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0.1 Introduction

The research I conducted since I obtained my PhD degree in 1997 involved three areas of interaction
between the theory of operator algebras and category theory, as well as some applications of the latter
to low dimensional topology. Pictorially the relations between the areas could be represented like this:

Quantum field theory

Tensor-, bi- d=3 topology

Operator algebras Subfactors .
categories

Quantum groups

Since the theory of operator algebras, in the sense of C'*- and von Neumann algebras, is of a very
analytical nature it may at first sight not appear to be amenable to the application of category
theoretical methods beyond some very basic categorical notions, as e.g. in [58]. As it turns out, this
is not quite the case. On the one hand, there are areas like quantum field theory and the theory
of quantum groups, which (in some of their formulations, cf. e.g. [33, 44]) employ operator algebras.
This is done in a very non-trivial way, insofar as deep results from the latter theory (modular theory,
disintegration theory etc.) are used. In the mentioned areas very interesting monoidal categories
of representations arise, often braided and rigid. While this may not be surprising in view of the
relatively rich structures at hand, it is quite remarkable that subfactor theory, on the other hand,
leads to non-trivial categorical considerations starting from very little.

My work, which is going to be described in more detail below, can be roughly organized as follows:

1. Identification and generalization of categorical structures implicit in subfactor theory and quan-
tum field theory (QFT). Examples:
e Subfactors: Frobenius algebras, bicategories and weak monoidal Morita equivalence {5}.
e Subfactors: Longo/Rehren subfactor vs. categorical center Z;(C) {6}.
e QFT: braided crossed G-categories arising from QFT with group action {10}.

2. Purely categorical considerations. Examples:

e Galois theory of braided tensor categories, giving rise to braided crossed G-categories {2,9}.
Modularization of braided categories {2}.
e Structure of modular categories: double centralizer theorem, prime factorization {7}.

e Modularity of Z;(C) and related results. {6}.
3. Applications of categorical notions/results to QFT, subfactors, quantum groups. Examples:

e Modularity of representation category of completely rational chiral conformal QFTs {3}.

o Conformal orbifold models: relations between Rep A, Rep A and G—Loc A. Holomorphic
orbifold models and quasiabelian cohomology H, ga(G, T) {10}.
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Local extensions of conformal models vs. Pareigis’ category I'—Mody of dyslexic modules.
{10}

Classification of modular invariants in categorical terms {11}.

New proof of Tannaka theorem for discrete quantum groups {8}.

Simplified and strengthened proof of abstract Tannaka theorem for symmetric categories

{12}.
4. Applications to low dimensional topology. Examples:

e Morita invariance of state sum invariants of 3-manifolds {5}.
e Proof of a conjecture by Gelfand/Kazhdan on Z;(C) {6}.

e (Unfinished) Relation between state sum and surgery invariants.

Some of this work has been done in collaboration {3,8,12}. This survey is organized into two
chapters. In the first I describe my work insofar as it does not involve quantum field theory. The
aspects involving the latter are covered in a second chapter. For a more precise overview I refer to the
table of contents.



Chapter 1

Categories

1.1 Tensor Categories

1.1.1 Preliminaries

The categories arising from operator algebraic structures are in general C*- or even W *-categories,
cf. [23, 31, 48]. In particular, they are C-linear with a positive involution on the morphisms, thus
are unitary categories in the sense of [67]. Insofar as most of these categories actually have finite
dimensional hom-sets we can usually ignore the topological aspects. (E.g., while this is not true
for the category Rep A of all representations of a QFT, it does hold for the category Rep;A of
‘finite dimensional’ representations.) The theory of algebraic quantum groups can be formulated over
arbitrary ground fields, and the same holds for some of our purely categorical considerations. But
with the exception of parts of {5} we will have no occasion to discuss non-k-linear categories.

We assume as known the standard notions of ((braided, symmetric) monoidal) categories as dis-
cussed in many references, e.g. [49, 41, 67], as well as rigid and spherical [5] categories. We also
assume the notions of C* and W*-tensor categories and of conjugates in them. We only emphasize
one important point: While in the definitions of rigid and spherical categories one assumes chosen
duals X*,*X or X and morphisms ex : X ® X* — 1 etc. as part of the structure, there is no need
to do so for x-categories. Basically this is due to the fact that the slightly different axiomatization of
conjugates [48] eliminates all ambiguities which would arise in non- categories if one only assumed
the existence of duals. For a detailed discussion we refer to {5, Section 2}.

By a semisimple category one usually means an abelian category in which all exact sequences split.
If such a category is k-linear over an algebraically closed field and hom-sets are finite dimensional,
every simple object X (this means every s : Y — X is either zero or an isomorphism) is absolutely
simple, i.e. End X = kidx. On some occasions we prefer to exclude zero objects. For our purposes it is
thus more convenient to define a semisimple k-linear category as a category with direct sums, splitting
idempotents, finite dimensional hom-sets and semisimple endomorphism algebras End X. Thus every
object is a finite direct sum of (absolutely) simple objects. Let us point out one observation in {5} to
the effect that in a semisimple k-linear tensor category one can unambigously define the square of the
dimension of any simple object even in the absence of a rigid/spherical or *-structure:

1.1.1 PROPOSITION Let C be a k-linear tensor category with simple unit. If X is simple and has a
two-sided dual then d*(X) = (nx oex)(dx oex) € k is a well defined quantity. If X,Y, XY are simple
then d?(XY) = d?(X)d?(Y). Whenever C has a spherical or *- structure d*(X) coincides with d(X)?
as defined using the latter.

In order to avoid tedious repetition of the axioms we define:

1.1.2 DEFINITION A fusion category is a semisimple k-linear tensor category over an algebraically



closed field, satistfying End 1 = k and being either spherical or a *-category with conjugates. A fusion
category is finite if it has finitely many isomorphism classes of simple objects.

1.1.3 REMARK 1. Every x-category admits an essentially unique spherical structure (possibly passing
to an equivalent category), cf. [78].

2. The definition of fusion categories in [25] includes finiteness, but assumes neither sphericity
nor a x-structure. There are good reasons to do this, since one can prove remarkable results in the
case k = C. On the other hand, a large part of our considerations does not need finiteness, and the
generality gained by assuming neither sphericity not a *-structure seems limited. |

1.1.4 DEFINITION Let C be a fusion category. If C has finitely many isomorphism classes of simple
objects then we define

dimC =Y d*(X) €k,
X

where the summation is over the isomorphism classes of simple objects and d*(X) is as in the propo-
sition. If C has infinitely many simple objects then we formally posit dimC = oco.

The considerations in the remainder of this section are taken from {5}.

1.1.2 Frobenius Algebras in and Morita Equivalence of Tensor Categories

As is well known, if G : D — C is a right adjoint of a functor F': C — D then T = GF is the part of a
monad in C, i.e. T is the object of a monoid in the (strict) tensor category EndC. Similarly, S = F'G
is part of a comonad in End D. Given any category C and a monad (7, m,n) in it, one can construct a
category D and an adjoint pair F' - G of functors inducing the given monad in the above fashion. The
solutions to this problem, which are not unique, can be organized as a category with distinguished
initial and final objects, the constructions due to Kleisli and Eilenberg/Moore, respectively.

The above considerations immediately generalize to any tensor category other than End C, where
for notational simplicity we assume strictness. If X € C has a right dual X* (i.e. there exist e :
X®X*—1,d:1— X*® X satisfying the triangular equations) and I' = X* ® X then (I',idx+ ®
e ®idx,d) is a monoid in C. We are most interested in the case where X* is also a left dual *X
of X w.r.t. morphisms € : *X ® X — 1, d : 1 - X ® *X, in which case we write X. Then
(I idy ® e® idx, d,idw ® d' ®idx, €') is a Frobenius algebra in the sense of the following

1.1.5 DEFINITION Let C be a (strict) tensor category. A Frobenius algebra in C is a quintuple
(T,m,n,A, &), where (I';m,n) is a monoid in C, (I', A,¢) is a comonoid in C and the following holds:

mIidr o ldr@ A=A om=idr ® m o A ®idr.
If C is k-linear then (I';m,n, A, ¢) is strongly separable iff mo A = a/idp and eon = fidy with a8 # 0.

1.1.6 REMARK 1. Classically, a Frobenius algebra is a finite dimensional k-algebra A together with
a linear functional ¢ : A — k such that the bilinear form (a,b) — ¢(ab) is non-degenerate. In [1] it
is shown that for the category C = Vect; the two notions coincide. A classical Frobenius algebra is
strongly separable iff k1 C A is a Frobenius extension with index [A : k1] and ¢(1),[A : k1] € k*, cf.
[41]. In {5} we show that the two notions of strong separability coincide in the case at hand.

2. In a semisimple category which is (left) rigid, all duals are two-sided. A spherical category [5]
(not necessarily semisimple) has two-sided duals and the morphisms e,d, e’,d" are part of the given
structure, satisfying certain axioms. In such a category the Frobenius algebra (I = X ® X,...) is
always strongly separable with a8 = d(T) = d(X)2.

3. If C is a *-category and X is a conjugate of X in the sense of [48] then the Frobenius algebra
I' = X ®X satisfies A = m*, e = n*. In this case we speak of a Frobenius *-algebra. Strongly separable
Frobenius *-algebras were called ‘Q-systems’ in [46, 48]. O



Given a Frobenius algebra I' in a tensor category C it is natural to ask whether it arises as above
from an object X with two-sided dual X. In general this is not true: In Vecty, the Frobenius algebra,
X ® X is a matrix algebra Mgim x (k) whereas there are Frobenius algebras that are not of this form.
There is, however, a positive answer if one generalizes the setting. If £ is a bicategory, 2,8 € Obj &
and X : A — B has a two-sided dual X : B — A then I' = XX € End® is a Frobenius algebra. Now
we have the following converse {5}:

1.1.7 THEOREM Let A be a strict tensor category and (I',m,n, A, ¢) a Frobenius algebra in A. Assume
that one of the following conditions is satisfied:

(a) mOA:idI‘.

(b) A is End(1)-linear and
mo A = aidrp,

where « is an invertible element of the commutative monoid End(1).
(c) A has coequalizers.
Then there exists a bicategory & such that
. Obj& = {«,B}.

I~

2. There is a fully faithful tensor functor I : A — Homg (2, ).
3. There are 1-morphisms J : A — B and J : B — A which are mutual two-sided duals.

4. The Frobenius algebra in the tensor category Endg(21) arising from .J,.J is isomorphic to the
image of (T',...) under I.

5. In case (c), I is an equivalence. In cases (a),(b), for every Y € Endg(2l) there is X € A such that
Y is a retract of I(X). (Thus I is an equivalence if A has subobjects (=splitting idempotents).)

6. If A is a preadditive (k-linear) category then & is a preadditive (k-linear) 2-category.
7. If A has direct sums then &£ has direct sums of 1-morphisms.

8. If A is spherical, k-linear with End 4(1) = k, and dimHom(1,T") = 1 then A is spherical and
El’ldg(id%) =k.

9. If A is abelian (semisimple) then £ is locally abelian (semisimple).

Isomorphic Frobenius algebras T', T’ give rise to isomorphic bicategories &,&.

1.1.8 REMARK In the case (c), which is only sketched in {5}, one defines £ as the collection of the four
categories A, Mod, Mod-T" and Mod-T". Here Mod has as objects pairs (X, u), where X € A and
p:I'®X — X satisfies poidr®u = pom®idx and pon®idx = idx, and the other categories are defined
similarly. The composition of 1-morphisms being defined by a quotient procedure as in ring theory, this
construction is analogous to the one of Eilenberg/Moore. In the cases (a),(b) one defines a bicategory
& where Endg, (A) = ObjA, Homg, (2,B) = {“JX”, X € A}, Homg,(B,2A) = {“XJ", X € A}
and Endg, (B) = {“JXJ", X € A}. Composition of 1-morphisms is defined in the obvious way with
the rule JJ = T'. The 2-morphisms are defined by Homg,(“JX”, “JY”) = Hom4(X,TY) etc. as in
Kleisli’s constructions. One then defines £ as the usual completion of & with splitting idempotents.
The conditions (a),(b) then guarantee the existence of an identity morphism of B as a retract of
JJ € End(®8). In the case where A is abelian and T is strongly separable, both constructions give
equivalent bicategories £. For further details we refer to {5}. ]



There is a symmetry in the situation at hand: If J,J are two-sided duals in a bicategory £ then
there exists a Frobenius algebra I' = JJ in B = Endg(B). Since this also holds when £ is obtained
from a Frobenius algebra T in A, we can apply the same construction to (T',...) in B. It turns out
that we reobtain the initial data A and (T',...). This motivates the following

1.1.9 DEFINITION Two tensor categories A, B are called weakly monoidally Morita equivalent A = B
iff there exists a bicategory &£ such that

1. Obj& = {A,B}.
2. Endg(2) (Endg(®B)) is monoidally equivalent to the completion of A (B) w.r.t. subobjects.

3. There are mutually two-sided dual 1-morphisms J : 8 — 2, J : A — B such that the composi-
tions nyoey € idyy, and dj o ey € idyy, are invertible.

€ is called a Morita context for A, B.

1.1.10 PROPOSITION = is an equivalence relation. Given a tensor category A one has a bijection
between tensor categories B ~ A (together with a Morita context £) and strongly separable Frobenius
algebras in A.

The equivalence relation = is much weaker than ordinary monoidal equivalence ~. Nevertheless it
has remarkable consequences.

1.1.11 ProproOSITION If A = B are finite fusion categories then dim A = dim 5.

For the center Z;(C) of tensor categories, cf. Section 1.5, the formalism of {5} together with [65]
immediately implies the following.

1.1.12 PROPOSITION Let C1,Co be weakly monoidally Morita equivalent tensor categories. Then there
is an equivalence Z1(C1) ~ Z1(Cy) of braided tensor categories.

In [67] one finds a definition of invariants TV (M, C) for oriented 3-manifolds based on triangulations
for every unimodular category C. (A unimodular category is a modular category, defined below, which
is unimodal, i.e. every selfdual simple object is orthogonal, not symplectic.) In [4], a generalization
BW (M, C) to finite semisimple spherical categories [5], not necessarily braided, was given. Inspired by
unpublished (and unfinished) work of Ocneanu [55], in {5} we outline a proof of the following result.

1.1.13 THEOREM Let A, B be finite spherical fusion categories. If dimA # 0 and A = B then we
have BW (M, A) = BW (M, B) for all closed orientable 3-manifolds M.

The proof is based on a generalization of the Barrett-Westbury invariant to k-linear bicategories.
In the special case where the bicategory arises from a subfactor A C B as in Subsection 1.1.4 this
reduces to Ocneanu’s invariant Oc(M, A C B).

The research sketched above was motivated by its usefulness in the analysis {6} of the center Z;(C)
of a finite fusion category C, cf. Section 1.5. The following examples are somewhat simpler, but equally
important.

1.1.3 Example: Finite Dimensional Hopf Algebras

Every finite dimensional Hopf algebra H is a (classical) Frobenius algebra, thus it gives rise to a
Frobenius algebra (in the sense of Definition 1.1.5) in Vecty. In {5} we show that there exists a less
obvious Frobenius algebra I in the tensor category C = H—Mod. Contrary to H itself, this Frobenius
algebra always satisfies dim Hom(1,T') = 1. An important ingredient is the following



1.1.14 LEMMA Let (H,A) be a finite dimensional Hopf algebra. Then there exists a linear map m :
H® H — H which satisfies m(A(a)x) = am(z) foralla € H, x € H® H and m(m®id) = m(id@m).

1.1.15 THEOREM Let H be a finite dimensional Hopf algebra over k. Let A,y be left integrals in
H and H, respectively, normalized such that (p,A) = 1. Let I' € H —Mod be the left regular
representation, viz. H acting on itself by np(a)b = ab. The linear maps

k—T, c— cA,

=k  x—e(x),
r->rel, z— A(x),
m: T =T, @y~ m(rQy)

DI oy

are morphisms in H—Mod and (T,7n,17, A, &) is a Frobenius algebra in H —Mod which satisfies
dimHom(1,T) = 1. It is strongly separable iff H is semisimple and cosemisimple.

1.1.16 THEOREM Let H be a finite dimensional semisimple and cosemisimple Hopf algebra over an
algebraically closed field k and let I" be the associated strongly separable Frobenius algebra in H —mod.
If€ is as in Theorem 1.1.7 and 5 = Homg (B, B) then we have the equivalence BB ~ H—mod of spherical
tensor categories.

Restating this theorem we have a weak monoidal Morita equivalence H—Mod =~ H—Mod whenever
H is semisimple and cosemisimple. Together with Theorem 1.1.13 this implies BW (M, H—Mod) =
BW (M, H—Mod). This was a known consequence of the fact that BW (M, H—Mod) coincides with
Kuperberg’s invariant, but is quite non-obvious given only the definition of BW (M,C). Of course,
Theorem 1.1.13 is much more general, and another application will be given in Section 1.5.

1.1.4 Connections with Subfactor Theory

On the one hand, subfactor theory as initiated in [35] is a rather specialized field of functional analysis.
On the other, however, it has applications in (the operator algebraic approach to) quantum field theory,
cf. e.g. [45, 47, 10], and connections to various fields of pure mathematics, as is witnessed by Jones’s
work on knot theory [36, 37]. The latter connections are due to the categorical structure which is
‘in-built’ in subfactor theory. One aim of {5,6} was to elucidate these structures and to improve the
communication between both fields. In doing so it becomes clear that several results first proved in
subfactor theory have categorical versions which hold in considerably larger generality (ground fields
other than C, non-semisimple or infinite categories, etc.) By way of application, exhibiting clearly the
connection between the center Z; of a tensor category and Ocneanu’s asymptotic subfactor contributes
to clarifying the significance of the latter. Ultimately, the hope is to make techniques from other areas
of mathematics applicable to the classification programme of subfactors.

1.1.17 For any Hilbert space H, B(H) denotes the set of bounded linear operators on H, and for
M C B(H) we write M* = {z* | x € M} and M' = {z € B(H) | zy = yx Vy € M}. A von Neumann
algebra M on H is a subalgebra of B(H) satisfying M = M* = M". A factor is a von Neumann
algebra with trivial center: Z(M)= M N M' = C1. A factor M has type II; iff there exists a weakly
continuous functional ¢r : M — C such that ¢tr(ab) = tr(ba), tr(1) = 1 and tr(a*a) > 0 with equality
iff a =0. A factor M (on a separable Hilbert space) is of type III iff for every orthogonal projection
p = p? = p* € M there exists v € M such that v*v = 1 and vv* = p.

1.1.18 There exists a 2-category £ whose objects are factors, whose 1-morphisms Hom(M, N) are
unital weakly continuous *-algebra homomorphisms a : M — N and where the 2-morphisms are given
by

Hom(a, B) ={s € N | sa(z) = f(z)s Vz € M}, «,B € Hom(M,N).

8



(By factoriality, all these 1-morphisms are injective maps.) Composition of 1-morphisms is just con-
catenation of maps and composition of 2-morphisms is multiplication in the image algebra. The
x-operations of the factors give rise to a positive x-operation on £. The full sub 2-category &r;; whose
objects are type III factors on separable Hilbert spaces has direct sums and subobjects.

Given an inclusion A C B of factors (“A is a subfactor of B”), a conditional expectation is a map
E : B — A that is A — A bilinear (E(abc) = aE(b)c Va,c € A,b € B) and completely positive. For a
conditional expectation £ we define

[B: Alg = (sup{\ >0 | E(b*b) = \b*b >0 Vbe B}) *

and then
[B:A] = E:gliA[B : Alp.

Clearly, [B : A] € [1,00]. The connection between subfactor theory and category theory is due to the
following crucial result which (up to trivial reformulation) is due to Longo [45]:

1.1.19 THEOREM Let A C B be an inclusion of type III factors (on separable Hilbert spaces). Then
[B: A] < oo iff the inclusion ¢ : A — B has a two-sided dual T in the bicategory &ryy.

The subcategory EIfH C &qp1 retaining only the I-morphisms « : A — B for which [B : a(A)] < o0
has conjugates in the sense of [48] and is spherical [5]. For « : A — B in E}c ;; we have [B : a(A)] =
d(a)?, the right hand side being the categorical dimension in the sense of [48] or [5].

We briefly explain the results on subfactors which motivated the considerations in {5}. Let A C B
be an inclusion of type III factors with [B : A] < oo. Then besides the embedding ¢ : A — B
there exists a dual morphism 7 : B — A with [A : 7(B)] = [B : A], thus there actually is a perfect
symmetry between A and B. As in the general categorical discussion above, I' = 7, is the object of
a Frobenius x-algebra in the tensor category End A. Conversely, Longo has shown [46] that every
strongly separable Frobenius *-algebra (or ‘Q-system’) in End A arises from a finite index inclusion
A C B. On the other hand, by the work of Ocneanu [53, 54] (in the slightly different framework of
type II; factors) every finite index subfactor gives rise to a C-linear bicategory Eacp with two objects
A, B in which every 1-morphism has a dual. In the type III context the 1-morphisms are just the
retracts and direct sums of 1-morphisms obtained by considering all possible compositions of ¢ and 7.
Thus there are two ways to obtain such a bicategory (a Morita context) from a Frobenius *-algebra
in End A: (a) construct the corresponding inclusion A C B and consider Ocneanu’s bicategory, (b)
apply the categorical construction of Theorem 1.1.7 to End A and T" and consider the full subcategory
generated by J and J. The following result shows that one obtains equivalent bicategories &.

1.1.20 THEOREM Let A be a type III factor, let (T',...) be a strongly separable Frobenius x-algebra
in End A and let A be the replete full subcategory with subobjects of End A generated by T'. Let
Eacp be the bicategory associated with the subfactor A C B, where B is as constructed in [46]. If £
is obtained from A and (T, ...) by Theorem 1.1.7 then have an equivalence of bicategories £ ~ E ¢ B.

From this result we may conclude that Theorem 1.1.7 can act as a perfect replacement for the
analytical constructions of subfactor theory insofar as only the bicategory £acp is of interest. This
will allow us to apply ideas from subfactor theory [54, 26, 34] to the study of the center Z;(C) of a
finite fusion category.

For more details on the previous matters see Sections 1.3 and 6.4 of {5}.



1.2 Tannaka Theory for Discrete Algebraic Quantum Groups

1.2.1 Discrete Algebraic Quantum Groups and Their Representations

As is well known, the dual vector space H of a finite dimensional Hopf algebra H can be equipped

with a Hopf algebra structure, and there is a form of Pontryagin duality H~H. (If G is finite abelian
and H = kG then this is just Pontryagin’s duality of locally compact groups.) This self duality of
the category of finite dimensional Hopf algebras does not generalize to infinite dimensions, one reason
being that it is not always possible to equip the algebraic dual H with a decent Hopf algebra structure.
For this reason various other categories of Hopf algebra-like structures have been defined, e.g. Kac
algebras [24] and locally compact quantum groups [44]. Both categories exhibit the desired selfduality
and contain the category of locally compact abelian groups, thereby providing a true generalization
of Pontryagin’s theory. Kac algebras have turned out to be too restrictive, but the framework of [44]
contains in particular the compact and discrete quantum groups defined by Woronowicz and others.
While the existence of a Haar measure can be derived for locally compact groups, as well as for
compact [75] and discrete [71] quantum groups, this does not seem to be the case for more general
quantum groups. For this reason, the existence of a Haar functional is assumed in [44] as in most of
the literature on the subject. Since the theory of locally compact quantum groups [24, 44] is rather
analytical and technical, an alternative, purely algebraic formalism has been developed by Van Daele
[72]. While less general, it still contains all compact and discrete quantum groups and is closed under
duals and quantum doubles. In {8}, this framework is advocated as the most convenient environment
for the proof of Tannaka-type reconstruction theorems. We begin with a few definitions, where for
reasons of brevity we use somewhat non-standard terminology. All tensor products are algebraic.

If k is a field, a k-algebra A is called non-degenerate ifab=0Va € A == b=0andab=0Vbec A =
a = 0. For every non-degenerate algebra A there exists a unital algebra M (A) of two-sided multipliers,
into which A embeds as an essential ideal, cf. [72] and references given there. A homomorphism
a : A — B of non-degenerate algebras is non-degenerate if B = a(A)B := span,{a(a)b, a € A,b € B}
and B = Ba(A). A non-degenerate homomorphism « extends uniquely to a unital homomorphism
a:M(A) - M(B).

A multiplier bialgebra is a non-degenerate algebra A together with a coproduct, i.e. a non-
degenerate homomorphism A : A — M(A® A) that is coassociative (in a suitable sense). A multiplier
bialgebra (A, A) is an algebraic quantum semigroup if it comes with a linear functional ¢ : A — k
that is left invariant, i.e. (id ® ¢)A(a) = p(a)l Va € A, and faithful, i.e. p(ab) =0Va € A = a=0
and a < b. A multiplier bialgebra is a multiplier Hopf algebra iff the cancellation properties

AA)(AR1)=AA) (1@ A) = (A DAA) =12 A)A(A)=A® A

hold in M(A ® A). Finally, a multiplier Hopf algebra with faithful left invariant functional is an
algebraic quantum group (aqg). If K = C and A has a positive involution *, i.e. a*a = 0 = a = 0, then
we speak of multiplier x-algebras, *-algebraic quantum groups etc. Then ¢ is required to be positive.

A multiplier bialgebra gives rise to linear maps ¢ : A — k and S : A — M(A) having most of the
expected properties. If A is a multiplier Hopf algebra then S(A) = A. A multiplier Hopf algebra with
left invariant functional (A, A) is discrete if there exists A € A such that aA = Aa = ¢(a)A for all
a € A and compact if A has a unit (in which case A if/a\Hopf algebra). There exists a Pontryagin

——

duality theory for algebraic quantum groups such that (4, A) = (A4, A). (We emphasize the difference
from the duality of finite dimensional Hopf algebras: Instead of units for the algebras one assumes
the existence of faithful left invariant functionals.) This duality establishes a bijection between aggs
of compact and discrete type, respectively. In {8, Section 5.4} we prove

1.2.1 PROPOSITION Let (A,A) be compact. Then (1) # 0 iﬁ”(A,/K) is semisimple, i.e. A is a direct
sum of finite matrix algebras.
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1.2.2 REMARK 1. Semisimple discrete quantum groups were first studied in [71] where they were
called ‘discrete quantum groups’. For semisimple multiplier Hopf algebras one can prove the existence
of a faithful left invariant functional.

2. In the x-case, compact quantum groups always satisfy ¢(1) # 0 and therefore discrete *-aqgs
are always semisimple. O

A non-degenerate representation of an aqg is a (*-)homomorphism 7 : A — End(V) such that
m(A)V = V. The category of these representations and their intertwiners is denoted by Rep(A4, A). By
Repf(A,A) we denote the full subcategory of finite dimensional representations. The representation
theory of the above structures has been studied by Van Daele and coauthors and in {8}. In particular,

1.2.3 PROPOSITION {8} Let (A, A) be a discrete x-aqg. Then the category Rep (A, A) is a semisimple
tensor x-category with conjugates (in the sense of [48]).

More generally, if (A,A) is discrete and semisimple then Rep;(A,A) is a semisimple spherical
tensor category in the sense of [5].

1.2.2 Tannaka Theorems for Discrete Quantum Groups

Rep f(A, A) is a concrete tensor category, in that its objects are vector spaces with additional structure.
It is often profitable to consider Rep f(A, A) as an abstract tensor category C together with a faithful
tensor functor £ : C — Vecty and representations mx of A on F(X). A faithful tensor functor F is
called a fiber (or embedding) functor. If C is a *-category then E' is required to be x-preserving. In
[74], Woronowicz characterized those C*-tensor categories that are categories of corepresentations of
‘compact matrix pseudogroups’. (The latter are related to compact quantum groups as compact Lie
groups to compact groups.)

We denote by H the category of finite dimensional Hilbert spaces and by X its obvious symmetry.
In the joint paper {8}, which is partly of a review character, we argued that it is more natural to
prove Tannaka-type theorems for discrete quantum groups and we gave simple proofs of the following
results:

1.2.4 THEOREM Let C be a semisimple tensor x-category and E : C — H an embedding functor. Then
there exists a discrete x-algebraic quantum semigroup (A, A) and an equivalence F : C — Rep(4, A)
of tensor *-categories such that K o F' = E, where K : Rep;(A, A) — Vectc is the forgetful functor.
If C has conjugates then (A, A) is a discrete *-aqg.

An R-matrix for an aqg (A, A) is an invertible element, satisfying the usual relations, of M(A® A)
such that RA(a)R™! = 0A(a) for all a € A, where ¢ is the flip automorphism. An R-matrix gives
rise to a braiding on Repy) (A, A). The converse also holds:

1.2.5 THEOREM Let C,E and the derived data (A,A),F be as above. Then there is a bijection
between braidings on C and a R-matrices for (A,A) such that C ~ Rep;(A,A) as braided tensor
categories. Unitary braidings correspond to unitary R-matrices.

All these results generalize to the case of semisimple categories without *-operation, cf. {8, Section
5.4}. If C is braided and F respects the braiding, i.e. ¢(X,Y) = X (x) g(v), then C must be symmetric
and (A, A) is cocommutative. In this case we recover the classical Tannaka theorem:

1.2.6 THEOREM Let C be a semisimple symmetric tensor x-category with conjugates and £ : C — H
an embedding functor such that ¢(X,Y) = Zg(x) g(v). Then there exist a compact group G and an
equivalence F': C — Rep;G of tensor *-categories such that K o F' = E, where K : Rep;G — Vectc
is the forgetful functor.
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1.2.3 The Regular Monoid

In Subsection 1.1.3 we have seen that the left regular represenation of a finite dimensional Hopf algebra
H gives rise to a Frobenius algebra (I',m,n, A,¢) in Rep sH. Obviously, in the infinite dimensional
case, the regular representation does not live in Rep;H anymore, but the above results also fails for
other reasons. Yet the following results from {12, Section 3} show that some of the structure survives.

1.2.7 LEMMA Let T be the left regular representation of the x-aqg (A, A). Then there are unitary
isomorphismsT®60 = T'®Iy, natural in 6 for all € Rep(A, A), and Iy is the representation a — £(a)idy.
I’ contains € as a subrepresentation iff (A, A) is discrete, in which case the multiplicity is one.

1.2.8 PROPOSITION Let (A,A) be a x-aqg. Then there exists a linear map m : A® A — A which
satisfies m(A(a)x) = am(x) for alla € A, r € A® A and m(m ® id) = m(id @ m).

The former condition means that m is a morphism I' @ I' — T" in Rep(A, A) and the latter that
(T, ) is a semigroup in Rep(A4, A). If (A, A) is discrete then ¢ — cA defines a morphism n € Hom(e, T')
and one verifies that (I',7,n) is a monoid in the tensor category Rep(A, A). Furthermore, we have
A(A) C A® Aiff (A, A) is compact, equivalently A is unital. In that case we find A € Hom(I', T ®@T")
and (T, A,¢) is a comonoid in Rep(A4,A). The monoid and comonoid structures exist both iff (A4, A)
is finite dimensional, in which case they coincide with those in Subsection 1.1.3. We summarize the
part that will be relevant in the next subsection:

1.2.9 THEOREM Let (A, A) be a discrete x-aqg with left regular representation I'. Then there exists
a monoid (I';m,n) in Rep(A, A) where I" has the absorbing property ' ® 0 = I'®@ Iy =2 dimVyT and
satisfies dim Hom(e,I') = 1. If (A, A) is cocommutative (thus Rep;(A,A) ~ Rep;G for a compact
group G) then Rep(A, A) is symmetric and the monoid is commutative: m o cpp = M.

Again the results generalize to (semisimple discrete) aqg without x-operation.

1.3 Symmetric Tensor Categories: Abstract Reconstruction

The Tannaka theory of Woronowicz [74] as well as the one of {8} described above rely on the existence
of a fiber functor, i.e. a faithful tensor functor F : C — Vecty. A tensor category, usually but not always
assumed symmetric, together with a fiber functor is called tannakian (or concrete or embedded). In
the general formalism, the braiding of C, if it exists, plays a minor role. It just corresponds to
an R-matrix for (A4, A). If both C and E are symmetric then cocommutativity of (A4,A) and thus
Rep/(4,A) ~ Rep;G follow.

The works [23, 15] go beyond Tannakian reconstruction in that they characterize classes of symmet-
ric tensor categories that admit a fiber functor and actually construct the latter. Here the symmetry
plays a very crucial role. The frameworks in which the cited works are located are somewhat differ-
ent. Working with C*-tensor categories with unitary symmetry and assuming that all objects have
conjugates and twist +1, Doplicher and Roberts [23] first prove that the dimension of every object
is in N. They then construct a compact group G and an equivalence F' : C — Rep;G. (Finally they
generalize to the case including twists —1, giving rise to a supergroup.) Deligne [15] considers k-linear
symmetric abelian tensor categories where k is an algebraically closed field of characteristic zero. As-
suming that the dimensions of all objects are in N he constructs a fiber functor £ and then appeals to
the Tannaka-type theorem of Saavedra Rivano, as completed by Deligne and Milne, to conclude that
C is equivalent to the category of representations of an algebraic group scheme. We begin with a brief
description of the idea of his proof, which is closer in spirit to the present chapter.

We assume throughout that & is algebraically closed of characteristic zero, and that C is k-linear
symmetric. We also require C to have a generator, i.e. an object Y such that every X € C is a direct
summand of Y for some n € N, and that C be even, i.e. all objects have twist +1. (Concerning the
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generalizations to categories without generators and/or allowing objects with twist —1 we have nothing
new to say, cf. [23, 15, 16].) The basic idea in [15] is to embed C into the associated category € = Ind C
and to construct a commutative monoid (I',m,7) in € such that I' ® X = d(X)T for all X € C. The
k-vector space K = Hom(1,T) is a commutative algebra w.r.t. the multiplication (a,b) = m o a®b
and the unit 1x = n. Defining a functor Ex : C — Vecty by

EK(X) = HOme(l,F@X),
Ex(s)p = id®so ¢, s:X =Y, ¢ € Ex(X),

one finds that Ex(X) is a K-module for every X, the K-action being given by
K X Eg(X) = Ex(X), (a,¢) > m®idx o a® ¢.

In fact, Ek is a tensor functor C - K —Mod. Picking a maximal ideal M in K, we can construct a
tensor functor E; : € — k—Mod, where k = K/M is a field extension of k. The latter can be shown to
be algebraic. Thus if k is algebraically closed, Ej, is a fiber functor into Vecty. Now the classic result
of Saavedra Rivano implies that there exists an algebraic group G and an equivalence F': C — Rep;G
such that £ = K o F', where K : RepyG — Vecty, is the forgetful functor. On the other hand, if C is a
x-category one may apply an argument in [8] to obtain a fiber functor that is *-preserving, and then
Theorem 1.2.6 implies an analogous result for a compact Lie group G.

The construction as described above is not entirely satisfactory. Once the category C is shown to
be equivalent to Rep,G, the discussion in Subsection 1.2.3 implies that IndC ~ Rep(4,A) contains
a commutative monoid (I',m,n) which has the absorbing property and contains the tensor unit as
direct summand with multiplicity one. If one applies the above prescription to this monoid to define
a fiber functor F, the latter property implies dimy K = 1, thus F automatically is a fiber functor into
Vecty,. Defining G = Aut®E, following Saavedra Rivano, one finds easily

G =Aut(l',m,n) :={g € Autl' [ gom=m o g®g, gon =n}.

Thus the group G for which C =~ Rep ;G holds can be read off the regular monoid (', m,n) without con-
sidering the fiber functor that the latter gives rise to. Therefore it would be highly desirable to directly
construct the regular monoid in €. (The monoid constructed in [15] fails to satisfy dim Hom(1,T') =1,
thus it is at best an uncontrolled multiple of the regular monoid.) This is done in {12, Section 3},
where we limit ourselves to the semisimple case and use simplifications of Deligne’s work in [7, 64].

1.3.1 THEOREM Let k be algebraically closed of characteristic zero and let C be a k-linear semisimple
rigid symmetric tensor category with End 1 = kidy and such that d(X) € N for all X € C. Then

1. There exists a commutative monoid (I';m,n) in IndC such that ' ® X = d(X)TI" for all X € C
and dimHom(1,T") = 1.

2. The group G = Aut(I',m,n) is proalgebraic and C ~ Rep;G.
3. If C is a *-category then G is a compact topological group.

The new result here is 1, from which the statements 2 and 3 follow as explained above. (Of course,
1 also follows from 2 or 3 via the results from Subsection 1.2.3, but our proof is much more direct and
purely categorical.) We briefly sketch the construction. For every object X € C and every n € N, the
symmetry gives rise to a homomorphism 7% : ¥, — End X", and the idempotents

PE(X) = %ZE { ontoy |75
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project onto subobjects S, (X) and A, (X), respectively, of X". In particular, d(Agx)(X)) = 1 and
Agxy = 1if X = X. The object S(X) = ®nez,Sn(X) is easily seen to give rise to a commutative
monoid (S(X), m,n) in C, the symmetric algebra over X.

For any commutative monoid (I',m,n) in a k-linear tensor category D, (I',m) is a (left) I-module.
An ideal in (", m,n) consists of (X, ) € '—Mod and a monomorphism ¢ € Homp y0q (X, 1), (T, m)).
Considering the cokernel p : (I',m) — (', m) of ¢, there exists a commutative monoid (I, m', ') in
D such that pom =mop®p,pon =n'. This monoid is considered the quotient of (T',m,n) by the
ideal ((X, u),¢). One has a notion of maximal ideals, and as in commutative algebra one shows that
every ideal is contained in a maximal ideal and that the commutative quotient monoid (I, m’,n’) is a
‘field’. The latter now means that the commutative k-algebra Hom(1,I”) is a field, thus an extension
of k.

Let Z be a generator for C satisfying Z = Z, and consider the commutative monoid (S(Z),m,n)*?,
where d = d(Z). Using ideas from [7], see also [64], one finds an ideal ((X, u),:) in (S(Z), m,n)*¢ such
that the quotient of (S(Z), m,n)*? by that ideal (or any ideal containing the latter) has the absorbing
property for all X € C. Quotienting by a maximal ideal containing ((X,u),t) we thus obtain a
commutative absorbing monoid in ¢ where K = Hom(1,T) is a field extension of k. Showing that
the latter is algebraic, thus trivial, completes the construction of a monoid with all desired properties.
Now the previous considerations show that C ~ Rep ;G where G is the automorphism group of this
monoid, and the uniqueness of fiber functors proves that this monoid is in fact the one arising from
the regular representation. In particular, one concludes I' = @;d(X;) X;. (Note that it seems hopeless
to directly define a commutative monoid structure on this object I'.)

1.4 Structure of Modular Categories

1.4.1 Preliminaries

Adopting the perspective of ‘categorification’ [3] it is not surprising that on the level of (1-)categories
we find analogues of notions that are familiar from 0-categories, i.e. sets, monoids etc. In particular,
we have centralizers and centers:

1.4.1 DEFINITION Let C be a braided tensor category and K a set of objects in C, equivalently, a
full subcategory of C. The centralizer C¢(K) of K in C (or relative commutant C N K') is the full
subcategory defined by

ObjCe(K) = {X € C | e(Y,X) 0 e(X,Y) = idxy VY € K}.

1.4.2 DEFINITION The center of a braided category C is defined as Zs(C) = C¢(C). It clearly is a
symmetric category. We say a semisimple braided tensor category has trivial center, if every object of
Z5(C) is a direct sum of copies of the tensor unit 1 or if, equivalently, every simple object in Z2(C) is
isomorphic to 1.

1.4.3 LEMMA Let C be braided monoidal and K a subcategory. Then C¢(K) is replete, monoidal and
closed w.r.t. direct sums and retractions in C. If C is k-linear semisimple then the same holds for

C¢(K). If C has duals for all objects then also C¢(K) has duals. If K1,Ks C C then Ce(Ky V Ko) =
Ce (K1) N Ce(Ky), where K1 V Ko C C is the smallest full monoidal subcategory containing K1, Ks.

Now we restrict our attention to semisimple categories with finitely many classes of simple objects.
1.4.4 DEFINITION A premodular category [11] is a finite braided fusion category. A modular category

[67] is a premodular category where the matrix (S(X,Y)) = Trxy(c(Y,X) o ¢(X,Y)), indexed by
isomorphism classes of simple objects, is invertible.

14



The following was proven by Rehren [59] for x-categories and in full generality by Bruguiéres and
others, cf. [6].

1.4.5 THEOREM Let C be pre-modular with dimC # 0. Then the following are equivalent:
(i) The center Z5(C) is trivial.
(ii) C is modular.

The importance of modular categories is due to the fact that they serve as input in the construction
of certain topological quantum field theories in 2+ 1 dimensions, cf. [67]. On the other hand, they arise
from quantum groups at roots of unity [69] and in conformal field theory {3}. The latter situation
will be discussed in Subsection 2.1.2.

1.4.2 Modular Categories: Double Centralizer Theorem and Prime Factorization

In {7} T argued that modular categories appear in sufficiently many different contexts to deserve some
attention for their own sake, and I took some steps towards a structure theory of modular categories.
All results in the remainder of this subsection are from {7}. All subcategories considered here are
replete full tensor subcategories closed w.r.t. direct sums, retractions and duals. The crucial ingredient
is the following ‘double centralizer theorem’ (DCT).

1.4.6 THEOREM Let C be a modular category and let K C C. Then we have
(i) Ce(Ce(K)) =K.
(ii) dim K - dim C¢(K) = dimC.
1.4.7 COROLLARY Let C be a modular category and let K C C. Then
Z5(Ce(K)) = Z2(K).
In particular, if K is modular then so is C¢(K). If K is symmetric then Zy(Ce(K)) = K.

1.4.8 PROPOSITION Let C and K be modular categories where K is identified with a full (tensor)
subcategory of C. Let L = C¢(K). Then there is an equivalence of modular categories:

C ~ KKL.

(Here KX L is the completion w.r.t. direct sums of the tensor product K &y, L, whose objects are pairs
of objects and whose hom-spaces are tensor products over k of the respective hom-spaces in K, L.)

1.4.9 DEFINITION A modular category C is prime if every modular subcategory is equivalent either
to C or the trivial modular category Vecty,.

1.4.10 THEOREM Every modular category is equivalent to a finite direct product of prime ones.

The theorem implies that it suffices to classify prime modular categories. Note however that the
factorization of a modular category into prime ones is not necessarily unique. Examples for this
non-uniqueness will be presented below.
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1.4.3 Examples and Applications

A natural class of modular categories to consider is provided by quantum doubles of finite groups.
Whenever G = G1 x G2 we have D(G)—Mod ~ D(G1)—Mod K D(G1)—Mod. It is thus sufficient to
consider prime groups. The abelian case, where G is prime iff it is cyclic of prime power order, has
been worked out completely:

1.4.11 THEOREM Let p be prime, G = Z/p"Z and C = D(G)—Mod.
(i) C is prime iff p = 2.

(ii) If p is odd, there is a one-to-one correspondence between isomorphisms o : G — G and modular
subcategories K, C C given by K, = {(g,a(g)), g € G}. (Recall that the iso-classes of simple
objects in D(G) — Mod are labeled by elements of G x G.) The categories K, are prime,
and C¢(Cy) = Cq, where @(-) = a(-)"!. The prime factorizations of C are thus given by C =~
Co R Cq, o € Isom(G,G).

This result implies, already for finite abelian groups, that there is no correlation between simplicity
of G and primality of D(G)—Mod ~ Z3(Rep G)!
For unitary modular categories (i.e. *-categories) the following is an easy consequence of the DCT:

1.4.12 PROPOSITION Let C be a unitary modular category and KX C C. Then
dimC > dim K - dim Z5(K).

Equality holds iff C¢(K) = Cx(K)(= Z2(K)), in which case we say that C is a minimal modular full
extension of K.

1.4.13 EXAMPLE Consider § C C where C is modular and § is symmetric. With K = C¢(S) we have
Z5(K) = Z5(S§) = S. Thus C is a minimal modular full extension of K. By the DCT this situation is
generic: If C D K is a minimal modular extension and we set S = Z3(K) then K = C¢(S). O

It is natural to expect that this bound is optimal:

1.4.14 CONJECTURE Let K be a unitary pre-modular category. Then there exists a unitary modular
category C and a full and faithful tensor functor I : K — C such that

dimC = dim K - Zy(K).

A direct approach to the proof does not seem promising. See Remark 1.6.20 for a possible approach.

1.5 The Center 7; of a Fusion Category

1.5.1 Definition and Basic Properties

It seems desirable to have means to produce modular categories that are simpler than those via
quantum groups at roots of unity and rational conformal field theories. (We note in passing that
these two subjects are closely related.) The approach of modularization {2},[11] will be mentioned in
Subsection 1.6.4.

It has long been known that the quantum doubles D(G) of finite groups have modular representa-
tion categories, cf. e.g. [2]. The latter construction has a generalization to arbitrary tensor categories,
independently discovered by Drinfel’d (unpublished), Majid [51] and Joyal and Street [38]. See also
[41].
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1.5.1 DEFINITION/PROPOSITION The center Z;(C) of a strict monoidal category C has as objects
pairs (X, ex), where X € C and ex is a half braiding, i.e. a family {ex(Y) € Hom¢(XY,YX), Y € C}
of isomorphisms, natural in Y and satisfying the braid relation

ex(Y®Z)=idy ®ex(Z) cex(Y)®idz VY,Z €C.
The morphisms are given by
Homy, ) ((X,ex), (Y,ey) = {t € Hom¢(X,Y) | idy ®toex(Z)=ey(Z)ot®idx VZeC(C}
The tensor product of objects is given by (X,ex) ® (Y,ey) = (XY, exy ), where
exy(Z) =ex(Z)®@idy o idx ® ey (Z).

The tensor unit is (1,e1) where e1(X) = idx. The composition and tensor product of morphisms are
inherited from C. With
C(Xex),(Veey) = €x(Y)

Z1(C) is a braided tensor category.

The following are some quite trivial observations.

1.5.2 LEMMA If C is k-linear then so is Z1(C). If the unit 1 of C is absolutely simple, then 1, ) is
absolutely simple. If C has direct sums then also Z;(C) has direct sums. If C has subobjects then also
Z1(C) has subobjects.

1.5.3 PROPOSITION Let C be (strict) pivotal. Then also Z;(C) is (strict) pivotal, the dual (Y, ey)
being given by (Y, ey), where ew(X) is defined by

idyy ®@e(Y) idy @ ey (X) ™! @idy

YoXeYQY YV XY —

(V) ®@idyy YT

Y®X

The evaluation and coevaluation maps are inherited from C:
e((Yoey)) =e(Y), &((Y.ey)) =2(Y).
If C is spherical then also Z1(C) is spherical.

The question of semisimplicity of Z;(C) is less obvious. We can answer it only assuming that C is
a finite fusion category with non-zero dimension. The following and the results in the next subsection
are taken from {6}.

1.5.4 THEOREM Let k be algebraically closed and C a finite fusion category over k with dimC # 0.
Then the quantum double Z(C) is spherical and semisimple.

1.5.2 Morita Equivalence Z,(C) ~ C K C° and Modularity

So far we know that Z;(C) is semisimple if C is a finite fusion category. In order to obtain results
about the ‘size’ of Z1(C) we need the more sophisticated machinery described in Subsection 1.1.2. We
define

A = CRCP,
Xi = X;®XP e ObjA.
By {5, Lemma 2.9}, C°?,C ®; C°? and A are strict spherical in a canonical way. Every X;, ielis
simple.
The following is a very slight generalization of [47, Proposition 4.10].
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1.5.5 LEMMA Let k be quadratically closed and let C be a finite fusion category over k with dimC # 0.
There is a normalized strongly separable Frobenius algebra (I',m,n, A, ¢)) in A = CRCP (with a = 3)

such that R
= EB X;.
=

1.5.6 PROPOSITION Let £ be the Morita context arising from the Frobenius algebra (I',...) in the
tensor category A, and let B = Endg(®B). There exists an equivalence B ~ Z;(C). Thus dim Z1(C) =
(dimC)2.

Since we have fairly good control over the bicategory &, the same follows for Z;(C). For example
we can prove that the number of isomorphism classes of simple objects in Z1(C) is bounded by
>_i; dimHome (X; X, X;X;). In the case where C = Rep G for G finite abelian this bound is attained.
Furthermore,

1.5.7 THEOREM Let k be an algebraically closed field and C a finite fusion category over k with
dimC # 0. Then also the center Z1(C) has all these properties and is a modular category [67].
Furthermore, the dimension and the Gauss sums Ay (D) = 3", 0(X;)*1d(X;)? are given by

dimZ(C) = (dimC)?,
As(Z1(C)) = dimC.

If C has a braiding ¢ then C can be considered as a full subcategory of Z;(C) via the fully faithful
braided tensor functor F; : X — (X, ex), where ex(Y) = cx,y. If C denotes the tensor category C
with the braiding éxy = ¢(Y, X) ! then there exists a similar braided tensor functor F : C — Z;(C)
such that C,(¢)(F1(C)) = F2(C) and Cy,(c)(F2(C)) = Fi(C). (This holds in complete generality,
independently of the DCT.) If now C satisfies the assumptions of Theorem 1.5.7 then modularity of

Z1(C) and Proposition 1.4.8 imply

1.5.8 THEOREM If C is modular then Z;(C) ~ C R C as modular categories.

In particular, every modular category appears as direct factor of Z;(C) for some fusion category
C.

In view of Theorem 1.1.13, the weak monoidal Morita equivalence Z;(C) ~ C X € implies
TV (M, Z1(C)) = BW(M, Z,(C)) = BW(M,CRC) = BW(M,C) - BW(-M,C)

for every fusion category.

One can show {6} that the number of simple objects in Z;(C) coincides with the dimension of the
state space Hgi, g1 of the torus in the d = 2 + 1 TQFT defined by triangulation, as conjectured in
[30]. On the other hand, in the surgery TQFT RT [67] based on a modular category D, dim Hgi 4 g1
coincides with the number of simple objects. This provides support to the conjecture that BW (M,C) =
RT(M, Z,(C)) for every oriented closed 3-manifold M and every unimodal finite fusion category C.
In a formalism involving subfactos it has recently been shown [42] that the surgery TQFT associated
with Ocneanu’s asymptotic subfactor coincides with the triangulation TQFT [55] of the original (finite
index and depth) subfactor. In view of the relation [34],{6} between the asymptotic subfactor and
Z1(C) it seems to be a simple exercise to give a proof of the conjecture involving only topological and
categorical arguments.
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1.6 Galois Theory of Braided Tensor Categories

1.6.1 Tensor Categories of Modules

On several occasions we have considered (bi)module categories of a monoid in a tensor category C. In
the absence of a braiding on C only I'=Mod—TI" is monoidal. For symmetric C it has long been known
that I'—=Mod is again symmetric monoidal, cf. e.g. [15]. The braided case was considered in [57]:

1.6.1 DEFINITION/PROPOSITION IfC is braided and has coequalizers then '-Mod is a tensor category
with (X, u) ® (Y,n) = coeq(a, f) where a, 5 : T @ X @Y — X ® Y are given by

a=p®idy, f=idx ®n o cr x ®idy.

There is a tensor functor F : C — I'=Mod¢ such that F(X) = (T'® X, m®idx). The full subcategory
I’—Modg C I'=Mod¢ consisting of the objects (X, u) satisfying o cxr o cr x = p is monoidal and
braided.

These results were rediscovered in [11] for the special case where I' € Z5(C), implying I'—Mod2 =
I'—Modc, and in generality in [43]. The material in the remainder of this subsection is from {9}.

1.6.2 PROPOSITION Let C be a finite braided fusion category and let (I',m,n,A,e) be a strongly
separable Frobenius algebra in C satisfying dimHom(1,I') = 1. Then I'—Mod¢ is a semisimple
k-linear spherical tensor category with Endr1l = kidy, and

dimT'—Mod¢ = (dimT)~! dimC.

A certain nuisance of the tensor category '—Mod is the somewhat implicit definition of the tensor
product. Therefore the following alternative description is useful:

1.6.3 DEFINITION/PROPOSITION Let C be a strict braided fusion category and (T, m,n, A, €) a strong-
ly separable Frobenius algebra in C. Then the following defines a tensor category Cr.

e ObjCr = ObjC.

e XQY =XQY.

Hom; (X,Y) = Home(I'X, Y).

Let s € Homg (X,Y) = Home(I'X,Y) and t € Homg (Y,Z) = Home(I'Y, Z). Then tés =
toidr ® so A® X in Homg (X, Z) = Home(I'X, Z).

Let s € Homg (X,Y) = Home(I'X,Y) and t € Homg (Z,T) = Home(I'Z,T). Then st =
s@toidr ®erx ®idz o A®idy ®idz in Homg (XZ,YT) = Home(TX Z,YT).

The canonical completion Cr = ég of Cr to a category with splitting idempotents is semisimple. (Recall
that ObjCr = {(X,p), X € ObjCr, p =p? € End; X} etc. Instead of (X,idx) € Cr we simply write
X.) IfC is a *-category and A = m*, & = n* then Cr,Cr are x-categories. The functor ¢ : C — Cr given
by X — X, s+ € ® s is monoidal and faithful. The composite of v with the full embedding Cp — Cr
is also denoted by t.

1.6.4 PROPOSITION Let C and (I',m,n, A, &) be as before. Then there exists a monoidal equivalence
K : Cr - T'—Mod¢ such that K o1 = F' as tensor functors.
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1.6.2 Galois Extensions of Braided Tensor Categories

1.6.5 DEFINITION Let C be a strict braided fusion category and & C C a finite full even symmetric
fusion subcategory. Let (T',...) be the Frobenius algebra in C arising from Theorem 1.3.1 and Theorem
1.1.15. Then we writeC Xy S :=Cr andC xS :=Cr.

1.6.6 PROPOSITION C x¢ S and C x § are strict spherical tensor categories and C X S is semisimple.
If C is a x-category then C Xy S and C X § have x-structures extending that of C. There exists a tensor
functor ¢ : C — C x 8§ which is faithful and injective on the objects. The group G = Aut(T', m,n) acts
on C xS viavyy(s) =so g~ ®@idy for s € Homeys(X,Y) = Hom(T'X,Y) and v,((X,p)) = (X,74(p)).
We have (C 9 S)? = C and (C x 8)¢ ~ C. IfC is finite then dimC x S = dimC/|G| = dimC/dim S.

1.6.7 THEOREM Let § C C be as before. The tensor functor v : C — C xS has the following universal
property.

1. For every simple object Y € C x S there exists X € C such that Y is a direct summand of
Y < o(X).

2. For every X € § we have 1(X) 2d(X)1inCxS.

3. If D is semisimple and ' : C — D satisfies 1-2 then there exists a tensor functor 1" : C xS — D,
unique up to monoidal natural isomorphism, such that /! = 1" o 1.

We call C x S the Galois extension of C by the full symmetric subcategory S.
We now identify C with the subcategory ¢(C) of C x S.

1.6.8 THEOREM Let C be a fusion category and § C C a finite full even symmetric subcategory such
that S ~ Rep G. Then there is a one-to-one correspondence between subgroups H C G and categories
& such that C C £ C C X S and & is the completion w.r.t. subobjects of the category (C o S)NE.
The correspondence is given by & = (C x §)H and H = Autg(C x S).

1.6.9 PROPOSITION In the above correspondence the subgroup H C G is normal iff there is a even
symmetric subcategory T C S such that £ =2 CxT . In this case Autg(CxS) = H and Aute(€) = G/H.

1.6.3 Ramification Theory

We briefly discuss the known facts concerning the decomposition of +(X) € C x S for simple X € C.
1.6.10 DEFINITION For X|Y € C we write X ~ Y iff Hom¢(I'X,Y') # {0}.

1.6.11 THEOREM {9} Restricted to simple objects, the relation ~ is an equivalence relation. Let
X,Y € C be simple. If X Y then «(X),(Y) are disjoint, to wit «(X),¢(Y) have no isomorphic
subobjects. For every equivalence class o there exist a finite set I,, mutually non-isomorphic simple
objects Z; € C X S, i € I,, and natural numbers Nx, X € o, such that

UX)=Nx @7z VXeo
1€ly

In the case where G is abelian (i.e. every simple object of S is invertible) a more precise description
of the simple objects of C x S can be given, cf. {2}. Let A and K be the sets of isomorphism classes
of simple objects in C and S, respectively. Then K is an abelian group which acts on A in the obvious
way (if X is simple and Y is invertible then X ® Y is simple), and the equivalence classes considered
above are just the orbits of this action. Defining, for every [X] € A,

Kx={[Y]eK|Y®X=~X},
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Kx is a subgroup of K and one proves that there exists o € Z%(Kx,k*) such that Endcyws(¢(X)) is
isomorphic to the twisted group algebra k*Kx. Now Lx = {k € Kx | a(k,l) = a(l,k) VIl € Kx} is
a subgroup of Kx spanning the center of k“K x. Thus there is a one-to-one correspondence between
the characters of Ly and the non-isomorphic simple subobjects of ¢(X).

1.6.4 C x S as braided crossed G-category

Now we turn to the question whether (or in which generalized sense) C x S is braided. Since the
category C xg S has the same objects as C, a natural candidate for a braiding is just the braiding ¢ of
C. However, C Xy S has more morphisms, thus naturality of this putative braiding must be verified.
In fact, the following was proven in {2}.

1.6.12 LEMMA The braiding ¢ of C lifts to a braiding for C x¢ S iff S C Z1(C). In that case also C X S
is braided.

1.6.13 PROPOSITION IfS C Z1(C) then Z1(CxS) = Z1(C) x S. In particular, C x S has trivial center
it S = Z,(C).

Thus ¢ = C x Z;(C) has trivial center. If C is finite then also C is finite and thus modular by
Theorem 1.4.5. Therefore C was called the modular closure in {2}. (In [11], the equivalent category
I' — Mod, where (I',m,n) is the regular monoid in the symmetric category Zi(C), was called the
modularization of C.)

When § is not contained in Z1(C) it turns out that C x § is still braided, but one needs to generalize
the notion. Such a generalization was introduced in [68], and below we give a variant of that definition.

1.6.14 DEFINITION Let G be a (discrete) group. A strict crossed G-category is a strict tensor category
D together with

e a full tensor subcategory D C D of homogeneous objects,

e a map 0 : ObjDg — G constant on isomorphism classes,

e a homomorphism v : G — AutD (monoidal self-isomorphisms of D)
such that

1. (X ®Y)=0XdY forall X,Y € Dg.

2. 74(Dp) C Dypg-1, where Dy C Dg is the full subcategory 9 (g).

If D is additive we require that every object of D be a direct sum of objects in Dg. A braiding
for a crossed G-category D is a family of isomorphisms cxy : X @ Y — XY ® X, defined for all

X € Dg, Y € D, such that
st

XY X' oY

CX)Y Cx!y!

XY ® X lel ® XI

t®s

commutes for all s : X — X' t:Y — Y’ and

cx,zor = idxz @cxr 0o cx,z Qidr,

cxev,z = Cxyz®Iidy oldx ®cy z,

for all X,Y € Dg, Z,T € D
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1.6.15 THEOREM C X § is a rigid braided crossed G-category, where S ~ Rep G.

1.6.16 DEFINITION/PROPOSITION The spectrum of a crossed G-category D is set SpecD = {g €
G | Dy # 0}. SpecD is closed under multiplication and under conjugation with elements of G. It is
closed under inverses, thus a normal subgroup, if D has duals.

The spectrum is called full if it coincides with G and trivial if it is {e}.

1.6.17 PROPOSITION The embedding (CNS') xS < C x 8 gives rise to an isomorphism (C X §), =
(CNS')xS. CxS§ has trivial spectrum iff S C Z(C).

Let 8o C S be a full inclusion of finite even symmetric fusion categories. Let (T,...), (Ig,...) be
the corresponding Frobenius algebras in Sp, S, respectively, with automorphism groups Gy, G. Then
' 2Ty & Z and Hom(T'y, Z) = {0}, thus the projector ¢ € End I onto Iy is central. The group

N={g9€Glgoq=gq}
is a normal subgroup of G = Aut(T",m,n). It coincides with
N = {g eG | ﬂx(g) = idE(X) VX € So},

where E : § — Vectc is the fiber functor and 7wy is the representation of G on E(X). (This is easily
deduced from E(X) = Hom(1,T®X) and the fact that g € G actson E(X) by mx(g) : ¢ — g®idx o ¢.)
This implies Gy =2 G/N.

1.6.18 THEOREM Let § C C with S ~ RepG. Let N be the normal subgroup of G corresponding
to the full inclusion S N Z3(C) C S as above. Then SpecC x § = N. In particular, C X § has full
spectrum iff S N Zy(C) is trivial, i.e. consists only of multiples of 1.

1.6.19 COROLLARY IfC is modular then C X § has full spectrum and (C x S), is modular.

1.6.20 REMARK We briefly comment on an approach to the construction of minimal modular exten-
sions as defined in Subsection 1.4.3. Let K be a premodular category and C D K a minimal modular
extension. Let & = Z3(K) and consider the full inclusion £ xS C C x S. The left hand side is a
braided category carrying a G-action (where S ~ Rep G) — in fact it is just the modularization of K as
in {2},[11] — whereas the right hand side is a braided crossed G-category with full spectrum. In a sense,
C x 8 is a crossed product of its grade-0 subcategory K x S by the action of G. In not-too-different
contexts such crossed products have been considered before, cf. e.g. [70]. The idea for the construction
of C from K thus is: (i) consider the G-category D = K x Z3(K), define a braided crossed G-category
£ =“D x G” and define C = £C. O
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Chapter 2

Quantum Fields

2.1 QFT on R and S!

2.1.1 Braided Crossed G-Categories from QFT on R with G-Symmetry

In this subsection we consider quantum field theories (QFTs) living on the line R and acted upon by
a group G of internal symmetries. In {10} we show that this setting gives rise to a braided crossed
G-category G—Loc A and a full subcategory G—Loc;A that in addition is rigid and semisimple. These
considerations take place in the rigorous setting of (operator) algebraic QFT, cf. [33]. In the case
where G = {e} our analysis reduces to well known results, cf. [22, 27, 32]. Here we limit ourselves to
stating the most important definitions and results.

Let K be the set of intervals in R, i.e. the bounded connected open subsets of R. We write
It =R -1, and for I,J € K we write I < J and I > J if I C (—o0,infJ) or I C (sup.J,+00),
respectively. The following is the one-dimensional version of a very classical definition, cf. [33].

2.1.1 DEFINITION A net of algebras on R is a triple (Hg, A, Q), usually simply denoted by A, where
Ho is a separable Hilbert space with a distinguished non-zero vector ), and A is an assignment
K>>I~ A(I) C B(Hy), where A(I) is a type III factor, cf. 1.1.17. These data must satisfy

Isotony: T CJ = A(I)C A(J),

Locality: I C J&- = A(I) C A(J),

Irreducibility: ViexA(I) = B(Ho) (equivalently, Njex A(I) = C1),

Strong additivity: A(I)V A(J) = A(TU JO) whenever I,J € K are adjacent, i.e. their closures
intersect in exactly one point.

Haag duality: For every I € K we have A(I) = A(I*), where

A(It) = Alg{A(J), J ek, JcCT}.

Given these data we also define

Ao = | AUI) C B(Ho).
Iex

As a consequence of the fact that the A(I) are factors we have Z(Ay) = Cl = Z(A(I1)) VI € K.

2.1.2 REMARK The axioms of quantum field theory also require covariance w.r.t. a representation of
the Poincaré group with positivity of the generator of time translation. These axioms are not needed
in our considerations, which is why we prefer to speak of nets of algebras. O
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2.1.3 DEFINITION Let (Hg, 2, A) be a net of algebras on R. A topological group G acts on A (by
inner symmetries) if there is a strongly continuous unitary representation V : G — U(Hy) such that

1. By(A(I)) = A(I) Vg € G, I € K, where B4(x) =V (g)zV (g)*.
2. V(g)Q2 =
3. If By | A(I) =id for some I € K then g = e.

2.1.4 REMARK 1. In most of what follows the topology of G is not taken into account. In fact, we will
mostly be interested in finite groups, but many results generalize to compact groups without difficulty,

cf. {10}.
2. Condition 3 is crucial for the definition of the G-grading on G—Loc A. It entails no serious loss
of generality. O

The following is well known.

2.1.5 DEFINITION/PROPOSITION Let B be a unital x-algebra. Let End B be the category whose
objects p,o, ... are unital x-algebra homomorphisms from B into itself. With

Hom(p,0) = {s€ B| sp(x) =o0(x)s Vx € B},

tos = ts, s& Hom(p,o),t€ Hom(o,n),
pRO = p<0<))7
s@t = splt)=4(t)s, s €Hom(p,s), t € Hom(o,o'),

End B is a C-linear strict tensor category with unit 1 = idp and positive x-operation. We have
Endl = Z(B).

We now turn to the definition of G—Loc A as a full subcategory of End A.

2.1.6 DEFINITION Let I € K, g € G. An object p € End Ay, is called g-localized in I if

plr) = =z VI < I, x € A(J),
p(x) = By(x) VJ > 1, z € A(J).

p is g-localized if it is g-localized in some I € K. p is G-localized (in I) if it is g-localized (in I) for
some g € G. A g-localized p € End Ay is transportable if for every J € K there exists p' € End Ao,
g-localized in J, such that p = p' (in the sense of unitary equivalence).

2.1.7 REMARK 1. If p is g-localized in I and J D I then p is g-localized in .J.
2. Direct sums of transportable morphisms are transportable.
3. Requirement 3 in Definition 2.1.3 implies that if p is g-localized and h-localized then g = h. O

2.1.8 DEFINITION G—Loc A is the full subcategory of End A, whose objects are finite direct sums of
G-localized transportable objects of End Ao,. Thus p € End Ay, is in G—Loc A iff there exists a finite
set A and, for all i € A, there exist g; € G, p; € End Ay g;-localized transportable, and v; € Ay, such

that v;‘ ovj = (52']' and
p=> vipi(-)v}.
%

We say p € G—Loc A is G-localized in I € K if there exists a decomposition as above where all p; are
gi-localized in I and transportable and v; € A(I) Vi.

For g € G, let (G—Loc A)y be the full subcategory of G—Loc A consisting of those p that are
g-localized, and let (G—Loc A)g be the union of the (G—Loc A)y,g € G.
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For g € G define 4 € Aut(G—Loc A) by

v9(p) = Bepby
'79(8) = /Bg(s)a s € HOIII(p,O’) C Aoo
2.1.9 LEMMA The map 0 : Obj(G—Loc A)g — G defined by 0p = g if p € (G—Loc A), is a G-grading,

and G—Loc A is a C-linear crossed G-category with Endl = Cidy, positive x-operation, direct sums
and subobjects (i.e. orthogonal projections split).

2.1.10 REMARK The categories Rep A and G—Loc A do not have zero objects, thus cannot be additive
or abelian. This is due to the fact that we consider only 7 = (7;) where all 7r; are unital and unital
p € EndA.,, respectively, and could be remedied by dropping these conditions. We refrain from doing
so since it would unnecessarily complicate the analysis without any real gains. O

Before we can construct a braiding for G—Loc A some preparations are needed.
2.1.11 LEMMA If p is g-localized in I then p(A(I)) C A(I) and p | A(I) is ultraweakly continuous.

2.1.12 LEMMA Let p,0 be g-localized in I. Then Hom(p,o) C A(I), implying that G—Loc A is a
W*-category in the sense of [31].

2.1.13 LEMMA Let p; € G—Loc A, ¢ = 1,2 be g;-localized in I;, where Iy < Is. Then

p1 @ p2 = Vg (p2) @ p1.

Recall that for homogeneous o we write 9 = 79, (p) as in [68].

2.1.14 PROPOSITION G'—Loc A admits a braiding, i.e. a family of isomorphisms c, s : p® o — fo @ p,
for all p € (G—Loc A)g, 0 € G—Loc A, satisfying the conditions in Definition 1.6.14. If py, po are as
in Lemma 2.1.13 then cy, p, = id, gp, = ide1p,ep, -

We only indicate how c is defined. Let p € (G—-Loc A)y, 0 € G—Loc A be G-localized in I, J € K,
respectively. Let I < J. By transportability we can find g € (G—Loc A), localized in I and a unitary
u € Hom(p, p). By Lemma 2.1.13 we have p ® 0 = 74(0) @ p, thus the composite

u®id,

id R u*
poo = v(0) @5 —L2

Copo: PROO Yg(o) @ p

is unitary and a candidate for the braiding. As an element of Au, ¢p,s = 74(0)(u*)u = By By (u*)u.
Next one shows that c,, is independent of the choices involved and that it satisfies the conditions in
Definition 1.6.14. For the details see {10}.

In view of Lemma 2.1.11 we can define

2.1.15 DEFINITION G—LocyA is the full tensor subcategory of G—Loc A of those objects p satisfying
[A(I) : p(A(I))] < 0o whenever p is G-localized in I.

By an adaptation of the approach of [32] one proves the following:

2.1.16 PROPOSITION G —LocyA is semisimple (in the sense that every object is a finite direct sum
of (absolutely) simple objects). Every object of G—LocyA has a conjugate in the sense of [48] and
G —Locy A is rigid.

Summarizing the preceding discussion we have
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2.1.17 THEOREM Let A be a net of algebras on R, acted upon by the group G of internal symmetries.
Then G —Loc A is a braided crossed G-category and G—LocyA is a semisimple rigid braided crossed
G-category.

It is obvious that for any braided crossed G-category D, the grade zero subcategory D, is a braided
tensor category. In the case of G—Loc A these subcategories have been studied for a long time, and
we write

2.1.18 DEFINITION Loc A = (G—Loc A), and LocfA = (G—LocsA)..

2.1.19 REMARK 1. Loc A is just the familiar category of transportable localized morphisms defined
in [27]. (If there is no group acting, put G = {e}.) It is equivalent to the full subcategory DHR(A) of
Rep A whose objects are those representations 7 satisfying the DHR criterion: For every I € K we
have 7 [ A(I+) = my | A(I1), i.e. there exists a unitary u; : Ho — H, such that ux = 7(z)u for all
x € A(IH). All this is very classical, cf. e.g. [22, 27].

2. For non-trivial symmetries GG, the category G —Loc A contains information that cannot be
obtained from Loc A. The closest precedent to our above considerations can be found in [60]. There,
however, several restrictive assumptions were made, under which the G-crossed structure essentially
trivializes. In particular only abelian groups G were considered. O

2.1.2 Completely Rational CQFT on S!: Modularity and Full Spectrum

While the constructions in the preceding section are quite general, we are typically interested in a
more specific situation, viz. chiral conformal field theories on S'. We will give the definitions and
show how they give rise to a net of algebras on R. We then outline the results of {3} where it is
proved, under very natural assumptions, that Loc A is a unitary modular category. A more complete
and fairly self-contained review is in preparation {13}.

Let Z be the set of intervals in S', i.e. connected open non-empty and non-dense subsets of S?.
(Equivalently, the set {(z,y) € S' x S' | x # y}.) For every J C S', J' is the interior of the
complement of J.

The following definition is classical, see e.g. [13, 28].

2.1.20 DEFINITION A chiral conformal field theory is a quadruple (Hg, A, U, ), usually simply de-
noted by A, where

1. Hy is a separable Hilbert space with a distinguished non-zero vector (2,
2. A is an assignment 7 > I — A(I), where A(I) is a von Neumann algebra on H,.

3. U is a strongly continuous unitary representation on Hgy of the Mébius group PSU(1,1) =
SU(1,1)/{1,—1}, ie. the group of those fractional linear maps C — C which map the circle
into itself.

These data must satisfy

e Isotony: I CJ = A(I) C A(J),

Locality: I c J' = A(I) Cc A(J),

Irreducibility: V-1 A(I) = B(Ho) (equivalently, NrezA(I)' = C1),
e Covariance: U(a)A(I)U(a)* = A(al) Va € PSU(1,1), I €1,

Positive energy: Ly > 0, where Lg is the generator of the rotation subgroup of PSU(1,1),
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o Vacuum: every vector in Hy which is invariant under the action of PSU(1,1) is a multiple of 2.

2.1.21 For consequences of these axioms see, e.g., [29]. We limit ourselves to listing some facts:

—

. Type: The von Neumann algebra A(I) is a factor of type III; for every I € 7.
Haag duality: A(I)' = A(I') VI €T.
Reeh-Schlieder property: A(I)Q2 = A(I))Q=Ho VI €.

~ W N

The modular groups and conjugations associated with (A(7I),2) have a geometric meaning, cf.
[12, 29] for the precise statements.

5. Additivity: If I, J € T are such that INJ, IUJ € Z then A(I)V A(J) = A(IUJ).

2.1.22 REMARK Note that strong additivity, defined in the same way as for nets of algebras on R, is
not implied by the other axioms. By Mobius covariance strong additivity holds in general if it holds
for one pair I, J of adjacent intervals. Furthermore, every CQFT can be extended canonically to one
satisfying strong additivity. O

2.1.23 DEFINITION A representation m of A consists of a Hilbert space H and a family {r;,I € T},
where 7y is a unital x-representation of A(I) on ‘H such that

IcJ = WJ[A(I)ZWI.

m is called covariant if there is a positive energy representation U, of the universal covering group

o —

PSU(1,1) of the Mébius group on H such that

—

Ur(a)mr(z)Ur(a)* = mer(U(a)zU(a)*) Va € PSU(1,1), I €.

We denote by Rep A the W*-category of all representations on separable Hilbert spaces, with bounded
intertwiners as morphisms.

2.1.24 DEFINITION/PROPOSITION If A satisfies strong additivity and 7 is a representation then the
Jones index of the inclusion w;(A(I)) C wp(A(I')) does not depend on I € T and we define the
dimension

d(r) = [mp (A()) : T (A(D)Y? € 1,00
We define Rep; A to be the the full subcategory of Rep A of those representations satisfying d(r) < oc.

2.1.25 PROPOSITION Every chiral CQFT (Hy, A, U, Q) satisfying strong additivity gives rise to a net
of algebras on R.

The proof proceeds by arbitrarily picking a point co € S! and identifying S' — {co} with R by
stereographic projection

With Zo, = {I € T | oo & I} there is a bijection between Z,, and K. The family A(I),I € K is just
the restriction of I — A(I),I € T to I € T, = K. Strong additivity of the theory on S! together with
Haag duality on S' implies Haag duality in the sense of Definition 2.1.1.

The following result was proven in {3, Appendix B}. On the one hand, it provides a very satis-
factory interpretation of the category Loc A and on the other, it equips the category Rep A with a
monoidal structure, which is quite non-obvious a priori.
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2.1.26 PROPOSITION Let (Hg, A,U,Q2) be a chiral CQFT satisfying strong additivity. (A possibly
existing symmetry G is ignored.) Then there are equivalences of x-categories

LocA =~ RepA,
LocyfA =~ RepsA4,

where Rep f)A refers to the chiral CQFT and Definition 2.1.23, whereas Locy) A refers to the net of
algebras on R obtained by restriction and Definition 2.1.8.

Now we are interested in rational models, i.e. chiral CQFTs which admit only finitely many equiv-
alence classes of irreducible representations. Our aim is to identify additional axioms that single out
such models without eliminating the known rational models.

2.1.27 DEFINITION A chiral CQFT satisfies the split property if the map
m: A(I) @qq A(J) = AI)VA(J), zQy~— xy
extends to an isomorphism of von Neumann algebras whenever I,.J € T satisfy I NJ = ().

2.1.28 REMARK 1. The split property is implied by the property Tre~ "0 < oo V7 > 0. The latter
property and strong additivity have been verified in all known rational models.

2. There are models, like the U(1) current algebra [13], that satisfy the standard axioms, strong
additivity and the split property and that have infinitely many inequivalent irreducible representations.
This means that we need another axiom to single out the rational theories. O

2.1.29 DEFINITION/PROPOSITION Let A satisfy strong additivity and the split property. For E =
IUJ, where I,J € T satisfy INJ = (), we define A(E) = A(I)V A(J). Then the index of the inclusion
A(E) C A(E")" does not depend on I,.J and we define

p(A) =[A(E') - A(B)] € [1,0q]-

A chiral CQF'T is completely rational if it satisfies (a) strong additivity, (b) the split property and (c)
p(A) < oco.

2.1.30 REMARK 1. By the proposition, every chiral CQFT satisfying strong additivity and the split
property defines a numerical invariant u(A) € [1,00]. The models where the latter is finite — the
completely rational ones — are arguably the best behaved non-trivial quantum field theories, in that
very strong results on both their structure and representation theory have been proven {3}, cf. also
{13}. In particular the invariant ;(A) has a nice interpretation, see below.

2. All known classes of rational chiral CQFTs are completely rational in the above sense. For the
WZW models connected to loop groups this is proven in [73, 76]. Even more importantly, the class
of completely rational models is stable under tensor products and finite extensions and subtheories.
This has applications to orbifold (and coset) models, cf. the next section. O

2.1.31 THEOREM {3} Let A be a completely rational CQF'T. Then

e FEvery representation of A on a separable Hilbert space is completely reducible, i.e. a direct sum
of irreducible representations. (For non-separable representations this is also true if one assumes
local normality, which is automatic in the separable case, or equivalently covariance.)

e Every representation in RepA is covariant.

e Every irreducible separable representation 7 has finite dimension d(r), thus Rep,A is just the
category of finite direct sums of irreducible representations.
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e The number of unitary equivalence classes of separable irreducible representations is finite and

pu(A) = dimRep;A = d(m)*.

o The center Zy(RepA) is trivial, thus Rep A is a unitary modular category.

If A admits a symmetry group G, defined as in Definition 2.1.3, the above of course applies to
G—LoctA)e = Locy A ~ RepyA. Concerning the categories (G—Loc A),, g # e we prove in {10}:
f f f g g g

2.1.32 THEOREM Let A be a completely rational chiral CQFT with finite symmetry group G of inner
symmetries. Then

1. The braided crossed G-category G —LocsA has full spectrum, i.e. (G—LocyA), # 0 for every
gedqd.

2. Every object p € G—Loc A is a direct sum (possibly infinite) of objects in G —LocsA. Thus
every simple object in G—Loc A has finite dimension.

3. dimG—TLocyA = |G|dimRepA.

2.1.33 REMARK 1. The proof relies on the relationship between G—Loc A and Loc AY, where A% is
the G-invariant subtheory of A, the ‘orbifold theory’, cf. Section 2.2.2. It would be desirable to find a
more direct argument, but this seems very difficult.

2. In the physics literature and the mathematical literature on vertex operator algebras, the
objects of G—Loc A with grade g # e appear as ‘twisted representations of A’. There are results on
the existence of such representations for nice VOAs, cf. e.g. [20], but in the latter context there seems
to be no proof that the twisted representations form a braided crossed G-category. O

2.1.34 Combining Theorem 2.1.31 (from {3}) with [67] we have a chain of constructions
Completely rational CQFT ~» modular category ~» 3 — manifold invariant.

Now Theorem 2.1.32 (from {10}) together with [68], where modular crossed G-categories are used to
define invariants of G-manifolds, i.e. manifolds together with a principal G-bundle on them, amounts
to an equivariant version of this chain of constructions.

2.2 Orbifold Theories

2.2.1 General Results on Local Extensions
In this subsection we consider finite local extensions of nets of algebras on R. The primary references

are [47, 9].

2.2.1 DEFINITION Let I — A(I) C B(H{') be a net of algebras on R. A subtheory B C A is a family
of sub-von Neumann algebras B(I) C A(I) such that, defining

1§ = B0,
IeK

the triple (HE, (B(I) | HE), ) is a net of algebras on R. If a group P of spacetime symmetries acts
on A via AdU(a) then we require U(a)B(I)U(a)* = B(al) for all a € P,I € K. We also say that A
is a local extension of B.
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One can show [47] that the Jones index [A(]) : B(I)] does not depend on I € K. This value is
taken as the definition of the index [A : B] of the local extension. If [A : B] < co then A is a finite
local extension of B. In this case one can prove u(B) = [A : B]*4(A) and thus dimRep;B = [A :
B]*dimRep; A, cf. {3}. The following is essentially contained in [47].

2.2.2 THEOREM Let B be a net of algebras on R. Then there is a one-to-one correspondence between
finite local extensions A D B (modulo unitary equivalence) and strongly separable commutative
Frobenius algebras (I',m,n, A,¢) in LocyB (modulo isomorphism). Under this correspondence, one
has [A: B] =d(T).

In [47, 9] a tensor functor « : Loc B — End Ay is defined. Building on that one can prove {10}:

2.2.3 PROPOSITION Let B be a net of algebras on R and A D B a finite local extension corresponding
to the Frobenius algebra (I',m,n,A,¢) in C = LocyB. Let F : C —+ I'=Mod¢ be the canonical
tensor functor from Definition/Proposition 1.6.1. Then there exists a full and faithful tensor functor
K :T'—Mod¢ — End Ay, such that

F
LOCfB —_— F—MOdC
K

End Ay

commutes. The restriction of K to the full subcategory F—Modg maps into LocyA.

For finite index extensions of completely rational models one has dimRep;A = dimRep;B/[A :
B]?> = dimRep;A/d(T')>. Comparing with dimT —Mod? = dim(C/d(T")? [43] one deduces that K is
essentially surjective and thus obtains {10}:

2.2.4 THEOREM Let B be the restriction to R of a completely rational CQFT on S, and let A
be a finite local extension corresponding to the Frobenius algebra (T',...) in C = LocyB. Then
K: I’—Modg — Locy A is an equivalence of braided tensor categories.

Results similar to Theorems 2.2.2 and 2.2.4 have been formulated in [43] in the context of vertex
operator algebras. There, however, they are much more difficult to prove, and no complete proof has
appeared yet.

2.2.2 Orbifold Theories

If Ais a QFT with symmetry group G then the ‘orbifold theory’ is given by I — A(I)¢ | H§. Now
A is a local extension of A% with index [A : AY] = |G|, and the considerations of the preceding
subsection apply. If A lives on S! and is completely rational then A is completely rational iff G is
finite, cf. [77].

By a classical result [21], Loc A has a full symmetric subcategory S ~ Rep G, consisting of
direct sums of the irreducible subrepresentations of 7r64 I AY. Furthermore, the Frobenius algebra in
C = Loc fAG corresponding (by Theorem 2.2.2) to the extension A D A% is precisely the one of the
regular representation of G, cf. Theorem 1.1.15, thus I' — mod¢ ~ C x 8. It is therefore natural to
compare the braided crossed G-categories C X § and G—Loc A.

2.2.5 LEMMA Let A be a net of algebras on R and G a finite group of symmetries. Write C = LocfAG
and let (p,p) € C xS be simple (thus p € C and p is a minimal idempotent in End¢y,s(p)). With
g = 0(p,p) € G we have K((p,p)) € (G—LocsA),. Thus the functor K : C xS — End Ay, (and a
fortiori « : Loc]cAG — End Ay ) has its image in G—LocA.
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2.2.6 PROPOSITION The functor K : LocfAG X § — G —LocsA is a functor of braided crossed
G-categories.

When G is finite we have

2.2.7 THEOREM Let A be a net of algebras on R and G a finite group of symmetries. Then K :
Loc fAG X § = G—Loc; A is essentially surjective, thus gives rise to the equivalence

G-LocyA =~ LocsA% x S,
of braided crossed G-categories.
In view of Propositions 1.6.17 and 1.6.6 this implies the braided equivalences
LocjA =~ (LocyA9NS') xS,
G—LocyA ~ LOCfAG xS
and therefore the relation
dimLocyA®  dim(Locy AN &)

= = 2.1
€] dim G—Locy A dimLocyA (21)
between the dimensions. Diagrammatically, the categories in question are related as follows:
grade 0
LocsA C  G-LocsA
G — fixpoints U U xS

LOCfAG ns' C LOCfAG

Here G—Loc A is a braided crossed G-category whereas the other categories are braided in the
usual sense. The vertical inclusions are the G-fixed subcategories, the horizontal inclusions are full.
The G-grading on G —Loc A descends to (G —Loc A)Y ~ Loc A9 iff G is abelian, in which case
(Loc A%), = Loc A9 N &'

The strongest results are achieved when A arises from a completely rational theory on S1:

2.2.8 THEOREM If A is completely rational and G is a finite group of symmetries then the orbifold
theory AC is completely rational with u(A%) = |G|?u(A). The categories Locy A% and LocpA =~
(G—Loc A), are modular. G-LocsA ~ LocyAxS has full spectrum and dim G—LocsA = |G| dim Locy A.

Proof. Modularity of Locy A and Loc fAG follows by complete rationality and {3}. Thus G—LocsA ~
LOCfAG x S has full spectrum by Corollary 1.6.19. By Theorem 1.4.6 we have dim LOCfAG NS =
dimLocyA% /|G|, and dim G—LocsA = |G| dim Loc; A follows from (2.1). [ |

2.2.3 The Holomorphic Case

An interesting special case of orbifold models arises when A has trivial representation category:
Rep A =~ Vectc. For historical reasons, one speaks of holomorphic orbifold models [18]. In our
framework, this amounts to considering completely rational chiral CQFTs with u(A) = 1. (One can
show that it suffices to assume that A satisfies (a) the split property and (b) Haag duality for 2-
intervals, i.e. A(E)" = A(E') whenever E = I'NJ with I,J € Z,INJ = .) The preceding results
{9,10} immediately imply:
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2.2.9 THEOREM Let A be a completely rational chiral CQFT whose representation category Rep A
is trivial. Let G be a finite group acting on A. Then G—Loc A has, up to isomorphism, exactly one
simple object X, of grade g for every g € G, and we have d(X,) = 1.

Let D be a semisimple braided crossed G-category having exactly one isoclass of simples object of
every grade. If Dy is the full subcategory consisting only of the simple objects then every non-zero
morphism in Dy is an isomorphism. Ignoring the zero-morphism this shows that Dy is a categorical
group. As shown in [68], categorical groups that are also braided crossed G-categories are classified,
up to equivalence, by Hg’a(G, k*). The latter is a quasiabelian cohomology group as introduced by
Ospel [56]. As usual, one has HJ, (G, A) = Z3,(G, A)/B3,(G, A). The elements of Z3,(G, A) are pairs
(w,0) with w € Z3(G, A) and 0 : G x G — A satisfying

wz,y,2) +wleyr L rze ™ 2)+o(z,y +2) = wleyz™l,z 2)+o(z,2)+o(z,y),
w(z,y,2) +wlzyzy et zy) —o(e +y,2) = wlzyzy y) —o(z,2) —a(y,2)
and
-1 -1 -1y _
wluzu™ yuyu” yuzu ) = w(z,y,2),
o(uzut uyu ') = o(z,y)

for all z,y,z,u € G. Now (w,0) € B(‘;’a(G,A) if there exists n : G x G — A such that

w(x,y,z) = U(yaz)—77($+yaz)+77($,y+z)—77(3%9)7
O'(LE,y) = 77(3?’@/)—77(1/’55)-

For abelian G one obviously recovers the abelian cohomology from [51]: HZ, (G, A) = H3, (G, A).
From these considerations one concludes:

2.2.10 COROLLARY A completely rational chiral CQFT A with trivial Rep A defines an element of
Hg’a(G, C*), namely the invariant corresponding to the braided G-crossed categorical group (G —
Loc A)OO-

A determination of those (w,0) € Hj,(G,C*) which can arise from a CQFT with symmetry G
seems out of reach. At least we know that not every [w] € H?(G,C*) can appear, but only those for
which there exists a compatible o : G x G — C*.

The question arises, whether the passage from a semisimple braided crossed G-category D of the
above type to the categorical group Dy entails a loss of information or whether D can be recovered
(up to equivalence) from the element of HJ,(G,k*) associated with Dyg.

2.2.11 CONJECTURE For every [(w, )] € H3(G,k*) there exists a semisimple k-linear braided crossed
G-category C(w, o) such that

1. Up to isomorphism, there is precisely one simple object X, for every g € G, and d(X,) = 1.
2. [(w, 0)] is the invariant associated with C(w, o).
3. C(w,0)Y has a full subcategory S ~ Rep G such that C(w,0) ~ C(w,0)% x S.

4. As a tensor category C(w, )% ~ D*(G)—Mod, where D¥(Q) is the twisted quantum double [17]
of G. The braiding of C(w,0)% depends on ¢ and therefore may differ from that of D*(G)—Mod.

2.2.12 REMARK This conjecture, work on which is in progress, would demonstrate the precise way in
which H, ga(G, k*), rather than H3(G,k*), is relevant in the context of holomorphic orbifold models.
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The main problem in the proof is requirement 3. If it were not for the latter, it would suffice to k-
linearize the braided G-crossed categorical group associated with (w, o) and to complete w.r.t. direct
sums. But in order for 3 to hold, every X € C(w, o) must be a direct summand of a G-invariant object
and for every irreducible 7 € Rep G there must exist X, € C(w,0)% such that Hom(1, X,;) together
with the G-action is equivalent to 7 as a representation. O

2.3 Modular Invariants

In what follows, a two-dimensional CQFT is understood to be a functor from a category of Riemann
surfaces to the category of (infinite dimensional!) Hilbert spaces, satisfying axioms similar to those of
Segal [66]. A fundamental problem in conformal field theory is the construction of a two-dimensional
theory starting from two (possibly identical) chiral conformal theories AY A®. In general, there
will not be a unique way to do this, and an additional piece of input data is needed, which we
call the ‘modular invariant’. In the physics literature it is widely believed that this datum consists
of a matrix (Z;;) where 4,j run through the sets AL AR of irreducible representations of AL, AR,
respectively. Z is subject to the conditions Z;; € Zy, Zy = 1, where 0 € AL/E corresponds to

the vacuum representation wé / R, and ZTR = TtZ, ZS® = St Z. (The latter conditions imply that
Z intertwines the representations of SL(2,Z) associated with the modular categories Rep AY and
Rep A%, respectively.) In order to avoid confusion, we will speak of modular invariant matrices.

While considerable work has been invested in the classification of modular invariant matrices Z
for certain modular categories, in particular in the case A” = A%, it has become clear that a more
sophisticated approach is called for. One such approach has been proposed by Rehren [61, 62]. We
recall that d = 1 + 1 Minkowski space is the pseudo-Riemannian manifold M = R? with constant
metric ¢ = diag(1,—1). Two points (xg,z1), (yo,y1) are mutually space-like (z L y) iff d®(z,y) =
(o — y0)2 — (22 — y?) < 0. For S C M we define the space-like complement S* = {z € M | = L
y Yy € S}. A quantum field theory on M is an assignment O — A(O) C B(H,) defined for suitable
O C M and satisfying axioms similar to those in Definition 2.1.1. (Locality now means O; C Of =
[A(O1),A(O2)] = {0}.) We define a bijection ¢ : R x R — M by (zp,zr) — (zr + xg,zr — zg) and
write O = {¢(I x Ir), Ir,Ir € K}. There is a theory of completely rational QFTs over M mirroring
the one for theories over R.

Given QFTs (H§, AL, QL), (HE, AR, QF) on R, we obtain a QFT A over M on the Hilbert space
HE @ HE with vacuum QF @ QF as the assignment O 3 O — AL(I) @ AR(Ig) C B(H$ @ HE) where
I, xIp = ¢71(0). If AL, AR are completely rational, B D A is a finite local extension and 7 € Rep;B
then the restriction 7 | A decomposes as

) L
A= @ Zij ®7TJR,
ieAL jeAR

R

where Z;; € Z and wF (7F) are the irreducible representations of A” (A®). In [62], Rehren proved

that Zog = 1 and ZT® = TLZ, but the question when ZS® = S Z holds remained open. The results
in the remainder of this section are extracted from {11}.

2.3.1 THEOREM Let AY AR be completely rational and B a finite local extension of A = A @ AR,
Then B is completely rational, and the following are equivalent:

(i) ZS® = SLZ, thus Z is a modular invariant for the pair AL, AR of chiral theories.

(ii) u(B) = 1.

(iii) B has trivial representation category.
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2.3.2 REMARK We are convinced that the modular invariants identified in the above approach are
precisely those which define a two dimensional CQFT in the sense of Segal. While this has not yet
been shown for any rigorous definition of d=2 CQFT, we give a heuristic argument why this should be
true. Namely, the conditions (ii), (iii) in the above theorem are equivalent to the vanishing of Roberts’
local 1-cohomology of the Minkowski space QF'T B. Considering the latter as a sort of obstruction, it
does not seem unreasonable to expect that its vanishing is necessary and sufficient for the theory to
make sense on any Riemann surface, as required by Segal’s axioms. O

Theorem 2.3.1 raises the question of classifying the local extensions B O AF @ AR with trivial
Rep B. This essentially reduces to the following purely categorical statement which is interesting in
itself:

2.3.3 PROPOSITION (i) Let k be an algebraically closed field and let C,D be finite fusion categories
over k. Let £ = CXD°P. Then there is a bijection between

1. Monoidal equivalences F' : C — D modulo monoidal natural isomorphisms.

2. Isomorphism classes of Frobenius algebras (I'ym,n,A,¢) in £ such that

I = EB X; ®RYP,
el

where {X;, i € I} and {Y;, i € I} are complete sets of simple objects in C and D, respectively.

(ii) If C and D are braided then braided equivalences F' : C — D correspond to Frobenius algebras
that are commutative w.r.t. the braiding on £ given by

cc(URX,VRY) = ce(U,V) K cpop(X,Y),

where cpop (X,Y) = ep(Y, X).

(iii) If C and D are *-categories then monoidal equivalences F' of -categories (for which the isomor-
phisms df(,y :F(X)®@ F(Y) —» F(X ®Y) are unitaries) correspond to Frobenius algebras satisfying
A = m*, e = n*. Furthermore, the braidings in (ii) are unitary.

Together with some observations in [61] this allows to prove the following.

2.3.4 THEOREM Let AL, AR be completely rational chiral theories. There is a one-to-one correspon-
dence between unitary equivalence classes of local extensions B D AY @ A® such that Rep B is trivial
— and therefore modular invariants of the type considered in [62] — and triples ([A"],[A%],[F]),
where [AL], [AR] are equivalence classes of local extensions of AL and AR, respectively, and [F] is the
isomorphism class of a functor F : Rep(A”) — Rep(A®) establishing an equivalence of braided tensor
x-categories.

In view of Theorem 2.3.1, this result provides a classification in terms of triples ([A"], [A%], [F]) of
precisely those finite local extensions B D AL ® AR for which Z is a modular invariant matrix. If we
recall that the local extensions AX/® 5 AL/R are classified by the commutative Frobenius algebras in
Rep AL/E | we see that the above classification can be formulated in purely categorical terms: consider
(equivalence classes of) triples (I',T'%®, F) where I'* (I') is a commutative Frobenius algebra in
Rep AL (Rep A%) and F : I’L—ModoRep AL = FR—ModORep 4r is a braided equivalence.

2.3.5 CONJECTURE Let AL, AR be completely rational chiral CQFTs. The the d = 2 conformal field

theories in the sense of Segal ‘associated with (AL, AR’ (to be made precise!) are classified by the
triples ([*], [T, [F]) (or ([A"],[A7], [F])) as above
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2.3.6 REMARK We conclude by remarking that some support for the conjecture can be drawn from
the heuristic considerations in [52], which we refrain from repeating. These authors concluded that the
2-dimensional conformal field theories associated with (A%Y, A®) are classified by triples (AL,AR,O'),
where AL/R 5 AL/R are finite local extensions and o : A(AL) — A(AR) is an isomorphism of the
fusion rings of Rep Al and Rep AL. Obviously, an equivalence of tensor categories gives rise to such
an isomorphism, but the converse is in general not true. Given the categorical nature of the whole
subject of conformal QFT, it seems mathematically much more natural to require an equivalence F'
of braided categories as done above rather than just an isomorphism of fusion rings in [52]. |
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