder fields from the order
variables (Section 4.4) or conversely (above) may be considered as a local version of the
construction of the quantum double. We recall that the quantum double was invented by
Drinfel’d as a means to obtain quasitriangular Hopf algebras, and in [93] it was shown to
be ‘factorizable’, see Appendix C. Factorizable Hopf algebras are self-dual structures [85]
which generalize the obviously self-dual algebra C(G x é’) where GG is an abelian group.
An unbroken implementation of the quantum double symmetry can only occur in massless
representations. For the P(¢), theory with interaction A¢* — §¢? it is furthermore known
that there is a critical point at the interface between the symmetric and broken phases.
Unfortunately, little is rigorously known about the possible conformal invariance of the
theory at this point.

Before we turn to the discussion of Chapter 2 an amusing remark seems appropriate.
The investigations in Chapter 4 were to a good deal motivated by the works [33, 34]
on conformal quantum field theories. In [33] conformal group fixpoint theories (‘orbifold
theories’) were considered in the special case where the original theory is ‘holomorphic’,
i.e. has no representations besides the vacuum. For technical reasons (existence and
uniqueness up to local fields of disorder operators) we were led to require Haag duality
and the split property for wedges, the latter being incompatible with conformal covariance.
Yet, it turned out (Theorem 3.4.1) that these requirements are essentially equivalent to
the holomorphicity assumption!

In view of the results of the Chapters 3 and 4, it seems quite urgent to verify the
SPW for at least one nontrivial (i.e. not free) massive field theory lest these parts of



present work be just a theory about free fields. For the free massive scalar field the
modified nuclearity condition of Appendix B can be verified explicitly as will be shown in
a forthcoming publication.

We now turn to Chapter 2, were we began with the proof of two intuitively reasonable
properties of the Doplicher-Roberts construction in > 2 4+ 1 dimensions. The (essentially
unique) complete field net which describes all DHR sectors has itself no localized sectors,
and it can also be obtained from an intermediate, thus incomplete, field net by an applica-
tion of the DR construction. Clearly, the complete (w.r.t. the DHR sectors) field net may
still have nontrivial representations with the weaker Buchholz-Fredenhagen localization
property.

Turning to 1 + 1 dimensions, and not assuming the SPW such that there may be
DHR sectors, the situation is in a sense quite similar. The degenerate sectors may be
considered ‘better localized’ than generic DHR sectors insofar as they arise from local
fields, in contrast to what is to be expected in the general case. Non-local charged
fields played a role, e.g., in [87] where, however, the underlying quantum symmetry was
spontaneously broken. As will be shown elsewhere, the symmetry breakdown encountered
there is generic in massive models. As was mentioned above, the peculiar nature of the
superselection structure of massive models manifests itself also in an analysis which starts
from the observables [88]. For this reason, the considerations in Sections 3 and 4 were
aimed primarily at conformally covariant theories in 1 4+ 1 dimensions. This leads us to
the following concluding remark.

It is well known [84] that conformal theories live on a suitably compactified Minkowski
space. This compactification renders the spacetime non-simply connected, which in turn
implies the existence of a center in the algebra of observables [57]. Triviality of the center
was however an essential requirement for the Doplicher-Roberts analysis, in particular [42,
45]. In our first approach we circumvented this problem by working with the restriction of
the net to Minkowski space. Since this ‘removal of a point at infinity’ may destroy Haag
duality, an analysis on the compactified spacetime seems desirable. It should be obvious
that in this case the DR construction may produce fields which live only on a covering
space.

What remains to be done is, of course, to provide a solution of the ‘quantum symmetry
problem’ which is as thorough as the DR reconstruction theory. By the above result one
needs to consider only the non-degenerate case. Since every finite dimensional factorizable
Hopf algebra can be obtained as a quotient of a quantum double by a two-sided ideal one
may expect that quantum doubles will play an important role in an extension of the
constructions in [47] to low dimensional theories. In the literature there exist several
Tannaka-Krein-type reconstruction theorems for braided monoidal categories. As in the
symmetric case they are, however, not sufficient for the problem at hand since in the
quantum field theoretic application one does not have a representation functor, i.e. the
finite dimensional representation spaces are not explicitly given. Even though relaxing
this assumption does not lead to a more general structure than compact groups in the
symmetric case, it is by no means clear that compact quantum groups, say, are already
the end of the story.
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Appendix A

Local Symmetries and the
Translation Group

In this appendix we expose some consequences of the fact that in 1 + 1 dimensions the
Poincaré group has finite dimensional unitary representations contrary to the situation in
higher dimensions. In [41, Theorem 10.4] it has been shown that the group

Gmax = {U € UH) | UQ = Q, UF(O)U* = F(O) YO} (A.1.1)

of all local symmetries of a quantum field theory with the distal split property commutes
elementwise with the Poincaré transformations U(P), as a consequence of which [16,
Theorem 3.1] there can be only one representation of the Poincaré group compatible with
the local structure. These results hinge upon the fact that there are no finite dimensional
unitary representations of P which, however, is not true in 1 + 1 dimensions. Instead we
have

Lemma A.1.9 Every finite dimenstonal unitary representation of the Poincaré group P
in 1+1 dimensions factors through the homomorphism P — L : (a,A) — A, i.e. is trivial
on the normal subgroup of translations. It is thus unitarily equivalent to a direct sum of
one dimensional representations (a, A) — e™** which are parameterized by s € R.

Proof. Let P°, P!, K be the hermitian generators of the translations and the boosts. As
P? and P! commute they can be jointly diagonalized by a unitary transformation. The
defining relations [P°, K] = P', [P', K] = P° now take the form P? K;; — K;; P]Q = 6;; P!
which for ¢ = j reduces to P! = 0 and similarly for P°. The proof is finished by observing
that the Lorentz group in 1 + 1 dimensions is isomorphic to R. W

We can now state the 14+1 dimensional version of [41, Theorem 10.4].

Proposition A.1.10 Let a quantum field theory in 1+1 dimensions be given where the
split property holds for a pair of regions Oy C Oy. Then the gauge group G'mar commutes
elementwise with the translations U(R?).

Proof. The proof is identical with that of [41, Theorem 10.4] with the exception of the
last step. Instead of finite dimensional representations of 731 being absent as in higher

dimensions all such representations are trivial on the translations according to the lemma.
[ |
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In [39] it was shown that the representation of the Poincaré group is unique in charged
DHR sectors with finite statistics. In 1 4+ 1 dimensions we have only

Lemma A.1.11 Let p be an irreducible sector and let UL (A, a), U§(A,a) be p-covariant
representations of the Poincaré group, i.e. AdU!(A,a) o p = poap, Then there exists
s € R such that

UL (A, a) = US(A, a) ™. (A.1.2)

Proof. We have X(A,a) = Ul (A,a)*US(A,a) € p(A)' = C1. Thus, X(A,a) is a one-
dimensional representation of the Poincaré group and, by Lemma A.1.9, is of the form
eisA‘ [ ]



Appendix B

The Split Property for Wedges and
Nuclearity

The nuclearity criterion [12] formalizes the idea that in order to be physically realistic a
quantum field theory should satisfy some restrictions on the number of its local degrees
of freedom in the sense that there should be only a finite number of quantum states
occupying a finite volume of phase space. As phase space is an elusive concept in quantum
field theory the formalization of this condition is not trivial. The formulation we give here
is the one which has proved most suitable [25]. For any bounded region O define the linear
map Opp : R(O) — H as
Opp(A) = e PH AQ,

where 2 is a vacuum vector and H the Hamiltonian (assumed to be positive). This map
is required to be compact and of arbitrarily small order if 5 > 0 is sufficiently large. The
order ¢ of a continuous linear map © of a Banach space £ into another Banach space F
is the non-negative number (if it exists)

5 Inln N(e)
= lim sup ————
1 e\0 P In 1/8 ’

where N (g), the e-content of ©, is the maximum number of elements F; in the unit ball of
& such that ||©(F; — Ey)|| > ¢ if i # k. Criteria of this type have been proved [19, 25, 26|
to imply the split property whereas it is not known to which extent the converse holds
(at least one has: split = compactness of the map ©.)

As introduced in Chapter 1, the usual split property states that the von Neumann
algebras A(O;) vV A(0))" and A(0;) ® A(O))" are isomorphic whenever O; CC Os. In
this formulation, one of the regions (O)) is infinite. In this appendix we are concerned
with the question whether both regions may be infinite, viz. wedges. From the physical
point of view one would expect two subsystems separated from each other by a finite
spacelike distance to decouple in the above-mentioned sense that their states can be
prepared independently. In this respect it should not matter* whether the regions are
of finite or infinite extension. On the other hand, as witnessed by the Chapters 3-4 and
the recent construction [101] of soliton states, the SPW is extremely useful for the model

*This heuristic idea has to be taken with caution, however, see below.
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independent analysis of phenomena, well-known to exist in models, such that it should
be understood from a more fundamental point of view.

B.1 Nuclearity Criterion for Lorentz Boosts

Before trying to prove the split property for wedge regions we should reflect for a moment
whether it has a chance to hold at all. There is an easy argument by Araki (see [17]) to
the effect that there can be no product state for the spacelike separated regions Oy, Oy if
there exists a translation a such that O;+a C O; and Oy +a C O,. This in fact rules out
the split property for wedges in more than 2 dimensions as any translation parallel to the
edges of the wedges does the job. In 141 dimensions, however, this argument does not
apply. As to the proof of the split property, one easily convinces oneself that the known
proofs for finite regions would carry over immediately to the situation at hand should the
nuclearity criterion stated above apply also to wedge shaped regions. This can however
not be the case as will be shown elsewhere [90].

Motivated by the nuclearity criterion in terms of modular operators [24, 25] and by
the geometric action of the modular operators associated with wedges proved by Borchers
[15] we state our first result.

Proposition B.1.1 Let Q be the vacuum vector and K the generator (typically neither
positive nor negative definite) of the group of Lorentz boosts. Suppose for a wedge W C Wg
that there exists a X > 0 such that the vectors AQ are in the domain of definition of the
unbounded operator e’ for every A € R(W) and that the map Ow, : R(W) — H defined

by
Owa(A) = M AQ (B.1.1)

is of order qx < 1/3. Then the inclusion R(W) C R(Wg) is split.

Proof. To simplify notation we denote R(W) by A and R(Wg) by B. For fixed A € A
and B’ € B’ we consider the function

F(z) = (2, B'e "X AQ) (B.1.2)

which as a consequence of the assumptions is bounded and analytic in the interior of the
strip 0 < Imz < X and continuous at the boundary. We observe that a;(A) = e7"K Ae"K
will leave A for sufficiently large |t| but stay in B implying [e™*K Ae®® Bl =0 Vt € R.
Making use of the invariance of the vacuum we thereby have

F(z) = (e*% A*Q, B*Q) (B.1.3)

for real z. In this representation it is obvious that F'(z) continues analytically to the
strip —A < Imz < 0, too, the domain of analyticity containing the real line by standard
arguments. Applying the three line theorem we obtain the estimate

[FO)] < [FEA[Y? - [F(=iN)['? (B.1.4)

and, hence,
(2, AB'Q)| < || B|| - M AQ|I'2 - || A Q|2 (B.1.5)



With the definition of the map =Z,(-) : A — B
E(A)()=(Q,A-Q) (B.1.6)

we have as in [26]
IE.(A £ A7) < [l (A £ A)Qll, (B.1.7)

from which it follows that the order ¢, of the map =,(-) : A — B, is at most equal to
the order of the map A — eM AQ from A to H. Applying the arguments in the proof of
Proposition 4.1 in [25] the proof is complete. We remark that the argument is simplified
considerably by the fact [48] that the local algebra of any wedge automatically is a factor
which allows to use directly the results of [24] without having to deal with the possible
occurrence of a center. In the case of bounded regions there is no general argument to
this effect. MW

Remark. The expert reader will recognize the similarity of the above result to Proposition
2.2. of [26], the main difference being that in the case of energy nuclearity the time
translations lead out of the larger region for large |¢| resulting in the appearance of two
cuts along the real line.

B.2 Connections with Modular Nuclearity

The conventional nuclearity criteria as well as the one put forward in the preceding section
depend crucially on the existence of a representation of the Poincaré group which is
a global object. At least for some applications, for example quantum field theory on
curved spacetimes, one would prefer a condition applying to some kind of local dynamics.
A natural candidate in this respect are the automorphism groups associated (see e.g.
[25]) by the Tomita-Takesaki theory to the local algebras and any vector being cyclic and
separating for these. Having thereby for any wedge W (and the vacuum vector) a positive
selfadjoint operator Ay,o we define for any pair of wedges W C W and any 0 < A < 1/2
the map =, : R(W) — H by

Ex(4) = A}, ,AQ. (B.2.1)

In terms of these maps we have at once the following nuclearity criterion.

Proposition B.2.1 Suppose the order q, of the map = is smaller than 1/3. Then the

N

inclusion R(W) C R(W) is split.

Proof. Follows immediately from Lemma 3.1 in [25], remark 1 in [24] and the factoriality
of the wedge algebras. W
By the relation

qi/4 1 1 q1/4
< < < - i 2
9 _Q*_Q)\_max(2)\,1 2)\> 5 0<)\<1/2 (B22)

between the orders of the maps (B.2.1) and (B.1.6) given in [25, Lemma 3.1] it is clear
that the above local (modular) nuclearity is implied by some sufficiently strong (global)
nuclearity for boosts.



For the direction from modular to Lorentz nuclearity one needs an additional piece
of information on the action of the modular groups associated to wedge regions. To this
purpose the authors of [25] had to assume a property [12] proved only for nets of local
observables derived from a Wightman field theory to hold in general. The situation is
more favorable in 1 4+ 1 dimensions thanks to the important results of Borchers [15] of
which we summarize those relevant to our investigation. Let V(1) = ¢ be the unitary
representation of the Lorentz boosts. Then the unitary one parameter groups

R(r) = V(r)- AR, (B.2.3)
L(r) = V(r)- A" (B.2.4)

implement automorphisms of all wedge algebras open to the right and left sides, respec-
tively. In other words, the modular groups A%ﬁ °™ and A;VZLT/ ™ act geometrically on the
right and left wedges, respectively, differing from the Lorentz boosts only by an internal
symmetry transformation. In theories fulfilling wedge duality (i.e. R(W.) = R(Wg))
these groups coincide: R(7) = L(7). Obviously the global and the modular nuclearity
criteria coincide should the groups R(7), L(7) happen to be trivial as we then have

K = AV = AT (B.2.5)

In general, however, this will not be the case. In order to conclude from modular nuclearity
for the right wedge, say, that nuclearity for boosts holds, we need some knowledge about
the spectral properties of U, the generator of the group R(t) = ¢V, Still quite easy is the
case where U is bounded which is equivalent to the map ¢ — R(t) being normcontinuous.
In this case R(t) continues to an entire function taking values in B(#). As composition
with bounded maps preserves nuclearity properties we see that also in this case modular
nuclearity implies nuclearity for boosts. For unbounded U no such conclusion can be
drawn, however.



Appendix C

Quantum Groups and Quantum
Doubles

A Hopf algebra is an algebra H which at the same time is a coalgebra, i.e. there are
homomorphisms A : H - H ® H and ¢ : H — C satisfying

(A@id)o A = (id® A) o A, (C.1.1)

(e®id)oc A =(id®e)o A =id, (C.1.2)

with the usual identification H ® C = C ® H = H. Furthermore, there is an antipode,
i.e. an antihomomorphism S : H — H for which

mo(S®id)oA=mo (id® S)o A =¢()1, (C.1.3)

where m : H ® H — H is the multiplication map of the algebra.
Remark. By (C.1.2) the counit, which is simply a one dimensional representation, is the
‘neutral element’ with respect to the comultiplication.

For the quantum double D(G) defined in Definition 4.4.1 these maps are given by

e(V(9)U(h)) = 0y, (C.1.4)
AV (g)UR) = D V(hk)U(h) @ V(E™)U(R), (C.1.5)
S(V(9)U(h) = V(h g 'n)U(™Y) (C.1.6)

on the basis {V(g)U(h) g, h € G} and extended to D(G) by linearity.
A Hopf algebra H is quasitriangular, or simply a quantum group, if there is an element
R € H ® H satisfying
A'(y=RA()R™, (C.1.7)

where A’ = g o A with 0(a ® b) = b® a and

(A®1id)(R) = Ri3 Ros,
(id® A)(R) = Ri3Ris.

aa
oL
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Here Rio = R®1,Ry3 =1® R and Ry3 = (id® 0)(R®1). As a consequence, R satisfies
the Yang-Baxter equation
Ry Ri3 Roz = Ras Rz Rio. (C.1.10)

It is easy to verify that the R-matrix (4.4.34) satisfies these requirements.

Remark. As shown by Drinfel’d, for quantum groups the square of the antipode is inner,
i.e. $%(a) = uau ! where u is given by u = m o (S ® id) o ¢(R). The operator u satisfies
e(u) =1, A(u) = (6(R)R)™ (u®@u) = (u®u)(c(R)R)". For quantum doubles of finite
groups the antipode is even involutive (S? = id, equivalently u is central). This holds for
all finite dimensional Hopf-*-algebras, whether quantum groups or not.

A quantum group is called factorizable [93] if the map H* — H given by H* 3 z +—
(x®1d, I') is nondegenerate, where I is as in (4.4.46). Quantum doubles are automatically
factorizable.

A quasitriangular Hopf algebra possessing a (non unique) central element v satisfying
the conditions

v? =uS(u), e(v) =1, S(v) = v, (C.1.11)

A() = (¢(R)R) ' (v®w), (C.1.12)

where u is the operator defined in the above remark, is called a ribbon Hopf algebra [94].

Finally, modular Hopf algebras [94] are defined by some restrictions on their repre-
sentation structure, the most important of which is the nondegeneracy of the matrix
Y defined in (4.4.48). Obviously, the conditions of factorizability and modularity are
strongly related.
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