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7.1 Covers. Subcovers. Lindelöf and compact spaces . . . . . . . . . . . . . . . . . . . . . 125
7.2 Compact spaces: Equivalent characterizations . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS 5

7.3 Behavior of compactness and Lindelöf property under constructions . . . . . . . . . . 129
7.4 More on compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.1 More on compactness and subspaces . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.2 More on compactness and continuity. Quotients and embeddings . . . . . . . . 133
7.4.3 ? Second countability for images under closed maps . . . . . . . . . . . . . . . 134
7.4.4 ? Extending continuous maps into compact Hausdorff spaces . . . . . . . . . . 135

7.5 Compactness of products. Tychonov’s theorem . . . . . . . . . . . . . . . . . . . . . . 136
7.5.1 The slice lemma. Compactness of finite products . . . . . . . . . . . . . . . . 136
7.5.2 Tychonov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5.3 ?? Second proof of Tychonov, using nets . . . . . . . . . . . . . . . . . . . . . 138
7.5.4 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.5 ? Ultrafilters. New proofs using Ultrafilter Lemma instead of AC . . . . . . . 141
7.5.6 ?? Universal nets. Fourth proof of Tychonov . . . . . . . . . . . . . . . . . . . 144
7.5.7 ?? Principal ultrafilters. A quick look at ultraproducts . . . . . . . . . . . . . 146

7.6 ? Compactness of ordered topological spaces. Supercompact spaces . . . . . . . . . . 147
7.7 Compactness: Variations, metric spaces and subsets of Rn . . . . . . . . . . . . . . . 149

7.7.1 Countable compactness. Weak countable compactness . . . . . . . . . . . . . . 149
7.7.2 Sequential compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.7.3 Compactness of metric spaces I: Equivalences . . . . . . . . . . . . . . . . . . 152
7.7.4 Compactness of metric spaces II: Applications . . . . . . . . . . . . . . . . . . 156
7.7.5 Subsets of Rn I: Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.7.6 Subsets of Rn II: Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.7.7 ? Compactness in function spaces I: Ascoli-Arzelà theorems . . . . . . . . . . . 165
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Chapter 0

Preface

THIS IS NOT YET A PREFACE! (IT IS MORE LIKE A SALES PITCH.)
Some distinctive features of our presentation are the following: We

• believe in the unity of mathematics. Therefore, connections to order theory (smallest neigh-
borhood spaces vs. preorders, Stone and Priestley duality), algebra (pure and topological),
analysis (real and functional) and (metric) geometry are emphasized rather than downplayed.
The boundaries between (general) topology and analysis and metric geometry are impossible
to define anyway.

• believe in lemma extraction (as clearly do some of the authors cited below): Where the same
argument is used repeatedly, it is split off as a lemma. Example: Lemma 7.4.2 is deduced from
Lemma 7.4.1 which also immediately gives that compact Hausdorff spaces are regular.

• did our best to let no single proof be longer than a page.

• avoid ordinal numbers and topological examples based on them.

• (re)state results in categorical language, where appropriate, hopefully without overdoing it.

• resist the temptation of including counterexamples for all non-implications. (E.g., we don’t
prove T3 6⇒ T3.5.) But we do provide counterexamples where they seem helpful for avoiding
misconceptions, e.g. the Arens-Fort space proving that a topology on a countable set need not
be first countable.

• give four proofs of Tychonov’s and two of Alaoglu’s theorem and discuss various ramifications
(Kelley’s converse, the ultrafilter lemma).

• give three approaches to constructing the Stone-Čech compactification: Embedding into cubes,
ultrafilters, characters on Cb(X).

• prove Ekeland’s variational principle and Caristi’s fixed point theorem.

• discuss the basics of geodesic and length spaces and prove the Hopf-Rinow-Cohn-Vossen theo-
rem.

• give a more thorough discussion of the Lebesgue property of metric spaces than is usual. (The
only exception seems to be the recent book [222] of Naimpally and Warrack.)

• define proximity spaces, but use them only for the classification of Hausdorff compactifications.

11
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• discuss Stone spaces in relation to profinite spaces (and groups) and Stone duality, including
connections to the Stone-Čech compactification.

• believe that defining only the fundamental group, but not the fundamental groupoid is quite
outdated and misleading. After all, paths do not need to be loops in order to be composed.
Other textbook authors increasingly seem to think the same, cf. e.g. [188, 45, 284].

• give two proofs of van Kampen’s theorem: for the fundamental groupoid by manipulating
paths, and via covering space theory (but only for the fundamental group version, to keep
things simple).

• prove the basic results on separation separation axioms and metrizability for topological groups
(rarely found in books) and topological vector spaces.

• define the Gromov-Hausdorff metric and study iterated function systems, complementing the
discussion of the Cantor set.

• present, deviating from common practice (among the very few exceptions there are [33, 239]),
the most basic results from topological algebra, concerning separation axioms and metrizability
for topological groups and local convexity and normability of topological vector spaces. We also
discuss the standard applications of topological ideas to topological algebra: the uses of Baire’s
theorem, weak compactness (Alaoglu), Schauder’s fixed point theorem. However, this not being
an introduction to abstract harmonic analysis or functional analysis, we do not include results,
even fundamental ones, if they do not relate closely to point-set topology, e.g. the Hahn-Banach
theorem.

• give two proofs of the Uniform Boundedness Theorem: The first, very recent, uses only the
axiom of countable choice, while the other, using Baire’s theorem, proves a more precise result
than usual.

• While the author is not at all constructively minded, we make a point of making clear which
choice axioms are really needed to prove a result, in particular in the discussions of functional
analysis

• already in the purely point set theoretic part, I avoid proving a result using the axiom of choice
or Zorn’s lemma when there is a proof using only the ultrafilter lemma or countable dependent
choice. This can be done with very little extra effort and should be quite useful since few
(textbook) authors do this.

• The biggest omission probably is the theory of uniform spaces. Since they have very few uses
outside topology proper, the author is not entirely convinced that they belong to the core that
‘everyone’ should know. Also, there are many good expositions of the subject to which we
would have nothing to add. Cf. [298, 89, 157, 153], etc.

We include some (relatively) new approaches that we consider real gems:

• Grabiner’s more conceptual treatment of the Tietze-Urysohn theorem, using an approximation
lemma that also applies to the open mapping theorem.

• McMaster’s very short construction (as a quotient of βX) of the Hausdorff compactification
corresponding to a proximity. This leads to a quick construction of the Freudenthal compacti-
fication.
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• Maehara’s short proof of Jordan’s curve theorem.

• Kulpa’s proof of Brouwer’s fixed point theorem via the Poincaré-Miranda theorem, using a
cubical Sperner lemma. This must surely be the shortest self-contained proof in the literature.
We emphasize the rôle of higher dimensional connectedness (Theorem 10.1.2) and include a
short deduction of the invariance of dimension for the cubes due to van Mill.

• The beautiful approach of Hanche-Olsen and Holden for proving the theorems of Ascoli-Arzelà
and Kolmogorov-Riesz-Fréchet (which we prove only for the sequence spaces `p(S)).

• Palais’ new proof of Banach’s contraction principle.

• Penot’s proof of Ekeland’s variational principle and Ekeland’s recent proof of Nash-Moser-
Hamilton style results using the latter.

• A very short proof of Menger’s theorem, improving on the already short one by Goebel and
Kirk.

• The little known proof (found in [78, Chapter 3, §5]) of the fact (used in the standard proof of
algebraic closedness of C) that complex numbers have n-th roots.

• A slick topological proof [26] of the continuous dependence of the roots of a complex polynomial
on the coefficients.

Acknowledgments. I thank Arnoud v. Rooij for several very attentive readings of the growing
manuscript and many constructive comments, including several simplifications of proofs. Thanks
are also due to Noud Aldenhoven, Bas Jordans, Nesta van der Schaaf, Carmen van Schoubroeck, So-
hail Sheikh, Marco Stevens, Luuk Verhoeven and Julius Witte for spotting errors. The responsibility
for the remaining mistakes is, of course, entirely mine.
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Part I: Fundamentals



Chapter 1

Introduction

Virtually everyone writing about topology feels compelled to begin with the statement that “topology
is geometry without distance” or “topology is rubber-sheet geometry”, i.e. the branch of geometry
where there is no difference between a donut and a cup (in the sense that the two can be continuously
deformed into each other without cutting or gluing). While there is some truth1 to these ‘definitions’,
they leave much to be desired: On the one hand, the study of metric spaces belongs to topology,
even though they do have a notion of distance. On the other hand, the above definitions are purely
negative and clearly insufficient as a foundation for a rigorous theory.

A preliminary positive definition might be as follows: Topology is concerned with the study of
topological spaces, where a topological space is a set X equipped with some additional structure that
allows to determine whether (i) a sequence (or something more general) with values in X converges
and (ii) whether a function f : X → Y between two topological spaces X, Y is continuous.

The above actually defines ‘General Topology’, also called ‘set-theoretic topology’ or ‘point-set
topology’, which provides the foundations for all branches of topology. It only uses some set theory
and logic, yet proves some non-trivial theorems. Building upon general topology, one has several
other branches:

• Algebraic Topology uses tools from algebra to study and (partially) classify topological spaces.

• Geometric and Differential Topology study spaces that ‘locally look like Rn’, the difference
roughly being that differential topology uses tools from analysis, whereas geometric topology
doesn’t.

• Topological Algebra is concerned with algebraic structures that at the same time have a topol-
ogy such that the algebraic operations are continuous. Example: R with the usual topology is
a topological field. (Topological algebra is not considered a branch of topology. Nevertheless
we will look a bit at topological groups and vector spaces.)

Figure 1.1 attempts to illustrate the position of the branches of topology (general, geometric,
differential, algebraic) in the fabric of mathematics. (Arrows show dependencies, dotted lines weaker
connections.) As one sees, even pure algebra uses notions of general topology, e.g. via the Krull
topology in the theory of infinite Galois extensions or the Jacobson topology on the set of ideals of
an associative algebra.

One may certainly say that (general) topology is the language of a very large part of mathematics.
But it is more than a language since it has its share of non-trivial theorems, some of which we

1See http://commons.wikimedia.org/wiki/File:Mug and Torus morph.gif
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Figure 1.1: The branches of Topology in mathematics

will prove: Tychonov’s theorem, the Nagata-Smirnov metrization theorem, Brouwer’s fixed point
theorem, etc.

General topology is a very young subject which started for real only in the 20th century with the
work of Fréchet2 and Hausdorff3. (Of course there were many precursors.) For more on its history
see [212, 202, 159, 13].

By comparison, algebraic topology is much older. (While this may seem paradoxical, it parallels
the development of analysis, whose foundations were only understood at a fairly late stage.) Its roots
lie in work of L. Euler and C. F. Gauss4, but it really took off with B. Riemann after 1850. In the
beginning, the subject was called ‘analysis situs’. The modern term ‘topology’ was coined by J. B.
Listing5 in 1847. For the history of algebraic topology (which was called combinatorial topology in
the early days) cf. [238, 71].

A serious problem for the teaching of topology is that the division of topology in general and
algebraic topology6 has only become more pronounced since the early days, as a look at [185] and

2Maurice Fréchet (1878-1973), French mathematician. Introduced metric spaces in his 1906 PhD thesis [99].
3Felix Hausdorff (1868-1942), German mathematician. One of the founding fathers of general topology. His book

[133] was extremely influential.
4Leonhard Euler (1707-1783), Carl Friedrich Gauss (1777-1855).
5Georg Friedrich Bernhard Riemann (1826-1866), Johann Benedict Listing (1808-1882).
6Alexandroff-Hopf (Topologie I, 1935): Die and und für sich schwierige Aufgabe, eine solche Darstellung eines

immerhin jungen Zweiges der mathematischen Wissenschaft zu geben, wird im Falle der Topologie dadurch besonders
erschwert, daß die Entwicklung der Topologie in zwei voneinander gänzlich getrennten Richtungen vor sich gegangen
ist: In der algebraisch-kombinatorischen und in der mengentheoretischen – von denen jede in mehrere weitere Zweige
zerfällt, welche nur lose miteinander zusammenhängen.

Alexandroff (Einfachste Grundbegriffe der Topologie, 1932): Die weitere Entwicklung der Topologie steht zunächst
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[158] shows. Cf. also [160]. Some algebraic topologists consider a short appendix on general topology
sufficient for most purposes (for an exception see [36]), but this does no justice to the needs of anal-
ysis, geometric topology, algebraic geometry and other fields. In the present introduction the focus
therefore is on general topology, but in Part III we gradually switch to more algebraic-topological
matters.

In a sense, General Topology simply is concerned with sets and certain families of subsets of
them and functions between them. (In fact, for a short period no distinction was made between
set theory and general topology, cf. [133], but this is no more the case.) This means that the only
prerequisite is a reasonable knowledge of some basic (naive) set theory and elementary logic. At
least in principle, the subject could therefore be taught and studied in the second semester of a
math programme. But such an approach does not seem very reasonable, and the author is not
aware of any institution where it is pursued. Usually the student encounters metric spaces during
her study of calculus/analysis. Already functions of one real variable motivate the introduction of
(norms and) metrics, namely in the guise of the uniform distance between bounded functions (and
the Lp-norms). Analysis in 1 < d < ∞ dimensions naturally involves various metrics since there
is no really distinguished metric on Rd. We will therefore also assume some basic familiarity with
metric spaces, including the concepts of Cauchy sequence and completeness. The material in [252] or
[281] is more than sufficient. Nevertheless, we prove the main results, in particular uniqueness and
existence of completions. No prior exposure to the notion of topological space is assumed.

Sections marked with a star (?) can be omitted on first reading, but their results will be used at
some later point. Two stars (??) are used to mark optional sections that are not referred to later.

Many exercises are spread throughout the text, and many results proven there are used freely
afterwards.

im Zeichen einer scharfen Trennung der mengentheoretischen und der kombinatorischen Methoden: Die kombina-
torische Topologie wollte sehr bald von keiner geometrischen Realität, außer der, die sie im kombinatorischen Schema
selbst (und seinen Unterteilungen) zu haben glaubte, etwas wissen, während die mengentheoretische Richtung dersel-
ben Gefahr der vollen Isolation von der übrigen Mathematik auf dem Wege der Auftürmung von immer spezielleren
Fragestellungen und immer komplizierteren Beispielen entgegenlief.
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Chapter 2

Basic notions of point-set topology

2.1 Metric spaces: A reminder

2.1.1 Pseudometrics. Metrics. Norms

As mentioned in the introduction, some previous exposure to metric spaces is assumed. Here we
briefly recall the most important facts, including proofs, in order to establish the terminology.

Definition 2.1.1 If X is a set, a pseudometric on X is a map d : X ×X → R≥0 such that

(i) d(x, y) = d(y, x) ∀x, y. (Symmetry)

(ii) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z. (Triangle inequality)

(iii) d(x, x) = 0 ∀x.

A metric is pseudometric d such that x 6= y ⇒ d(x, y) 6= 0.

Remark 2.1.2 Obviously every statement that holds for pseudometrics in particular holds for met-
rics. The converse is not at all true. (On the other hand, when we state a result only for metrics,
this should not automatically be interpreted as saying that the generalization to pseudometrics is
false.) 2

Pseudometrics are easy to come by:

Exercise 2.1.3 Let f : X → R be a function. Prove:

(i) d(x, y) = |f(x)− f(y)| is a pseudometric.

(ii) d is a metric if and only if f is injective.

(Taking f = idR, we recover the well-known fact that d(x, y) = |x− y| is a metric on R.)

Exercise 2.1.4 For a pseudometric d on X prove:

|d(x, z)− d(y, z)| ≤ d(x, y) ∀x, y, z (2.1)

|d(x, y)− d(x0, y0)| ≤ d(x, x0) + d(y, y0) ∀x, y, x0, y0, (2.2)

sup
z∈X
|d(x, z)− d(y, z)| = d(x, y) ∀x, y. (2.3)

19
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Definition 2.1.5 A (pseudo)metric space is a pair (X, d), where X is a set and d is a (pseudo)
metric on X.

Remark 2.1.6 A set X with #X ≥ 2 admits infinitely many different metrics. (Just consider d′ =
λd, where λ > 0.) Therefore it is important to make clear which metric is being used. Nevertheless,
we occasionally allow ourseleves to write ‘Let X be a metric space’ when there is no risk of confusion.
2

Every pseudometric space has a metric quotient space:

Exercise 2.1.7 Let d be a pseudometric on a set X. Prove:

(i) x ∼ y ⇔ d(x, y) = 0 defines an equivalence relation ∼ on X.

(ii) Let p : X → X/∼ be the quotient map arising from ∼. Show that there is a unique metric d′

on X/∼ such that d(x, y) = d′(p(x), p(y)) ∀x, y ∈ X.

From now on we will mostly restrict our attention to metrics, but we will occasionally use pseu-
dometrics as a tool. A basic, if rather trivial, example of a metric is given by this:

Example 2.1.8 On any set X, the following defines a metric, the standard discrete metric:

ddisc(x, y) =

{
1 if x 6= y
0 if x = y

(This should not be confused with the weaker notion of ‘discrete metric’ encountered later.) 2

Example 2.1.9 Let p be a prime number. For 0 6= x ∈ Q write x = r
s
pnp(x), where np(x), r, s ∈ Z

and p divides neither r nor s. This uniquely defines np(x). Now

‖x‖p =

{
p−np(x) if x 6= 0

0 if x = 0

is the p-adic norm on Q. It is obvious that ‖x‖p = 0 ⇔ x = 0 and ‖xy‖p = ‖x‖p‖y‖p. With a bit
of work one shows ‖x + y‖p ≤ ‖x‖p + ‖y‖p ∀x, y. This implies that dp(x, y) = ‖x − y‖p is a metric
on Q. (‖ · ‖p is not to be confused with the norms ‖ · ‖p on Rn defined below. In fact, it is not even
quite a norm in the sense of the following definition.) 2

Definition 2.1.10 Let V be a vector space over F ∈ {R,C}. A norm on V is a map V →
[0,∞), x 7→ ‖x‖ satisfying

(i) ‖x‖ = 0 ⇔ x = 0. (Faithfulness)

(ii) ‖λx‖ = |λ| ‖x‖ ∀λ ∈ F, x ∈ V . (Homogeneity)

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V . (Triangle inequality or subadditivity)

A normed space is a pair (V, ‖ · ‖), where V is vector space over F ∈ {R,C} and ‖ · ‖ is a norm on
V .

Remark 2.1.11 The generalization of a norm, where one drops the requirement ‖x‖ = 0⇒ x = 0,
is universally called a seminorm. For the sake of consistency, one should thus speak of ‘semimetrics’
instead of pseudometrics, but only a minority of authors does this. 2



2.1. METRIC SPACES: A REMINDER 21

Lemma 2.1.12 If V is a vector space over F ∈ {R,C} and ‖·‖ is a norm on V then d‖(x, y) = ‖x−y‖
defines a metric on V . Thus every normed space is a metric space.

Proof. We have d(x, y) = ‖x − y‖ = ‖ − (x − y)‖ = ‖y − x‖ = d(y, x), and d(x, y) = 0 holds if and
only if ‖x− y‖ = 0, which is equivalent to x = y. Finally, d(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ ≤
‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z). �

Example 2.1.13 Let n ∈ N and p ∈ [1,∞). The following are norms on Rn and Cn:

‖x‖∞ = max
i∈{1,...,n}

|xi|,

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

For n = 1 and any p ∈ [1,∞], this reduces to ‖x‖p = |x|, but for n ≥ 2 all these norms are
different. That ‖ · ‖∞ and ‖ · ‖1 are norms is easy to see. ‖ · ‖2 is the well known Euclidean norm.
For all 1 < p < ∞, it is immediate that ‖ · ‖p satisfies requirements (i) and (ii), while (iii) is the
inequality of Minkowski

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (2.4)

This is proven using the Hölder inequality∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤ ‖x‖p · ‖y‖q, (2.5)

valid when 1
p

+ 1
q

= 1. This is surely well known for p = q = 2, in which case (2.5) is known as the
Cauchy-Schwarz inequality. For proofs of these inequalities see Appendix F, where we also study the
infinite dimensional generalization `p(S,F) is some depth. 2

2.1.2 Convergence in metric spaces. Closure. Diameter

An important reason for introducing metrics is to be able to define the notions of convergence and
continuity:

Definition 2.1.14 A sequence in a set X is a map N → X, n 7→ xn. We will usually denote the
sequence by {xn}n∈N or just {xn}.

Definition 2.1.15 A sequence {xn} in a metric space (X, d) converges to z ∈ X, also denoted
xn → z, if for every ε > 0 there is N ∈ N such that n ≥ N ⇒ d(xn, z) < ε.

If {xn} converges to z then z is the limit of {xn}. We assume as known (but will later reprove in
a more general setting) that a sequence in a metric space has at most one limit, justifying the use of
‘the’.

Lemma 2.1.16 Let (X, d) be a metric space and Y ⊆ X. Then for a point x ∈ X, the following are
equivalent:

(i) For every ε > 0 there is y ∈ Y such that d(x, y) < ε.

(ii) There is a sequence {yn} in Y such that yn → x.
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The set of points satisfying these (equivalent) conditions is called the closure Y of Y . It satisfies

Y ⊆ Y = Y . A subset Y ⊆ X is called closed if Y = Y .

Proof. (ii)⇒(i) This is obvious since yn → x is the same as d(yn, x) → 0. (i)⇒(ii) For every n ∈ N,
use (i) to choose yn ∈ Y such that d(yn, x) < 1/n. Clearly yn → x. (This of course uses the axiom
ACω of countable choice, cf. Section A.3.2.)

It is clear that Y ⊆ Y . Finally, x ∈ Y means that for every ε > 0 there is a point y ∈ Y with
d(x, y) < ε. Since y ∈ Y , there is a z ∈ Y such that d(y, z) < ε. By the triangle inequality we have

d(x, z) < 2ε, and since ε was arbitrary we have proven that x ∈ Y . Thus Y = Y . �

Definition 2.1.17 If (X, d) is a metric space then the diameter of a subset Y ⊆ X is defined by
diam(Y ) = supx,y∈Y d(x, y) ∈ [0,∞] with the understanding that diam(∅) = 0.

A subset Y of a metric space (X, d) is called bounded if diam(Y ) <∞.

Exercise 2.1.18 For Y ⊆ (X, d), prove diam(Y ) = diam(Y ).

Definition 2.1.19 If (X, d) is a metric space, A,B ⊆ X are non-empty and x ∈ X, define

dist(A,B) = inf
a∈A
b∈B

d(a, b),

dist(x,A) = dist({x}, A) = inf
a∈A

d(x, a).

(If A or B is empty, we leave the distance undefined.)

Exercise 2.1.20 Let (X, d) be a metric space and A,B ⊆ X.

(i) Prove that |dist(x,A)− dist(y, A)| ≤ d(x, y).

(ii) Prove that dist(x,A) = 0 if and only if x ∈ A.

(iii) Prove that A is closed if and only if dist(x,A) = 0 implies x ∈ A.

(iv) Prove that A ∩B 6= ∅ ⇒ dist(A,B) = 0.

(v) For X = R with d(x, y) = |x − y|, give examples of non-empty closed sets A,B ⊆ X with
dist(A,B) = 0 but A ∩B = ∅. (Thus the converse of (iv) is not true in general!) �

Remark: With Definition 2.1.22, (i) directly gives that x 7→ dist(x,A) is continuous.

Exercise 2.1.21 Prove that every convergent sequence in a metric space is bounded.

2.1.3 Continuous functions between metric spaces

Definition 2.1.22 Let (X, d), (X ′, d′) be metric spaces and f : X → X ′ a function.

• f is called continuous at x ∈ X if for every ε > 0 there is δ > 0 such that d(x, y) < δ ⇒
d′(f(x), f(y)) < ε.

• f is called continuous if it is continuous at each x ∈ X.

• f is called a homeomorphism if it is a bijection, continuous, and the inverse f−1 : X ′ → X is
continuous.
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• f is called an isometry if d′(f(x), f(y)) = d(x, y) ∀x, y ∈ X. BPI

• f is called bounded if f(X) ⊆ Y is bounded w.r.t. d′. (Equivalently there is an R ∈ [0,∞) such
that d′(f(x), f(y)) ≤ R ∀x, y ∈ X.)

(This actually does not refer to d, thus it makes sense for every f : X → (X ′, d′).)

Remark 2.1.23 1. Obviously, an isometry is both continuous and injective.
2. Since the inverse function of a bijective isometry again is an isometry, and thus continuous,

we have
isometric bijection⇒ homeomorphism⇒ continuous bijection.

As the following examples show, the converse implications are not true!�

3. If d(x, y) = |x − y| then (R, ddisc) → (R, d), x 7→ x is a continuous bijection, but not a
homeomorphism.

4. If (X, d) is a metric space and d′(x, y) = 2d(x, y) then (X, d) → (X, d′), x 7→ x is a homeo-
morphism, but not an isometry.

5. A less trivial example, used much later: Let X = (−1, 1) and d(x, y) = |x − y|. Then
f : (R, d)→ (X, d), x 7→ x

1+|x| is a continuous and has g : y 7→ y
1−|y| as continuous inverse map. Thus

f, g are homeomorphisms, but clearly not isometries. 2

The connection between the notions of continuity and convergence is provided by:

Lemma 2.1.24 Let (X, d), (X ′, d′) be metric spaces and f : X → X ′ a function. Then the following
are equivalent (t.f.a.e.):

(i) f is continuous at x ∈ X.

(ii) For every sequence {xn} in X that converges to x, the sequence {f(xn)} in X ′ converges to
f(x). (‘f is sequentially continuous’.)

Proof. (i)⇒(ii) Let {xn} be a sequence such that xn → x, and let ε > 0. Since f is continuous at x,
there is a δ > 0 such that d(x, y) < δ ⇒ d(f(x), f(y)) < ε. Since xn → x, there is N ∈ N such that
n ≥ N implies d(xn, x) < δ. But then d(f(xn), f(x)) < ε ∀n ≥ N . This proves f(xn)→ f(x).

(ii)⇒(i) Assume that f is not continuous at x ∈ X. Now, ¬(∀ε∃δ∀y · · · ) = ∃ε∀δ∃y¬ · · · . This
means that there is ε > 0 such that for every δ > 0 there is a y ∈ X with d(x, y) < δ such
that d(f(x), f(y)) ≥ ε. Thus we can choose a sequence {xn} in X such that d(x, xn) < 1/n and
d(f(x), f(xn)) ≥ ε for all n ∈ N. Now clearly xn → x, but f(xn) does not converge to f(x). This
contradicts the assumption that (ii) is true. (Note that we have used the axiom ACω of countable
choice.) �

Definition 2.1.25 The set of all bounded / continuous / bounded and continuous functions f :
(X, d) → (X ′, d′) are denoted B((X, d), (X ′, d′)) / C((X, d), (X ′, d′)) / Cb((X, d), (X ′, d′)), respec-
tively. (In practice, we may write B(X,X ′), C(X,X ′), Cb(X,X

′).)

Proposition 2.1.26 (Spaces of bounded functions) Let (X, d), (Y, d′) be metric spaces. Define

D(f, g) = sup
x∈X

d′(f(x), g(x)). (2.6)

(i) The equation (2.6) defines a metric D on B(X, Y ).

(ii) Cb(X, Y ) := C(X, Y ) ∩B(X, Y ) ⊆ B(X, Y ) is closed w.r.t. D.
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Proof. (i) Let f, g ∈ B(X, Y ). For any x0 ∈ X, we have

D(f, g) = sup
x∈X

d′(f(x), g(x)) ≤ sup
x∈X

[d′(f(x), f(x0)) + d′(f(x0), g(x0)) + d′(g(x0), g(x))]

≤ d′(f(x0), g(x0)) + sup
x∈X

d′(f(x), f(x0)) + sup
x∈X

d′(g(x), g(x0))

≤ d′(f(x0), g(x0)) + diam(f(X)) + diam(g(X)) <∞,

thus D is finite on B(X, Y ). It is clear that D is symmetric and that D(f, g) = 0 ⇔ f = g.
Furthermore,

D(f, h) = sup
x∈X

d′(f(x), h(x)) ≤ sup
x∈X

[d′(f(x), g(x)) + d′(g(x), h(x))]

≤ sup
x∈X

d′(f(x), g(x)) + sup
x∈X

d′(g(x), h(x)) = D(f, g) +D(g, h).

Thus D satisfies the triangle inequality and is a metric on B(X, Y ).
(ii) Let {fn} ⊆ Cb(X, Y ) and g ∈ B(X, Y ) such that D(fn, g)→ 0. Let x ∈ X and ε > 0. Choose

N such that n ≥ N ⇒ D(fn, g) < ε/3. Since fN is continuous, we can choose δ > 0 such that
d(x, y) < δ ⇒ d′(fN(x), fN(y)) < ε/3. Now we have

d′(g(x), g(y)) ≤ d′(g(x), fN(x)) + d′(fN(x), fN(y)) + d′(fN(y), g(y)) <
ε

3
+
ε

3
+
ε

3
= ε,

thus g is continuous at x. Since this works for every x, g is continuous. Since g ∈ B(X, Y )
by assymption, we thus have g ∈ Cb(X, Y ). By Lemma 2.1.16, the elements of B(X, Y ) that
are limits w.r.t. D of elements of Cb(X, Y ) constitute the closure Cb(X, Y ). We thus have shown
Cb(X, Y ) ⊆ Cb(X, Y ) and therefore that Cb(X, Y )) ⊆ B(X, Y ) is closed. �

Definition 2.1.27 If (X, d), (Y, d′) are metric spaces and {fn} is a sequence in B(X, Y ) or (more
often) in Cb(X, Y ) such that D(fn, g) → 0 then fn converges uniformly to g. And D is called the
metric of uniform convergence or simply the uniform metric.

Remark 2.1.28 1. Statement (ii) of the proposition is just a shorter (and more conceptual) for-
mulation of the fact that the limit of a uniformly convergent sequence of continuous functions is
continuous (from which we obtained it). The reader probably knows that pointwise convergence
(i.e. fn(x) → g(x) for each x) of a sequence of continuous functions does not imply continuity of
g. Example: fn(x) = min(1, nx) is in C([0, 1], [0, 1]) for each n ∈ N and converges pointwise to the
discontinuous function g, where g(0) = 0 and g(x) = 1 for all x > 0.

2. Part (ii) of the lemma shows that uniformity of the convergence fn → g is sufficient for
continuity of g. But note that is not necessary. In other words, continuity of g does not imply that
the convergence fn → g is uniform! Example: The function fn : [0, 1]→ [0, 1] defined by

fn(x) = max(0, 1− n|x− 1/n|) =


nx x ∈ [0, 1/n]
1− n(x− 1/n) x ∈ [1/n, 2/n]
0 x ∈ [2/n, 1]

(draw this) is continuous for each n ∈ N and converges pointwise to g ≡ 0. But the convergence is
not uniform since D(fn, g) = 1 ∀n.

3. However, if X is sufficiently nice (countably compact, for example a closed bounded subset of
Rn) and {fn} ⊆ C(X,R) converges pointwise monotonously, i.e. fn+1(x) ≥ fn(x) for all x ∈ X, n ∈ N,
to a continuous g ∈ C(X,R) then the convergence is uniform! This is Dini’s theorem, which we will
prove in Section 7.7.4. 2
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2.2 From metrics to topologies

2.2.1 The metric topology

Why would anyone want to generalize metric spaces? Here are the most important reasons:

1. (Closure) The category of metric spaces is not closed w.r.t. certain constructions, like direct
products (unless countable) and quotients (except under strong assumptions on the equivalence
relation), nor does the space C((X, d), (Y, d′)) of (not necessarily bounded) functions have an
obvious metric (unless X is compact).

2. (Clarity) Most properties of metric spaces (compactness, connectedness,. . . ) can be defined in
terms of the topology induced by the metric and therefore depend on the chosen metric only
via its equivalence class. Eliminating irrelevant details from the theory actually simplifies it by
clarifying the important concepts.

3. (Aesthetic) The definition of metric spaces involves the real numbers (which themselves are
a metric space and a rather non-trivial one at that) and therefore is extrinsic. A purely set-
theoretic definition seems preferable.

4. (A posteriori) As soon as one has defined a good generalization, usually many examples appear
that one could not even have imagined beforehand.

In generalizing metric spaces one certainly still wants to be able to talk about convergence and
continuity. Examining Definitions 2.1.15 and 2.1.22, one realizes the centrality of the following two
concepts:

Definition 2.2.1 Let (X, d) be a pseudometric space.

(i) The open ball of radius r around x is defined by B(x, r) = {y ∈ X | d(x, y) < r}. (If necessary,

we write BX(x, r) or Bd(x, r) if different spaces or metrics are involved.

(ii) We say that Y ⊆ X is open if for every x ∈ Y there is an ε > 0 such that B(x, ε) ⊆ Y .

The set of open subsets of X is denoted τd. (Clearly τd ⊆ P (X).)

Consistency of our language requires that open balls are open:

Exercise 2.2.2 Prove that every B(x, ε) with ε > 0 is open.

Exercise 2.2.3 Prove that a subset Y ⊆ (X, d) is bounded (in the sense of Definition 2.1.17) if and
only if Y ⊆ B(x, r) for some x ∈ X and r > 0.

Lemma 2.2.4 The open subsets of a pseudometric space (X, d) satisfy the following:

(i) ∅ ∈ τd, X ∈ τd.

(ii) If Ui ∈ τd for every i ∈ I then
⋃
i∈I Ui ∈ τd.

(iii) If U1, . . . , Un ∈ τd then
⋂n
i=1 Ui ∈ τd.

In words: The empty and the full set are open, arbitrary unions and finite intersections of open sets
are open.
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Proof. (i) is obvious. (ii) Let Ui ∈ τ ∀i ∈ I and U =
⋃
i Ui. Then any x ∈ U is contained in some Ui.

Now there is a ε > 0 such that B(x, ε) ⊆ Ui ⊆ U . Thus U ∈ τ . (iii) Let Ui ∈ τ for all i = 1, . . . , n
and U =

⋂
i Ui. If x ∈ U then x ∈ Ui for every i ∈ {1, . . . , n}. Thus there are ε1, . . . , εn such that

B(x, εi) ⊆ Ui for all i. With ε = min(ε1, . . . , εn) > 0 we have B(x, ε) ⊆ Ui for all i, thus B(x, ε) ⊆ U ,
implying U ∈ τ . �

Remark 2.2.5 We do not require intersections of infinitely many open sets to be open, and in most
topological spaces they are not! Consider, e.g., X = R with d(x, y) = |x−y|. Then Un = (−1/n, 1/n) �

is open for each n ∈ N, but
⋂∞
n=1 Un = {0}, which is not open. (See however Section 2.8.3.) 2

We will take this as the starting point of the following generalization:

Definition 2.2.6 If X is a set, a subset τ ⊆ P (X) is called a topology on X if it has the properties
(i)-(iii) of Lemma 2.2.4 (with τd replaced by τ). A subset U ⊆ X is called (τ -)open if U ∈ τ . A
topological space is a pair (X, τ), where X is a set and τ is a topology on X.

Example 2.2.7 The empty space ∅ has the unique topology τ = {∅}. (The axioms only require
{∅, X} ⊆ τ , but not ∅ 6= X.) Every one-point space {x} has the unique topology τ = {∅, {x}}. Al-
ready the two-point space {x, y} allows several topologies: τ1 = {∅, {x, y}}, τ2 = {∅, {x}, {x, y}}, τ3 =
{∅, {y}, {x, y}}, τ4 = {∅, {x}, {y}, {x, y}}. 2

Definition 2.2.8 (i) A topology τd arising from a metric is called metric topology.
(ii) A topological space (X, τ) is called metrizable if τ = τd for some metric d on X.

While the metric spaces are our main motivating example for Definition 2.2.6, there are others
that have nothing to do (a priori) with metrics. In fact, we will soon see that not every topological
space is metrizable!

Exercise 2.2.9 (Subspaces) (i) Let (X, d) be a metric space and Y ⊆ X. If dY is the restriction
of d to Y , it is clear that (Y, dY ) is a metric space. If τ and τY denote the topologies on X and
Y induced by d and dY , respectively, prove

τY = {U ∩ Y | U ∈ τ}. (2.7)

(ii) Let (X, τ) be a topological space and Y ⊆ X. Define τY ⊆ P (Y ) by (2.7). Prove that τY is a
topology on Y .

(iii) If (X, τ) is a topological space and Z ⊆ Y ⊆ X then τZ = (τY )Z .
The topology τY is called the subspace topology (or induced topology, which we tend to avoid),

and (Y, τY ) is a subspace of (X, τ). (Occasionally it is more convenient to write τ �Y .)

We will have more to say about subspaces in Section 6.2.

Remark 2.2.10 Let (X, τ) be a topological space and Y ⊆ X given the subspace topology. By
definition, a set Z ⊆ Y is open (in Y ) if and only if it is of the form U ∩ Y with U ∈ τ . Thus �

unless Y ⊆ X is open, a subset Z ⊆ Y can be open (in Y ) without being open in X! Example: If
X = R, Y = [0, 1], Z = [0, 1) then Z is open in Y since Z = Y ∩ (−1, 1), where (−1, 1) is open in
X. 2

A natural modification of Definition 2.2.1(i) leads to closed balls in a metric space:
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Exercise 2.2.11 Let (X, d) be a metric space. For x ∈ X, r > 0 define closed balls by

B(x, r) = {y ∈ X | d(x, y) ≤ r}.

Prove:

(i) B(x, r) is closed (in the sense of Lemma 2.1.16.)

(ii) The inclusion B(x, r) ⊆ B(x, r) always holds.

(iii) B(x, r) = B(x, r) holds for all x ∈ X, r > 0 if and only if for all x, y ∈ X with x 6= y and ε > 0
there is z ∈ X such that d(x, z) < d(x, y) and d(z, y) < ε.

(iv) Give an example of a metric space where B(x, r) = B(x, r) does not hold (for certain x, r).

2.2.2 Equivalence of metrics

Definition 2.2.12 Two metrics d1, d2 on a set are called equivalent (d1 ' d2) if they give rise to
the same topology, i.e. τd1 = τd2.

It is obvious that equivalence of metrics indeed is an equivalence relation.

Exercise 2.2.13 Let d1, d2 be metrics on X. Prove that the following are equivalent:

(i) d1, d2 are equivalent, i.e. τd1 = τd2 .

(ii) For every x ∈ X and every ε > 0 there is a δ > 0 such that

Bd2(x, δ) ⊆ Bd1(x, ε), and Bd1(x, δ) ⊆ Bd2(x, ε).

(iii) The map (X, d1)→ (X, d2), x 7→ x is a homeomorphism.

(iv) A sequence {xn} converges to x w.r.t. d1 if and only if it converges to x w.r.t. d2.

(v) A sequence {xn} converges w.r.t. d1 if and only if it converges w.r.t. d2.

Hint: For (v)⇒(iv), use the fact that (v) holds for all sequences to show that {xn} cannot have
different limits w.r.t. d1 and d2.

Exercise 2.2.14 (i) Let (X, d) be a metric space and f : [0,∞)→ [0,∞) a function satisfying

(α) f(t) = 0 ⇔ t = 0.

(β) limt→0 f(t) = 0.

(γ) f is non-decreasing, i.e. s ≤ t⇒ f(s) ≤ f(t).

(δ) f is subadditive, i.e. f(s+ t) ≤ f(s) + f(t) ∀s, t ≥ 0.

Prove that d′(x, y) = f(d(x, y)) is a metric on X that is equivalent to d.

(ii) Use (i) to prove that

d1(x, y) = min(1, d(x, y)), d2(x, y) =
d(x, y)

1 + d(x, y)

are metrics equivalent to d.
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Definition 2.2.15 Two norms ‖ · ‖1, ‖ · ‖2 on a real or complex vector space V are called equivalent
(‖ · ‖1 ' ‖ · ‖2) if there are constants c2 ≥ c1 > 0 such that c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ V .

Exercise 2.2.16 (i) Prove that equivalence of norms is an equivalence relation.

(ii) Prove that for every s ∈ [1,∞) there is a constant cs,n > 0 such that the norms on Rn defined
in Example 2.1.13 satisfy

‖x‖∞ ≤ ‖x‖p ≤ cp,n‖x‖∞ ∀x ∈ Rn,

giving the best (i.e. smallest possible) value for cp,n.

(iii) Conclude that the norms ‖ · ‖p, p ∈ [1,∞] are all equivalent.

(iv) Let ‖ · ‖1, ‖ · ‖2 be arbitrary norms on V , and define the metrics di(x, y) := ‖x − y‖i, i = 1, 2.
Prove that ‖ · ‖1 ' ‖ · ‖2 ⇔ d1 ' d2. Hint: For ⇐ use axiom (ii) of Definition 2.1.10.

Remark 2.2.17 1. In Section 7.7.5 we will prove that all norms on Rn (n <∞) are equivalent.
2. If d1, d2 are metrics on X, it is clear that existence of constants c2 ≥ c1 > 0 such that

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y) ∀x, y ∈ X (2.8)

implies d1 ' d2. And if d1, d2 are obtained from norms ‖ · ‖i, i = 1, 2 then by the preceding exercise
we have d1 ' d2 ⇔ ‖ · ‖1 ' ‖ · ‖2 ⇔ (2.8). But if at least one of the metrics d1, d2 does not come �

from a norm, equivalence d1 ' d2 does not imply (2.8): Consider X = R with d1(x, y) = |x − y|
and d2(x, y) = max(1, d1(x, y)). Then d1 ' d2 by Exercise 2.2.14, but (2.8) cannot hold since d1 is
unbounded and d2 is bounded. 2

Definition 2.2.18 The topology on Rn (and Cn) defined by the equivalent norms ‖ · ‖p, p ∈ [1,∞]
is called the usual or Euclidean topology.

We see that passing from a metric space (X, d) to the topological space (X, τd), we may lose
information. This actually is one of the main reasons for working with topological spaces, since
even when all spaces in sight are metrizable, the actual choice of the metrics may be irrelevant and
therefore distracting! Purely topological proofs tend to be cleaner than metric proofs.

2.3 Some standard topologies

It is time to see some topologies that do not come from a metric! Some standard topologies can
actually be defined on any set X:

Definition/Proposition 2.3.1 Let X be a set. Then the following are topologies on X:

• The discrete topology τdisc = P (X).

• The indiscrete topology τindisc = {∅, X}.

• The cofinite topology τcofin = {X\Y | Y ⊆ X finite} ∪ {∅}.

• The cocountable topology τcocnt = {X\Y | Y ⊆ X countable} ∪ {∅}.

A discrete topological space is a space equipped with the discrete topology, etc.
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Proof. That τdisc, τindisc are topologies is obvious. By definition, τfin, τcofin contain ∅, X. Let Ui ∈ τcofin

for each i ∈ I. The non-empty Ui are of the form Ui = X\Fi with each Fi finite. Now
⋃
i Ui =⋃

iX\Fi = X\
⋂
i Fi. Since an intersection of finite sets is finite, this is in τcofin. Let U1, U2 ∈ τcofin.

If either of them is empty then U1 ∩ U2 = ∅ ∈ τcofin. Otherwise Ui = X\Fi with F1, F2 finite. Then
U1∩U2 = X\(F1∪F2), which is in τcofin since the union of two finite sets is finite. The same reasoning
works for τcocnt. (Since a countable union of countable sets is countable, we actually find that τcocnt

is closed under countable intersections. With later language, for τcofin all Gδ-sets are open.) �

A one-point subset {x} ⊆ X is often called a singleton. Nevertheless, we may occasionally allow
ourselves to write ‘points’ when ‘singletons’ is meant.

Definition 2.3.2 If (X, τ) is a topological space, a point x ∈ X is called isolated if {x} ∈ τ .

Exercise 2.3.3 (i) Prove that (X, τ) is discrete if and only if every x ∈ X is isolated.

(ii) If d is a metric on X, prove that τd is discrete if and only if for every x ∈ X there is εx > 0
such that d(x, y) ≥ εx ∀y 6= x.

Metrics satisfying the equivalent conditions in (ii) are called discrete. Clearly the standard discrete
metric is discrete.

Exercise 2.3.4 Let X be arbitrary. Prove

(a) τindisc ⊆ τcofin ⊆ τcocnt ⊆ τdisc.

(b) If 2 ≤ #X <∞ then τindisc ( τcofin = τcocnt = τdisc.

(c) If X is countably infinite then τindisc ( τcofin ( τcocnt = τdisc.

(d) If X is uncountable then τindisc ( τcofin ( τcocnt ( τdisc.

The above exercise has provided examples of inclusion relations between different topologies on
a set. This merits a definition:

Definition 2.3.5 Let X be a set and τ1, τ2 topologies on X. If τ1 ⊆ τ2 then we say that τ1 is coarser
than τ2 and that τ2 is finer than τ1. (Some authors use weaker/stronger instead of coarser/finer.)

Exercise 2.3.6 Let X, I be sets and τi a topology on X for every i ∈ I. Prove that τ =
⋂
i∈I τi is a

topology on X.

Clearly, for any set, the indiscrete topology is the coarsest topology and the discrete topology the
finest. And

⋂
i τi is coarser than each τi.

Definition 2.3.7 A property P that a topological space may or may not have is called hereditary if
every subspace of a space with property P automatically has property P.

Exercise 2.3.8 Prove that the following properties are hereditary: (i) metrizability, (ii) discreteness,
(iii) indiscreteness, (iv) cofiniteness and (v) cocountability.

In order to avoid misconceptions, we emphasize that the properties of discreteness, indiscreteness,
cofiniteness and cocountability are quite exceptional in that they completely determine the topology.
For other properties, like metrizability, this typically is not the case.
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2.4 Closed and clopen subsets. Connectedness

Definition 2.4.1 Let (X, τ) be a topological space. A set Y ⊆ X is called closed if and only if X\Y
is open.

The following is obvious:

Lemma 2.4.2 Let (X, τ) be a topological space. Then

(i) ∅ and X are closed.

(ii) If Ci is closed for every i ∈ I then
⋂
i∈I Ci is closed.

(iii) If C1, . . . , Cn are closed then
⋃n
i=1Ci is closed.

Thus the family of closed sets is closed under arbitrary intersections and finite unions.

It is clear that we can also specify a topology on X by giving a family of sets satisfying (i)-(iii)
above and calling their complements open. In fact, the cofinite (resp. cocountable) topology on X
is defined more naturally by declaring as closed X and all its finite (resp. countable) subsets. It is
then obvious that (i)-(iii) in Lemma 2.4.2 are satisfied.

Example 2.4.3 Another example where it is more convenient to specify the closed sets is provided
by the definition of the Zariski1 topology on an algebraic variety. In the simplest situation this goes
as follows: Let k be a field, n ∈ N and X = kn. If P ⊆ k[x1, . . . , xn] is a (possibly infinite) set of
polynomials in n variables x1, . . . , xn, we define

YP = {x ∈ kn | p(x) = 0 ∀p ∈ P} ⊆ kn.

(We say that YP is the zero-set of P .) A set Y ⊆ kn is algebraic if Y = YP for some P as above. We
have Y∅ = kn, thus X = kn is algebraic. Letting P contain two contradictory equations (e.g. P =
{x1, x1−1}) we obtain YP = ∅, thus ∅ is algebraic. If I is any index set and Pi ⊆ k[x1, . . . , xn] ∀i ∈ I,
it is easy to see that

⋂
i∈I YPi = YQ for Q =

⋃
i∈I Pi. Thus arbitrary intersections of algebraic sets are

algebraic. Now let P1, P2 ⊆ k[x1, . . . , xn] and define Q = {p1p2 | p1 ∈ P1, p2 ∈ P2}. It is not hard to
check that YQ = YP1 ∪ YP2 , and by induction we see that finite unions of algebraic sets are algebraic.
We have thus proven that the family of algebraic subsets of X = kn satisfies (i)-(iii) of Lemma 2.4.2,
so that they are the closed sets of a topology on X, the Zariski topology. (This can be generalized
considerably, cf. Section C and books like [242, 243, 131].)

It should be noted that infinite unions of algebraic sets need not be algebraic. (In order to adapt
the above argument to infinite unions, we would need to make sense of infinite products, which is
difficult in a purely algebraic context.) Thus we have a non-trivial example for the ‘arbitrary unions,
finite intersection’ situation that is completely different from the metric topologies. (In fact, Zariski
topologies usually are not metrizable.) 2

Exercise 2.4.4 (i) Prove that YP1 ∪ YP2 = YQ for Q = {p1p2 | p1 ∈ P1, p2 ∈ P2}.

(ii) Prove that for n = 1, the Zariski topology is just the cofinite topology on k.

Unfortunately, the terminology open/closed is quite misleading: A set Y ⊆ (X, τ) can be neither �

open nor closed, e.g.: (0, 1] ⊆ R. On the other hand, a set Y ⊆ (X, τ) can be open and closed at the
same time!

1Oscar Zariski (1899-1986) was born in Ukraine (then part of Russia), emigrated first to Italy, then to the US. He
was one of the pioneers of modern algebraic geometry.
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Definition 2.4.5 A subset of a topological space is called clopen if it is closed and open. The set of
clopen subsets of X is called Clop(X).

• In every topological space (X, τ), the subsets ∅ and X are clopen.

• If X is discrete, every Y ⊆ X is clopen.

• If C,D ⊆ X are clopen then C ∪ D, C ∩ D and ¬C := X\C are clopen. It is easy to show
(provided one knows Definition 11.1.66) that (Clop(X),∪,∩,¬, ∅, X) is a Boolean algebra. This
Boolean algebra has interesting applications, cf. Section 11.1.11.

Definition 2.4.6 A topological space X is connected if ∅ and X are the only clopen subsets.

We defer the detailed discussion of the notion of connectedness and its many ramifications (which
touch upon algebraic topology) until Section 9. But we will encounter it every now and then and
prove some small facts. For now, we only note:

• X is connected if and only if it cannot be written as X = U ∪ V with U and V both non-
empty, disjoint and open (equivalently, both closed). (This is often taken as the definition of
connectedness, but we prefer the above one for its conciseness.)

• All indiscrete spaces are connected.

• Discrete spaces with more than one point are not connected.

2.5 The separation axioms T1 and T2

We have seen that a space (X, τ) is discrete if and only if all singletons {x} are open. When are the
singletons closed?

Exercise 2.5.1 Prove that for a topological space (X, τ), the following are equivalent:

(i) For every x ∈ X, the singleton {x} ⊆ X is closed.

(ii) For any x, y ∈ X with x 6= y there is an open set U such that x ∈ U, y 6∈ U .

(iii) For every x ∈ X, we have {x} =
⋂
{U | x ∈ U ∈ τ}.

Definition 2.5.2 A space satisfying the equivalent properties of Exercise 2.5.1 is called a T1-space.

Many topological spaces actually satisfy the following stronger axiom:

Definition 2.5.3 A topological space (X, τ) is called Hausdorff space or T2-space if for any x, y ∈ X
with x 6= y we can find open U, V such that x ∈ U, y ∈ V and U ∩ V = ∅.

One also says: The open sets separate the points of X.

Lemma 2.5.4 If (X, d) is a metric space then the metric topology τd is T2 (Hausdorff).

Proof. If x 6= y then d := d(x, y) > 0. Let U = B(x, d/2), V = B(y, d/2). Then x ∈ U ∈ τ, y ∈ V ∈ τ .
It remains to prove that U ∩V = ∅. Assume z ∈ U ∩V . Then d(x, z) < d/2 and d(y, z) < d/2. Thus
d = d(x, y) ≤ d(x, z) + d(z, y) < d/2 + d/2 = d, which is absurd. �
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Remark 2.5.5 1. The preceding result is false for pseudometric spaces that are not metric!
2. The T1- and T2-properties are called separation axioms. (The T in T1, T2 stands for ‘Trennung’,

German for separation.) We will encounter quite a few more.
3. Hausdorff originally included the T2-axiom in the definition of topological spaces, but this was

dropped when it turned out that also non-T2 spaces are important.
4. Discreteness can be understood as the strongest possible separation property: One easily

checks that a space X is discrete if and only if for any two disjoint sets A,B ⊆ X there are disjoint
open sets U, V containing A and B, respectively. 2

Exercise 2.5.6 Prove:

(i) The T1 and T2-properties are hereditary.

(ii) Let τ1, τ2 be topologies on X, where τ2 is finer than τ1. Prove that if τ1 is T1 (resp. T2) then τ2

is T1 (resp. T2).

Exercise 2.5.7 Prove the following:

(i) T2 ⇒ T1.

(ii) Every discrete space (X, τdisc) is T2.

(iii) If #X ≥ 2 then (X, τindisc) is not T1 (thus not T2).

(iv) The Zariski topology on kn is T1 for all k and n.

(v) Every cofinite space (X, τcofin) is T1.

(vi) If (X, τ) is T1 then τ ⊇ τcofin. (Thus τcofin is the coarsest T1 topology on X.)

(vii) Every finite T1-space is discrete (and thus T2).

(viii) If #X =∞ then (X, τcofin) is not T2. Thus T1 6⇒ T2.

Corollary 2.5.8 (X, τindisc) with #X ≥ 2 and (X, τcofin) with #X =∞ are not metrizable.

The existence of non-metrizable spaces is the second main reason for studying general topology:
In various situations, topological spaces arise that are not metrizable and therefore simply could not
be discussed in a theory of metric spaces. We will see that quotient spaces of metric spaces may
fail to be metrizable. Other examples of non-metrizable topologies are the Zariski topology from
Example 2.4.3, which is T1, but rarely T2 (it is discrete when k is finite), and the ‘weak topologies’
of functional analysis.

Exercise 2.5.9 Prove:

(i) Every finite subspace of a T1-space is discrete.

(ii) Deduce that connectedness is not hereditary.

(iii) A connected T1-space with more than one point has no isolated point.
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2.6 Interior. Closure. Boundary

If (X, τ) is a topological space and Y ⊆ X, one may ask whether there is a largest open (or closed)
subset of Y or a smallest open (or closed) subset containing Y . Since the union of any number
of open sets is open, and the intersection of any number of closed sets is closed, two of these four
questions have a positive answer. (The other two in general do not, but see Section 2.8.3.)

Definition 2.6.1 Let Y ⊆ (X, τ). Then the interior Y 0 and closure Y of Y are defined by

Y 0 =
⋃
{U | U open, U ⊆ Y },

Y =
⋂
{C | C closed, C ⊇ Y }.

The points of Y 0 are called interior points of Y , those of Y adherent points of Y .
(Some authors write ‘closure point’, ‘proximate point’ or ‘limit point’. But the latter term is also

used for the different concept of ‘accumulation point’ !)

Exercise 2.6.2 Let (X, τ) be a topological space and Y, Z ⊆ X. Prove:

(i) Y 0 is open, Y is closed, and Y 0 ⊆ Y ⊆ Y .

(ii) If Y is open then Y 0 = Y . If Y is closed then Y = Y .

(iii) ∅0 = ∅ = ∅ and X0 = X = X.

(iv) Y 00 = Y 0 and Y = Y . (Idempotency)

(v) If Y ⊆ Z then Y 0 ⊆ Z0 and Y ⊆ Z. (Monotonicity)

The following simple fact has many uses:

Lemma 2.6.3 If U ∩ V = ∅ and U is open then U ∩ V = ∅.

Proof. Since U is open, X\U is closed. And U ∩ V = ∅ is equivalent to V ⊆ X\U . Thus X\U
appears in the family over which the intersection is taken in the definition of V . Thus V ⊆ X\U ,
which is equivalent to V ∩ U = ∅. �

The connection between the interior and closure operations is provided by complements:

Lemma 2.6.4 For every Y ⊆ X we have

X\Y 0 = X\Y , (X\Y )0 = X\Y .

Proof. We only prove the first identity:

X\Y 0 = X\
⋃
{U open | U ⊆ Y } =

⋂
{X\U | U open, U ⊆ Y }

=
⋂
{C closed | X\C ⊆ Y } =

⋂
{C closed | X\Y ⊆ C} = X\Y .

The first equality is just the definition of Y 0, the second is de Morgan, the third results by replacing
the open set U by X\C with C closed, and the last results from the equivalence between X\C ⊆ Y
and X\Y ⊆ C. �
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Exercise 2.6.5 (i) Prove the equivalence used in the last sentence of the proof.

(ii) Prove the second identity of Lemma 2.6.4.

How the interior and closure operations interact with union and intersection is less obvious:

Lemma 2.6.6 Let (X, τ) be a topological space and A,B ⊆ X. Then

(i) A ∪B = A ∪B.

(ii) (A ∩B)0 = A0 ∩B0.

(iii) A ∩B ⊆ A ∩B.

(iv) A0 ∪B0 ⊆ (A ∪B)0.

Proof. Combining the trivial inclusions

A ⊆ A ∪B, B ⊆ A ∪B, A ∩B ⊆ A, A ∩B ⊆ B

with monotonicity we obtain

A ⊆ A ∪B, B ⊆ A ∪B, A ∩B ⊆ A, A ∩B ⊆ B,

A0 ⊆ (A ∪B)0, B0 ⊆ (A ∪B)0, (A ∩B)0 ⊆ A0, (A ∩B)0 ⊆ B0,

from which we obtain

A ∪B ⊆ A ∪B, A ∩B ⊆ A ∩B, A0 ∪B0 ⊆ (A ∪B)0, (A ∩B)0 ⊆ A0 ∩B0.

We thus have proven (iii) and (iv) and ‘half of’ (i),(ii). Now, A ∪ B is a closed subset containing
A ∪ B, so that it appears in the family defining A ∪B. Thus A ∪B ⊆ A ∪ B. Since the converse
inclusion was proven before, we have (i). Similarly, the fact that A0 ∩B0 is an open subset of A∩B
implies A0 ∩B0 ⊆ (A ∩B)0, thus (ii). �

Remark 2.6.7 1. It is very important to understand that equality need not hold in (iii) and (iv)! �

Thus A ∩ B may be strictly smaller than A ∩B. (For X = R, A = (0, 1), B = (1, 2) we have
A ∩ B = {1}, but A ∩B = ∅.) Similarly, A0 ∩ B0 may be strictly smaller than (A ∩ B)0. (For
X = R, A = [0, 1], B = [1, 2] we have (A ∪B)0 = (0, 2), but A0 ∪B0 = (0, 1) ∪ (1, 2).)

2. Induction over n gives the generalization
⋃n
i=1 Yi =

⋃n
i=1 Yi of (i), which we will often use.

Similarly, the interior of a finite intersection equals the intersection of the interiors. But these
statements may very well be false for infinite unions/intersections! Example: �⋃

x∈Q

{x} =
⋃
x∈Q

{x} = Q 6= R = Q =
⋃
x∈Q

{x}.

(This is closely related to the fact that an infinite union of closed sets need not be closed.) 2

Exercise 2.6.8 (Topology from closure operation (Kuratowski 1922)) 2 Let X be a set and
cl: P (X)→ P (X) a map satisfying the properties

2Kazimierz Kuratowski (1896-1980). Polish mathematician and logician.
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(α) cl(∅) = ∅.

(β) cl(Y ) ⊇ Y for every Y ⊆ X.

(γ) cl(A ∪B) = cl(A) ∪ cl(B).

Prove:

(i) A ⊆ B ⇒ cl(A) ⊆ cl(B).

(ii) There is a unique topology τ on X such that Y ⊆ X is τ -closed if and only if cl(Y ) = Y .

(iii) If τ is as in (ii) and cl also satisfies (δ) cl(cl(Y )) = cl(Y ), then cl(Y ) = Y
τ

for every Y ⊆ X.

Remark 2.6.9 1. Combining the preceding exercise with Exercise 2.6.2 and Lemma 2.6.6, we see
that specifying a topology on a set X is equivalent to giving a closure operator satisfying (α)-(δ).

2. Since the interior operation Y 7→ Y 0 has properties dual to the closure, one could also obtain
a topology from an interior operation having properties dual to (α)-(δ). 2

Definition 2.6.10 If Y ⊆ (X, τ) then the boundary ∂Y of Y is

∂Y = Y \Y 0.

(Some authors write ‘frontier’ instead of ‘boundary’, in symbols FrY .)

Lemma 2.6.11 Let Y ⊆ (X, τ). Then

(i) ∂Y = Y ∩ (X\Y 0) = Y ∩X\Y = ∂(X\Y ).
Thus a subset and its complement have the same boundary.

(ii) ∂Y is closed.

(iii) Y = Y ∪ ∂Y and Y 0 = Y \∂Y .

(iv) ∂Y = ∅ ⇔ Y = Y 0 ⇔ Y is clopen.

(v) ∂Y = X ⇔ Y = X and Y 0 = ∅.

Proof. (i) The first identity is just Lemma 2.6.4. It is clear that Y ∩ X\Y is unchanged under the
replacement Y ; X\Y . (ii) Obvious from ∂Y = Y ∩X\Y . (iii) We have Y ∪ ∂Y = Y ∪ (Y \Y 0) =
Y ∪ Y = Y and Y \∂Y = Y \(Y \Y 0) = Y 0. Both computations use Y 0 ⊆ Y ⊆ Y . (iv) We first
note that ∂Y = ∅ is equivalent to (*) Y 0 = Y . If Y is clopen then Y 0 = Y = Y , thus (∗) holds.
Conversely, (*) together with Y 0 ⊆ Y ⊆ Y implies Y 0 = Y = Y , thus Y is open and closed. (v) In
view of Y 0 ⊆ Y it is clear that Y \Y 0 = X holds if and only if Y = X and Y 0 = ∅. �

Exercise 2.6.12 Let X be a topological space. Prove or disprove (by counterexample) the following
statements:

(i) (∂Y )0 = ∅ for every Y ⊆ X. (I.e. boundaries have empty interior.)

(ii) (∂Y )0 = ∅ holds whenever Y ⊆ X is closed.

Exercise 2.6.13 Let (X, τ) be a topological space, (Y, τY ) ⊆ X a subspace, and Z ⊆ Y . Prove:
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(i) We have τY ⊆ τ (interpreting subsets of Y as subsets of X) if and only if Y ⊆ X is open.

(ii) The interior of Z in Y , denoted IntY (Z), contains Z0 (the interior of Z in X).

(iii) Assume Y is open. Then the interiors of Z in X and in Y coincide (thus IntY (Z) = Z0), and
Z is open in Y if and only if it is open in X.

(iv) Z is closed in Y if and only if Z = Y ∩ C for some closed C ⊆ X.

(v) The closure of Z in (Y, τY ), denoted ClY (Z), equals Z ∩ Y . (Z is the closure of Z in X).

(vi) Assume Y is closed. Then the closures of Z in X and Y coincide (thus ClY (Z) = Z), and Z is
closed in Y if and only if it is closed in X.

Exercise 2.6.14 Let (X, τ) be a topological space. An open set U ⊆ X is called regular open if

U = U
0
. A closed set C is called regular closed if C = C0.

(i) Prove that the complement of a regular open set is regular closed, and vice versa.

(ii) Prove that the intersection of two regular open sets is regular open.

(iii) Give examples of open sets in R that are (a) regular, (b) not regular.

(iv) Give two regular open sets in R whose union is not regular open.

(v) Prove that U ⊆ U
0

for every open U and C0 ⊆ C for every closed C.

(vi) Prove that each Y
0

is regular open, i.e. Y
0

0

= Y
0
.

(vii) Show that in every non-discrete T1 space there is a non-regular open set.

Remark 2.6.15 Let U, V be regular open. Then U ∧ V := U ∩ V is regular open by (ii), and

U ∨ V := U ∪ V 0
and U⊥ := (X\U)0 = X\U

0
are regular open by (v). Now one easily shows that

(A,∨,∧,⊥, ∅, X), where A is the set of regular open sets, is a Boolean algebra. A clopen set obviously
is regular open. Indeed, one easily checks that the Boolean algebra Clop(X) of clopen subsets is a
Boolean subalgebra of the Boolean algebra of regular open sets. 2

The following is not more than an amusing curiosity:

Exercise 2.6.16 (Kuratowski’s closure-complement theorem) Let (X, τ) be a topological space.
To every subset Y ⊆ X we can associate to new subsets Y c ≡ X\Y and Y .

(i) Use Exercise 2.6.14(vi) to prove Y
cc
c

= Y
c
.

(ii) Use this to show that beginning from a single subset Y ⊆ X and applying the operations
closure and complement, one can produce at most 14 different subsets of X.
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2.7 Neighborhoods. Density

2.7.1 Neighborhoods. Topologies from neighborhoods

Definition 2.7.1 Let (X, τ) be a topological space and x ∈ X.

(i) An open neighborhood of x is a U ∈ τ such that x ∈ U . The set of open neighborhoods of x is
denoted Ux.

(ii) A neighborhood of x is a set N ⊆ X that contains an open neighborhood of x. The set of all
neighborhoods of x is denoted Nx.

Lemma 2.7.2 Let (X, τ) be a topological space.

(i) Ux is closed w.r.t. finite intersections.

(ii) N ⊆ X is a neighborhood of x ∈ X if and only if x ∈ N0.

(iii) N ⊆ X is open if and only if y ∈ N ⇒ N ∈ Ny.

(iv) Nx has the following properties:

– Nx 6= ∅ and ∅ 6∈ Nx.

– If N ∈ Nx and M ⊇ N then M ∈ Nx.

– If N,M ∈ Nx then N ∩M ∈ Nx.

A non-empty family of non-empty sets with these two properties is called a filter. In particular,
Nx is the neighborhood filter of x. For more on filters see Sections 5.1.3 and 7.5.5.)

Proof. (i) Obvious. (ii) N0 ⊆ N is open, thus if x ∈ N0 then N is a neighborhood of x. If N ∈ Nx
then there is an open U with x ∈ U ⊆ N , thus x ∈ U ⊆ N0 ⊆ N . (iii) Every open U clearly is a
neighborhood for each y ∈ U . If N is a neighborhood of each y ∈ N then there are open Uy with
y ∈ Uy ⊆ N . But then N =

⋃
y∈N Uy, thus N is open. (iv) Obvious. �

Lemma 2.7.3 Let Y ⊆ (X, τ). Then x ∈ Y if and only if N ∩ Y 6= ∅ for every (open) neighborhood
N of x.

Proof. By Lemma 2.6.4, Y = X\(X\Y )0. Thus x ∈ Y is equivalent to x 6∈ (X\Y )0, which is
equivalent to: There is no open set U such that x ∈ U ⊆ X\Y . But this in turn is equivalent to: every
open set U with x ∈ U satisfies U ∩Y 6= ∅. This proves the claim for open neighborhoods. The claim
for arbitrary neighborhoods follows from the facts that (a) open neighborhoods are neighborhoods
and (b) every neighborhood contains an open neighborhood. �

Remark 2.7.4 1. Lemma 2.7.3 gives an alternative proof of Lemma 2.6.3: If x ∈ U , then U is an
open neighborhood of x disjoint from V . Thus Lemma 2.7.3 gives x 6∈ V , so that U ∩ V = ∅.

2. If x ∈ X is an isolated point then {x} is an open neighborhood of x, thus x 6∈ Y ⊆ X ⇒ x 6∈ Y
by Lemma 2.7.3, whence the term ‘isolated’.

3. If (X, d) is a metric space and Y ⊆ X, Lemma 2.7.3 implies that the closures of Y in the
metric (Lemma 2.1.16) and the topological sense (Definition 2.4.1) coincide.

4. If Y ⊆ (X, τ) then x ∈ ∂Y if and only if every (open) neighborhood of x contains points of Y
and of X\Y . (This follows from ∂Y = Y ∩X\Y .)
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5. Every X ⊆ R that is bounded above has a supremum sup(X) ∈ R. If sup(X) 6∈ X then the
definition of the supremum implies that (sup(X) − ε, sup(X)) ∩ X 6= ∅ for every ε > 0. Thus we
always have sup(X) ∈ X, and similarly for the infimum. 2

The following shows that a topology τ can also be defined in terms of axioms for neighborhoods:

Exercise 2.7.5 (Topology from neighborhood axioms) Let X be a set, and let for every x ∈ X
a non-empty family Mx ⊆ P (X) be given, such that the following holds:

(α) x ∈ N ∀N ∈Mx.

(β) If N ∈Mx and M ⊇ N then M ∈Mx.

(γ) If N,M ∈Mx then N ∩M ∈Mx.

(δ) For every N ∈Mx there is a U ∈Mx such that U ⊆ N and U ∈My for each y ∈ U .

Prove:

(i) τ = {U ⊆ X | ∀x ∈ U : U ∈Mx} is a topology on X.

(ii) Mx equals Nx, the set of τ -neighborhoods of x.

(iii) τ is the unique topology τ on X for which (β) holds.

Remark 2.7.6 1. In view of Lemma 2.7.2 and Exercise 2.7.5, specifying a topology on a set X is
equivalent to specifying a neighborhood system {Mx}x∈X satisfying (α)-(δ).

2. ?? Combining this with the bijection between topologies and closure operators satisfying (α)-
(δ) in Exercise 2.6.8, we clearly also have a bijection between closure operators and neighborhood
systems. Interestingly, this bijection remains intact if one omits the respective axioms (δ) from
the definitions of closure operators and neighborhood systems. This leads to a generalization of
topological spaces, called ‘pre-topological spaces’. 2

Exercise 2.7.7 Let τ be the standard topology on R. Let N = {1, 2, 3, . . .}.

(i) Prove that there is a topology τ̃ on R such that:

– the τ̃ -neighborhoods of x 6= 0 are the same as the τ -neighborhoods of x.

– The τ̃ -neighborhoods of x = 0 are the sets that contain

(−ε, ε)\
{

1

n
| n ∈ N

}
for some ε > 0.

(ii) Prove that τ̃ is finer than τ .

(iii) Prove that τ̃ is Hausdorff.

(iv) Prove that C =
{

1
n
| n ∈ N

}
is closed w.r.t. τ̃ , but not w.r.t. τ .

(v) Prove that there are no U, V ∈ τ̃ with U ∩ V = ∅ and 0 ∈ U,C ⊆ V .
(Later we will say: (R, τ̃) is not regular (T3).)
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2.7.2 Dense subsets. Nowhere dense subsets

Definition 2.7.8 A set Y ⊆ (X, τ) is called dense (in X) if Y = X.

(Some authors write ‘everywhere dense’, but the ‘everywhere’ is redundant.)

Lemma 2.7.9 Let (X, τ) be a topological space with X 6= ∅. Then Y ⊆ X is dense if and only if
Y ∩W 6= ∅ whenever ∅ 6= W ∈ τ .

Proof. By definition, Y is dense if and only if x ∈ Y for every x ∈ X. By Lemma 2.7.3, this is
equivalent to Y ∩ U 6= ∅ whenever x ∈ U ∈ τ . Since the only rôle of x ∈ U here is to guarantee that
U 6= ∅, this condition is equivalent to the one in the Lemma.

Alternative argument: If there is ∅ 6= W ∈ τ with Y ∩ W = ∅, then Y ∩ W = ∅ by Lemma
2.6.3, thus Y 6= X. If no such W exists, we have (X\Y )0 = ∅, thus X\Y = ∅ by Lemma 2.6.4 and
therefore Y = X. �

Notice that the intersection of two dense sets need not be dense. It can even be empty, as in the�

following example: U1 = Q and U2 = Q +
√

2 are both dense in R, but U1 ∩ U2 = ∅. (Otherwise we
could deduce that

√
2 is rational.) But we have:

Lemma 2.7.10 (i) If Y ⊆ X is dense and V ⊆ X is open then V ⊆ V ∩ Y and V = V ∩ Y .

(ii) If V, Y ⊆ X are both dense and V is open then V ∩ Y is dense.

Proof. (i) Let x ∈ V . We want to show x ∈ V ∩ Y . In view of Lemma 2.7.3 this amounts to showing
W ∩ (V ∩Y ) 6= ∅ for every open W 3 x. But W ∩ (V ∩Y ) = (W ∩V )∩Y . Now, W ∩V is open and
non-empty (since it contains x), thus density of Y and Lemma 2.7.9 give (W ∩ V ) ∩ Y 6= ∅, and we
have the first claim. Taking the closure of V ⊆ V ∩ Y we obtain V ⊆ V ∩ Y ⊆ V ∩ Y ⊆ V , which
gives the second identity.

(ii) By (i), V ⊆ V ∩ Y . Now density of V gives X = V ⊆ V ∩ Y , thus V ∩ Y = X. �

Corollary 2.7.11 Any finite intersection of dense open sets is dense.

Remark 2.7.12 For infinitely many dense open sets this is not necessarily true: Consider (X, τcofin)
for X countably infinite. For every x ∈ X, the set X\{x} is open (by definition of τcofin) and dense
(since it is not closed and X is the only set that is strictly bigger). But the countable intersection⋂
x(X\{x}) is empty and thus certainly not dense.

In Section 3.3 we will see that this cannot happen for complete metric spaces. 2

With Lemma 2.6.4, we have that Y ⊆ X is dense ⇔ X\Y has empty interior. The following
property is stronger than having empty interior:

Definition 2.7.13 If (X, τ) is a topological space, Y ⊆ X is nowhere dense if Y
0

= ∅.

Remark 2.7.14 (i) Every closed set with empty interior is nowhere dense, e.g. Z ⊆ R.
(ii) A non-closed example of a nowhere dense set is given by {1/n | n ∈ N} ⊆ R.
(iii) While a set can be dense and have empty interior, e.g. Q ⊆ R, a dense set clearly cannot be

nowhere dense (unless X = ∅). 2

Exercise 2.7.15 Let X be a topological space. Prove that Y ⊆ X is nowhere dense if and only if
for every non-empty open U ⊆ X there is a non-empty open V ⊆ U such that V ∩ Y = ∅.
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2.7.3 ? Accumulation points. Perfect sets. Scattered spaces

In this short section we discuss some notions that are related to the closure of a subset and to isolated
points. This material is of lesser importance and may safely be ignored until it is needed.

Definition 2.7.16 A topological space is called dense-in-itself if it has no isolated points. A subset
of a topological space is called perfect if it is closed and dense-in-itself (as a subspace).

By Exercise 2.5.9, a connected T1 space with more than one point is dense-in-itself.

Definition 2.7.17 If X is a topological space and Y ⊆ X, a point x ∈ X is called an accumulation
point of Y if every neighborhood of x contains a point of Y different from x. The set of accumulation
points of Y is called the derived set Y ′.

Remark 2.7.18 1. Using Lemma 2.7.3 one sees immediately that x ∈ Y ′ ⇔ x ∈ Y \{x}.
2. A point of Y may or may not be in Y ′. In fact, if (X, τ) is discrete then each Y \{x} is closed

for any Y, x, so that 1. implies that Y ′ = ∅ for every Y ⊆ X.
3. We have x ∈ X ′ if and only if every neighborhood of X contains a point other than x, which

is true if and only if {x} is not open. Thus the derived set X ′ of the total space is the complement
of the set of isolated points, and X is dense-in-itself if X ′ = X.

4. The notion of accumulation point played a central rôle in the early development of set theory
and point set topology. But the simpler notions of open and closed sets have turned out to be more
fundamental. Accumulation points continue to be relevant for certain specialized matters, like the
discussion of (weak) countable compactness. 2

Exercise 2.7.19 Let X be a topological space X and Y ⊆ X. Prove:

(i) Y \Y ⊆ Y ′ ⊆ Y .

(ii) Y ′ 6= ∅ ⇔ Y is non-closed or not discrete (as a subspace).

(iii) Y = Y ∪ Y ′. Thus Y is closed if and only if Y ′ ⊆ Y .

(iv) Y is dense in itself if and only if Y ⊆ Y ′.

(v) Y is perfect if and only if Y = Y ′.

Definition 2.7.20 A topological space X is scattered if every subspace has an isolated point. Equiv-
alently, no subset of X is dense-in-itself.

Example 2.7.21 1. Obviously every discrete space is scattered.
2. The set {1/n | n ∈ N} ∪ {0} ⊆ R with the topology inherited from R is scattered, but not

discrete (since 0 is not isolated). 2

Exercise 2.7.22 Let X be a topological space. Prove:

(i) If Y ⊆ X is dense-in-itself then the same holds for Y .

(ii) If Yi ⊆ X is dense-in-itself for all i ∈ I then the same holds for
⋃
i Yi.

(iii) There are a perfect subset Y and a scattered subset Z such that X = Y ∪ Z and Y ∩ Z = ∅.
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The following notions are used only incidentally, cf. e.g. Exercises 4.1.20, 7.2.6 and Proposition
7.7.6:

Definition 2.7.23 Let X be a topological space and Y ⊆ X a subset. A point x ∈ X is called

• ω-accumulation point of Y if U ∩ Y is infinite for every open neighborhood U of x,

• condensation point of Y if U ∩ Y is uncountable for every open neighborhood U of x.

• complete accumulation point of Y if #(U ∩ Y ) = #Y (i.e. Y and U ∩ Y have the same cardi-
nalities) for every open neighborhood U of x.

We denote by Y ω (Y cd, Y cpl) the sets of ω-accumulation (condensation, complete accumulation)
points of Y .

We obviously have Y cd ⊆ Y ω ⊆ Y ′ ⊆ Y , and for uncountable Y we have Y cpl ⊆ Y cd.

Exercise 2.7.24 Prove: If X is a T1-space then every accumulation point of Y ⊆ X is an ω-
accumulation point, i.e. Y ω = Y ′.

Exercise 2.7.25 Let X be a topological space and A,B ⊆ X. Prove:

(i) (A ∪B)ω = Aω ∪Bω and (A ∪B)cd = Acd ∪Bcd.

(ii) Aω and Acd are closed.

Remark 2.7.26 Let X be the space from Example 2.7.21.2. Then Xω = {0} and Xcd = ∅. Thus
(Xω)ω = (Xcd)cd = ∅, showing that (Xω)ω = Xω need not hold. Here (Xcd)cd = Xcd does hold, if
trivially. For more on this, cf. Exercise 4.1.20. 2

2.8 Some more exotic types of spaces

2.8.1 ? Irreducible spaces

Exercise 2.8.1 Let X be a topological space. Show that the following are equivalent:

(i) If C,D ⊆ X are closed and X = C ∪D then C = X or D = X.

(ii) If U, V ⊆ X are non-empty open sets then U ∩ V 6= ∅.

(iii) Every non-empty open U ⊆ X is dense.

Definition 2.8.2 A space satisfying these equivalent conditions is called irreducible. Otherwise, i.e.
if there are two disjoint non-empty open sets, it is called reducible.

Exercise 2.8.3 Prove:

(i) Every irreducible space is connected.

(ii) An irreducible space with more than one point is never Hausdorff.

(iii) If #X =∞ then (X, τcofin) is irreducible.
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(iv) If X is uncountable then (X, τcocnt) is irreducible.

Remark 2.8.4 1. Irreducible spaces play an important rôle in modern algebraic geometry. (In [131],
they appear on page 3. The Zariski topologies are irreducible.)

2. In view of (i), irreducible spaces are also called hyperconnected.
3. R (with the usual topology) is T2 and, as we will prove later, connected. Thus: connected 6⇒

irreducible.
4. (iii),(iv) show that an irreducible space can be T1. 2

2.8.2 T0-spaces

In Section 2.5 we have defined T1-spaces as spaces in which every point (more precisely: every
singleton) is closed. So far, the only non-T1-spaces that we have met were the – rather uninteresting
– indiscrete spaces. But there actually are spaces ‘in nature’ (for example in algebraic geometry)
that are not T1:

Example 2.8.5 Consider X = {x, y}, τ = {∅, {x}, X}. X is irreducible, thus connected. Since {x}
is open, {y} = X\{x} is closed, but {x} is not closed. In fact {x} = X, so that X is not T1. (Thus
Exercise 2.5.9 does not apply. Indeed x is isolated.) Yet we have {x} 6= {y}, thus the points x 6= y
are distinguished by their closures. 2

Exercise 2.8.6 Let (X, τ) be a topological space. Prove that the following are equivalent:

(i) Given x, y ∈ X, x 6= y, there is a U ∈ τ containing precisely one of the two points. (I.e. all
points are distinguished by τ .)

(ii) If x 6= y then {x} 6= {y}.

Definition 2.8.7 A topological space is called T0-space if it satisfies the equivalent characterizations
in Exercise 2.8.6.

Obviously, T1 ⇒ T0. The space in Example 2.8.5 is T0, but not T1. A very important class of
non-trivial T0-spaces is discussed in Appendix C. The point x in Example 2.8.5 is an example for the
following:

Exercise 2.8.8 Let (X, τ) be a topological space and x ∈ X. Prove that {x} = X holds if and only
if x is contained in every non-empty open set.

A point with these equivalent properties is called generic point.

Exercise 2.8.9 Given a topological space (X, τ), define a relation on X by x ≤τ y ⇔ x ∈ {y}.
Prove:

(i) ≤τ is a reflexive and transitive (thus a preorder, called the specialization preorder).

(ii) τ is T0 if and only if ≤τ is also antisymmetric (thus a partial order).

(iii) τ is T1 if and only if ≤τ is trivial in the sense of x ≤τ y ⇔ x = y.

(iv) τ is indiscrete if and only if x ≤τ y for all x, y.

Spaces that are not even T0 can arise from pseudometrics:
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Exercise 2.8.10 Let d be a pseudometric on a set X. Prove:

(i) τd is the indiscrete topology if and only if d ≡ 0.

(ii) τd is T0 if and only if d is a metric.

(Thus d is a metric ⇒ τd is T2 ⇒ T1 ⇒ T0 ⇒ d is a metric.)

2.8.3 ?? Alexandrov or Smallest Neighborhood Spaces

As remarked earlier, intersections of infinitely many open subsets need not be open. But there clearly
are spaces where this is true, to wit the discrete spaces (for the trivial reason that every subset is
open). But there are more interesting examples, and this subsection is devoted to a quick look at
them.

Exercise 2.8.11 Let (X, τ) be a topological space. Prove that the following are equivalent:

(i) Every union of closed subsets is closed.

(ii) Every intersection of open subsets is open.

(iii) Every x ∈ X has a smallest open neighborhood, i.e. an open neighborhood Ux contained in
every open set that contains x.

Definition 2.8.12 Topological spaces with the equivalent properties from Exercise 2.8.11 are called
smallest neighborhood spaces or Alexandrov3 spaces4.

Lemma 2.8.13 (i) Every discrete space is a smallest neighborhood space.

(ii) Every smallest neighborhood T1-space is discrete.

(iii) Every finite topological space is a smallest neighborhood space.

Proof. (i) Follows from Exercise 2.8.11(i) since every subset is closed.
(ii) In a T1 space every singleton is closed, thus with Exercise 2.8.11(i) every subset is closed.
(iii) If a set X is a finite then so is every topology τ on it, thus every intersection of open sets is

open. �

Proposition 2.8.14 Let X be a set.

(i) For a preorder ≤ on X, define

τ≤ = {U ⊆ X | x ∈ U, y ∈ X, x ≤ y ⇒ y ∈ U}.

(I.e. τ≤ is the set of subsets of X that are upward-closed.) Then τ≤ is a topology on X with
the smallest neighborhood property.

(ii) For x ∈ X, the set M(x) = {y ∈ X | y ≥ x} of (non-strict) majorants of x is in τ≤. For every
U ∈ τ≤ we have U =

⋃
x∈U M(x).

3Pavel Sergeevich Alexandrov (1896-1982), Russian mathematician. (Also transliterated as Aleksandrov or Alexan-
droff.) We will also encounter the Alexandrov compactification.

4Not to be confused with the Alexandrov spaces in metric geometry (cf. e.g. [49]) introduced by Aleksandr Danilovich
Aleksandrov (1912-1999). For this reason, we prefer to write ‘smallest neighborhood space’.
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(iii) The specialization preorder (Exercise 2.8.9) ≤τ≤ on X arising from τ≤ coincides with ≤.

(iv) If (X, τ) is a smallest neighborhood space and ≤τ is the specialization preorder arising from τ
then τ≤τ = τ .

(v) For every X there is a bijection between preorders and smallest neighborhood topologies on X.
For corresponding τ,≤ we have that ≤ is trivial (i.e. {(x, x)}) if and only if τ is T1 if and only
if τ is discrete. And τ is T0 if and only if ≤ is partial order.

Proof. (i) Clearly ∅, X ∈ τ≤. Let U =
⋃
i∈I Ui, where Ui ∈ τ≤ ∀i. If x ∈ U, y ∈ X, x ≤ y then

x ∈ Ui for some i ∈ I. But then y ∈ Ui, thus y ∈ U . Let U =
⋂
i∈I Ui, where Ui ∈ τ≤ ∀i. Assume

x ∈ U, y ∈ X, x ≤ y. Then x ∈ Ui ∀i, thus also y ∈ Ui ∀i and thus y ∈ U . Since this is true for all
intersections, τ≤ is a smallest neighborhood topology.

(ii) For the first claim it suffices to observe that M(x) is upward-closed. The second claim follows
from the fact that x ∈ U ∈ τ≤ implies x ∈M(x) ⊆ U .

(iii) By Lemma 2.7.3, we have x ∈ {y} if and only y ∈ U holds for every τ≤-open set U 3 x. Since

M(x) is among the latter, x ∈ {y} implies x ≤τ≤ y. Conversely, x ∈ U ∈ τ≤ implies M(x) ⊆ U , thus
y is contained in every open set containing x. This proves that the specialization preorder ≤τ≤ of τ≤
coincides with ≤.

(iv) Recall that since (X, τ) is a smallest neighborhood space, each x has a smallest open neigh-
borhood Ux, and for each U ∈ τ we have U =

⋃
x∈U Ux. As for (iii) we use that x ∈ {y} if and only

if x ∈ U ∈ τ implies y ∈ U . This gives that x ∈ {y} is equivalent to y ∈ Ux. Combining this with
the definition of ≤τ , we have

x ≤τ y ⇔ x ∈ {y} ≤ y ∈ Ux.

This implies that Ux = M(x), the majorant set (w.r.t. ≤τ ) of x. Now τ = τ≤τ follows from

U ∈ τ ⇔ U =
⋃
x∈X

Ux ⇔ U =
⋃
x∈X

M(x) ⇔ U ∈ τ≤τ ,

where the last identity is due to (ii).
(v) This is an immediate consequence of (i)+(iii)+(iv), Exercise 2.8.9(ii)-(iii) and our earlier

observation that a smallest neighborhood space is T1 if and only if it is discrete. �

It is natural to ask what continuity of a map between smallest neighborhood spaces means in
terms of the corresponding preorders. In this discussion we use the notion of a base (Definition 4.1.1)
and of a continuous function (Definition 5.2.7).

Proposition 2.8.15 Let (X, τ), (Y, τ ′) be smallest neighborhood spaces and ≤,≤′ the associated (spe-
cialization) preorders. Then a function f : X → Y is continuous if and only if it is order-preserving,
i.e. x ≤ x′ ⇒ f(x) ≤′ f(x′).

Proof. Continuity of f means U ∈ τ ′ ⇒ f−1(U) ∈ τ . Since the majorant sets M(y) form a base
for τ ′, we only need to check whether f−1(M(y)) ∈ τ for each y ∈ Y , cf. Exercise 5.2.8(iii). Now,
f−1(M(y)) = {x ∈ X | f(x) ≥′ y}. This set is in τ if and only if it is upward closed. Thus continuity
of f is equivalent to x, x′ ∈ X, y ∈ Y, f(x) ≥′ y, x′ ≥ x ⇒ f(x′) ≥′ y. If this is true then taking
y = f(x) we obtain the implication x, x′ ∈ X, x′ ≥ x⇒ f(x′) ≥′ f(x). Conversely, if the latter true
then we also have x′ ≥ x, f(x) ≥′ y ⇒ f(x′) ≥′ f(x) ≥′ y. Thus continuity of f : (X, τ)→ (Y, τ ′) is
equivalent to f : (X,≤)→ (Y,≤′) being order-preserving. �
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Corollary 2.8.16 The category of smallest neighborhood spaces and continuous maps is isomorphic
to the category of preordered sets and order-preserving maps. This restricts to an isomorphism
between the categories of smallest neighborhood T0-spaces and partially ordered sets.

Thus the study of smallest neighborhood spaces reduces to a branch of order theory! For more on
smallest neighborhood spaces see [6], where also several other characterizations of these spaces are
given, and [274] for the special case of finite spaces. For an important area of application see [138].
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Chapter 3

Metric spaces: Completeness and its
applications

3.1 Completeness

Definition 3.1.1 A sequence {xn} in a metric space (X, d) is a Cauchy1 sequence if for every ε > 0
there is an N ∈ N such that n,m ≥ N ⇒ d(xn, xm) < ε.

Exercise 3.1.2 Prove that every Cauchy sequence in a metric space is bounded.

Lemma 3.1.3 Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Assume xn → z. If ε > 0 then there is N ∈ N such that n ≥ N ⇒ d(xn, z) < ε/2. If now
n,m ≥ N then d(xn, xm) ≤ d(xn, z) + d(z, xm) < ε/2 + ε/2 = ε. �

The converse is not true: If X = (0, 1] ∩ Q with d(x, y) = |x − y| then {xn = 1/n} is a Cauchy
sequence, but it does not converge in X. Less trivially, Q is not complete w.r.t. the same metric d
as above (nor w.r.t. the p-adic metrics dp(x, y) = ‖x− y‖p). This motivates:

Definition 3.1.4 If d is a metric on X such that every Cauchy sequence converges, both the metric
and the metric space (X, d) are called complete.

Definition 3.1.5 A Banach space2 is a normed space (V, ‖ · ‖) such that the metric space (X, d‖) is
complete.

We assume as known from a course on calculus/analysis that (R, d), where d(x, y) = |x − y| is
complete.

Lemma 3.1.6 Let p ∈ [1,∞] and dp(x, y) = ‖x− y‖p. Then (Rd, dp) is complete for every d ∈ N.

Proof. Let p ∈ [1,∞]. From the definition of ‖ · ‖p it is clear that for x = (x1, . . . , xd) ∈ Rd and
1 ≤ i ≤ d we have |xi| ≤ ‖x‖p. Thus if a sequence {xn} is Cauchy we have |xni − xmi | ≤ ‖xn − xm‖p,
so that the sequence {xni }n in R is Cauchy. Since R is complete, we have xni

n→∞−→ yi ∈ R. Since
‖x‖p = ‖(x1, . . . , xd)‖p depends continuously on x1, . . . , xd, this implies ‖xn − y‖p → 0. �

(For a generalization to infinite dimensions, cf. Section F.)

1Augustin-Louis Cauchy (1789-1857). French mathematician and pioneer of rigorous analysis.
2Stefan Banach (1892-1945). Polish mathematician and pioneer of functional analysis. Also known for B. algebras,

B.’s contraction principle, the B.-Tarski paradox and the Hahn-B. and B.-Steinhaus theorems, etc.
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The main reason for the importance of completeness is the following: Given a sequence {xn} in
a metric space, it is usually much easier to show that it is Cauchy and then invoking completeness
than proving convergence directly, which requires already knowing the limit. This is illustrated by
the following application of completeness of a normed space:

Definition 3.1.7 Let V be a normed space and {xn}n∈N ⊆ V a sequence. The series
∑∞

n=1 xn is said
to be absolutely convergent if

∑∞
n=1 ‖xn‖ <∞ and to converge to s ∈ V if the sequence Sn =

∑n
k=1 xk

of partial sums converges to s.

Lemma 3.1.8 In a Banach space V , every absolutely convergent series
∑

n xn in V converges.3

(The converse is also true, cf. Proposition 5.1.15.) The sum satisfies ‖
∑

n xn‖ ≤
∑

n ‖xn‖.

Proof. Assume V to be complete and
∑

n xn to be absolutely convergent. Let Sn =
∑n

k=1 xn and
Tn =

∑n
k=1 ‖xk‖. For all n > m we have

‖Sn − Sm‖ = ‖
n∑

k=m+1

xk‖ ≤
n∑

k=m+1

‖xk‖ = Tn − Tm.

Since the sequence {Tn} is convergent by assumption, thus Cauchy, the above implies that {Sn} is
Cauchy, thus convergent by completeness of V . The subadditivity of the norm gives ‖

∑n
k=1 xk‖ ≤∑n

k=1 ‖xk‖ for all n, and since the limit n→∞ of both sides exists, we have the inequality. �

Returning to general metric spaces, an example for the use of completeness is the proof of Ba-
nach’s contraction principle (Theorem B.1.2), probably known from a course in analysis. But often
completeness is used indirectly via its consequences that don’t involve Cauchy sequences in their
statements, like Cantor’s intersection theorem (see the exercise below) and Baire’s theorem (cf. The-
orem 3.3.1). In this book, Cantor’s theorem will be used for the extension of continuous functions
between metric spaces (Section 3.4.2) and for the results related to Ekeland’s Variational Principle
and Caristi’s Fixed Point Theorem B.2.2, which in turn are used to prove Menger’s Theorem 12.4.8.
Some applications of Baire’s theorem will be discussed in Section 3.3, others in Appendix G.5.

Exercise 3.1.9 (Cantor’s Intersection Theorem) 4 Let (X, d) be a metric space. Prove:

(i) If {Cn}n∈N are sets satisfying X ⊇ C1 ⊇ C2 ⊇ · · · and limn→∞ diam(Cn) = 0 then
⋂
nCn

contains at most one point.

(ii) If (X, d) is complete and {Cn}n∈N are non-empty closed sets satisfying X ⊇ C1 ⊇ C2 ⊇ · · ·
and limn→∞ diam(Cn) = 0 then

⋂
nCn is non-empty (thus a singleton by (i)).

(iii) Assume that
⋂
nCn 6= ∅ for every family {Cn} as in (ii). Then (X, d) is complete.

(For Cn = (0, 1/n) ⊆ R we have
⋂
nCn = ∅. Thus closedness of the Cn cannot be omitted.)

Lemma 3.1.10 Let (X, d) be a metric space.

(i) If (X, d) is complete and Y ⊆ X is closed then (Y, d) is complete.

(ii) If Y ⊆ X is such that (Y, d) is complete then Y ⊆ X is closed.

3Unfortunately, some authors write: “
∑

n ‖xn‖ < ∞, thus
∑

n xn converges” without indictating that something
needs to be proven here.

4Georg Ferdinand Ludwig Philipp Cantor (1845-1918). German mathematician. Founder of modern set theory.
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Proof. (i) Let Y ⊆ X be closed. A Cauchy sequence {yn} in Y clearly is a Cauchy sequence in X.
By completeness of X we have yn → x for some x ∈ X. The closedness of Y implies x ∈ Y . Thus Y
is complete.

(ii) Let x ∈ Y . By definition of the closure, there is a sequence {yn} in Y that converges to x.
A convergent sequence is Cauchy, and since {yn} ⊆ Y and (Y, d) is complete, there is a y ∈ Y such
that yn → y. By uniqueness of the limit, x = y. Thus Y ⊆ Y , and Y is closed. �

In view of the above it is clear that completeness is not hereditary. (One could say it is ‘closed-
hereditary’.) (While non-closed subsets of complete metric spaces are not complete, we will see that
open subsets are ‘completely metrizable’, cf. Proposition 3.4.18.)

Exercise 3.1.11 Let (X, d) be a complete metric space, (Y, d′) a metric space and f : X → Y an
isometry. Prove that f is closed. (I.e. C ⊆ X closed ⇒ f(C) ⊆ Y closed.)

Proposition 3.1.12 Let (X, d), (Y, d′) be metric spaces. Let D be as in (2.6). Then:
(Y, d′) is complete ⇔ (B(X, Y ), D) is complete ⇔ (Cb(X, Y ), D) is complete.

Proof. Assume that (Y, d′) is complete, and let {fn ∈ B(X, Y )} be a Cauchy sequence w.r.t. the
metric D. The definition of D implies that d′(f(x), g(x)) ≤ D(f, g) for every x ∈ X. Thus {fn(x)}
is a Cauchy sequence in Y for every x ∈ X. By completeness of Y , limn→∞ fn(x) exists for every x,
and we define g(x) = limn fn(x). By assumption, fn is Cauchy uniformly in x: For every ε > 0 there
is N ∈ N such that n,m ≥ N ⇒ d′(fn(x), fm(x)) < ε for all x ∈ X. Letting m → ∞ (for fixed x)
and using continuity of d′ (Exercise 2.1.4), we obtain n ≥ N ⇒ d′(fn(x), g(x)) ≤ ε for all x. This
proves both g ∈ B(X, Y ) and D(fn, g)→ 0. Thus (B(X, Y ), D) is complete.

Assume that (B(X, Y ), D) is complete. By Proposition 2.1.26(ii), Cb(X, Y ) ⊆ B(X, Y ) is closed,
and therefore complete by Lemma 3.1.10(i).

Finally, assume that (Cb(X, Y ), D) is complete, and let {yn} be a Cauchy sequence in Y . Consider
the constant functions fn : X → Y, x 7→ yn for all x. Then trivially fn ∈ Cb(X, Y ) and D(fn, fm) =
d′(yn, ym), thus {fn} is a Cauchy sequence. By completeness of Cb(X, Y ), there is g ∈ Cb(X, Y )
such that D(fn, g) → 0. For x, y ∈ X we have d′(g(x), g(y)) ≤ d′(g(x), fn(x)) + d′(fn(x), fn(y)) +
d′(fn(y), g(y)) ≤ 2D(fn, g) since fn is constant. Since D(fn, g) → 0, it follows that g is constant,
thus there is y ∈ Y such that g(x) = y for all x ∈ X. Now d′(yn, y) = D(fn, g)→ 0, thus yn → y, so
that (Y, d′) is complete. �

Lemma 3.1.13 (i) If α : (X, d) → (X ′, d′) is a bijective isometry then (X, d) is complete if and
only if (X ′, d′) is complete.

(ii) The conclusion of (i) is not not true if α is not surjective or only a homeomorphism.

Proof. (i) Obvious. (ii) If (X, d) is complete and Y ⊆ X is non-closed then (Y, d) is non-complete by
Lemma 3.1.10(ii). The inclusion map Y ↪→ X is a (non-surjective) isometry, showing the first claim.
By Remark 2.1.23.5 there is a homeomorphism between (R, d) and ((−1, 1), d), where d(x, y) =
|x− y|. Since (R, d) is complete but ((−1, 1), d) is not (since (−1, 1) ⊆ R is non-closed), we see that
completeness of metric spaces is not preserved under homeomorphisms. �

So far we have discussed completeness of a given metric d on a set X. But as we know, different
metrics d1, d2 can give rise to the same topology, in which case they are called equivalent. This raises
the question whether completeness of metrics is preserved under equivalence. In some cases, this is
true:
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Exercise 3.1.14 Assume that d is a complete metric on X. Prove that any equivalent metric d′ ' d
constructed as in Exercise 2.2.14 is complete.

The following example shows that two metrics d1, d2 on a set X can be equivalent even though �

d1 is complete and d2 is not!

Example 3.1.15 By Remark 2.1.23.5, α : (R, d) → ((−1, 1), d), x 7→ x
1+|x| , where d is the distance

metric, is a homeomorphism. It follows that d′(x, y) = d(α(x), α(y)) is a metric on R that is equivalent
to d. (Cf. Exercise 2.2.13.) By construction, α : (R, d′)→ ((−1, 1), d) is an isometry. Since the metric
d on (−1, 1) is not complete, it follows that the metric d′ on R is not complete, even though d′ is
equivalent to the complete metric d. 2

The example motivates the following definition:

Definition 3.1.16 (i) A topological space (X, τ) is called completely metrizable if there is a com-
plete metric d on X such that τ = τd.

(ii) A metric space (X, d) is called completely metrizable if (X, τd) is completely metrizable. (I.e.
there is a complete metric d′ on X satisfying τd′ = τd, i.e. equivalent to d.)

Given a topological space (X, τ), it is clear that a priori there are four possibilities:

1. (X, τ) is not metrizable.

2. (X, τ) is metrizable, admitting both complete and non-complete metrics.

3. (X, τ) is metrizable, but not completely metrizable.

4. (X, τ) is metrizable and every metric d compatible with τ is complete.

We have seen examples for the first case (e.g. any non-Hausdorff space) and for the second, cf.
Example 3.1.15. Examples for the other two cases will be found in Proposition 3.3.7(iv) and in
Section 7.7.3, where we will show that every compact metrizable space is in the fourth class.

For further results on complete metrizability see Sections 3.4.3 and 8.4.2.

Remark 3.1.17 Completeness is a property that a metric space has or has not. But it is not a
topological notion, i.e. it makes no sense to ask whether a topological space is complete since in a
topological space we have no way of defining a Cauchy sequence. There is, however, the topological
notion of Čech-completeness, with which one proves that a topological space is completely metrizable

if and only if it is metrizable and Čech-complete, cf. Section 8.4.2. 2

3.2 Completions

Since completeness is a very desirable property of metric spaces, it is natural to ask whether a metric
space can be ‘made complete’. The precise formulation of this is:

Definition 3.2.1 Let (X, d) be a metric space. A completion of (X, d) is a metric space (X̂, d̂)

together with a map ι : X → X̂ such that:

(i) (X̂, d̂) is complete.
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(ii) ι is an isometry.

(iii) ι(X) ⊆ X̂ is dense, thus ι(X) = X̂.

We will soon prove that every metric space has a completion. But first we show that completions
are unique, in the sense that between any two completions there is an isometric bijection, in fact a
unique one:

Proposition 3.2.2 (Uniqueness of completions) If ((X̂1, d̂1), ι1), ((X̂2, d̂2), ι2) are completions

of (X, d), then there is a unique isometric bijection f : X̂1 → X̂2 such that ι2 = f ◦ ι1.

Proof. It is clear that we must define f on ι1(X) by f(ι1(x)) = ι2(x). We want f to be an isometry,

thus continuous. Thus if y ∈ X̂1\ι1(X) and {xn} is a sequence in X such that ι1(xn)→ y, we must
have f(y) = f(limn ι1(xn)) = limn f(ι1(xn)) = limn ι2(xn). We show that the limit on the r.h.s.
exists: Since the sequence {ι1(xn)} converges, it is a Cauchy-sequence, and since ι1 is an isometry,

{xn} is a Cauchy-sequence in X. Since ι2 is an isometry, {ι2(xn)} is a Cauchy-sequence in X̂2, and by

completeness it converges to some z ∈ X̂2. In order to define f(y) = z, one must show that z depends
only on y, but not on the choice of the sequence {xn}. So let {x′n} be another sequence in X such

that ι1(x′n) → y. But this means that d̂1(ι1(xn), ι1(x′n)) → 0, and therefore d̂2(ι2(xn), ι2(x′n)) → 0,
since ι1, ι2 are isometries. This implies limn ι2(x′n) = limn ι2(xn) = z and thus f is well-defined.

The above reasoning also shows that this f : X̂1 → X̂2 is uniquely determined by the requirements
of continuity and f ◦ ι1 = ι2. Now let y, y′ ∈ X̂1 and let {xn}, {x′n} be sequences in X such that
ι1(xn)→ y, ι1(x′n)→ y′. By the definition of f , we have f(y) = limn ι2(xn), f(y′) = limn ι2(x′n) and

d̂1(y, z) = lim
n
d̂1(ι1(xn), ι1(x′n)) = lim

n
d(xn, x

′
n) = lim

n
d̂2(ι2(xn), ι2(x′n)) = d̂2(f(y), f(z)),

proving that f : X̂1 → X̂2 is an isometry. It remains to show that f is surjective. This can be done
in two ways: Reversing the rôles of X̂1, X̂2, the above gives an isometry g : X̂2 → X̂1 such that
g ◦ ι2 = ι1. Now the function f ◦ g : X̂2 → X̂2 is the identity map on ι2(X) ⊆ X̂2, and continuity of

f, g and density of ι2(X) ⊆ X̂2 imply that f ◦ g = idX̂2
, so that f is surjective. (In fact, f and g are

inverse functions of each other.)

Alternatively, observe that f : X̂1 → X̂2 is an isometry, thus injective, so that f : X̂1 → f(X̂1)

is an isometric bijection. This implies that the metric subspace (f(X̂1), d̂2) of (X̂2, d̂2) is complete.

Thus by Lemma 3.1.10(ii), f(X̂1) ⊆ X̂2 is closed. Since f(X̂1) contains ι2(X), which is dense in X̂2,

we have f(X̂1) = f(X̂1) ⊇ ι2(X) = X̂2, so that f is surjective. �

Remark 3.2.3 1. Since every metric space can be isometrically embedded into a bigger one, unique-
ness of completions clearly wouldn’t hold without requirement (iii) in Definition 3.2.1.

2. If we drop the requirement ι2 = f ◦ ι1 in Proposition 3.2.2, there may be many different
isometries between different completions of a given metric space (X, d).

3. The identity ι2 = f ◦ ι1 in the proposition can be stated by saying that “the diagram

X
ι1 - X̂1

X̂2

f

?

ι2

-
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commutes”. This may seem a tremendous waste of space, but in more complicated situations,
involving more sets and functions, commutative diagrams often greatly clarify what is going on. (See
e.g. (6.8).) 2

Corollary 3.2.4 Let (X, d) be a complete metric space and Y ⊆ X. Then the (unique) completion
of (Y, d) is given by (Y , d).

Proof. By Lemma 3.1.10, (Y, d) is complete if and only if Y is closed. Thus (Y , d) is complete and
clearly is a completion of (Y, d), thus the completion, by uniqueness of the latter. �

E.g., if d(x, y) = |x− y| then both ((0, 1), d) and ((0, 1], d) have ([0, 1], d) as completion.

Corollary 3.2.4 clearly only helps if we have an isometric embedding of (Y, d) into a complete
metric space. To prove that every metric space has a completion, one needs to work harder. Usually
this is done using the set of Cauchy sequences in X, generalizing the classical completion of R. Since
this construction can be found in any number of references, we follow a different (and perhaps more
elegant) route. (Cf. e.g. [219, 255].)

Theorem 3.2.5 Every metric space has a completion.

Proof. Given a metric space (X, d), the idea is to find a complete metric space (Y,D) and an isometry
ι : (X, d) → (Y,D). Then ((ι(X), D), ι) is a completion of (X, d) by Corollary 3.2.4. Since R with
the standard metric is complete, (Cb(X,R), D) is complete by Proposition 3.1.12. Thus if we can
construct an isometry ι : X → Cb(X,R) we are done.

Pick x0 ∈ X once and for all. For x ∈ X, the function fx : X → R, z 7→ d(z, x) − d(z, x0)
is continuous and bounded by d(x, x0), cf. (2.1). Thus fx ∈ Cb(X,R). This allows us to define
ι : X → Cb(X,R), x 7→ fx. With the metric D on Cb(X,R) defined in (2.6) we have

D(ι(x), ι(y)) = sup
z∈X
|(d(z, x)− d(z, x0))− (d(z, y)− d(z, x0))| = sup

z∈X
|d(z, x)− d(z, y)| = d(x, y),

where the final identity is (2.3). Thus ι : X → Cb(X,R) is an isometry. �

Remark 3.2.6 1. We briefly sketch another (and somewhat more common) method of constructing

a (thus the) completion: Let X̃ ⊆ Fun(N, X) be the set of all Cauchy sequences in (X, d). If

{xi}, {yi} ∈ X̃, then the inequality |d(xi, yi)− d(xj, yj)| ≤ d(xi, xj) + d(yi, yj) implies that {d(xi, yi)}
is a Cauchy sequence in R. The latter converges since R is complete, and we define d̃({xi}, {yi}) =

limi d(xi, yi). One checks that this is a pseudometric. As in Exercise 2.1.7, defining X̂ = X̃/∼ one

obtains a (true) metric d̂ on X̂. Now a diagonal argument shows that (X̂, d̂) is complete. (A slight
modification of the above reasoning also produces R as the completion of X = Q, d(x, y) = |x− y|.)

2. The construction of (X̂, d̂) via Cb(X,R) surely is more elegant, but has its own drawbacks: It
is less economic in that it begins with Fun(X,R) instead of Fun(N, X). More importantly, since it
assumes the metric space (R, d) as given, it clearly cannot be used to construct R as the completion
of Q. But, at least in the author’s view, the construction of R in terms of Dedekind sections is
preferable anyway. Cf. e.g. [252, App. to Chap. 1].

3. If (V, ‖ · ‖) is a normed space, it is easy to show that the completion of the metric space (V, d‖)

again comes from a normed space (V, ‖ · ‖), which then is a Banach space. 2

Now we can give an interesting and useful characterization of complete metric spaces:
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Proposition 3.2.7 A metric space (X, d) is complete if and only if ι(X) ⊆ Y is closed whenever
(Y, d) is a metric space and ι : X → Y is an isometry. (One says (X, d) is universally closed.)

Proof. Assume (X, d) is complete. If ι : (X, d) → (Y, d′) is an isometry then (ι(X), d′) ⊆ (Y, d′) is
isometric to (X, d). Thus (ι(X), d′) is complete, thus ι(X) ⊆ Y is closed by Lemma 3.1.10(ii).

Assume (X, d) is not complete, and let ((X̂, d̂), ι) be a completion. Then (X, d) is isometric to

the subspace ι(X) ⊆ X̂. If ι(X) ⊆ X̂ was closed, (ι(X), d̂) ∼= (X, d) would be complete by Lemma

3.1.10(i), contradicting the assumption. Thus ι(X) ⊆ X̂ is not closed. �

Remark 3.2.8 There is a class of spaces sitting properly between metric and topological spaces,
called uniform spaces. A uniform space is a pair (X,U) where X is a set and the uniform structure
(or uniformity) U ⊆ P (X × X) (as opposed to τ ⊆ P (X) for a topology) satisfies certain axioms.
Now, every metric d on X gives rise to a uniformity Ud on X, and every uniformity U defines a
topology τU . (Of course τUd = τd.) In uniform spaces one can define a notion of Cauchy sequence
and therefore also the property of completeness. Every uniform space has a completion. For more
on uniform spaces see e.g. [157, 298, 89].

This being said, it seems that the applications of uniform spaces outside topology proper are quite
few, the most important being to topological groups: Every topological group has two canonical
uniform structures, so one can consider their completeness (in the senses of Weyl and Raikov) and
completions. Cf. [8] and the papers by Comfort in [185] and Tkachenko in [13, Vol.3]. 2

3.3 Baire’s theorem for complete metric spaces. Gδ-sets

3.3.1 Baire’s theorem

Recall that a finite intersection of dense open sets is dense (Corollary 2.7.11) in every topological
space, but that this need not be true for infinitely many dense open sets (Remark 2.7.12).

Theorem 3.3.1 5 Let (X, d) be a complete metric space and {Un}n∈N a countable family of dense
open subsets. Then

⋂∞
n=1 Un is dense.

Proof. Let ∅ 6= W ∈ τ . Since U1 is dense, W ∩ U1 6= ∅ by Lemma 2.7.9, so we can pick x1 ∈ W ∩ U1.
Since W ∩ U1 is open, we can choose ε1 > 0 such that B(x1, ε1) ⊆ W ∩ U1. We may also assume
ε1 < 1. Since U2 is dense, U2 ∩ B(x1, ε1) 6= ∅ and we pick x2 ∈ U2 ∩ B(x1, ε1). By openness, we can
pick ε2 ∈ (0, 1/2) such that B(x2, ε2) ⊆ U2 ∩ B(x1, ε1). Continuing this iteratively, we find points
xn and εn ∈ (0, 1/n) such that B(xn, εn) ⊆ Un ∩ B(xn−1, εn−1) ∀n. If i > n and j > n we have by
construction that xi, xj ∈ B(xn, εn) and thus d(xi, xj) ≤ 2/n. Thus {xn} is a Cauchy sequence, and

by completeness it converges to some z ∈ X. Since n > k ⇒ xn ∈ B(xk, εk), the limit z is contained
in B(xk, εk) for each k, thus

z ∈
⋂
n

B(xn, εn) ⊆ W ∩
⋂
n

Un,

thus W ∩
⋂
n Un is non-empty. Since W was an arbitrary non-empty open set, Lemma 2.7.9 gives

that
⋂
n Un is dense. �

5René-Louis Baire (1874-1932), French mathematician, proved this for Rn in his 1899 doctoral thesis. The gener-
alization is due to Hausdorff (1914).
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Remark 3.3.2 1. Baire’s Theorem 3.3.1 and its reformulation in Proposition 3.3.5 have countlessly
many applications, cf. the overviews [166, 299]. Some of the best known are in functional analysis:
The Uniform Boundedness Theorem of Banach and Steinhaus, the Open Mapping Theorem, and
the Closed Graph Theorem. (Proofs of these are given in Appendix G.5, where we also use them
to construct a dense set of periodic continuous functions whose Fourier series diverges at a given
point.) Here we consider several applications, to metric topology (Propositions 3.3.7 and 3.3.13) and
to classical analysis: Osgood’s theorem, Croft’s lemma, cf. Subsection 3.3.4, and to constructing a
dense set of continuous functions that are nowhere differentiable (Theorem 3.3.19).

2. Notice the similarity to the proof of Cantor’s Intersection Theorem (Exercise 3.1.9(ii): We
produce a Cauchy sequence and use completeness to conclude that the latter converges, which im-
mediately proves that a certain set (namely

⋂
iCi and W ∩

⋂
n Un, respectively) is non-empty. The

details are a bit more involved in the case of Baire’s theorem, but the only conceptual difference is
that for Cantor’s theorem we need the axiom of countable choice, whereas Baire’s theorem requires
a bit more, cf. Section 3.3.2. In view of this observation, the reputation of Baire’s theorem (and its
applications) of being difficult or deep seems exaggerated.

3. The conclusion of Baire’s theorem makes no reference to a metric and therefore makes sense
for general topological spaces. This motivates the next definition. 2

Definition 3.3.3 A topological space is a Baire space if every countable intersection of dense open
sets is dense.

Corollary 3.3.4 Every completely metrizable space is a Baire space.

In Section 8.4.1 we will encounter a large class of not necessarily metrizable Baire spaces, the
Čech-complete spaces, which contains all (locally) compact Hausdorff spaces.

The following equivalent formulations of the Baire property are often used:

Proposition 3.3.5 For a topological space X, the following are equivalent:

(i) X is a Baire space.

(ii) If Cn ⊆ X is closed with empty interior for each n ∈ N then
⋃∞
n=1 Cn has empty interior.

(iii) Every countable union of nowhere dense subsets of X has empty interior.

Proof. The equivalence (i)⇔(ii) is seen by taking complements. Since closed sets with empty interior
are nowhere dense, we have (iii)⇒(ii). Now assume (ii) and let {Cn} be nowhere dense sets. Then
the sets Dn = Cn are closed and have empty interior, thus (ii) implies that

⋃
nDn has empty interior.

But then clearly also
⋃
nCn ⊆

⋃
nDn has empty interior. �

Remark 3.3.6 There is a considerable amount of additional terminology around Baire’s theorem.
E.g., Y ⊆ X is called meager if Y is a countable union of nowhere dense sets. The Baire property
then amounts to the statement that a meager set has empty interior. Meager sets are also called sets
‘of first category’, all other sets being called ‘of second category’ (whence the name ‘Baire category
theorem’). In the author’s opinion, the first/second category terminology is a candidate for the most
unimaginative one in mathematics and should be avoided, also since categories now mean something
entirely different. 2

Here is a first application of Theorem 3.3.1 and, more generally, the Baire property:
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Proposition 3.3.7 (i) If (X, τ) is non-empty, has no isolated points, is T1 and Baire then X is
uncountable.

(ii) A non-empty complete metric space without isolated points is uncountable.

(iii) A space that is countably infinite without isolated points is not completely metrizable.

(iv) Qn with the Euclidean topology inherited from Rn is not completely metrizable.

Proof. (i) Since X is T1, every {x} is closed, thus Ux = X\{x} is open. Since X has no isolated
points, {x} is not open, thus Ux is non-closed. The only subset of X properly containing Ux is X,
thus Ux is dense. Assuming that X is countable, the Baire property implies denseness of

⋂
x∈X Ux =⋂

x∈X X\{x} = ∅. Thus X = ∅, contradicting the assumption.
(ii) Follows from (i) since complete metric spaces are T1 and Baire.
(iii) If d is a complete metric such that τ = τd then we have a contradiction with (ii).
(iv) Qn has no isolated points since a Euclidean ball B(x, ε) contains infinitely many points of

Qn. Now apply (iii). �

3.3.2 Baire’s theorem and the choice axioms

It is clear that we used the Axiom of Choice in the proof of Theorem 3.3.1. Since we made only
countably many choices, one might think that we only need the Axiom of Countable Choice (ACω).
However, this is not true since the choice of x2 must take the preceding choice for x1 into account,
the choice for x3 depended on x2, and so on! What is really needed is the Axiom of Countable
Dependent Choice (DCω), cf. Definition A.3.7.

Exercise 3.3.8 Rewrite the proof of Theorem 3.3.1 so as to make clear that the Axiom of Countable
Dependent Choice suffices.

The following surprising result, proven in [28, 113], shows that DCω is actually equivalent to
Baire’s theorem:

Theorem 3.3.9 The axioms of set theory (without any choice axiom) together with the Baire prop-
erty of complete metric spaces imply DCω.

3.3.3 Gδ and Fσ sets

In many applications of Baire’s theorem, e.g. Theorem 3.3.19 below, the individual dense open sets
Un carry little interest, but the fact that the dense set obtained at the end is a countable intersection
of open sets does. This motivates the following definition:

Definition 3.3.10 A countable intersection of open sets in a topological space is called a Gδ-set. A
countable union of closed sets is a Fσ-set.

We will encounter Gδ-sets quite often, e.g. in the guise of closed sets in metric spaces (Exercise
3.3.12), sets of continuity of functions (Proposition 3.4.6), in the characterization of completely
metrizable spaces (Theorem 3.4.20) and also in non-metric contexts. One reason is that some results
that are true for open sets generalize to Gδ-sets.

Exercise 3.3.11 Prove:
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(i) If Y ⊆ X is Gδ and Z ⊆ Y is Gδ in Y , then Z is Gδ in X.

(ii) If U ⊆ X is Gδ and Y ⊆ X then U ∩ Y is Gδ in Y .

(iii) If U ⊆ Y is Gδ, where Y ⊆ X, then there is a Gδ-set V ⊆ X such that U = V ∩ Y .

Obviously open sets are Gδ. The subsets (a, b] =
⋂∞
n=1(a, b+ 1/n) ⊆ R are Gδ, but not open. In

metric spaces all closed sets are Gδ:

Exercise 3.3.12 Let (X, d) be a metric space. For A ⊆ X and ε > 0 define

Aε =
⋃
x∈A

B(x, ε). (3.1)

Since this is open, B =
⋂∞
n=1 A1/n clearly is Gδ. Prove that B = A and deduce that closed subsets

of metric spaces are Gδ.

Generalizing the proof of Proposition 3.3.7, we can prove that certain sets are not Gδ:

Proposition 3.3.13 Let (X, τ) be non-empty, T1 and Baire. (E.g. a non-empty complete metric
space.) If Y ⊆ X is countable, dense and such that no y ∈ Y is isolated in X then Y is not Gδ (but
X\Y is dense Gδ).

Proof. Since X is T1, every {y} is closed, thus X\{y} open. Since y ∈ Y is not isolated in X, {y} is
not open, X\{y} is non-closed, thus dense (X\{y} ( X\{y} ⊆ X implies X\{y} = X). Since Y is
countable, X\Y =

⋂
y∈Y X\{y} is Gδ, and by the Baire property it is dense.

Assuming that Y is Gδ, we have Y =
⋂∞
n=1 Un, where each Un is open. Then⋂

n∈N

Un ∩
⋂
y∈Y

X\{y} = Y ∩ (X\Y ) = ∅. (3.2)

Each Un is dense since it contains Y , which is dense. Thus {Un | n ∈ N} ∪ {X\{y} | y ∈ Y } is a
countable family of dense open subsets of X. By the Baire property, the intersection of these sets is
dense, thus non-empty since X 6= ∅, which contradicts (3.2). Thus Y is not Gδ. �

Corollary 3.3.14 No countable dense subset of Rn is Gδ. E.g., Q ⊆ R is non-Gδ.

Proof. This follows from the Proposition since Rn with the Euclidean metric is complete and has no
isolated point. �

3.3.4 Applications: Osgood’s Theorem and Croft’s Lemma

The following result is an easy but very typical of the applications of Baire’s theorem:

Theorem 3.3.15 (Osgood) Let X be a complete metric space and Y a metric space. Let F ⊆
C(X, Y ) such that the set {f(x) | f ∈ F} ⊆ Y is bounded for each x ∈ X (i.e. ‘F is pointwise
bounded’). Then there is a non-empty open set U ⊆ X such that {f(x) | f ∈ F , x ∈ U} ⊆ Y is
bounded (thus ‘F is uniformly bounded on U ’).
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Proof. We may assume X 6= ∅, so that X has non-empty interior (namely X). Pick an x0 ∈ X.
For each n ∈ N, define Xn = {x ∈ X | f(x) ∈ B(x0, n) ∀f ∈ F}. Each f ∈ F is continuous, thus
f−1(B(x0, r)) is closed. Since any intersection of closed sets is closed, Xn =

⋂
f∈F f

−1(B(x0, r)) is
closed. Since F is pointwise bounded, for each x ∈ X we have that {f(x) | f ∈ F} is contained in
B(x0, n) for some n ∈ N. This implies X =

⋃∞
n=1Xn. Since X has non-empty interior, Proposition

3.3.5 gives that there is an n ∈ N such that Xn has non-empty interior X0
n. With U = X0

n, the
definition of Xn implies f(x) ∈ B(x0, n) for all f ∈ F and x ∈ U . �

The Uniform Boundedness Theorem in functional analysis, cf. Theorems G.5.2 and G.5.7, is
closely related.

The following result, often called “Croft’s Lemma”, is proven in [67]. There does not seem to be
an easy proof of this result, but the following one using Baire’s theorem may be the most painless:

Theorem 3.3.16 Let f : (0,∞) → R be continuous and satisfying limn→∞ f(nx) = 0 for every
x > 0. Then limx→∞ f(x) = 0.

Proof. Let ε > 0. For m ∈ N, define

Cm = {x ≥ 1 | |f(nx)| ≤ ε ∀n ≥ m} =
⋂
n≥m

n−1f−1([−ε, ε]).

For every x ≥ 1 we have f(nx) → 0, thus there is mx such that n ≥ mx implies |f(nx)| ≤ ε.
This means that x ∈ Cmx , so that we have proven

⋃
m∈NCm = [1,∞). Continuity of f implies that

Cm ⊆ [1,∞) is closed for each m. Since R with the standard metric d(x, y) = |x − y| is complete
and [1,∞) ⊆ R is closed, ([1,∞), d) is a complete metric space. Now Baire’s theorem implies that
one of the sets Cm must have non-empty interior and therefore contain an open interval (a, b) (since
otherwise

⋃
mCm = [1,∞) would have empty interior, which is absurd). Now (a, b) ⊆ Cm means

that |f(x)| ≤ ε for every x ∈
⋃
n≥m(na, nb). Since (n + 1)/n → 1 < b/a, there is n0 such that

n ≥ n0 ⇒ (n + 1)/n < b/a. Thus for n ≥ n0 we have na < (n + 1)a < nb < (n + 1)b, so
that the intervals (na, nb) and ((n + 1)a, (n + 1)b) overlap. Together with nb → +∞ this implies⋃
n≥n0

(na, nb) = (n0a,∞). Thus with x0 = n0a we have x > x0 ⇒ x ∈
⋃
n≥n0

(na, nb) ⇒ |f(x)| ≤ ε.
Since ε was arbitrary, we are done. �

Remark 3.3.17 There are proofs of Croft’s Lemma that avoid using Baire’s theorem, cf. e.g [5, pp.
17, 149] or [240, p. 174], but they are much less transparent. All these proofs also use the Axiom of
Countable Dependent Choice, just as the proof of Baire’s theorem, so that they are not preferable
from a foundational point of view. 2

3.3.5 Application: A dense Gδ-set of nowhere differentiable functions

It is well known that there are continuous functions f ∈ C(I,R), where I ⊆ R is an interval or all of
R, that are nowhere differentiable. It is not hard to write down candidates:

f1(x) =
∞∑
n=1

1

n2
sin(n2x),

f2(x) =
∞∑
n=1

1

2n
sin(2nx).
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Both functions are obviously continuous, but the problem is to prove nowhere differentiability. In
fact, despite having (supposedly) been discussed by Riemann, f1 turned out to be differentiable
precisely at countably many points! (This was completely clarified only more than 100 years after
Riemann’s death, cf. [107]. The function f1 is extremely interesting, cf. e.g. [76].) The function f2

indeed is nowhere differentiable, as was shown by Weierstrass and Hardy. (Cf. e.g. [270].) The proofs
are lengthy. On the other hand, using Baire’s theorem, it is not hard to prove the existence of ‘many’
nowhere differentiable functions.

Let I = [0, 1] and consider (Cb(I,R), D), where D is as in (2.6). (It is proven in Analysis courses
(and again in Chapter 7) that Cb(I,R) = C(I,R).) The metric space (Cb(I,R), D) is complete by
Proposition 3.1.12. For n ∈ N, define

Un =

{
f ∈ Cb(I,R) | ∀x ∈ I ∃y ∈ I : y 6= x,

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > n

}
.

Exercise 3.3.18 Prove that, for each n, Un is (a) open and (b) dense in (Cb(I,R), D).

Theorem 3.3.19 The topological space (Cb([0, 1],R), τD) contains a dense Gδ-set of nowhere differ-
entiable functions.

Proof. Let G =
⋂
n Un. This obviously is a Gδ-set, and assuming the results of the exercise, it is dense

by Baire’s theorem. We claim that any f ∈ G is nowhere differentiable. To prove this, assume that
to the contrary f is differentiable at some x ∈ I with f ′(x) = c. By definition of differentiability,

lim
y→x

f(y)− f(x)

y − x
= c.

Thus picking some ε > 0, there is δ > 0 such that 0 < |x − y| < δ implies
∣∣∣f(y)−f(x)

y−x − c
∣∣∣ < ε.

Thus
∣∣∣f(y)−f(x)

y−x

∣∣∣ is bounded (by |c| + ε) if y satisfies 0 < |x − y| < δ. And if |x − y| ≥ δ we

have
∣∣∣f(y)−f(x)

y−x

∣∣∣ ≤ 2C
δ

, where C is such that |f(x)| ≤ C. (Recall f ∈ Cb(I,R).) Thus the set{
f(y)−f(x)

y−x | y 6= x
}

(where x is fixed) is bounded. On the other hand, f ∈ G =
⋂
n Un means that

for every x there is a y 6= x such that
∣∣∣f(y)−f(x)

y−x

∣∣∣ is as large as desired. This contradiction proves that

f is nowhere differentiable. �

Remark 3.3.20 1. We emphasize that the proof is non-constructive: It does not give us any idea
how to obtain such an f . On the other hand it gives us more than the explicit formulas above,
namely a dense Gδ-set of nowhere differentiable functions.

2. Baire’s theorem can also be used to prove that the space {f ∈ C([0, 1],C) | f(0) = f(1)} of
continuous periodic functions contains a dense (w.r.t. τD) Gδ-set of functions whose Fourier series
all diverge at some fixed point, cf. Appendix G.5.3. The original way to prove this goes under
the colorful names of the ‘condensation of singularities’ or ‘gliding hump method’. Later this was
streamlined using Baire’s theorem and the ‘principle of uniform boundedness’ (Theorem G.5.7) that
follows from it. 2

3.4 ? Oscillation. Extending continuous functions. Com-

plete metrizability

3.4.1 Oscillation and sets of continuity
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Definition 3.4.1 Let (X, τ) be a topological space and (Y, d) a metric space. Let A ⊆ X and
f : A→ Y a function. For x ∈ A, define the oscillation of f at x by

osc(f, x) = inf
U∈τ
x∈U

diam(f(A ∩ U)).

Remark 3.4.2 1. We required x ∈ A since this is equivalent to having A ∩ U 6= ∅ for every
neighborhood U of x by Lemma 2.7.3.

2. Note that the oscillation is defined for every point in A. If A is non-closed, this includes some
points where f itself is not defined! This will be put to good use in the next section. 2

Lemma 3.4.3 Let (X, τ), (Y, d), A, f as in Definition 3.4.1. Then

(i) For x ∈ A we have osc(f, x) = 0 if and only if for every ε > 0 there is an open neighborhood U
of x such that y ∈ A ∩ U ⇒ d(f(x), f(y)) < ε.

(ii) The set Bf = {x ∈ A | osc(f, x) = 0} is a Gδ-set in A.

Proof. (i) The statement osc(f, x) = 0 clearly is equivalent to saying that for every ε > 0 we can
find an open neighborhood U of x such that diam(f(A ∩ U)) < ε. Since x ∈ A, this is equivalent to
d(f(x), f(y)) < ε for every y ∈ A ∩ U .

(ii) Defining Bε = {x ∈ A | osc(f, x) < ε}, where ε > 0, we have Bf =
⋂∞
n=1B1/n. Now

osc(f, x) < ε is equivalent to existence of an open neighborhood U of x with diam(f(A ∩ U)) < ε.
Thus

Bε = {x ∈ A | ∃U ∈ τ : x ∈ U, diam(f(A ∩ U)) < ε}
= A ∩ {x ∈ X | ∃U ∈ τ : x ∈ U, diam(f(A ∩ U)) < ε}
= A ∩

⋃
{U ∈ τ | diam(f(A ∩ U)) < ε},

which is open in A. (In the second and third line one may worry about U ’s such that U ∩ A = ∅,
but they don’t matter since they also satisfy U ∩ A = ∅.) Thus Bf is Gδ in A. �

Remark 3.4.4 We cannot hope to prove that Bf always is Gδ in X. If this was true, then taking
A ⊆ X closed and a continuous f : A→ Y (e.g. f constant), we would conclude that A = Bf is Gδ.
But in general topological spaces it is not true that every closed set is Gδ. 2

Definition 3.4.5 If the equivalent conditions in (i) are satisfied, we say f is continuous at x, and
x is called a point of continuity of f . (This notion will later be generalized to the case where also Y
is a topological space, cf. Exercise 5.2.1.)

Proposition 3.4.6 Let (X, τ) be a topological space, (Y, d) a metric space and f : X → Y a function.
Then the set of points of continuity of f is a Gδ-set.

Proof. Considering Lemma 3.4.3 with A = X, we have Bf ⊆ A = A, so that by (i) Bf coincides with
the set of continuity points of f , and by (ii) Bf is Gδ in A = X. �

Combining this with Corollary 3.3.14, we see that there is no function f : R→ R that has Q as
its set of continuity points. But ∅ and R\Q are Gδ, and indeed:

Exercise 3.4.7 (i) Let f1 : R → R be given by f1 = χQ (i.e. f(x) = 1 for x ∈ Q and = 0
otherwise). Prove that f1 is nowhere continuous.
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(ii) Define f2 : R → R by f2(x) = 0 for x ∈ R\Q. For x ∈ Q, put f2(x) = 1/n, where x = m/n
with n ∈ N and m,n relatively prime. Prove that the set of continuity points of f2 is R\Q.

One may ask whether the converse of Proposition 3.4.6 is true, in the sense that for every Gδ-set
Z ⊆ X there is a function f : X → Y having Z as its set of continuity points. In this generality
this is not true: If {z} ⊆ X is clopen then every f : X → Y that is continuous on X\{z} actually is
continuous on X. Thus X\{z} is not the continuity set of any function.

Proposition 3.4.8 If X is a topological space containing two disjoint dense subsets S, T then for
every Gδ-set Z ⊆ X there is a function f : X → R whose set of continuity equals Z.

Proof. Let Z ⊆ X be Gδ, thus Z =
⋂∞
n=1 Un with Ui open. For x ∈ Z, put f(x) = 0. If x 6∈ Z, let

n(x) = min{n | x 6∈ Un} and define f(x) = 1/n(x) if x ∈ S and f(x) = −1/n(x) if x 6∈ S. Now it is
not hard to check that f is continuous precisely on Z. �

3.4.2 Extending continuous functions between metric spaces

Definition 3.4.9 Let X, Y be metric spaces, A ⊆ X and f : A→ Y a continuous function. If

A ( B ⊆ X, f̂ ∈ C(B, Y ) and f̂ �A = f

then f̂ is called an extension of f .

(Once we define continuous functions between topological spaces, the above definition will obvi-
ously generalize.) In this section we construct extensions of f : X ⊇ A → Y under the assumption
that X, Y are metric spaces with Y complete.

Proposition 3.4.10 Let (X, d), (Y, d′) be metric spaces with (Y, d′) complete, A ⊆ X and f : A→ Y
continuous. Then

(i) Bf defined as in Lemma 3.4.3(ii) satisfies A ⊆ Bf ⊆ A and is Gδ in X.

(ii) For x ∈ Bf the set
⋂
δ>0 f(A ∩B(x, δ)) ⊆ Y contains exactly one point. This defines a function

f̂(x) : Bf → Y .

(iii) f̂ �A = f .

(iv) f̂(x) : Bf → Y is continuous.

Proof. (i) Bf ⊆ A holds by definition, and A ⊆ Bf follows from continuity of f on A and Lemma
3.4.3(i). By Lemma 3.4.3(ii) Bf is Gδ in A, thus also in X since A is Gδ by Exercise 3.3.12.

(ii) Let x ∈ Bf . The sets Cn = f(A ∩B(x, 1/n)) ⊆ Y are non-empty, closed and decreasing
(Y ⊇ C1 ⊇ C2 ⊇ · · · ). The assumption x ∈ Bf , i.e. osc(f, x) = 0, implies diam(Cn) → 0. Since
(Y, d′) is complete, Cantor’s Intersection Theorem (Exercise 3.1.9) applies.

(iii) If x ∈ A then f(x) ∈
⋂
δ>0 f(A ∩B(x, δ)), implying f̂(x) = f(x).

(iv) Now let x ∈ Bf and ε > 0. As noted before, there is a δ > 0 such that diam(f(A ∩
B(x, δ))) < ε. For y ∈ B(x, δ), let δ′ = δ − d(x, y) > 0. Then B(x, δ′) ∪ B(y, δ′) ⊆ B(x, δ), implying

f(A ∩B(x, δ′)) ∪ f(A ∩B(y, δ′)) ⊆ f(A ∩B(x, δ)). By definition of f̂ , f̂(x) and f̂(y) are contained

in the two sets on the left hand side. Thus d′(f̂(x), f̂(y)) ≤ diam(f(A ∩B(x, δ))) < ε, proving

continuity of f̂ . �
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Remark 3.4.11 If A is closed then Bf = A, so that the Proposition becomes empty. But if A ⊆ X
is not Gδ (and thus also not closed by Exercise 3.3.12) we necessarily have Bf ) A, implying that
every f ∈ C(A, Y ) has a proper extension! Proposition 3.3.13 provides such sets, e.g. any countable
dense subset of Rn. 2

Definition 3.4.12 If (X, d), (Y, d′) are metric spaces, then f : X → Y is uniformly continuous if
for every ε > 0 there is δ > 0 such that d(x, y) < δ ⇒ d′(f(x), f(y)) < ε.

The following corollary (which could also be proven directly) will have many uses:

Corollary 3.4.13 Let (X, d), (Y, d′) be metric spaces with Y complete, let A ⊆ X and f : (A, d)→
(Y, d′) uniformly continuous. Then f has a uniformly continuous extension f̂ : A→ Y .

Proof. Uniform continuity of f implies osc(f, x) = 0 for all x ∈ A, thus Bf = A. Now apply

Proposition 3.4.10. Reviewing the proof of continuity given there, we also see that also f̂ : A → Y
is uniformly continuous. �

Remark 3.4.14 In particular, every uniformly continuous f : (X, d) → (Y, d′), where (Y, d′) is

complete, has a unique extension f̂ to the completion (X̂, d̂) of (X, d). (One can show that the
completion is characterized by this fact.) 2

Theorem 3.4.15 (Lavrentiev) 6 Let (X, d), (X ′, d′) be complete metric spaces, A ⊆ X, A′ ⊆ X ′

and f : A→ A′ a homeomorphism. Then there are Gδ-sets B,B′ such that A ⊆ B ⊆ A, A′ ⊆ B′ ⊆ A′

and a homeomorphism f̂ : B → B′ extending f .

Exercise 3.4.16 Prove Lavrentiev’s theorem. Hint: Use Proposition 3.4.10 to obtain Gδ-sets C,C ′

such that A ⊆ C ⊆ A, A′ ⊆ C ′ ⊆ A′ and maps f̂ : C → Y, f̂−1 : C ′ → X extending f, f−1. Then

put B = C ∩ f̂−1(C ′), B′ = C ′ ∩ f̂−1
−1

(C) and prove that f̂ �B and f̂−1 �B′ are mutually inverse.

3.4.3 More on complete metrizability

The following proposition is usually derived from Lavrentiev’s Theorem 3.4.15, but doing so obscures
the simplicity of the underlying idea. We prefer to give a direct proof.

Proposition 3.4.17 If (X, d) is a metric space and Y ⊆ X admits a complete metric d′ such that
d′ ' d�Y (i.e. (Y, d) is completely metrizable) then Y ⊆ X is Gδ.

Proof. Let d′ be a complete metric on Y such that d′ ' d � Y . By Exercise 2.2.13(i)⇔(iii), the
maps f = idY : (Y, d) → (Y, d′) and g = idY : (Y, d′) → (Y, d) are continuous and mutually inverse,
in particular g ◦ f = idY . Since (Y, d′) is complete, applying Proposition 3.4.10 to the situation

f : (X, d) ⊇ (Y, d)
f→ (Y, d′) gives us a Gδ-set B such that Y ⊆ B ⊆ Y (where the closure is in

X w.r.t. the metric d) and a continuous extension f̂ : (B, d) → (Y, d′) of f . The composite map

(B, d)
f̂→ (Y, d′)

g→ (Y, d) is continuous and its restriction to Y ⊆ B is the identity map of Y . Since

Y is d-dense in B, it follows by continuity that g ◦ f̂ is the identity map of B. This implies that
f̂ : B → Y is injective, but since f : Y → Y already was surjective and f̂ extends f to B ⊇ Y , it
follows that B = Y . By construction, B ⊆ X is Gδ, thus the claim follows. �

6Mikhail Alekseevich Lavrent(i)ev (1900-1980), Russian mathematician.
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Proposition 3.4.18 If (X, d) is a complete metric space and Y ⊆ X is Gδ, then (Y, d) is completely
metrizable.

Proof. Let {Us}s∈N be open sets such that Y =
⋂
s Us. In view of Exercise 2.1.20, each of the functions

y 7→ dist(y,X\Us) is continuous and vanishes if and only if y is in the closed set X\Us, which is
impossible for y ∈ Y . For y1, y2 ∈ Y =

⋂
s Us define

d′(y1, y2) = d(y1, y2) +
∞∑
s=1

2−s min

(
1,

∣∣∣∣ 1

dist(y1, X\Us)
− 1

dist(y2, X\Us)

∣∣∣∣) .
To see that this is a metric on Y it suffices to note that d is a metric, that each summand on
the right is a pseudometric and that the sum converges for all y1, y2 ∈ Y . If {yn} is a sequence
in Y and d(yn, y) → 0 where y ∈ Y , then each of the functions (dist(y1, X\Us))−1 converges to
(dist(y,X\Us))−1, thus d′(yn, y)→ 0. Now assume that the sequence {yn} in Y is Cauchy w.r.t. d′.
In view of d ≤ d′ it is Cauchy with respect to d, which is complete, thus {yn} converges to some
x ∈ X. If we can show that x ∈ Y , we have proven that the metric d′ on Y is complete and equivalent
to d�Y .

Let ε > 0 and s ∈ N. Then there is N ∈ N such that i, j ≥ N implies d′(xi, xj) < 2−sε and thus∣∣∣∣ 1

dist(yi, X\Us)
− 1

dist(yj, X\Us)

∣∣∣∣ < ε.

Thus in particular for i ≥ N we have

dist(yi, X\Us)−1 ∈ [dist(yN , X\Us)−1 − ε, dist(yN , X\Us)−1 + ε].

If we choose ε small enough, this implies

dist(yi, X\Us) ≥ (dist(yN , X\Us)−1 − ε)−1 > 0.

With δ = dist(yN , X\Us)−1 − ε > 0 we find yi ∈ Cs = {y ∈ X | dist(x,X\Us) ≥ δ} ⊆ Us. Note that
Cs ⊆ X is closed. Thus for each s we find a closed Cs ⊆ Us such that the sequence {xi} eventually
lives in Cs. Together with the fact that {yn} converges to x ∈ X, this implies x ∈ Cs for all s. Thus
x ∈

⋂
sCs ⊆

⋂
s Us = Y , and we are done. �

Remark 3.4.19 Alternatively, one can prove this result for open Y ⊆ X, so that the index s disap-
pears, and then deduce the result for Gδ-sets using Exercise 6.5.23 and Corollary 6.5.36. However,
we prefer the above proof since it is technically simpler. 2

Theorem 3.4.20 For a metric space (X, d) the following are equivalent:

(i) ι(X) ⊆ X ′ is Gδ for every isometry ι : (X, d)→ (X ′, d′).

(ii) ι(X) ⊆ X ′ is Gδ for every isometry ι : (X, d)→ (X ′, d′) with (X ′, d′) complete.

(iii) X is a Gδ-subset in its completion (X̂, d̂).

(iv) ι(X) ⊆ X ′ is Gδ for some isometry ι : (X, d)→ (X ′, d′) with (X ′, d′) complete.

(v) (X, d) is completely metrizable.
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Proof. (i)⇒(ii)⇒(iii)⇒(iv) is trivial. (iv)⇒(v) is Proposition 3.4.18. (v)⇒(i) is Proposition 3.4.17,
cf. also Remark 3.1.17.1. �

Compare this with Proposition 3.2.7: A metric space (X, d) is complete (resp. completely metriz-
able) if and only if it is universally closed (resp. universally Gδ), i.e. (X, d) is closed (resp. Gδ) in
every metric space isometrically containing it. (Recall that every closed set in a metric space is Gδ.)
We will return to this subject in Section 8.4.2.
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Chapter 4

More basic topology

4.1 Bases. Second countability. Separability

4.1.1 Bases

For (X, d) a metric space, it is easy to see that Y ⊆ X is open if and only if Y is a union of open
balls B(x, r). This motivates the following:

Definition 4.1.1 Let (X, τ) be a topological space. A subset B ⊆ τ is called a base for τ if every
U ∈ τ can be expressed as a union of elements of B.

Equivalently, B is a base if whenever x ∈ U ∈ τ , there is V ∈ B such that x ∈ V ⊆ U .

Example 4.1.2 Thus if (X, d) is metric then B = {B(x, r) | x ∈ X, r > 0} is a base for τd.
Specializing to (R, τd), where d(x, y) = |x− y|, we find that the open intervals

B = {(a, b) | a < b}

form a base for the standard topology τd of R. 2

Example 4.1.3 If (X, τ) is discrete, B = {{x} | x ∈ X} is a base for τ . Actually this is the unique
smallest base for the discrete topology.

Warning: It is very rare for a topology to have a unique smallest base! But if (X, τ) is a�

smallest neighborhood space, cf. Section 2.8.3, and each x ∈ X has smallest neighborhood Ux, then
{Ux | x ∈ X} clearly is the unique smallest base for τ . 2

If (X, d) is metric, one can find proper subsets of B = {B(x, r) | x ∈ X, r > 0} that are still
bases, e.g. B′ = {B(x, 1/n) | x ∈ X,n ∈ N}. (Here we use the Archimedian property of R: For every
r > 0 there exists n ∈ N such that 1

n
< r.)

This raises the question how small, in terms of cardinality, a base can be. It is clear that a finite
base exists if and only if τ is finite. The example of the indiscrete topology shows that this can happen
even if the underlying space is infinite. But if X is infinite and τ is T1 then {X\{x} | x ∈ X} ⊆ τ ,
thus τ is infinite and therefore also any base for τ .

Remark 4.1.4 While we will not use it, it should be mentioned that there is a notion dual to that
of a base (for the open sets): If X is a topological space, a family C ⊆ P (X) is called a base for the
closed sets if C =

⋂
{D | C ⊆ D ∈ C} for each closed set C. One easily checks that D is a base for

the closed sets if and only if {X\D | D ∈ C} is a base for the open sets. 2

65
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4.1.2 Second countability and separability

We will now focus on the countable case, but see Remark 4.1.7.2.

Definition 4.1.5 A space (X, τ) satisfies the second axiom of countability (= is second countable)
if it admits a countable base.

Example 4.1.6 Let τ be the usual topology on R. Then also

B′ = {(a, b) | a, b ∈ Q, a < b}

is a base for τ since for real numbers a < x < b we can find a′, b′,∈ Q such that a < a′ < x < b′ < b,
thus x ∈ (a′, b′). We conclude that (R, τ) is second countable, despite the uncountability of R. That
the the same holds for (Rn, τeucl) could be proven directly, but it is convenient to introduce some
more formalism. 2

Remark 4.1.7 1. Later we will prove that if X is second countable, i.e. admits a countable base,
and V is any base, there is a countable base V0 ⊆ V . Cf. Proposition 7.1.10.

2. In the serious literature on general topology, e.g. [89], second countability is generalized as
follows: If χ is a cardinal number, a topological space (X, τ) is said to have weight w(X) ≤ χ if there
is a base for τ having cardinality ≤ χ. One can then study how the weight behaves under various
constructions. We will almost exclusively consider the case χ = ℵ0 = #N, which is sufficient for
many applications (like Proposition 8.1.16 and Theorems 8.2.33). 2

Exercise 4.1.8 (i) Prove that second countability is hereditary.

(ii) Prove that a discrete subset of a second countable space is (at most) countable.

Exercise 4.1.9 Let (X, τ) be a T1-space and B a base for τ . Prove:

(i) #X ≤ 2#B ≡ #P (B).

(ii) If X is second countable then #X ≤ c (where c = 2ℵ0 = #P (N) = #R).

(iii) (BONUS) Reprove (i) assuming only T0.

Definition 4.1.10 A space is called separable if it has a countable dense subset.

Unfortunately, some authors (mainly in topological group theory) write ‘separable’ when they �

mean second countable, which can create confusion.

Lemma 4.1.11 Let (X, τ) be a topological space.

(i) If B is a base for τ then there is a dense subset S ⊆ X such that #S ≤ #B.

(ii) If (X, τ) is second countable then it is separable.

Proof. (i) Using the axiom of choice, we choose a point xU ∈ U for each U ∈ B, U 6= ∅ and define
S = {xU | ∅ 6= U ∈ B}. Let W ⊆ X be open and non-empty. By definition of a base, there is a
non-empty U ∈ B such that U ⊆ W . Now xU ∈ U ⊆ W , and xU ∈ S, thus W ∩ S 6= ∅. Now Lemma
2.7.9 gives that S ⊆ X is dense. By construction we have #S ≤ #B.

(ii) Second countable means that there is a countable base B. Now by (i) there is a countable
dense subset, thus X is separable. �

The converse of (ii) is not true in general: For uncountable X, the space (X, τcofin) is separable, �

but not second countable, cf. Exercise 4.1.17(iv),(vi).
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Lemma 4.1.12 (i) If a metric space (X, d) is separable, it is second countable.

(ii) Thus for metric spaces, separability ⇔ second countability.

Proof. (i) Let Y ⊆ X be countable and dense. Let

B = {B(y, 1/n) | y ∈ Y, n ∈ N}.

Now #B = #(Y × N) ≤ #(N × N) = #N, thus B is countable. It remains to prove that B is a
base for τd. So let U ∈ τ be non-empty and x ∈ U . Since U is open, there is an n ∈ N such that
B(x, 1/n) ⊆ U . Since Y is dense, there is y ∈ Y such that d(x, y) < 1/2n (⇔ x ∈ B(y, 1/2n)). If
now z ∈ B(y, 1/2n) then d(x, z) ≤ d(x, y)+d(y, z) < 1

2n
+ 1

2n
= 1

n
. This proves that V := B(y, 1/2n),

which clearly is an element of B, is contained in B(x, 1/n) and therefore in U . Thus x ∈ V ⊆ U ,
proving that B is a base for τd. (ii) is now obvious. �

Corollary 4.1.13 Rn with the usual topology is second countable for any n ∈ N.

Proof. Qn ⊆ Rn is dense w.r.t. τeucl, thus Rn is separable. Now apply Lemma 4.1.12. �

Many properties considered so far have been hereditary: discreteness, indiscreteness, cofiniteness,
cocountability, metrizability, T1, T2 and second countability. But connectedness and (the metric
property of) completeness are not hereditary, and the same holds for separability:

Exercise 4.1.14 (i) Given any topological space (X, τ), put X ′ = X ∪ {p} (where p 6∈ X). Give
a topology τ ′ on X ′ such that τ ′ �X = τ and {p} ⊆ X ′ is dense.

�

(ii) Conclude that separability is not hereditary.

The spaces produced by the above construction are not very nice (irreducible and non-T1). A
Hausdorff example will be given in Lemma 6.5.16.

The existence of non-hereditary properties motivates the following:

Definition 4.1.15 If a property P is not hereditary, a space is called hereditarily P if it and all its
subspaces have property P. (Obviously, the property of being hereditarily P is hereditary.)

Exercise 4.1.16 Prove:

(i) Open subspaces of separable spaces are separable. (I.e. separability is ‘open-hereditary’.)

(ii) Second countable spaces are hereditarily separable.

(iii) Separable metric spaces are hereditarily separable.

Exercise 4.1.17 Prove:

(i) Every countable topological space is separable.

(ii) Every countable metric space is second countable.

(iii) If X is countable then (X, τcofin) and (X, τcocnt) are separable.

(iv) If X is uncountable then (X, τcofin) is separable, but (X, τcocnt) is not.

(v) If X is countable then (X, τcofin) is second countable.
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(vi) If X is uncountable then (X, τcofin) and (X, τcocnt) are not second countable.

Hint: Let X be uncountable and F a family of finite subsets of X such that every finite subset
of X is contained in some F ∈ F . Prove that F is uncountable.

Warning: There are topologies (necessarily non-metrizable) on countable sets that are not second �

countable! Cf. Exercise 4.3.14.
Besides second countability and separability, there is a third countability property (somewhat

less important):

Definition 4.1.18 A topological space X has the Souslin property1 or the countable chain con- dition
(c.c.c.) if every family of mutually disjoint non-empty open subsets of X is countable.

Exercise 4.1.19 Prove:

(i) An uncountable discrete space is not Souslin (thus neither separable nor second countable.)

(ii) If U is a family of mutually disjoint non-empty open subsets of X and S ⊆ X is dense then
#U ≤ #S. In particular, every separable space has the Souslin property.

(Thus: second countable ⇒ separable ⇒ Souslin.)

(iii) Every irreducible space is Souslin.

(iv) The cocountable topology on any set has the Souslin property. (Thus Souslin 6⇒ separable,
since on an uncountable set τcocnt is not separable (Exercise 4.1.17(iv)).)

(v) A metrizable space with the Souslin property is separable (thus also second countable).

We summarize the most important properties of the cofinite and cocountable topologies (in the
non-discrete cases):

Space 2nd cnt. separable Souslin
τcofin for countably infinite X Yes Yes Yes
τcofin for uncountable X No Yes Yes
τcocnt for uncountable X No No Yes

The example of a non-separable space with the Souslin property provided by (iv) is unsatisfactory
since it is irreducible, thus not Hausdorff. See Example 6.5.28 for a better result.

The following exercise continues Exercise 2.7.25:

Exercise 4.1.20 (Cantor-Bendixson Theorem) Let X be a topological space and Y ⊆ X. Re-
calling that Y cd denotes the condensation points of Y , prove:

(i) If X is second countable then Y \Y cd is countable, (Y cd)cd = Y cd, and Y cd is perfect.

(ii) Every second countable space has a perfect subspace whose complement is countable.

(iii) A second countable scattered space is countable.

1Mikhail Yakovlevich Souslin (1894-1919), Russian mathematician. Made important contributions to general topol-
ogy and descriptive set theory, then died from typhus at age 24. (The French transliteration is due to the fact that
S.’s few publications were in French.)
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4.1.3 Spaces from bases

So far, we used bases to study given topological spaces. But bases can also be used to construct
topologies: Given a set X and B ⊆ P (X), thus a family of subsets of X, the question arises whether
there is a topology τ on X such that B is a base for τ . Since τ must contain B, be closed under
arbitrary unions and we want every U ∈ τ to be a union of elements of B, we must put

τ =

{⋃
i∈I

Ui | I a set, Ui ∈ B ∀i ∈ I

}
. (4.1)

In words: τ ⊆ P (X) consists of all unions of sets in B2. Now one has:

Proposition 4.1.21 Let X be a set, B ⊆ P (X) and τ defined as in (4.1). Then τ is a topology if
and only if

(a)
⋃
B = X. (I.e. every x ∈ X is contained in some U ∈ B.)

(b) For every U, V ∈ B we have

U ∩ V =
⋃
{W ∈ B | W ⊆ U ∩ V }. (4.2)

(Equivalently, if U, V ∈ B and x ∈ U ∩ V then there is a W ∈ B such that x ∈ W ⊆ U ∩ V .)

If this is the case then B is a base for τ .

Proof. It is clear that ∅ ∈ τ and that τ , defined by (4.1), is closed under arbitrary unions. Further-
more, X ∈ τ is equivalent to (a). Thus assume (a) holds. It remains to show that (b) is equivalent to
τ being a topology. Assume the latter is the case, and let U, V ∈ B. Then U, V ∈ τ , thus U ∩ V ∈ τ ,
thus U ∩ V is a union of elements of B, thus also (4.2) holds.

As to the converse, assume (4.2) holds for all U, V ∈ B. Assume U, V ∈ τ , thus U =
⋃
i Ui, V =⋃

j Vj with certain Ui, Vj ∈ B. Now

U ∩ V = (
⋃
i

Ui) ∩ (
⋃
j

Vj) =
⋃
i,j

(Ui ∩ Vj) =
⋃
i,j

⋃
{W ∈ B | W ⊆ Ui ∩ Vj},

thus U ∩ V is a union of elements of B, and therefore in τ . Thus U, V ∈ τ ⇒ U ∩ V ∈ τ , proving
that τ is a topology. �

The following is a first example of the use of the lemma to construct exotic topologies. For others,
see the exercises below.

Example 4.1.22 Let X = R and B = {[a, b) | a < b}. (Notice that this is NOT a base for the
metric topology τd since [a, b) is not in τd.) It is clear that the union over B equals R. Now, if
e = max(a, c) and f = min(b, d) then

[a, b) ∩ [c, d) =

{
∅ if e ≥ f

[e, f) if e < f

}
,

which either empty or in B. Thus B is the base of a topology τS, called the Sorgenfrey topology3,
whose elements clearly are of the form

⋃
i[ai, bi). Now (R, τS) is called the Sorgenfrey line. 2

2A much more efficient way of stating this is τ = {
⋃
F | F ⊆ B}, cf. Defininition/Proposition A.1.1, but for unclear

reasons this notation seems to be unpopular.
3Robert Sorgenfrey (1915-1995), American mathematician.
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Exercise 4.1.23 Prove that the Sorgenfrey topology τS is finer than the Euclidean topology τeucl

on R and deduce that τS is Hausdorff.

Example 4.1.24 Let (X, τ) be a topological space. Let Br ⊆ τ be the family of regular open sets,
cf. Exercise 2.6.14. Since X is regular open (being clopen) and the intersection of two regular open
sets is regular, by Proposition 4.1.21 there is a topology τr having Br as a base. It is clear that
τr ⊆ τ , thus τr is coarser than τ . The space (X, τr) is called the semiregularization of (X, τ). And
(X, τ) is called semiregular if τr = τ , i.e. every open set is a union of regular open sets. 2

Exercise 4.1.25 (Infinitude of primes) Let N = {1, 2, 3, . . .} (thus 0 6∈ N !!). For a ∈ Z, b ∈ N
we define

Na,b = a+ bZ = {a+ bn | n ∈ Z} ⊆ Z.

(i) Prove: Na,b = {c ∈ Z | c− a ≡ 0 (mod b)} = {c ∈ Z | b divides c− a}.

(ii) Prove: If c ∈ Na,b then Nc,b = Na,b.

(iii) Prove that B = {Na,b | a ∈ Z, b ∈ N} is a base for a topology τ on Z.

(iv) Prove that each U ∈ τ with U 6= ∅ is infinite.

(v) Prove that each Na,b is clopen.

(vi) Let P = {2, 3, 5, . . .} be the set of prime numbers. Prove that

Z\{1,−1} =
⋃
p∈P

N0,p.

(vii) Prove that P is infinite, using only the facts proven above.4

The topology constructed in the preceding exercise is not Hausdorff. A slight modification gives
a Hausdorff topology:

Exercise 4.1.26 Let N = {1, 2, 3, . . .} and N0 = N ∪ {0}. Let B the family of subsets of N of the
form Ua,b = {a + nb | n ∈ N0}, where a, b ∈ N are relatively prime (thus (a, b) = gcd(a, b) = 1).
Prove:

(i) B is a base for a topology τ on N.

(ii) τ is Hausdorff.

(iii) τ is connected.

Remark: We thus have a countably infinite space whose topology is Hausdorff and connected! (Recall
that finite T1 spaces are discrete, thus non-connected.)

4While this exercise really gives a proof of the infinitude of P (due to H. Fürstenberg, 1955), it seems rather
mystifying. See [56, 207] for topology-free elucidations of what ‘really’ is behind the proof.
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4.2 Subbases and order topologies

4.2.1 Subbases. Topologies generated by families of subsets

Condition (b) in Proposition 4.1.21 is not always convenient. This motivates the following

Definition 4.2.1 Let (X, τ) be a topological space. A subset S ⊆ τ is called a subbase for τ if taking
all finite intersections of elements of S one obtains a base B for τ . (The intersection

⋂
∅ over an

empty family of subsets of X is interpreted as the ambient space X.)5

Lemma 4.2.2 Let X be a set and S ⊆ P (X). Then there is a unique topology τ such that S is a
subbase for τ .

Proof. Let B ⊆ P (X) be the set of all finite intersections of elements of S. Since the empty intersection⋂
∅ is interpreted as X, we have X ∈ B. Clearly B is closed w.r.t. finite intersections. Thus B satisfies

(a) and (b) in Proposition 4.1.21. �

Here is a different perspective at the topology obtained from S:

Definition 4.2.3 Let X be a set and U ⊆ P (X) arbitrary. The topology τU on X generated by U is
the intersection of all topologies on X that contain U , i.e. τU =

⋂
{τ ⊇ U a topology on X}.

Remark 4.2.4 1. By Exercise 2.3.6, any intersection of topologies on X is a topology on X. Clearly,
the above τU is the smallest topology on X that contains U . (But one should not take this as the
definition of τU without proving that a smallest topology containing U exists, which is what we have
done above.) Furthermore, the topology generated by U ⊆ P (X) precisely consists of all unions
of finite intersections of elements of U . Thus every S ⊆ P (X) is a subbase for the topology on X
generated by S.

2. If X is a set and F is an infinite family of subsets of X (thus X is infinite) then the family F ′
of all finite intersections of elements of F has the same cardinality as F . Thus the spaces admitting
a countable subbase are precisely the second countable ones. 2

4.2.2 Order topologies

Definition 4.2.5 Let (X,≤) be a totally ordered set with #X ≥ 2. For x ∈ X, let

L(x) = {y ∈ X | y < x}, R(x) = {y ∈ X | y > x}

and

S = {L(x) | x ∈ X} ∪ {R(x) | x ∈ X}. (4.3)

S is a subbase for a topology τ≤ on X, called the order topology, and (X, τ≤) is called a (totally)
ordered topological space.

Remark 4.2.6 1. For R with the usual ordering, τ≤ is the usual (metric) topology since the latter
has the above S as a subbase.

5If F is the empty family of sets then
⋂
F should in principle denote the ‘all-set’ that contains “everything”.

Such a set does not exist since its existence, together with the Axiom of Separation, would lead to Russel’s paradox.
Thus

⋂
∅ makes sense only in the context of some ambient set. Speaking formally, for every set X there is a map

IX : P (P (X))→ P (X), F 7→ {x ∈ X | S ∈ F ⇒ x ∈ S}. Now we have IX(∅) = X, and all is well.
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2. Since L(x) ∩ L(y) = L(min(x, y)) and similarly for Rx, every finite intersection of elements of
S is of one of the following forms: ∅, L(x), R(x), L(b) ∩R(a). The last one is also denoted (a, b).

3. If (X,≤) has a largest or smallest element, the open intervals alone will fail to be the base for
a topology on X. But even B′ = {X} ∪ {(a, b) | a, b ∈ X, a < b}, which is a base, will not produce
τ≤. (Why?)

4. If (X1,≤1), (X2,≤2) are totally ordered sets then an order-preserving bijection α : X1 → X2

is called an order isomorphism. It is then clear that the order topologies τ1, τ2 are related by τ2 =
α(τ1) = {α(U) | U ∈ τ1}. Once we define homeomorphisms for topological spaces (Definition 5.2.19,
it will be evident that α is one. 2

Exercise 4.2.7 Let (X,≤) be a totally ordered set with #X ≥ 2. Prove that the order topology
τ≤, cf. Definition 4.2.5, is Hausdorff (T2).

Hint: For x < y, proceed differently according to {z | x < z < y} = ∅ or 6= ∅.

Definition 4.2.8 Let (X,≤), (Y,≤) be totally ordered sets. Then the lexicographic ordering on X×Y
is given by (x, y) ≤ (x′, y′) :⇔ x < x′ ∨ (x = x′ ∧ y ≤ y′).

Exercise 4.2.9 Consider the lexicographic order on L = Z × [0, 1) (where Z and [0, 1) have the
natural orders). Prove that the map f : L → R, (n, r) 7→ n + r is an order-preserving bijection.
Deduce that the order topology τ≤ on L and the usual topology τ on R satisfy τ = {f(U) | U ∈ τ≤}.
(‘An order isomorphism induces a homeomorphism.’) This makes rigorous the idea that gluing
countably many copies of [0, 1) next to each other gives the real line R.

It is quite natural to ask whether we can replace Z in the above construction by an uncountable
totally ordered set and in this way obtain a ‘line’ that is ‘longer’ than R. Let (X,≤) be totally
ordered with X uncountable, and equip L = X× [0, 1) with the lexicographic order. Like all ordered
spaces, (L, τ≤) is Hausdorff. The open intervals {((x, 0), (x, 1)) | x ∈ X} give an uncountable family
of mutually disjoint non-empty open sets. Thus (L, τ≤) is not Souslin, thus also neither second-
countable nor separable, whereas [0,∞) has all these properties. But in order to interpret L as a
‘line’, we would want (a, b) to be order isomorphic to an open interval in R for any a, b ∈ L, a < b.
There is no reason for this to be true unless we put restrictions on (X,≤).

It turns out to advantageous to first construct a ‘long’ version of the ray [0,∞). Adapting the
above exercise, [0,∞) is seen to be order isomorphic, thus homeomorphic, to N0×[0, 1) equipped with
the lexicographic ordering. The crucial observation is that the natural numbers N0 are well-ordered.

Definition 4.2.10 Let (X,≤) be a well-ordered set such that X is uncountable but L(x) = {y ∈
X | y < x} is countable for each x. (Existence of such a set and uniqueness up to order isomorphism
are proven in Proposition A.3.32.) We call its smallest element 0. Now the long ray is LR = X×[0, 1)
equipped with the lexicographic order, [0, 1) having the usual order. We may also write 0 for the
smallest element (0, 0) of LR. The open long ray is LR\{0}.

Proposition 4.2.11 (i) For every 0 < a ∈ LR there is an order isomorphism [0, a)→ [0, 1) ⊆ R.

(ii) For every a, b ∈ LR, a < b, there is an order isomorphism (a, b)→ (0, 1) ∼= R

Proof. Deducing (ii) from (i) is immediate: If a = 0 then (i) gives an order isomorphism β : [0, b)→
[0, 1). Restricting β to (0, b) gives an order isomorphism (0, b) ∼= (0, 1). If a > 0, then a′ = β(a) ∈
(0, 1), and the restriction of β to (a, b) ⊆ LR is an order isomorphism to (a′, 1), which in turn is
order isomorphic to (0, 1).



4.2. SUBBASES AND ORDER TOPOLOGIES 73

(i) Define Y = {y ∈ X | L(y) is order isomorphic to [0, 1) ⊆ R} ⊆ X. The Transfinite Induction
Lemma A.3.28 will imply Y = X\{(0, 0)}, thus our claim, once we prove that L(y) ⊆ Y implies
y ∈ Y . Let thus y = (x, t) > (0, 0) be such that L(y) ⊆ Y . If t > 0 then (x, 0) < (x, t), thus
(x, 0) ∈ Y , so that L((x, 0)) is order-isomorphic to [0, 1). Then there also is an order isomorphism
α : L((x, 0)) → [0, 1/2). Combining this with an order isomorphism β : [(x, 0), (x, t)) → [1/2, 1),
whose existence is obvious, we have an order isomorphism L((x, t)) ∼= [0, 1), so that (x, t) ∈ Y .

We now turn to the case t = 0, thus x 6= 0. Assume first that x has an immediate predecessor,
i.e. the set L(x) ⊆ X has a largest element x′. Since (x′, 0) < (x, 0), by assumption we have an
order isomorphism [(0, 0), (x′, 0)) → [0, 1). Since x is the successor x′ + 1 of x′, we have an order
isomorphism [(x′, 0), (x, 0)) → [0, 1). Pasting these order isomorphisms after each other, we obtain
an order isomorphism [(0, 0), (x, 0))→ [0, 1), thus (x, 0) ∈ Y .

It remains to consider those x ∈ X without immediate predecessor. Then L(x) must be infinite,
thus there exist strictly increasing sequences {xn} ⊆ L(x). Given such a sequence, we clearly have
sup{xn | n ∈ N} ≤ x, and also x′ = sup{xn} sup{xn} ≤ x, where the first sup is over the set of strictly
increasing sequences in L(x). Now x′ < x would mean that [x′, x) is infinite (otherwise x would have
an immediate predecessor), allowing us to construct a new strictly increasing sequence {xn} in [x′, x),
contradicting the definition of x′. Thus sup{xn} sup{xn} = x. Since L(x) is countable, a diagonal
argument allows us to construct a strictly increasing sequence {xn} ⊆ L(x) such that sup{xn} = x.

Clearly we have xn < x, thus (xn, 0) < (x, 0), for all n. Thus there is an order isomor-
phism [(0, 0), (x1, 0)) → [0, 1/2), and as in the proof of (ii)⇒(i), there is an order isomorphism
[(x1, 0), (x2, 0))→ [1/2, 3/4). Continuing in this way we construct a sequence of order isomorphisms
[(xn, 0), (xn+1, 0)) → [1 − 2−n, 1 − 2−(n+1)) for all n ∈ N. Since the definition of the sequence {xn}
gives

⋃∞
n=0[xn, xn+1) = [0, x) (x0 = 0), placing these order isomorphisms after each other we obtain

an order isomorphism [(0, 0), (x, 0))→ [0, 1), so that once again (x, 0) ∈ Y . �

Note that it does not at all follow that the (open) long ray is order isomorphic to [0, 1) ⊆ R (resp.
(0, 1)), for the simple reason that R and all its subspaces are second countable, while the (open) long
ray is not.

Exercise 4.2.12 (i) If (X,≤) is an ordered set and Y ⊆ X, prove τ≤|Y ⊆ (τ≤)|Y .

(ii) Find an example where τ≤|Y 6= (τ≤)|Y .�

(iii) Prove that (τ≤)|Y is not an order topology when it is different from τ≤|Y .

Remark 4.2.13 Let (X,≤) be totally ordered. Defining Rx = {y ∈ X | y ≥ x} and

S̃ = {Lx | x ∈ X} ∪ {Rx | x ∈ X},

S̃ is a subbase for a topology τ̃ , which for X = R just is the Sorgenfrey topology τS. The latter
clearly is an example for the following definition. 2

Definition 4.2.14 Let (X,≤) be totally ordered. A subset Y ⊆ X is called

• upward closed if y ∈ Y implies R(y) ⊆ Y .

• downward closed if y ∈ Y implies L(y) ⊆ Y .

• convex if x, y ∈ Y implies z ∈ Y whenever x < z < y, equivalently R(x) ∩ L(y) ⊆ Y .
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Theorem 4.2.15 Let (X,≤) be a totally ordered set and τ a topology on X. Then the following are
equivalent:

(i) τ has a base consisting of convex sets.

(ii) τ has a subbase whose elements are upwards or downwards closed.

(iii) There is a set X̂ ⊇ X and a total order ≤̂ on X that restricts to ≤ on X and such that
(τ≤̂)�X = τ . (Thus (X,≤, τ) embeds into an ordered topological space.)

Under these (equivalent) conditions, (X,≤, τ) is called a generalized ordered space.

Proof. (iii)⇒(i) The elements of the subbase Ŝ (4.3) definining the order topology on X̂ are clearly

convex. We know that {S ∩ X | S ∈ Ŝ} is a subbase for the induced topology (τ≤̂) �X on X. It

remains to show that these sets are convex in X. Let S ∈ Ŝ, and let x < y < z with x, y ∈ S ∩X
and z ∈ X. Then convexity of S (in X̂) implies z ∈ S, thus z ∈ S ∩X. Thus S is convex.

(i)⇒(ii) Let B be a base for τ consisting of convex sets. For B ∈ B define

L(B) = B ∪
⋃
x∈B

L(x), R(B) = B ∪
⋃
x∈B

R(x).

Then L(B) (resp. R(B)) is manifestly downwards (resp. upwards) closed. We now claim that S =⋃
B∈B{L(B), R(B)} is a subbase for the topology τ . We first claim that {L(B) |B ∈ B} is totally

ordered under inclusion and similarly for the R(B). Assume L(B′) 6⊆ L(B), thus there is x ∈
L(B′)\L(B). Since x 6∈ L(B), and L(B) is downward closed, this implies that no y ∈ L(B) satisfies
y ≥ x. In other words, L(B) ⊆ L(x) ⊆ L(B′), proving the claim. This implies that the set B′ of
finite intersections of elements of S equals

⋃
B∈B{L(B), R(B)} ∪ {L(B) ∩R(B′) | B,B′ ∈ V}.

***************
(ii)⇒(iii) ***************

�

4.3 Neighborhood bases. First countability

Definition 4.3.1 Let (X, τ) be a topological space and x ∈ X. A family N ⊆ P (X) is called a
(open) neighborhood base of x if

(i) Every N ∈ N is a (open) neighborhood of x. (I.e. N ⊆ Nx resp. N ⊆ Ux.)

(ii) For every neighborhood M ∈ Nx of x there is an N ∈ N such that N ⊆M .

Exercise 4.3.2 Let (X, τ) be a topological space. For every x ∈ X, let Vx be an open neighborhood
base for x. Prove that B =

⋃
x Vx is a base for τ .

Lemma 4.3.3 For a topological space (X, τ), the following are equivalent:

(i) Every x ∈ X has a countable neighborhood base N .

(ii) Every x ∈ X has a countable open neighborhood base U .

(iii) Every x ∈ X has an open neighborhood base V = {Vi}i∈N such that V1 ⊇ V2 ⊇ · · · .
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Proof. It is obvious that (iii)⇒(ii)⇒(i).

(i)⇒(ii) For every N ∈ N there exists, by definition of a neighborhood, an open UN such that
x ∈ UN ⊆ N . Now U = {UN | N ∈ N} is a countable open neighborhood base for x.

(ii)⇒(iii) Let U be a countable open neighborhood base for x. Choose a bijection N→ U , i 7→ Ui
and define Vi =

⋂i
k=1 Uk. Then clearly V1 ⊇ V2 ⊇ · · · , and Vi ⊆ Ui ∀i implies that V = {Vi}i∈N is an

open neighborhood base for x. (It should be clear how to modify this should U happen to be finite.)
�

Definition 4.3.4 A topological space satisfying the equivalent statements in Lemma 4.3.3 is first
countable or satisfies the first axiom of countability.

Exercise 4.3.5 Prove that first countability is hereditary.

Lemma 4.3.6 Every metric space has the first countability property.

Proof. If U is open and x ∈ X, there is an n ∈ N such that x ∈ B(x, 1/n) ⊆ U . Thus for every
x ∈ X,

N = {B(x, 1/n) | n ∈ N}

is a countable open neighborhood base of x. �

Many results that are true for metric spaces actually only use the first countability. We will soon
see this in Propositions 5.1.7 and 5.1.13. But see Remark 5.2.28.

Lemma 4.3.7 The second countability property implies the first.

Proof. Let B be a countable base for the topology and let x ∈ X. We claim that

N = {U ∈ B | x ∈ U},

which clearly is countable, is a neighborhood base for x. To see this, let x ∈ V ∈ τ . By definition of
a base, there is a U ∈ B such that x ∈ U ⊆ V . With the definition of N , we have U ∈ N , thus N is
an open neighborhood base for x. �

For Hausdorff spaces, the following is an improvement of Exercise 4.1.9 (since second countability
implies both first countability and separability, but not conversely):

Exercise 4.3.8 Let X be a separable and first countable Hausdorff space. Prove that #X ≤ c.

Remark 4.3.9 Exercises 4.1.9 and 4.3.8 are just the beginning of the theory of ‘cardinal functions’,
on which much research has been done in recent decades. Cf. [130, Sections a03, a04] and [185,
Chapters 1,2]. 2

Remark 4.3.10 Figure 4.1 summarizes the implications proven so far.

It is straightforward to check that these implications rule out 9 of the 24 = 16 conceivable
combinations of the first and second countability properties, separability and metrizability. All
others are actually possible, as the following table shows:
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2nd countable

1st countable metrizable

separable

+

Figure 4.1: Implications between countability axioms

1st cnt. 2nd cnt. separable metrizable Example
0 0 0 0 ({0, 1}, τdisc)

N with #N > c = #R
0 0 1 0 (X, τcofin) with X uncountable
1 0 0 0 [0, 1]2 with lexicogr. order topology
1 0 0 1 (X, τdisc) or `2(X) for X uncountable
1 0 1 0 Sorgenfrey line
1 1 1 0 (X, τindisc) with #X ≥ 2
1 1 1 1 finite discrete space

Most of these examples will be discussed below. (The first example uses the product topology, in
particular Exercises 6.5.15, 6.5.24 and Corollary 6.5.36. The proof of non-metrizability of [0, 1]2 with
the lexicographical order topology will only be given in Remark 7.7.28.) 2

Exercise 4.3.11 Consider X = [0, 1] × [0, 1] equipped with the order topology coming from the
lexicographic order. Prove that X is first countable, but does not have the Souslin property (and
thus is neither second countable nor separable).

Exercise 4.3.12 Prove that the Sorgenfrey line (R, τS) is

(i) separable,

(ii) first countable,

(iii) not second countable,

(iv) not metrizable.

Exercise 4.3.13 Prove that the cofinite and cocountable topologies on an uncountable set are not
first countable.

In the preceding exercise, the underlying space was uncountable. But there are also topologies �

on countable sets that not first countable, thus also not second countable! An example is provided
in the next exercise:

Exercise 4.3.14 (Arens-Fort space) 6 Let X = N0 × N0, where N0 = {0, 1, 2, . . .}. Define τ ⊆
P (X) as follows: U ⊆ X is in τ if and only if U satisfies one of the following conditions:

• (0, 0) 6∈ U .

• (0, 0) ∈ U and Um := {n ∈ N0 | (m,n) 6∈ U} is infinite for at most finitely many m ∈ N0.
(Thus: At most finitely many columns of U lack infinitely many elements of X.)

6Richard Friederich Arens (1919-2000): German-American topologist and functional analyst. Marion Kirkland
Fort, Jr. (1921-1964): American general topologist.
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(i) Prove that τ is a topology.

(ii) Prove that τ is Hausdorff (T2).

(iii) Prove that (0, 0) ∈ X cannot have a countable neighborhood base. Hint: Given open neigh-
borhoods {Ui}i∈N of (0, 0), construct an open V 3 (0, 0) that contains none of the Ui.

(iv) Conclude that (X, τ) has neither the first nor the second countability property.

(v) Conclude that countability of X does not imply that (X, τ) is first countable, nor vice versa.

Exercise 4.3.15 (The Niemytzki plane) 7 Let Br(x, y) ⊆ R2 be the open ball around (x, y) with
radius r. Define

L = {(x, 0) | x ∈ R},
Y = {(x, y) ∈ R2 | y > 0},
X = Y ∪ L = {(x, y) ∈ R2 | y ≥ 0}.

For (x, y) ∈ X, r > 0 define

U(x,y),r =

{
Br(x, y) ∩ Y if y > 0

Br(x, r) ∪ {(x, 0)} if y = 0
(4.4)

(i) Make a drawing where L, Y,X and U(x,y),r (with y > 0 and y = 0) can be understood.

(ii) Show that B = {U(x,y),r | (x, y) ∈ X, r > 0} is a base for a topology τ̃ on X.

(iii) Show that τ̃ �Y is the standard topology, whereas the subspace (L, τ̃ �L) is discrete.

(iv) Show that (X, τ̃) is first countable, but not second countable.

(v) With (iii) it follows that A = {(x, 0) | x ∈ R\Q} and B = {(x, 0) | x ∈ Q} are disjoint closed
subsets of (X, τ̃). Show that there are no U, V ∈ τ̃ such that A ⊆ U, B ⊆ V, U ∩ V = ∅.
(Later we will say: (X, τ̃) is not normal (T4).) Hint: Baire’s theorem.

7Viktor Vladimirovich Nemytskii (1900-1967). Russian mathematician.
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Chapter 5

Convergence and continuity

In general topology it is easy to forget that the initial aim of (general) topology was to provide a
general framework for the study of convergence and continuity. The author is aware of a book in
which these subjects appear on pages 254 and 175, respectively! (Admittedly, there are situations,
mostly in algebra, where one studies certain topologies without being interested in convergence or
continuity: The Krull topology on Galois groups, the Zariski topology on algebraic varieties, etc.)
We therefore now turn to the first of these subjects, convergence.

5.1 Convergence in topological spaces: Sequences, nets, fil-

ters

5.1.1 Sequences

The Definition 2.1.14 of sequences obviously applies to topological spaces. But we need a new notion
of convergence:

Definition 5.1.1 Let (X, τ) be a topological space, {xn}n∈N a sequence in X and z ∈ X. We say
that xn converges to z or z is a limit of xn if for every (open) neighborhood U of z there is an N ∈ N
such that n ≥ N ⇒ xn ∈ U . In this case we write xn → z.

Remark 5.1.2 1. xn → z is equivalent to: For every neighborhood U of z, xn ∈ U for all but
finitely many n.

2. It does not matter whether we include ‘open’ in the definition.
3. In order to show xn → z it suffices to verify the condition in Definition 5.1.1 for the elements

of any neighborhood base for z.
4. If (X, d) is a metric space and τ = τd then convergence xn → z in the metric (Definition 2.1.15)

and topological (Definition 5.1.1) senses are equivalent since {B(z, ε) | ε > 0} is a neighborhood base
for z w.r.t. τd.

5. The notation z = limn→∞ xn suggests that there is a unique limit, which however is not always�

true! We will therefore only use this notation when uniqueness is known to hold, cf. Proposition
5.1.4, and write xn → z otherwise. 2

Exercise 5.1.3 Prove:

(i) If (X, τ) is indiscrete then any sequence {xn} in X converges to any z ∈ X.

79
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(ii) If (X, τ) is discrete then a sequence {xn} in X converges to z ∈ X if and only if there is N ∈ N
such that n ≥ N ⇒ xn = z. (I.e. {xn} is ‘eventually constant’.)

Proposition 5.1.4 If (X, τ) is a Hausdorff space then every sequence has at most one limit. (I.e.,
if xn → y and xn → z then y = z.)

Proof. Assume xn → y and xn → z, where y 6= z. Since X is T2 we can find U, V ∈ τ such that
y ∈ U, z ∈ V and U ∩ V = ∅. Now, there are N,M ∈ N such that n ≥ N ⇒ xn ∈ U and
n ≥M ⇒ xn ∈ V . Thus if n ≥ max(N,M) then xn ∈ U ∩ V , but this contradicts U ∩ V = ∅. �

Lemma 5.1.5 If {yn}n∈N ⊆ Y ⊆ X such that yn → x then x ∈ Y .

Proof. As noted above, yn → x means that every neighborhood U of x contains yn for infinitely many
n. This obviously implies U ∩ Y 6= ∅ for every neighborhood U of x, and by Lemma 2.7.3 this is
equivalent to x ∈ Y . �

Question: Is every z ∈ Y a limit of a sequence {yn} in Y ? If X is metrizable, the answer is yes �

by Lemma 2.1.16 and Remark 2.7.4.2. But in general it is NO!

Example 5.1.6 Let X be uncountable and τ the cocountable topology on X. Let Y ⊆ X be
uncountable but Y 6= X. By definition of the cocountable topology, we have Y = X (since the only
closed uncountable subset is X). But if {yi} is a sequence in Y then {y1, y2, . . .} ⊆ X is countable,
thus closed. Thus if yi → z then z ∈ {y1, y2, . . .} = {y1, y2, . . .} ⊆ Y . Thus no point z ∈ X\Y can be
obtained as limit of a sequence in Y ! As the next result shows, this phenomenon is closely related
to the lack of first countability proven in Exercise 4.3.13. (But cf. Remark 5.1.9.2.) 2

Proposition 5.1.7 Let (X, τ) satisfy the first countability axiom. Then:

(i) If V1 ⊇ V2 ⊇ · · · is a shrinking neighborhood base for z ∈ X and xi ∈ Vi ∀i then xi → z.

(ii) The closure of any Y ⊆ X coincides with the set of limits of sequences taking values in Y .

Proof. (i) Let W be any neighborhood of z. Since {Vi} is a neighborhood base for x, there is i ∈ N
such that Vi ⊆ W , thus also Vj ⊆ W ∀j ≥ i due to the shrinking character of the V ′i s. By our choice
of the sequence {xi} we then have j ≥ i⇒ xj ∈ Vj ⊆ W . Thus xi → z.

(ii) Let z ∈ Y . By Lemma 4.3.3 there is a shrinking open neighborhood base V1 ⊇ V2 ⊇ · · · for
z. Lemma 2.7.3 implies Vi ∩ Y 6= ∅ for all i ∈ N. Thus for each i, we can choose xi ∈ Vi ∩ Y (by
countable choice). Thus xi ∈ Vi ∀i, so that (i) gives xn → z. �

Corollary 5.1.8 A subset Y ⊆ X of a first countable space X is closed if and only if {xn}n∈N ⊆ Y
and xn → y implies y ∈ Y .

Remark 5.1.9 1. Since metric spaces are first countable, the proposition shows that Definition
2.4.1 is consistent with the definition of closedness in Lemma 2.1.16.

2. In the literature, e.g. [89], one finds notions of topological spaces that are slightly more
general than the first countable ones: Spaces satisfying the conclusion of Proposition 5.1.7(ii) are
called ‘Fréchet spaces’ (unrelated to the Fréchet spaces of functional analysis), and spaces with the
property in Corollary 5.1.8) are ‘sequential spaces’. Clearly: metrizable⇒ first countable⇒ Fréchet
⇒ sequential. Some of the results that we will prove for first countable spaces hold more generally
for Fréchet or even sequential spaces. But it turns out that even the largest of these classes, that of
sequential spaces, is still very close to metric spaces, cf. Remark 6.4.6. 2
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Definition 5.1.10 If {xn} is a sequence in a topological space (X, τ), then z ∈ X is called accumula-
tion point of {xn} if for every open neighborhood U of z there are infinitely many n ∈ N such that
xn ∈ U . (Equivalently, there are arbitrarily large n such that xn ∈ U .)

Every limit of a sequence is an accumulation point, but the converse need not hold: The sequence
{xn = (−1)n} has ±1 as accumulation points, but no limit.

Definition 5.1.11 A subsequence of a sequence {xn} is a sequence of the form {xnm}m∈N, where
1 ≤ n1 < n2 < · · · is a strictly increasing sequence in N.

One easily proves by induction that nk ≥ k for all k.

Lemma 5.1.12 Let {xn} be a sequence in the topological space (X, τ). If it has a subsequence {xnm}
converging to z ∈ X then z is an accumulation point of {xn}.

Proof. Let U be an open neighborhood of z. Since the subsequence {xnm} converges to z, there is
an N ∈ N such that m ≥ N ⇒ xnm ∈ U . But this implies that there are infinitely many n such that
xn ∈ U , thus z is an accumulation point. �

Without further assumptions, it is not true that every accumulation point of a sequence is the
limit of a subsequence! (Cf. Example 7.7.13.) In metric spaces there is no problem, but again first�

countability is sufficient:

Proposition 5.1.13 If (X, τ) is first countable then for every accumulation point z of a sequence
{xn} in X there is a subsequence {xnm} converging to z.

Proof. Let z be an accumulation point of the sequence. Let V1 ⊇ V2 ⊇ · · · be a shrinking open
neighborhood base of z as in Lemma 4.3.3(iii). Since z is an accumulation point of {xn}, there
clearly is an n1 such that xn1 ∈ V1. Since there are infinitely many n such that xn ∈ V2, we can
find n2 > n1 such that xn2 ∈ V2. Continuing like this, we can obtain n1 < n2 < n3 < · · · such that
xnm ∈ Vm ∀m. Now Proposition 5.1.7(i) gives that xnm

m→∞−→ z. �

Exercise 5.1.14 Let (X, d) be a metric space and {xn} a Cauchy sequence. Assuming that there
is a subsequence {xnk} such that limk→∞ xnk = x ∈ X, prove that limn→∞ xn = x.

Proposition 5.1.15 A normed space V is complete (Banach) if and only if every absolutely con-
vergent series

∑∞
n=1 xn in V converges.

Proof. ⇒ was proven in Lemma 3.1.8.
⇐ Assume that every absolutely convergent series in V converges, and let {yn}n∈N be a Cauchy

sequence. We can find (why?) a subsequence {zk}k∈N = {ynk} such that ‖zk − zk−1‖ ≤ 2−k ∀k ≥ 2.
Now put z0 = 0 and define xk = zk − zk−1 for k ≥ 1. Now

∞∑
k=1

‖xk‖ =
∞∑
k=1

‖zk − zk−1‖ ≤ ‖z1‖+
∞∑
k=2

2−k <∞.

Thus
∑∞

k=1 xk is absolutely convergent, and therefore convergent by the hypothesis. To wit, limn→∞ Sn
exists, where Sn =

∑n
k=1 xk =

∑n
k=1(zk − zk−1) = zn. Thus z = limk→∞ zk = limk→∞ ynk exists,

so that the Cauchy sequence {yn} has a convergent subsequence {ynk}. Now Exercise 5.1.14 gives
limn→∞ yn = z. �
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5.1.2 Nets

Is there a way to repair the failure of Proposition 5.1.7 in the non-first countable situation? The most
straightforward (but not always the best) solution is provided by nets. The idea is to replace the
index set N by some other set that is allowed to depend on the situation. We also need a substitute
for the ordering of N. It turns out that instead of a total order, the following requirement is sufficient:

Definition 5.1.16 A directed set is a pair (I,≤), where I is a set and ≤ is a binary relation on I
that is reflexive and transitive (i.e. a preorder, cf. Definition A.1.8) and satisfies directedness, i.e.
for any ι1, ι2 ∈ I there is a ι3 ∈ I such that ι3 ≥ ι1, ι3 ≥ ι2.

Definition 5.1.17 A net1 in a space X consists of a directed set (I,≤) and a map I → X, ι 7→ xι.
(Usually we will denote the net as {xι}ι∈I or just {xι}.)

Remark 5.1.18 1. We follow the common practice of using lower case Greek letters for the elements
of a directed set, but there are exceptions (as in the proof of Proposition 5.1.21).

2. In many situations, the relation ≤ of a directed set will also satisfy antisymmetry and thus be
a partial order. But not being part of the definition, this property will never be used in proofs.

3. Every totally ordered set (I,≤) is directed: Given ι1, ι2 ∈ I, put ι3 = max(ι1, ι2). In particular
(N,≤) is a directed set, thus every sequence is a net (with I = N).

4. But not every partially ordered set is directed: If X is a set with #X ≥ 2, take I = P (X)\{X}
and ≤ the inclusion order on I.) 2

Definition 5.1.19 (i) If {xι}ι∈I in a net in X and Y ⊆ X, we say xι is eventually in Y if there
exists a ι0 ∈ I such that ι ≥ ι0 ⇒ xι ∈ Y .

(ii) If X is a topological space and y ∈ X, a net {xι}ι∈I converges to y ∈ X if it eventually is in
every (open) neighborhood of y. We then write xι → y.

Remark 5.1.20 There is no point in writing ι → ∞: The notation xι → y is unambiguous, the
direction being built into the definition of a directed set. 2

The next two results shows that nets not only do not share the defect of sequences encountered
in Example 5.1.6, they are also sufficient to test whether a space is Hausdorff:

Proposition 5.1.21 Let (X, τ) be a topological space and Y ⊆ X. Then

(i) The closure Y coincides with the set of limits of nets taking values in Y .

(ii) Y is closed if and only if given any net {yι} ⊆ Y that converges to x ∈ X we have x ∈ Y .

Proof. (i) If {yι}ι∈I is a net with values in Y ⊆ X and yι → x, one proves exactly as for sequences
that x ∈ Y . Now let x ∈ Y . We want to construct a net {yι} in Y such that yι → x. Let
I = Ux = {U ∈ τ | x ∈ U} (the set of open neighborhoods of x). We define a partial order on I by
‘reverse inclusion’, i.e. U ≤ V :⇔ U ⊇ V . (Thus the ‘larger’ elements of I w.r.t. ≤ are the smaller
neighborhoods of x!) This clearly is a partial order, and it is directed: If U, V ∈ I then W = U ∩ V
is an open neighborhood of x, thus in I and W ⊆ U,W ⊆ V , thus W ≥ U,W ≥ V .

1Nets were introduced in 1922 by the American mathematicians Eliakim H. Moore (1862-1932) and Herman L.
Smith (1892-1950). For this reason, in the older literature one finds the term ‘Moore-Smith convergence’, but this
name has now gone out of fashion.
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Since x ∈ Y , every neighborhood U 3 x satisfies U ∩ Y 6= ∅ by Lemma 2.7.3. Thus we can define
a map I → Y by assigning to each U ∈ I a point yU ∈ U ∩ Y . This defines a net in Y indexed by
(I,≤). In order to prove that it converges to x, let V be any (open) neighborhood of x. Thus V ∈ I,
and for every U ∈ I such that U ≥ V , we have U ⊆ V and thus xU ∈ U ⊆ V . Thus yU → x.

(ii) By (i), the set Z = {x ∈ X | ∃{yι} ⊆ Y, yι → x} coincides with Y . Thus the second condition
in (ii) is equivalent to Y = Z = Y , thus closedness of Y . �

Proposition 5.1.22 A topological space (X, τ) is Hausdorff if and only if no net in X has two
different limits.

Proof. The proof of the implication ⇒ is essentially the same as for sequences: If x 6= y are limits
with disjoint open neighborhoods U, V provided by Hausdorffness, let ι1, ι2 such that ι ≥ ι1 ⇒ xι ∈ U
and ι ≥ ι2 ⇒ xι ∈ V . Using directedness we find ι3 such that ι3 ≥ ι1, ι3 ≥ ι2. Now ι ≥ ι3 implies
xι ∈ U ∩ V = ∅, which is absurd.

Now assume that (X, τ) is not Hausdorff. Thus there are points x 6= y such that whenever
U, V ∈ τ with x ∈ U, y ∈ V we have U ∩ V 6= ∅. We will construct a net {xι} such that xι → x
and xι → y. Let I = Nx × Ny. If (P,Q), (R, S) ∈ I, we say (P,Q) ≥ (R, S) if P ⊆ R and
Q ⊆ S. It is easy to see that this defines a directed partial order. Now define a map I → X as
follows. To every (U, V ) ∈ I associate an arbitrary point x(U,V ) ∈ U ∩V . This can be done since any
neighborhoods U ∈ Nx, V ∈ Ny satisfy U ∩ V 6= ∅. Now we claim that the net {x(U,V )} converges
to x and to y. Namely, let A,B be neighborhoods of x and y, respectively. Thus A ∈ Nx, B ∈ Ny,
and therefore (A,B) ∈ I. Now whenever (A′, B′) ≥ (A,B) we have A′ ⊆ A and B′ ⊆ B and thus
x(A′,B′) ∈ A′ ∩B′ ⊆ A ∩B. Thus the net converges to both x and y. �

Remark 5.1.23 1. Thus in a Hausdorff space, the notation limι xι = z is justified. In non-Hausdorff
spaces it should be avoided since it misleadingly suggests uniqueness of limits.

2. If (X, τ) is non-Hausdorff, but first countable, one can combine the ideas of the proofs of
Propositions 5.1.7 and 5.1.22 and construct a sequence that has two different limits.

3. The above proof shows clearly why the condition that (I,≤) be directed was imposed. This
property is essential for most proofs involving nets. (Proposition 5.1.21 was an exception).

4. Nets are a straightforward generalization of sequences and easy to use (after getting used
to them). For this reason they are popular with many analysts. Proofs involving convergence of
nets have a somewhat ‘dynamic’ flair if one interprets the index ι ∈ I as ‘time’, which is consistent
with the terms ‘eventually’ and ‘frequently’. But some proofs involving nets look quite tautological,
compare Propositions 5.1.21, 5.1.22, 5.2.5. In many situations one might prefer proofs that are more
‘static’ or set-theoretic and therefore avoid nets. One way to do this is using the notion of filters,
briefly touched in the next section. (Most set-theoretic topologists seem to prefer filters over nets.)
But often one can find proofs that avoid both filters and nets, as in our first proof of Tychonov’s
theorem in Section 7.5.2. (But we will also give a proof using filters and two that use nets!) 2

Exercise 5.1.24 Show by example that the analogue of Exercise 2.1.21 is false for nets.

Exercise 5.1.25 Let τ1, τ2 be topologies on the set X. Prove that τ1 is finer than τ2 if and only if
for every net {xι} in X and every x ∈ X with xι

τ1−→ x we have xι
τ2−→ x.

Hint: For ⇐ use Proposition 5.1.21.

Example 5.1.26 (Unordered sums) Let f : S → C be a function where S is an arbitrary set.
We want to make sense of

∑
s∈S f(s). Let F be the family of finite subsets of S. Partially ordered



84 CHAPTER 5. CONVERGENCE AND CONTINUITY

by (ordinary!) inclusion of sets, F clearly is a directed set. Thus the map F → C defined by
F 7→

∑
s∈F f(s) is a net. If limF

∑
s∈F f(s) = A exists (in the sense of Definition 5.1.19) we write∑

s∈S f(s) = A.

Exercise 5.1.27 Prove the following statements:

(i) If f(s) ≥ 0 ∀s then supF∈F
∑

s∈F f(s) always exists in [0,∞], and
∑

s∈S f(s) exists if and only
if the supremum is finite, in which case sum and supremum coincide.

(ii) If f(s) ≥ 0 ∀s and supF∈F
∑

s∈F f(s) <∞ then {s ∈ S | f(s) 6= 0} is at most countable.

(iii) If
∑

s∈S |f(s)| <∞ then
∑

s∈S f(s) exists and |
∑

s∈S f(s)| ≤
∑

s∈S |f(s)|.

2

It may be surprising (at first sight) that the converse of (iii) also holds:

Proposition 5.1.28 If
∑

s∈S f(s) exists then
∑

s∈S |f(s)| <∞.

Proof. Put f(s) = as = bs + ics and A =
∑

s as = B+ iC. Then
∑

s∈S bs converges to B and
∑

s∈S cs
converges to C. If we prove

∑
s∈S |bs| <∞ and

∑
s∈S |cs| <∞ then

∑
s∈S |as| <∞ follows. We may

thus assume {as} ⊆ R now. Let
∑

s as = X ∈ R. Then there is a finite F ⊆ S such that

|X −
∑
F ′⊆S

as| < 1 for all finite F ′ ⊃ F. (5.1)

Put

T+ = {s ∈ S\F | as > 0}, T− = {s ∈ S\F | as < 0}.

Now for every finite G ⊆ T+, (5.1) implies
∑

s∈F∪G as < X + 1. Equivalently,∑
s∈G

as < X + 1−
∑
s∈F

as.

Since this holds for all finite G ⊆ T+ and since as ≥ 0 for s ∈ T+, this implies

A1 =
∑
s∈T+

a+
s =

∑
s∈T+

as ≤ X + 1−
∑
s∈F

as <∞. (5.2)

Analogously, for each finiteG ⊆ T− we have
∑

s∈F∪G as > X−1, which implies
∑

s∈F as−
∑

s∈T− a
−
s ≥

X − 1 or

A2 =
∑
s∈T−

a−s ≤ −X + 1 +
∑
s∈F

as <∞. (5.3)

Now obviously
∑

s∈S |as| = A1 + A2 +
∑

s∈F |as| <∞. �

If this seems to contradict what you know about convergence of series (indexed by N), consider
(a) that no order is given on the set S and (b) Riemann’s theorem saying that the sum of a series is
invariant under permutation of the terms if and only if the series is absolutely convergent!

Example 5.1.29 (Riemann integral) Let f : [a, b] → C. A partition of [a, b] is a finite set
P ⊆ [a, b] such that {a, b} ⊆ P . The set P of partitions of [a, b], ordered by inclusion, clearly is a
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directed set. Given a partition P , we can order its elements like a = x0 < x1 < · · · < xN = b, where
P = {x0, . . . , xN}, and define

U(f, P ) =
N∑
i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x),

L(f, P ) =
N∑
i=1

(xi − xi−1) inf
x∈[xi−1,xi]

f(x).

Now, P 7→ U(f, P ), P 7→ L(f, P ) are nets in C indexed by P , and by Darboux’ characterization of
Riemann integrability (which in many books is taken as the definition of Riemann integrability, cf.
[252, 280]), f is Riemann integrable on [a, b] if and only if limP (U(f, P )−L(f, P )) = 0. In that case

we have
∫ b
a
f(x)dx := limP U(f, P ) = limP L(f, P ).

It is easy to prove that every f ∈ C([a, b],C) is Riemann integrable. With more effort one
proves that f : [a, b] → C is Riemann integrable if and only if it is bounded and almost everywhere
continuous (i.e. the set of points where f is not continuous has measure zero in the sense of Definition
11.2.11). 2

Remark 5.1.30 On the basis of the foregoing examples, a topological imperialist would have a point
in claiming that much of classical analysis, at least as long as no measure theory is involved, can be
construed as a part of topology. (This actually seems to be the view of various analysts, e.g. [24].)
At least it shows that any attempt at drawing a dividing line between topology and analysis is futile.
2

Definition 5.1.31 (i) A net {xι}ι∈I in X is frequently in Y ⊆ X if for every ι0 ∈ I there exists
ι ≥ ι0 such that xι ∈ Y .

(ii) A point x ∈ X is an accumulation point of {xι} if it is frequently in every (open) neighborhood
U 3 x.

Remark 5.1.32 1. Clearly every limit of a net is an accumulation point, but not conversely.
2. For a net defined on I = N with the usual order ≤, the above definition of accumulation point

is equivalent to the one in Definition 5.1.10. 2

Exercise 5.1.33 Prove that a net is frequently in Y ⊆ X if and only if it is not eventually in X\Y .

We would like to have a notion of subnets of a net {xι}, such that z ∈ X is a limit of a subnet if
and only if z is an accumulation point (without assuming first countability of course). Such a notion
exists, but it is not entirely obvious. (There even is some controversy as to what the ‘right’ definition
is, cf. Remarks 5.1.38 and 7.5.33.)

Definition 5.1.34 Let (I,≤), (J,≤) be directed sets. A map α : J → I is called cofinal if for every
ι0 ∈ I there is a λ0 ∈ J such that λ ≥ λ0 ⇒ α(λ) ≥ ι0.

Definition 5.1.35 Let (I,≤) be a directed set and {xι}ι∈I a net in X. If (J,≤) is another directed
set, a net J → X, λ 7→ yλ is called a subnet of {xι} if there is a cofinal map α : J → I such that
yλ = xα(λ).

Proposition 5.1.36 A point z ∈ X is an accumulation point of the net {xι} if and only if {xι} has
a subnet that converges to z.
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Proof. Assume that {xι} has a subnet converging to z. I.e., there is a directed set (J,≤) and a cofinal
map α : J → I such that xα(λ) → z. Let U be an open neighborhood of z and let ι0 ∈ I. Since α is
cofinal, there is λ0 ∈ J such that λ ≥ λ0 ⇒ α(λ) ≥ ι0, and since λ 7→ xα(λ) converges to z, there is
λ1 ∈ J such that λ ≥ λ1 ⇒ xα(λ) ∈ U . Thus if λ ≥ λ0 and λ ≥ λ1 then ι = α(λ) ≥ ι0 and xι ∈ U .
Thus xι frequently is in U , i.e. z is an accumulation point.

If, conversely, z is an accumulation point of {xι} then applying the lemma below to F = Nx (or
Ux), we obtain a subnet that eventually is in every N ∈ Nx, i.e. converges to z. �

Lemma 5.1.37 Let {xι} be a net in X and F ⊆ P (X) a family of subsets such that (i) xι is
frequently in every F ∈ F and (ii) given F1, F2 ∈ F , there is F3 ∈ F with F3 ⊆ F1 ∩ F2. Then there
is a subnet J → X, λ 7→ xα(λ) that is eventually in every F ∈ F .

Proof. We follow [234]: Let J = {(ι, F ) ∈ I ×F | xι ∈ F} and define

(ι1, F1) ≥ (ι2, F2) ⇔ ι1 ≥ ι2 and F1 ⊆ F2.

Let (ι1, F1), (ι2, F2) ∈ J . Pick F3 ∈ F with F3 ⊆ F1∩F2. Since xι frequently is in F3, there is ι3 such
that ι3 ≥ ι1, ι3 ≥ ι2 and xι3 ∈ F3. Thus (ι3, F3) ∈ J and (ι3, F3) ≥ (ιk, Fk) for k = 1, 2. Thus (J,≤)
is directed. Define α : J → I by (ι, F ) 7→ ι. This map is cofinal: Given ι0 ∈ I, take λ0 = (ι0, X),
which clearly is in J . Now λ = (ι, F ) ≥ λ0 means ι ≥ ι0, thus α(ι, F ) = ι ≥ ι0.

It remains to show that λ 7→ xα(λ) satisfies the last claim. So let F ∈ F . Since xι frequently
is in F , we can find ι0 ∈ I such that xι0 ∈ F . Then λ0 := (ι0, F ) is in J . Now it is clear that
λ = (ι, F ′) ≥ λ0 implies F ′ ⊆ F and xα(ι,F ′) = xι ∈ F ′ ⊆ F . Thus λ 7→ xα(λ) is eventually in F . �

Remark 5.1.38 1. Since every sequence is a net, we see that an accumulation point of a sequence
always is the limit of a subnet, whether or not the space is first countable.

2. As mentioned above, there are variants of the definition of subnets. Some authors, e.g. [298],
require the map α : J → I to be increasing, i.e. λ2 ≥ λ1 ⇒ α(λ2) ≥ α(λ1). (In the presence of
this requirement, the cofinality can be simplified to: ∀ι ∈ I ∃λ ∈ J : α(λ) ≥ ι.) This definition is
more restrictive than Definition 5.1.35. But since the subnets produced in the proof of Lemma 5.1.37
clearly satisfies the stronger condition, the Lemma and the Proposition are true for both definitions
of subnets. 2

Exercise 5.1.39 Let {xι}ι∈I be a net in the space X. Prove:

(i) If xι → x then every subnet of {xι} converges to x.

(ii) If x ∈ X and every subnet of {xι} has a subnet converging to x then xι → x.

Note: We do not require that every subnet of {xι} converge to x !

5.1.3 ? Filters

In this section we briefly look at the notion of filters, which are an alternative to nets. At first
encounter, filters may be less intuitive, but they have some advantages, like less redundancy in the
proofs and fewer invocations of the axiom of choice. Here we limit ourselves to the basics. For more
on filters, cf. Section 7.5.5. (It turns out that some of the deeper questions about nets can only be
answered with the help of filters!)
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Definition 5.1.40 If X is a set, a filter2 on X is a family F ⊆ P (X) of subsets satisfying:

(i) If F,G ∈ F then F ∩G ∈ F .

(ii) If F ∈ F and G ⊇ F then G ∈ F .

(iii) ∅ 6∈ F .

(iv) F 6= ∅.

(Some authors omit condition (iii) so that also P (X) would be filter. Filters not containing ∅ are
then called proper filters.) If X = ∅ then P (X) = {∅}, thus there are no filters on X. Otherwise
(ii), (iv) imply X ∈ F . Since the intersection of any two elements of a filter again is in the filter,
thus non-empty, every filter has the following important property:

Definition 5.1.41 A family F of subsets of a set X has the finite intersection property if any in-
tersection of finitely many elements of F is non-empty.

In view of Lemma 2.7.2, the family Nx of not-necessarily-open neighborhoods of a point is a filter,
the neighborhood filter of x.

Definition 5.1.42 A filter F on a topological space X is said to converge to x ∈ X if it contains
the neighborhood filter of x, i.e. Nx ⊆ F . (We also say that x is a limit of F .)

Exercise 5.1.43 Prove that a space is Hausdorff if and only if every filter in it converges to at most
one point.

There is a notion of a base for a filter, somewhat analogous to that of a base for a topology:

Definition 5.1.44 Let F ⊆ P (X) be a filter in X.

• A subset B ⊆ F is a filter base for F if every F ∈ F contains some B ∈ B. Equivalently,
F = {Y ⊆ X | ∃B ∈ B : B ⊆ Y }.

• A subset S ⊆ F is a filter subbase for F if the set of all finite intersections of elements of S is
a base for F .

In analogy to bases for a topology we can ask which subsets of P (X) can be filter bases:

Lemma 5.1.45 Let X be a non-empty set and B,S ⊆ P (X). Then

(i) B is filter base for a filter F if and only if if and only if B 6= ∅, ∅ 6∈ B, and for any B1, B2 ∈ B
there is B3 ∈ B such that B3 ⊆ B1 ∩ B2. Under this condition, F is unique and given by
F = {Y ⊆ X | ∃B ∈ B : B ⊆ Y }.

(ii) S is a filter subbase for a filter F if and only if it is non-empty and it has the finite intersection
property. Under this condition, F is unique and given by F = {Y ⊆ X | ∃S1, . . . , Sn :
S1 ∩ · · · ∩ Sn ⊆ Y }.

2Filters were invented in 1937 by the French mathematician Henri Cartan (1904-2008), an important member of
the Bourbaki group. Unsurprisingly, the best reference on filters is [33]. Preference for nets or filters is sometimes
put as a question of American vs. European (in particular French) tastes, but this is simplistic. Most contemporary
research in general topology is actually done in terms of filters, not nets.
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Proof. (i) Let F be a filter on X and B ⊆ F a filter base for F , i.e. F = {Y ⊆ X | ∃B ∈ B : B ⊆ Y }.
Then ∅ 6∈ B (otherwise ∅ ∈ F) and B 6= ∅ (otherwise F = ∅). If B1, B2 ∈ B then B1, B2 ∈ F ,
thus B1 ∩ B2 ∈ F , so that by the relationship between B and F there must be B3 ∈ B such that
B3 ⊆ B1 ∩B2.

For the converse assume B satisfies the three conditions and define F = {Y ⊆ X | ∃B ∈ B : B ⊆
Y }. Then F 6= ∅ (since F ⊇ B) and ∅ 6∈ F . Clearly Y ∈ F implies Z ∈ F whenever Z ⊇ Y . If
Y1, Y2 ∈ F then there are B1, B2 ∈ B such that B1 ⊆ Y1, B2 ⊆ Y2. Now there is B3 ∈ B such that
B3 ⊆ B1 ∩B2 ⊆ Y1 ∩ Y2, thus Y1 ∩ Y2 ∈ F . Thus F is a filter.

(ii) If S is the filter base for some filter F then clearly S ⊆ F , which implies that S has the
finite intersection property (since F has it). If S was empty then so would be the set B of all finite
intersections of elements of B. But by (i), B = ∅ cannot be a filter base.

If S ⊆ P (X) is non-empty and has the finite intersection property, let B be the set of all finite
intersections of elements of S. Then B ⊇ S 6= ∅ and ∅ 6∈ B. And if B1, B2 ∈ B then B1 ∩ B2 is a
finite intersection of elements of S, thus also in B. �

Corollary 5.1.46 If F is filter on X 6= ∅ and f : X → Y a function then

B = {f(F ) | F ∈ F} ⊆ P (Y )

is the filter base of a unique filter G on Y . We write G = f(F).

Proof. We have B 6= ∅ since F 6= ∅, and ∅ 6∈ F implies ∅ 6∈ B. If B1, B2 ∈ B then there are F1, F2 ∈ F
such that B1 = f(F1), B2 = f(B2). Now B1 ∩ B2 = f(F1) ∩ f(F2) ⊇ f(F1 ∩ F2). Now F1 ∩ F2 6= ∅,
and with B3 = f(F1 ∩ F2) ∈ B we clearly have B3 ⊆ B1 ∩ B2. Thus by Lemma 5.1.45(i) there is a
unique filter G having B as filter base. �

As for nets, there is a notion of accumulation points of a filter:

Lemma 5.1.47 A let (X, τ) be a topological space, F a filter on X and x ∈ X. Then the following
are equivalent:

(α) x ∈
⋂
F∈F F .

(β) For every N ∈ Nx ⇒ X\N 6∈ F .

(γ) There is a filter F̂ ⊇ F that converges to x.

If these equivalent conditions hold we say that x is an accumulation point of F .

Proof. (α) ⇒ (β) Assume there is N ∈ Nx such that X\N ∈ F . By definition of Nx, there is an
open U with x ∈ U ⊆ N , thus X\U ⊇ X\N , so that X\U ∈ F . It is clear that x 6∈ X\U = X\U .

(β) ⇒ (γ) We claim that N ∩ F 6= ∅ for any N ∈ Nx, F ∈ F : If there were N ∈ Nx, F ∈ F
with N ∩ F = ∅, we would have F ⊆ X\N . Since F is a filter, this would imply that X\N ∈ F ,
contrary to the assumption. Since any F, F ′ ∈ F meet, as do any N,N ′ ∈ Nx (since both contain
x), it follows that F ∪ Nx has the finite intersection property. Now by Lemma 5.1.45(ii) there is a

filter F̂ containing F ∪Nx, thus F , which by construction converges to x.
(γ)⇒ (α) If F ∈ F then F ∈ F , so that (α) is equivalent to x ∈

⋂
F=F∈F F . Thus if (α) is false

then there is a closed F ∈ F not containing x. But then X\F is an open neighborhood of x and

must be in F̂ since that filter converges to x. Thus both F and X\F are in F̂ , which is not possible.
�

Anticipating the result of Exercise 5.2.1(iii), we can give a characterization of continuity of a
function at a point in terms of the neighborhood filters:
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Lemma 5.1.48 Let X, Y be topological spaces and f : X → Y . Then the following are equivalent:

(i) f is continuous at x ∈ X.

(ii) {f(N) | N ∈ Nx} is a filter base for the filter Nf(x) in Y .

(iii) Whenever F is a filter on X that converges to x, the filter f(F) converges to f(x).

Proof. Statement (ii) is equivalent to saying that for every M ∈ Nf(x) there is an N ∈ Nx such that
f(N) ⊆M . This clearly is equivalent to statement (iii) in Exercise 5.2.1, and therefore to continuity
of f at x, i.e. (i). Since convergence of F to x by definition means Nx ⊆ F , we have (ii)⇔(iii). �

5.1.4 ? From nets to filters and back

We briefly consider the connection between filters and nets.

Exercise 5.1.49 Let {xι} be a net in (X, τ). Prove:

(i) The family F = {F ⊆ X | xι is eventually in F} is a filter, the eventual filter of {xι}.

(ii) The filter F converges to x if and only if the net {xι} does so.

(iii) x ∈ X is an accumulation point of F if and only if x is an accumulation point of {xι}.
Two nets are called equivalent if their eventual filters coincide. By the above (iii), equivalent nets

have the same sets of limits and accumulation points.
Conversely, one can associate a net to a filter:

Proposition 5.1.50 Let F be a filter on X. Define I = {(F, y) ∈ F × X | y ∈ F}, a relation
(F, y) ≤ (F ′, y′) ⇔ F ′ ⊆ F and a map I → X, (F, y) 7→ x(F,y) = y. Then

(i) (I,≤) is a directed set. Thus {x(F,y)} is a net in X, the canonical net associated with F .

(ii) The eventual filter of the net {x(F,y)} coincides with F . Thus F and {x(F,y)} have the same
limits and accumulation points.

Proof. (i) Reflexivity and transitivity of ≤ are obvious. Let (F, x), (F ′, x′) ∈ I. Putting F ′′ = F ∩F ′,
the filter axioms give ∅ 6= F ′′ ∈ F . For any x′′ ∈ F ′′ we have (F ′′, x′′) ≥ (F, x) and (F ′′, x′′) ≥ (F ′, x′),
which is the directedness.

(ii) Let F ∈ F . Since F 6= ∅ we can pick y ∈ F . If (F ′, y′) ≥ (F, y) then F ′ ⊆ F , thus
x(F ′,y′) ∈ F ′ ⊆ F by definition of the net, so that it eventually is in F . Now assume Y ⊆ X, Y 6∈ F .
If there is an F ∈ F such that Y ∩ F = ∅ then F ⊆ X\Y . Since F is a filter, X\Y ∈ F . As already
proven, this implies that x(F,y) eventually is in X\Y , thus certainly not eventually in Y . This leaves
us with the case where Y ∩ F 6= ∅ for all F ∈ F . We cannot have F ⊆ Y for any F ∈ F since that
would imply Y ∈ F contrary to the assumption. Thus for every F ∈ F we have F\Y 6= ∅. If now
y ∈ F\Y then (F, y) ∈ I and y = x(F,y) 6∈ Y . This shows that x(F,y) frequently is not in Y and thus
not eventually in Y . The second statement now is immediate by (ii),(iii) of the Exercise. �

Remark 5.1.51 Note that the two constructions are not strict inverses of each other: While the
eventual filter of the canonical net associated with a filter F coincides with F , the converse is not
true since not every net in X is the canonical net of a filter on X. This already follows from the
fact that the index set of a the canonical net of F has cardinality ≤ #(F ×X) ≤ #(P (P (X))×X),
whereas there are no restrictions on the index set I of an arbitrary net {xι}ι∈I in X. Nevertheless,
every net is equivalent to the canonical net associated with its eventual filter, so that the two nets
have the same limits and accumulation points. 2
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5.2 Continuous, open, closed functions. Homeomorphisms

Having discussed the basics of the notion of convergence, we now turn to continuity. In (general)
topology, the notion of continuous functions is much more important than convergence, since it
provides the morphisms in the category of topological spaces, cf. Definition 5.2.14.

5.2.1 Continuity at a point

Exercise 5.2.1 Let (X, τ), (Y, σ) be topological spaces, f : X → Y a function and x ∈ X. Prove
that the following are equivalent:

(i) For every open neighborhood V of f(x) there exists an open neighborhood U of x such that
f(U) ⊆ V .

(ii) For every open neighborhood V of f(x) we have that f−1(V ) ⊆ X is a neighborhood of x (not
necessarily open). (I.e.: U ∈ Uf(x) ⇒ f−1(U) ∈ Nx.)

(iii) For every N ∈ Nf(x) we have f−1(N) ∈ Nx.

Remark 5.2.2 1. Note that in (i) we did not require that f−1(U) ⊆ X be open for every open �

neighborhood U of f(x), which potentially is a stronger statement!
2. Continuity of f at x implies

⋂
U∈Ux f(U) ⊆

⋂
V ∈Uf(x)

V ≡
⋂
Uf(x). If Y is T1 then the r.h.s.

equals {f(x)} (Exercise 2.5.1), thus
⋂
U∈Ux f(U) = {f(x)}. (Deducing continuity of f at x from⋂

U∈Ux f(U) = {f(x)} is much harder and works only under restrictive additional assumptions. 2

Definition 5.2.3 Let (X, τ), (Y, σ) be topological spaces, f : X → Y a function and x ∈ X.
If the equivalent statements in Exercise 5.2.1 hold, then f is called continuous at x and x is a
continuity point of f .

Exercise 5.2.4 Let (X, d), (Y, d′) be metric spaces and equip them with the metric topologies. For
a function f : X → Y , prove that the following are equivalent:

(i) f is continuous at x ∈ X in the above (topological) sense.

(ii) f is continuous at x ∈ X in the (metric) sense of Definition 2.1.22.

(iii) f(xn)→ f(x) for every sequence {xn} such that xn → x.

As recalled in Exercise 5.2.4, for metric spaces (X, d), (Y, d′) we have continuity of f : X → Y at
x ∈ X if and only if f(xn)→ f(x) for every sequence {xn} such that xn → x. As we have seen, for
general topological spaces, sequences are not good enough to probe closedness, and the same is true
for continuity. Nets do not have this defect, and indeed they can be used to characterize continuity
of functions:

Proposition 5.2.5 Let (X, τ), (Y, σ) be topological spaces and f : X → Y a function. Then f is
continuous at x ∈ X if and only if f(xι)→ f(x) for every net {xι}ι∈I in X such that xι → x.

Proof. (⇒) Let f be continuous at x and let xι → x. We want to prove that f(xι)→ f(x). Let V be
an open neighborhood of f(x). By continuity of f at x, there is an open neighborhood U of x such
that f(U) ⊆ V , cf. Exercise 5.2.1. Since xι → x, there is ι0 ∈ I such that ι ≥ ι0 ⇒ xι ∈ U . But by
construction, f(U) ⊆ V , thus ι ≥ ι0 ⇒ f(xι) ∈ V . Thus f(xι)→ f(x).
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(⇐) Assume that f is not continuous at x. Then by (ii) of Exercise 5.2.1, there exists an open
neighborhood V of f(x) such that f(U) 6⊆ V for every open neighborhood U of x. Thus, for every
U ∈ Ux we can choose a point xU ∈ U such that f(xU) 6∈ V . Taking I = Ux and ≤=⊇ as in the
proof of Proposition 5.1.21, (I,≤) is a directed set and the net {xU}U∈I converges to x. But since
for every U we have f(xU) 6∈ V , the net {f(xU)}U∈I is not eventually in the neighborhood V of f(x),
thus does not converge to f(x). �

Remark 5.2.6 1. In order to conclude that f is continuous at x ∈ X it is enough to prove that
f(xι)→ f(x) for every net {xι} in X\{x} such that xι → x. This is because the net constructed in
the proof of ⇐ automatically satisfies xU 6= x for all U .

2. Let X, Y be topological spaces, where X is first countable, and f : X → Y is not continuous
at x ∈ X. Let V be as in the proof of Proposition 5.2.5 ⇐, and let U1 ⊇ U2 ⊇ · · · a decreasing
countable open neighborhood base at x. Then for every n ∈ N we can choose xn ∈ Un such that
f(xn) 6∈ V ∀n. Then {xn} is a sequence such that xn → x and f(xn) 6→ f(x).

3. If f : X → Y is function and x0 ∈ X, y0 ∈ Y , one shows (similarly to Proposition 5.2.5) that
the following are equivalent:

(i) For every net {xι} in X\{x0} that converges to x0, the net {f(xι)} converges to y0.

(ii) For every open neighborhood V of y0, there is an open neighborhood U of x0 such that
f(U\{x0}) ⊆ V .

(iii) The function f̃ defined by f̃(x0) = y0 and f̃(x) = f(x) for x 6= x0 is continuous at x0. (Thus
f at worst has a discontinuity at x0 that can be removed by changing f(x0).)

If these (equivalent) conditions (for which the value f(x0) is irrelevant!) are satisfied one says
f(x) converges to y0 as x→ x0, in symbols limx→x0 f(x) = y0. In particular, f is continuous at x0 if
and only if limx→x0 f(x) = f(x0). In this sense, the notion of convergence at a point generalizes that
of continuity at a point. It should be noted that this concept is more popular with analysts than
with topologists. 2

5.2.2 Continuous functions. The category T OP
Definition 5.2.7 Let (X, τ), (Y, σ) be topological spaces and f : X → Y . Then f is called continuous
if f−1(U) ∈ τ for every U ∈ σ. The set of continuous functions X → Y is usually denoted C(X, Y ),
suppressing the topologies. (We may occasionally write C(X) instead of C(X,R).)

Exercise 5.2.8 Let (X, τ), (Y, σ) be topological spaces and f : X → Y a function. Prove that the
following are equivalent:

(i) f is continuous (in the sense of Definition 5.2.7).

(ii) f−1(C) ⊆ X is closed for every closed C ⊆ Y .

(iii) f−1(U) is open for every U in a base (or subbase) of σ.

(iv) f is continuous at every x ∈ X.

(v) f(Z) ⊆ f(Z) for every Z ⊆ X.
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Hint: The implications involving (v) are somewhat more difficult, but very instructive. For (i)⇒(v)
assume x ∈ Z and use Lemma 2.7.3 twice to prove f(x) ∈ f(Z). To obtain (v)⇒(ii), assume C ⊆ Y
is closed and apply (v) to Z = f−1(C) to prove that f−1(C) is closed.

Exercise 5.2.9 Prove the equivalence (i)⇔(v) of Exercise 5.2.8 using nets.

Exercise 5.2.10 Let (X, τ), (Y, σ) be topological spaces. Prove:

(i) If X is discrete or Y is indiscrete then every function f : X → Y is continuous.

(ii) If X is connected and Y is discrete then every continuous f : X → Y is constant. (This will
be generalized later.)

(iii) If X is irreducible and Y Hausdorff, then every continuous f : X → Y is constant.

Exercise 5.2.11 Prove:

(i) If f : X → Y is continuous and surjective and A ⊆ X is dense then f(A) ⊆ Y is dense.

(ii) If X is separable and f : X → Y is continuous and surjective then Y is separable.

Remark 5.2.12 If X, Y are metric spaces, (2.6) defines a metric D on the space B(X, Y ) of bounded
functions from X to Y , and Cb(X, Y ) = C(X, Y ) ∩ B(X, Y ) ⊆ B(X, Y ) is a closed subspace, cf.
Proposition 2.1.26. Now that we have the notion of continuity between topological spaces, we can
generalize this to the case where (X, τ) only is a topological space. Reexamining the proofs of
Propositions 2.1.26 and 3.1.12, one finds that they easily generalize. (Essentially the only thing one
needs to change is to replace the δ > 0 in the proof of Proposition 2.1.26(ii) by an open neighborhood
U 3 x such that y ∈ U ⇒ d′(fN(x), fN(y)) < ε/3.) 2

Exercise 5.2.13 Let f : X → Y and g : Y → Z be continuous. Prove that g ◦ f is continuous.

Given the preceding result, it is natural to start using some categorical language, cf. Appendix
A.5:

Definition 5.2.14 Topological spaces and continuous maps form a category T OP. Its objects are
topological spaces, and for topological spaces X, Y we have HomT OP(X, Y ) = C(X, Y ). Composition
of morphisms is given by composition of maps (cf. the preceding exercise), and the identity morphism
idX of every space X just is the identity map x 7→ x.

The full subcategory consisting of Hausdorff spaces is denoted T OPT2.

Exercise 5.2.15 Prove: If Y is Ti, where i ∈ {1, 2}, and f : X → Y is continuous and injective
then X is Ti.

Exercise 5.2.16 For Y Hausdorff and f, g : X → Y continuous, prove:

(i) The coincidence set C = {x ∈ X | f(x) = g(x)} ⊆ X of f and g is closed. Hint: Prove that
X\C is open.

(ii) If f and g coincide on a dense subset of X then f = g.

(iii) If A ⊆ B ⊆ A ⊆ X and f ∈ C(A, Y ), then f has at most one extension f̂ to B. (I.e. a function

f̂ ∈ C(B, Y ) such that f̂ �A = f .)
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Remark 5.2.17 1. The uniqueness result in (iii) will be extremely useful. Assume that f ∈ C(X, Y )
has dense image and that g, h ∈ C(Y, Z), where Z is Hausdorff, satisfy g ◦ f = h ◦ f . Then f and
g coincide on the dense subset f(X) ⊆ Y , so that Exercise 5.2.16(ii) implies g = h. In categorical
language this means: ‘In the category T OPT2 of Hausdorff spaces, every continuous map with dense
image is an epimorphism’, cf. Definition A.5.5. The converse is also true: Every epimorphism in the
category T OPT2 has dense image, cf. Remark 6.6.6. (But: In the category T OP of all topological
spaces, epimorphisms coincide with surjective maps.)

2. Proving existence of extensions is more difficult and requires further assumptions. Given a
continuous function f : X ⊇ A→ Y , where Y is Hausdorff, one can try to extend it to A as follows:
For x ∈ A and a net {xι} in A converging to x, the net {f(xι)} in Y has at most one limit z. If this

limit exists and is independent of the chosen net {xι}, this defines f̂(x). In practice, one prefers a
more set (in fact filter) theoretic approach over the use of nets. Cf. Proposition 3.4.10 in a metric
setting (using completeness) and Theorem 7.4.20 for topological spaces (using compactness).

3. If A ⊆ X is closed the above strategy for extending f : A→ Y to some B ) A does not work.
Yet, there are some existence results, cf. Theorem 8.2.20 and 8.5.37, but little on uniqueness. 2

By Proposition 5.2.5, continuity of a function f : X → Y (at a point x ∈ X) can be interpreted
in terms of convergence of nets (or sequences, in favorable cases). But from a categorical point of
view one can argue that the concept of continuity (of functions) is more fundamental than that
of convergence (of sequences/nets), since continuous functions are the morphisms in the category
T OP , whereas the conceptual meaning of (convergent) sequences/nets is less clear. It therefore is
interesting that convergence can be considered as a special case of continuity:

Exercise 5.2.18 (i) Write N∞ = N ∪ {∞} and define

τ∞ = P (N) ∪ {N∞\F | F ⊆ N finite}.

Prove that τ∞ is a topology on N∞.

(ii) If (X, τ) is a topological space, {xn}n∈N a sequence in X, and z ∈ X, define f : N∞ → X by
f(n) = xn ∀n ∈ N and f(∞) = z. Prove that the following are equivalent:

(α) f : (N∞, τ∞)→ (X, τ) is continuous.

(β) f is continuous at ∞.

(γ) lim
n→∞

xn = z.

(The space (N∞, τ) has natural interpretations, cf. Exercise 5.2.22 and Remark 7.8.16.3.)

(iii) (Bonus) Can you generalize (i), (ii) to nets?

5.2.3 Homeomorphisms. Open and closed functions

Definition 5.2.19 A function f : (X, τ) → (Y, σ) is called a homeomorphism if it is bijective,
continuous, and the inverse function f−1 : Y → X is continuous.

Two spaces (X, τ), (Y, σ) are called homeomorphic (X ∼= Y ) if and only if there exists a homeo-
morphism f : X → Y .

Exercise 5.2.20 Prove:
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(i) All open intervals (a, b) ⊆ R are mutually homeomorphic, and the same holds with ‘open’
replaced by ‘closed’ or by ‘half-open’, meaning (a, b] and [a, b).

Remark: Later we will prove that (a, b), [a, b], [a, b) are mutually non-homeomorphic.

(ii) The functions from (−1, 1) to R given by

f1 : x 7→ x

1− |x|
, f2 : x 7→ x√

1− x2
, f3 : x 7→ tan

xπ

2

are homeomorphisms. Give the inverse functions.

(iii) Prove [0, 1) ∼= [0,∞).

(iv) Prove R ∼= (0,∞) in two ways: Using (i)-(iii), and using x 7→ ex.

Remark 5.2.21 1. A continuous function f : (X, τ) → (Y, σ) is a homeomorphism if and only if
there is a continuous function g : (Y, σ) → (X, τ) such that g ◦ f = idX and f ◦ g = idY . Thus
homeomorphisms are the isomorphisms in the category T OP .

2. Just as groups (rings, fields, vector spaces) that are isomorphic in their respective categories are
the “same” for all purposes of algebra, homeomorphic topological spaces are the “indistinguishable”
for the purposes of topology. The best one could hope for in topology would be classification of
topological spaces up to homeomorphism. (This is still completely hopeless.)

3. A property P that a topological space may have or not (like T1, T2, metrizability, first or
second countability) is called topological if a space Y homeomorphic to X has property P if and
only if X has it. Some authors make a big point out of pointing out for every property that they
define that it is topological (or giving the proofs as exercises). This seems rather pointless, since
it is utterly obvious for all properties defined purely in terms of the topology τ . (After all, every
bijection f : X → Y gives rise to a canonical bijection f ′ : P (X) → P (Y ), and f : (X, τ) → (Y, σ)
is a homeomorphism if and only if f ′ restricts to a bijection τ → σ.) The property “42 ∈ X” clearly
is not topological, and the author is not aware of less artificial examples. (Completeness of metric
spaces is not preserved under homeomorphisms, thus it is not a topological property. But it is not
even a property of topological spaces!)

4. Recall the Bernstein-Schröder theorem from set theory: If there are injective maps X → Y

and Y → X then there is a bijection X
∼=→ Y . In topology this is not true! On can find topological �

spaces (X, τ), (Y, σ) and continuous bijections X → Y and Y → X such that X and Y are non-
homeomorphic! Cf. [74, p.112].

5. Isometric bijections between metric spaces are the isomorphisms in the category of metric
spaces and isometric maps. 2

Exercise 5.2.22 Prove that the space (N∞, τ) from Exercise 5.2.18 is homeomorphic to the subspace
X = {1/n | n ∈ N} ∪ {0} of (R, τd) (τd is the Euclidean topology).

Definition 5.2.23 A function f : (X, τ)→ (Y, σ) is called open (resp. closed) if f(Z) ⊆ Y is open
(resp. closed) whenever Z ⊆ X is open (resp. closed).

Remark 5.2.24 If f : (X, τ)→ (Y, σ), where B is a base for τ , then f is open if and only f(U) ∈ σ
for each U ∈ B. (The analogous statement for subbases need not be true!) 2

The following is an immediate consequence of the definitions:
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Lemma 5.2.25 Let X be a set and τ1, τ2 topologies on X. Let idX : x 7→ x be the identical function
on X. Then:

(i) idX : (X, τ1)→ (X, τ2) is open ⇔ τ1 ⊆ τ2.

(ii) idX : (X, τ1)→ (X, τ2) is continuous ⇔ τ2 ⊆ τ1.

(iii) idX : (X, τ1)→ (X, τ2) is a homeomorphism ⇔ τ1 = τ2.

Generalizing from identity maps to bijections, we have:

Lemma 5.2.26 Let (X, τ), (Y, σ) be topological spaces.

(i) If f : X → Y is a bijection with inverse g : Y → X then g is continuous ⇔ f is open ⇔ f
is closed.

(ii) A function f : X → Y is a homeomorphism ⇔ f is bijective, continuous and open ⇔ f is
bijective, continuous and closed.

Proof. (i) If f : X → Y and g : Y → X are mutually inverse functions then for every Z ⊆ X we have
g−1(Z) = f(Z), which gives that g is continuous if and only if f is open. Since f is a bijection, it
satisfies f(X\Z) = Y \f(Z) for every Z ⊆ X. From this it is immediate that openness and closedness
of f are equivalent (for bijections!).

(ii) is an obvious consequence of (i). �

We will have many occasions to see that openness and closedness are useful properties even for
functions that are not-bijective. Here is a first example:

Exercise 5.2.27 If (X, τ) is first (respectively second) countable and f : X → Y is continuous,
open and surjective, prove that (Y, σ) is first (respectively second) countable.

Remark 5.2.28 1. The analogous statement for separability (Exercise 5.2.11(ii)) was true without
the openness assumption, but for second countability of f(X) this is not the case! Cf. Proposition
7.4.17 for a result on second countability of images under closed maps.

2. For every topological space Y there is a continuous open surjection f : X → Y with X
Hausdorff, cf. [298, 13H].

3. Every metric space is first countable. Thus if M is metric and f : M → X is continuous,
open and surjective then X is first countable by Exercise 5.2.27. Actually every first countable space
arises in this way! For T1-spaces the proof is not difficult, cf. e.g. [282, p. 179-180]. Now the result
under 2. can be used to remove the T1 assumption.) 2

Exercise 5.2.29 Given a function f : X → Y , prove that the following are equivalent:

(i) f is closed.

(ii) f(A) ⊆ f(A) holds for every A ⊆ X.

(iii) For every y ∈ Y and every open U ⊆ X such that f−1(y) ⊆ U there is an open V ⊆ Y such
that y ∈ V and f−1(V ) ⊆ U .

Corollary 5.2.30 The identity f(A) = f(A) holds for all A ⊆ X if and only if f is continuous and
closed.
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5.2.4 ? Semicontinuous R-valued functions

Recall the usual topology σ of R has a subbase S = {(a,∞) | a ∈ R} ∪ {(−∞, a) | a ∈ R}. By
Exercise 5.2.8(iii), this implies that f : (X, τ)→ (R, σ) is continuous if and only if f−1((a,∞)) and
f−1((−∞, a)) are in τ for every a ∈ R. This motivates the following definition:

Definition 5.2.31 Let (X, τ) be a topological space. A function f : X → R is called

• lower semicontinuous (resp. upper semicontinuous) at x ∈ X if for every ε > 0 there is an
open neighborhood U 3 x such that f(U) ⊆ (f(x)− ε,∞) (resp. f(U) ⊆ (−∞, f(x) + ε)).

• lower semicontinuous (resp. upper semicontinuous) if f−1((a,∞)) (resp. f−1((−∞, a))) is open
for every a ∈ R.

Exercise 5.2.32 Let f : (X, τ)→ R be a function. Prove:

(i) f is lower (resp. upper) semicontinuous at x ∈ X ⇔ for every ε > 0 and every net {xι}ι∈I such
that xι → x, there is a ι0 ∈ I such that ι ≥ ι0 ⇒ f(xι) > f(x)− ε (resp. f(xι) < f(x) + ε).

(ii) f is upper (lower) semicontinuous if and only if f is upper (lower) semicontinuous at every
x ∈ X.

(iii) f is continuous (at x) if and only if it is upper and lower semicontinuous (at x).

(iv) f is upper semicontinuous if and only if −f is lower semicontinuous.

(v) If F is a family of lower semicontinuous functions then g(x) = sup{f(x) | f ∈ F} is lower
semicontinuous.

(vi) A finite sum of lower semicontinuous functions is lower semicontinuous.

(vii) If F is a family of non-negative lower semicontinuous functions such that for all x ∈ X,
g(x) =

∑
f∈F f(x) < ∞ (in the sense of unordered summation, cf. Example 5.1.26) then g is

lower semicontinuous.

(viii) If F is as in (vii) with g continuous, then x 7→
∑

f∈F ′ f(x) is continuous for every F ′ ⊆ F . In
particular, every f ∈ F is continuous.

Another way of testing semicontinuity is using the lower and upper limits (lim inf and lim sup)
which can be defined as for sequences. For a net {yι} in R indexed by the directed set (I,≤) and
ι0 ∈ I, define

Uι0 = sup{yι | ι ≥ ι0}, Lι0 = inf{yι | ι ≥ ι0},
both taking values in the extended reals R̃ = R∪{−∞,+∞}. It is clear that ι1 ≥ ι2 implies Uι1 ≤ Uι2
and Lι1 ≥ Lι2 , thus the limits

lim sup yι := lim
ι
Uι, lim inf yι := lim

ι
Lι

always exist in R̃.

Exercise 5.2.33 Consider a function f : X → R and x ∈ X. Prove that f is . . .

(i) lower semicontinuous at x if and only if f(x) ≤ lim inf f(xι) for every net {xι} with xι → x,

(ii) upper semicontinuous at x if and only if f(x) ≥ lim sup f(xι) for every net {xι} with xι → x.

For results involving semicontinuous functions see Theorem 8.5.34 and Theorem B.2.2.



Chapter 6

New spaces from old

6.1 Initial and final topologies

It often happens that a family of maps fi from a set to certain topological spaces is given (or the
other way round) and we want to find the “best” topology on the set making all fi continuous. What
“best” means depends on whether we consider maps fi : X → (Yi, σi) or fi : (Xi, τi)→ Y .

6.1.1 The final topology

We begin with the (slightly nicer) case, where maps fi : (Xi, τi)→ Y are given. This is relevant for
direct sums and quotients of topological spaces.

Definition 6.1.1 Let (Xi, τi) be a topological space for each i ∈ I, and let Y be a set. Let functions
fi : Xi → Y, i ∈ I be given. The final topology on Y induced by the maps fi is the finest topology
σfin such that all maps fi : (Xi, τi)→ (Y, σfin), i ∈ I are continuous.

Lemma 6.1.2 The final topology σfin always exists, is unique and is given by

σfin = {U ⊆ Y | f−1
i (U) ∈ τi ∀i ∈ I}. (6.1)

Proof. For the purpose of this proof, denote the r.h.s. of (6.1) by σ′. We claim that σ′ is a topology.
It should be obvious that ∅, Y ∈ σ′. And if each Uk ⊆ Y satisfies f−1

i (Uk) ∈ τi for all i ∈ I then by
basic set theory (cf. Appendix A.1) we have f−1

i (
⋃
k Uk) =

⋃
k f
−1
i (Uk) ∈ τi and (for finitely many k)

f−1
i (
⋂
k Uk) =

⋂
k f
−1
i (Uk) ∈ τi for all i. Thus σ′ is a topology.

Now, the very definition of continuity implies that every topology σ on Y for which all maps
fi : (Xi, τi) → (Y, σ) are continuous is contained in σ′. Thus σ′ is the finest (=largest) topology on
Y making all fi : Xi → Y continuous, thus σfin = σ′. �

Exercise 6.1.3 Prove that a subset Z ⊆ Y is σfin-closed if and only if f−1
i (Z) ⊆ Xi is closed for all

i ∈ I.

Proposition 6.1.4 Let (Xi, τi), Y, fi be as in Definition 6.1.1, and let σfin be the corresponding final
topology on Y . Then a map h : (Y, σfin) → (Z, γ) is continuous if and only if the composition
h ◦ fi : (X, τi)→ (Z, γ) is continuous for every i ∈ I.

Proof. By definition of the final topology σfin, all fi : (Xi, τi) → (Y, σfin) are continuous. Thus if
h : (Y, σfin)→ (Z, γ) is continuous, so are h ◦ fi.

97
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Now assume that h ◦ fi : (Xi, τi)→ (Z, γ) is continuous for every i ∈ I. I.e., for every U ∈ γ we
have f−1

i (h−1(U)) = (h ◦ fi)−1(U) ∈ τi. Thus if we write V = h−1(U) ⊆ Y , we have f−1
i (V ) ∈ τi ∀i.

But in view of Lemma 6.1.2, this is equivalent to V ∈ σfin. Thus h is continuous. �

6.1.2 The initial topology

We now turn to the case, where maps fi : X → (Yi, σi) are given. This applies to subspaces and
products of topological spaces.

Definition 6.1.5 Let X be a set and let (Yi, σi) a topological space for each i ∈ I. Let functions
fi : X → Yi, i ∈ I be given. The initial topology induced by the maps fi is the coarsest topology τini

on X such that all maps fi : (X, τini)→ (Yi, σi), i ∈ I are continuous.

Lemma 6.1.6 (i) The initial topology always exists and is unique.

(ii) A subbase for the initial topology τini is given by

S = {f−1
i (U) | i ∈ I, U ∈ σi}. (6.2)

Proof. Define S ⊆ P (X) as in (6.2). If τ is a topology on X then continuity of all maps fi : (X, τ)→
(Yi, σi) is equivalent to S ⊆ τ . We know from Lemma 4.2.2 that there is a unique weakest topology
τ on X containing S, obtained either as the intersection of all topologies that contain S or as the
family of all sets that can be written as arbitrary unions of finite intersections of elements of S.
(These two descriptions are different only at first sight.) This topology clearly is τini, and it has S
as subbase by construction. �

Remark 6.1.7 The conclusion of Lemma 6.1.6 is not quite as nice as that of Lemma 6.1.2: While
we could write down τfin explicitly, τini could only be defined by writing down a subbase. This is due
to the fact that inverse images of functions have better algebraic properties than images, cf. Lemma
A.1.7. This is also the reason why there is no nice analogue of Exercise 6.1.3 for the initial topology.
2

The following is entirely analogous to Proposition 6.1.4:

Proposition 6.1.8 Let X, (Yi, σi), fi be as in Definition 6.1.5, and let τini be the corresponding initial
topology on X. Then a map h : (Z, γ) → (X, τini) is continuous if and only if the composition
fi ◦ h : (Z, γ)→ (Y, σi) is continuous for every i ∈ I.

Proof. By definition of the initial topology τini, all fi : (X, τini) → (Yi, σi) are continuous. Thus if
h : (Z, γ)→ (X, τini) is continuous, so are the composites fi ◦ h.

Now assume that fi ◦ h : (Z, γ)→ (Y, σi) is continuous for every i ∈ I. Thus for every i ∈ I and
U ∈ σi, we have (fi ◦ h)−1(U) ∈ γ. But this is the same as h−1(f−1

i (U)) ∈ γ. By Lemma 6.1.6(ii),
{f−1

i (U) | i ∈ I, U ∈ σi} is a subbase S for τini. Thus h−1(V ) ∈ γ for every V ∈ S, and continuity
of h follows from Exercise 5.2.8(iii). �

The following has no analogue for the final topology:

Proposition 6.1.9 Let X, (Yi, σi), fi be as in Definition 6.1.5, and let τini be the corresponding initial
topology on X. Then a net {xι} in X converges to z ∈ (X, τini) if and only if fi(xι) converges to
fi(z) in (Yi, σi) for each i ∈ I.
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Proof. If xι converges in (X, τini) then by Proposition 5.2.5, fi(xι) converges in (Xi, σi) for each i ∈ I,
since fi is continuous by definition of τini. Now let z ∈ X and assume that fi(xι) converges to
zi = fi(z) ∈ Xi for each i, and let z ∈ U ∈ τini. The S of Lemma 6.1.6 is a subbase for τini, thus
there are i1, . . . , in ∈ I and Uk ∈ σik such that

z ∈ f−1
i1

(U1) ∩ · · · ∩ f−1
ik

(Uk) ⊆ U.

This clearly implies that zik ∈ Uk for all k = 1, . . . , n. Since all nets {fi(xι)} converge, we can find
ιk ∈ I such that ι ≥ ιk ⇒ fik(xι) ∈ Uk. Since (I,≤) is directed, we can find ι0 ∈ I such that
ι0 ≥ ιk ∀k = 1, . . . , n. Now, if ι ≥ ι0 we have fik(xι) ∈ Uk ∀k = 1, . . . , n, and therefore xι ∈ U . This
proves xι → z. �

Remark 6.1.10 1. Notice that we do NOT assert that fi(xι)→ zi ∈ Xi ∀i ∈ I implies the existence�

of z ∈ X such that fi(z) = zi and xι → z. The existence of z ∈ X must be given!
2. If Z = {z ∈ X | fi(z) = zi ∀i ∈ I} and fi(xι)→ zi ∀i, then the above shows that xι converges

to every z ∈ Z! Thus by Proposition 5.1.22, the initial topology τini will fail to be Hausdorff if the�

map f : X →
∏

k Yk defined by f(x)i = fi(x) is not injective. (If f is injective, we say that the
family fi : X → Yi separates the points of X.) 2

6.2 Subspaces

We have encountered subspaces very early (Exercise 2.2.9). Now we study those aspects of subspaces
that involve continuous functions.

Lemma 6.2.1 Let (X, τ) be a topological space and Y ⊆ X. Then the subspace topology τY , cf.
(2.7), coincides with the initial topology τini on Y induced by the inclusion map ι : Y ↪→ X.

Proof. By Lemma 6.1.6(ii), S = {ι−1(U) | U ∈ τ} is a subbase for the initial topology τini. But
ι−1(U) = U ∩ Y , from which it is clear that S is already closed under unions and finite intersections,
so that τini = S = τY . �

Corollary 6.2.2 Let Y ⊆ (X, τ) and let τY be the subspace topology. Then f : (Z, η) → (Y, τY ) is
continuous if and only if f is continuous as a map (Z, η) → (X, τ). (Strictly speaking, we should
write ι ◦ f : Z → X, where ι : Y ↪→ X is the inclusion map.)

Proof. In view of Lemma 6.2.1, this is immediate by Proposition 6.1.8.
Also the direct proof is very simple. Assume f : Z → Y is continuous as a map to X. Let V ∈ τY .

Then there is a U ∈ τ such that V = Y ∩ U . Now f−1(V ) = f−1(U), which is open by continuity of
f : Z → X. The converse is clear since ι is continuous. �

Remark 6.2.3 1. If this corollary was not true, then clearly something would be wrong with our
definition of subspaces.

2. If this was the only application of initial topologies, it would hardly justify introducing the
notion. The initial topology will come into its own in the discussion of the product topology, cf.
Section 6.5, where it really provides the right perspective. (The corollary can, of course, be proven
without the formalism of initial topologies, but that proof would just be a restatement of that of
Proposition 6.1.8 in the special case at hand.)
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3. In the discussion of subspaces, we consider maps f : Y → (X, σ) that are injective. Without
this assumption, the initial topology τini on Y induced by f can be quite badly behaved. (Cf. also
Remark 6.1.10.) E.g. in the extreme case where f = const = x ∈ X, we find that f−1(U) equals
either Y if x ∈ U ⊆ X or ∅ if x 6∈ U . Thus τini is the indiscrete topology. 2

Exercise 6.2.4 Let Y ⊆ (X, τ) be a subspace. Then the inclusion map ι : Y ↪→ X is open (resp.
closed) if and only if Y ⊆ X is open (resp. closed).

Exercise 6.2.5 Let (X, τ), (Y, σ) be topological spaces and f : X → Y a function. Prove:

(i) If f is continuous and A ⊆ X then f �A : (A, τA)→ (Y, σ) is continuous.

(ii) Continuity of f �A for each A ∈ A together with
⋃
A = X does not imply continuity of f .

(iii) If U is a family of open subsets of X such that f � U is continuous for every U ∈ U and⋃
U∈U = X then f is continuous.

(iv) A statement analogous to (ii) holds for finite families of closed subsets. Explain why this does
not generalize to infinite families.

The following immediate consequence is used very often:

Corollary 6.2.6 (Gluing of functions) Let X, Y be topological spaces. Let A be a family of sub-
sets of X such that

⋃
A∈AA = X. Assume that all elements of A are open, or A is finite and all

elements are closed. Let {fA : A→ Y }A∈A be continuous functions such that fA �A∩A′ = fA′ �A∩A′
whenever A,A′ ∈ A and A ∩ A′ 6= ∅. Then the function f : X → Y defined by f(x) = fA(x), where
we choose any A ∈ A with x ∈ A, is continuous.

The following notion involving subspaces will have many uses:

Definition 6.2.7 A map f : (X, τ) → (Y, σ) is called an embedding if f : X → f(X) is a homeo-
morphism w.r.t. the subspace (=induced) topology on f(X) ⊆ Y .

Example 6.2.8 Let (X, τ) be a topological space and Y ⊆ X. Then the inclusion map (Y, τY ) →
(X, τ) is an embedding, quite trivially. 2

Given f : X → Y , it is clear that f : X → f(X) is automatically surjective, and injective
if and only if f : X → Y is injective. Giving f(X) ⊆ Y the subspace topology, continuity of
f : (X, τ) → (f(X), σ � f(X)) is equivalent to continuity of f : (X, τ) → (Y, σ) by Corollary 6.2.2.
Thus in order for f : X → Y to be an embedding, it must be continuous and injective.

Lemma 6.2.9 Let f : (X, τ)→ (Y, σ) be continuous and injective.

(i) The following are equivalent:

(α) f is an embedding

(β) f is open as a map X → f(X).

(γ) f is closed as a map X → f(X).

(δ) f(x) 6∈ f(C) whenever C ⊆ X is closed and x ∈ X\C.

(ii) If f : X → Y is open or closed then f : X → f(X) is open (closed), thus an embedding.
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Proof. (i) By Lemma 5.2.26, f is an embedding if and only if f : X → f(X) is injective, surjective,
continuous and open (or, equivalently, closed). Since our assumptions imply that f : X → f(X) is
a continuous bijection, we thus have (α)⇔ (β)⇔ (γ).

To conclude, we prove (γ)⇔ (δ). Let C ⊆ X be closed. By Exercise 2.6.13(iii), closedness of f(C)
is equivalent to f(C) =Clf(X)(f(C)) = f(C) ∩ f(X). The inclusion f(C) ⊆ f(C) ∩ f(X) is trivially

true. The converse inclusion f(C) ∩ f(X) ⊆ f(C) is just the statement that if y = f(x) ∈ f(C) for
some x ∈ X, then y ∈ f(C). Since f is injective, this implies x ∈ C. Thus f is an embedding if and
only if (C ⊆ X closed, x ∈ X, f(x) ∈ f(C) ⇒ x ∈ C). This is just the contraposition of (δ).

(ii) Assume that f : X → Y is open (resp. closed). If now Z ⊆ X is open (resp. closed) then
f(Z) is open (resp. closed) in Y . But then f(Z) = f(Z) ∩ f(X) is open (resp. closed) in f(X) with
its subspace topology. Now apply (i). �

Later we will use (local) compactness to prove that certain continuous injections automatically
are embeddings, cf. Propositions 7.4.11(iii) and 7.8.69.

6.3 Direct sums

The direct sum (or coproduct) operation on topological spaces is not terribly interesting in itself (and
therefore omitted by some authors). But it plays an important rôle in algebraic topology, where it
is combined with the quotient operation to ‘attach’ a space to another, cf. Definition 6.6.7. On the
other hand it helps to better understand the notion of connectedness, cf. Proposition 6.3.7.

The direct sum of topological spaces is defined in terms of the disjoint union of sets, which is
defined and studied in Section A.2.

Definition 6.3.1 Let (Xi, τi) be a topological space for each i ∈ I. Let
⊕

kXk be the disjoint
union. The direct sum topology on

⊕
kXk is the final topology τ induced by the inclusion maps

ιi : Xi →
⊕

kXk, x 7→ (i, x).
The topological space (

⊕
kXk, τ) is denoted by

⊕
k(Xk, τk), the direct sum of the (Xi, τi).

Remark 6.3.2 1. Some authors call the direct sum the coproduct and write
∐

k(Xk, τk) instead.
From a categorical perspective, this perfectly justified since the coproduct (direct sum) behaves dual
to the (direct) product. But we find the symbols ⊕,

⊕
more immediately recognizable and less prone

to confusion with
∏

.
2. If I is finite we will usually take I = {1, . . . , n} and also denote

⊕
iXi by X1 ⊕ · · · ⊕Xn. But

notice that this raises some issues: The total ordering of written text forces us to put a total order
on the index set I, which is absent from Definition A.2.6. This however is spurious, and we should
either read something like (x, y) ∈ X ×Y as a function from a two-element set to X ∪Y or ‘identify’
(x, y) ∈ X × Y with (y, x) ∈ Y ×X. One way to do this is to consider topological spaces with direct
sum operation as a ‘symmetric monoidal category’. To further complicate the matter we note that,
according to many authors, (co)products should not be defined in terms of an explicit construction
but rather in terms of their universal property, but doing so makes them uniquely defined only up
to isomorphism. . . 2

Applying Lemma 6.1.2 to the present situation, we immediately have:

Lemma 6.3.3 The direct sum topology on
⊕

kXk is given by

τ =

{
U ⊆

⊕
k

Xk | ι−1
i (U) ∈ τi ∀i ∈ I

}
.
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Remark 6.3.4 If Xi ∩Xj = ∅ whenever i 6= j, then the map
⊕

kXk 3 (x, i) 7→ x ∈
⋃
kXk clearly is

a bijection. In that case, we can identify each Xi with the corresponding subset of
⋃
kXk and write

U ∩Xi instead of ι−1
i (U). 2

The universal property of the disjoint union, cf. Proposition A.2.5 has a topological version:

Proposition 6.3.5 Let (Xi, τi), i ∈ I and (Y, σ) be topological spaces. Then there is a bijection
between continuous maps f :

⊕
k(Xk, τk) → (Y, σ) and families of continuous maps {fi : (Xi, τi) →

(Y, σ)}i∈I .

Proof. By Proposition A.2.5, there is a bijection between maps f :
⊕

k(Xk, τk)→ (Y, σ) and families
of maps {fi : (Xi, τi)→ (Y, σ)}i∈I . Now Proposition 6.1.4 implies that f is continuous if and only if
all fi are continuous. �

The inclusion maps ιi : Xi →
⊕

kXk are continuous by definition of the direct sum topology as
final topology. But we have more:

Lemma 6.3.6 Let (Xi, τi) be a topological space for each i ∈ I. Then

(i) Y ⊆
⊕

iXi is closed if and only if ι−1
i (Y ) ⊆ Xi is closed for every i ∈ I.

(ii) The maps ιi are open and closed.

(iii) Each ιi(Xi) is a clopen subset of
⊕

kXk.

(iv) Each ιi : (Xi, τi)→
⊕

k(Xk, τk) is an embedding.

Proof. (i) This is a special case of Exercise 6.1.3.
(ii) Let U ∈ τi. By Lemma 6.3.3, we must check that ι−1

j (ιi(U)) ∈ τj for all j. But this is the
empty set if j 6= i and U otherwise. This gives openness, and the proof of closedness is analogous,
using the result of (i).

(iii) Each Xi is open and closed as subset of itself. Now the claim follows from (ii).
(iv) The maps ιi are injective, continuous and open, thus the claim follows from Lemma 6.2.9(ii).

(Alternatively, just observe that restricting the direct sum topology to ιi(Xi) ⊆
⊕

kXk gives the
topology τi back.) �

Proposition 6.3.7 A topological space (X, τ) is connected if and only if it is not homeomorphic to
a direct sum (X1, τ1)⊕ (X2, τ2) with X1 6= ∅ 6= X2.

Proof. If X1 6= ∅ 6= X2 then X = (X1, τ1) ⊕ (X2, τ2) is not connected, since ι1(X1) ⊆ X is clopen
and neither ∅ not X. Thus also a space that is homeomorphic to a non-trivial direct sum is not
connected.

Now assume that (X, τ) is non-connected, i.e. there is a clopen Y ⊆ X with ∅ 6= Y 6= X. Since
Y is clopen, we have Y,X\Y ∈ τ . Thus τY = {U ∩ Y | U ∈ τ} ⊆ τ , and also τX\Y ⊆ τ . We
claim that (X, τ) is homeomorphic to the direct sum of the subspaces (Y, τY ) and (X\Y, τX\Y ). It
is clear that (as sets) we can identify X with the disjoint union Y ⊕ (X\Y ). Proving that this is a
homeomorphism amounts to showing for every U ⊆ X that U ∈ τ if and only if U ∩ Y ∈ τY and
U ∩ (X\Y ) ∈ τX\Y . The direction ⇒ is obvious by definition of τY and τX\Y . For the converse,
assume U ∩ Y ∈ τY and U ∩ (X\Y ) ∈ τX\Y . In view of τY ⊆ τ, τX\Y ⊆ τ , this implies U ∩ Y ∈ τ
and U ∩ (X\Y ) ∈ τ , thus also U = (U ∩ Y ) ∪ (U ∩ (X\Y )) ∈ τ . �
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Remark 6.3.8 Since non-connected spaces decompose into non-trivial direct sums, one might think
that by iterating this decomposition one will arrive at (X, τ) ∼=

⊕
i(Xi, τi) with all (Xi, τi) connected.

In Section 9.1, we will see that this is false in general, even for compact spaces! (This is related to �

the fact that there are spaces that are non-discrete, but in which singletons are the only connected
subspaces.) 2

Exercise 6.3.9 Let {Xi}i∈I be topological spaces. Prove that the direct sum X =
⊕

iXi is

(i) Hausdorff if and only if each Xi is Hausdorff.

(ii) metrizable if and only each Xi is metrizable.

(iii) first countable if and only if each Xi is first countable.

(iv) second countable if and only if each Xi is second countable and Xi 6= ∅ for at most countably
many i ∈ I.

6.4 Quotient spaces

6.4.1 Quotient topologies. Quotient maps

In this section, we study the following situation: We are given a topological space (X, τ) and a
surjective map f : X → Y , and want to put a natural topology on Y .

Definition 6.4.1 Let (X, τ) be a topological space, Y a set and p : X → Y a surjective map. Then
the quotient topology on Y is the final topology induced by the map p.

On the other hand, a continuous surjection f : (X, τ)→ (Y, σ) is called a (topological) quotient map
if σ coincides with the quotient topology induced by τ and f .

Thus by Lemma 6.1.2, the quotient topology is given by

σ = {V ⊆ Y | f−1(V ) ∈ τ}. (6.3)

In analogy to Exercise 2.2.9(iii), we have a result on iterated quotient constructions:

Exercise 6.4.2 Let (X, τ)
f→ Y

g→ Z be surjective maps. Let σ be the quotient topology on Y .
Then the quotient topologies on Z arising from the quotients g : (Y, σ)→ Z and g ◦ f : (X, τ)→ Z
coincide.

What can be said about the final topology when f : X → Y is not surjective?

Exercise 6.4.3 Let f : (X, τ)→ Y be arbitrary and σ the final topology on Y induced by f . Prove
that (Y, σ) ∼= (f(X), σ′)⊕ (Y \f(X), τdisc), where σ′ is the final topology induced by the (surjective)
map f : X → f(X).

Remark 6.4.4 Just as not every continuous injective map is an embedding, not every continuous
surjective map f : (X, τ) → (Y, σ) is a quotient map! [If σ̃ = {U ⊆ Y | f−1(U) ∈ τ} is the final�

topology on Y induced by f , the continuity of f w.r.t. σ means that σ ⊆ σ̃. This in turn means that
f factorizes as (X, τ) → (Y, σ̃) → (Y, σ), where the first map is a quotient map and the second is
the identity map of Y , equipped with two a priori different topologies.] It therefore is useful to have
criteria implying that a continuous surjective map is a quotient map. 2
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Lemma 6.4.5 Let f : (X, τ)→ (Y, σ) be continuous and surjective.

(i) f is a quotient map (i.e. σ is the final topology on Y induced by f) if and only if V ⊆ Y and
f−1(V ) ∈ τ imply V ∈ σ.

(ii) If f is open or closed then it is a quotient map. (This is sufficient, but not necessary!)

Proof. (i) Continuity gives V ∈ σ ⇒ f−1(V ) ∈ τ . If the converse implication also holds, then (6.3)
is true, thus σ is the quotient topology.

(ii) Assume f is open. Let V ⊆ Y . If f−1(V ) ∈ τ then f(f−1(V )) ∈ σ by openness of f . Since
f is surjective, we have f(f−1(V )) = V , cf. Lemma A.1.6, thus V is open. Now assume that f is
closed, D ⊆ Y and f−1(D) ⊆ X is closed. By the same reasoning as above, but using closedness of
f , we obtain that D is closed. If now f−1(V ) ∈ τ then f−1(Y \V ) = X\f−1(V ) is closed, thus Y \V
is closed, so that V is open. Thus in both cases we have f−1(V ) ∈ τ ⇒ V ∈ σ, so that σ is the
quotient topology. �

Remark 6.4.6 Later, we will use the above lemma to prove that a continuous surjection f : X → Y
automatically is a quotient map when X is compact and Y Hausdorff, cf. Proposition 7.4.11(iii).

2. In Remark 5.2.28 we have noted that the first countable spaces are precisely the images of
metric spaces under continuous surjective open maps. By Lemma 6.4.5, every such map is a quotient
map, but not conversely. Thus the class of quotient spaces of metric spaces is potentially larger than
that of first countable spaces, and indeed one finds that it precisely is the class of sequential spaces
(cf. Remark 5.1.9)! Between first countable spaces and sequential spaces one has the Fréchet-spaces.
It turns out that the latter precisely are the images of metric spaces under maps f : M → X that
are ‘hereditarily quotient’, i.e. f−1(Z) → Z is a quotient map for every Z ⊆ X. This is equivalent
to f being continuous, surjective and ‘pseudo-open’ in the sense that for any x ∈ X and any open
U ⊆M such that f−1(x) ⊆ U we have x ∈ f(U)0.

These results (for proofs cf. e.g. [282, p. 180-183]) show that first countable, Fréchet and sequential
spaces, while being more general than metric spaces, still are quite close to metric spaces. This shows
that in topology one cannot hope to get very far using only sequences. 2

6.4.2 Quotients by equivalence relations

Surjective maps f : X → Y most often arise as quotient maps X → X/∼, where ∼ is an equivalence
relation on X. (We assume as known the basics of equivalence relations and related constructions,
cf. Section A.1.3.)

We therefore now focus on this situation. Thus whenever (X, τ) is a topological space and ∼
is an equivalence relation on X, the quotient X/∼ is understood to be equipped with the quotient
topology coming from the quotient map p : X/→ X/∼. We need a further definition:

Definition 6.4.7 Let ∼ be an equivalence relation on a set X. A subset Y ⊆ X is (∼-)saturated if
x ∼ y ∈ Y implies x ∈ Y . Equivalently, Y is a union of ∼-equivalence classes. The saturation of
Y ⊆ X is given by

Y ∼ = {x ∈ X | ∃y ∈ Y : x ∼ y}.

The importance of this definition is due to the following obvious facts:

• If Z ⊆ X/∼ then p−1(Z) is ∼-saturated.

• If Y ⊆ X then p−1(p(Y )) = Y ∼.
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Elevating Lemma A.1.11 to a topological statement, we obtain the universal property of the
quotient space construction:

Proposition 6.4.8 Let X, Y be topological spaces and ∼ an equivalence relation on X.

(i) There is a bijection between continuous maps g : X/∼→ Y and continuous maps f : X → Y
that are constant on equivalence classes such that f = g ◦ p.

(ii) The function g : X/∼→ Y corresponding to f : X → Y is open if and only if f(U) ⊆ Y is
open for every ∼-saturated open U ⊆ X. In particular, this holds if f is open.

(iii) g : X/∼→ Y is a homeomorphism if and only if f is surjective, f(x) = f(y) ⇒ x ∼ y, and
f(U) ⊆ Y is open for every ∼-saturated open U ⊆ X.

Proof. (i) The bijection f ↔ g between functions (disregarding continuity) was shown in Lemma
A.1.11. Thus every f : X → Y constant on equivalence classes is of the form f = g ◦ p for a unique
map g : X/∼→ Y . Since the quotient topology on X/∼ is a final topology for the map p : X → X/∼,
Proposition 6.1.4 immediately gives that f : X → Y is continuous if and only if g : X/ ∼→ Y is
continuous.

(ii) By definition, the map g is open if g(U) ⊆ Y is open for every open U ⊆ X/∼. By definition
of the quotient topology, U ⊆ X/∼ is open if and only if V = p−1(U) ⊆ X (which is ∼-saturated)
is open. Now the first claim follows from g(U) = f(V ). The last claim follows, since openness of
f : X → Y means that f(U) ⊆ Y is open for every open U ⊆ X, whether ∼-saturated or not.

(iii) By Lemma 5.2.26, g is a homeomorphism if and only if it is injective, surjective, continuous,
and open. Continuity is automatic by (i). The equivalence of the three remaining conditions to those
stated under (iii) follows from (ii) and from (ii),(iii) of Lemma A.1.11. �

Remark 6.4.9 1. In the situation of (i) one says ‘f factors through the quotient map p : X → X/∼’
or ‘f ∈ C(X, Y ) descends to g ∈ C(X/∼, Y )’.

2. The above result is the main reason why we are interested in quotient spaces. It will be used
quite often in the sequel, beginning in Section 6.4.3. 2

Equipping X/∼ with the quotient topology, the quotient map p : X → X/∼ is automatically
continuous. But is it open? closed?

Lemma 6.4.10 The map p : X → X/∼ is open (resp. closed) if and only if U∼ is open (resp. closed)
for every open (resp. closed) U ⊆ X.

Proof. By definition, p is open (closed) if and only if p(U) is open (closed) for every open (closed)
U ⊆ X. But by definition of the quotient topology, p(U) ⊆ X/∼ is open (closed) if and only if
p−1(p(U)) is open (closed). As mentioned above, p−1(p(U)) = U∼. �

Definition 6.4.11 An equivalence relation ∼ on X is called open (resp. closed) if p : X → X/∼ is
open (resp. closed). (Cf. the equivalent conditions above.)

As far as separation axioms are concerned, the quotient space construction can be very badly
behaved. In view of the definition of the quotient topology, one obviously has:

Lemma 6.4.12 Let X be a topological space and ∼ an equivalence relation on X. Then the quotient
space X/∼ is . . .
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(i) indiscrete if and only if the only ∼-saturated open subsets of X are ∅ and X;

(ii) discrete if and only if each equivalence class [x] ⊆ X is open;

(iii) T1 if and only if each equivalence class [x] ⊆ X is closed.

Proof. (i) A set Z ⊆ X/∼ is open if and only if its preimage p−1(Z), which is ∼-saturated, is open.
Thus X/∼ is indiscrete if and only if the only ∼-saturated open sets in X are ∅, X.

(ii) X/∼ is discrete if and only if each singleton in X/∼ is open. This is equivalent to each
∼-equivalence class in X being open.

(iii) X/∼ is T1 if and only if each singleton in X/∼ is closed. By Exercise 6.1.3, {x} ∈ X/∼ is
closed if and only if p−1(x) ⊆ X is closed. (Recall that the quotient topology is a final topology.)
Since p−1(x) is a ∼-equivalence class, the above is equivalent to each ∼-equivalence class in X being
closed. �

Exercise 6.4.13 For X = R with the usual topology, define ∼ by x ∼ y ⇔ x − y ∈ Q. Show that
X/∼ is indiscrete.

Lemma 6.4.14 Let (X, τ) be a topological space and ∼ an equivalence relation on X. Then the
quotient topology on X/∼ is Hausdorff if and only if given two different equivalence classes [x] 6= [y]
there are U, V ∈ τ such that [x] ⊆ U, [y] ⊆ V , U ∩ V = ∅ and U, V are ∼-saturated.

Proof. X/∼ is Hausdorff if and only if for any [x], [y] ∈ X/∼, [x] 6= [y] there are disjoint open
neighborhoods U ′, V ′ ⊆ X/∼. If this is true then U = p−1(U ′), V = p−1(V ′) are disjoint saturated
open sets in X containing [x] and [y], respectively. Clearly this is necessary and sufficient. �

Definition 6.4.15 For a topological space (X, τ) and Y ⊆ X, let ∼Y be the smallest equivalence
relation on X that identifies all points of Y with each other. We then write X/Y := X/∼Y .

On the positive side, we have the following:

Exercise 6.4.16 Prove:

(i) If Y ⊆ X is open (resp. closed) the equivalence relation ∼Y from Definition 6.4.15 is open
(resp. closed).

(ii) If (X, τ) is Hausdorff and Y ⊆ X is finite, then X/Y is Hausdorff. (Using Lemma 6.4.14 saves
work!)

�
For infinite Y ⊆ X, however, X/Y may fail to be Hausdorff! (But see Exercise 8.1.20.)

Example 6.4.17 Let X = R× {0, 1} ⊆ R2 (union of two parallel lines). Let ∼ be the equivalence
relation that (besides containing the diagonal) identifies (x, 0) and (x, 1) whenever x 6= 0, but (0, 0) 6∼
(0, 1). The equivalence classes are closed, thus X/∼ is T1. But if U, V are open neighborhoods of
(0, 0) and (0, 1), respectively, there is ε > 0 such that U ⊇ (−ε,+ε)× {0} and V ⊇ (−ε,+ε)× {1}.
Now it is clear that U∼ ∩ V ∼ 6= ∅. Thus the requirement of the lemma cannot be satisfied, and X/∼
is not Hausdorff. 2

Exercise 6.4.18 Show that the equivalence relation in Example 6.4.17 is open, but not closed.
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Example 6.4.19 In Example 6.4.17 we saw a nice space (even metrizable) and an open equivalence
relation, where the quotient fails to be Hausdorff. We will see later that images under closed maps, in
particular quotients by closed equivalence relations, tend to be better behaved. Nevertheless, even if
X is Hausdorff and f : X → Y is continuous, closed and surjective, it does not follow that Y = f(X) �

is Hausdorff! One can find Hausdorff spaces (even T3.5-spaces) containing disjoint closed sets A,B
that cannot be separated by disjoint open neighborhoods. (For an example, cf. Proposition 8.1.39.)
Given such a space, define an equivalence relation ∼ on X by

x ∼ y :⇔ x = y ∨ {x, y} ⊆ A ∨ {x, y} ⊆ B.

I.e., ∼ identifies all points of A with each other and all points of B with each other (but not with
those of A). The ∼-saturation of C ⊆ X can be C,C ∪A,C ∪B,C ∪A ∪B, each of which is closed
for closed C. Thus the equivalence relation ∼ and the quotient map p are closed. But X/∼ cannot
be Hausdorff: The images a, b ∈ X/∼ of A and B, respectively, have no disjoint open neighborhoods
U, V since otherwise p−1(U) ⊇ p−1(a) = A, p−1(V ) ⊇ p−1(b) = B would be disjoint open sets,
contradicting our assumption on X. 2

Remark 6.4.20 In Proposition 7.8.71 we will see that if X is Hausdorff and f : X → Y is surjective,
continuous, closed and proper then Y is Hausdorff.

We will also encounter a separation axiom stronger than T2 (normality=T4) that is preserved
under quotients by closed equivalence relations and therefore gives T2 quotients. (The space in
Example 6.4.17 actually is normal, but this does not help since ∼ is not closed.) 2

In view of Exercise 2.8.10, the following is a generalization to topological spaces of Exercise 2.1.7:

Exercise 6.4.21 (The Kolmogorov quotient) Let (X, τ) be a topological space. For x, y ∈ X
define x ∼ y by ‘∀U ∈ τ : x ∈ U ⇔ y ∈ U ’. Prove:

(i) ∼ is an equivalence relation.

(ii) Prove that (X, τ) is T0 if and only if x ∼ y ⇒ x = y.

(iii) The quotient space X/∼ is T0.

Exercise 6.4.22 Let X be a topological space, ∼ an equivalence relation on X, and Y ⊆ X. Let
∼Y be the restriction of ∼ to Y (i.e. ∼Y =∼ ∩(Y × Y )). Let p : X → X/∼ be the quotient map.

(i) Prove that there is a natural continuous bijection α : Y/∼Y→ p(Y ) ⊆ X/∼.

(ii) Prove that α is a homeomorphism if Y ⊆ X is ∼-saturated and open (or closed).

(iii) Give an example where α is not a homeomorphism.

6.4.3 A few geometric applications

According to the popular slogans mentioned in the introduction, topology is “rubber-sheet geometry”
or “what remains of geometry when we forget about coordinates and distances”. It therefore is high
time that we make some contact with geometric intuition. Indeed, the quotient space construction is
a method for making rigorous certain intuitive constructions of non-trivial spaces from simpler ones.
It also plays an important rôle in algebraic topology.

When studying a quotient space X/∼, we often have a suspicion that X/∼ is homeomorphic to
some given space Y . The examples below will illustrate that Proposition 6.4.8 provides a systematic
way of proving this. We begin with examples in one dimension.



108 CHAPTER 6. NEW SPACES FROM OLD

Exercise 6.4.23 Let X be the direct sum of two copies of the closed ray [0,∞) with the usual
topology. Let ∼ be the equivalence relation on X that identifies the endpoints 0 of the two half-lines,
but nothing else. Prove that X/' is homeomorphic to R.

Definition 6.4.24 The long line LL is the space obtained from the direct sum of two long rays
(Definition 4.2.10) by identifying their zero elements. The image of the latter in LL is called 0. The
images in LL of the non-zero points in the first ray are called positive and those of the second ray
negative. There is a natural and obvious way of totally ordering LL such that the map from the first
ray to LL is order preserving, while the second is order-reversing.

Exercise 6.4.25 Prove:

(i) The quotient topology on the long line coming from the order topologies on the two rays
coincides with the order topology coming from the total order on LL.

(ii) The long line is Hausdorff and given any a, b ∈ LL with a < b, there is a homeomorphism from
(a, b) to an open interval in R (or to R if you prefer).

(iii) Prove that the long line is not homeomorphic to the open long ray.

We now turn to higher dimensions.

Definition 6.4.26 • The (closed) unit n-disk is Dn = {x ∈ Rn | ‖x‖2 ≤ 1} ⊆ Rn.

• The unit n-sphere is Sn = {x ∈ Rn+1 | ‖x‖2 = 1}. Thus ∂Dn = Sn−1. For n = 1 we also use
the representation S1 = {z ∈ C | |z| = 1} which results from the identification C ∼= R2.

Lemma 6.4.27 The n-sphere can be considered as quotient of Rn+1\{0}:

Sn ∼= (Rn+1\{0})/(x ∼ λx ∀λ > 0).

Proof. The map f : Rn+1\{0} → Rn+1, x 7→ x
‖x‖2 takes values in Sn and as a map Rn+1\{0} → Sn it

is surjective. It is obviously continuous and easily seen to be open. Finally, f(x) = f(y) holds if and
only if x

‖x‖2 = y
‖y‖2 , which is the case if and only x = λy with λ > 0. Thus f(x) = f(y) ⇔ x ∼ y.

Now Proposition 6.4.8(iii) implies that g : Rn+1\{0}/∼→ Sn is a homeomorphism. �

The following result is the precise formulation of the statement “identifying the two ends on an
interval, we obtain a circle”:

Lemma 6.4.28 Let ∼ be the equivalence relation on I = [0, 1] which only identifies 0 and 1. (For-
mally: ∼= {(x, x) | x ∈ I} ∪ {(0, 1), (1, 0)}.) Then the quotient space I/∼ (which we may simply
denote [0, 1]/(0 ∼ 1)) is homeomorphic to S1.

Proof. The map f : I → S1, x 7→ e2πix is continuous and surjective. The only way for f(x) = f(y)
to happen with x 6= y is x = 0, y = 1 or ↔. This is exactly the equivalence relation defined in the
statement. Now, let U ⊆ [0, 1] be open and ∼-saturated. This means that if U contains 0 then it
must contain 1 and vice versa. If an open U ⊆ [0, 1] contains neither 0 nor 1 then it is ∼-saturated
and it is easy to see that f(U) ⊆ S1 is open. The other alternative is that {0, 1} ⊆ U . But then
there is an ε > 0 such that [0, ε)∪ (1− ε, 1] ⊆ U , and using the fact that f is periodic with period 1
we have f(U) = f(U ∩ (0, 1))∪ f((−ε, ε)), which again is open. Now apply Proposition 6.4.8(iii). �
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Remark 6.4.29 1. Note that while f satisfies condition (ii) of Proposition 6.4.8, it is not an open
map since, e.g., [0, 1/2) is open in [0, 1] but f([0, 1/2)) ⊆ S1 is not open!

2. The preceding result has the following generalization to all dimensions: For each n ∈ N, there
is a homeomorphism Sn ∼= In/∼, where ∼ identifies all points of ∂In with each other and leaves
the interior of In alone. (This is very useful in higher homotopy theory, cf. Exercise 13.4.23.) We
defer the proof (Exercise 7.8.21) until we have the tools to do it easily. We now focus on some other
quotients of I × I. 2

In the same way one shows (with I2 = I × I.1)

C = I2/((x, 0) ∼ (x, 1)) ∼= I × S1 (hollow cylinder)

T = I2/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y)) ∼= S1 × S1 (2− torus).

Figure 6.1: Cylinder, Möbius band, torus, Klein bottle

Figure 6.2: Another Klein bottle and two projective planes (Boy surface)

More interestingly, M = I2/((0, y) ∼ (1, 1 − y)) is the well-known Möbius strip2, obtained by
applying a 1800 twist to a ribbon before glueing two opposite ends. (Notice that while the boundary

1We have not yet defined the product space I × I. This is no problem since we can consider it as the subspace
{(x, y) | x, y ∈ [0, 1]} of R2 equipped with the usual (Euclidean) topology.

2August Ferdinand Möbius (1790-1868). German mathematician and theoretical astronomer.
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of the cylinder consists of two circles, the boundary of the Möbius strip is a single circle!) The 2-torus
T can be obtained from the square in two steps

I2 ; C = I2/((x, 0) ∼ (x, 1)) ; I2/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y)),

the second of which consists in gluing the cylinder I×S1 along its two boundary circles in the natural
way. But the cylinder has another quotient

KB = C/((0, y) ∼ (1, 1− y)) = I2/((x, 0) ∼ (x, 1), (0, y) ∼ (1, 1− y)),

which is known as the Klein bottle3, cf. Figure 6.2. Reversing the order of the quotient operations,
we obtain the Klein bottle as a quotient of the Möbius strip: KB = M/((x, 0) ∼ (x, 1)). (Since M
has only one boundary circle ∂M , this second quotient operation consists in pairwise identification of
points of ∂M , which is harder to visualize.) Like the cylinder, also the Möbius strip has two natural
quotients, the second being

M/((x, 0) ∼ (1− x, 1))) = I2/((0, y) ∼ (1, 1− y), (x, 0) ∼ (1− x, 1)). (6.4)

Before we try to understand the nature of this space, we show in Figure 6.3 a very convenient way
of representing the identifications made in the above quotient space constructions. In each of the
diagrams, two parallel lines marked with a arrows are identified, where the orientation is preserved
if the arrows point in the same direction or reversed otherwise. (In more complicated situations, one
should mark the arrows in some way to make clear which sides are identified.)

Moebius band Klein bottle projective planecylinder torus

Figure 6.3: Quotient spaces of a square

Returning to the quotient space defined by (6.4), we notice that under the homeomorphism
[0, 1]2 → [−1, 1]2, (x, y) 7→ (2x− 1, 2y − 1), the identifications ((x, 0) ∼ (1− x, 1), (0, y) ∼ (1, 1− y))
correspond to the identification x ∼ −x of antipodal points in ∂[−1, 1]2. For a subset X ⊆ R2

such that ∂X is stable under x 7→ −x, we denote by ∼∂ the equivalence relation that identifies
antipodal points (x and −x) of ∂X and does nothing else. Thus we see that (6.4) is homeomorphic
to [−1, 1]2/∼∂, which is more convenient to work with. This quotient (and its higher dimensional
analogues) has another, somewhat simpler interpretation as a quotient space (unfortunately equally
challenging to visualize), known as the (real) projective plane RP2. The latter just is the first
(interesting) of the following infinite family of spaces, studied in projective geometry, a subject with
a long and venerable history:

Definition 6.4.30 The real projective space RPn is the quotient space Sn/(x ∼ −x) obtained by
identifying antipodal pairs {x,−x} of points of Sn.

In view of Lemma 6.4.27 and Exercise 6.4.2, this is equivalent to

RPn ∼= (Rn+1\{0})/(x ∼ λx ∀λ 6= 0),

which has the advantage of working (purely algebraically) for any field k instead of R. RPn can be
interpreted as the “space of lines through 0 in Rn+1”, suitably topologized.

3Christian Felix Klein (1849-1925), German mathematician.



6.5. DIRECT PRODUCTS 111

Lemma 6.4.31 (i) Let ∼∂ be the equivalence relation on [−1, 1]n that identifies each x ∈ ∂[−1, 1]n

with −x. For all n ∈ N, we have homeomorphisms

[−1, 1]n

∼∂
∼=

Dn

∼∂
∼=

Sn

(x ∼ −x)
= RPn. (6.5)

(ii) RP1 ∼= S1. (Remark: We will later prove RPn 6∼= Sn for n ≥ 2.)

Proof. (i) K = [−1, 1]n ⊆ Rn is compact convex with non-empty interior and −K = K. Proposition
7.7.61, proven later, provides a homeomorphism g : Dn → [−1, 1]n that satisfies g(−x) = −g(x) ∀x.
From this one deduces a homeomorphism [−1, 1]n/∼∂→ Dn/∼∂ between the quotient spaces, which
is the first half of (6.5). We now wish to relate this to the projective space RPn = Sn/(x ∼
−x). Defining Sn± = {x ∈ Sn | ± xn+1 ≥ 0}, we have Sn = Sn+ ∪ Sn−. Now the maps Dn →
Sn±, x = (x1, . . . , xn) 7→ (x1, . . . , xn,±

√
1− ‖x‖2) are continuous bijections with continuous inverses

(x1, . . . , xn+1) 7→ (x1, . . . , xn), thus homeomorphisms. Thus we can interpret Sn as two discs Dn

glued together at their boundaries. The map x 7→ −x clearly is a homeomorphism Sn+ → Sn−. Thus
if p : Sn → Sn/(x ∼ −x) is the quotient map, we have p(Sn+) = Sn/(x ∼ −x). Restricted to the
interior of Sn+, the map p is injective, but it identifies (x1, . . . , xn, 0) with (−x1, . . . ,−xn, 0). Thus
set-theoretically we have Sn/(x ∼ −x) ∼= Dn/∼∂, and as in the proof of Lemma 6.4.28 one applies
Proposition 6.4.8 to prove that this is a homeomorphism. (Or use Proposition 7.4.11(iv).) This is
the second half of (6.5).

(ii) This follows from the instance RP1 ∼= D1/∼∂ of (i), together with D1 = [−1, 1] and Lemma
6.4.28. �

Remark 6.4.32 The above constructions of quotient spaces are ‘purely topological’ in that they do
not take place in some ambient space Rn into which everything is embedded. Cylinder and 2-torus
can be embedded into R3, but the Klein bottle cannot. It can be ‘immersed’ into R3, but only at
the price of self-intersections. It is easy to see that it can be embedded into R4. For the projective
plane RP2, the same is true. A nice immersion into R3 was found by W. Boy in 1901, having been
instructed by his supervisor D. Hilbert to prove that such an immersion does not exist! Cf. [55,
Section 2.2] for a thorough explanation. 2

Exercise 6.4.33 Use Lemma 6.4.14 to prove that the quotient spaces C, T, KB, M, RP 2 considered
in this subsection are Hausdorff. (Do not use the homeomorphisms with known spaces proven here!)

6.5 Direct products

6.5.1 Basics

Given any family {Xi}i∈I of sets, we can define the direct product
∏

i∈I Xi, cf. Appendix A.2.2. In
this section we will study topologies on

∏
iXi, assuming that each Xi is a topological space.

Definition 6.5.1 Let (Xi, τi), i ∈ I be topological spaces. The product topology τΠ on
∏

kXk is the
initial topology defined by the projection maps pi :

∏
kXk → Xi, f 7→ f(i). The topological space

(
∏

kXk, τΠ) is also denoted by
∏

k(Xk, τk).
As for sums, if I is finite we will usually take I = {1, . . . , n} and also denote

∏
iXi by X1×· · ·×

Xn. (Remark 6.3.2 applies also here.)
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What does Definition 6.5.1 mean in more concrete terms? By Lemma 6.1.6(ii), a subbase for τΠ

is given by
SΠ = {p−1

i (U) | i ∈ I, U ∈ τi}. (6.6)

Thus a base B for τΠ is obtained by considering all finite intersections of elements of SΠ:

BΠ = {p−1
i1

(Ui1) ∩ · · · ∩ p−1
in

(Uin) | i1, . . . , in ∈ I, Uik ∈ τik ∀k = 1, . . . , n}. (6.7)

Since we defined the product topology on
∏

i(Xi, τi) as an initial topology, the general results
from Section 6.1 apply. Our first result, which is just the specialization of Proposition 6.1.8 to the
product, shows that the universal property of the product of sets, cf. Proposition A.2.7, lifts to
topological spaces and continuous maps:

Proposition 6.5.2 Given topological spaces (X, τ) and (Yi, σi), i ∈ I, there is a bijection between
continuous maps f : X →

∏
k Yk (with the product topology) and families of continuous maps {fi :

X → Yi}i∈I , given by f 7→ {pi ◦ f}i∈I .

Lemma 6.5.3 A net {xι} in a product space
∏

i(Xi, τi) converges if and only if the net {pi(xι)} in
Xi converges for each i ∈ I. (“The net converges coordinatewise”.)

Proof. This is just an application of Proposition 6.1.9, modulo one observation: If pi(x) → xi ∈ Xi

for all i ∈ I, there is a unique point x in
∏

kXk such that pk(x) = xk ∀k. (This is not true in the
generality of Proposition 6.1.9.) �

Remark 6.5.4 If I =
⋃
k∈K Ik is a partition of the index set I, i.e. Ii ∩ Ij = ∅ for i 6= j, then there

is a canonical homeomorphism ∏
i∈I

Xi
∼=
∏
k∈K

(∏
j∈Ik

Xj

)
.

We omit the trivial but tedious details. 2

Remark 6.5.5 If (X, τ) is a topological space and I is a set, we write (X, τ)I for
∏

i∈I(X, τ). In
view of Lemma 6.5.3, this is just the set of all functions f : I → X, equipped with the topology of
pointwise convergence. (When there is no risk of confusion about the topology τ , we may simply write
XI .) Since XI depends only on the cardinality of I, this also defines (X, τ)N for a cardinal number
N . Notice that when X is a topological space, Y X often denotes the set C(X, Y ) of continuous
functions (which can also be topologized). When X is discrete, C(X, Y ) coincides with Y X as just
defined, which hopefully will limit the risk of confusion. 2

Proposition 6.5.2 and Lemma 6.5.3 clearly show that our definition of the product topology is
‘the right one’, even though it is not very intuitive. In order to obtain better insight, and to preempt
misconceptions about the product topology, it is very instructive to consider another, probably more
intuitive, topology on

∏
iXi:

Exercise 6.5.6 Let (Xi, τi) be a topological space for each i ∈ I, and let X =
∏

iXi.

(i) Prove that

B′Π =

{∏
i∈I

Ui | Ui ∈ τi ∀i ∈ I and #{i ∈ I | Ui 6= Xi} <∞

}
satisfies the conditions of Proposition 4.1.21 and therefore is a base for a topology τ ′Π on X.
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(ii) Prove that B′Π equals BΠ from (6.7), thus τ ′Π equals the product topology τΠ.

(iii) If ∅ 6= U ∈ τΠ, prove that {i ∈ I | pi(U) 6= Xi} is finite.

(iv) Defining

B� =

{∏
i∈I

Ui | Ui ∈ τi ∀i ∈ I

}
,

prove that B� is the base for a topology τ� on
∏

kXk, the box topology.

(v) Prove τ� ⊇ τΠ. (Thus τ� is finer than the product topology τΠ.)

(vi) Prove that τ� = τΠ when #I <∞.

(vii) Prove that τ� 6= τΠ when {i ∈ I | τi 6= τindisc} is infinite. (I.e. infinitely many of the Xi’s have
an open subset that is different from ∅ and Xi.)

Remark 6.5.7 By (vi) above, there is no harm in thinking in terms of the more intuitive box
topology τ� when dealing with finite products. But (except certain trivial cases), the box topology
on an infinite product of non-trivial spaces differs from the product topology. This clearly means
that it cannot have the same properties as the latter. In fact: If we replace the product topology τΠ�

by the box topology τ�, Proposition 6.5.2 and Lemma 6.5.3 are false for infinite products! (Since the
base B� of τ� can be written as {

∏
i Ui =

⋂
i p
−1
i (Ui), Ui ∈ τi ∀i}, adapting the proof of Lemma 6.5.3,

we would then need to find a ι0 bigger than an infinite number of ιi’s, and there is no guarantee that
this exists.) Also the facts that arbitrary products of connected (or compact) spaces are connected
(respectively compact), which we will prove later, are false for the box topology! 2

We know by construction that the projections pi :
∏

kXk → Xi are continuous. Furthermore:

Proposition 6.5.8 Let (Xi, τi), i ∈ I be topological spaces. Then for each i ∈ I the projection
pi :

∏
kXk → Xi is open, and therefore a quotient map.

Proof. If one of the Xk is empty, so is the product, and the claim is true. Thus we may assume
Xk 6= ∅ ∀k. In view of Remark 5.2.24 it suffices to show that pi(U) ⊆ Xi is open for the elements
U of the base BΠ in (6.7). In view of Exercise 6.5.6(i), every U ∈ B is of the form

∏
i∈I Ui where

Ui ∈ τi and all but finitely many Ui are equal to Xi. From this it is obvious that pj(U) = Uj, which
is open. Thus the map pj is open and thus a quotient map by Lemma 6.4.5. �

It will follow from Exercise 6.5.35 below that the product topology on the n-fold product R×· · ·×R
coincides with the standard topology on Rn arising from any of the norms discussed in Example 2.1.13
(which are all equivalent, cf. Exercise 2.2.16(iii) and Theorem 7.7.51). For the purpose of the next
exercise, this may be assumed.�

While in certain situations one can prove projection maps to be closed, cf. Exercise 7.5.5, in
general they are not:

Exercise 6.5.9 Prove that the projection p1 : R× R→ R is not closed.

If ∅ 6= Ui ∈ τi ∀i ∈ I then
∏

k Uk is in the box topology τ�, but it is in τΠ only if all but finitely
many Ui are Xi. On the other hand, products of closed subsets behave nicely:

Exercise 6.5.10 Let (Xi, τi), i ∈ I be topological spaces and Ci ⊆ Xi, i ∈ I closed subsets. Prove
that

∏
iCi ⊆

∏
iXi is closed.
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Exercise 6.5.11 For A ⊆ X,B ⊆ Y , compute (A × B)0, A×B and ∂(A × B) in terms of
A0, A,B0, B.

Exercise 6.5.12 Let Xi be a topological space for each i ∈ I.

(i) Let Ai ⊆ Xi for all i ∈ I. Prove
∏

iAi =
∏

iAi.

(ii) If Ai ⊆ Xi is dense for all i ∈ I, prove that
∏

iAi is dense in
∏

iXi.

(iii) If X1, . . . , Xn are separable, prove that
∏n

i=1Xi is separable.

(iv) Redo (iii), now for countable I. (You need a new approach, but may of course use (iii).)

Lemma 6.5.13 Let (Xi, τi), i ∈ I be topological spaces. Let z ∈
∏

kXk. (Thus in particular
Xi 6= ∅ ∀i.) For each i ∈ I, define a map ιz,i : Xi →

∏
kXk by saying that ιz,i(x) is the unique point

y defined by

pk(y) =

{
zk if k 6= i
x if k = i

Then ιz,i is an embedding, thus each (Xi, τi) is homeomorphic to a subspace of
∏

k(Xk, τk). This
subspace is closed if all Xi are T1.

Proof. Injectivity of ιz,i is clear, thus ιz,i : Xi → ιz,i(Xi) is a bijection. The image of ιz,i is⋂
j 6=i p

−1
j (zj) ⊆

∏
kXk, and the subspace topology on this coming from the product topology on∏

kXk is is exactly τi. Thus ιz,i is an embedding. If all Xi are T1 then {zi} ⊆ Xi is closed for each
i, thus Xi ×

∏
j 6=i{zj} ⊆

∏
iXi is closed by Exercise 6.5.10. �

Corollary 6.5.14 Let P be a hereditary property of topological spaces. If Xi 6= ∅ ∀i ∈ I and
∏

iXi

has property P then every Xi has property P .

Recall that first and second countability, the separation axioms T1 and T2 and metrizability are
hereditary. This already gives part of the following:

Exercise 6.5.15 Let (Xi, τi) be topological spaces with Xi 6= ∅ ∀i ∈ I. Prove that

(i)
∏

i(Xi, τi) is T1 if and only if and only if each (Xi, τi) is T1.

(ii)
∏

i(Xi, τi) is T2 if and only if and only if each (Xi, τi) is T2.

(iii)
∏

i(Xi, τi) is first (resp. second) countable if and only if each (Xi, τi) is first (resp. second)
countable and at most countably many Xi are not indiscrete.

Using products, we can improve on Exercise 4.1.14:

Lemma 6.5.16 (i) The Sorgenfrey plane (R, τS)2 has a closed discrete subspace that has the car-
dinality c of the continuum.

(ii) There exists a Hausdorff space that is separable, but not hereditarily separable.



6.5. DIRECT PRODUCTS 115

Proof. (i) Let X = (R, τS)×(R, τS) and Y = {(x,−x) | x ∈ R} ⊆ X. Now Y is closed w.r.t. the usual
topology and therefore closed w.r.t. the topology (τS)2 since τS is finer than the standard topology
on R. Now [x,∞)× [−x,∞) ∈ τ 2

S and it intersects Y only in (x,−x). Thus {(x,−x)} ∈ Y is open,
so that the subspace topology on Y is discrete. Since there is an obvious bijection Y ∼= R, Y has
cardinality c.

(ii) By Exercises 4.1.23 and 6.5.15(ii), the Sorgenfrey plane is Hausdorff. By Exercise 4.3.12, the
Sorgenfrey line is separable, thus also the Sorgenfrey plane is separable by Exercise 6.5.12. But by
(i), (R, τS)2 has a closed discrete subspace that has cardinality c and thus is not separable. �

Exercise 6.5.17 Prove that Rn\{0} ∼= Sn−1 × (0,∞) by giving mutually inverse continuous maps
both ways.

The following exercises show that Hausdorffness of spaces and continuity of functions can be
characterized in terms of closedness of certain subsets in direct products:

Exercise 6.5.18 Prove the following statements:

(i) A space X is Hausdorff if and only if the diagonal ∆X = {(x, x) | x ∈ X} ⊆ X ×X is closed.

(ii) Use (i) to give a new proof of Exercise 5.2.16(ii).

Definition 6.5.19 Let f : X → Y a function. Then the graph of f is the subset G(f) = {(x, f(x)) | x ∈
X} ⊆ X × Y .

Remark 6.5.20 1. For idX : X → X we find G(idX) = ∆X .

2. Since a function f : X → Y is defined as a relation R ⊆ X × Y satisfying some assumptions,
G(f) in principle just equals f , but the perspective is somewhat different. 2

Exercise 6.5.21 (i) For f : X → Y , prove G(f) = (idX × f)(∆X) = (f × idY )−1(∆Y ).

(ii) Prove: If Y is Hausdorff and f : X → Y is continuous then G(f) ⊆ X × Y is closed.

Remark 6.5.22 For the converse implication of (ii), we need stronger assumptions. Cf. Exercise
7.5.7. 2

Exercise 6.5.23 Let X be a topological space and Xi ⊆ X ∀i ∈ I. Define Y =
⋂
iXi and

f : Y →
∏
i∈I

Xi, y 7→
∏
i∈I

y,

which makes sense since Y ⊆ Xi ∀i.

(i) Prove that f : Y →
∏

iXi is an embedding.

(ii) If X is Hausdorff, prove that f(Y ) ⊆
∏

iXi is closed.
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6.5.2 ?? More on separability and the Souslin property for products

This section is somewhat more difficult than what we have done so far and may be skipped since it
is not essential for what follows.

Remarkably, one can do better than Exercise 6.5.12(iv):

Exercise 6.5.24 Prove:

(i) If #I ≤ c = #R and Xi is separable for each i ∈ I then
∏

iXi is separable.

(ii) If
∏

i∈I Xi is separable and each Xi reducible then #I ≤ #R.

(For reducibility see Definition 2.8.2. Every Hausdorff space with ≥ 2 points is reducible.)

Remark 6.5.25 1. There also is a necessary and sufficient condition for separability of
∏

iXi.
2. More general (but not stronger in the case #I = c) is the Hewitt-Marczewski-Pondiczery4

theorem: Let χ be an infinite cardinal number, Xi a space admitting a dense subset of cardinality
≤ χ for each i ∈ I, where #I ≤ 2χ. Then

∏
iXi has a dense subset of cardinality ≤ χ. Cf. e.g. [89,

Theorem 2.3.15]. 2

Exercise 6.5.15(iii) and Exercise 6.5.24 show that separability, which is weaker than second count-
ability, is better behaved under products than the latter.

This leads to the question how the Souslin property, which is even weaker than separability,
behaves under products. It turns out that the innocent-looking question whether the product
of any two spaces with the Souslin propery is Souslin cannot be answered based on the �

usual ZFC axioms of set theory (including the axiom of choice)!
The problem turns out to be related to the Continuum Hypothesis (CH), which is the statement

that every uncountable subset of R has the same cardinality as R. It was shown by Gödel5 (1940) and
Cohen6 (1963/4), respectively, that there are models of ZFC set theory where CH is true, respectively
false. One can prove that the the product of two Souslin spaces always is Souslin when Martin’s7

axiom MA(ℵ1) holds. CH implies that MA(ℵ1) is false, but there are models of set theory in which
MA(ℵ1)∧¬CH holds, and in such a set theory, products of Souslin spaces are Souslin. On the other
hand, under the set theoretic ‘diamond axiom’ � (which is somewhat stronger than CH), one can
construct Souslin spaces X, Y such that X × Y is not Souslin. For more on this see [184, 62].

This is perhaps the simplest instance of a question in general topology that can be answered
definitely only making set-theoretic assumptions beyond ZFC. There are many others, and a consid-
erable part of research in general topology since Cohen has been predicated on stronger set-theoretic
hypotheses.8

However, one can prove the following:

4Edwin Hewitt (1920-1999), American mathematician who mostly worked in topology and analysis. Edward Mar-
czewski (1907-1976), Polish mathematician (until 1940 Edward Szpilrajn). E. S. Pondiczery actually was a pseudonym
of the American mathematician Ralph P. Boas, Jr. (1912-1992).

5Kurt Friedrich Gödel (1906-1978). Austrian (later American) mathematician and logician.
6Paul Joseph Cohen (1934-2007). American mathematician. He received the Fields medal for this work.
7Donald A. Martin (1940-). American set theorist and philosopher of mathematics
8The reader should not think that this surprising state of affairs arises only in topology. See e.g. [88] for a similar

situation in algebra involving just discrete abelian groups (Whitehead’s problem). [An abelian group A is called a
Whitehead group if for every surjective homomorphism α : B → A, where B is an abelian group and ker(α) ∼= Z, there
is a homomorphism β : A → B such that α ◦ β = idA. (Thus B ∼= A⊕ Z.) It is easy to show that every free abelian
group is Whitehead, and with more effort one proves that every countable Whitehead group is free. Whitehead’s
problem is to prove that uncountable Whitehead groups are free. This was done by S. Shelah (Israeli mathematician



6.5. DIRECT PRODUCTS 117

Proposition 6.5.26 (i) If f : X → Y is continuous and X has the Souslin property then so does
f(X).

(ii) Let Xi 6= ∅ ∀i. Then
∏

i∈I Xi has the Souslin property if and only if
∏

j∈J Xj has the Souslin
property for each finite subset J ⊆ I.

Since separability implies the Souslin property and is preserved under finite products, one has
the following remarkable consequence:

Corollary 6.5.27 If Xi is separable for every i ∈ I then X =
∏

i∈I Xi has the Souslin property.

Example 6.5.28 The cube [0, 1]χ is Hausdorff and has the Souslin property for all χ, but for #χ >
c = #R it is not separable. 2

The proof of Proposition 6.5.26 requires the following lemma from infinitary combinatorics, proven
in Section A.3.6 using transfinite recursion:

Lemma 6.5.29 (∆-system lemma) If A is an uncountable family of finite sets then there exist
an uncountable subfamily A0 ⊆ A and a finite set A such that X ∩ Y = A for all X, Y ∈ A0 with
X 6= Y .

Proof of Proposition 6.5.26. (i) Let f : X → Y be continuous and surjective, where X has the Souslin
property. Let U be a family of mutually disjoint non-empty open sets in Y . Then {f−1(U) | U ∈ U}
is a family of disjoint open sets in X that are non-empty due to the surjectivity of f . Since X is
Souslin, U must be countable. Thus the continuous image of a space with the Souslin property also
has that property.

(ii) ⇒ If Xi 6= ∅ ∀i and X =
∏

iXi has the Souslin property, then Xi = pi(X) has the Souslin
property by (i).
⇐ Assume {Uj}j∈J is an uncountable family of mutually disjoint non-empty open sets in X =∏

i∈I Xi. Each Uj contains a (non-empty) basic open set of the form Vj =
∏

i∈IWk,i, where each
Wk,i ⊆ Xi is open and Aj = {i ∈ I | Wj,i 6= Xi} is finite. For j, j′ ∈ J, j 6= j′ we cannot have
Aj ∩ Aj′ = ∅ since that would imply Vj ∩ Vj′ 6= ∅, contradicting the assumption that the Uj are
mutually disjoint. Now, A = {Aj | j ∈ J} is an uncountable family of finite sets, and the ∆-system
lemma provides an uncountable subfamily A0 = {Aj | j ∈ J0} ⊆ A and a finite A ⊆ I such that
j, j′ ∈ J0, j 6= j′ ⇒ Aj ∩ Aj′ = A. Since any two Aj have non-empty intersection, we have A 6= ∅.
The projection π from X =

∏
i∈I Xi to the finite product

∏
i∈AXi is an open map. [It suffices to

prove that π(U) is open for basic open sets in
∏

iXi. This is quite obvious since the latter are of the
form

∏
i Vi, where each Vi is open in Xi and Ui = Xi for all but finitely many i.] If j, j′ ∈ J0, j 6= j′

then Aj∩Aj′ = A 6= ∅, which implies π(Uj)∩π(Uj′) = ∅ since Vj∩Vj′ = ∅, this disjointness being due
to the coordinates in A = Aj ∩ Aj′ . Thus {π(Uj)}j∈J is an uncountable family of mutually disjoint
non-empty open sets in the finite product

∏
i∈AXi, contradicting the assumption that the latter has

the Souslin property. �

An alternative (but related) proof of Corollary 6.5.27 uses the Knaster property:

Definition 6.5.30 A topological space X has the Knaster property if every uncountable family U of
non-empty open subsets has an uncountable subfamily U ′ ⊆ U such that U, V ∈ U ′ ⇒ U ∩ V 6= ∅.
and logician, born 1945) assuming Gödel’s axiom V = L of constructibility (which implies � and CH). On the other
hand, assuming MA(ℵ1) ∧ ¬CH one can construct Whitehead groups that are not free. (Shelah later showed that
existence of non-free Whitehead groups is possible even assuming GCH.) Thus MA(ℵ1)∧¬CH implies a simple state
of affairs in topology but not so in algebra, while V = L implies a nice statement in algebra, but not in topology!]
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Exercise 6.5.31 Prove:

(i) The following implications hold: Separability ⇒ Knaster property ⇒ Souslin property.

(ii) If Xi has the Knaster property for each i ∈ I then
∏

iXi has the Knaster property.

Hint: (i) is easy. The proof of (ii) has much in common with that of Proposition 6.5.26(ii).

6.5.3 Products of metric spaces

Definition 6.5.32 Let (Xi, di) be a metric space for each i ∈ I. A product metric on the product
X =

∏
i∈I Xi is a metric D such that the metric topology τD equals the product τΠ =

∏
i∈I τdi of the

metric topologies.

Exercise 6.5.33 Let (Xi, di) be metric spaces for i = 1, . . . , n. Defining

D∞(x, y) = max
i∈{1,...,n}

di(xi, yi),

Ds(x, y) =

(
n∑
i=1

di(xi, yi)
s

)1/s

(1 ≤ s <∞),

prove:

(i) Ds is a metric on X for each s ∈ [1,∞]. Hint: For s <∞, use Minkowski’s inequality (2.4).

(ii) A sequence {xk} in
∏

iXi converges w.r.t. D if and only if it converges coordinatewise, i.e.
{xki } converges in (Xi, di) for each i.

(iii) D is a product metric.

Corollary 6.5.34 For all n ∈ N, Rn equipped with the Euclidean topology is homeomorphic to the
direct product of n copies of R (with the Euclidean topology).

If I is uncountable and (Xi, di) satisfies #Xi ≥ 2 for each i then
∏

i(Xi, τdi) is not first countable
by Exercise 6.5.15 and therefore is not metrizable. On the other hand:

Exercise 6.5.35 Let (Xn, dn), n ∈ N be non-empty metric spaces such that all dn are bounded by
1. For x, y ∈ X =

∏
nXn (i.e. x = (x1, x2, . . .)) we define

D(x, y) =
∞∑
n=1

2−ndn(xn, yn).

(i) Prove that D is a metric on
∏

nXn.

(ii) Prove that a sequence {xk} in X converges to z ∈ X w.r.t. D if and only if it converges
coordinatewise, i.e. limk x

k
n = zn for each n.

(iii) Prove that (X,D) is complete if and only if each (Xn, dn) is complete.

(iv) Give a direct proof of τD = τΠ :=
∏

n τdn . (A less direct proof follows from (ii) and the proof
of Exercise 6.5.33(iii).)

Corollary 6.5.36 Countable products of (completely) metrizable spaces are (completely) metrizable.
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Proof. Choose (complete) metrics on the spaces inducing the given topologies. By Exercises 2.2.14
and 3.1.14 we may assume that the metrics are bounded by 1. Now apply Exercise 6.5.35. �

Remark 6.5.37 For a product of metric spaces there is a third topology besides τΠ and τ�:
Let {(Xi, di)}i∈I be any number of metric spaces. For x, y ∈ X =

∏
iXi, define

D(x, y) = sup
i∈I

d′i(xi, yi) where d′i(xi, yi) = min(1, di(xi, yi)).

This clearly is a metric on X, the metric of uniform convergence. Convergence w.r.t. τD implies
pointwise convergence (xi → yi ∀i ∈ I), thus τD is finer than the product topology τΠ. Since τD is a
metric topology, it has BD = {BD(x, r) =

∏
iB

d′i(xi, r) | x ∈ X, r > 0} as base. Thus τΠ ⊆ τD ⊆ τ�.
(The three topologies coincide for finite I.) 2

6.5.4 Joint versus separate continuity

The universal property of the product, as given by Proposition 6.5.2, tells us that a map into a
product of topological spaces is well-behaved if and only if it is well-behaved component-wise. It is
essential to understand that this is not at all true for maps out of a product-space! The slogan is:�

Separate continuity does not imply joint continuity!

Definition 6.5.38 Given topological spaces (Xi, τi), i ∈ I and a function f :
∏

kXk → (Y, σ), we
say that f is separately continuous if the map f ◦ ιz,i : Xi → Y is continuous for each z ∈

∏
kXk and

each i ∈ I (where ιz,i is as in Lemma 6.5.13). Less formally: f is continuous w.r.t. xi ∈ Xi when
the other xj, j 6= i are kept fixed.

Occasionally, continuity of f :
∏

kXk → Y in the usual sense, namely w.r.t. the topologies τΠ

and σ, is called joint continuity in order to distinguish it from separate continuity.

That separate continuity of f :
∏

kXk → Y does not imply continuity of f , not even in the case
[0, 1] × [0, 1] → R is shown by the following simple example which should be known from Analysis
courses. (Cf. e.g. [281, Exercise 13.2.11].) Unfortunately, experience tells that it isn’t (or has already
been forgotten).

Consider f : [0, 1]× [0, 1]→ R defined by

f(x, y) =

{ xy
x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

It is easy to check that the maps [0, 1] → R given by x 7→ f(x, y0) and y 7→ f(x0, y) are continuous
for all x0, y0 ∈ [0, 1]. But f is NOT jointly continuous: f vanishes on the axes x = 0 and y = 0 (and
therefore is continuous restricted to them), but f(x, x) = 1/2 for x 6= 0. Thus f is not continuous at
(0, 0).

Another way to look at f is using polar coordinates (x, y) = r(cosϕ, sinϕ). Then f(r, ϕ) =
cosϕ sinϕ = sin 2ϕ

2
. This function is independent of r but not of ϕ. It assumes all values in [0, 1/2]

in any neighborhood of (x, y) = (0, 0) and therefore clearly is not continuous.
The problem with f is that its limit as we approach (0, 0) depends on the direction of approach, a

fact that we do not see if we move only horizontally and vertically in the plane. In view of Proposition
5.2.5, we must (at least a priori) consider all ways of approaching a point in the product space in
order to test whether f is continuous there.

Under certain assumptions on the spaces, there are simpler ways to check joint continuity:
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Theorem 6.5.39 If f : X × Y → Z is jointly continuous and h : X → Y is continuous then
fh : X → Z, x 7→ f(x, h(x)) is continuous.

If X = Y = [0, 1] and Z = R, then continuity of fh for all h ∈ C(X, Y ) implies joint continuity
of f .

More generally, this holds under the following assumptions: X, Y, Z are first countable, X is T3.5

and dense-in-itself, Y is locally path-connected, and Z is T3. (Those properties that have not yet been
defined soon will be. First countability, T3 and T3.5 follow from metrizability.)

Proof. The map X → X × Y, x 7→ (x, h(x)) is continuous (by Proposition 6.5.2!), so if f is (jointly!)
continuous then fh is continuous. The special case X = Y = [0, 1] and Z = R of the converse was
proven by Luzin in 1948, and the generalization can be found in [68]. �

An often more convenient approach to proving joint continuity is the following:

Exercise 6.5.40 (i) Recall that if A,B are sets we write Fun(A,B) for the set of all functions
f : A→ B. State the obvious map

Λ : Fun(X × Y, Z)→ Fun(X,Fun(Y, Z)),

and prove that it is a bijection by giving the inverse map.

(ii) Let X, Y be topological spaces and (Z, d) a metric space. Prove: If f ∈ Fun(X × Y, Z) is such
that Λ(f) ∈ C(X,Cb(Y, Z)), where Cb(Y, Z) has the topology coming the metric D(g, h) =
supy d(g(y), h(y)), then f ∈ C(X × Y, Z).

Thus: If f is continuous and bounded in y for every x and continuous in x uniformly in y then f
is jointly continuous. (For a converse result, cf. Exercise 7.7.45(i).)

6.6 ? Pushouts and Pullback (fiber product)

The four constructions in the preceding sections – subspaces, quotient spaces, direct sums and direct
products – can be combined in many ways to produce more complicated spaces. Here we briefly look
at two of the more important ones, even if their main use lies in algebraic topology.

Definition 6.6.1 Let X0, X1, X2 be sets and fi : X0 → Xi, i = 1, 2 functions. Consider the
canonical inclusion maps ιi : Xi → X1 ⊕X2. Let ∼ be the smallest equivalence relation on X1 ⊕X2

identifying ι1(f1(x)) with ι2(f2(x)) for each x ∈ X0. Then X1 ⊕X0 X2 := (X1 ⊕X2)/∼ is called the

pushout for the ‘diagram’ X1
f1← X0

f2→ X2.

The pushout comes with canonical maps gi : Xi → X1 ⊕X0 X2, i = 1, 2 (defined as gi = p ◦ ιi,
where p : X1 ⊕ X2 → X1 ⊕X0 X2 is the quotient map). There also is a map f : X0 → X1 ⊕X0 X2,
defined as f = gi ◦ fi (which is independent of i ∈ {1, 2} by construction).

If X1, X2 are topological spaces, X1 ⊕X0 X2 is given the quotient topology coming from the direct
sum topology on X1 ⊕X2.

Also this construction has a universal property:
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Proposition 6.6.2 Let X1
f1← X0

f2→ X2 be as in Definition 6.6.1. Let Y be a set and hi : Xi →
Y, i = 1, 2 functions such that h1 ◦ f1 = h2 ◦ f2.

X1

X0

f 1

-

X1 ⊕X2
p-

ι1

-

X1 ⊕X0 X2
h -

g1

-

Y

h1

-

X2

h2

-

g2

-

ι 2

-

f
2

-

(6.8)

Then there is a unique function h : X1 ⊕X0 X2 → Y such that h ◦ gi = hi, i = 1, 2.

If Y,X1, X2 have topologies and h1, h2 are continuous then h : X1 ⊕X0 X2 → Y is continuous. If
in addition the fi : X0 → Xi are continuous then so is f : X0 → X1 ⊕X0 X2.

Proof. By the universal property of direct sums of sets (Proposition A.2.5) there is a unique function
h0 : X1 ⊕ X2 → Y such that h0 ◦ ιi = hi, i = 1, 2. The only non-trivial equivalences w.r.t. ∼ are
ι1(f1(x)) ∼ ι2(f2(x)) for each x ∈ X0. The assumption h1◦f1 = h2◦f2 implies that h0 : X1⊕X2 → Y
is constant on the ∼-equivalence classes, so that the universal property of the quotient operation
(Lemma A.1.11) implies the existence of a unique map h : X1 ⊕X0 X2 ≡ (X1 ⊕ X2)/∼→ Y such
that h ◦ p = h0. If Y,X1, X2 are topological spaces and the hi continuous, Proposition 6.3.5 gives
continuity of h0, and Proposition 6.4.8 gives the continuity of h. If furthermore fi : X0 → Xi for
i ∈ {1, 2} is continuous then also f = p ◦ ιi ◦ fi : X0 → X1 ⊕X0 X2 is continuous. �

Remark 6.6.3 1. If X0 is a fixed topological space, a space below X0 is a topological space X
equipped with a continuous map ιX : X0 → X. If (X, ιX), (Y, ιY ) are spaces below X0, a map
f : X → Y is a map of spaces below X0 if f◦ιX = ιY . Spaces and maps below X0 form a category

T OPX0 . If (X1, f1), (X2, f2) are objects in T OPX0 then (X1 ⊕X0 X2, f), as defined above, is an
object in T OPX0 . If now (Y, k) ∈ T OPX0 and hi : Xi → Y are maps of spaces below X0 then it
follows that k = hi ◦ fi for i = 1, 2. This implies f1 ◦ h1 = f2 ◦ h2, so that by the proposition there is
a unique h : X1 ⊕X0 X2 → Y . Now also h ◦ f = k, thus h is a map of spaces below X0. This proves
that (X1 ⊕X0 X2, f) is the coproduct of (X1, f1), (X2, f2) in the category T OPX0 .

2. The construction of the pushout, as well as its universal property, generalize easily to any

family {fi : X0 → Xi}i∈I of (continuous) maps, giving rise to
⊕
i∈I

X0Xi. 2

We now consider some applications of the pushout:

Exercise 6.6.4 Let X be a topological space and A,B ⊆ X open subsets such that X = A∪B. Give
A,B the subspace topologies. Prove that the pushout A⊕A∩B B for the diagram A← A ∩ B → B,
where the arrows are the inclusion maps, is homeomorphic to X.

Exercise 6.6.5 Let X be a Hausdorff space and A ⊆ X a closed subset. Prove that the pushout
X⊕AX for the diagram X ← A→ X, where the arrows are the obvious inclusion maps, is Hausdorff.
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Remark 6.6.6 Let X, Y be Hausdorff spaces and f ∈ C(X, Y ). Assume that f is ‘an epimorphism
in the category of Hausdorff spaces’, meaning that if also Z is Hausdorff and g, h ∈ C(Y, Z) satisfy
g ◦ f = h ◦ f then g = h. Let A = f(X) ⊆ Y and define Z = Y ⊕A Y , which is T2 by Exercise 6.6.5.
If p : Y ⊕ Y → Y ⊕A Y is the quotient map, let ι̃1/2 = p ◦ ι1/2 : Y → Y ⊕A Y . By construction, ι̃1
and ι̃2 coincide on A, thus ι̃1 ◦ f = ι̃2 ◦ f . Since f is epi, we have ι̃1 = ι̃2. This clearly implies A = Y ,
to wit f(X) = Y .

Thus epimorphisms in the category of Hausdorff spaces have dense image, which is the promised
converse of Remark 5.2.17(ii). 2

Definition 6.6.7 Let X,Z be topological spaces, Y ⊆ X a subspace and f : Y → Z a continuous

map. Then we write X ⊕f Z (instead of X ⊕Y Z) for the pushout for the diagram X ←↩ Y f→ Z,
where the first arrow is just the inclusion map. This construction is called ‘attaching X to Z along
f : Y → Z’.

Remark 6.6.8 Note that this construction identifies each y ∈ Y ⊆ X with f(y) ∈ Z. Thus if f is
not injective, certain points of Y become identified in X ⊕f Z. The attachment construction plays
an important rôle in algebraic topology, where it is often used to ‘attach an n-cell’. In this case
X = Dn = {x ∈ Rn | ‖x‖2 ≤ 1} and Y = ∂Dn = Sn−1. 2

Dualizing the construction of the pushout as a quotient of a direct sum, one obtains the ‘pullback’
as a subspace of the direct product.

Definition 6.6.9 Let X0, X1, X2 be sets and fi : Xi → X0, i = 1, 2 functions. The pullback or
fiber product X1 ×X0 X2 is defined as

X1 ×X0 X2 = {(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2)}.

It comes with canonical maps qi : X1 ×X0 X2 → Xi, qi : (x1, x2) 7→ xi, i = 1, 2. There also is a
function p : X1 ×X0 X2 → X0, given by p = fi ◦ qi, which is independent of i ∈ {1, 2}.

If X1, X2 are topological spaces, also X1 ×X0 X2 is given the subspace topology arising from the
product topology on X1 ×X2.

Lemma 6.6.10 Let X1
f1← X0

f2→ X2 as in Definition 6.6.9. Let hi : Y → Xi, i = 1, 2 be functions
such that f1 ◦ h1 = f2 ◦ h2.

X1

Y
h -

h1

-

X1 ×X0 X2
ι-

q1

-

X1 ×X2

p 1

-

X0

f
1

-

X2

f 2

-

p
2

-

q2

-

h2

-

(6.9)

Then there is a unique function h : Y → X1 ×X0 X2 such that qi ◦ h = h1, i = 1, 2.
If Y,X1, X2 have topologies and h1, h2 : Y → Xi are continuous then h : Y → X1 ×X0 X2 is

continuous. If in addition fi : Xi → X0 is continuous for i ∈ {i, 2} then also p = fi ◦ qi is continuous
(since qi is continuous by construction).
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Proof. Since qi is just the restriction of pi to X1 ×X0 X2 ⊆ X1 × X2, a map h : Y → X1 ×X0 X2

satisfies qi ◦ h = hi for i = 1, 2 if and only if it satisfies pi ◦ h = hi for i = 1, 2. But this forces
the definition h : Y → X1 × X2, y 7→ (h1(y), h2(y)). (Compare Proposition A.2.7.) In view of
f1(h1(y)) = f2(h2(y)), we indeed have h(y) ∈ X1 ×X0 X2.

If the hi are continuous then h : Y → X1 ×X2, y 7→ (h1(y), h2(y)) is continuous by Proposition
6.5.2. Now Corollary 6.2.2 gives that h is continuous as a map Y → X1 ×X0 X2. �

Remark 6.6.11 1. If X0 is a fixed topological space, a space above X0 is a topological space X
equipped with a continuous map pX : X → X0. If (X, pX), (Y, pY ) are spaces above X0, a map
f : X → Y is a map of spaces above X0 if pY ◦ f = pX . Spaces and maps above X0 form a category
T OPX0 . Arguing as for the pushout, one finds that the pullback (X1×X0 X2, p) is the direct product
of (X1, p1), (X2, p2) in the category T OPX0 .

2. Given any number of spaces Xi equipped with maps fi : Xi → X0, the above construction
generalizes straightforwardly to a fiber product

∏
X0
Xi. 2
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Part II:

Covering and Separation axioms (beyond T2) 9

9This author agrees with Ioan James [157]: “Most accounts of the theory go on to discuss separation axioms, [. . . ].
But in my view compactness should come first, because it is of fundamental importance.”



Chapter 7

Compactness and related notions

By well-known classical results from basic analysis, every continuous function f : [a, b] → R is uni-
formly continuous (Heine) and bounded, and it assumes its infimum and supremum. In introductory
textbooks like [280], these results are deduced from the Bolzano-Weierstrass theorem according to
which every bounded sequence in R has a convergent subsequence. Later we will say ‘[a, b] is se-
quentially compact’. As we know, sequences are insufficient for studying general topological spaces,
which is why sequential compactness is not the best notion and we will focus on the ‘better’ notion
of compactness. Compactness actually is the most important property that a space can have. It has
many applications to analysis and functional analysis, cf. [141]. But also many topologies arising in
purely algebraic contexts are compact, like the Krull topology on Galois groups, the Zariski topolo-
gies (cf. Appendix C) and the topology on the Stone dual (Section 11.1.11) of a Boolean algebra.
For this reason, compactness and its many relatives and generalizations merit a very thorough study,
which is why this is the longest chapter in this text.1

7.1 Covers. Subcovers. Lindelöf and compact spaces

Definition 7.1.1 Let (X, τ) be a topological space.

• A cover of X is a family U ⊆ P (X) of subsets of X such that
⋃
U =

⋃
U∈U U = X.

• A cover is called open (resp. closed) if every U ∈ U is open (resp. closed).

• A subcover of a cover U is a subfamily V ⊆ U such that still
⋃
V = X.

Remark 7.1.2 More explicitly (and tediously) a cover is a family U = {Ui | i ∈ I} such that⋃
i∈I Ui = X, and if J ⊆ I is such that

⋃
i∈J Ui = X, then V = {Ui | i ∈ J} is a subcover. (Indexing

by a set I gives the additional liberty of having Ui = Uj for some i 6= j, but this is never needed.) 2

Definition 7.1.3 A topological space is called

• compact if every open cover has a finite subcover.

• Lindelöf2 if every open cover has a countable subcover.

1The impatient reader might want to look at Proposition 7.4.11 for an important application of compactness and
at Theorems 7.7.51, 7.7.63 or Exercise 7.8.77 for examples of results whose statements do not involve compactness but
whose proofs do.

2Ernst Leonard Lindelöf (1870-1946), Finnish mathematician. He actually proved that R is ‘Lindelöf’.
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Remark 7.1.4 1. Obviously, every compact space is Lindelöf.
2. Compactness does, of course, not just mean that (X, τ) admits a finite open cover. This would

be trivial since every space (X, τ) has the finite open cover {X}.
3. Like second countability and separability, the Lindelöf property can be generalized by replacing

the cardinal number ℵ0 = #N by any other (infinite) cardinal ℵ, but we stick to ℵ0.
4. Some authors include the Hausdorff property in the definition of compact spaces and call

our compact spaces ‘quasi-compact’. Other authors, in particular in the older literature, call our
compact Hausdorff spaces ‘bicompact’ (and use ‘compact’ for our ‘countably compact’). Similarly,
some authors include the T2 or T3-axiom in the definition of Lindelöf spaces. 2

We begin with some very easy results and examples of compact and Lindelöf spaces:

Exercise 7.1.5 Let (X, τ) be a topological space and U an open cover of X. Prove:

(i) There is a subcover V ⊆ U such that #V ≤ #X.

(ii) There is a subcover V ⊆ U such that #V ≤ #B, where B is any base for τ .

Exercise 7.1.6 Let (X, τ) be a topological space. Prove:

(i) Every indiscrete space is compact.

(ii) If τ is finite (resp. countable) then it is compact (resp. Lindelöf).

(iii) If X is finite (resp. countable) then τ is compact (resp. Lindelöf).

(iv) A second countable space is hereditarily Lindelöf.

(v) A discrete space is compact (resp. Lindelöf) if and only if it is finite (resp. countable).

(vi) The cofinite (resp. cocountable) topology on any set is compact (resp. Lindelöf).

(vii) The Euclidean and Sorgenfrey topologies on R are non-compact.

Remark 7.1.7 1. The discrete topology on a countably infinite set provides an example of space
that is Lindelöf, but not compact.

2. By Exercise 7.1.6(iv), the Lindelöf property is weaker than second countability, and much of
its usefulness derives from the fact that many (but not all!) results that hold for second countable
spaces generalize to Lindelöf spaces. It will also play a rôle in the discussion of compactness of metric
spaces.

3. There are many spaces that are Lindelöf, but not second countable! Examples are provided �

by: (a) The cocountable topology on an uncountable set is Lindelöf by Exercise 7.1.6(vi), but not
second countable by Exercise 4.1.17(vi). (b) Countable spaces are Lindelöf by Exercise 7.1.6(ii))
but can fail to be second countable, cf. Exercise 4.3.14. (c) Cubes [0, 1]χ, where χ is an uncountable
cardinal number, are not second countable by Exercise 6.5.15(iii). But as a consequence of Tychonov’s
theorem, proven later, such a space is even compact, thus a fortiori Lindelöf. (d) The Sorgenfrey line
is another example, cf. Exercise 7.1.8.

4. When χ > c, the space in the above example (c) is also non-separable, proving Lindelöf 6⇒
separable. That separable 6⇒ Lindelöf is demonstrated by the Sorgenfrey plane (R, τS)2, which clearly
is separable but not Lindelöf by Corollary 8.1.41. 2

Exercise 7.1.8 Goal: The Sorgenfrey line (R, τS) is Lindelöf.
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(i) Show that for proving the Lindelöf property it is sufficient to consider covers by open sets of
the form [a, b), where a < b.

(ii) Given an open cover U = {[ai, bi)}i∈I , let Y =
⋃
i(ai, bi). Prove that R\Y is at most countable.

(iii) Show that every subset of R with the usual topology is Lindelöf.

(iv) Combine this to obtain a countable subcover of U . (Thus (R, τS) is Lindelöf.)

As we have seen above and in Section 4.1.2, we have the implications

compact ⇒ Lindelöf ⇐ second countable ⇒ separable ⇒ Souslin,

none of which is invertible in general. For metrizable spaces, however, the situation simplifies since
the last four properties become equivalent (but compactness remains stronger):

Exercise 7.1.9 Prove that a metrizable Lindelöf space is separable and second countable.

The following result beautifully applies the Lindelöf property without even having it in its state-
ment:

Proposition 7.1.10 If a space (X, τ) is second countable, i.e. τ admits a countable base B, then
every base V for τ has a countable subfamily V0 ⊆ V that still is a base.

Proof. Let U = {U1, U2, . . .} be a countable base and V any base. For i ∈ N, define Bi = {V ∈
V | V ⊆ Ui} ⊆ V . Since V is a base, we have

⋃
Bi = Ui. Now, the subspaces Ui ⊆ X are second

countable, thus Lindelöf. Thus the open cover Bi of Ui has a countable subcover B0
i ⊆ Bi. Now

define V0 =
⋃∞
i=1 B0

i . As a countable union of countable sets, this is a countable subfamily of V . If
W ⊆ X is open, it is a union of the Ui contained in W , and each such Ui is a union over a subfamily
of B0

i ⊆ V0. Thus V0 ⊆ V is a base for τ . �

7.2 Compact spaces: Equivalent characterizations

The Lindelöf property essentially just is another countability property like second countability, sep-
arability and the Souslin property (all of which are equivalent for metric spaces, as we have seen).
We will see that compactness has a very different character.

The property of compactness has a long and complicated history, cf. [241] or the historical notes in
[298, 89]. Before the ‘right’ (i.e. most useful and best behaved) definition was arrived at, mathemati-
cians studied various other notions, like ‘sequential compactness’ or ‘(weak) countable compactness’.
We will have a quick look at these alternative notions in Section 7.7, where in particular we will
see that they are all equivalent to compactness for metric spaces. But for more general spaces,
this is not the case, and compactness clearly is the most important notion. (Later we will meet
quite a few generalizations of compactness: local compactness, compact generation, σ-compactness,
hemicompactness, paracompactness, . . . )

In this subsection, we consider two important equivalent characterizations of compactness in
terms of closed sets and nets.

Lemma 7.2.1 For a topological space (X, τ), the following are equivalent:

(i) (X, τ) is compact.
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(ii) Whenever F ⊆ P (X) is a family of closed subsets of X such that
⋂
F = ∅ then there are

C1, . . . , Cn ∈ F such that C1 ∩ · · · ∩ Cn = ∅.

(iii) Whenever F ⊆ P (X) consists of closed subsets of X and has the finite intersection property
then

⋂
F 6= ∅.

Proof. (i) and (ii) are dualizations of each other, using de Morgan’s formulas, and (iii) is the contra-
position of (ii). �

(Similar equivalences can be given for the Lindelöf property, but we will not need them.)

The reader probably knows from analysis courses that a metric space (X, d) is compact if and
only if every sequence in X has an accumulation point or, equivalently, a convergent subsequence.
A similar result holds for topological spaces, but we must replace sequences by nets:

Proposition 7.2.2 A topological space (X, τ) is compact if and only if every net in X has an accu-
mulation point (equivalently, a convergent subnet).

Proof. ⇒: Assume that X is compact, but {xι}ι∈I has no accumulation point. Put

U = {∅ 6= U ∈ τ | xι is not frequently in U}.

Since {xι} has no accumulation point, every x ∈ X has an open neighborhood U in which xι is not
frequently, so that U is an open cover of X. By compactness, there is a finite subcover {U1, . . . , Un}.
For each k = 1, . . . , n, xι is not frequently in Uk, thus by Exercise 5.1.33 it is eventually not in Uk.
Thus there exists ιk ∈ I such that ι ≥ ιk ⇒ x 6∈ Uk. By the directedness axiom, we can find λ ∈ I
such that λ ≥ ιk for all k = 1, . . . , n. Now ι ≥ λ implies xι 6∈

⋃n
k=1 Uk = X, which is absurd. Thus

{xι} does have an accumulation point. [Note that this argument has used no choice axiom.]
⇐ [AC]: Assume X is not compact, thus there is an open cover U = {Ui}i∈I admitting no finite

subcover. The set J = {J ⊆ I | J finite} is partially ordered by inclusion and upward directed. By
assumption, XJ := X\

⋃
j∈J Uj 6= ∅ ∀J ∈ J , thus (invoking AC) we can choose points xJ ∈ XJ .

Now (J ,≤) → X, J 7→ xJ is a net. By assumption, the net {xJ} has an accumulation point x.
Since U is a cover, there is i ∈ I such that x ∈ Ui. Clearly {i} ∈ J , and if J ≥ {i} then xJ 6∈ Ui by
construction. Thus, whenever K ≥ {i}, we have xL 6∈ XL ∀L ≥ K. Thus x is not frequently in Ui,
contradicting the fact that x is an accumulation point. �

Whether a space is compact can be checked by looking only at covers consisting of base elements:

Exercise 7.2.3 Let (X, τ) be a topological space and B ⊆ τ a base for the topology. Prove that X
is compact if and only if every cover of X by elements of B has a finite subcover.

The result of the above exercise is not very useful, but the following result definitely is:

Lemma 7.2.4 (Alexander’s Subbase Lemma) 3 Let (X, τ) be a topological space and S ⊆ τ a
subbase for τ . If every cover of X by elements of S has a finite subcover, then X is compact.

Proof. Assuming that X is non-compact, the family F of open covers V that have no finite subcover
is non-empty. Partially ordering F by inclusion, let G be a totally ordered subset of F. Then
W =

⋃
G =

⋃
V∈G V clearly is an open cover of X. If U1, . . . , Un ∈ W then each Ui comes from some

Vi ∈ G. Since G is totally ordered, we have {U1, . . . , Un} ⊆ max(V1, . . . , Vn) = V ∈ G. Since V has
no finite subcover, the same holds for W . Thus W ∈ F, and it is an upper bound for the chain G.

3James Waddell Alexander II (1888-1971), American topologist (general and algebraic).
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Thus the assumptions of Zorn’s Lemma are satisfied, so that F has a maximal elementM. ThusM
is an open cover without finite subcover, and maximality of M implies that M∪ {V } does have a
finite subcover for every non-empty open V 6∈ M.

Defining S ′ =M∩ S, no finite subfamily of S ′ covers X, since this is true for M ∈ G. Thus if
we prove that S ′ covers X, we have arrived at a contradiction with the hypothesis.

To this end, assume x ∈ X\
⋃
S ′. Since M is a cover, there is a U ∈ M such that x ∈ U . Since

S is a subbase, there are V1, . . . , Vn ∈ S such that x ∈
⋂n
i=1 Vi ⊆ U . In view of x 6∈

⋃
S ′, we have

Vi 6∈ S ′ for each i = 1, . . . , n. Thus for each i the open coverM∪{Vi} has a finite subcover, so that
X = Yi ∪ Vi, where Yi is a finite union of elements of M. In view of

⋂
i Vi ⊆ U we have

X = Y1 ∪ · · · ∪ Yn ∪
n⋂
i=1

Vi ⊆ Y1 ∪ · · · ∪ Yn ∪ U.

Since U ∈ M and each Yi is a finite union of elements of M, we find that X is a finite union of
elements of M. But this contradicts the fact that M by construction has no finite subcover. This
contradiction proves

⋃
S ′ = X, and therefore the lemma. �

Remark 7.2.5 1. The subbase lemma is often useful when topologies are defined in terms of sub-
bases, as is the case with initial topologies, cf. Section 6.1, in particular Lemma 6.1.6. The most
important classes of examples are given by product spaces and spaces with the order topology,
discussed in Section 7.6. Lemma 7.2.4 will be used to prove Tychonov’s Theorem 7.5.9 on the com-
pactness of product spaces and a criterion for compactness of spaces with order topology, cf. Theorem
7.6.2.

2. The above proof of the subbase lemma used Zorn’s lemma, but in Section 7.5.5 we will give
an alternative proof using only the ultrafilter lemma, which is strictly weaker than Zorn’s lemma. 2

Exercise 7.2.6 Prove: A topological space (X, τ) is compact if and only if every infinite subset
Y ⊆ X has a complete accumulation point. (The ⇒ direction requires some easy cardinal number
arithmetic. The ⇐ direction is harder and usually done using ordinal numbers.)

In the next section we will study in the behavior of compactness and the Lindelöf property under
various constructions to the extent that the two properties behave similarly, before we turn to results
for compact spaces that have no analogue for Lindelöf spaces. On the way, we will encounter many
useful applications of compactness. The usefulness of compactness raises the question whether a non-
compact space can be compactified, in analogy to completion of a metric space. They can, though
not uniquely in contrast to completions (Proposition 3.2.2). Compactifications will be considered in
Sections 7.8 and 8.3.3.

7.3 Behavior of compactness and Lindelöf property under

constructions

We now study the behavior of Lindelöf property and compactness under passage to subspaces, direct
sums and under continuous functions. (Products will be considered later.)

The following construction is similar to that of Exercise 4.1.14 (but different!):

Exercise 7.3.1 Let (X, τ) be any topological space. Let X ′ = X ∪ {p} (where p 6∈ X) and τ ′ =
τ ∪ {X ′}. (Thus the open sets of (X ′, τ ′) are the open U ⊆ X, considered as subsets of X ′, and the
total space X ′.) Prove:
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(i) τ ′ is a topology, and it is compact (thus Lindelöf).

(ii) τ ′ �X = τ .

(iii) Conclude that neither compactness nor the Lindelöf property are hereditary.

(As to a Hausdorff example, we will see that [0, 1] is compact, but (0, 1) ∼= R is not.)

Given a subset Y ⊆ (X, τ), equipped with the subspace topology τY , the question whether (Y, τY )
is compact or Lindelöf can be formulated without reference to τY :

Lemma 7.3.2 Let (X, τ) be a topological space and Y ⊆ X. Then the subspace (Y, τY ) ⊆ (X, τ) is
compact (resp. Lindelöf) if and only if every family {Ui ∈ τ}i∈I such that

⋃
i Ui ⊇ Y has a finite

(resp. countable) subfamily whose union still contains Y .

Proof. If {Ui ∈ τ}i∈I is a family of open sets such that
⋃
i Ui ⊇ Y , then {Vi = Ui ∩ Y ∈ τY }i∈I is an

open cover of Y . Conversely, every open cover {Vi} of Y arises in this way (usually non-uniquely).
If Ui ⊆ X and Vi ⊆ Y are related as above and J ⊆ I then it is clear that

⋃
j∈J Uj ⊇ Y holds if and

only if {Vj}j∈J is a subcover of {Vi}. �

Remark 7.3.3 This result has a dual version which is occasionally useful:
If U ⊆ X is open such that X\U is compact, and {Fi}i∈I is a family of closed sets such that⋂

i∈I Fi ⊆ U , then there is a finite subset J ⊆ I such that
⋂
j∈J Fj ⊆ U . 2

Lemma 7.3.4 If (X, τ) is compact (resp. Lindelöf) and Y ⊆ X is closed then (Y, τY ) is compact
(resp. Lindelöf).

Proof. Let {Ui ∈ τ}i∈I be such that
⋃
i Ui ⊇ Y . Since Y is closed, U0 = X\Y is open, and

{U0} ∪ {Ui | i ∈ I} is an open cover of X. Since X is compact (resp. Lindelöf), there is a finite
(resp. countable) subset J ⊆ I such that {U0} ∪ {Uj | j ∈ J} still covers X. But this means that⋃
j∈J Uj ⊇ Y , thus Y is compact (resp. Lindelöf) by Lemma 7.3.2. �

Lemma 7.3.5 If (X, τ) is compact (resp. Lindelöf) and f : (X, τ) → (Y, σ) is continuous then the
subspace f(X) ⊆ Y is compact (resp. Lindelöf).

Proof. Thus let {Ui}i∈I be open sets in Y such that
⋃
i Ui ⊇ f(X). By continuity, each f−1(Ui) ⊆ X

is open. Since the Ui cover f(X), the family {f−1(Ui)} is an open cover of X. By compactness (resp.
the Lindelöf property) of X there is a finite (resp. countable) set J ⊆ I such that {f−1(Uj)}j∈J still
covers X. This is equivalent to

⋃
j∈J Uj ⊇ f(X), thus the subspace f(X) ⊆ Y is compact (resp.

Lindelöf) by Lemma 7.3.2. �

Corollary 7.3.6 (i) If X is compact (resp. Lindelöf) and f : X → Y is continuous and surjective
then Y is compact (resp. Lindelöf).

(ii) Quotient spaces of compact (resp. Lindelöf) spaces are compact (resp. Lindelöf).

Actually, surjective continuous images of compact spaces have a tendency to be quotient spaces!
Cf. Proposition 7.4.11(iii).

In Section 7.5 we will see that products of arbitrarily many compact spaces are compact.
On the other hand, in Corollary 8.1.41(iii) we will find that the square (R, τS)2 of the Sorgenfrey �

line is not Lindelöf, thus not even products of two Lindelöf spaces need to be Lindelöf.
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Exercise 7.3.7 Let {xn}n∈N be a sequence in a topological space X such that xn → x ∈ X. Prove
that Y = {x, x1, x2, . . .} ⊆ X is compact.

Exercise 7.3.8 Prove that a direct sum
⊕

i∈I(Xi, τi) of topological spaces is

(i) compact if and only if each Xi is compact and the set {i ∈ I | Xi 6= ∅} is finite.

(ii) Lindelöf if and only if each Xi is Lindelöf and the set {i ∈ I | Xi 6= ∅} is countable.

Note: The two proofs are very similar, thus it suffices to write down one and indicate how the other
differs.

Exercise 7.3.9 (An alternative topology on
⊕

iXi) Let {(Xi, τi)}i∈I be a family of topological
spaces, and let X =

⊕
i∈I Xi be the disjoint union. We identify Xi with its image ιi(Xi) in X.

(i) Show that the following defines a topology τ ′ on X: The open sets are ∅ and the U ⊆ X for
which U ∩Xi ⊆ Xi is open for each i ∈ I and #{i ∈ I | Xi 6⊆ U} <∞.

(ii) Prove: If all (Xi, τi) are compact then (X, τ ′) is compact.

7.4 More on compactness

In the rest of this Section we focus on results that really require compactness (not just Lindelöf).

7.4.1 More on compactness and subspaces

Lemma 7.4.1 If (X, τ) is Hausdorff, Y ⊆ X is a compact subspace and x ∈ X\Y then there are
open U, V such that Y ⊆ U, x ∈ V and U ∩ V = ∅.

Proof. For every y ∈ Y we have y 6= x, thus using the Hausdorff property we can find Uy, Vy ∈ τ
such that y ∈ Uy, x ∈ Vy and Uy ∩ Vy = ∅. In view of y ∈ Uy, we have

⋃
y Uy ⊇ Y . By compactness

of Y and Lemma 7.3.2 there is a finite subset {y1, . . . , yn} ⊆ Y such that U := Uy1 ∪ · · · ∪ Uyn ⊇ Y .
Now V := Vy1 ∩ · · · ∩ Vyn is an open neighborhood of x, and

V ∩ U = (Vy1 ∩ · · · ∩ Vyn) ∩ (Uy1 ∪ · · · ∪ Uyn) =
n⋃
k=1

(Vy1 ∩ · · · ∩ Vyn ∩ Uyk) = ∅

due to Uyk ∩ Vyk = ∅. �

We have already proven that closed subspaces of compact spaces are compact (and similarly for
Lindelöf spaces). For Hausdorff spaces and compactness, there is a converse:

Lemma 7.4.2 If (X, τ) is Hausdorff and Y ⊆ X is compact (with the relative topology) then Y ⊆ X
is closed.

Proof. By Lemma 7.4.1, every x ∈ X\Y has an open neighborhood V contained in X\Y . Thus X\Y
is open, thus Y is closed. �

Corollary 7.4.3 A subspace of a compact Hausdorff space is compact if and only if it is closed.
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Remark 7.4.4 1. If X has the indiscrete topology, then every subspace Y ⊆ X is indiscrete, thus
compact, but Y = X whenever Y 6= ∅. Thus the T2 assumption in Lemma 7.4.2 is necessary.

2. Lemmas 7.3.4 and 7.4.2 should be compared to Lemma 3.1.10 concerning completeness of
subspaces. For a (less perfect) analogue of Proposition 3.2.7 see Corollary 8.3.23.

3. A subset of a topological space is called relatively compact if its closure is compact.
4. Lemma 7.4.2 and the needs of algebraic topology motivate the definition of several closely

related notions of weak Hausdorff spaces:
(WH1) Every compact subspace Y ⊆ X is closed.
(WH1’) If Y is compact and f : Y → X is continuous then f(Y ) ⊆ X is closed.
(WH2) If Y is compact Hausdorff and f : Y → X is continuous then f(Y ) ⊆ X is closed.

We then have the following implications: T2 ⇒ WH1 ⇔ WH1’ ⇒ WH2 ⇒ T1. (The first two ⇒
follow from Lemmas 7.4.2 and 7.3.5, respectively. For WH1’⇒WH1, consider the embedding map
f : Y ↪→ X.) For more on these notions and their relevance in algebraic topology see [204, 148]. 2

Exercise 7.4.5 Prove that disjoint compact subsets C,D in a Hausdorff space have disjoint open
neighborhoods U ⊇ C, V ⊇ D. Hint: Combine the result of Lemma 7.4.1 with the method of its
proof.

Remark 7.4.6 Later we will call a T1-space X regular or T3 if for every closed C ⊆ X and x ∈ X\C
then there are disjoint open U, V ⊆ X such that Y ⊆ U, x ∈ V . And a T1-space will be called normal
or T4 if given disjoint closed C,D there are disjoint open U, V such that C ⊆ U, D ⊆ V . Since closed
subsets of a compact space are compact by Lemma 7.3.4, Lemma 7.4.1 and Exercise 7.4.5 have as
corollaries that every compact Hausdorff space is regular and normal. In Section 8 we will study
such stronger separation axioms quite extensively. 2

Exercise 7.4.7 Let X be a topological space, not necessarily compact.

(i) Prove that any finite union of compact subsets of X is compact.

(ii) Let K,C ⊆ X where K is compact and C is closed. Prove that K ∩ C is compact.

(iii) Prove that in a Hausdorff space, every intersection of compact sets is compact.

(iv) Give an example of two compact sets in a non-Hausdorff space whose intersection is not com-
pact.

In view of the meta-Definition 2.3.7, a space X is called hereditarily compact if all subspaces
Y ⊆ X are compact. Obviously every indiscrete space is hereditarily compact. There are not many
hereditarily compact Hausdorff spaces, but more hereditarily compact T1 spaces:

Exercise 7.4.8 (i) Prove that a Hausdorff space (X, τ) is hereditarily compact if and only if X
is finite and τ is the discrete topology.

(ii) Prove that the property of being cofinite is hereditary. Deduce that cofinite spaces (X, τcofin)
are hereditarily compact.

Exercise 7.4.9 Let (X, τ) be a topological space. Prove that the following are equivalent:

(i) X is hereditarily compact.
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(ii) For every family {Ui ∈ τ}i∈I there is a finite subset J ⊆ I such that
⋃
j∈J Uj =

⋃
i∈I Ui.

(iii) Every strictly increasing chain U1 ( U2 ( · · · of open sets in X is finite.

(iv) Every strictly decreasing chain C1 ) C2 ) · · · of closed sets in X is finite.

Remark 7.4.10 Because of the statements (iii) and (iv), hereditarily compact spaces are also called
Noetherian. In Section 2.8 we will see that this is more than an analogy with Noetherian rings. For
more on hereditarily compact spaces see [273]. 2

7.4.2 More on compactness and continuity. Quotients and embeddings

We know that continuous images of compact spaces are compact, and similarly for Lindelöf spaces.
For compact spaces, we have more, thanks to Lemma 7.4.2. The following has countless applications:

Proposition 7.4.11 Let (X, τ) be compact, (Y, σ) Hausdorff and f : X → Y continuous. Then:

(i) f is closed. (In particular f(X) ⊆ Y is closed.)

(ii) If f is a bijection then it is a homeomorphism.

(iii) If f is injective then it is an embedding.

(iv) If f is surjective then it is a quotient map. (σ is the final topology on Y induced by f .)

Note that (ii) and (iii) imply that (X, τ) is Hausdorff, which was not assumed!

Proof. (i) If C ⊆ X is closed then it is compact by Lemma 7.3.4. Thus by Lemma 7.3.5, f(C) ⊆ Y
is compact, and thus closed by Lemma 7.4.2.

(ii) If f is bijective then (i) with Lemma 5.2.26 implies that it is a homeomorphism.
(iii) It is clear that f : X → f(X) is a continuous bijection. Since f(X) ⊆ Y inherits the

Hausdorff property, (ii) implies that f : X → f(X) is a homeomorphism.
(iv) f is continuous, surjective, and closed by (i). Now Lemma 6.4.5 gives that σ is the quotient

topology, thus f is a quotient map. (For another proof, independent of Lemma 6.4.5, cf. Remark
7.4.15. �

Corollary 7.4.12 If X is a compact space, and ∼ is an equivalence relation on X such that X/∼
is Hausdorff then ∼ is closed.

Remark 7.4.13 In Section 8.1 we will prove a converse of this: If X is compact Hausdorff and ∼
is a closed equivalence relation, then the quotient space X/∼ is Hausdorff. Thus: If X is compact
Hausdorff then X/∼ is Hausdorff if and only if ∼ is closed! 2

Corollary 7.4.14 Let X be a set and τ1, τ2 topologies on X. If τ1 is compact, τ2 is Hausdorff and
τ1 ⊇ τ2 (i.e. τ1 is finer than τ2) then τ1 = τ2.

In particular: If two compact Hausdorff topologies on the same set are comparable (i.e. τ1 ⊆ τ2

or τ2 ⊆ τ1) then they coincide!

Proof. By Lemma 5.2.25, the map idX : (X, τ1) → (X, τ2) is continuous. Thus by Proposition
7.4.11(ii) it is a homeomorphism, thus τ1 = τ2. The second statement obviously follows. �
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Remark 7.4.15 The statements (ii)-(iv) of Proposition 7.4.11 can also be interpreted in terms
of Corollary 7.4.14. E.g. for (iv) proceed like this: Consider the the quotient (=final) topology
σ̃ = {U ⊆ Y | f−1(U) ∈ τ} on Y induced by f . Continuity of f implies σ̃ ⊇ σ. Since (X, τ) is
compact, σ̃ is compact by Lemma 7.3.5. Since σ is Hausdorff, Corollary 7.4.14 now gives σ̃ = σ.
Thus σ is the quotient topology and f is a quotient map. 2

Exercise 7.4.16 Let (X, τ) be compact Hausdorff and τ ′ another topology on X. Prove:

(i) If τ ′ ) τ then τ ′ is Hausdorff, but not compact.

(ii) If τ ′ ( τ then τ ′ is compact, but not Hausdorff.

The next two subsections give two more advanced applications of compactness and may be skipped
until needed.

7.4.3 ? Second countability for images under closed maps

In Exercise 5.2.27 we have seen that the image of a second countable space under a continuous open
map is second countable. For non-open maps, such results are much harder to come by. Here is a
result for closed maps of compact spaces:

Proposition 7.4.17 If (X, τ) is compact and second countable, (Y, σ) is T1 and f : X → Y is
continuous, closed and surjective, then σ is second countable.

Proof. Let U be a countable base for τ . Let S be the family of finite subsets of U . Defining for each
S ∈ S,

WS = Y \f(X\
⋃
s∈S

Us),

we have WS ∈ σ since f is closed. Since S is countable, our claim will follow once we prove that
{WS, S ∈ S} is a base for σ.

Let y ∈ W ∈ σ. Then f−1(y) ⊆ f−1(W ) ⊆ X. Since Y is T1, {y} is closed, and continuity of f
gives that f−1(W ) is open and f−1(y) is closed, thus compact by Lemma 7.3.4. Since U is a base for
τ , we have f−1(W ) =

⋃
{U ∈ U | U ⊆ f−1(W )}. The U ’s appearing on the right hand side cover

f−1(x), and by compactness of the latter and Lemma 7.3.2, there is a finite family S ∈ S such that

f−1(y) ⊆
⋃
s∈S

Us ⊆ f−1(W ).

This implies

f(X\f−1(W )) ⊆ f(X\
⋃
s∈S

Us) ⊆ f(X\f−1(y)),

and using the surjectivity of f and the definition of WS this becomes Y \W ⊆ Y \WS ⊆ Y \{y}, or
just y ∈ WS ⊆ W . This means that {WS, S ∈ S} is a base for σ, and we are done. �

Remark 7.4.18 1. The result remains true if we replace compactness of X by compactness of
f−1(y) for each y ∈ Y , i.e. properness, which will be defined in Section 7.8.5. Clearly, if f is the
quotient map arising from an equivalence relation ∼, this holds if and only if each equivalence class
[x] ⊆ X is compact.

2. Since the family of finite subsets of some infinite setX has the same cardinality as X, essentially
the same proof gives the following more general result: If X is compact, Y is T1 and f : X → Y is
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continuous, closed and surjective then w(Y ) ≤ w(X), where w(X) is the weight of X mentioned in
Remark 4.1.7.

3. Preview: We will show later that if (X, τ) is compact Hausdorff then it is ‘normal’, which
is better than T2, and that normality is preserved under quotients by closed equivalence relations
(Proposition 8.1.18). If (X, τ) is also second countable, the above result applies and gives second
countability of X/∼. We will also show (Corollary 8.2.36) that a compact Hausdorff space is metriz-
able if and only if it is second countable. Putting all this together we obtain: If X is compact
metrizable and ∼ is a closed equivalence relation on X, then X/∼ is compact metrizable! 2

7.4.4 ? Extending continuous maps into compact Hausdorff spaces

Given a continuous function f : A → Y , where A ⊆ X is dense and Y is Hausdorff, we proved in
Exercise 6.5.18(iii) that f has at most one continuous extension to X. Concerning the more difficult
question of existence, so far we only have Proposition 3.4.10 in the context of metric spaces. But a
complete answer exists when the target space Y is compact Hausdorff.

Lemma 7.4.19 If (X, τ) is compact Hausdorff then:

(i) If x ∈ U ∈ τ there is an open V such that x ∈ V ⊆ V ⊆ U .

(ii) If x, y ∈ X, x 6= y then there are open U 3 x, V 3 y such that U ∩ V = ∅.

Proof. (i) Let x ∈ U ′ ∈ τ . Then Y = X\U ′ is closed, thus compact. Now by Lemma 7.4.1 there are
disjoint open sets U, V such that x ∈ U and Y ′ ⊆ V . Now U ∩ V = ∅, thus U ⊆ U ′.

(ii) Since X is Hausdorff, there are disjoint open sets U ′ 3 x, V ′ 3 y. Now use the preceding
argument to find open U, V such that x ∈ U ⊆ U ⊆ U ′ and y ∈ V ⊆ V ⊆ V ′. �

Theorem 7.4.20 Let A ⊆ X be dense and f : A→ Y continuous, with Y compact Hausdorff. Then
there is a continuous extension f̂ : X → Y (i.e. f̂ �A = f) if and only if

C,D ⊆ Y closed, C ∩D = ∅ ⇒ f−1(C) ∩ f−1(D) = ∅. (7.1)

(In X, not in A!) If an extension f̂ exists, it is unique.

Proof. Uniqueness of f̂ follows from Exercise 6.5.18(iii). Assume that f̂ exists, and let C,D ⊆ Y be

disjoint closed sets. Then f̂−1(C), f̂−1(D) ⊆ X are closed and disjoint. Now,

f−1(C) = f̂−1(C) ∩ A ⊆ f̂−1(C),

by closedness of f̂−1(C). Similarly, f−1(D) ⊆ f̂−1(D), and therefore (7.1) holds.
Now assume (7.1). For x ∈ X define F(x) = {f(N ∩ A) | N ∈ Nx} ⊆ P (Y ). If N1, . . . , Nn ∈ Nx

then

f(N1 ∩ A) ∩ · · · ∩ f(Nn ∩ A) ⊇ f(N1 ∩ A) ∩ · · · ∩ f(Nn ∩ A) ⊇ f(N1 ∩ · · · ∩Nn ∩ A) 6= ∅, (7.2)

since N = N1 ∩ · · · ∩ Nn ∈ Nx, thus N ∩ A 6= ∅ since A ⊆ X is dense. Thus the family F(x)
has the finite intersection property, and by compactness of Y and Lemma 7.2.1, we have

⋂
F(x) =⋂

N∈Nx f(N ∩ A) 6= ∅.
We claim that this intersection contains precisely one point. Assume y1 6= y2, {y1, y2} ⊆

⋂
F(x) ⊆

Y . By Lemma 7.4.19 we can find open neighborhoods V1, V2 of y1, y2, respectively, such that V1∩V2 =
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∅. By (7.1), we have f−1(V1)∩f−1(V2) ⊆ f−1(V1)∩f−1(V2) = ∅, thus obviously x 6∈ f−1(V1)∩f−1(V2).
Thus there is k ∈ {1, 2} such that y 6∈ f−1(Vk). This means that X\f−1(Vk) is an open neighborhood
of x. By definition of F(x) this implies {y1, y2} ⊆ F(x) ⊆ f(A\f−1(Vk)) ⊆ Y \Vk, which contradicts

yk ∈ Vk. Thus y1 = y2, and
⋂
F(x) is a singleton for every x ∈ X. This allows us to define f̂(x) by

{f̂(x)} =
⋂
F(x). For x ∈ A we obviously have f(x) ∈

⋂
F(x), implying f̂ �A = f .

It remains to show that f̂ is continuous. Let U ⊆ Y be an open neighborhood of f̂(x). Since⋂
N∈Nx f(N ∩ A) = {f̂(x)} ⊆ U and X\U is closed, thus compact, Remark 7.3.3 implies that there

are N1, . . . , Nn ∈ Nx such that f(N1 ∩ A) ∩ · · · ∩ f(Nn ∩ A) ⊆ U . We may and will assume that
the Ni are open. Thus N = N1 ∩ · · · ∩ Nn is an open neighborhood of x, and by (7.2) we have
f(N ∩ A) ⊆ f(N1 ∩ A) ∩ · · · ∩ f(Nn ∩ A) ⊆ U . Now, for every x′ ∈ N , we have N ∈ Nx′ , thus

f̂(x′) ∈ f(N ∩ A) ⊆ U . Thus f̂(N) ⊆ U , and f̂ is continuous. �

Remark 7.4.21 1. Notice the conceptual similarity of this proof to that of Theorem 3.4.10. The
main difference is that we replace completeness by compactness as the main tool.

2. For an important application of the above result, see Proposition 7.8.9. 2

7.5 Compactness of products. Tychonov’s theorem

7.5.1 The slice lemma. Compactness of finite products

The following lemma is extraordinarily important since it is behind most results involving products
of two spaces at least one of which is compact (Exercises 7.5.3(ii), 7.5.5 and 7.7.45, Lemma 7.9.5,
Proposition 8.5.24).

Lemma 7.5.1 (Slice lemma) For X arbitrary and Y compact, let x0 ∈ X and U ⊆ X × Y open
such that {x0} × Y ⊆ U . Then there is an open V ⊆ X such that x0 ∈ V and V × Y ⊆ U .

V

U

x
0

X

Y

Remark 7.5.2 For non-compact Y , the conclusion of the lemma fails: For X = Y = R, consider
U = {(x, y) | |xy| < 1}. Then U ⊆ R2 is open and contains {0} × R. But since (ε/2, 4/ε) has
arbitrarily small x-coordinate but is not in U , there is no ε > 0 such that (−ε, ε)× R ⊆ U . 2

Exercise 7.5.3 (i) Prove Lemma 7.5.1. Hint: Use the proof of Lemma 7.4.1 as inspiration.
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(ii) Use (i) to prove: If X and Y are compact then X × Y is compact.

Corollary 7.5.4 Any finite direct product of compact spaces is compact.

We will soon prove that this result is also true without the finiteness assumption.
Another application of the slice lemma concerns projection maps from a product space to its

direct factors, which as we saw in Exercise 6.5.9 are not always closed:

Exercise 7.5.5 Let X be arbitrary and Y compact. Prove that the projection map p1 : X×Y → X
is closed. Hint: Use Lemma 7.5.1.

Remark 7.5.6 The converse is also true: If p1 : X×Y → X is closed for every X then Y is compact.
(In fact, it suffices if this holds for all normal X.) Cf. [89, Theorem 3.1.16]. 2

Now we can prove a converse of the implication in Exercise 6.5.21:

Exercise 7.5.7 Let X, Y be topological spaces with Y compact and f : X → Y such that the graph
G(f) ⊆ X × Y is closed. Prove that f is continuous.

Hint: This can be proven using Exercise 7.5.5 or, alternatively, using nets, Exercise 5.1.39 and
Propositions 5.2.5, 7.2.2.

Exercise 7.5.8 Let X, Y be topological spaces, A ⊆ X, B ⊆ Y compact subspaces and U ⊆ X×Y
open such that A×B ⊆ U . Prove that there are open V ⊆ X, W ⊆ Y such that A×B ⊆ V ×W ⊆ U .

7.5.2 Tychonov’s theorem

Corollary 7.5.4 result can be improved considerably:

Theorem 7.5.9 (Tychonov 1929) 4 Let Xi 6= ∅ ∀i ∈ I. Then
∏

i(Xi, τi) is compact if and only
if (Xi, τi) is compact for every i ∈ I.

Proof. ⇒ If Xi 6= ∅ ∀i ∈ I and X =
∏

kXk is compact then compactness of each Xi follows from
Xi = pi(X) and Corollary 7.3.6.
⇐ Let (Xi, τi) be compact for each I. As we know, S = {p−1

i (V ) | i ∈ I, V ∈ τi} is a subbase
for the product topology τ on X =

∏
iXi. By Alexander’s Subbase Lemma 7.2.4, compactness of

X follows if we show that every cover U ⊆ S of X by subbasic sets has a finite subcover. To do
this, proceeding by contradiction, assume that U ⊆ S covers X, but no finite U ′ ⊆ U does. For each
i ∈ I, define

Vi = {V ∈ τi | p−1
i (V ) ∈ U} ⊆ τi. (7.3)

For every U ∈ U ⊆ S there are i ∈ I, V ∈ τi such that U = p−1
i (V ). But then (7.3) gives V ∈ Vi,

and in view of
⋃
U = X we have:

For every x ∈ X there are i ∈ I, V ∈ Vi such that pi(x) ∈ V. (7.4)

We now claim that Vi cannot be an open cover of Xi for any i ∈ I. Otherwise compactness of Xi

would allow us to find a finite subcover {V1, . . . , Vn} ⊆ Vi. But then U ′ = {p−1
i (V1), . . . , p−1

i (Vn)}
(which is contained in U by the definition (7.3) of Vi) would be a finite subcover of U , contradicting

4Andrey Nikolayevich Tikhonov (1906-1993). Born in Russia before the revolution and died after the demise of the
Soviet Union. It has been said that “Tychonov’s theorem is due to Čech, while Tychonov discovered the Stone-Čech
compactification”. The real truth is even more complicated, cf. [96].
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our assumption. This means that Xi\
⋃
Vi 6= ∅ for each i ∈ I. Thus by the product form of AC,

B =
∏

i∈I(Xi\
⋃
Vi) 6= ∅. Now (7.4) is false for any x ∈ B, which is the desired contradiction. �

Remark 7.5.10 1. In the view of this author, a nice feature of the above proof is that it reduces
the unavoidable complexity by sourcing out a large part of the latter to Alexander’s subbase lemma,
which is very general, has little a priori to do with products, and has other uses. While we used
Zorn’s lemma to prove the subbase lemma, it is known to be strictly weaker than Zorn’s lemma and
the equivalent axiom of choice (AC). This is not a contradiction since the above proof also involved
a direct use of AC.

2. Tychonov’s theorem is one of the most important results of general topology and has countless
applications, from abstract algebra and logic to functional analysis, several of which we will meet
later. For this reason, we will give several other proofs using both nets and (ultra)filters.5. In
principle, it is not necessary to know them all, but each of them introduces new tools that have other
applications. 2

As we have seen in Exercise 6.5.6(vi), the box topology on an infinite product of spaces differs
from the product topology (if we exclude trivial exceptions). The next result is the main reason why
the product topology is ‘better’:

Exercise 7.5.11 Consider [0, 1] with its standard (Euclidean) topology and prove that the box
topology on [0, 1]N is non-compact.

7.5.3 ?? Second proof of Tychonov, using nets

Before turning to more sophisticated approaches, we give a nice alternative proof of Tychonov’s the-
orem based on Zorn’s lemma and Proposition 7.2.2, characterizing compactness in terms of existence
of accumulation points of all nets.

Second Proof of Tychonov’s Theorem. We begin with some terminology: We write X =
∏

i∈I Xi and
XJ =

∏
j∈J Xj if J ⊆ I. A partial point in X is a pair (J, x), where J ⊆ I and x ∈ XJ . If (J, x) is a

partial point and K ⊆ J , then x�K ∈ XK is the obvious restriction. A partial point (J, x) is called
partial accumulation point of a net {xι} in X if x ∈ XJ is an accumulation point of xι �J . The set
P of partial accumulation points of xι is partially ordered by

(J, x) ≤ (K, y) ⇔ J ⊆ K and y �J = x. (7.5)

P is not empty since the nets pi(xι) in Xi have accumulation points xi ∈ Xi by the compactness of
Xi, thus ({i}, xi) ∈ P ∀i ∈ I. Now let C ⊆ P be a totally ordered subset. Define M =

⋃
{J | (J, y) ∈

C} ⊆ I and define x ∈ XM by xi = yi, where i ∈ M and (J, y) ∈ C with J 3 i. This is well-defined
since C is totally ordered w.r.t. (7.5). We must prove that (M,x) is a partial accumulation point of
xι. If U ⊆ XM is an open neighborhood of x ∈ XM , then U contains a neighborhood V of the form

V = p−1
i1

(U1) ∩ · · · ∩ p−1
in

(Un),

where i1, . . . , in ∈M and Uk ∈ τik . Now each ik is contained in some Jk, where (Jk, xk) ∈ C. Since C
is totally ordered, we can find (J, x) ∈ C such that J ⊇ {i1, . . . , in}. Since (J, x �J) ∈ C is a partial

5Whoever finds this excessive should look at Titchmarsh’s marvelous book The theory of the Riemann zeta function,
where seven proofs of the functional equation of the ζ-function are given, plus several variants. Sir Michael Atiyah
(Fields medal): “If you have only one proof of a theorem then you cannot say that you understand it very well.”
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accumulation point, xι �M is frequently in V . Thus (M,x) is a partial accumulation point of xι, and
(M,x) is an upper bound for C.

Now Zorn’s lemma applies and provides a maximal element (J, x) ∈ P . If we can show that
J = I, we have that x ∈ X is an accumulation point for xι and we are done. So assume J ( I. Since
x ∈ XJ is an accumulation point of xι � J , by Proposition 5.1.36 there is a subnet of x′α of xι such
that x′α � J converges to x ∈ XJ . If now i′ ∈ I\J , compactness of Xi′ and Proposition 7.2.2 imply
that there is a subnet {x′′β} of x′α such that pi′(x

′′
β) converges to z ∈ Xi′ . But this means that taking

K = J ∪ {i′} and defining y ∈ XK by y �J = x and yi′ = z, (K, y) is a partial accumulation point
and (K, y) > (J, x), contradicting maximality of (J, x). Thus J = I. We have now proven that every
net in X has an accumulation point, so that X is compact by Proposition 7.2.2. �

Remark 7.5.12 This proof is due to P. R. Chernoff, 1992 [59]. Cf. also [255]. 2

7.5.4 Complements

The two proofs of Tychonov’s theorem given above used Zorn’s lemma, which is equivalent to the
axiom of choice, and the same is true of the other proofs given below. The following observation
shows that this cannot be avoided:

Theorem 7.5.13 (Kelley 1950) 6 The statement that all products of compact T1-spaces are com-
pact implies the Axiom of Choice.

Proof. Let Xi 6= ∅ ∀i ∈ I. We equip each Xi with the cofinite topology, which is T1 by Exercise
2.5.7(iv) and compact by Exercise 7.1.6(vi). Obviously, the one-point space ({∞}, τ), where τ is
the unique topology, is compact and T1. Thus the direct sums (Yi, τi) = (Xi, τcofin) ⊕ ({∞}, τ) are
compact and T1. Now our assumption gives that Y =

∏
i(Yi, τi) is compact. For each i ∈ I let

Ci = {y ∈ Y | yi ∈ Xi} = p−1
i (Xi), which is closed since Xi ⊆ Yi is closed. Now let J ⊆ I be finite

and consider the finite intersection
⋂
j∈J Cj of closed sets. This is the set {y ∈ Y | pj(y) ∈ Xj ∀j ∈ J}.

Since each Xi is non-empty we can choose xj ∈ Xj for every j ∈ J . (Since J is finite, this requires
only the finite axiom of choice!) Now let y ∈ Y be the point whose j-th coordinate is xj if j ∈ J and
∞ otherwise. Clearly y ∈

⋂
j∈J Cj, so that we have proven that every finite intersection of the closed

sets Ci is non-empty. Since Y is compact, Lemma 7.2.1 implies
⋂
i∈I Ci 6= ∅. But by definition of Ci

we have
⋂
i∈I Ci =

∏
i∈I Xi, so that we have proven

∏
i∈I Xi 6= ∅, which is the Axiom of Choice! �

Remark 7.5.14 1. With Kelley’s result proven above, our list of equivalent7 statements (some of
them discussed only in Appendix A.3) has become

1. The Axiom of choice (we gave three versions: non-emptyness of cartesian products, selection
functions, sections of surjective maps).

2. Zorn’s Lemma.

6John L. Kelley (1916-1999), American topologist and author of the classic textbook [172].
7Here, as well as on later occasions like the discussion of Brouwer’s fixed point theorem, ‘equivalence’ of a number

of statements means that the truth of any of them provably implies the truth all others, irrespectively of whether one
actually can prove one (thus all) of them. (E.g. the Riemann hypothesis, whose truth status is open, is known to be
equivalent to dozens of very different looking statements.) Calling statements equivalent makes perfect sense even if
one believes to know the truth status of one (thus all) of them. On the one hand, proving one of the (equivalent)
statements usually is much more involved than the equivalence proofs. And on the other hand, this truth status may
depend on the existential axioms that one is willing to accept, as is the case here. This even holds for Brouwer’s
theorem, which is rejected by some on account of its ‘insufficiently constructive’ proof.
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3. The Well Ordering Principle.

4. Hausdorff’s Maximality Principle.

5. All vector spaces have bases.

6. Every commutative unital ring has a maximal ideal.

7. Tychonov’s theorem.

8. Tychonov’s theorem restricted to T1-spaces.

There are unimaginably many other statements equivalent to those above, cf. e.g. [164, 249, 139].
However, the restriction of Tychonov’s theorem to T2-spaces is strictly weaker than AC! The

following statements actually turn out to be equivalent (in ZF):

1. The ultrafilter lemma (UF): Every filter embeds into an ultrafilter. (Section 7.5.5)

2. The ultranet lemma: Every net has a universal subnet. (Section 7.5.6)

3. If every net in X has an accumulation point then X is compact. (Proposition 7.2.2)

4. If every filter on X has an accumulation point then X is compact. (Section 7.5.5)

5. If every universal net in X converges then X is compact. (Section 7.5.6)

6. If every ultrafilter on X converges then X is compact. (Section 7.5.5)

7. Alexander’s Subbase Lemma 7.2.4.

8. Tychonov’s Theorem 7.5.9 restricted to T2-spaces.

9. [0, 1]N is compact for every cardinal number N .

10. {0, 1}N is compact for every cardinal number N .

11. Alaoglu’s theorem in functional analysis. (Appendix G.6)

12. Existence and uniqueness of the Stone-Čech compactification. (Section 8.3)

13. Stone duality between Stone spaces and Boolean algebras. (Section 11.1.11)

14. The Boolean Prime Ideal Theorem (BPI): Every Boolean algebra has a prime ideal.

15. Every commutative unital ring has a prime ideal. (Maximal ideals are prime, but not vice
versa. Thus this is weaker than the existence of maximal ideals, which is equivalent to AC.)

16. Several Completeness and Compactness Theorems in mathematical logic, see e.g. [210].

Most of the equivalences in the above lists are proven in [259] except those involving algebraic
statements. For these see [29, 147, 20].

The statements in the second list (the first two are pure set theory, while 3-11 assert compactness
of certain spaces, the converses of 3-6 being true unconditionally) are provably [126] weaker than
those in the first list: There exists a model of ZF-set theory in which the ultrafilter lemma holds,
but not the Axiom of Choice. (Not even UF and DCω together imply AC! [237].)

2. The fact that [0, 1]N is compact can be proven within Zermelo-Frenkel set theory without any
choice axiom, cf. e.g. [139, Theorem 3.13]. 2
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7.5.5 ? Ultrafilters. New proofs using Ultrafilter Lemma instead of AC

In this section we will introduce ultrafilters and prove the Ultrafilter Lemma (UF) using Zorn’s
lemma. Since the converse implication is not true – which we cannot prove here – it will be an
improvement to reprove certain results using only UF instead of AC. We will do this for Proposition
7.2.2, Alexander’s Subbase Lemma 7.2.4, and for the restriction to Hausdorff spaces of Tychonov’s
theorem.

We notice that filters on X are (partially) ordered by inclusion (as subsets of P (X)).

Definition 7.5.15 An ultrafilter (or maximal filter) on some set is a filter that is not properly con-
tained in another filter.

Ultrafilters are characterized by a quite remarkable property:

Lemma 7.5.16 A filter F on X is an ultrafilter if and only if for every Y ⊆ X exactly one of the
alternatives Y ∈ F , X\Y ∈ F holds.

Proof. We begin by noting that we cannot have both Y ∈ F and X\Y ∈ F since (i) would imply
∅ = Y ∩(X\Y ) ∈ F , which is forbidden by (iii). Assume F contains Y or X\Y for every Y ⊆ X. This
means that F cannot be enlarged by adding Y ⊆ X since either already Y ∈ F or else X\Y ∈ F ,
which excludes Y ∈ F . Thus F is an ultrafilter.

Now assume that F is an ultrafilter and Y ⊆ X. If there is an F ∈ F such that F ∩ Y = ∅ then
F ⊆ X\Y , and property (ii) implies X\Y ∈ F . If, on the other hand, Y ∩F 6= ∅ ∀F ∈ F then there

is a filter F̃ containing F and Y . Since F is maximal, we must have Y ∈ F . �

Corollary 7.5.17 Let F be an ultrafilter on a set X.

(i) Every accumulation point of F is a limit.

(ii) If Y ∈ F then FY = {F ∩ Y | F ∈ F} is an ultrafilter on Y .

(iii) If f : X → Y is a function then the filter f(F) on Y defined in Corollary 5.1.46 is an ultrafilter.

Proof. (i) If x is an accumulation point of F , then by Lemma 5.1.47(i)(β), for every N ∈ Nx we have
X\N 6∈ F . Now Lemma 7.5.16 gives N ∈ F . Thus Nx ⊆ F , to wit F converges to x.

(ii) It is quite obvious that FY is a filter. Now let Z ⊆ Y ⊆ X. By Lemma 7.5.16, we have
either Z ∈ F of X\Z ∈ F . In the first case, we directly have Z ∈ FY . In the second, we have
Y \Z = (X\Z) ∩ Y ∈ FY . Thus one of Z, Y \Z is in FY , and applying Lemma 7.5.16 again we have
that FY is an ultrafilter.

(iii) Given Z ⊆ Y , Lemma 7.5.16 gives that either f−1(Z) or X\f−1(Z) is in F . In the first case,
we have f(f−1(Z)) ∈ f(F), and since f(F) is a filter, it also contains Z ⊇ f(f−1(Z)). Analogously,
X\f−1(Z) ∈ F implies Y \Z ∈ f(F). Thus f(F) contains either Z or Y \Z and therefore is an
ultrafilter. �

The following result is crucial:

Lemma 7.5.18 (Ultrafilter Lemma, via AC) Every filter is contained in an ultrafilter.

Proof. Let X be a set and F a filter on X. The family F of all filters on X that contain F is a
partially ordered set w.r.t. inclusion. If C ⊆ F is a totally ordered subset of F, we claim that the
union

⋃
C of all elements of C is a filter (obviously containing F). That the union of any non-zero

number of filters has the properties (ii), (iii) and (iv) in Definition 5.1.40 is obvious, so that only (i)
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remains. Let F1, F2 ∈
⋃
C. By the total order of C, there is a F̃ ∈ C such that F1, F2 ∈ F̃ and thus

F1 ∩ F2 ∈ F̃ ⊆
⋃
C. This proves requirement (i), thus

⋃
C is in F and is an upper bound for the

chain C. Therefore Zorn’s lemma applies and gives a maximal filter F̂ containing F . �

One can construct models of ZF set theory in which the Ultrafilter Lemma holds, but not Zorn’s
lemma and the equivalent axiom of choice. This is way beyond our scope, but it shows that the
Ultrafilter Lemma can be considered as a weak replacement for Zorn’s Lemma.

The Ultrafilter Lemma is often used via the following immediate consequence:

Lemma 7.5.19 [UF] If X is a non-empty set and S ⊆ P (X) is a family with the finite intersection
property then there is an ultrafilter F on X containing S.

Proof. If S 6= ∅ then by Lemma 5.1.45(ii), there is a filter F0 containing S as a filter subbase. If S = ∅
then pick any filter F0. By the Ultrafilter Lemma there is an ultrafilter F such that F ⊇ F0 ⊇ S. �

Lemma 7.5.20 [UF] A topological space on which every ultrafilter converges is compact.

Proof. If X is a topological space and U = {Ui}i∈I is an open cover of X admitting no finite subcover
then clearly X 6= ∅ and I is infinite. And for every finite J ⊆ I, the set YJ = X\

⋃
j∈J Uj is non-

empty. The definition of the YJ implies YJ ∩ YJ ′ = YJ∪J ′ . Thus B = {YJ | J ⊆ I finite} has the
finite intersection property, so that by Lemma 7.5.19 there is an ultrafilter F containing B. By the
assumption on the space, F converges, thus there is an x ∈ X such that Nx ⊆ F . Since U covers X,
there is an i ∈ I such that x ∈ Ui. But then Ui ∈ Nx ⊆ F . On the other hand, by construction of
B we have X\Ui = Y{i} ∈ B ⊆ F . This is a contradiction since F is a filter and therefore does not
contain two disjoint sets. Thus every open cover must admit a finite subcover, and X is compact. �

Lemma 7.5.21 Let (X, τ) be a topological space and S ⊆ τ a subbase. If every cover U ⊆ S of X
has a finite subcover then every ultrafilter on X converges.

Proof. Let F be an ultrafilter on X that does not converge. We claim that U = S\F ⊆ S is an
open cover of X. If this was false, there would be an x ∈ X that is contained in no S ∈ S\F . But
since F does not converge, there is an open U such that x ∈ U 6∈ F . Since S is a subbase, there are
S1, . . . , Sn ∈ S such that U = S1 ∩ · · · ∩ Sn. If all these Si were in F , so would be their intersection
U (since F is closed under finite intersections). In view of U 6∈ F , we must have Si 6∈ F for some i.
But then x ∈ Si ∈ S\F , contradicting our choice of x.

By assumption, U has a finite subcover, thus there are S1, . . . , Sn ∈ S\F such that
⋃n
i=1 Si = X,

which is equivalent to
⋂n
i=1(X\Si) = ∅. Since Si 6∈ F for all i, we have X\Si ∈ F by Lemma 7.5.16.

But this gives the contradiction
⋂n
i=1(X\Si) 6= ∅. Thus every ultrafilter on X converges. �

Corollary 7.5.22 [UF] A topological space is compact if and only if every ultrafilter on it converges.

Proof. The ‘if’ direction is Lemma 7.5.20. If X is a compact space then Lemma 7.5.21 with S = τ
gives that every ultrafilter on X converges. �

After these preparations, we can provide the new proofs promised at the beginning of the section:

Corollary 7.5.23 The Ultrafilter Lemma implies Alexander’s Subbase Lemma.



7.5. COMPACTNESS OF PRODUCTS. TYCHONOV’S THEOREM 143

Proof. Let (X, τ) be a topological space and S a subbase for τ such that every cover U ⊆ S of X has
a finite subcover. Then every ultrafilter on X converges by Lemma 7.5.21, so that X is compact by
Lemma 7.5.20. �

The following is the analogue for filters of Lemma 6.5.3:

Lemma 7.5.24 Let X =
∏

i∈I Xi be a product space and pi : X → Xi the projections. Then a filter
F on X converges to x ∈ X if and only if the filters pi(F) on Xi converge to pi(x) ∈ Xi for all i ∈ I.

Proof.⇒ If F converges to x then Lemma 5.1.48 and the continuity of the pi give that pi(F) converges
to pi(x) = xi for each i ∈ I.
⇐ We must show that Nx ⊆ F . By definition of the product topology, every neighborhood of x

in X contains a basic set p−1
i1

(U1) ∩ · · · ∩ p−1
in

(Un), where i1, . . . , in ∈ I and each Uk ⊆ Xik is open.
Since F is a filter, thus closed under finite intersections, it suffices to prove p−1

ik
(Uk) ∈ F for each

k = 1, . . . , n. Since Fik converges to xik , it contains the open Uk ⊆ Xik . Recalling that Fik = pik(F)
is the closure of {pik(F ) | F ∈ F} ⊆ P (Xik) w.r.t. upper sets, this means that F contains a set
Nk with pik(Nk) ⊆ Uk. This implies Nk ⊆ p−1

ik
(pik(Nk)) ⊆ p−1

ik
(Uk), and since F is a filter, thus

upward-closed, we have p−1
ik

(Uk) ∈ F for all k, as wanted. �

Theorem 7.5.25 The Ultrafilter Lemma implies Tychonov’s theorem for Hausdorff spaces.

Proof. Let {Xi}i∈I be a family of compact Hausdorff spaces and X =
∏

i∈I Xi with the product
topology. Let F be an ultrafilter on X. Applying Corollary 7.5.17(iii) to the projection maps
pi : X → Xi gives ultrafilters Fi = pi(F) on the Xi. Since each Xi is compact Hausdorff, these filters
converge to unique xi ∈ Xi by Corollary 7.5.22 and Exercise 5.1.43. Now we have a unique point
x ∈ X with pi(x) = xi (without invoking any choice axiom), and the preceding lemma gives that F
converges to x. We have thus proven that every ultrafilter on X converges, so that X is compact by
Lemma 7.5.20. (The Ultrafilter Lemma is used in this last step, and only there.) �

Also the general version of Tychonov’s theorem can be proven as above, except that one needs
to invoke AC to choose a point xi ∈ Xi among the limits of pi(F) for each i ∈ I.

The characterization of compactness of X in terms of convergence of all ultrafilters on X is
technically convenient, but the next one is certainly more natural:

Proposition 7.5.26 [UF] For a topological space (X, τ), the following are equivalent:

(i) X is compact.

(ii) Every filter on X has an accumulation point (w.r.t. τ).

(iii) Every net in X has an accumulation point (equivalently, a convergent subnet) w.r.t. τ .

Proof. (i)⇒(ii) If F is a filter on X then by UF there exists an ultrafilter F̂ containing F . Since X

is compact, F̂ converges by Lemma 7.5.21 (with S = τ). Now every limit of F̂ is an accumulation
point of F by Lemma 5.1.47(γ).

(ii)⇒(i) If every filter has an accumulation point then this in particular holds for every ultrafilter.
But every accumulation point of an ultrafilter is a limit by Corollary 7.5.17(i). Thus every ultrafilter
on X converges, and X is compact by Lemma 7.5.20.

(ii)⇒(iii) If every filter on X has an accumulation point, this in particular holds for the eventual
filter F of every net. By Exercise 5.1.49(iii), such an accumulation point of F also is an accumulation
point of the net.
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(iii)⇒(ii) If F is a filter, the canonical net {xι} of F by construction has F as eventual filter. By
assumption, the net has an accumulation point, thus the same holds for F . Therefore, every filter
on X has an accumulation point. �

The equivalence (i)⇔(iii) was known from Proposition 7.2.2, but the previous proof needed AC
for one direction, whereas we now only use UF!

Proposition 7.5.27 (i) The Subbase Lemma implies compactness of the space 2I for each set I.

(ii) Compactness of all spaces 2I implies the Ultrafilter Lemma.

Proof. (i) The product topology on X = 2I is defined in terms of the subbase S = {p−1
i (U) | i ∈

I, U ∈ τi}. In view of Xi = {0, 1} with discrete topology, this reduces S = {p−1
i (t) | i ∈ I, t ∈ {0, 1}}.

If U ⊆ S is an open cover of 2I then clearly U 6= ∅, thus there are i, t such that p−1
i (t) ∈ U . If there is

an i ∈ I such that U contains {p−1
i (0), p−1

i (1)} then clearly {p−1
i (0), p−1

i (1)} ⊆ U is a finite subcover.
If this is not the case then S must be of the form S = {p−1

j (tj) | j ∈ J} for some ∅ 6= J ⊆ I and
some map t : J → {0, 1}, which implies

⋃
S = {x ∈ 2I | ∃j ∈ J : xj = tj}. But then any point

x ∈ 2I whose coordinates satisfy xj = 1− tj for all j ∈ J is not in
⋃
S, contradicting the assumption

that S covers X. Thus every cover of X by elements of S has a subcover consisting of two elements.
Now the subbase lemma implies that X is compact.

(ii)⇒(i) Let F be a filter on the set X. Identify P (X) with 2X as usual by sending A ∈ P (X)
to the characteristic function χA : X → {0, 1}. And every subset Σ ⊆ P (X) defines a function
χΣ : P (X)→ {0, 1}.

****************
�

Exercise 7.5.28 (UF ⇒ ACF) Prove that the Ultrafilter Lemma implies the Axiom of choice for
finite sets: Given any family {Xi}i∈I of non-empty finite sets, we have

∏
i∈I Xi 6= ∅.

From now on, UF (and DCω) will be assumed true (unless specified otherwise), and
(most) uses of AC will be pointed out explicitly.

7.5.6 ?? Universal nets. Fourth proof of Tychonov

The definition of universal nets is inspired by Lemma 7.5.16:

Definition 7.5.29 A net {xι}ι∈I in a set X is universal (or an ultranet) if for every Y ⊆ X the net
eventually lives in Y or in X\Y .

Lemma 7.5.30 (i) A net {xι} is universal if and only if its eventual filter is an ultrafilter.

(ii) If {xι} is a universal net in X and f : X → Y a function then {f(xι)} is a universal net in Y .

(iii) If a universal net in a topological space has an accumulation point, it converges to that point.

Proof. (i) Obvious in view of the definitions and Lemma 7.5.16.
(ii) If D ⊆ Y then the net eventually lives in f−1(D) or in X\f−1(D), thus f(xι) is eventually in

D or in Y \D.
(iii) Let x ∈ X be an accumulation point of xι and U an open neighborhood of x. Then the net

frequently is in U , so that it cannot be eventually in X\U and therefore it is eventually in U . Thus
it converges to x. �
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Proposition 7.5.31 The following statements are equivalent over ZF:

(i) Ultrafilter Lemma: Every filter is contained in an ultrafilter.

(ii) Ultranet Lemma: Every net has a universal subnet.

Proof. Assume UF holds. Let {xι} be a net in X and F its eventual filter. By UF, there is an

ultrafilter F̂ containing F . If F ∈ F̂ then xι is frequently in every F ∈ F̂ : If this was not true, xι
would eventually be in X\F , thus X\F ∈ F ⊆ F̂ , but that is not compatible with F ∈ F̂ . Now we
can apply Lemma 5.1.37 (which does not use AC, contrary to what one might suspect!) to {xι} and

F̂ , obtaining a subnet of {xι} that eventually lives in each F ∈ F̂ . Thus its eventual filter contains F̂
and therefore is equal to it (since F̂ is maximal). Thus the subnet is universal by Lemma 7.5.30(i).

Now assume the Ultranet Lemma holds. Let F be a filter on X, and let {xι}, ι ∈ I ⊆ F × X
be the associated canonical net. By UL, the latter has a universal subnet. The eventual filter of
the latter is an ultrafilter F̂ and it contains F (since the subnet by the very definition of subnets
eventually is in every set that the net ultimately is in). �

The following is the universal net analogue of Corollary 7.5.22:

Proposition 7.5.32 [UF] A space X is compact if and only if every universal net in X converges.

Proof. Let X be compact and {xι} ⊆ X a universal net. By Proposition 7.5.26 (or Proposition 7.2.2),
{xι} has an accumulation point. Then by Lemma 7.5.30(iii), the whole net {xι} converges to that
accumulation point (which need not be unique!). Thus every universal net in X converges.

Now assume that every universal net in X converges. If F is an ultrafilter on X, the canonical
net associated with F is universal, thus convergent by assumption. Thus F converges, so that X is
compact by Lemma 7.5.20.

Alternatively, the implication ⇐ can also proven as follows: Let {xι} be any net in X. By the
Ultranet Lemma, it has a universal subnet. The latter converges by assumption, thus every net in
X has a convergent subnet and thus X is compact by Proposition 7.5.26. (This is just a reshuffling
of the preceding argument.) �

Fourth Proof of Tychonov’s Theorem [AC]. Let {xι} be a universal net in
∏

kXk. By Lemma
7.5.30(ii), pi(xι) is a universal net in Xi for each i ∈ I, and therefore convergent by compactness
of Xi and Proposition 7.5.32. Thus for each i ∈ I the set Li ⊆ Xi of limits of the net {pi(xι)} is
non-empty. Then by the cartesian product form of AC, L =

∏
i∈I Li is non empty.8 If now x ∈ L then

pi(xι) → pi(x) ∀i, and Lemma 6.5.3 implies xι → x. Thus every universal net in
∏

kXk converges,
and therefore

∏
kXk is compact by Proposition 7.5.32. �

Remark 7.5.33 1. If all spaces Xi are Hausdorff, the limits limι pi(xι) ∈ Xi are unique, so that we
have identified a unique point x ∈

∏
iXi, obviating the use of AC. Thus we have another proof of

Tychonov’s theorem for T2-spaces, valid over ZF+UF since that is true for all its ingredients.
2. The above approach is due to Kelley (1950, [171]). While the actual proof of Tychonov’s

theorem is short and pretty, the reader will have noticed that the fourth proof just is a restatement
of the third proof (using ultrafilters) in terms of (universal) nets. Rather more seriously, the whole
approach using universal nets is marred by its dependence on the theory of (ultra)filters. The latter
is essentially inevitable: While the filters on a given set X form a bona fide set (namely a subset of
P (P (X))), the subnets of a given net do not form a set but rather a proper class, so that we cannot

8Beware of the expositions of this proof that do not point out the use of AC at this stage!
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directly obtain a universal subnet. This reliance on filters (at least under the hood) somewhat offsets
the liberty of being able to index a net by an arbitrary set and the (disputabe) impression that proofs
using nets often are prettier and more natural than the alternative ones using filters.

3. In [1], a more appealing proof of the ultranet lemma is given, which proceeds by applying
Zorn’s lemma directly to the family of subnets of {xι}, obtaining a universal subnet. However, [1]
adopts a definition of subnets different from the one used above (due to Moore). A nice aspect of
this definition is that a net is universal in the sense of Definition 7.5.29 if and only if it has no proper
subnet in the sense of [1]. (For Moore-subnets, there is no meaningful notion of properness.) But the
[1]-definition of subnets involves the filters associated to the nets in question! It seems that there is
no way to work with nets that is self-contained in that it does not invoke filters. For much more on
subnets, including a third definition, see [259, Chapter 5]. 2

Proposition 7.5.34 The statements 1-10 in the second list in Remark 7.5.14 are all equivalent over
ZF.

Proof. The equivalence 1 ↔ 2 was proven in Proposition 7.5.31, and in the same way one proves
3 ↔ 4 and 5 ↔ 6. This uses only the close correspondence between nets and filters established in
Section 5.1.4 and Lemma 7.5.30. Statement 6 is Lemma 7.5.20, proven from 1 (UF). The proof of
4 in Proposition 7.5.26 uses only 6. Conversely, assume 4 holds and F is an ultrafilter. Then F
has an accumulation point and therefore converges, thus 6 holds. The proofs of 7 (subbase lemma)
and 8 (Tychonov for T2-spaces) only used 6. The implications 8 ⇒ 9 ⇒ 10 are trivial, and since
7⇒ 10⇒ 1 is the content of Proposition 7.5.27, we are done. �

The equivalence 1 ⇔ 11 will be proven in Appendix G.6 and 1 ⇔ 12 in Proposition 8.3.35.
Statements 13 and 14 will be discussed together with Stone duality. For 15 and 16 we refer to [20]
and [259], respectively.

7.5.7 ?? Principal ultrafilters. A quick look at ultraproducts

So far, we used ultrafilters as a method of proof without asking for examples. In fact, the only ones
that we can produce constructively are quite boring:

Exercise 7.5.35 Let X be a set, x ∈ X and Fx = {Y ⊆ X | x ∈ Y }. Prove:

(i) Fx is an ultrafilter on X. Such ultrafilters are called principal, all others non-principal (or
free).

(ii) If X is finite then every ultrafilter on X is principal, F = Fx, for a unique x ∈ X.

(iii) An ultrafilter F that contains a finite set is principal.

(iv) [UF] If X is infinite then there exist non-principal ultrafilters on X.

Proposition 7.5.36 Let F be a (ultra)filter on N.

(i) Let X be a set. For f, g ∈ XN, define C(f, g) = {n ∈ N | f(n) = g(n)}. Then f ∼F g ⇔
C(f, g) ∈ F defines equivalence relation and XF = (XN)/∼F is called the (ultra)power of X
induced by F .

(ii) If F is a principal ultrafilter then XF ∼= X.
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(iii) Let R be a commutative ring. Equip RN with the pointwise ring operations and let 0 ∈ RN be
the constant zero function. Then I = {f ∈ RN | f ∼ 0} is an ideal in RN and RF ∼= RN/I,
thus RF is a commutative ring.

(iv) If R is a field and F is an ultrafilter then RF is a field.

We interpret the elements of F as ‘large’. Thus f ∼ g if the coincidence set C(f, g) is large.

Proof. (i) Symmetry of ∼ is evident, and reflexivity follows from N ∈ F . If f ∼ g ∼ h then
C(f, h) ⊇ C(f, g) ∩ C(g, h). Since C(f, g), C(g, h) are in F , so is C(f, h) by the filter axioms, thus
∼ is transitive.

(ii) If {n} ∈ F then F = {N ⊆ N | n ∈ N}, thus f ∼ g is equivalent to f(n) = g(n). Now it is
clear the map n̂ : XN → X, f 7→ f(n) factors through the quotient map XN → XF and induces a
bijection XF → X.

(iii) It is clear that RN with pointwise operations is a ring. If f, g ∈ I then f ∼ 0 ∼ g, so
that C(f + g,0) ⊇ C(f,0) ∩ C(g,0), thus C(f + g,0) ∈ F and f + g ∈ I. If f ∈ RN, g ∈ I then
C(fg,0) ⊇ C(g,0), thus fg ∈ I. It is evident that f ∼ g if and only f − g ∼ 0. Thus RF ∼= RN/I,
so that RF is a ring.

(iv) In view of (iii) we only need to show that every non-zero element of RF is invertible (the
zero-element clearly being [0]). Let f ∈ RN, f 6∼ 0. Thus f−1(0) = {n ∈ N | f(n) = 0} 6∈ F . Since
F is an ultrafilter, Lemma 7.5.16 gives N/f−1(0) ∈ F . Define g ∈ RF by g(n) = 1/f(n) if f(n) 6= 0
and g(n) = 1 otherwise. Now (fg)(n) = 1 for all n ∈ N\f−1(0) ∈ F , so that fg ∼ 1. Thus in the
quotient ring RF = (RN)/∼ we have [f ][g] = 1. Since the non-zero elements of RF are precisely the
[f ] for f ∈ RN, f 6∼ 0, every non-zero element of RF is invertible. �

In view of (ii), the above construction is uninteresting if F is a principal ultrafilter. The existence
of non-principal ultrafilters on N is strictly weaker than the general UF and therefore called Weak
Ultrafilter Lemma (WUF). Applying the above construction to R = R and a non-principal ultrafilter
on N gives the field ∗R of hyperreals, the foundation of non-standard analysis, see e.g. [114]. (Note
that ∗R depends on the chosen F !)

7.6 ? Compactness of ordered topological spaces. Super-

compact spaces

In this section, we give an application of Alexander’s subbase lemma to the question when an ordered
topological space, cf. Remark 4.2.5, is compact. This discussion is almost literally lifted from [35].

Definition 7.6.1 Let (X,≤) be a totally ordered set and Y ⊆ X. A supremum (or least upper
bound) for Y is an x ∈ X such that (i) x is an upper bound for Y and (ii) no z < x is an upper
bound for Y .

Theorem 7.6.2 An ordered topological space is compact ⇔ every subset (including ∅ !) has a supre-
mum ⇔ every subset (including ∅ !) has an infimum.

Proof. Assume every Y ⊆ X has a supremum, and let U be an open cover of X by elements of the
subbase (4.3). In particular X has a supremum, which is an upper bound M for X. Being maximal,
M is not contained in any Lx, thus U must contain Rx for some x ∈ X. Clearly every x ∈ X is
an upper bound for the empty set ∅, so that existence of a supremum for ∅ amounts to existence
of a smallest element m of X. Being minimal, m is not contained in any Rx, so U must contain
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Lx for some x ∈ X. Thus Y = {x ∈ X | Lx ∈ U} is not empty, and by assumption there exists
sup(Y ) =: y. This y is not contained in any Lx ∈ U (otherwise x > y, contradicting the definition of
y), thus y ∈ Rx for some Rx ∈ U , meaning x < y. Since y is a least upper bound for Y , x cannot be
an upper bound for Y . We therefore must have y > x for some y ∈ Y . By definition of y, we have
Ly ∈ U . Summing up, we have found x < y such that {Ly, Rx} ⊆ U . Since Ly ∪ Rx = X, we have
found a finite subcover of U . Now Alexander’s Subbase Lemma 7.2.4 implies that X is compact.

Now assume that the order topology on X is compact, and suppose that there is a Y ⊆ X without
a supremum. If Y = ∅, this means that X has no minimum. In that case, U = {Rx | x ∈ X} is
an open cover (since ∀x ∈ X ∃y ∈ X with y < x) admitting no finite subcover. (If there was a
finite subcover {Rx1 , . . . , Rxn} then, defining z = min(x1, . . . , xn) we would have X = Rz. But this
is impossible since z ∈ X, but z 6∈ Rz.)

This leaves us with Y 6= ∅. Begin by assuming that Y has no upper bound, thus Y contains
arbitrarily large elements. Arguing as before, U = {Ly | y ∈ Y } covers X, so that by compactness
there is a finite subcover {Ly1 , . . . , Lyn}. Defining z = max(y1, . . . , yn) we find that X = Lz, which
is impossible since z 6∈ Lz.

Thus Y must have an upper bound, but no least one. Let Z be the set of upper bounds of Y .
Now {Ly | y ∈ Y } ∪ {Rz | z ∈ Z} covers X: If x ∈ X is not in

⋃
{Ly | y ∈ Y } then x ≥ y ∀y ∈ Y ,

thus x is an upper bound for Y . Since Y admits no least upper bound, there is an upper bound z ∈ Z
such that z < x. But then x ∈

⋃
{Rz | z ∈ Z}. Therefore, by compactness, there is a finite subcover

{Ly1 , . . . , Lyn , Rz1 , . . . , Rzm} ⊆ U . Defining a = max(y1, . . . , yn) ∈ Y , b = min(z1, . . . , zm) ∈ Z, we
have X = La ∪Rb. Since b is an upper bound for Y and a ∈ Y , we have a ≤ b. Actually a < b since
a = b would be a least upper bound for Y . Now, since a 6∈ La, we must have a ∈ Rb, but this is
impossible since because of a < b.  

We have now proven the equivalence of the first two statements. The equivalence of the second
and third follows from the observation that these two properties are interchanged if we reverse the
ordering, while this has no impact on the order topology. �

Remark 7.6.3 The set X = (0, 1) ⊆ R has supremum 1 in the ambient space R, but none in X,
consistent with the non-compactness. X = (0, 1] has a supremum (in X), but the empty subset
∅ ⊆ X has no supremum, thus again X is non-compact. 2

Exercise 7.6.4 Prove that the order topology of a well-ordered set (X,≤) is compact if and only if
(X,≤) has a largest element.

Exercise 7.6.5 Prove that the order topology arising from the lexicographic order on [0, 1]× [0, 1]
is compact.

The proof of Theorem 7.6.2 motivates some further developments:

Definition 7.6.6 A topological space (X, τ) is supercompact if admits a subbase S ⊆ τ such that
every open cover by elements of S has a subcover with at most two elements.

In the proof of Proposition 7.5.27(i) we have already seen that all spaces 2I are supercompact.

Corollary 7.6.7 Compact ordered ⇒ supercompact ⇒ compact.

Proof. The first implication is contained in the first half of the proof of Theorem 7.6.2, and the second
is immediate by Alexander’s subbase lemma. �
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Remark 7.6.8 While ordered topological spaces are the most ‘natural’ examples of supercompact
spaces, there are others: If X is a compact Hausdorff space, sufficient conditions for X being su-
percompact are: (i) X is second countable (=metrizable), (ii) X is a topological group. There
are examples of compact Hausdorff spaces that are not supercompact. It is not hard to show that
arbitrary products of supercompact spaces are supercompact. We leave the subject here. 2

7.7 Compactness: Variations, metric spaces and subsets of

Rn

Before the notion of compactness was established as the ‘right one’, mathematicians experimented
with various related definitions. We will have a quick look at countable and sequential compactness
and then turn to metric spaces. (For much more information, cf. [89].)

7.7.1 Countable compactness. Weak countable compactness

The definition of compactness (every open cover U has a finite subcover V) can be weakened by
limiting the cardinality of the cover U or by allowing certain infinite subcovers V . The latter leads
to the Lindelöf property, which we have already studied. On the other hand:

Definition 7.7.1 A topological space is called countably compact if every countable open cover has
a finite subcover.

The following should be obvious:

Exercise 7.7.2 (i) Compact ⇔ (countably compact & Lindelöf).

(ii) Countably compact & second countable ⇒ compact.

In analogy to compactness and the Lindelöf property, one finds:

Exercise 7.7.3 For countably compact X, prove:

(i) If Y ⊆ X is closed then Y is countably compact.

(ii) If f : X → Y is continuous then f(X) is countably compact.

Remark 7.7.4 1. Exercise 7.3.1 also shows that countable compactness is not hereditary. A Haus-
dorff example: The countable open cover {(n, n+ 2) | n ∈ Z} of R has no countable subcover. Thus
R is not countably compact, and the same holds for (0, 1) ∼= R. But [0, 1] is compact, thus countably
compact.

2. With respect to products, countable compactness behaves equally bad as the Lindelöf property:
One can find countably compact spaces X, Y such that X × Y is not countably compact. (But if
X, Y are countably compact and Lindelöf then the same holds for X × Y .) 2

Exercise 7.7.5 Prove that for a topological space X, the following are equivalent:

(i) X is countably compact.

(ii)
⋂
F 6= ∅ for every countable family F of closed sets having the finite intersection property.
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(iii)
⋂
nCn 6= ∅ for every sequence {Cn}n∈N of non-empty closed sets such that Cn+1 ⊆ Cn ∀n.

In the rest of this section we will need the notion of ω-accumulation points (Definition 2.7.23).
It is easy to see that every infinite subset Y of a compact space X has an ω-accumulation point: If
this was false then every x ∈ X would have an open neighborhood Ux such that Ux∩Y is finite. The
Ux cover X, and by compactness there is a finite subcover. Now a finite union of sets Ux has finite
intersection with Y , producing a contradiction. But we can do better, cf. the implication (i)⇒(ii) in
the following:

Proposition 7.7.6 For a topological space (X, τ), the following are equivalent:

(i) X is countably compact.

(ii) Every infinite subset Y ⊆ X has an ω-accumulation point. (Compare Exercise 7.2.6.)

(iii) Every sequence in X has an accumulation point.

Proof. (i)⇒(ii) It clearly is enough to prove this for countably infinite subsets Y ⊆ X. Thus let Y ⊆ X
be a countable subset without ω-accumulation point. Then every x ∈ X has an open neighborhood
Ux such that Ux∩Y is finite. Now for every finite subset F ⊆ Y , we define UF =

⋃
{Ux | Ux∩Y = F}

and note that we either have UF ∩Y = ∅ (if there is no x such that Ux∩Y = F ) or UF ∩Y = F . Thus
in any case, UF ∩ Y ⊆ F . Since Y is countable, the family F = {F ⊆ Y | F finite} is countable, and
since every Ux is contained in some UF (namely for F = Ux∩Y ), we see that {UF}F∈F is a countable
open cover of X. By countable compactness, there is a finite subcover {UF1 , . . . , UFn}. Thus

Y = (UF1 ∪ · · · ∪ UFn) ∩ Y = (UF1 ∩ Y ) ∪ · · · ∪ (UFn ∩ Y ) ⊆ F1 ∪ · · · ∪ Fn,

which is finite, contradicting the assumption that Y is infinite.
(ii)⇒(iii) Let Y = {x1, x2, . . .} be the set of values of the sequence. If Y is finite, there must be

a y ∈ Y such that xn = y for infinitely many n ∈ N. This y obviously is an accumulation point of
the sequence {xn}. If, on the other hand, Y is infinite, then by (ii) there exists an x ∈ X such that
Y ∩ U is infinite for every neighborhood U of x. But this precisely means that x is an accumulation
point of the sequence {xn}.

(iii)⇒(i). Let {Un}n∈N be a countable open cover of X that does not admit a finite subcover.
This means that

⋃n
k=1 Uk 6= X for all n, thus we can choose xn ∈ X\

⋃n
k=1 Uk for all n ∈ N. Our

construction of {xn} implies that xk 6∈ Um if k ≥ m. But this means that no point of Um can be
an accumulation point of {xn}. Since

⋃
m Um = X, the sequence has no accumulation point. This

contradiction proves (i). �

The next result will not be needed later, but it nicely complements Proposition 7.2.2 and the
discussion of sequential compactness in the next subsection:

Corollary 7.7.7 A topological space (X, τ) is countably compact if and only if every sequence in X
has a convergent subnet.

Proof. By Proposition 7.7.6, X is countably compact if and only if every sequence {xn} in X has an
accumulation point. By Proposition 5.1.36, this is equivalent to every sequence having a convergent
subnet. �

The point of this result is that not every accumulation point of a sequence is the limit of a
subsequence. Cf. the next subsection.

The next exercise explores what happens if we drop the ‘ω-’ in Proposition 7.7.6(ii):
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Exercise 7.7.8 Let X be a topological space and Y ⊆ X. Consider the statements

(i) X is countably compact.

(ii) Every infinite Y ⊆ X has an accumulation point.

(iii) Every closed discrete subspace of X is finite.

Prove that (i)⇒(ii)⇔(iii), and if X is T1 then (ii)⇒(i).

Definition 7.7.9 A space with the equivalent properties (ii) and (iii) in Exercise 7.7.8 is called
weakly countably compact (or limit point compact or Fréchet compact).

There are non-T1 spaces that are weakly countably compact but not countably compact!

7.7.2 Sequential compactness

Definition 7.7.10 A topological space is called sequentially compact if every sequence in it has a
convergent subsequence.

Proposition 7.7.11 Sequentially compact ⇒ countably compact.

Proof. By Lemma 5.1.12, limits of convergent subsequences are accumulation points. Thus sequential
compactness of X implies (iii) in Proposition 7.7.6, and therefore countable compactness. �

Remark 7.7.12 While the properties of compactness and countable compactness were defined in
terms of covers, i.e. ‘statically’, we have proven ‘dynamical’ characterizations: X is compact (resp.
countably compact) if and only if every net (resp. sequence) has a convergent subnet. Together with
the above definition of sequential compactness, this gives another perspective of the implications
compact ⇒ countably compact ⇐ sequentially compact. 2

For all other implications there are counterexamples. There are even compact Hausdorff spaces�

that are not sequentially compact:

Example 7.7.13 Let I = [0, 1] and consider X = II ≡
∏

x∈I [0, 1]. As a product of compact
Hausdorff spaces, X is compact Hausdorff by Exercise 6.5.15(ii) and Tychonov’s theorem. An element
of X is a function f : I → I. For n ∈ N and x ∈ I, let fn(x) be the n-th digit of x in its binary
expansion. (The latter is unique if we forbid infinite chains of 1s.) Assume that the sequence {fn} has
a convergent subsequence m 7→ fnm . Choose x ∈ [0, 1] such that its nm-th digit is 0 or 1 according to
whether m is even or odd. Now the sequence m 7→ fnm(x) is {0, 1, 0, 1, . . .}, which does not converge
as n → ∞. This contradicts the convergence of fnm in II , which would have to be pointwise for all
x ∈ [0, 1].

X it is compact, thus countably compact, so that by Proposition 7.7.6 every sequence in X – in
particular the one constructed above – has an accumulation point. Therefore we have an example
of a sequence with an accumulation point that is not the limit of a subsequence, as promised before
Proposition 5.1.13. 2

Example 7.7.13 of a space that is compact, thus countable compact, but not sequentially compact
shows that the converse of Proposition 7.7.11 is not true unconditionally. But in view of Proposition
5.1.13 we have:
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Proposition 7.7.14 (i) Countably compact & first countable ⇒ sequentially compact.

(ii) If X is first countable then: countably compact ⇔ sequentially compact.

(iii) If X is second countable then: compact ⇔ countably compact ⇔ sequentially compact.

Proof. (i) The implication (i)⇒(iii) of Proposition 7.7.6 implies that every sequence in X has an
accumulation point and by Proposition 5.1.13 the latter is the limit of a subsequence. Thus X is
sequentially compact.

(ii) This follows from (i) and Proposition 7.7.11.
(iii) Second countability implies first countability (Lemma 4.3.7) and the Lindelöf property (Exer-

cise 7.1.5(iii)). The latter makes compactness and countable compactness equivalent (Exercise 7.7.2),
so that the claim follows from (ii). �

Exercise 7.7.15 Prove:

(i) Closed subspaces of sequentially compact spaces are sequentially compact.

(ii) Products of finitely or countably many sequentially compact spaces are sequentially compact.
Hint: Diagonal argument.

Remark 7.7.16 1. In Section 5.1.1 we have seen that sequences tend to be quite defective in spaces
without the first countablility property. But for first countable spaces, sequential and countable
compactness are equivalent.

2. There actually are spaces that are first countable and countably compact (thus sequentially
compact), but not compact, e.g. space #42 in [269]!

3. Exercise 7.7.15(ii) shows that sequential compactness is better behaved w.r.t. products than
countable compactness (cf. Remark 7.7.4.2), but not as well as compactness. (Given the inherently
countable nature of sequences, it would be unreasonable to expect more.) The fact that compactness
leads to the strongest result on products (to wit Tychonov’s theorem) is one of the main reasons why
compactness won out over countable and sequential compactness. 2

7.7.3 Compactness of metric spaces I: Equivalences

We now turn to metric spaces, which besides the topological properties discussed above also admit
metric notions like completeness and some others to be introduced now.

Combining Lemma 2.5.4 and Lemma 7.4.2 we find that compact subsets of metric spaces are
closed. But there is a simple direct proof:

Exercise 7.7.17 Prove directly, using only the definition of countable compactness:

(i) Countably compact metric spaces are bounded.

(ii) Countably compact subsets of metric spaces are closed.

The following property is stronger than boundedness:

Definition 7.7.18 A metric space (X, d) is called totally bounded if for every r > 0 there are finitely
many points x1, . . . , xn such that B(x1, r) ∪ · · · ∪B(xn, r) = X.

Subsets (not necessarily closed) and closures of bounded sets are bounded. Similarly:
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Exercise 7.7.19 Let (X, d) be a metric space. Prove:

(i) If (X, d) is totally bounded and Y ⊆ X then (Y, d) is totally bounded.

(ii) If (Y, d) is totally bounded and Y ⊆ X is dense then (X, d) is totally bounded.

Lemma 7.7.20 A metric space is totally bounded if and only if every sequence has a Cauchy subse-
quence.

Proof. ⇐ If X is not totally bounded, there is an ε > 0 so that X cannot be covered by finitely
many ε-balls. Then we can find a sequence {xn} such that xn ∈ X\

⋃n−1
i=1 B(xi, ε) for all n, implying

d(xi, xj) ≥ ε for all i > j. But this gives i 6= j ⇒ d(xi, xj) ≥ ε > 0, so that no subsequence of {xn}
can be Cauchy.
⇒ Let {xn} be a sequence in X. Since X is totally bounded, it can be covered by a finite number

of balls of radius 1. One of these, call it B1, must contain xn for infinitely many n. Now B1 can be
covered by finitely many balls of radius 1/2. Again, one of those balls, call it B2, has the property
that B1 ∩B2 contains xn for infinitely many n. Going on in this way, we find a sequence Bi of open
balls of radius 1/i such that B1 ∩ · · · ∩Bk contains xn for infinitely many n, for any k. Thus we can
choose a subsequence {xni} such that xni ∈ B1 ∩ · · · ∩ Bi for each i. Now if j ≥ i, both xni and xnj
are contained in Bi, thus d(xni , xnj) < 2/i. This implies that i 7→ xni is a Cauchy sequence. �

Definition 7.7.21 Let (X, d) be a metric space.

(i) If U is an open cover of X, a real number λ > 0 is called a Lebesgue number9 for the cover U
if for every Y ⊆ X with diam(Y ) < λ there is a U ∈ U such that Y ⊆ U .

(ii) (X, d) has the Lebesgue property if every open cover admits a positive Lebesgue number.

Proposition 7.7.22 In the following diagram, solid (respectively, dashed) arrows indicate impli-
cations that are true for all topological (respectively metric) metric spaces. A ‘+’ indicates that a
combination of two statements implies the third. Dotted arrows indicate implications that hold under
additional assumptions that are weaker than metrizability (T1, T4 or first countability).

Proof. We begin with the known implications: 1. Exercise 7.7.2(i). 2.+3. Exercise 7.7.8 (one direction
needs T1, which holds for metric spaces). Pseudocompactness will only be discussed in Section 7.7.4.
4. Proposition 7.7.11. 5. Proposition 7.7.14 (needs first countability, which holds for metric spaces
by Lemma 4.3.6). 6. Exercise 7.1.5(iii). 7. Lemma 4.1.11. 8. Lemma 4.1.12. 9. Exercise 7.1.9. Now
we prove the remaining implications.

10. If {xn} is a Cauchy sequence, sequential compactness gives us a convergent subsequence. But
a Cauchy sequence with a convergent subsequence is convergent, cf. Exercise 5.1.14. Thus (X, d) is
complete.

11. For every r > 0, the family {B(x, r)}x∈X is an open cover of X. Now compactness gives
existence of a finite subcover, thus total boundedness.

12. If (X, d) is totally bounded, there are x1, . . . , xn such that X =
⋃
iB(xi, 1). With D =

maxi,j d(xi, xj), the triangle inequality gives diam(X) ≤ D + 2 <∞, thus X is bounded.
13. By total boundedness, for every m ∈ N, there are finitely many points xm,1, . . . , xm,nm such

that
⋃nm
k=1 B(xm,k, 1/m) = X. Then S = {xm,k | m ∈ N, k = 1, . . . , nm} is countable. Given x ∈ X

and ε > 0, pick ε−1 < m ∈ N. Then there is a k such that d(x, xm,k) < 1/m < ε. Thus S is dense

9Henri Leon Lebesgue (1875-1941). Particularly known for his integration theory.
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Figure 7.1: Implications of properties of metric spaces

and (X, τd) is separable. Now second countability follows from Lemma 4.1.12, but one sees more
directly that B = {B(xm,k, 1/m) | m ∈ N, k = 1, . . . , nm} is a base for τd.

14. By sequential compactness, every sequence has a convergent subsequence, thus a Cauchy
subsequence. Now Lemma 7.7.20 gives total boundedness.

15. By Lemma 7.7.20 every sequence has a Cauchy subsequence. By completeness, the latter
converges. Thus the space is sequentially compact.

16. Let {xi} be a Cauchy sequence in X that does not converge. Then for every x ∈ X there
is an εx > 0 such that xi frequently is not in B(x, εx). Now U = {B(x, εx)x∈X is an open cover
of X, which by assumption has a Lebesgue number λ > 0. Thus for every y ∈ X there is an
x ∈ X such that B(y, λ) ⊆ B(x, εx). This implies that xi frequently is not in B(y, λ). On the
other hand, by Cauchyness there is N ∈ N such that i, j ≥ N implies d(xi, xj) < λ. In particular,
j ≥ N ⇒ xj ∈ B(xN , λ), contradicting the fact that xi frequently is not in B(y, λ), for every y.

17. Assume there is an open cover U not admitting a Lebesgue number λ > 0. Then there
are open sets of arbitrarily small diameter that are contained in no U ∈ U . In particular, for
each n ∈ N there is an xn such that B(xn, 1/n) 6⊆ U for all U ∈ U . By sequential compactness,
the sequence {xn} has an accumulation point x. Since U is a cover, we have x ∈ U for some a
U ∈ U . Since U is open, there is r > 0 such that B(x, r) ⊆ U . Since x is an accumulation
point of {xn}, we can choose n such that d(x, xn) < r/2 and 1/n < r/4. If now y ∈ B(xn, 1/n)
then d(y, x) ≤ d(y, xn) + d(xn, x) < 1

n
+ r

2
< r

4
+ r

2
= 3r

4
< r. Thus B(xn, 1/n) ⊆ U , which is a

contradiction with the choice of {xn}.
18. For every x ∈ X, choose a Ux ∈ U such that x ∈ Ux. Since Ux is open, there is λx > 0 such

that B(x, 2λx) ⊆ Ux. Now {B(x, λx)}x∈X is an open cover of X, so that by compactness there are
x1, . . . , xn ∈ X such that

⋃n
k=1B(xk, λxk) = X. Let λ := min(λx1 , . . . , λxn) > 0. Assuming now that

Y ⊆ X satisfies diam(Y ) < λ, pick any y ∈ Y and a k ∈ {1, . . . , n} such that y ∈ B(xk, λxk). We
claim the following inclusions

Y ⊆ B(y, λ) ⊆ B(xk, 2λxk) ⊆ Uxk .

The first inclusion simply follows from y ∈ Y and diam(Y ) < λ and the third holds by the choice of
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λx. For the middle inclusion, note that z ∈ B(y, λ) implies

d(z, xk) ≤ d(z, y) + d(y, xk) < λ+ λxk ≤ λxk + λxk = 2λxk .

Since Uxk ∈ U , we are done.
19. Let U be an open cover of X. By assumption it has a Lebesgue number λ > 0. By total

boundedness, the open cover {B(x, λ/3)}x∈X has a finite subcover {B(x1, λ/3), . . . , B(xn, λ/3)}. In
view of diam(B(x, λ/3)) ≤ 2

3
λ and the definition of a Lebesgue number there is, for each i = 1, . . . , n,

a Ui ∈ U such that B(xi, λ/3) ⊆ Ui. Now {Ui}ni=1 ⊆ U is a finite subcover, thus X is compact. �

In view of the implications proven above, the following is immediate:

Theorem 7.7.23 For a metric space (X, d), the following are equivalent:

(i) (X, τd) is compact.

(ii) (X, τd) is countably compact.

(iib) (X, τd) is weakly countably compact.

(iii) (X, τd) is sequentially compact.

(iv) (X, d) is totally bounded and complete.

(v) (X, d) is totally bounded and has the Lebesgue property.

Remark 7.7.24 1. Note that we have two ways of deducing compactness from the other statements,
namely either from the combination of the Lebesgue property and total boundedness or from the
combination of countable compactness and the Lindelöf property (deduced via separability from total
boundedness). The first path is shorter, but apparently less well known.

2. In the above, the metric d was fixed. But as we know compactness is a topological notion,
whereas a topology τ can be induced by different metrics (which then are called equivalent). In
the light of this, the above means: If (X, τ) is a compact space then every compatible metric d is
complete, totally bounded and Lebesgue. And if there is some compatible metric d that is totally
bounded and complete then (X, τ) is compact.

3. The following table gives examples for spaces with all those combinatinations of properties
that are not ruled out by the above results:

compact tot.bdd. Lebesgue complete 2nd cnt. Example
1 1 1 1 1 [0, 1] or finite discrete
0 1 0 0 1 [0, 1] ∩Q
0 0 1 1 1 (N, ddisc)
0 0 1 1 0 X uncountable, ddisc

0 0 0 1 1 R with Eucl. metr.
0 0 0 1 0 `2(X), X uncountable
0 0 0 0 1 Q with Eucl. metr.
0 0 0 0 0 `2(X,Q), X uncountable

(We will have more to say about the Lebesgue property in Section 7.7.4. For the Lebesgue property
of (X, ddisc) cf. Remark 7.7.40.3.) 2

The theorem has a number of corollaries that are immediate, but worth stating nevertheless:
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Corollary 7.7.25 Let (X, d) be a complete metric space.

(i) If Y ⊆ X then (Y, d) is compact if and only if it is closed and totally bounded.

(ii) Y ⊆ X is relatively compact if and only it is totally bounded.

Proof. (i) If Y ⊆ X is compact then it is closed (since metric spaces are Hausdorff) and totally
bounded (by Theorem 7.7.23). Assume Y is closed and totally bounded. By Lemma 3.1.10(i), Y is
complete. Thus it is compact by Theorem 7.7.23.

(ii) Since Y ⊆ Y is dense, Exercise 7.7.19 gives that Y is totally bounded if and only if Y is
totally bounded. Now apply (i). �

Corollary 7.7.26 A metric space (X, d) is totally bounded if and only if its completion (X̂, d̂) is
compact.

Proof. By definition, X̂ is complete and X ⊆ X̂ is dense. If X̂ is compact, it is totally bounded, and
so is X. If X is totally bounded then Corollary 7.7.25(ii) gives that X̂ = X is compact. �

Note that in view of the above, completion of a totally bounded metric space also is a compacti-
fication! For the purpose of later reference, we record the following fact used above:

Corollary 7.7.27 Compact metrizable spaces are second countable, separable and Lindelöf.

Remark 7.7.28 1. Now we can prove that [0, 1]2 with the lexicographic order topology is not
metrizable: By Exercise 7.6.5 this space is compact, but by Exercise 4.3.11 it is not second countable.

2. Later we will prove the following converse of Corollary 7.7.27: If X is compact, Hausdorff and
second countable then X is metrizable. 2

We note that completeness can be characterized without invoking Cauchy sequences, in a way
that is very similar to the characterization of countable compactness in Exercise 7.7.5:

Lemma 7.7.29 A metric space (X, d) is complete if and only if
⋂
F 6= ∅ for every countable family

F of closed sets having the finite intersection property and satisfying infC∈F diam(C) = 0.

Proof. Given a countable family F , we choose a bijection N → F , n 7→ Cn. Then the sets
Dn =

⋂n
k=1Cn are closed, decreasing, non-empty (by the finite intersection property) and satisfy

diam(Dn)→ 0. The rest follows from Exercise 3.1.9. �

7.7.4 Compactness of metric spaces II: Applications

In this section, we consider several applications of compactness in the context of metric spaces. Recall
from Remark 5.2.12 that the results of Propositions 2.1.26, 3.1.12 adapt to the case where only (Y, d)
is metric, but (X, τ) is a topological space. Thus we still have a natural topology τD on the set
Cb(X, Y ), induced by the complete metric D of uniform convergence.

The first is result is straight-forward:

Corollary 7.7.30 Let X be a compact topological space. Then:

(i) Every continuous function f : X → Y with Y metric is bounded. Thus C(X, Y ) = Cb(X, Y ),
and (C(X, Y ), D) is a metric space.

(ii) Every continuous function f : X → R is bounded and assumes its infimum and supremum.
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Proof. (i) By Lemma 7.3.5, f(X) ⊆ Y is compact, thus closed and bounded by Corollary 7.7.25. The
rest was already proven in Proposition 3.1.12.

(ii) For a bounded R-valued function, we have inf f, sup f ∈ f(X). Now the claim follows from
the closedness of f(X) given by (i). �

Definition 7.7.31 A topological space X is called pseudocompact if every f ∈ C(X,R) is bounded.

Thus compact ⇒ pseudocompact. In fact, there is a better result:

Exercise 7.7.32 (i) Prove that every continuous function from a countably compact space to a
metric space is bounded.

(ii) Deduce that countably compact ⇒ pseudocompact.

Proposition 7.7.33 For a topological space X, consider the following statements:

(i) For every countable family F of open sets with the finite intersection property,
⋂
{U | U ∈

F} 6= ∅ holds.

(ii) For every sequence {Un}n∈N of non-empty open sets satisfying Un+1 ⊆ Un ∀n we have
⋂
n Un 6=

∅.

(iii) X is pseudocompact.

Then (i)⇔(ii)⇒(iii). For completely regular spaces, also (iii)⇒(ii).

Exercise 7.7.34 Prove the implications (i)⇔(ii)⇒(iii) in Proposition 7.7.33.

Remark 7.7.35 1. The implication (iii)⇒(ii) in Proposition 7.7.33 will will be proven in Proposition
8.2.52, together with a few more equivalent statements. Since the proof proceeds by by contradiction,
one must produce an unbounded continuous function from the given information. This requires the
theory concerning the existence of continuous real-valued functions discussed in Sections 8.2 and
8.3.1. In view of this, one could argue that complete regularity should be included in the definition
of pseudocompactness, but I don’t like such combined definitions.

2. We will see that every pseudocompact T4-space is countably compact, cf. Lemma 8.2.28.
Since metric spaces are T3.5 and T4, we can add pseudocompactness with its various equivalent
characterizations to the list of equivalent properties of metric spaces given in Theorem 7.7.23. 2

Corollary 7.7.30 has a generalization to semicontinuous functions:

Exercise 7.7.36 Let X be countably compact. Prove:

(i) If f : X → R is lower semicontinuous then it is bounded below and assumes its infimum.

(ii) If f : X → R is upper semicontinuous then it is bounded above and assumes its supremum.

Other applications of compactness include proofs of uniform continuity in various guises and
uniform convergence. The following generalizes a classical result of Dini10 for functions on a bounded
interval:

10Ulisse Dini (1845-1918), Italian mathematician. Also known for a criterion for the convergence of Fourier series.
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Proposition 7.7.37 (Dini’s theorem) Let X be countably compact, {fn}n∈N ⊆ C(X,R) and g ∈
C(X,R) such that fn(x)↗ g(x) ∀x (pointwise monotone convergence). Then the convergence fn → g
is uniform, i.e. ‖fn − g‖ ≡ supx∈X |fn(x)− g(x)| → 0.

Proof. For ε > 0 and n ∈ N, define Un(ε) = {x ∈ X | g(x) − fn(x)| < ε}, which is open by
continuity of g − fn. Let ε > 0. Pointwise convergence implies that every x ∈ X is contained in
some Un(ε), thus

⋃
n∈N Un(ε) = X. Countable compactness implies the existence of a finite subcover

{Un1(ε), . . . , Unm(ε)}. Since the convergence fn → g is monotone, the Un(ε) are increasing with n.
Thus with N = max(n1, . . . , nm) we have UN(ε) = X, which is equivalent to ‖g − fN‖ < ε. Since
ε > 0 was arbitrary, we have uniform convergence. �

It should be known that a continuous function f : [a, b]→ R is uniformly continuous (Definition
3.4.12), cf. e.g. [280, Theorem 9.9.16]. (This was first proven in 1852 by Peter Gustav Lejeune
Dirichlet (1805-1859).) Using the Lebesgue property, this can be generalized considerably:

Proposition 7.7.38 Let (X, d), (Y, d′) be metric spaces, where (X, d) has the Lebesgue property (e.g.
due to compactness). Then every continuous f : X → Y is uniformly continuous.

Proof. Let ε > 0. Since f is continuous, for every x ∈ X there is δx > 0 such that d(x, y) < δx implies
d′(f(x), f(y)) < ε/2. Now U = {B(x, δx)}x∈X is an open cover of X. Let λ > 0 be a Lebesgue
number of this cover. If now d(y, z) < λ then diam({y, z}) < λ, so that {y, z} ⊆ B(x, δx) for some
x ∈ X. With the triangle inequality we have

d′(f(y), f(z)) ≤ d′(f(y), f(x)) + d′(f(x), f(z)) <
ε

2
+
ε

2
= ε,

where we used the fact that y and z are in B(x, δx), and the definition of δx. �

The converse of Proposition 7.7.38 is also true, thus if every continuous f : (X, d) → (Y, d′)
is uniformly continuous then (X, d) has the Lebesgue property. Remarkably, these two equivalent
properties are equivalent to many others. We need the following definition, which should be compared
to that of discreteness of a metric (Exercise 2.3.3):

Definition 7.7.39 A metric d on a set X is called uniformly discrete if there is ε > 0 such that
d(x, y) ≥ ε whenever x 6= y.

Remark 7.7.40 1. The standard discrete metric of Example 2.1.8 is uniformly discrete.
2. There are discrete metrics that are not uniformly discrete. E.g. d(n,m) =

∣∣ 1
n
− 1

m

∣∣ on X = N.
3. If d is a uniformly discrete metric on X, then λ = ε is a Lebesgue number for every open cover

U since diam(Y ) < ε implies that Y is a singleton. Thus (X, d) has the Lebesgue property. One also
sees directly that every function f : (X, d) → (Y, d′) is uniformly continuous for the trivial reason
that d(x, y) < ε implies x = y, thus d′(f(x), f(y)) = 0. 2

Theorem 7.7.41 For a metric space (X, d), the following are equivalent:

(i) X has the Lebesgue property.

(ii) Every continuous f : X → (Y, d′) with (Y, d′) metric is uniformly continuous.

(iii) Every continuous f : X → R is uniformly continuous (w.r.t. the standard metric on R).

(iv) Every cover of X by two open sets has positive Lebesgue number.
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(v) If A ⊆ U ⊆ X with A closed and U open, there is ε > 0 such that Aε ⊆ U .

(vi) If A,B ⊆ X are non-empty closed subsets with A ∩B = ∅ then dist(A,B) > 0.

(vii) Every closed discrete subset Y ⊆ X is uniformly discrete.

(viii) The derived set X ′ (i.e. set of non-isolated points) is compact and X\(X ′)ε is uniformly discrete
for every ε > 0.

Metric spaces satisfying these conditions are complete and have been called Lebesgue-spaces,
UC-spaces or Atsuji-spaces.

Exercise 7.7.42 Prove the equivalence of statements (iv), (v), (vi) in Theorem 7.7.41.

Remark 7.7.43 1. Statement (vi) shows that the metric spaces with the Lebesgue property are
precisely those where we cannot have the phenomenon encountered in Exercise 2.1.20(v), namely
non-empty closed subsets A,B such that dist(A,B) = 0 and A ∩B = ∅.

2. That the Lebesgue property implies completeness was 16. in Proposition 7.7.22. We only give
the simpler of the remaining proofs.

The implicaton (i)⇒(ii) was Proposition 7.7.38, and (ii)⇒(iii) is obvious, as is (i)⇒(iv).
(iii)⇒(vi) Define f : X → [0, 1] by f(x) = dist(x,A)/(dist(x,A) + dist(x,B)). One checks easily

that f is continuous and f � A = 0, f � B = 1. By (iii), f is uniformly continuous, thus there is
ε > 0 such that d(x, y) < ε implies |f(x)− f(y)| < 1/2. Combined with f �A = 0, this implies that
f(x) ≤ 1/2 ∀x ∈ Aε, which together with f �B = 1 gives dist(A,B) ≥ ε.

For proofs of the remaining implications (vi)⇒(vii) ⇒(viii) ⇒(i) (and many others) see [183],
where about 30 equivalent conditions are discussed! 2

Corollary 7.7.44 A metric space having at most finitely many isolated points has the (equivalent)
properties listed in Theorem 7.7.41 if and only if it is compact.

Proof. Every compact metric space has the Lebesgue property. Conversely, the Lebesgue property
implies compactness of X ′. If the set Y of isolated points is finite then it is not only open but also
closed. Thus X ∼= X ′ ⊕ Y , implying compactness of X. �

We now consider a converse of the result in Exercise 6.5.40:

Exercise 7.7.45 Let X be arbitrary, Y compact and (Z, d) metric. Topologize C(Y, Z) using the
metric D(f, g) = supy d(f(y), g(y)).

(i) For f ∈ C(X × Y, Z), let F = Λ(f) ∈ Fun(X,Fun(Y, Z)). Prove F ∈ C(X,C(Y, Z)). (Thus if
x→ x0 then supy d(f(x, y), f(x0, y))→ 0, i.e. f(x, y) is continuous in x uniformly in y.) Hint:
Use the Slice Lemma 7.5.1.

(ii) Combining (i) with Exercise 6.5.40(ii), conclude that Λ gives a bijection C(X × Y, Z) →
C(X,C(Y, Z)).

(iii) Assuming in addition that X is compact with metric dX , combine (ii) with Proposition 7.7.38
to show for every f ∈ C(X × Y, Z) that

∀ε > 0 ∃δ > 0 : dX(x, x′) < δ ⇒ ∀y ∈ Y : d(f(x, y), f(x′, y)) < ε.

(iv) Assuming again that X is compact and equipping C(X × Y, Z) and C(X,C(Y, Z)) with the
natural metrics, prove that Λ is an isometry. (This is independent of (iii).)
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The following will be useful later:

Lemma 7.7.46 Let (X, d) be a metric space and {Ki ⊆ X}i∈I compact subsets. Let {Sk ⊆ X}k∈N
such that diam(Sk)

k→∞−→ 0 and for all k ∈ N, i ∈ I one has Sk ∩Ki 6= ∅. Then
⋂
iKi 6= ∅.

Proof. It is sufficient to prove the claim in the case where I is finite. In the general case, this
then implies that the family {Ki}i∈I has the finite intersection property and another invocation of
compactness gives

⋂
iKi 6= ∅. Thus let {K1, . . . , Kn} be given and consider K =

∏
iKi equipped with

the metric dK(x, y) =
∑

i d(xi, yi). For every k ∈ N and i ∈ {1, . . . , n}, choose an xk,i ∈ Sk ∩Ki and
define xk = (xk,1, . . . , xk,n) ∈ K. By compactness of K there exists a point z = (z1, . . . , zn) ∈ K every
neighborhood of which contains xk for infinitely many k. Now, d(zi, zj) ≤ d(zi, xk,i) + d(xk,i, xk,j) +
d(xk,j, zj) ≤ 2dK(z, xk) + diam(Sk). Since by construction every neighborhood of z contains points
xk with arbitrarily large k, we can make both terms on the r.h.s. arbitrarily small and conclude that
z = (x, . . . , x) for some x ∈ X. Since zi ∈ Ki for all i, we have x ∈

⋂
iKi, and are done. �

7.7.5 Subsets of Rn I: Compactness

By Corollary 7.7.25, for a complete metric space (X, d) and Y ⊆ X we have: Y totally bounded
⇒ Y compact ⇒ Y totally bounded ⇒ Y bounded. For X = Rn we have more:

Lemma 7.7.47 Let n ∈ N. Every bounded subset X ⊆ Rn is totally bounded.

Proof. If X ⊆ Rn is bounded, it is contained in some cube C = [−a, a]n. Now, for every ε > 0, the
ball B(x, ε) contains a closed cube of some edge M > 0. Now it is clear that C can be covered by
d2a/Men such balls. Thus C is totally bounded, thus also X by Exercise 7.7.19(i). (Alternatively,
use this argument to show that [−a, a] is totally bounded, thus compact and deduce compactness of
C from Tychonov’s theorem.) �

Theorem 7.7.48 (Heine-Borel) 11 A subspace of K ⊆ Rn is compact if and only if it is closed
and bounded.

Proof. Taking Lemma 7.7.47 into account, this follows from Corollary 7.7.25. �

Remark 7.7.49 It is important to understand that the Heine-Borel theorem does not generalize to
most metric spaces! To see this it suffices to take any non-compact metric space (X, d) like Rn and �

replace the metric d by an equivalent bounded metric d′. Now X is obviously closed and bounded
with respect to d′, but it still is non-compact. Metric spaces to which the Heine-Borel result does
generalize are considered in Section 7.8.9. 2

Exercise 7.7.50 Use Theorem 7.7.48 to prove that the sphere Sn is compact for every n ∈ N.

In Exercise 2.2.16, we proved that the norms ‖ ·‖s on Rn defined in Example 2.1.13 are equivalent
for all s ∈ [1,∞]. Using the Heine-Borel theorem we can improve this considerably:

Theorem 7.7.51 All norms on a finite dimensional vector space over R or C are equivalent.

11Heinrich Eduard Heine (1821-1881), Émile Borel (1871-1956). This was proven by Borel for countable covers and
by Lebesgue in generality. Heine had little to do with it! The equivalent (since Rn is metric) statement that one
obtains replacing compactness by sequential compactness is known as the Bolzano-Weierstrass theorem.
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Proof. Let F ∈ {R,C}. Let B = {e1, . . . , ed} be a basis for V , and define the Euclidean norm ‖ · ‖2 of
x =

∑
i ciei by ‖x‖2 = (

∑
i |ci|2)1/2. It clearly is sufficient to show that any norm ‖ · ‖ is equivalent

to ‖ · ‖2. Using |ci| ≤ ‖x‖2 ∀i and the properties of any norm, we have

‖x‖ =

∥∥∥∥∥
d∑
i=1

ciei

∥∥∥∥∥ ≤
d∑
i=1

|ci| ‖ei‖ ≤

(
d∑
i=1

‖ei‖

)
‖x‖2. (7.6)

This implies that x 7→ ‖x‖ is continuous w.r.t. the topology on V defined by ‖ · ‖2. Since the sphere
S = {x ∈ Fn | ‖x‖2 = 1} is compact by Exercise 7.7.50, Corollary 7.7.30 implies that there is z ∈ S
such that λ := infx∈S ‖x‖ = ‖z‖. Since z ∈ S implies z 6= 0 and ‖ · ‖ is a norm, we have λ = ‖z‖ > 0.
Now, for x 6= 0 we have x

‖x‖2 ∈ S, and thus

‖x‖ = ‖x‖2

∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ ‖x‖2λ. (7.7)

Combining (7.6, 7.7), we have c1‖x‖2 ≤ ‖x‖ ≤ c2‖x‖2 with 0 < c1 = infx∈S ‖x‖ ≤
∑

i ‖ei‖ = c2.
(Note that ei ∈ S ∀i, so that c2 ≥ dc1, showing again that V must be finite dimensional.) �

Corollary 7.7.52 Let (V, ‖ · ‖) be a normed vector space over F ∈ {R,C} and V ′ ⊆ V a finite
dimensional subspace. Then the restriction of ‖ · ‖ to V ′ is equivalent to any other norm on V ′ and
is complete, and V ′ ⊆ V is closed.

Proof. The first claim is immediate by Theorem 7.7.51. The second follows, since every norm on
a finite dimensional vector space is equivalent to the Euclidean one, thus complete. The last claim
results from the fact that complete subspaces of metric spaces are closed. �

Remark 7.7.53 On a purely topological level, one can prove that a finite dimensional vector space
over R or C has precisely one topology making it a topological vector space (meaning that the abelian
group structure of (V,+, 0) and the action of the ground field are continuous). 2

Lemma 7.7.54 (F. Riesz) 12 Let (V, ‖ ·‖) be a normed space and W ( V a closed proper subspace.
Then for each δ ∈ (0, 1) there is an xδ ∈ V such that ‖xδ‖ = 1 and dist(xδ,W ) ≥ δ, i.e. ‖xδ − x‖ ≥
δ ∀x ∈ W .

Proof. If x0 ∈ V \W then λ = dist(x0,W ) > 0 by Exercise 2.1.20(iii). In view of δ ∈ (0, 1), we have
λ
δ
> λ. Thus we can choose y0 ∈ W with ‖x0 − y0‖ < λ

δ
. Putting

xδ =
y0 − x0

‖y0 − x0‖
,

we have ‖xδ‖ = 1. If x ∈ W then

‖x− xδ‖ =

∥∥∥∥x− y0 − x0

‖y0 − x0‖

∥∥∥∥ =
‖‖y0 − x0‖x− y0 + x0‖

‖y0 − x0‖
≥ dist(x0,W )

‖y0 − x0‖
≥ λ

λ
δ

= δ,

where the first ≥ is due to ‖y0 − x0‖x − y0 ∈ W and the second ≥ is due to ‖x0 − y0‖ < λ
δ
. Since

x ∈ W was arbitrary, we are done. �

12Frigyes Riesz (1880-1956), Hungarian mathematician.
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Theorem 7.7.55 If (V, ‖ · ‖) is an infinite dimensional normed space then:

(i) Each closed ball B(x, r) (with r > 0) is non-compact.

(ii) Every subset Y ⊆ V with non-empty interior Y 0 is non-compact.

Proof. (i) Choose x1 ∈ V with ‖x1‖ = 1. Then Cx1 is a closed proper subspace, thus there exists
x2 ∈ V with ‖x2‖ = 1 and ‖x1−x2‖ ≥ 1

2
. Since V is infinite dimensional, V2 = span{x1, x2} is a closed

proper subspace, thus there exists x3 ∈ V with dist(x3, V2) ≥ 1
2
, thus in particular ‖x3 − xi‖ ≥ 1

2

for i = 1, 2. Continuing in this way we can construct a sequence of xi ∈ V with ‖xi‖ = 1 and
‖xi − xj‖ ≥ 1

2
∀i 6= j. The sequence {xi} clearly cannot have a convergent subsequence, thus the

closed unit ball B(0, 1) is non-compact. Since x 7→ λx+ x0 is a homeomorphism, all closed balls are
non-compact.

(ii) If Y ⊆ V and Y 0 6= ∅ then Y contains some open ball B(x, r), thus also B(x, r/2), which is
non-compact. Thus neither Y nor Y are compact. �

Remark 7.7.56 1. With the notion of local compactness that we will encounter in Section 7.8, the
above results can be simply stated thus: A normed vector space is locally compact if and only if it
is finite dimensional.

2. The above negative result means that compact sets in infinite dimensional normed spaces
must have empty interior. In Sections 7.7.7-F.5 we will characterize the compact subsets of certain
function spaces.

3. While closed balls in infinite dimensional normed spaces are non-compact w.r.t. the norm
topology, they actually are compact w.r.t. the weak topology. This is the content of Alaoglu’s
theorem, cf. Section G.6. 2

The following is probably the simplest proof of the algebraic closedness of the field of complex
numbers. The proof will take for granted that every complex number w has an n-th root w1/n for
every n. (Thus equations of the form zn−w = 0 always have solutions, which is a special case of the
result to be proven here. This fact will be proven in Corollary 9.2.21, using the intermediate value
theorem.)

Theorem 7.7.57 (Fundamental Theorem of Algebra) 13 Let P ∈ C[z] be complex polynomial
of degree n ≥ 1, i.e. P (z) = anz

n + · · · + a1z + a0, where an 6= 0. Then there is a z ∈ C such that
P (z) = 0.

Proof. We may assume that an = 1. Then P (z) = zn(1 + an−1z
−1 + · · · + a0z

−n) implies that
|P (z)| → ∞ as |z| → ∞. Thus there is a C > 0 such that |z| > C implies P (z) 6= 0. Since
z 7→ |P (z)| is continuous and {z ∈ C | |z| ≤ C} is compact by Theorem 7.7.48, Corollary 7.7.30
implies that there is a z0 ∈ C where |P | assumes its infimum. If the latter is zero, we are done. Thus
assume |P (z0)| = inf |P (z)| > 0. Putting Q(z) = P (z+z0)/P (z0), we have Q(z) = 1+bpz

p+· · ·+bnzn,
where p = min{m ≥ 1 | am 6= 0}. Since bp = ap/P (z0) 6= 0, by existence of n-th roots there is an
z ∈ C such that zp = −1/bp. With 0 < r < 1 we have

Q(rz) = 1 + rpzpbp + rp+1zp+1bp+1 + · · ·+ rnznbn

= (1− rp) + rp+1zp+1bp+1 + · · ·+ rnznbn,

13This is a misnomer in two respects: On the one hand, the complex numbers do not have a very central place in
modern algebra. On the other hand, all proofs make essential use of some continuity considerations and therefore are
not purely algebraic.
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thus
|Q(rz)| ≤ 1− rp + rp+1|zp+1bp+1 + rzp+2bp+1 + · · ·+ rn−p−1znbn|.

For r > 0 small enough, the term with rp+1 is smaller than rp, so that |Q(rz)| < 1. But this
contradicts the fact that by construction |Q| has its absolute minimum 1 at z = 0. �

For more on roots of complex polynomials see Exercise 7.8.77.

7.7.6 Subsets of Rn II: Convexity

Definition 7.7.58 Let V be an R-vector space. A subset X ⊆ V is called convex if x, y ∈ X, λ ∈
[0, 1]⇒ λx+ (1− λ)y ∈ X. (I.e., the straight line segment xy is contained in X.)

Clearly the Euclidean balls Bn, Dn ⊆ Rn are convex. This can be generalized:

Lemma 7.7.59 If ‖·‖ is any norm on a vector space V then the balls B(x, r) = {y ∈ V | ‖x−y‖ < r}
and B(x, r) = {y ∈ V | ‖x− y‖ ≤ r} are convex.

Proof. Since the metric d(x, y) = ‖x−y‖ is translation invariant, we have B(x, r) = x+B(0, r), thus
it suffices to prove the claim for x = 0. If x, y ∈ B(0, r) and t ∈ [0, 1] then

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖ = t‖x‖+ (1− t)‖y‖ < tr + (1− t)r = r,

thus tx+ (1− t)y ∈ B(0, r) ∀t ∈ [0, 1]. Similarly for B(x, r). �

Lemma 7.7.60 Let K ⊆ Rn be compact and convex with non-empty interior K0. Assume 0 ∈ K0

(as can be achieved by translation, if necessary). Then the map

f : ∂K → Sn−1, x 7→ x

‖x‖
,

where ‖ · ‖ is the Euclidean norm, is a homeomorphism.

Proof. The map Rn\{0} → Sn−1, x 7→ x
‖x‖ is continuous, thus its restriction f to ∂K ⊆ Rn\{0} is

continuous. We claim that f : ∂K → Sn−1 is a bijection. Assuming this for a moment, Proposition
7.4.11 implies that f is a homeomorphism since ∂K is compact (as a closed subset of the compact
space K) and Sn−1 is Hausdorff.

To prove surjectivity, let z ∈ Sn−1. Since K is compact, thus bounded, we have µ = sup{λ ≥
0 | λz ∈ K} <∞. Now 0 ∈ K0 implies µ > 0, closedness of K implies µz ∈ K, and by construction
every neighborhood of µz contains points in Rn\K. Thus µz ∈ ∂K. Since f(µz) = z, we have
surjectivity of f : ∂K → Sn−1.

It remains to prove injectivity of f , which clearly is equivalent to the statement that every ray
beginning at 0 intersects ∂K in at most one point. Let R be such a ray and let p, q ∈ K ∩ R with
0 < ‖p‖ < ‖q‖. Since 0 ∈ K0, there is some closed ball B with center 0 contained in K0. Consider
the union of all line segments from q to a point in B. Since K is convex, this set is contained in K
and it contains p in its interior. Thus p ∈ K0 and therefore p 6∈ ∂K. Thus R intersects ∂K in at
most one point, which is equivalent to injectivity of f : ∂K → Sn−1. �

It seems likely that one could also show the openness of f using the information about the
geometry of K, but invoking compactness surely is less painful.

The following result was already used in the discussion of the real projective spaces. In stating
it, we appeal to the Heine-Borel Theorem 7.7.48 to write ‘closed bounded’ instead of ‘compact’, in
order to make the geometric assumptions more explicit:
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Proposition 7.7.61 Let K ⊆ Rn be convex, closed and bounded with non-empty interior. Then:

(i) There is a homeomorphism g : Dn → K restricting to Sn−1 = ∂Dn
∼=−→ ∂K.

(ii) If x0 ∈ K0 then the homeomorphism g : Dn → K can be chosen such that g(0) = x0.

(ii) If −K = K then we can choose g such that g(−x) = −g(x) ∀x, i.e. g is Z2-equivariant.

Proof. (i) We may assume 0 ∈ K0. Let f : ∂K → Sn−1 be the homeomorphism constructed in the
lemma. Defining

g : Dn → K, x 7→

{
‖x‖ f−1

(
x
‖x‖

)
x 6= 0

0 x = 0

it should be clear that g is a bijection from Dn to K. At x 6= 0, g clearly is continuous. Since K
is compact, there is M > 0 such that ‖x‖ ≤ M ∀x ∈ K. Thus ‖f−1(y)‖ ≤ M ∀y ∈ Sn−1 and
‖g(x)‖ ≤ M‖x‖. This tends to zero as x→ 0, so g is continuous at zero. As a continuous bijection
between compact Hausdorff spaces, g is a homeomorphism by Proposition 7.4.11.

(ii) If x0 ∈ K0 then defining K ′ = K − x we have 0 ∈ K ′0. Thus (i) gives us a homeomorphism
g0 : Dn → K ′ sending 0 ∈ Dn to 0 ∈ K ′. Now g := g0 + x0 is a homeomorphism Dn → K sending 0
to x0.

(iii) The assumption K = −K together with convexity implies 0 ∈ K, so that we do not need
to shift K. It is obvious that the map f : x 7→ x/‖x‖ in Lemma 7.7.60 is equivariant, and then the
same holds for g. �

This result is very useful since it automatically provides us with homeomorphisms between all
compact convex subsets of Rn that have non-empty interior, e.g. Dn ∼= In ∼= P , where P ⊆ Rn is any
(full) convex polyhedron. E.g., a tetrahedron T ⊆ R3 is homeomorphic to the cube I3. Constructing
such homeomorphisms directly would be quite painful.

What about dropping the assumption on the interior?

Proposition 7.7.62 For a compact convex subset K ⊆ Rn, the following are equivalent:

(i) K has non-empty interior.

(ii) K is not contained in a proper hyperplane (i.e. a set x0 +V of K, where V ⊆ Rn is a subspace
of dimension < n).

(iii) spanR{x− y | x, y ∈ K} = Rn.

Proof. The equivalence (ii)⇔(iii) is obvious. Assume (i). If x0 ∈ K0 and ε > 0 is such that
Bε(x0)) ⊆ K, it is clear that the vectors x− x0 where ‖x− x0‖ = ε span Rn. Thus (iii) holds. Now
assume (ii) and choose x0 ∈ K. Now choose x1 ∈ K\{x0}, and then x2 ∈ K but not in the line
determined by x0 and x1. Going on like this we obtain x0, x1, . . . in K such that no point lies in the
hyperplane defined by the others. In view of (ii), this process continues until we have found xn. By
convexity of K it is clear that the n-simplex

S =

{
n∑
i=0

λixi | λi ≥ 0,
∑
i

λi = 1

}
is contained in K. It is easy to see that

S0 =

{
n∑
i=0

λixi | λi > 0,
∑
i

λi = 1

}
,
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and since this is contained in K0, K has non-empty interior. �

Theorem 7.7.63 Let K ⊆ Rn be non-empty, convex, closed and bounded. Then there is m ≤ n
such that K is homeomorphic to Dm.

Proof. We may assume 0 ∈ K, replacing K by K − x0, where x0 ∈ K, if necessary. Define Y =
spanR(K). Now K is a convex subset of the subspace Y ⊆ Rn and by construction it is not contained
in a proper hyperplane of Y . By Proposition 7.7.62, it has non-empty interior, considered as a
subspace of Y . Now Proposition 7.7.61 applies, and with m = dimY we have K ∼= Dm. �

Remark 7.7.64 Later (Corollary 10.5.7) we will prove that Dr and Ds are non-homeomorphic when
r 6= s. Thus the m in the theorem is uniquely determined by K. In particular, m = n holds if and
only if K has non-empty interior. 2

7.7.7 ? Compactness in function spaces I: Ascoli-Arzelà theorems

If (X, τ) is a topological space and (Y, d) metric, the set Cb(X, Y ) is topologized by the metric D
from (2.6), cf. Remark 5.2.12. It is therefore natural to ask whether the (relative) compactness of a
set F ⊆ Cb(X, Y ) can be characterized in terms of the elements of F , which after all are functions
f : X → Y . This will be the subject of this section, but we will restrict ourselves to compact X, for
which C(X, Y ) = Cb(X, Y ) by Corollary 7.7.30.

Definition 7.7.65 Let (X, τ) be a topological space and (Y, d) a metric space. A family F ⊆
Fun(X, Y ) is called equicontinuous if for every x ∈ X and ε > 0 there is an open neighborhood
U 3 x such that f ∈ F , x′ ∈ U ⇒ d(f(x), f(x′)) < ε.

This clearly implies F ⊆ C(X, Y ), but the point is that the choice of U depends only on x and
ε, but works for every f ∈ F .

The following lemma is from [128]. Note that the ε− δ condition appearing there could be called
‘uniform metric properness’ of f since it says that preimages of bounded sets are bounded in a
uniform way.

Lemma 7.7.66 Let (X, d) be a metric space. Assume that for each ε > 0 there are a δ > 0, a
metric space (Y, d′) and a continuous h : X → Y such that (h(X), d′) is totally bounded and such
that d′(h(x), h(x′)) < δ implies d(x, x′) < ε. Then (X, d) is totally bounded.

Proof. For ε > 0, pick δ, (Y, d′), h as asserted. Since h(X) is totally bounded, there are y1, . . . , yn ∈
h(X) such that h(X) ⊆

⋃
iB(yi, δ) ⊆ Y ×n. Then X =

⋃
i h
−1(B(yi, δ)). Choose xi such that h(xi) =

yi. Now x ∈ h−1(B(yi, δ)) ⇒ d′(h(x), yi) < δ ⇒ d(x, xi) < ε, so that h−1(B(yi, δ)) ⊆ B(xi, ε). Thus
X =

⋃
iB(xi, ε), and (X, d) is totally bounded. �

Theorem 7.7.67 (Ascoli-Arzelà) 14 Let (X, τ) be a compact topological space and (Y, d) a com-
plete metric space. Then F ⊆ C(X, Y ) is (relatively) compact (w.r.t. the uniform topology τD) if and
only if

• {f(x) | f ∈ F} ⊆ Y is (relatively) compact for every x ∈ X,

14Giulio Ascoli (1843-1896), Cesare Arzelà (1847-1912), Italian mathematicians. They proved special cases of this
result, of which there also exist more general versions.
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• F is equicontinuous.

Proof. ⇒ If f, g ∈ C(X, Y ) then d(f(x), g(x)) ≤ D(f, g) for every x ∈ X. This implies that the
evaluation map ex : C(X, Y ) → Y, f 7→ f(x) is continuous for every x. Thus compactness of F
implies that ex(F) = {f(x) | f ∈ F} is compact, thus closed. Since ex(F) contains ex(F), also
ex(F) ⊆ ex(F) is compact.

To prove equicontinuity, let x ∈ X and ε > 0. Since F is totally bounded, there are g1, . . . , gn ∈ F
such that F ⊆

⋃
iB

D(gi, ε). By continuity of the gi, there are open Ui 3 x, i = 1, . . . , n, such that
x′ ∈ Ui ⇒ d′(gi(x), gi(x

′)) < ε. Put U =
⋂
i Ui. If now f ∈ F , there is an i such that f ∈ BD(gi, ε),

to wit D(f, gi) < ε. Now for x′ ∈ U ⊆ Ui we have

d′(f(x), f(x′)) ≤ d′(f(x), gi(x)) + d′(gi(x), gi(x
′)) + d′(gi(x

′), f(x′)) < 3ε,

proving equicontinuity of F (at x, but x was arbitrary).
⇐ Let ε > 0. Since F is equicontinuous, for every x ∈ X there is an open neighborhood Ux such

that f ∈ F , x′ ∈ U ⇒ d′(f(x), f(x′)) < ε. Since X is compact, there are x1, . . . , xn ∈ X such that

X =
⋃n
i=1 Uxi . Now define h : F → Y ×n : f 7→ (f(x1), . . . , f(xn)). Now d̃((y1, . . . , yn), (y′1, . . . , y

′
n)) =∑

i d
′(yi, y

′
i) is a product metric on Y ×n. By assumption {f(x) | f ∈ F} is compact for each x ∈ X,

thus h(F) ⊆
∏

i {f(xi) | f ∈ F} ⊆ Y ×n is compact, thus (h(F), d̃) is totally bounded. If now

f, g ∈ F satisfy d̃(h(f), h(g)) < ε then d′(f(xi), g(xi)) < ε ∀i by definition of d̃. With x ∈ Uxi , we
have

d′(f(x), g(x)) ≤ d′(f(x), f(xi)) + d′(f(xi), g(xi)) + d′(g(xi), g(x)) < 3ε.

Since the Uxi cover X, this implies D(f, g) < 3ε. Thus the assumptions of Lemma 7.7.66 are satisfied,
and we obtain total boundedness of F . �

If Y = Rn then in view of Theorem 7.7.48 the requirement of compactness of {f(x) | f ∈ F} for
each x reduces to that of boundedness of {f(x) | f ∈ F} for each x, i.e. pointwise boundedness of F .
With the equivalence of compactness and sequential compactness for the metric space (C(X,Rn), D)
the following is equivalent to Theorem 7.7.67 (for Y = Rn):

Corollary 7.7.68 If (X, τ) is compact and {fn}n∈N ⊆ C(X,Rn) is pointwise bounded and equicon-
tinuous then the sequence {fn} has a uniformly convergent subsequence.

Theorem 7.7.67 and its corollary will be used for the proof of the Hopf-Rinow Theorem 12.4.27.
Ascoli-Arzelà type theorems are often stated with the (superfluous) additional assumption that

X is metric. Given two metric spaces (X, d), (Y, d′), one can formulate the notion of uniform equicon-
tinuity, which often (imprecisely) is called equicontinuity:

Definition 7.7.69 Let (X, d), (Y, d′) be metric spaces. A family F ⊆ Fun(X, Y ) is called uniformly
equicontinuous if for every ε > 0 there is a δ > 0 such that

f ∈ F , x, y ∈ X, d(x, y) < δ ⇒ d′(f(x), f(y)) < ε.

(This clearly implies equicontinuity of F and uniform continuity of every f ∈ F .)

We know that continuous functions from a compact metric space to any metric space are uniformly
continuous. This generalizes to equicontinuous families, making it pointless (but also harmless) to
require uniform equicontinuity instead of equicontinuity:

Lemma 7.7.70 If (X, d), (Y, d′) are metric spaces with X compact then every equicontinuous family
F ⊆ Fun(X, Y ) is uniformly equicontinuous.
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Proof. Given ε > 0, equicontinuity allows us to find for every x ∈ X a δx > 0 such that f ∈
F , d(x, y) < δx implies d′(f(x), f(y)) < ε. The rest of the proof is identical to that of Proposition
7.7.38 except of course that now f is any element of F . �

7.8 One-point compactification. Local compactness

7.8.1 Compactifications: Definition and Examples

Since compact spaces have very nice properties, in particular in combination with the Hausdorff
property, it is natural to ask whether a non-compact space can be ‘compactified’ by embedding it
into a compact space. In analogy to completions of metric spaces (Definition 3.2.1) we define:

Definition 7.8.1 A (Hausdorff) compactification of a topological space (X, τ) is a space (X̂, τ̂)

together with a continuous map ι : X → X̂ such that

• (X̂, τ̂) is compact (Hausdorff).

• ι is an embedding. (I.e. ι : X → ι(X) ⊆ X̂ is a homeomorphism.)

• ι(X) is dense in X̂.

The points in X̂\ι(X) are the infinite points of X̂.

Remark 7.8.2 We will occasionally suppress the embedding map ι from the notation, considering
X as a subset of X̂ (but not when we consider different compactifications). 2

Exercise 7.8.3 Let (X, τ) be a topological space, and let X∞ = X ∪{∞}. (Here and in the sequel,
it is understood that ∞ 6∈ X.) Define τ ′ as in Exercise 7.3.1. (We now write ∞ instead of p.)
Assuming X 6= ∅, prove:

(i) X is dense in X ′, but τ ′ is not Hausdorff.

(ii) Conclude that (X ′, τ ′) is a (non-T2) compactification of (X, τ).

(iii) How do the above statements change if X = ∅?
The next example is better since it provides Hausdorff compactifications of Rn and shows that

compactifications in general are not unique:

Example 7.8.4 1. (0, 1) has [0, 1] and S1 as compactifications (among many others!).
2. More generally, there is a homeomorphism ιn from Rn to the open unit ball in Rn. (Why?)

In view of Dn = ιn(Rn) it is immediate that (Dn, ιn) is a Hausdorff compactification of Rn. If ∼
is any equivalence relation on Sn−1 = ∂Dn, extend it to Dn in the minimal way, i.e. x ∼ y ⇒ x =
y∨{x, y} ⊆ Sn−1. One checks that this equivalence relation on Dn is closed if and only if it is closed on
Sn−1. As we will see later, this is equivalent to Dn/∼ being Hausdorff. Now Rn

∼ = Dn/∼ is compact.
If p : Dn → Rn

∼ is the quotient map and ι∼ = p ◦ ι, one finds that (Rn
∼, ι∼) is a compactification

of Rn. Thus every closed equivalence relation on Sn−1 gives rise to a Hausdorff compactification of
Rn! Examples: (i) the trivial equivalence relation, i.e. Rn

∼
∼= Dn, (ii) the radical equivalence relation

that identifies all points. We will see that it leads to Rn
∼
∼= Sn. And (iii) the equivalence relation

that identifies only pairs (x,−x) of antipodal points, which leads to Rn
∼
∼= RPn, as shown in Lemma

6.4.31. Thus Rn has Dn, Sn,RPn as Hausdorff compactifications, but clearly there are many others.
2



168 CHAPTER 7. COMPACTNESS AND RELATED NOTIONS

Remark 7.8.5 1. Exercise 7.8.3 shows that every space admits a compactification, in analogy to
the existence of completions for all metric spaces. However, the compactification given there is not
very useful since it is never Hausdorff.

2. A non-Hausdorff space admits no Hausdorff compactification (since T2 is hereditary).

3. If X is compact then every Hausdorff compactification X̂ is homeomorphic to X. (Since X is

compact, also ι(X) is compact, thus ι(X) ⊆ X̂ is closed by the Hausdorffness of X̂. We thus have

X ∼= ι(X) = ι(X) = X̂, by density of ι(X).)
4. Hausdorffness ofX is not sufficient forX to have a Hausdorff compactification! Later (Theorem

8.3.21) we will identify a necessary and sufficient condition, but for the time being we have no need
for that. (And in Section 7.8.3 we construct a Hausdorff compactification whose existence follows
from a simpler but stronger condition.)

5. In contradistinction to completions, there is no uniqueness for compactifications. But if a
space has a Hausdorff compactification at all, it has a unique ‘largest’ one, cf. Corollary 8.3.31(ii).
Under the stronger assumption mentioned above, it also has a unique ‘smallest’ compactifications,
cf. Corollary 7.8.60. 2

7.8.2 ? Compactifications: Some general theory

The fact that there are multiple compactifications of a given space X makes it natural to study all
compactifications of X and the maps between them. Categorical language is best suited for this:

Definition 7.8.6 If X is a Hausdorff space, the category C(X) of Hausdorff compactifications of X

is defined as follows: Obj C(X) = {(X̂, ι)}, where X̂ is compact Hausdorff and ι : X → X̂ is an

embedding with dense image. If (X̂1, ι1), (X̂2, ι2) ∈ C(X) then

HomC(X)((X̂1, ι1), (X̂2, ι2)) = {f ∈ C(X̂1, X̂2) | f ◦ ι1 = ι2}.

Since compactifications are not unique, we have no complete analogue of Proposition 3.2.2. The
next result is the next best we can hope for:

Proposition 7.8.7 Let X be non-compact.

(i) If (X̂1, ι1), (X̂2, ι2) are objects in C(X) then HomC(X)((X̂1, ι1), (X̂2, ι2)) contains at most ele-
ment.

(ii) If HomC(X)((X̂1, ι1), (X̂2, ι2)) 6= ∅ 6= HomC(X)((X̂2, ι2), (X̂1, ι1)) then (X̂1, ι1) ∼= (X̂2, ι2).

(iii) If the HomC(X)((X̂1, ι1), (X̂2, ι2)) is non-empty empty then its unique element f is surjective, a
quotient map and satisfies

f(X̂1\ι1(X)) = X̂2\ι2(X).

Thus f maps the infinite points of X̂1 to (in fact onto) the infinite points of X̂2.

(iv) The isomorphism classes of compactifications of X form a partially ordered set C(X)/∼=, where

[(X̂1, ι1)] ≥ [(X̂2, ι2)] if and only if HomC(X)((X̂1, ι1), (X̂2, ι2)) 6= ∅.

(v) A compactification (X̂, ι) ∈ C(X) is an initial (resp. terminal) object if and only if [(X̂, ι)] is a
greatest (resp. smallest) element of the partially ordered set (C(X)/∼=,≤).



7.8. ONE-POINT COMPACTIFICATION. LOCAL COMPACTNESS 169

Proof. (i) Any two morphisms (X̂1, ι1)
f,g−→ (X̂2, ι2) coincide on the dense subset ι1(X). Since X̂2 is

Hausdorff, Exercise 5.2.16(ii) gives f = g.

(ii) Let f : (X̂1, ι1)→ (X̂2, ι2) and g : (X̂2, ι2)→ (X̂1, ι1). Then g ◦ f coincides with idX̂1
on the

dense subset ι1(X), thus g ◦ f = idX̂1
. Similarly f ◦ g = idX̂2

.

(iii) If f ∈ HomC(X)((X̂1, ι1), (X̂2, ι2)) then f ◦ ι1 = ι2 implies that f(X̂1) contains ι2(X), which

is dense since X̂2 is a compactification. Since X̂1 is compact, so is f(X̂1), and since X̂2 is Hausdorff

f(X̂1) is closed, thus equal to X̂2. Now f is a quotient map by Proposition 7.4.11(iv). The remaining

claim f(X̂1\ι1(X)) = X̂2\ι2(X) follows from Lemma 7.8.8 below since ι1(X) ⊆ X̂1 is dense and
f � ι1(X) = ι2 ◦ ι−1

1 is a homeomorphism with image ι2(X).
(iv) The above results suggest that the isomorphism classes of compactifications of a space X

form a partially ordered set. Indeed, defining ≤ as stated, reflexivity and transity of ≤ are trivial,
whereas antisymmetry follows from (ii). The problem is that the compactifications of X definitely
do not form a set, but a proper class. So the question is whether at least the isomorphism classes of
compactifications of X form a set. This is indeed the case and can be proven in different ways. We
will later see that whenever X has a Hausdorff compactification, it has compactification βX such
that for any other compactification X̂ there is a morphism βX → X̂ in C(X) (thus βX is an initial

object in C(X)), thus X̂ is (isomorphic to) a quotient of βX. But the isomorphism classes of quotient
spaces of a fixed topological space X are in bijective correspondence to the equivalence relations on
X, and the latter form a set since an equivalence relation is a subset of X ×X. (Alternatively, one

can use the fact that if X̂ is a Hausdorff compactification of X, the cardinality of X̂ is bounded by
#X̂ ≤ #R(2#X). Also this is proven using βX.)

(v) By (i), all hom-sets in C(X) contain at most one element. Thus an object (X̂, ι) in C(X) is

initial if and only if Hom((X̂, ι), (X̂ ′, ι′)) 6= ∅ for all (X̂ ′, ι′). Thus if and only if [(X̂, ι)] ≥ [(X̂ ′, ι′)]

for all [(X̂ ′, ι′)], which is the definition of a greatest element. Similarly, (X̂, ι) is terminal if and only

if [(X̂, ι)] is smallest. �

Lemma 7.8.8 Let f : X → Y be continuous, where X is Hausdorff. Let A ⊆ X be a dense subset
such that f �A is a homeomorphism A→ f(A). Then f(X\A) ⊆ Y \f(A).

Proof. Assume the claim is false. Then there are a ∈ A, b ∈ X\A such that f(a) = f(b). Since X
is Hausdorff, there are disjoint open U 3 a, V 3 b. Then U ∩ A is an open neighborhood in A of a.
Since f �A is a homeomorphism, f(U ∩ A) ⊆ f(A) is an open neighborhood in f(A) of f(a). Thus
there is an open W ⊆ Y such that f(U ∩ A) = W ∩ f(A). Clearly W is an open neighborhood in
Y of f(a) = f(b). Let V ′ ⊆ X be open such that b ∈ V ′ ⊆ V . Since A ⊆ X is dense, V ′ ∩ A 6= ∅.
In view of V ′ ⊆ V ⊆ X\U and the injectivity of f �A, the non-empty set f(V ′ ∩ A) is disjoint from
f(U ∩ A) = W ∩ f(A). Thus f(V ′ ∩ A) ⊆ W cannot hold, clearly implying f(V ′) 6⊆ W . Since this
is the case whenever b ∈ V ′ ⊆ V , we have a contradiction with the continuity of f at b. �

The next result provides a criterion for determining when two Hausdorff compactifications of a
space X (assuming there are any) are isomorphic in C(X):

Proposition 7.8.9 Let (X̂1, ι1), (X̂2, ι2) be Hausdorff compactifications of the space X. Then (X̂1, ι1)

and (X̂2, ι2) are isomorphic as objects of C(X) if and only if for any two disjoint closed sets A,B ⊆ X
we have

ι1(A) ∩ ι1(B) = ∅ ⇔ ι2(A) ∩ ι2(B) = ∅. (7.8)

Proof. We have continuous maps f1 : ι2 ◦ ι−1
1 : ι1(X) → X̂2 and f2 : ι1 ◦ ι−1

2 : ι2(X) → X̂1 defined

on the dense subspaces ι1(X) ⊆ X̂1, ι2(X) ⊆ X̂2, respectively. In order to obtain an isomorphism
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X̂1 → X̂2 in C(X), we must construct continuous extensions f̂1, f̂2 of these maps to X̂1, X̂2. The

extensions will then automatically be mutually inverse since f̂2 ◦ f̂1 : X̂1 → X̂2 will be the identity
on the dense subset ι1(X1) ⊆ X̂1, and similarly for f̂1 ◦ f̂2.

By Theorem 7.4.20, f1 extends if and only if given disjoint closed sets A,B ∈ X̂2, we have

ι2(ι−1
1 (A)) ∩ ι2(ι−1

1 (B)) = ∅, and similarly for f2. But every closed A ∈ X̂1 is of the form ι1(A0)
for some closed A0 ⊆ X, namely A0 = ι−1

1 (A), and similarly for B. Thus f1 extends continuously
if and only if given closed A0, B0 ⊆ X such that ι1(A) ∩ ι1(B) = ∅, we have ι2(A) ∩ ι2(B) = ∅.
In the condition for extendability of f2, ι1 and ι2 are exchanged. Thus the condition (7.8) implies

X̂1
∼= X̂2 in C(X). Conversely, this isomorphism implies that f1 and f2 continuously extend (to

mutually inverse maps), so that (7.8) is satisfied. �

In Section 8.4.3 this result will be used to give a fairly intrinsic classification of Hausdorff com-
pactifications.

7.8.3 The one-point compactification X∞

In Exercise 7.8.3 we have seen that for every topological space (X, τ) there is a topology τ ′ on
X∞ = X ∪ {∞} making (X∞, τ

′) a compactification of (X, τ). This is conceptually interesting, but
τ ′ was not Hausdorff, whereas we are mostly interested in Hausdorff compactifications. The following
mainly serves to motivate Theorem 7.8.14 (but also provides a converse):

Lemma 7.8.10 Let (X, τ) be a topological space, X∞ = X ∪ {∞}, and assume that τ ′ is a topology
on X∞ such that (X∞, τ

′) is a Hausdorff compactification of (X, τ). Then

(i) X is Hausdorff and non-compact.

(ii) Every x ∈ X has a compact neighborhood (i.e. x ∈ U ⊆ K for some open U , compact K).

(iii) τ ′ = τ ∪ {X∞\K | K ⊆ X compact}. (We interpret subsets of X as subsets of X∞ in the
obvious way.)

Proof. (i) Hausdorffness of (X, τ) follows from hereditarity of this property and the fact that τ ′ �
X = τ . If X was compact then X ⊆ X∞ would be closed since X∞ is Hausdorff, contradicting the
requirement X = X∞.

(ii) If x ∈ X then by the Hausdorff property of τ ′ there are U, V ∈ τ ′ such that U ∩ V = ∅,
x ∈ U,∞ ∈ V . With K = X∞\V we have x ∈ U ⊆ K ⊆ X, where K is closed in X∞ and thus
compact. Thus K is a compact neighborhood of x.

(iii) By assumption τ ′ is T2, thus T1, thus {∞} is τ ′-closed, so that X = X∞\{∞} ∈ τ ′. By
assumption, (X, τ) ↪→ (X∞, τ

′) is an embedding, i.e. τ = τ ′ �X = {U ∩X | U ∈ τ ′}. This means for
every U ∈ τ that U ∈ τ ′ or U ∪{∞} ∈ τ ′. In the latter case, X ∈ τ ′ implies U = (U ∪{∞})∩X ∈ τ ′.
Thus τ ⊆ τ ′. It is obvious that if U ∈ τ ′ and U ⊆ X then U = U ∩X, thus U ∈ τ . This shows that
the τ ′-open sets not containing ∞ are precisely the elements of τ .

If∞ ∈ U ∈ τ ′ then X∞\U ⊆ X is closed in X∞, thus compact. Conversely, if K ⊆ X is compact
then K is closed as a subset of X∞ since the latter is Hausdorff, thus X∞\K ∈ τ ′. This proves that
the τ ′-open subsets containing ∞ are precisely the complements (in X∞) of the compact subsets of
X. �

Since we are mainly interested in Hausdorff compactifications, the condition in (ii) merits a name.
Spaces satisfying it are called locally compact.

Since we will meet many similar conditions later on, we consider the generalization right away:
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Definition 7.8.11 Let P be a property that a topological space can either have or not have, and let
(X, τ) be a topological space. Then we say that

• X is weakly locally P if every x ∈ X has a neighborhood that has property P .

• X is strongly locally P if given x ∈ U ∈ τ there is a neighborhood N of x such that N has
property P and N ⊆ U . (Thus every x ∈ X has a neighborhood base consisting of sets with
property P .)

In these notes, ‘locally P ’ always means ‘weakly locally P ’ unless specified otherwise.

Remark 7.8.12 We obviously have the implication ‘X is strongly locally P ’⇒ ‘X is weakly locally
P ’, but also ‘X is P ’ ⇒ ‘X is weakly locally P ’ (since X is a neighborhood of every x ∈ X). In
general, no other implications hold. (But for local compactness see Lemma 7.8.25.) 2

Example 7.8.13 Here are some examples of locally compact spaces:

1. Compact spaces. (Trivial.)

2. Discrete spaces. (A compact neighborhood for x ∈ X is {x}.)

3. Rn for any n ∈ N. Finite dimensional normed spaces. (By Theorems 7.7.48 and 7.7.51.)

4. In view of 3., topological spaces where every point has a neighborhood homeomorphic to Rn,
are locally compact. Such spaces are called locally Euclidean. (Much of modern mathemat-
ics revolves around manifolds, which are locally Euclidean spaces satisfying some additional
axioms.) 2

Lemma 7.8.10 does not imply that taking the τ ′ appearing in (iii) as the definition of a topology
will work, but this surely is not unreasonable to hope. While we are mainly interested in the case
where X is Hausdorff, we do not assume this to begin with. This forces us to include the requirement
‘closed’ in the following definition. It can be omitted when X is Hausdorff.

Theorem 7.8.14 Let (X, τ) be a topological space. Put X∞ = X ∪{∞} (where ∞ 6∈ X) and define
τ∞ ⊆ P (X∞) by

τ∞ = τ ∪ {X∞\K | K ⊆ X closed and compact}. (7.9)

Then

(i) (X∞, τ∞) is a topological space.

(ii) τ∞ �X = τ , thus X ↪→ X∞ is an embedding.

(iii) (X∞, τ∞) is compact.

(iv) X ⊆ X∞ is open and {∞} ⊆ X∞ is closed. Furthermore,
X ⊆ X∞ is closed ⇔ {∞} ⊆ X∞ is open ⇔ X∞ = X ⊕ {∞} ⇔ X is compact.

(v) X∞ is a compactification of X if and only if X is non-compact.

(vi) τ∞ is Hausdorff if and only if τ is Hausdorff and locally compact.
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Proof. (i) We have ∅ ∈ τ ⊆ τ∞. And K = ∅ is closed and compact, thus X∞ ∈ τ∞. Any family
U ⊆ τ∞ is of the form U1∪U2, where U1 ⊆ τ and U2 = {X∞\Ki}i∈I with Ki ⊆ X closed and compact.
Clearly

⋃
U1 ∈ τ and

⋃
U2 = X∞\

⋂
iKi. The intersection of any number of closed compact sets

is closed and compact by Exercise 7.4.7, thus
⋃
U2 ∈ τ∞. If U1 ∈ τ and U2 = X∞\K with K ⊆ X

closed compact, then U1 ∪ U2 = X∞\K ′, where K ′ = K ∩ (X\U1). Since the intersection of the
closed compact set K with the closed X\U1 is closed compact, we have U1 ∪ U2 ∈ τ∞.

Finally, consider U1 ∩ U2. The case U1, U2 ∈ τ is clear. Furthermore, (X∞\K1) ∩ (X∞\K2) =
X∞\(K1 ∪ K2), which is in τ∞ since the union of two closed compact sets is closed and compact
(Exercise 7.4.7). Finally, if U ∈ τ and K ⊆ X is closed and compact then U∩(X∞\K) = U∩(X\K),
which is in τ ⊆ τ∞ since X\K ∈ τ .

(ii) By construction, τ ⊆ τ∞, thus τ∞ � X ⊇ τ . Let K ⊆ X be closed and compact. Then
X ∩ (X∞\K) = X\K, which is in τ . Thus intersected with X, the ‘new’ open sets X∞\K in τ∞
become ‘old’ ones, so that τ∞ �X = τ .

(iii) Let U ⊆ τ∞ be an open cover of X∞. Since U must cover ∞, it contains at least one set of
the form U0 = X∞\K with K ⊆ X closed and compact. Now by (ii), {X ∩ U | U ∈ U} is a cover
of K by elements of τ , and by compactness of K there is a finite subfamily U0 ⊆ U still covering K.
Now U0 ∪ {U0} is a finite subcover of U , thus τ∞ is compact.

(iv) Since X ∈ τ , we have X ∈ τ∞, thus {∞} = X∞\X is closed. By definition of τ∞, we have
{∞} ∈ τ∞ if and only if X is compact. This in turn is equivalent to {∞} being clopen and thus a
direct summand, cf. Proposition 6.3.7.

(v) Statement (ii) means that the inclusion map ι∞ : X ↪→ X∞ is an embedding, and by (iv)
X ⊆ X∞ is non-closed, and thus dense, if and only if X is non-compact.

(vi) Assume X∞ is Hausdorff. Then the subspace X ⊆ X∞ is Hausdorff since this property is
hereditary. Furthermore ∞ can be separated from any x ∈ X by open sets. By definition of τ∞ this
means that there are U ∈ τ containing x and K ⊆ X closed and compact such that U∩(X∞\K) = ∅.
This is equivalent to x ∈ U ⊆ K, thus K is a compact neighborhood of x. Since the argument also
works the other way round, if X is Hausdorff and every x ∈ X has a compact neighborhood then
X∞ is Hausdorff. �

Definition 7.8.15 (X∞, τ∞) is called the one-point or Alexandrov compactification of (X, τ).

Remark 7.8.16 1. Strictly speaking, it is incorrect to call (X∞, τ∞) the one-point compactification
when X is already compact since then ∞ is an isolated point of X∞ and X = X 6= X∞. This slight
inconsistency will cause no harm.

2. In the context of the one-point compactification X∞, we will often suppress the embedding
map ι∞ from the notation and identify X with its image in X∞.

3. It should be clear that the space (N∞, τ) considered in Exercise 5.2.18 (cf. also Exercise 5.2.22)
is nothing but the one-point compactification of (N, τdisc). 2

Combining Lemma 7.8.10 and Theorem 7.8.14, we have:

Corollary 7.8.17 Given a topological space (X, τ), there exists a topology τ ′ on X∞ = X ∪ {∞}
making (X∞, τ

′) a Hausdorff compactification of (X, τ) if and only if (X, τ) is Hausdorff, locally
compact and non-compact. In this case, τ ′ = τ∞ is the unique such topology.

Exercise 7.8.18 Let (X∞, τ∞) be the one-point compactification of (X, τ). Prove:

(i) If A ⊆ X then A is closed in X∞ if and only if A ⊆ X is closed and compact.
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(ii) If A ⊆ X is closed then A ∪ {∞} ⊆ X∞ is closed.

(iii) The closure A ⊆ X∞ of A ⊆ X is given by

A =

{
ClX(A) if ClX(A) is compact
ClX(A) ∪ {∞} if ClX(A) is non− compact

Exercise 7.8.19 Let X be compact Hausdorff, x ∈ X, and let Y = X\{x}. Prove that Y is locally
compact Hausdorff and Y∞ ∼= X.

Exercise 7.8.20 (i) Prove that Sn\{x} ∼= Rn. (Use stereographic projection.)

(ii) Prove that (Rn)∞ ∼= Sn for all n ≥ 1.

(iii) Describe (by proving homeomorphisms to known spaces) the 1-point compactifications of
(0, 1), [0, 1), [0, 1].

Exercise 7.8.21 For I = [0, 1], n ∈ N, let ∂In = {x ∈ In | ∃i : xi ∈ {0, 1}} be the boundary of In,
and let ∼ be the equivalence relation on In defined by x ∼ y if x = y or {x, y} ⊆ ∂In. Call z ∈ In/∼
the image of ∂In under the quotient map p : In → In/∼. Prove:

(i) In/∼ is compact Hausdorff.

(ii) (In/∼)\{z} ∼= (0, 1)n ∼= Rn.

(iii) In/∼ ∼= (Rn)∞ ∼= Sn. (Use Exercise 7.8.19.)

Exercise 7.8.22 Determine the one-point compactifications of the long ray, the open long ray and
of the long line. Prove that the three spaces are pairwise non-homeomorphic.

Exercise 7.8.23 (i) Given a topological space X 6= ∅, prove that X∞ is connected if and only if
X has no compact direct summand.

(ii) Give an example of a non-connected space X 6= ∅ such that X∞ is connected.

(iii) Give an example of a non-connected space X 6= ∅ such that X∞ is non-connected.

7.8.4 Locally compact spaces

In this section we will devote some attention to the property of local compactness. It should be
emphasized that the existence of a Hausdorff one-point compactification is neither the only nor the
most important reason to study locally compact spaces. Actually more important are topologized
algebraic structures:

Definition 7.8.24 • A topological group is a group G equipped with a topology such that the
algebraic operations (g, h) 7→ gh and g 7→ g−1 are continuous.

• Topological fields are defined analogously.

• If F is a topological field, a topological vector space over F is a vector space V equipped with a
topology, such that V is a topological abelian group and the action of F on V is continuous (as
a map F× V → V ).
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Some aspects of topological groups and topological vector spaces will be discussed in the Appendices
D and G, respectively.

Local compactness of the above structures has many uses:

• Every locally compact group G carries a canonical positive measure µ, allowing to integrate
reasonable functions defined on G. (G is compact if and only if µ(G) <∞.) This area is called
abstract harmonic analysis. Cf. e.g. [142].

• Every locally compact abelian group A has a dual group Â, which is again locally compact

abelian. Â is compact (discrete) if and only if A is discrete (compact). For every A, one has

an isomorphism
̂̂
A ∼= A of topological groups, called Pontrjagin duality, cf. [142, Vol.1]. The

examples (̂R,+) = (R,+), (̂Z,+) ∼= (S1, ·) are the basis of classical Fourier analysis.

• The fields R and C are locally compact, but not compact. More generally, a local field is a
topological field whose topology is locally compact and non-discrete. Local fields are quite
well understood, cf. [294]. Those of characteristic zero (i.e. containing Q) are precisely the
finite field extensions of R and of the p-adic fields Qp for p prime. (While the only finite field
extension of R is C, the Qp’s have many.) The local fields of prime characteristic p are the
finite extensions of Fp((x)), the field of formal Laurent series with coefficients in the prime field
Fp. (Fp((x)) is the quotient field of the formal power series ring Fp[[x]].)

• Associated with every commutative Banach algebra B comes a certain locally compact Haus-
dorff space, the Gelfand spectrum of B. (The Gelfand spectrum of B is compact if and only if
the algebra B has a unit.) Cf. e.g. [220].

Some authors define local compactness by the strong form. Clearly this implies our definition.
On the other hand:

Lemma 7.8.25 If (X, τ) is (weakly) locally compact and Hausdorff then every point has a neighbor-
hood base of compact sets. (I.e., X is strongly locally compact.)

Proof. Since (X, τ) is locally compact Hausdorff, (X∞, τ∞) is compact Hausdorff. Now let x ∈ W ∈ τ .
In view of τ ⊆ τ∞, C := X∞\W is closed, thus compact in X∞. Applying Lemma 7.4.1 to X∞, x
and C, we obtain disjoint U, V ∈ τ∞ containing C and x, respectively. Since ∞ ∈ C ⊆ U , we have
∞ 6∈ V , thus V ∈ τ . On the other hand, ∞ ∈ U ∈ τ∞, thus K := X∞\U ⊆ X is compact. Thus
x ∈ V ⊆ K ⊆ W , so that K is a compact neighborhood K of x contained in W . �

In Exercise 7.4.5 we saw that disjoint compact subsets of a Hausdorff space X have disjoint open
neighborhoods. Statement (ii) below shows that the assumptions on the subsets can be weakened
when X is locally compact Hausdorff:

Proposition 7.8.26 Let X be locally compact Hausdorff.

(i) If K ⊆ U ⊆ X with K compact and U open then there is an open V such that V is compact
and K ⊆ V ⊆ V ⊆ U .

(ii) If K ⊆ X is compact, C ⊆ X is closed and C ∩ K = ∅ then there are open U, V such that
K ⊆ U, C ⊆ V and U ∩ V = ∅.
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Proof. (i) By Lemma 7.8.25, for every x ∈ K, we can find an open Vx such that Vx is compact and
x ∈ Vx ⊆ Vx ⊆ U . Now {Vx}x∈K covers K, thus by compactness we find x1, . . . , xn ∈ K such that
K ⊆ Vx1 ∪ · · · ∪ Vxn =: V . Now, V = Vx1 ∪ · · · ∪ Vxn = Vx1 ∪ · · · ∪ Vxn , which is compact (as a finite
union of compacts) and contained in U .

(ii) is equivalent to (i), as is seen taking C = X\U . �

How does local compactness behave w.r.t. the four ways of constructing new spaces out of old
defined in Section 6? We begin with subspaces.

Definition 7.8.27 A subset Y ⊆ (X, τ) is called locally closed if it is of the form Y = U ∩C where
U is open and C is closed.

Remark 7.8.28 The definition of local closedness may seem a strange, but it has its rôles outside
topology: In algebraic geometry, the subsets of projective space that are locally closed w.r.t. the
Zariski topology are precisely the quasi-projective varieties. 2

Exercise 7.8.29 Prove that Y ⊆ X is locally closed if and only if Y is an open subset of Y .

Exercise 7.8.30 Let X be locally compact Hausdorff. Prove:

(i) If Y ⊆ X is closed then Y is locally compact. (This does not need Hausdorffness of X.)

(ii) If Y ⊆ X is open then Y is locally compact.

(iii) If Y ⊆ X is locally closed then Y is locally compact.

Corollary 7.8.31 A topological space is locally compact Hausdorff if and only if it is homeomorphic
to an open subspace of a compact Hausdorff space.

Proof. Open subspaces of compact Hausdorff spaces are locally compact by Exercise 7.8.30(ii). Con-
versely, by Theorem 7.8.14(iv), every locally compact Hausdorff space X is (homeomorphic to) an
open subspace of its one-point compactification X∞, which is compact Hausdorff. �

Now we have nice analogues of Lemma 7.4.2 and Corollary 7.4.3:

Proposition 7.8.32 If X is Hausdorff and Y ⊆ X is locally compact then Y ⊆ X is locally closed.

Proof. (i) By Exercise 7.8.29, Y ⊆ X being locally closed is equivalent to Y being open in Y .
Replacing X by Y , we thus reduce the problem to proving that a dense locally compact subspace
Y ⊆ X of a Hausdorff space is open. Let y ∈ Y . Since (Y, τY ) is locally compact, there is an open
neighborhood U ∈ τY of y whose closure ClY (U) (in Y ) is compact. In view of the definition of τY
there is an open V ⊆ X such that U = Y ∩ V . Using Exercise 2.6.13(v), we have

ClY (U) = U ∩ Y = Y ∩ V ∩ Y.

Since ClY (U) is compact and X Hausdorff, it follows that ClY (U) = Y ∩ V ∩ Y is closed in X. This
closedness together with the trivial inclusion Y ∩ V ⊆ Y ∩ V ∩ Y implies Y ∩ V ⊆ Y ∩ V ∩ Y and
therefore Y ∩ V ⊆ Y . Now Lemma 2.7.10(i) gives V ⊆ Y ∩ V , so that we have V ⊆ Y . Since V ⊆ X
is open, this means that y is an interior point of Y . Since y ∈ Y was arbitrary, we conclude that Y
is open. �

Combining this with Exercise 7.8.30(iii) we have:
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Corollary 7.8.33 If (X, τ) is locally compact Hausdorff then a subspace Y ⊆ X is locally compact
if and only if Y ⊆ X is locally closed.

Theorem 7.8.34 A locally compact metric space (X, d) is completely metrizable.

Proof. Embed X into its completion X̂. By Proposition 7.8.32, X is locally closed, thus open in its
closure X = X̂ by Exercise 7.8.29. Now Proposition 3.4.18 gives that X is completely metrizable. �

Remark 7.8.35 1. Of course this does not mean that every locally compact metric space (X, d) is
already complete: The space (0, 1) with Euclidean metric d(x, y) = |x − y| is locally compact, but �

the metric d is not complete.
2. The converse of Theorem 7.8.34 is false: By Theorem 7.7.55 no infinite dimensional normed

space is locally compact, but there are many complete ones, e.g. `2(S) for infinite S. 2

Exercise 7.8.36 A direct sum
⊕

iXi is locally compact if and only if each Xi is locally compact.

The question whether local compactness is preserved by continuous maps is complicated in gen-
eral, but for open continuous maps it is staightforward:

Lemma 7.8.37 If X is locally compact and f : X → Y is continuous and open then f(X) ⊆ Y is
locally compact.

Proof. If x ∈ U ⊆ K ⊆ X with U open and K compact then f(x) ∈ f(U) ⊆ f(K). Now f(U) is
open (since f is open) and f(K) is compact (by continuity of f and Lemma 7.3.5). Thus f(K) is a
compact neighborhood of f(x), and f(X) is locally compact. �

Proposition 7.8.38 Let Xi 6= ∅ ∀i. Then
∏

i(Xi, τi) is locally compact if and only if each (Xi, τi)
is locally compact and at most finitely many Xi are non-compact.

Proof. Let X, Y be locally compact and x ∈ X, y ∈ Y . Let N ⊆ X, M ⊆ Y be compact neighbor-
hoods of x, y respectively. Then N ×M is a compact neighborhood of x× y. Thus a finite product
of locally compact spaces is locally compact. In particular, the product of a locally compact space
with a compact space is locally compact, and since the product of any number of compact spaces is
compact by Tychonov’s theorem, the ‘if’ direction is proven.

Now assume X =
∏

iXi is locally compact. The projections pi :
∏

kXk → Xi are continuous and
open (Proposition 6.5.8). Thus eachXi is locally compact by Lemma 7.8.37. Now let x ∈ U ⊆ K ⊆ X
with U open and K compact. By definition of the product topology, we have x ∈ V ⊆ U , where
V = p−1

i1
(U1) ∩ · · · ∩ p−1

in
(Un) with Uk ∈ τik . Thus

K ⊇ p−1
i1

(U1) ∩ · · · ∩ p−1
in

(Un) =
∏

j 6∈{i1,...,in}

Xj ×
n∏
k=1

Uk.

Thus for j 6∈ {i1, . . . , in} we have pj(K) ⊇ pj(U) = Xj and thus pj(K) = Xj. Since K is compact
and pj continuous, Xj is compact. Thus with the (possible) exception of Xi1 , . . . , Xin all factors are
compact. �

Remark 7.8.39 Thus with I = [0, 1], the space In × Rm is locally compact if and only if m < ∞,
whereas n can be any cardinal number n. It is therefore not quite correct to think of locally compact �

spaces as ‘finite dimensional’. At best they are ‘finite dimensional modulo compact factors’, but
this is difficult to make precise. (But a Banach space is locally compact if and only if it is finite
dimensional. Cf. e.g. [255, Appendix B].) 2
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Remark 7.8.40 1. We now have clarified completely the behavior of local compactness w.r.t. sums,
products, subspaces (the latter only in the Hausdorff case) and under open maps. In particular,
quotients of locally compact spaces by open equivalence relations are locally compact. When f is
not open, f(X) need not be locally compact. In particular, images under closed maps need not be
locally compact. But in Theorem 7.8.72, that the image f(X) of a locally compact Hausdorff space
X is locally compact Hausdorff when f is continuous, closed and proper. (Properness will be defined
very soon.)

2. The above implies that quotients of locally compact spaces by arbitrary equivalence relations
are a proper generalization of locally compact spaces, called ‘k-spaces’ or ‘compactly generated
spaces’. Cf. Section 7.9, in particular Proposition 7.9.14. 2

Exercise 7.8.41 Let X, Y be Hausdorff spaces, where X is compact and Y locally compact. Let ∼
be the equivalence relation on X×Y∞ that identifies all points (x,∞) with each other, doing nothing
else.

(i) Give examples for X and Y with these properties such that (X × Y )∞, the 1-point compacti-
fication of X × Y is not homeomorphic to X × Y∞.

(ii) Prove that (X × Y∞)/∼ is homeomorphic to (X × Y )∞.

(iii) Prove that R2\{(0, 0)} is homeomorphic to S1 × R.

(iv) Use (i) and (ii) to give a description of (R2\{(0, 0)})∞

(v) Make an instructive drawing of the situation in (v).

Exercise 7.8.42 Let X, Y be locally compact Hausdorff spaces. Prove that (X × Y )∞ is homeo-
morphic to a quotient space of X∞ × Y∞. Hint: Use the obvious surjective map

In the context of metrization, we will be interested in whether (X∞, τ∞) is second countable. In
order to answer this in Exercise 7.8.45, we need some preparations, which will also be crucial in the
discussion of proper metric spaces in Section 7.8.9.

Definition 7.8.43 A topological space X is called . . .

• σ-compact if it admits a countable compact cover, i.e. a countable family {Ki}i∈N of compact
subsets such that

⋃
iKi = X.

• hemicompact if there are compact sets {Ki}i∈N satisfying
⋃
i∈NKi = X and such that for every

compact K ⊆ X there is an n ∈ N such that K ⊆ Kn.

Exercise 7.8.44 Let X be a topological space. Consider the following statements:

(α) There are open sets {Ui}i∈N such that each Ui is compact, Ui ⊆ Ui+1 ∀i, and
⋃
i∈N Ui = X.

(β) X is hemicompact.

(γ) X is σ-compact.

(δ) X is Lindelöf.

Prove:
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(i) (α)⇒ locally compact (weakly).

(ii) (α)⇒ (β)⇒ (γ)⇒ (δ).

(iii) For X locally compact, (δ)⇒ (γ).

(iv) For X locally compact Hausdorff, (δ)⇒ (α).

Thus for X locally compact Hausdorff, the four properties are equivalent.

Exercise 7.8.45 Let X be any space and X∞ its one-point compactification.

(i) Prove that X∞ is second countable if and only if X is second countable and ∞ ∈ X∞ has a
countable open neighborhood base.

(ii) Use (i) and Exercise 7.8.44 to prove that if X is locally compact Hausdorff and second countable
then X∞ is second countable.

The following will not be used in the sequel, but it nicely complements Exercise 7.8.44, and the
diagonal argument used in the proof is interesting:

Proposition 7.8.46 Every first countable hemicompact Hausdorff space is locally compact. (Thus
in particular hemicompact metrizable spaces are locally compact!)

Proof. By hemicompactness we have compact sets {Kn}n∈N such that
⋃
nKn = X and every compact

K is contained in some Kn. Replacing Kn by
⋃n
k=1 Kk if necessary we may assume K1 ⊆ K2 ⊆ · · · .

Let x ∈ X and U1 ⊇ U2 ⊇ · · · an open neighborhood base for x. Suppose that Ui is non-compact
for all i ∈ N. Since X is Hausdorff, each Ki is closed. Thereforewe have Ui 6⊆ Ki ∀i (since otherwise
Ui ⊆ Ki = Ki would be compact). Thus we can choose an xi ∈ Ui\Ki for each i ∈ N. Clearly xi → x.
This implies that the set K = {x, x1, x2, . . .} is compact. (Cf. Exercise 7.3.7.) Thus K ⊆ Kn for
some n, and in particular xn ∈ Kn. This contradicts the choice of xn ∈ Un\Kn. Thus some Ui is
compact and therefore a compact neighborhood of x. �

7.8.5 Continuous extensions of f : X → Y to X∞. Proper maps

The developments of this section are motivated by the following question: Given a continuous function
f : X → Y , is there a continuous extension f̂ : X∞ → Y∞? And if so, is it unique? We notice the
following:

• If X is compact then any extension f̂ : X∞ → Y is continuous. (This follows from the fact, cf.
Theorem 7.8.14(iv), that X∞ = X ⊕ {∞}, thus ∞ is an isolated point.)

• If X is non-compact and Y is Hausdorff then there is at most one continuous extension f̂ :
X∞ → Y of f . (This follows from density of X in X∞ and Exercise 6.5.18(iii).)

• If f : X → Y is continuous, then so is f : X → Y ↪→ Y∞. Thus if X is non-compact and Y is
locally compact Hausdorff, there is at most one continuous extension f̂ : X∞ → Y∞.

Concerning the difficult problem of existence of continuous extensions, we have the powerful result
Theorem 7.4.20. But the present situation being simpler since X∞\X consists only of one point, we
prefer an elementary direct approach.
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Lemma 7.8.47 Let X be non-compact, f : X → Y continuous and y0 ∈ Y . Define the extension
f̂ : X∞ → Y by f̂(∞) = y0. Then the following are equivalent:

(i) f̂ is continuous.

(ii) X\f−1(U) is compact whenever y0 ∈ U ∈ τY .

(iii) For every open U ⊆ Y containing y0 there is a compact K ⊆ X such that f(X\K) ⊆ U .

Proof. f̂ is continuous if and only if f̂−1(U) ⊆ X∞ is open for every open U ⊆ Y . If y0 6∈ U then

f̂−1(U) = f−1(U) ⊆ X, which is open by continuity of f . If y0 ∈ U then f̂−1(U) = f−1(U) ∪ {∞}.
By definition of τ∞, this is open if and only if X∞\f̂−1(U) = K, where K ⊆ X is closed and compact.

Since X∞\f̂−1(U) = X\f−1(U), we find that f̂ is continuous if and only if K = X\f−1(U) is closed
and compact whenever y0 ∈ U ∈ τ . Closedness being automatic by continuity of f , we have (i)⇔(ii).
Now, if K = X\f−1(U) is compact then f−1(U) = X\K, which implies f(X\K) ⊆ f(f−1(U)) ⊆ U ,
i.e. (iii). If, conversely, there is a compact K ′ such that f(X\K ′) ⊆ U then f−1(U) ⊇ X\K ′, thus
X\f−1(U) ⊆ K ′, and as a closed subset of the compact K ′, this is compact. Thus (ii) holds. �

Lemma 7.8.48 Let f : X → Y be continuous. Then the extension f̂ : X∞ → Y∞ satisfying
f̂(∞X) =∞Y is continuous if and only if f−1(K) ⊆ X is compact for every closed compact K ⊆ Y .

Proof. Let f ′ be the composite X
f→ Y

ι→ Y∞. f ′ clearly is continuous. Applying Lemma 7.8.48 to
f ′ : X → Y∞ and y0 = ∞Y we find that f̂ = f̂ ′ : X∞ → Y∞ is continuous if and only if X\f ′−1(U)
is compact whenever ∞Y ∈ U ∈ τY∞ . Such a U is of the form Y∞\K, where K ⊆ Y is compact.

Now X\f ′−1(Y∞\K) = X\(X\f−1(K)) = f−1(K). We thus find that f̂ is continuous if and only if
f−1(K) ⊆ X is compact for every closed and compact K ⊆ Y . �

Remark 7.8.49 If X is compact, the assumptions in both lemmas are trivially satisfied. This again
shows that f̂(∞X) is arbitrary when X is compact. 2

The above results motivate the following definitions:

Definition 7.8.50 Let f : X → Y be a function.

(i) We say that f tends to y0 ∈ Y at infinity if for every open U ⊆ Y containing y0 there is a
compact K ⊆ X such that f(X\K) ⊆ U .

(ii) f is called proper if f−1(K) ⊆ X is compact for every compact K ⊆ Y .

Remark 7.8.51 1. Note that we wrote ‘compact’ instead of ‘closed compact’.
2. Some authors include continuity and/or closedness in the definition of proper functions, but

we don’t. Others write ‘perfect’ instead of ‘proper’ or require only compactness of f−1(y) for every
y ∈ Y . Cf. Section 7.8.8 for some implications between the various definitions.

3. If f : X → Y and g : Y → Z are proper, it is obvious that g ◦ f : X → Z is proper.
4. It is clear that homeomorphisms are proper.
5. A strange feature of the definition is that for compact X, every f : X → Y tends to y0 ∈ Y at

infinity irrespective of y0. 2

Exercise 7.8.52 Let f : X → Y be a function (not a priori continuous) between topological spaces.
Prove the following statements:
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(i) If X is Hausdorff, Y is compact and f is proper then f is continuous.

(ii) If X is compact, Y is Hausdorff and f is continuous then f is proper.

(iii) If X, Y are compact Hausdorff then f is continuous if and only if it is proper.

Using the terminology of Definition 7.8.50, we can reformulate our results as follows:

Corollary 7.8.53 Let f : X → Y a function. Then

(i) For the extension f̂ : X∞ → Y∞ satisfying f̂(∞X) =∞Y we have the implications

f continuous and proper ⇒ f̂ continuous ⇒ f continuous.

If Y is Hausdorff then f̂ is continuous ⇔ f is continuous and proper.

(ii) If X, Y are Hausdorff and f : X → Y is continuous, a continuous extension f̂ : X∞ → Y∞ of
f exists if and only if f is proper or tends to y0 ∈ Y at infinity. In these cases we must define
f̂(∞X) =∞Y or f̂(∞X) = y0, respectively.

Proof. All this follows immediately from Lemmas 7.8.47, 7.8.48 once we note that for a subset of a
Hausdorff space ‘compact’ and ‘closed compact’ are equivalent. �

Exercise 7.8.54 Let X be non-compact, Y locally compact Hausdorff and g ∈ C(X, Y ). Give an
alternative proof of Corollary 7.8.53(ii) by using Theorem 7.4.20.

Definition 7.8.55 A net {xι}ι∈I , in a topological space ‘tends to infinity’ or ‘leaves every compact
set’, ‘xι →∞’ if for every compact K ⊆ X there is ι0 ∈ I such that ι ≥ ι0 ⇒ xι 6∈ K.

(This terminology does not imply that there is an ‘infinite point’, as in X∞!) Nets provide a
useful perspective on the notions of properness and tending to y0 at infinity:

Exercise 7.8.56 Let X, Y be topological spaces, f : X → Y a function and {xι} a net in X. Prove:

(i) If xι →∞ (in the sense of Definition 7.8.55) then ι∞(xι) converges to the point ∞ ∈ X∞.

(i’) The converse of (i) holds when X is Hausdorff.

(ii) Let f : X → Y be continuous. If f tends to y0 ∈ Y at infinity (in the sense of Definition
7.8.50(i)) then f(xι)→ y0 whenever xι →∞ (in the sense of Definition 7.8.55).

(ii’) If X is Hausdorff then the converse of (ii) holds. Hint: Use f̂ : X∞ → Y with f̂(∞) = y0.

(iii) If f : X → Y is proper then f(xι)→∞Y whenever xι →∞X .

(iii’) If f is continuous and X, Y are Hausdorff then the converse of (iii) holds.

Hint: Use (i,i’) to prove continuity of the extension f̂ : X∞ → Y∞ with f̂(∞X) =∞Y .
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7.8.6 Functoriality and universal property of X∞

Definition 7.8.57 By T OP we denote the category consisting of topological spaces and continu-
ous maps, by T OPc, T OPlc, T OPcH , T OPlcH the full subcategories of compact, respectively locally
compact, (Hausdorff) spaces. A superscript p (as in T OPp) means that we consider the (non-full)
subcategory having only proper maps.

Corollary 7.8.58 One-point compactification X 7→ X∞ of spaces and extension f 7→ f̂ by f̂(∞) =
∞ of proper maps define a functor F : T OPp → T OPc. The latter restricts to a functor T OPplcH →
T OPcH .

Proof. All that remains to be verified is that F (idX) = idX∞ and F (g ◦ f) = F (g) ◦ F (f) for proper

continuous maps X
f→ Y

g→ Z, but both statements are entirely obvious. �

As we saw in Example 7.8.4, a space may have many different compactifications. It is intuitively
is clear that the 1-point compactification X∞ is minimal in that it adds only one point. The following
results make this precise:

Theorem 7.8.59 Let (X, τ) be locally compact Hausdorff and non-compact. Let (X̂, τ̂) be any Haus-

dorff compactification of X with embedding ι : X ↪→ X̂. Define a function f : X̂ → X∞ to the
one-point compactification (X∞, τ∞) by

f(z) =

{
ι∞(x) if z = ι(x), x ∈ X
∞ if z ∈ X̂\ι(X)

Then f is continuous, and the diagram

X
ι - X̂

X∞

f

?

ι∞

-

commutes. Furthermore, f is the only function X̂ → X∞ with these two properties.

Proof. Commutativity of the diagram means f(ι(x)) = ι∞(x) ∀x ∈ X, which is true by the very
definition of f .

We may and will identify X with its images ι(X) ⊆ X̂ and ι∞(X) ⊆ X∞. Since ι is an embedding,

X ⊆ X̂ is locally compact. Since X̂ is Hausdorff, Proposition 7.8.32 implies that X ⊆ X̂ is locally
closed, which by Exercise 7.8.29 is equivalent to X being open in X. Together with X = X̂, which
holds since X̂ is a compactification of X, this gives X ∈ τ̂ . As in the proof of Lemma 7.8.10(i) this
implies τ = τ̂ �X = {U ∩X | U ∈ τ̂} ⊆ τ̂ .

Now if U ∈ τ ⊆ τ∞ then f−1(U) = U ⊆ X̂, since the ‘infinite’ points of X̂, i.e. the set X̂\X, are
mapped to ∞ ∈ X∞. In view of τ ⊆ τ̂ , we have f−1(U) ∈ τ̂ . On the other hand, if U ∈ τ∞ is of the
form X∞\K with K ⊆ X compact, then

f−1(U) = X̂\f−1(K) = X̂\K

is open since K ⊆ X̂ is compact and thus closed, X̂ being Hausdorff. Thus f is continuous.
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It remains to prove the uniqueness claim. So let g ∈ C(X̂,X∞) satisfying g ◦ ι = ι∞. Then g

coincides with the function f defined above on X, which is dense a dense subset of X̂ by definition of
a compactification. Since X is locally compact Hausdorff, X∞ is Hausdorff. Now Exercise 6.5.18(iii)
implies f = g. �

Theorem 7.8.59 is called the universal property of X∞. The latter has a concise formulation in
categorical language, and also a converse:

Corollary 7.8.60 (i) If X is non-compact locally compact Hausdorff, the one-point compactifica-
tion X∞ is a terminal object in the category C(X) of Hausdorff compactifications.

(ii) If the category C(X) of Hausdorff compactifications of X has a terminal object (X̂, ι) then

either X is compact and X̂ ∼= X, or X is non-compact locally compact Hausdorff and (X̂, ι) ∼=
(X∞, ι∞).

Proof. (i) By Theorem 7.8.59, there is a unique f ∈ HomC(X)((Y, ι), (X∞, ι∞)) for every (Y, ι) ∈ C(X).
(ii) If X is compact then all objects of C(X) are isomorphic to X, which then is also terminal.

Thus assume X to be non-compact. Let (X̂, ι) ∈ C(X). If X̂\ι(X) has more than one element,

choose two x, y ∈ X̂\ι(X) and define X̂ ′ = X̂/{x, y} with quotient map p : X̂ → X̂ ′. Then X̂ ′ is

compact and Hausdorff (by Exercise 6.4.16), so that (X̂ ′, p◦ ι) is a compactification of X and strictly

smaller than (X̂, ι) w.r.t. the order ≤ on (C(X)/∼=,≤). Thus [(X̂, ι)] is not a smallest element of

(C(X)/ ∼=,≤), thus (X̂, ι) not terminal in C(X) by Proposition 7.8.7(v). Thus a terminal object

(X̂, ι) has only one infinite point. Since X̂ by assumption is Hausdorff, Lemma 7.8.10 gives that X

is locally compact Hausdorff and (X̂, ι) ∼= (X∞, ι∞). �

Remark 7.8.61 1. Theorem 7.8.59 generalizes the uniqueness result of Theorem 7.8.14(vii) and
implies the latter easily: If τ ′ is a topology on X∞ = X∪{∞} such that X ↪→ (X∞, τ

′) is a Hausdorff
compactification, then the map f : (X∞, τ

′) → (X∞, τ∞) from Theorem 7.8.59 is a continuous
bijection between compact Hausdorff spaces and therefore a homeomorphism. Thus τ ′ = τ∞.

2. By Corollary 7.8.60, the locally compact Hausdorff spaces are characterized (among the non-
compact Hausdorff spaces) by the property of having a smallest (in the sense of being terminal)
compactification. We will see later that every space X that admits a Hausdorff compactification has
a compactification βX that is ‘biggest’ in the sense of being an initial object in C(X). In view of
Proposition 7.8.7(ii), every compactification of X is a quotient of the maximal one, which makes βX
much more important than X∞.

3. Assume that X is non-compact and admits exactly one Hausdorff compactification X̂ (up to

isomorphism in C(X)). Then the unique compactification X̂ must be the one-point compactification.
(Otherwise the argument in the proof of the corollary shows that we can obtain a different compact-

ification X̂ ′ by identifying two points in X̂\X, contradicting the uniqueness of X̂.) Thus X must be
locally compact, but since this does not imply uniqueness of compactifications, X must satisfy an
additional condition. This will be studied later, cf. Corollary 8.3.40. 2

7.8.7 C0(X,F)

Definition 7.8.62 Let X be a topological space. With F ∈ {R,C} we put

C0(X,F) = {f ∈ C(X,F) | f tends to zero at infinity}.
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It is clear that f tends to zero at infinity (in the sense of Definition 7.8.50) if and only if for every
ε > 0 there is a compact K ⊆ X such that x ∈ X\K ⇒ |f(x)| < ε. (This is the more common
definition.)

Usually, C0(X,F) is considered only for locally compact Hausdorff X, since they have many
compact subsets, but nothing in the definition enforces this. For example, we have

Lemma 7.8.63 Let X̂ be any Hausdorff compactification of X and f ∈ C(X̂,F). If f �X ∈ C0(X,F)

then f vanishes on X̂\X.

Proof. Let x ∈ X̂\X. Since X ⊆ X̂ is dense, there is a net {xι} ⊆ X such that xι → x. For every
ε > 0 there is a compact Kε ⊆ X such that |f(x)| < ε for all x ∈ X\Kε. Since xι → x 6∈ Kε ⊆ X
and Kε is closed, the net xι ultimately leaves Kε, thus |f(xι)| < ε ultimately. Since this holds for all
ε > 0, we have f(x) = lim f(xι) = 0 by continuity. �

In the case of locally compact Hausdorff X, the lemma implies that any continuous extension of
f ∈ C0(X,F) to X∞ must vanish at ∞.

Exercise 7.8.64 Let X be locally compact Hausdorff. Writing C0(X) ≡ C0(X,R), prove:

(i) The following are equivalent: (α) X is compact. (β) C(X) = C0(X). (γ) The non-zero constant
functions are contained in C0(X).

(ii) If g ∈ C(X∞) and g(∞) = 0 then g �X ∈ C0(X).

(iii) If f : X → R is any function and f̂ : X∞ → R is defined by f̂ �X = f and f̂(∞) = 0 then

f̂ ∈ C(X∞) if and only if f ∈ C0(X). (Use Lemma 7.8.47.)

(iv) The maps

α : C0(X)⊕ R → C(X∞), (f, c) 7→ f̂ + c1
β : C(X∞) → C0(X)⊕ R, g 7→ (g − g(∞)1, g(∞))

are mutually inverse homomorphisms of R-algebras.

Remark 7.8.65 Given an algebra A over some field k, defineA1 = A⊕k. TurnA1 into a vector space
by coordinatewise addition and multiplication by elements of k. Then (a, λ)(b, µ) = (ab, λb+µa, λµ)
is an associative multiplication on A1 that distributes over +. Thus A1 is a K-algebra, and it has
(0, 1) as unit. A1 is called the (minimal) unitization of A. Now the above exercise has the following
interpretation:

When X is locally compact Hausdorff, C(X∞) is (isomorphic to) the unitization of C0(X).

Note that unitization A 7→ A1 is a functor: If δ : A → B is an algebra homomorphism then
δ1 : (a, λ) 7→ (δ(a), λ) is a unital algebra homomorphism extending δ. 2

Exercise 7.8.66 (i) Let X, Y be locally compact Hausdorff and f : X → Y continuous and
proper. Prove that g 7→ g ◦ f defines a map C0(Y,C)→ C0(X,C) that is linear and an algebra
homomorphism.

(ii) Prove that the assignments F (X) = C0(X) and F (f) : g 7→ g ◦f define a contravariant functor
F : T OPplcH → CAlgC, where CAlgC is the category of commutative algebras over C and
algebra homomorphisms.
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(iii) If ∞ : T OPplcH → T OPcH is the functor of one-point compactification and U : A→ A1 is the
unitization functor from Remark 7.8.65, prove that the diagram

T OPplcH
∞- T OPcH

CommAlgC

F

?

U
- CommAlgC

F

?

of functors commutes.

7.8.8 Further applications of properness

We now consider generalizations of several results from Section 7.4.2, beginning with a locally com-
pact version of Proposition 7.4.11:

Proposition 7.8.67 If X is an arbitrary space, Y is locally compact Hausdorff and f : X → Y is
continuous and proper then f is closed.

Proof. By Corollary 7.8.53, the extension f̂ : X∞ → Y∞ with f̂(∞X) =∞Y is continuous. Since X∞
is compact and Y∞ is Hausdorff, f̂ is closed by Proposition 7.4.11. If C ⊆ X is closed then C∪{∞} ⊆
X∞ is closed by Exercise 7.8.18, so that f̂(C∪{∞}) ⊆ Y∞ is closed. Now Y∞\f̂(C∪{∞}) = Y \f(C)
is open in Y∞ and thus (since it does not contain ∞Y ) in Y , thus f(C) ⊆ Y is closed. �

Corollary 7.8.68 If X is an arbitrary space, Y is locally compact Hausdorff and f : X → Y is
bijective, continuous and proper then f is a homeomorphism.

Proof. By Proposition 7.8.67, f is closed. Now apply Lemma 5.2.26. �

Cf. Exercises 7.8.76 and 7.8.77 for another proof and an application.

The following locally compact version of Proposition 7.4.11(iii) is an important ingredient in the
proof of the Whitney embedding theorem for non-compact manifolds:

Proposition 7.8.69 Let X be arbitrary, Y locally compact Hausdorff and f : X → Y continuous
and injective. Then X is Hausdorff, and the following are equivalent:

(i) f is proper.

(ii) f is closed.

(iii) f(X) is closed and f : X → Y is an embedding.

If one (thus all) of these statements holds then X is locally compact.

Proof. Hausdorffness of X is just Exercise 5.2.15.
(i)⇒(ii): This is Proposition 7.8.67.
(ii)⇒(iii): f being closed, f(X) ⊆ Y is closed. That f is an embedding follows from Lemma

6.2.9(ii).
(iii)⇒(i): Let K ⊆ Y be compact. Since f(X) is closed, K ∩ f(X) is compact by Exercise

7.4.7(ii), thus f−1(K) = f−1(K ∩ f(X)) is compact since f : X → f(X) is a homeomorphism.
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As to the last claim, assume (iii) holds. If x ∈ X, let f(x) ∈ U ⊆ K ⊆ Y with U open and
K compact. Then x ∈ f−1(U) ⊆ f−1(K), where f−1(U) is open by continuity of f and f−1(K) is
compact by properness. Thus X is locally compact. �

Remark 7.8.70 The above proposition provides a necessary and sufficient condition for a continuous
injection of locally compact Hausdorff spaces to be a closed embedding, i.e. an embedding with closed
image. There clearly are non-closed embeddings, e.g. X ↪→ X∞ for non-compact X. 2

In Propositions 7.8.67 and 7.8.69, Y was assumed to be Hausdorff. If we want to prove that f(X)
is Hausdorff, we cannot use Proposition 7.8.67 and must assume closedness of f instead. Recall,
however, from Example 6.4.19 that continuous images of Hausdorff spaces can fail to be Hausdorff
even if the map is closed. This cannot happen if the map is also proper:

Proposition 7.8.71 Let X be Hausdorff and f : X → Y surjective, closed and proper. Then Y is
Hausdorff. (Continuity is not needed here.)

Proof. Let x, y ∈ Y with x 6= y. Since f is proper and singletons are compact, the disjoint subsets
C = f−1(x), D = f−1(y) of X are compact, thus closed since X is Hausdorff. Now by Exercise
7.4.5, there are disjoint open U, V ⊆ X such that C ⊆ U, D ⊆ V . Since X\U, X\V are closed,
f(X\U), f(X\V ) ⊆ Y are closed by closedness of f . Consequentially, Y \f(X\U), Y \f(X\V ) ⊆ Y
are open. Furthermore, f−1(x) ⊆ U , thus x 6∈ f(X\U), and therefore x ∈ Y \f(X\U) =: U ′. In the
same way, one obtains y ∈ Y \f(X\V ) =: V ′. Finally,

[Y \f(X\U)] ∩ [Y \f(X\V )] = Y \[f(X\U) ∪ f(X\V )] = Y \[f((X\U) ∪ (X\V ))]

= Y \f(X\(U ∩ V )) = Y \f(X) = Y \Y = ∅,

where we used surjectivity, i.e. f(X) = Y . Thus U ′, V ′ ⊆ Y are disjoint open neighborhoods of x
and y, respectively, and Y is Hausdorff. �

Theorem 7.8.72 Let X be locally compact Hausdorff and f : X → Y surjective, continuous closed
and proper. Then Y is locally compact Hausdorff (and f is a quotient map).

Proof. The claim in brackets just is Lemma 6.4.5. By Proposition 7.8.71, Y is Hausdorff. If y ∈ Y ,
properness of f implies that K = f−1(y) ⊆ X is compact. Applying Proposition 7.8.26(i) with
U = X, we obtain an open V ⊆ X such that K ⊆ V and V is compact. As in the proof of
Proposition 7.8.71 we see that W = Y \f(X\V ) is an open neighborhood of y. Furthermore, W =
Y \f(X\V ) ⊆ Y \f(X\V ) ⊆ f(V ), where the first inclusion is obvious and the second is due to
surjectivity of f . Since f(V ) is compact as continuous image of the compact set V we see that W is
compact, and thus a compact neighborhood of y ∈ Y . �

Notice that the two preceding results use properness only via compactness of f−1(y). Together
with closedness, this weaker assumption actually implies properness:

Proposition 7.8.73 If f : X → Y is closed and f−1(y) ⊆ X is compact for every y ∈ Y , then f is
proper.

Proof. LetK ⊆ Y be compact, and let {Ui}i∈I be a family of open sets inX such that
⋃
i Ui ⊇ f−1(K).

Let J be the family of finite subsets of I, and for J ∈ J let UJ =
⋃
j∈J Uj. In view of Lemma 7.3.2,

we need to find J ∈ J such that f−1(K) ⊆ UJ . Since {Ui} is an open cover of f−1(y), which is
compact by assumption, for each y ∈ Y , there is Jy ∈ J such f−1(y) ⊆ UJy . Since X\UJ and f are
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closed, f(X\UJ) is closed, thus VJ = Y \f(X\UJ) is open. By definition, y 6∈ f(X\UJy), thus y ∈ VJy .
Therefore, {VJ}J∈J is an open cover of K, and by compactness of K, there are J1, . . . , Jn ∈ J such
that K ⊆ VJ1 ∪ · · · ∪ VJn . Defining S = J1 ∪ · · · ∪ Jn, we have S ∈ J (as a finite union of finite sets).
Now,

f−1(K) ⊆
n⋃
k=1

f−1(VJk) =
n⋃
k=1

f−1(Y \f(X\UJk)) =
n⋃
k=1

(X\f−1(f(X\UJk)))

⊆
n⋃
k=1

(X\(X\UJk)) =
n⋃
k=1

UJk = US,

and we are done. (We have used that f−1(f(X\UJk)) ⊇ X\UJk .) �

Here is a negative result concerning the existence of continuous extensions:

Lemma 7.8.74 Let X be Hausdorff, A ( X dense and f : A → Y continuous, closed and proper.
Then f admits no continuous extension f̂ : X → Y .

Proof. Assume that a continuous extension f̂ : X → Y does exist. Pick x ∈ X\A and replace X

by A ∪ {x}. Then A = X still holds. Now f−1(f̂(x)) ⊆ A is compact by properness of f and
does not contain x. Then by Lemma 7.4.1 there are disjoint open subsets U, V of X such that
x ∈ U and f−1(f̂(x)) ⊆ V . In view of x 6∈ V , we have f̂−1(f(A\V )) = f−1(f(A\V )) ⊆ A. Since
A\V = A ∩ (X\V ) is closed in A, we have that f(A\V ) ⊆ Y is closed (by closedness of f), thus

f̂−1(f(A\V )) ⊆ X is closed (by continuity of f̂). Together with the trivial A\V ⊆ f̂−1(f(A\V )),

this implies A\V ⊆ f̂−1(f(A\V )) ⊆ A (closure in X). But now we have

x ∈ U ⊆ X\V = A ∩X\V ⊆ A ∩ (X\V ) = A\V ⊆ A,

thus x ∈ A, contradicting our choice of x ∈ X\A. �

Remark 7.8.75 At first sight, this lemma contradicts Lemma 7.8.48 in the locally compact situa-
tion, according to which an extension of f : X → Y to X∞ does exist when f is proper. But if X
is non-compact, Y locally compact Hausdorff and f : X → Y continuous and proper, Lemma 7.8.48
and the discussion about uniquess preceding it say that the extension f̂ : X∞ → Y∞ with f̂(∞) =∞
is the only continuous extension. Thus in particular, there is no extension that takes values in Y ,
consistent with Lemma 7.8.74 asserts. 2

Exercise 7.8.76 There is a short direct proof of Corollary 7.8.68, not using the one-point compact-
ification. Find it.

Exercise 7.8.77 (Roots of complex polynomials depend continuously on coefficients) If
z1, . . . , zn are complex numbers (not necessarily distinct) then

P : z 7→
n∏
i=1

(z − zi) = zn + an−1z
n−1 + · · ·+ a1z + a0 =: Pa(z)

is a monic polynomial of degree n. This defines a map σ0 : Cn → Cn : (z1, . . . , zn) 7→ (a0, . . . , an−1).
Let Sn act on Cn by permutations: π(z1, . . . , zn) = (zπ−1(1), . . . , zπ−1(n)). Then clearly σ0(π(z)) =
σ0(z) for all z = (z1, . . . , zn), π ∈ Sn. Prove:
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(i) σ0 is continuous and gives rise to a continuous map σ : Cn/Sn → Cn.

(ii) σ has an inverse map τ : Cn → Cn/Sn, defined using the Fundamental Theorem of Algebra
(Theorem 7.7.57).

(iii) If z ∈ C satisfies |z| > 1 and zn + an−1z
n−1 + · · ·+ a0 = 0 then |z| ≤ |a0|+ · · ·+ |an−1|.

(iv) σ : Cn/Sn → Cn is proper.

(v) σ : Cn/Sn → Cn is a homeomorphism, thus τ is continuous.

Remark: Continuity of τ : Cn → Cn/Sn, (a0, . . . , an−1) 7→ [(z1, . . . , zn)] in a sense means that the
solutions of a monic polynomial P of degree n depend continuously on the coefficients of P . (The
standard proofs use Rouché’s theorem from complex analysis, cf. e.g. [296, Appendix V, Theorem
4A].)

Remark 7.8.78 1. From (v) one can deduce the following: If a = (a0, . . . , an−1) ∈ Cn and z ∈ C
is a single root of Pa then there are an open neighborhood U ⊆ Cn of a and a continuous map
f : U → C such that Pa′(f(a′)) = 0 for all a′ ∈ U .

2. Using an appropriate implicit function theorem one can prove that f is analytic. 2

7.8.9 Proper metric spaces

In this section we discuss an application of properness to metric spaces.

Exercise 7.8.79 Let (X, d) be a metric space. Prove that the following are equivalent:

(i) (X, d) is locally compact.

(ii) For every x ∈ X there is R > 0 such that B(x,R) is compact.

Example 7.8.80 If X = (0, 1) with d(x, y) = |x − y|, then B(x,R) is compact if and only if
R < min(x, 1− x). 2

Exercise 7.8.81 Let (X, d) be a metric space. Prove that the following are equivalent:

(ia) The map X → [0,∞), x 7→ d(x, x0) is proper for every x0 ∈ X.

(ib) The map X → [0,∞), x 7→ d(x, x0) is proper for some x0 ∈ X.

(iia) The closed balls B(x, r) = {y ∈ X | d(y, x) ≤ r} are compact for all x ∈ X, r > 0. (Keep in
mind Exercise 2.2.11.)

(iib) The closed balls B(x, r) are compact for some x ∈ X and all r > 0.

(iii) Every closed bounded Y ⊆ X is compact.

Definition 7.8.82 A metric space (X, d) is called . . .

• proper if it satisfies the equivalent conditions in Exercise 7.8.81.

• properly metrizable if there exists a proper metric d′ on X that is equivalent to d.
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Remark 7.8.83 1. It is very easy to see (but quite useless) that a metric space is compact if and
only if it is proper and bounded.

2. The interest of proper metric spaces is that they behave almost like Rn in that a Heine-Borel
style result holds. In fact, they share more properties with Rn: 2

Lemma 7.8.84 Every proper metric space (X, d) is complete, locally compact, second countable,
separable, Lindelöf, σ-compact, hemicompact.

Proof. If x ∈ X, r > 0 then x ∈ B(x, r) ⊆ B(x, r), where B(x, r) is compact. Thus B(x, r) is a
compact neighborhood of x, so that X is locally compact. If {xn} is a Cauchy sequence in X then
there is N ∈ N such that n,m ≥ N implies d(xn, xm) < 1. Thus {xn}n≥N lives in the compact, thus
complete, subspace B(xN , 1). Thus the Cauchy sequence converges. The subsets Kn = B(x, n) are
compact and satisfy Kn ⊆ Kn+1 ∀n and

⋃
nKn = X. Thus τd is hemicompact. By Exercise 7.8.44

this quite trivially implies σ-compactness and the Lindelöf property. For metric spaces, the latter is
equivalent to separability and second countability. �

Theorem 7.8.85 For a metric space (X, d) the following are equivalent:

(i) (X, d) is properly metrizable.

(ii) There is a proper function g : X → R.

(iii) There are open sets {Ui}i∈N such that each Ui is compact, Ui ⊆ Ui+1 ∀i, and
⋃
i∈N Ui = X.

(iv) (X, τd) is locally compact and any of the following: second countable, separable, Lindelöf, σ-
compact, hemicompact.

Proof. (i)⇒(ii) By Exercise 7.8.81, g(x) = d′(x0, x) does the job if d′ is a proper metric equivalent to
d.

(ii)⇒(i) Let g : X → R be proper. We may assume that g ≥ 0. Define d′(x, y) = d(x, y) +
|g(x) − g(y)|. This is a metric, and in view of d ≤ d′ we have d′(xi, y) → 0 ⇒ d(xi, y) → 0. And
if d(xi, y) → 0 then d′(xi, y) → 0 by continuity of g. Thus d′ ' d. Now pick x0 ∈ X and r > 0. If

y ∈ Bd′

(x0, r) then d′(x0, r) ≤ r, thus |g(x0) − g(y)| ≤ r, implying B
d′

(x0, r) ⊆ g−1([0, g(x0) + r]).

Since g is proper, g−1([0, f(x0) + r]) is compact, so that B
d′

(x0, r) is compact. Thus d′ is proper.
(ii)⇒(iii) Defining Un = g−1((−n, n)), we have Un ⊆ g−1([−n, n]), which is compact. The rest is

obvious.
(iii)⇒(ii) We may assume U1 6= ∅. The sets Un and X\Un+1 are closed and disjoint, thus for each

n ∈ N

fn(x) = n+
dist(x, Un)

dist(x, Un) + dist(x,X\Un+1)

defines an element of C(X, [n, n + 1]) satisfying fn � Un = n and fn � (X\Un+1) = n + 1. (The
denominator vanishes only on Un ∩ X\Un+1 = ∅.) Define C0 = U1 and Cn = Un+1\Un for n ∈ N.
Then Cn is closed for each n ∈ N0 and

⋃∞
n=0 Cn = X. Furthermore, we have

Cn ∩ Cn+1 = (Un+1\Un) ∩ (Un+2\Un+1) = Un+1\Un+1 = ∂Un+1

and Cn∩Cm = ∅ whenever |n−m| ≥ 2. Define g0 ≡ 1 on C0 = U1. Let gn = fn �Cn for n ∈ N. Then
clearly gn ∈ C(Cn, [0,∞)). For x ∈ Cn∩Cn+1 = ∂Un+1 = Un+1\Un+1 we have gn(x) = n+1 = gn+1(x),
thus gn and gn+1 coincide on the intersection of their domains. This means that defining g(x) to
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be gn(x) for any n such that x ∈ Cn, we obtain a continuous function g : X → R. (Cf. Corollary
6.2.6.) For r > 0 we have g−1([0, r]) ⊆ g−1([0, dre) = Udre, which is compact by assumption. Thus
g : X → [0,∞) is continuous and proper.

(iii)⇔(iv) Property (iii) coincides with (α) in Exercise 7.8.44, and the claim follows from the
implications proven there, keeping in mind that for metric spaces we have the result of Exercise
7.1.9. �

Remark 7.8.86 1. For another result concerning proper metric spaces, cf. Theorem 12.4.27.

2. We will later prove that every second countable locally compact Hausdorff space is metrizable,
cf. Corollary 8.2.40. Combining this with the above result, we arrive at the following very satisfactory
statement (in which we cannot replace second countability by Lindelöf, since there are locally compact
Hausdorff spaces that are Lindelöf but not second countable, e.g. [0, 1]S with S uncountable): 2

Corollary 7.8.87 A topological space (X, τ) is properly metrizable (i.e. admits a proper metric d
such that τ = τd) if and only if it is locally compact Hausdorff and second countable.

7.9 Compact-open topology. Compactly generated spaces

7.9.1 The compact-open topology

If X, Y are topological spaces, one would like to put a reasonable topology on the set C(X, Y ) of
continuous functions. One possibility is the subspace topology inherited from Fun(X, Y ), interpreted
as product space

∏
x∈X Yx, where Yx = Y , or short Y X . The topology on

∏
x Y is the initial topology,

for which a subbase is given by (6.6). In the present situation, where f ∈ Y X , we write evaluation at
x ∈ X instead of the projection maps px. Thus the subbase can be written as S = {F (x, U)}, where
x ∈ X, U ⊆ Y is open and F (x, U) = {f : X → Y | f(x) ∈ U}. In view of the form of the subbase
elements F (x, U), this topology is called the point-open topology. We know from our discussion of

the product topology that a net fι ∈ Y X converges in this topology if and only if fι(x) ∈ Y converges
for each x ∈ X. Thus the point-open topology is the topology of pointwise convergence.

However, pointwise convergence is not the best notion of convergence for (continuous) functions.
In Section 2.1 (and Remark 5.2.12) we have seen that every metric on Y gives rise to a metric D on
Cb(X, Y ). The topology defined by D is the topology of uniform convergence.

The aim of this section is to define a topology on C(X, Y ) that is closer to the uniform than to
the pointwise topology, without assuming metrizability of Y .

Lemma 7.9.1 Let (X, τ), (Y, σ) be topological spaces.

(i) The sets

F (K,U) = {f ∈ C(X, Y ) | f(K) ⊆ U} with K ⊆ X compact, U ⊆ Y open,

form a subbase for a topology on C(X, Y ), the compact-open topology15 τco.

(ii) If (Y, σ) is Hausdorff, so is τco.

15The compact-open topology was introduced in 1945 by Ralph Fox (1913-1973), American topologist.
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Proof. (i) If f ∈ C(X, Y ), take K = {x} with x ∈ X and U = Y . Then f ∈ F (K,U). This proves
that the union of the F (K,U) equals C(X, Y ), so that S = {F (K,U)} is the subbase of a topology
τco.

(ii) If Y is Hausdorff, the point-open topology on Fun(X, Y ) is Hausdorff since it equals the
product topology on Y X . It is obvious that the compact-open topology is finer than the point-open
topology, thus it is Hausdorff. �

The next result shows that, in certain cases, the compact-open topology is the topology of uniform
convergence:

Proposition 7.9.2 If X is compact and Y is metric, then the compact-open topology on C(X, Y )
coincides with the topology arising from the metric D in (2.6).

Proof. Let K ⊆ X be compact and U ⊆ Y open. Let f ∈ F (K,U) ⊆ C(X, Y ). Then L = f(K) ⊆
U ⊆ Y is compact. The function L → [0,∞), y 7→ dist(y, Y \U) is continuous, thus assumes its
infimum due to compactness of L. This infimum is non-zero since L and Y \U are disjoint. Thus there
is a ε > 0 such that Lε ⊆ U . If now g ∈ BD(f, ε) then g(K) ⊆ Lε ⊆ U , thus BD(f, ε) ⊆ F (K,U).
This proves F (K,U) ∈ τD and therefore τco ⊆ τD.

In order to prove τD ⊆ τco, it suffices to show BD(f, ε) ∈ τco for all f, ε. Since X is compact,
so is f(X) ⊆ Y . Thus there are x1, . . . , xn such that f(X) ⊆

⋃
iB(f(xi), ε/3). The sets Ki =

f−1(B(f(xi), ε/4)) ⊆ X are closed, thus compact. Putting Ui = B(f(xi), ε/2) ⊆ Y , we have
f(Ki) = f(f−1(B(f(xi), ε/3))) ⊆ f(f−1(B(f(xi), ε/3))) ⊆ B(f(xi), ε/3) ⊆ Ui ∀i. Thus clearly
f ∈

⋂
i F (Ki, Ui). If now g ∈

⋂
i F (Ki, Ui) then g(Ki) ⊆ Ui ∀i. For every x ∈ X we have x ∈ Ki

for some i, thus {f(x), g(x)} ⊆ Ui, implying d(f(x), g(x)) < 2ε/2 = ε. Thus D(f, g) < ε, so that⋂
i F (Ki, Ui) ⊆ BD(f, ε). This proves BD(f, ε) ∈ τco, and thus τD ⊆ τco. �

Corollary 7.9.3 If X is a compact space, Y a set and d1, d2 equivalent metrics on Y then the
metrics Di(f, g) = supx di(f(x), g(x)), i = 1, 2 on C(X, Y ) are equivalent.

Proof. By definition, d1 and d2 induce the same topology on Y and therefore the same compact-open
topology on C(X, Y ). According to the proposition, both metrics D1, D2 induce the compact open
topology on C(X, Y ), thus D1 ' D2. �

Remark 7.9.4 1. The proposition can easily be generalized: Whenever Y is metric, the compact-
open topology on C(X, Y ) is the topology of uniform convergence on all compact subsets K ⊆ X.
Thus a net {fι} in C(X, Y ) converges to f w.r.t. τco if and only if it satisfies supx∈K d(fι(x), f(x))→ 0
for every compact K ⊆ X.

2. It is natural to ask when the compact-open topology on C(X, Y ) is metrizable. Since the map
Y → C(X, Y ) that sends y to the constant function y is an embedding, metrizability of (C(X, Y ), τco)
implies that of Y . Thus metrizability of Y is necessary. Assume that X is hemicompact, and let
{Kn}n∈K be a sequence of compact sets as required. Then

D(f, g) =
∞∑
k=1

2−k min(1, sup
x∈Kk

d(f(x), g(x)))

is a metric on C(X, Y ). A sequence {fn ∈ C(X, Y )} of functions converges w.r.t. D if and only
if it converges uniformly on all the compact sets Kk. Since every compact K is contained in some
Kn, this is equivalent to convergence on all compact subsets. By the first half of this remark, this is
equivalent to convergence w.r.t. τco. Thus D is a metric for τco.
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On the other hand, on its own metrizability of C(X, Y ) does not imply much: If X is such
that every f ∈ C(X,R) is constant, then every f ∈ C(X, Y ) with Y metric is constant, thus
C(X, Y ) ∼= Y . But if C(X,R) separates the points of X (X is ‘completely Hausdorff’) and the
compact-open topology on it is first countable then X is hemicompact. Cf. [7, Theorem 8]. 2

7.9.2 The exponential law

In Exercises 6.5.40 and 7.7.45, we considered the map Λ : Fun(X × Y, Z) → Fun(X,Fun(Y, Z))
defined for f : X × Y → Z by Λ(f)(x) = f(x, ·), thus Λ(f)(x)(y) = f(x, y). Writing Y X instead of
Fun(X, Y ), we have Λ : ZX×Y → (ZY )X . For this reason, Λ is often called the exponential map. We
now turn to the study of the topological behavior of this map, which is perhaps the most satisfactory
aspect of the compact-open topology. Rather than imposing restrictive assumptions from the outset,
we require stronger assumptions only when we need them, in order to make clear how they enter the
proofs. In what follows all function spaces have the compact-open topologies.

Lemma 7.9.5 Let X, Y, Z be arbitrary topological spaces and f ∈ C(X × Y, Z). Then Λ(f) ∈
C(X,C(Y, Z)).

Proof. Since joint continuity implies separate continuity, we have Λ(f)(x) = f(x, ·) ∈ C(Y, Z) for
each x ∈ X. It remains to prove that x 7→ Λ(f)(x) = f(x, ·) is continuous. It is enough to show that
Λ−1(F (K,U)) ⊆ X is open for K ⊆ Y compact and U ⊆ Z open. But

Λ−1(F (K,U)) = {x ∈ X | f({x} ×K) ⊆ U} = {x ∈ X | {x} ×K ⊆ f−1(U)}.

Since f : X×Y → Z is continuous, f−1(U) is open. Thus if {x}×K ⊆ f−1(U) then Lemma 7.5.1 gives
an open W ⊆ X such that x ∈ W and W ×K ⊆ f−1(U). But this means x ∈ W ⊆ Λ−1(F (K,U)).
Thus Λ−1(F (K,U)) is open, and we are done. �

Proposition 7.9.6 If Y is locally compact Hausdorff then for all spaces X,Z we have:

(i) The composition map Σ : C(X, Y )× C(Y, Z)→ C(X,Z), (f, g) 7→ g ◦ f is continuous.

(ii) The evaluation map e : C(Y, Z)× Y → Z, (f, y) 7→ f(y) is continuous.

(iii) For every g ∈ C(X,C(Y, Z)) we have Λ−1(g) ∈ C(X × Y, Z). (Thus Λ is a bijection C(X ×
Y, Z)→ C(X,C(Y, Z)).)

Proof. (i) It suffices to show that Σ−1(F (K,U)) is open for each element F (K,U) of the subbase
for the compact-open topology on C(X,Z). Thus let K ⊆ X be compact and U ⊆ Z open. If
(f, g) ∈ Σ−1(F (K,U)) then g ◦ f(K) ⊆ U . This is equivalent to f(K) ⊆ g−1(U). Now f(K) ⊆ Y
is compact and g−1(U) ⊆ Y is open, thus since Y is locally compact Hausdorff, Proposition 7.8.26,
provides an open W ⊆ Y with compact closure W such that f(K) ⊆ W ⊆ W ⊆ g−1(U). Thus
f ∈ F (K,W ), g ∈ F (W,U). Furthermore, f ′ ∈ F (K,W ), g′ ∈ F (W,U) implies g′ ◦ f ′ = Σ(f ′, g′) ∈
F (K,U). Thus F (K,W )×F (W,U) ⊆ C(X, Y )×C(Y, Z) is an open product neighborhood of (f, g),
proving that Σ is continuous.

(ii) This can be proven directly with a slightly simpler proof than the one for (i). Instead, we
deduce the result from (i). For X = {x0} and any space T , the obvious bijection T → C(X,T ) is
a homeomorphism w.r.t. the compact-open on C(X,T ). By (i), Σ : C(X, Y ) × C(Y, Z) → C(X,Z)
is continuous, and in view of the homeomorphisms C(X, Y ) ∼= Y, C(X,Z) ∼= Z this means the map
Y × C(Y, Z)→ Z, (y, f) 7→ f(y) is continuous. This is just the evaluation map.
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(iii) Let g ∈ C(X,C(Y, Z)). Then g × idY ∈ C(X × Y, Y × C(Y, Z)). By assumption, the
evaluation map Y × C(Y, Z)→ Z is continuous for every space Z. Thus e ◦ (g × idY ) : X × Y → Z
is continuous. Now the computation

[e ◦ (g × idY )](x, y) = e(g(x), y) = g(x)(y) = [Λ−1(g)](x, y)

shows that Λ−1(g) = e ◦ (g × idY ), which is continuous, as claimed. �

Remark 7.9.7 1. The proof uses that Y is strongly locally compact. Thus if one assumes this, one
does not need the Hausdorff property.

2. The local compactness is almost necessary: One can show that if X is completely regular and
C(X,R) admits a topology making the evaluation map e : C(X,R)×X → R continuous then X is
locally compact. Cf. [89, Exercise 3.4.A]. 2

Lemma 7.9.8 Let X be Hausdorff, Y a topological space and S a subbase for the topology of Y .
Then the sets F (K,V ), where K ⊆ X is compact and V ∈ S, form a subbase for the compact-open
topology on C(X, Y ).

Proof. Let K ⊆ X be compact, U ⊆ Y open and f ∈ F (K,U). Then U =
⋃
i∈I Ui, where the Ui are

in B, the base consisting of finite intersections of elements of S. By definition we have f(K) ⊆
⋃
i Ui,

thus {Ui}i∈I is an open cover of the compact set f(K). Thus there is subcover by finitely many
Ui’s, and we call these U1, . . . , Un. Now {K ∩ f−1(Ui)}i=1,...,n is a finite open cover of the compact
Hausdorff, thus normal, space K. Thus by Exercise 8.1.50 or Lemma 8.1.53 there are closed (thus
compact) subsets Ki ⊆ K such that K =

⋃n
i=1Ki and Ki ⊆ f−1(Ui) ∀i. Thus f(Ki) ⊆ Ui ∀i, to wit

f ∈ F (Ki, Ui) ∀i. Since Ui ⊆ U ∀i, we have f ∈
⋂n
i=1 F (Ki, Ui) ⊆ F (K,U). Picking Vij ∈ S such

that Ui =
⋂ni
j=1 Vij, we have

f ∈
n⋂
i=1

F (Ki, Ui) =
n⋂
i=1

F (Ki,

ni⋂
j=1

Vij) =
n⋂
i=1

ni⋂
j=1

F (Ki, Vij) ⊆ F (K,U).

This proves that the F (K,V ) with K ⊆ X compact and V ∈ S form a subbase for C(X, Y ). �

Remark 7.9.9 In the proof of Lemma 7.9.8 we used the normality of compact Hausdorff spaces,
alluded to in Remark 7.4.6, and a result proven only in Section 8.1.5. But the proof of the latter
uses nothing but the equivalent characterizations of normality given in Lemma 8.1.4. 2

Proposition 7.9.10 Let X, Y be Hausdorff spaces and Z arbitrary. Then Λ : C(X × Y, Z) →
C(X,C(Y, Z)) is an embedding.

Proof. We already know that Λ : Fun(X × Y, Z)→ Fun(X,Fun(Y, Z)) is a bijection, and in view of
Lemma 7.9.5, Λ restricts to an injective map C(X × Y, Z) → C(X,C(Y, Z)) that we again denote
Λ. We prove continuity of Λ. If K ⊆ X, K ′ ⊆ Y are compact, Proposition 7.9.6(iii) gives that
Λ′ : C(K ×K ′, Z)→ C(K,C(K ′, Z)) is a bijection. (Here we need that Y is T2.) In particular

F (K ×K ′, U) = Λ−1(F (K,F (K ′, U))) (7.10)

for every open U ⊆ Z. Since K×K ′ is compact, we see that Λ−1(F (K,F (K ′, U))) = F (K×K ′, U) ⊆
C(X × Y, Z) is open for each F (K,F (K ′, U)). By Lemma 7.9.8 (for which we need X to be T2) the
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latter form a subbase for C(X,C(Y, Z)) since the F (K ′, U) are a subbase for C(Y, Z). Thus Λ is
continuous.

It remains to show that Λ is open as a function C(X×Y, Z)→ Λ(C(X×Y, Z)) ⊆ C(X,C(Y, Z)).
From (7.10) we obtain

Λ(F (K ×K ′, U)) = Λ(C(X × Y, Z)) ∩ F (K,F (K ′, U)).

Thus openness of Λ : C(X × Y, Z) → Λ(C(X × Y, Z)) follows as soon as we show that the sets
F (K × K ′, U), where K ⊆ X,K ′ ⊆ Y are compact and U ⊆ Z is open, form a subbase for the
compact-open topology on C(X × Y, Z).

Let K ⊆ X × Y be compact, W ⊆ Z open and f ∈ F (K,W ). Now K ′ = p1(K) ⊆ X,
K ′′ = p2(K) ⊆ Y are compact Hausdorff. We have K ⊆ f−1(W ), thus by definition of the product
topology for every (x, y) ∈ K there are open Uxy ⊆ X, Vxy ⊆ Y such that (x, y) ∈ Uxy×Vxy ⊆ f−1(W ).
Now (x, y) ∈ K implies x ∈ K ′, and Uxy∩K ′ is an open neighborhood in K ′ of x. By Lemma 7.4.19(i)
there is an open U ′xy ⊆ Uxy such that x ∈ U ′xy ∩K ′ ⊆ clK′(U

′
xy ∩K ′) ⊆ Uxy ∩K ′. Similarly there is

an open V ′xy ⊆ Vxy such that y ∈ V ′xy ∩K ′′ ⊆ clK′′(V
′
xy ∩K ′′) ⊆ Vxy ∩K ′′. Now {U ′xy × V ′xy}(x,y)∈K

is an open cover of K, so by compactness there is a finite subcover {U ′xiyi × V ′xiyi}
n
i=1, which we

abbreviate U ′1 × V ′1 , . . . , U ′n × V ′n. For i = 1, . . . , n write K ′i = K ′ ∩ U ′i , K ′i = K ′′ ∩ V ′i , which are
compact subsets of X and Y , respectively. In view of K ⊆ K ′ ×K ′′ we have K ⊆

⋃
iK
′
i ×K ′′i , thus⋂

i F (K ′i×K ′′i ,W ) ⊆ F (K,W ). On the other hand K ′i = K ′∩U ′i = clK′(K
′∩U ′i) ⊆ Uxiyi and similarly

K ′′i ⊆ Vxiyi . Thus K ′i ×K ′′i ⊆ Uxiyi × Vxiyi ⊆ f−1(W ) ∀i, which restates as f ∈
⋂n
i=1 F (K ′i ×K ′′i ,W ).

This proves that the sets F (K ′ × K ′′,W ) with K ′ ⊆ X,K ′′ ⊆ Y compact form a subbase for
C(X × Y, Z). �

Theorem 7.9.11 Let X be Hausdorff, Y locally compact Hausdorff and Z arbitrary. Then Λ :
C(X × Y, Z)→ C(X,C(Y, Z)) is a homeomorphism.

Proof. This is immediate from Proposition 7.9.6(iii) and Proposition 7.9.10. �

7.9.3 ?? Compactly generated spaces = k-spaces

We briefly look at yet another generalization of compactness, with the aim of extending the range of
the exponential law:

Definition 7.9.12 A space X is called compactly generated or k-space if closedness of A ∩K ⊆ X
for every compact K ⊆ X implies closedness of A ⊆ X.

(The converse is automatic if X is Hausdorff: If A ⊆ X is closed then so is A ∩ K for every
compact K.) We will almost exclusively restrict to Hausdorff k-spaces.

Lemma 7.9.13 Every first countable space is a k-space.

Proof. Assume A ⊆ X is not closed, pick y ∈ A\A and a sequence {xn} ⊆ A such that xn → y. Now
K = {y, x1, x2, . . .} is compact by Exercise 7.3.7, but A ∩K = {x1, x2, . . .} = A is non-closed. �

(Actually every sequential space is a k-space since all one needs is the property in Corollary 5.1.8.)

Proposition 7.9.14 A Hausdorff space X is a k-space if and only if it is (homeomorphic to) a
quotient space of a locally compact Hausdorff space.



194 CHAPTER 7. COMPACTNESS AND RELATED NOTIONS

Proof. ⇒ Let K be the family of all compact subsets K ⊆ X. Then the direct sum Z =
⊕

K∈KK
is locally compact Hausdorff. For each K ∈ K we have the inclusion map ιK : K ↪→ X. Putting
them together using Proposition 6.3.5, we have a continuous map p : Z → X. The latter clearly is
surjective since {x} is compact for every x ∈ X, thus contained in K. In order to prove that p is
a quotient map we must show that p−1(C) ⊆ Z is closed only if C ⊆ X is closed. Since p is the
aggregate of the inclusions ιK , closedness of p−1(C) is equivalent to closedness of K ∩ C for each
K ∈ K. But by the k-space property, this is equivalent to closedness of C.
⇐ Let p : Z → X be a quotient map where Z is locally compact. Let A ⊆ X be such that

A ∩K ⊆ K is closed for each compact K ⊆ X. If z ∈ p−1(A), local compactness of Z provides an
open U 3 z with compact U . Then p(U) is compact, thus A∩p(U) is closed, and so is p−1(A∩f(U))
by continuity. In view of p−1(A)∩U ⊆ p−1(A∩p(U)) ⊆ p−1(A) we have z ∈ p−1(A). Thus p−1(A) ⊆ Z
is closed. Since p is a quotient map, this implies that A ⊆ X is closed. �

Corollary 7.9.15 (i) Every locally compact Hausdorff space is a k-space.

(ii) Every Hausdorff quotient of a k-space is a k-space.

The next two results are entirely analogous to corresponding facts for locally compact spaces:

Exercise 7.9.16 Prove:

(i) Every closed subspace of a k-space is a k-space.

(ii) Every open subspace of a Hausdorff k-space is a k-space.

Exercise 7.9.17 Prove that X =
⊕

i∈I Xi is a k-space if and only if each Xi is a k-space.

The product of two k-spaces can fail to be a k-space! But:

Proposition 7.9.18 The product of a k-space with a locally compact space is a k-space.

Proof. Cf. e.g. [89, Theorem 3.3.27]. �

Lemma 7.9.19 Let X be a k-space and Y a topological space. Then f : X → Y is continuous if
and only if f �K → Y is continuous for every compact K ⊆ X.

Proof. If f is continuous then also all its restrictions are continuous. If all f �K are continuous and
C ⊆ Y is closed then (f �K)−1(C) = f−1(C) ∩K ⊆ K is closed for each compact K ⊆ X. But then
the k-space property implies that f−1(C) is closed, thus f is continuous. �

Exercise 7.9.20 Let X be a topological space, Y a k-space and f : X → Y a function. Prove that
f is open / closed / quotient if and only if the restriction f−1(Z) → Z is open / closed / quotient
for every compact Z ⊆ Y .

Theorem 7.9.21 If X×Y is a Hausdorff k-space then for every topological space Z the exponential
map Λ : C(X × Y, Z)→ C(X,C(Y, Z)) is a homeomorphism.

Proof. In view of Proposition 7.9.10 all we need to prove is Λ−1(g) ∈ C(X × Y, Z) for every g ∈
C(X,C(Y, Z)). Since X × Y is a k-space, by Lemma 7.9.19 it suffices to show that Λ−1(g) �K is
continuous for every compact K ⊆ X × Y . If such a K is given, Y ′ = p2(K) ⊆ Y is compact.
Now Theorem 7.9.11 gives that Λ′ : C(X × Y ′, Z) → C(X,C(Y ′, Z)) is a homeomorphism, thus in
particular surjective. Defining g′ ∈ C(X,C(Y ′, Z)) by g′(x)(y′) = g(x)(y′) for x ∈ X, y′ ∈ Y ′, we
have Λ′−1(g′) = Λ−1(g)�X × Y ′, thus Λ−1(g)�X × Y ′ – and a fortiori Λ−1(g)�K – is continuous. �
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Remark 7.9.22 1. Theorem 7.9.21 clearly applies to many cases not covered by Theorem 7.9.11,
e.g. when X, Y both are first countable Hausdorff spaces. But it does not contain Theorem 7.9.11
since the assumptions of the latter do not imply that X × Y is a k-space.

2. Because of their nice properties, as in the preceding theorem, k-spaces have been called a
‘convenient category’ for the purposes of algebraic topology. For more information cf. e.g. [117].

3. Given a Hausdorff space (X, τ), let C be the family of those C ⊆ X for which C ∩K is closed
for every compact K ⊆ X. One easily checks that C satisfies the statements in Lemma 2.4.2 and thus
is the family of closed sets for some topology τ ′ on X. The topology τ ′ is finer than τ , but has the
same compact subspaces. Using Lemma 7.9.19 one proves that every continuous f : X → Y is also
continuous w.r.t. the k-spaces topologies on X, Y . Thus we have a functor from Hausdorff spaces to
k-spaces. This functor can be used to modify certain construction so that one stays in the category
of k-spaces, for example via X ×k Y = k(X × Y ). 2

We close by stating without proof a nice version of the Ascoli-Arzelà theorem for (C(X, Y ), τco).
We need to modify the notion of equicontinuity:

Definition 7.9.23 Let X, Y be topological spaces. A family F ⊆ Fun(X, Y ) is evenly continuous
if for every x ∈ X, every y ∈ Y and every open neighborhood V of y there are open neighborhoods
U 3 x and W 3 y such that f(U) ⊆ V for every f ∈ F that satisfies f(x) ∈ W .

It is clear that every element of an evenly continuous family is continuous.

Theorem 7.9.24 Let X be a k-space and Y a T3-space (Remark 7.4.6). Let F ⊆ C(X, Y ) be closed
w.r.t. τco. Then F is compact if and only if F is evenly continuous and {f(x) | f ∈ F} is compact
for every x ∈ X.

For the proof cf. [89, Theorem 3.4.20]. For much more on k-spaces see [117].
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Chapter 8

Stronger separation axioms and their uses

8.1 T3- and T4-spaces

8.1.1 Basics

In a Hausdorff space, we can separate any two points by disjoint open neighborhoods. For many
purposes, this is not sufficient. We actually have already met stronger separation properties in
Lemma 7.4.1, Exercise 7.4.5 and Proposition 7.8.26(ii), but they involved compactness requirements.
Now we will look at such stronger separation properties in a more systematic way. We begin with
two definitions:

Definition 8.1.1 A T1-space (X, τ) is called regular or T3-space if given any closed C ⊆ X and
x ∈ X\C there are U, V ∈ τ such that x ∈ U, C ⊆ V and U ∩ V = ∅.

Definition 8.1.2 A T1-space (X, τ) is called normal or T4-space if given disjoint closed sets C,D ⊆
X there are U, V ∈ τ such that C ⊆ U, D ⊆ V and U ∩ V = ∅.

Remark 8.1.3 1. One says: The ‘open sets separate points from closed sets’ and ‘the open sets
separate the closed sets’.

2. Many authors distinguish between T3- and regular spaces (and similarly between T4- and
normal spaces) by defining one of the two terms as including T1 but not the other one. Some, e.g.
[298], define T3=regular+T1. Others write regular=T3 +T1, but this seems rather unreasonable since
then T3 6⇒ T2. (What is the point of numbering axioms if the natural ordering has no consequences?)
Since we will have little occasion to meet non-T1-spaces in which closed sets can be separated from
points or closed sets, we follow those (like [89, 91, 145, 36]) who use ‘regular’ and T3 synonymously
(including T1!) and similarly for T4.

3. Since we assume all Ti-axioms to include T1, singletons are closed and therefore

T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

None of the converse implications is true. We already know that T0 6⇒ T1 6⇒ T2. Exercise 2.7.7 gives
a space that is T2, but not T3. T3-spaces that are not T4 will be encountered in Corollaries 8.1.30
and 8.1.41. 2

Lemma 8.1.4 For a T1 space X, the following are equivalent:

(i) X is T4.

197
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(ii) For every pair U, V ⊆ X of open sets satisfying U ∪ V = X there are closed sets C,D ⊆ X
such that C ⊆ U,D ⊆ V and C ∪D = X.

(iii) Whenever C ⊆ U with C closed and U open, there is V ∈ τ such that C ⊆ V ⊆ V ⊆ U .

Proof. The equivalence (i)⇔(ii) is proven by taking complements.
Assume (i) holds, and let C ⊆ U with C closed and U open. Then D = X\U is closed, and

C ∩ D = ∅. By (i), there are open V,W such that C ⊆ V, D ⊆ W and V ∩W = ∅. But this is
equivalent to C ⊆ V ⊆ X\W ⊆ U , and since X\W is closed, we have V ⊆ X\W , thus (iii) holds.
Conversely, assume (iii) holds and C,D ⊆ X are closed and disjoint. With U = X\D, we have
C ⊆ U , thus by (i) there is an open V such that C ⊆ V ⊆ V ⊆ U . But then W = X\V is open,
disjoint from V and contains D. Thus (i) holds. �

Lemma 8.1.5 For a T1 space, the following are equivalent:

(i) X is T3.

(ii) Whenever x ∈ U ∈ τ , there is V ∈ τ such that x ∈ V ⊆ V ⊆ U .
(Equivalently, each point has a neighborhood base consisting of closed neighborhoods.)

Proof. Proven as (i)⇔(iii) in the preceding proof, taking C = {x}. �

The result of Lemma 7.4.19 actually holds for all T3-spaces:

Corollary 8.1.6 If X is T3 and x, y ∈ X with x 6= y then there are open U, V ⊆ X such that
x ∈ U, y ∈ V and U ∩ V = ∅.

Proof. Since X is T2, there are disjoint open U ′, V ′ such that x ∈ U ′, y ∈ V ′. By (ii) in Lemma 8.1.5,
we can find open U, V with x ∈ U ⊆ U ⊆ U ′, y ∈ V ⊆ V ⊆ V ′. Clearly U ∩ V = ∅. �

Exercise 8.1.7 Let X be a topological space, Y a T3-space, A ⊆ X dense and f : A→ Y continuous.
Prove that f has a (unique) continuous extension f̂ : X → Y if and only if f extends continuously
to A ∪ {x} for every x ∈ X\A.

Lemma 7.4.1 immediately gives that a compact Hausdorff space is T3. In fact:

Proposition 8.1.8 Every compact Hausdorff space is normal.

Proof. Let C,D be disjoint closed subsets. By Lemma 7.3.4, they are compact. Now apply Exercise
7.4.5. �

Locally compact Hausdorff spaces need not be normal, cf. Corollary 8.1.30. But:

Corollary 8.1.9 Locally compact Hausdorff spaces are T3.

Proof. If x ∈ U ∈ τ then Lemma 7.8.25 gives an open V and a compact K such that x ∈ V ⊆ K ⊆ U .
Since X is Hausdorff, K is closed, thus V ⊆ K = K ⊆ U , implying x ∈ V ⊆ V ⊆ U . By Lemma
8.1.5, this is equivalent to regularity. �

The following generalizes Proposition 7.8.26(ii) to all T3-spaces. We omit the proof, which is
standard by now.

Lemma 8.1.10 If X is a T3-space, K ⊆ X is compact, C ⊆ X is closed and K ∩C = ∅, then there
are two disjoint open sets containing K and C, respectively.
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Lemma 8.1.11 Every metrizable space is normal.

Proof. Let d be a metric inducing the topology. Let C,D ⊆ (X, d) be disjoint closed subsets. Since
C,D are closed and disjoint, we have x ∈ C ⇒ dist(x,D) > 0 and y ∈ D ⇒ dist(y, C) > 0. (See
Exercise 2.1.20.) Thus

U =
⋃
x∈C

B

(
x,

dist(x,D)

2

)
, V =

⋃
y∈D

B

(
y,

dist(y, C)

2

)
are both open and C ⊆ U and D ⊆ V . Assume z ∈ U ∩ V . This means that there are x ∈ C, y ∈ D
such that

z ∈ B
(
x,

dist(x,D)

2

)
∩B

(
y,

dist(y, C)

2

)
.

But now the triangle inequality implies d(x, y) ≤ d(x, z) + d(y, z) < (dist(x,D) + dist(y, C))/2, and
using dist(x,D) ≤ d(x, y) ≥ dist(y, C) we have 2d(x, y) < dist(x,D) + dist(y, C) ≤ 2d(x, y), which
is absurd. Thus U ∩ V = ∅. �

Remark 8.1.12 1. If d is a pseudometric such that τd is T0 then d is a metric. Thus for the topology
τd, either all separation axioms from T0 to T4 (actually up to T6) hold or none.

2. Metric spaces and compact Hausdorff spaces are the most important classes of normal spaces.
(In Section 8.5, we will prove that every product of a metric space with a compact Hausdorff space
is normal.) 2

Exercise 8.1.13 Prove the following generalization of Lemma 8.1.11: If (X, d) is metrizable and
{Ci}i∈I ⊆ X is a family of subsets of X such that Ci ∩

⋃
j 6=iCj = ∅ ∀i then there are open subsets

{Ui}i∈I such that Ci ⊆ Ui for all i and Ui∩Uj = ∅ whenever i 6= j. (Closedness of the Ci not needed!)

The property proven in the above exercise is slightly stronger than that of collectionwise normality,
do be defined later.

Lemma 8.1.14 Let X be a T1-space such that given C ⊆ U ⊆ X, where C is closed and U open,
there is a countable family {Wi}i∈N of open sets such that C ⊆

⋃
iWi and Wi ⊆ U ∀i. Then X is

normal (T4).

Exercise 8.1.15 (Proof of Lemma 8.1.14) Let C,D be disjoint closed subsets of X.

(i) Use the hypothesis of the lemma to obtain two families {Wi}i∈N, {Vi}i∈N of open sets such that

C ⊆
⋃
i

Wi, Wi ∩D = ∅ ∀i, D ⊆
⋃
i

Vi, Vi ∩ C = ∅ ∀i.

(ii) Defining

U =
∞⋃
i=1

(
Wi\

⋃
j≤i

Vj

)
, V =

∞⋃
i=1

(
Vi\
⋃
j≤i

Wj

)
,

prove that U and V are open.

(iii) Prove C ⊆ U, D ⊆ V .

(iv) Prove U ∩ V = ∅.
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The following shows that the hypothesis of compactness in Proposition 8.1.8 can be replaced by
the weaker Lindelöf property, at the expense of strengthening T2 to T3:

Proposition 8.1.16 (i) Every countable T3-space is T4.

(ii) Every second countable T3-space is T4.

(iii) Every Lindelöf T3-space is T4.

Proof. Let C ⊆ U ⊆ X, where C is closed and U open.
(i) For x ∈ C, use the T3-property to find an open Ux such that x ∈ Ux ⊆ Ux ⊆ U and apply

Lemma 8.1.14 to {Ux}x∈C .
(ii) Let B be a countable base. As in (i), for every x ∈ C choose an open Vx such that x ∈

Vx ⊆ Vx ⊆ U . Since B is a base, there is a Ux ∈ B such that x ∈ Ux ⊆ Vx, which in turn implies
x ∈ Ux ⊆ Ux ⊆ B. Now the family {Ux | x ∈ C} ⊆ B is countable and satisfies the assumptions in
Lemma 8.1.14.

(iii) By the T3-property and Lemma 8.1.5, we can choose, for every x ∈ C an open Ux such that
x ∈ Ux ⊆ Ux ⊆ U . Now {Ux}x∈C ∪ {X\C} is an open cover of X, which by the Lindelöf property
has a countable subcover. Thus there is a countable subset Y ⊆ X such that

⋃
x∈Y Ux ⊇ C. Now

the family {Ux}x∈Y satisfies the hypothesis of Lemma 8.1.14. �

Remark 8.1.17 1. Claims (i) and (ii) of course follow from (iii) together with Exercise 7.1.5, but
the proofs of (i) and (ii) arguments given above are more direct.

2. The proofs of (i) and (ii) actually made no use at all of the closed set C! This suggests that
we actually have proven a stronger result. This is true, cf. Corollary 8.2.11.

3. Later we will use (ii) to prove that second countable T3-spaces are even metrizable, cf. Theorem
8.2.33. For the spaces in (i) and (iii) this need not be true since they can fail to be first countable,
as witnessed by the Arens-Fort space from Exercise 4.3.14 which is T3 (thus T6 by Corollary 8.2.11)
and cubes of uncountable dimension, respectively. 2

As usual, we need to study how the T3- and T4- properties behave w.r.t. the constructions from
Section 6. Skipping over the trivial case of direct sums, we begin with continuous surjections. In
Example 6.4.19 we have seen that neither the T2- nor the T3-property are preserved by continuous
maps, not even closed ones. Luckily, the T4-property is better behaved, allowing us to tie up one
loose end from Section 6.4:

Proposition 8.1.18 If (X, τ) is T4 and f : (X, τ)→ (Y, σ) is surjective, continuous and closed then
Y is T4.

Proof. X is T1, thus singletons are closed. By closedness of f , also their images are closed and thus
f(X) = Y is T1. Now let U, V ∈ σ such that U ∪ V = Y . Then U ′ = f−1(U), V ′ = f−1(V ) are
open subsets of X and U ′ ∪ V ′ = X. By Lemma 8.1.4, there are closed C ′ ⊆ U ′, D′ ⊆ V ′ such
that C ′ ∪D′ = X. Since f is closed, C = f(C ′), D = f(D′) are closed subsets of Y . Now we have
C ∪D = f(C ′) ∪ f(D′) = f(C ′ ∪D′) = f(X) = Y , as well as C = f(C ′) ⊆ f(U ′) = f(f−1(U)) = U
and similarly D ⊆ V . Invoking Lemma 8.1.4 again, we have that Y is T4. �

Corollary 8.1.19 Let (X, τ) be compact Hausdorff and ∼ an equivalence relation on X. Then the
(compact) quotient space X/∼ is Hausdorff if and only if ∼ is closed.
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Proof. The ⇒ direction was Corollary 7.4.12. The ⇐ direction follows from Proposition 8.1.8, by
which X is T4 and Proposition 8.1.18. �

The above corollary gives a simpler solution of Exercise 7.8.21(i): It suffices to note that closedness
of ∼ follows from closedness of ∂In ⊆ In.

Exercise 8.1.20 Let (X, τ) be a topological space and Y ⊆ X. Define X/Y as in Exercise 6.4.16.
Prove:

(i) If X is T3 and Y is closed then X/Y is Hausdorff.

(ii) If X is T4 and Y is closed then X/Y is T4.

We already know that the T1- and T2-properties are hereditary and well behaved with respect to
products. The same is true for the T3-property:

Exercise 8.1.21 (i) Prove that the T3-property is hereditary.

(ii) Let Xi 6= ∅ ∀i ∈ I. Prove that
∏

iXi is a T3-space if and only if Xi is a T3-space ∀i. Hint:
Remember Corollary 6.5.14.

Unfortunately, the T4-property is neither hereditary nor is it true the a product of T4-spaces must�

be T4! Examples for both phenomena will be encountered soon. But at least, we have:

Lemma 8.1.22 Every subspace Y of a T4-space (thus in particular of a compact Hausdorff space)
is T3, and if Y is second countable then it is T4.

Proof. Every T4-space is T3, and by Exercise 8.1.21 T3 is hereditary. By Proposition 8.1.8, compact
Hausdorff spaces are T4. The rest follows from Corollary 8.1.16. �

Remark 8.1.23 1. For X locally compact Hausdorff, X∞ is compact Hausdorff. Thus the preceding
lemma gives another (more complicated) proof of Corollary 8.1.9.

2. In Section 8.3.1 we will encounter the T3.5-axiom for which T4 ⇒ T3.5 ⇒ T3 and which behaves
as nicely as T3 w.r.t. products and subspaces. Thus subspaces and products of T4-spaces are T3.5. In
particular locally compact Hausdorff spaces are T3.5. 2

Exercise 8.1.24 Prove that every regular (T3) space is semiregular (cf. Example 4.1.24).

Exercise 8.1.25 Let X = {(x, y) | y ≥ 0, (x, y) 6= (0, 0)} ⊆ R2 with the topology induced from R2.

(i) Prove that E = {(x, 0) | x < 0} and F = {(x, 0) | x > 0} are closed subsets of X.

(ii) Construct explicitly a continuous function f : X → [0, 1] such that f �E = 1 and f �F = 0.

(iii) Is X normal (T4)? (With proof!)
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8.1.2 Normality of subspaces. Hereditary normality (T5)

We begin with the following easy observation:

Exercise 8.1.26 Prove: If X is normal and Y ⊆ X is a closed subspace then Y is normal.

Exercise 8.1.27 Prove that every Fσ-set in a normal space is normal. Hint: Lemma 8.1.14.

We will see shortly that normality is not hereditary. This makes it meaningful to apply our meta-
Definition 2.3.7 and speak of ‘hereditarily normal’ space. But also other names for this property are
in widespread use:

Definition 8.1.28 Hereditarily normal spaces, i.e. spaces all subspaces of which are normal (includ-
ing of course the space itself), are also called completely normal or T5-spaces.

Trivially, the T5-property is hereditary. Since metrizability implies normality and is hereditary,
every metric space is T5.

Exercise 8.1.29 For a set S, let A(S) = S∪{∞S} be the one-point compactification of the discrete
space (S, τdisc). Prove:

(i) For any S, the space A(S) is compact Hausdorff (thus normal).

(ii) For any S, the space A(S) is hereditarily normal (T5).

(iii) For any S, T , the space X = A(S)× A(T ) is normal.

(iv) For any S, T , the subspace Y = X\{(∞S,∞T )} ⊆ X is locally compact.

(v) For any S, T , the subsets C = S × {∞T} and D = {∞S} × T of Y are closed and disjoint.

(vi) If S is countably infinite and T is uncountable, then the above C and D cannot be separated
by open sets. (Thus Y is not normal, whence A(S)× A(T ) is not hereditarily normal.)

Corollary 8.1.30 T3 6⇒ T4 6⇒ T5. Compact Hausdorff 6⇒ T5. Lindelöf T3 6⇒ T5. Locally compact
Hausdorff 6⇒ T4.

Proof. The space A(S)× A(T ) in Exercise 8.1.29 is compact Hausdorff, thus Lindelöf and T4. Since
the subspace Y ⊆ X is non-normal, the T4-property is not hereditary, thus T4 6⇒ T5. This also shows
that neither compact Hausdorff spaces nor Lindelöf T3-spaces are automatically T5. By Exercise
8.1.21(i), Y is T3, thus T3 6⇒ T4. And Y is open, thus locally compact Hausdorff, so that locally
compact Hausdorff 6⇒ T4. �

The definition of hereditarily normal spaces is unwieldy, but fortunately they have a nice charac-
terization similar to the definitions of T2, T3, T4-spaces:

Definition 8.1.31 Two subsets A,B ⊆ (X, τ) are called separated if A ∩B = ∅ = A ∩B.

Notice that disjoint closed sets are separated, as are disjoint open sets.

Exercise 8.1.32 Let X be a T1-space. Prove that the following are equivalent:

(i) X is hereditarily normal (T5).

(ii) Every open subspace of X is normal.
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(iii) Whenever A,B ⊆ X are separated, there are disjoint open U, V with A ⊆ U,B ⊆ V .

Hint: For the implication (ii)⇒(iii), consider the subspace Y = X\(A ∩B).

Exercise 8.1.33 (Hereditary normality (T5) of the Sorgenfrey line (R, τS))

(i) Let A,B ⊆ R be separated w.r.t. τS. Show that for every a ∈ X\B there is an xa such that
[a, xa) ⊆ X\B.

(ii) Define U =
⋃
a∈A[a, xa) ⊇ A and define V ⊇ B similarly. Show that U, V ∈ τS.

(iii) Prove U ∩ V = ∅.

Theorem 8.1.34 If (X,≤) is a totally ordered set, Y ⊆ X with topology (τ≤) �Y and {Ci}i∈I ⊆ Y

is a family of subsets of X such that Ci ∩
⋃
j 6=iCj = ∅ ∀i then there are open {Ui}i∈I ⊆ Y such that

Ci ⊆ Ui for all i and Ui ∩ Uj = ∅ whenever i 6= j. In particular (X, τ≤) is hereditarily normal.

Proof. **************
Once this is proven, the result on Sorgenfrey is redundant. �

Corollary 8.1.35 Generalized ordered spaces are hereditarily normal.

Proof. By Theorem 4.2.15, every generalized ordered space Y embeds topologically (and as an ordered
space) into an ordered topological space X. Since every subspace Z ⊆ Y also is a subspace of X, its
normality follows from Theorem 8.1.34. �

Remark 8.1.36 1. The proof of Theorem 8.1.34 used the axiom of choice. In fact, there are models
of ZF set theory without the axiom of choice in which one can construct non-normal ordered spaces,
cf. [179].

2. Like metrizable spaces (Exercise 8.1.13), generalized ordered spaces are hereditarily collection-
wise normal. As above, it suffices to prove this for ordered spaces, cf. [57]. 2

8.1.3 Normality of finite products

We have seen that normality is not hereditary. This means that we cannot use Corollary 6.5.14 to
conclude normality of the Xi from normality of

∏
iXi. However, the conclusion still holds:

Exercise 8.1.37 Let Xi 6= ∅ for every i ∈ I, and assume that
∏

iXi is normal.

(i) Prove that Xi is T1 for every i.

(ii) Prove that Xi is T4 for every i.

Our next goal is to prove that the Sorgenfrey plane (R, τS) × (R, τS) is not normal despite the
normality of (R, τS) (Exercise 8.1.33). We need a technical tool:

Lemma 8.1.38 If (X, τ) is separable and normal then the cardinality of a closed discrete subspace
D ⊆ X must be strictly smaller than c = #R.
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Proof. Let D ⊆ X be discrete. Then any S ⊆ D as well as D\S are closed in D and therefore
closed in X since D is closed. Thus by normality of X, there are disjoint open sets US, VS such that
S ⊆ US, D\S ⊆ VS. By separability, we can choose a countable dense set C ⊆ X. We now define a
map

f : P (D)→ P (C), S 7→ C ∩ US.
Let S, T ∈ D such that S 6= T . Thus either S 6⊆ T or T 6⊆ S. We consider the first case, where we
have S ∩ (D\T ) 6= ∅ and therefore US ∩ VT 6= ∅. Since C is dense, we have C ∩ US ∩ VT 6= ∅. On
the other hand, we have UT ∩ VT = ∅ by our choice of these sets, and thus C ∩ UT ∩ VT = ∅. Now
it is clear that C ∩ US 6= C ∩ UT , and similar argument works in the case T 6⊆ S. We conclude that
the map f is injective. But this implies #P (D) ≤ #P (C). Combining this with #D < #P (D) and
#P (C) = #P (N) = #R, we obtain #D < #R, as claimed. �

Proposition 8.1.39 The Sorgenfrey plane (R, τS)× (R, τS) is not normal.

Proof. We know from Lemma 6.5.16 that the Sorgenfrey plane (R, τS)2 is separable, but has a discrete
subspace with the cardinality c of the continuum. Now its non-normality follows from Lemma 8.1.38.
�

Remark 8.1.40 Since metrizable spaces are normal, we conclude that the Sorgenfrey plane is not
metrizable. Since finite products of metrizable spaces are metrizable, this gives a new proof for the
non-metrizability of (R, τS). (The one obtained in Exercise 4.3.12 was more elementary.) 2

Corollary 8.1.41 (i) T3 6⇒ T4.

(ii) Products of normal spaces need not be normal.

(iii) Products of Lindelöf spaces need not be Lindelöf.

Proof. (i) The Sorgenfrey plane is not T4, but as a product of T3-spaces it is T3 by Exercise 8.1.21(ii).
(ii) By Exercise 8.1.33, the Sorgenfrey line (R, τS) is T5, but by Proposition 8.1.39 the Sorgenfrey

plane (R, τS)2 is not T4.
(iii) We know that the Sorgenfrey line is Lindelöf and T3, and also that products of T3-spaces are

T3. If products of Lindelöf spaces were Lindelöf, it would follow that the Sorgenfrey plane is Lindelöf
T3, and thus normal by Proposition 8.1.16(iii), contrary to Proposition 8.1.39. �

If X is discrete (thus normal) and Y is normal then X×Y is a direct sum of #X copies of Y and
as such it is normal. The following result shows that the discrete spaces are the only normal spaces �

that are well-behaved under products with normal spaces:

Theorem 8.1.42 If X × Y is normal for every normal space Y then X is discrete.

The proof [251] is quite difficult and was given only in 1976 by M. E. Rudin1. (For an accessible
review and further references see [11].) On the positive side, there is the following result:

Theorem 8.1.43 The product of a compact Hausdorff space with a metrizable space is normal.

The proof will be given in Section 8.5, using paracompactness, yet another – rather important –
generalization of compactness. In Section 8.5.6, Theorem 8.1.43 is used to define a class of ‘generalized
metric spaces’ that behaves well w.r.t. closed subspaces and countable products.

1Mary Ellen Rudin (1924-2013). American mathematician, working mostly on point-set topology. Married to the
analyst Walter Rudin.
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8.1.4 ? Normality of infinite products

We have seen that a product of two normal spaces can fail to be normal. Yet, there are cases where
even infinite products are normal:

Lemma 8.1.44 A countable product of metrizable spaces is normal. Any product of compact Haus-
dorff spaces is normal.

Proof. A countable product of metrizable spaces is metrizable by Corollary 6.5.36, thus normal by
Lemma 8.1.11. Any product of compact Hausdorff spaces is Hausdorff and compact (by Tychonov),
thus normal by Proposition 8.1.8. �

On the other hand:

Proposition 8.1.45 Any product of uncountably many infinite discrete spaces is non-normal.

Proof. It suffices to prove this for an uncountable product of countably infinite discrete spaces. (If
Xi is infinite, it has a countably infinite subset Yi, which of course is closed. Then

∏
i Yi is closed in∏

iXi, so that normality of
∏

iXi would imply normality of
∏

i Yi by Exercise 8.1.26.) Let thus I be
uncountable and X = (N, τdisc)

I .
For n ∈ N, define

An = {x ∈ X | #{i ∈ I | pi(x) = k} ≤ 1 ∀k 6= n}.

Thus x is in An if no integer other than n appears more than once among the coordinates pi(x).
Each An is closed since its complement is given by

X\An =
⋃
k 6=n

⋃
i,j∈I
i6=j

p−1
i (k) ∩ p−1

j (k),

which is open. If n 6= m then An ∩ Am consists of the points x ∈ X for which no integer appears
more than once as a coordinate pi(x), thus I → N, i 7→ pi(x) is injective. But this is impossible since
I is uncountable. Thus the An are mutually disjoint. Let U ⊇ A1 be open.

Given x ∈ X and a finite subset {i1, . . . , in} ⊆ I, we define

U(x; i1, . . . , in) =
n⋂
k=1

p−1
ik

(pik(x)).

This is a neighborhood of x contained in the canonical base BΠ for the product topology. Let x1 ∈ X
be the point with all coordinates equal to 1. Then x1 ∈ A1 ⊆ U , thus there exist i1, . . . , in1 ∈ I such
that U(x1; i1, . . . , in1} ⊆ U . Now let x2 ∈ X be the point all of whose coordinates are 1 except that
pik(x2) = k for all k = 1, . . . , n1. Since no integer other than 1 appears more than once as a coordinate
of x2, we have x2 ∈ A1. Now find in1+1, . . . , in2 ∈ I such that U(x2; i1, . . . , in1 , in1+1, . . . , in2) ⊆ U .
(It is understood that the ik are all different.) Iterating this, we obtain sequences {xk} in X, {nk}
in N and {ik} in I such that all coordinates of xk are 1 except that pil(xk) = l for l = 1, . . . , nk and
such that (xk; i1, . . . , ink) ⊆ U .

Now let y ∈ X be the point all of whose coordinates are 2 except that pil(y) = l for all l ∈ N.
Since no coordinate other than 2 appears repeatedly, y ∈ A2. Let now V ⊇ A2 be open. Then there
exists J = {j1, . . . , jm} ⊆ I such that U(y; j1, . . . , jm) ⊆ V . Since J is finite, there exists s ∈ N such
that

J ∩ {i1, i2, . . .} = J ∩ {i1, . . . , ins}.
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Now define z ∈ X by

pi(z) =


k if i = ik ∈ {i1, . . . , ins}
1 if i ∈ {ins+1, . . . , ins+1}
2 otherwise

Now, if ik ∈ J ∩ {i1, . . . , ins} then pik(z) = k = pik(y), and for i ∈ J\{i1, . . . , ins} we have pi(z) = 2
since J ∩ {ins+1, . . . , ins+1} = ∅. Thus pi(z) = pi(y) ∀i ∈ J , so that z ∈ U(y; j1, . . . jm) ⊆ V .
Furthermore, we have pik(z) = k = pik(xs+1) ∀ik ∈ {i1, . . . , ins} and pi(z) = 1 = pi(xs+1) ∀i ∈
{ins+1, . . . , ins+1}, proving z ∈ U(xs+1; i1, . . . , ins+1) ⊆ U . We therefore have z ∈ U ∩ V , thus X is
not normal. �

Corollary 8.1.46 If an uncountable product
∏

i∈I Xi of non-empty T1-spaces is normal then at most
countably many spaces Xi are not countably compact.

Proof. Define J = {i ∈ I | Xi is not countably compact}. By Exercise 7.7.8, every space Xj with
j ∈ J has an infinite closed discrete subspace Yi. If J is uncountable then

∏
j∈J Yj is non-normal by

Proposition 8.1.45. As before, this implies that
∏

j∈J Xj is non-normal. Now Exercise 8.1.37 applied
to X ∼=

∏
i∈J Xi ×

∏
i∈I\J Xi shows that

∏
i∈I Xi is non-normal. �

For example, the space RR is non-normal (but T3.5).

Theorem 8.1.47 A product
∏

i∈I Xi of non-empty metrizable spaces is normal if and only if at most
countably many Xi are non-compact.

Proof. If J = {i ∈ I | Xi is non-compact} is countable then
∏

i∈J Xi is metrizable, whereas
∏

i∈I\J Xi

is compact Hausdorff. Now X ∼=
∏

i∈J Xi ×
∏

i∈I\J Xi is normal by Theorem 8.1.43.
The converse follows from Corollary 8.1.46 since compactness and countable compactness are

equivalent for metric spaces by Theorem 7.7.23. �

Corollary 8.1.48 A product of discrete spaces is normal if and only if at most countably many of
them are infinite.

Using Proposition 8.1.45, we can give another example of a normal space that is not hereditarily
normal:

Corollary 8.1.49 The space II , where I = [0, 1], (cf. Example 7.7.13) is T4 but not T5.

Proof. II is compact Hausdorff, thus normal. Let A = {1/n | n ∈ N} ⊆ I. Equipped with the sub-
space topology, A is countable discrete and therefore homeomorphic to (N, τdisc). Thus the subspace
AI ⊆ II is homeomorphic to (N, τdisc)

I , which is non-normal by Proposition 8.1.45. �

8.1.5 Normality and shrinkings of covers

The results of this section improve on the statement (ii) Lemma 8.1.4, which is equivalent to nor-
mality. The main application will be to partitions of unity, considered in Section 8.2.5.

Exercise 8.1.50 Prove that a T1-space X is normal if and only if for every finite open cover
{U1, . . . , Un} there is a closed cover {C1, . . . , Cn} with Ci ⊆ Ui ∀i.

Hint: Use Lemma 8.1.4(ii) and induction.
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Definition 8.1.51 Given a cover U of X, a shrinking of U is a cover V = {VU ⊆ X}U∈U such that
VU ⊆ U ∀U ∈ U . If all VU are open (closed) then V is called an open (closed) shrinking.

Remark 8.1.52 1. If U ⊆ P (X) is a cover of X, a subcover V ⊆ U is a special case of a shrinking,
where for each U ∈ U we have either VU = U or VU = ∅.

2. Exercise 8.1.50 just says that every finite open cover has a closed shrinking. 2

Actually, one can do somewhat better than Exercise 8.1.50:

Lemma 8.1.53 Let X be normal and {U1, . . . , Un} a finite open cover of X. Then there is an open
cover {V1, . . . , Vn} such that Vk ⊆ Uk ∀k.

Proof. Let W1 = U2 ∪ · · · ∪ Un. Since {U1, . . . , Un} is a cover of X, we have U1 ∪W1 = X. This is
equivalent to F1 ⊆ U1 where F1 = X\W1 is closed. By Lemma 8.1.4(iii), there is an open V1 such
that F1 ⊆ V1 ⊆ V1 ⊆ U1. Now F1 ⊆ V1 is equivalent to V1 ∪W1 = X, thus {V1, U2, U3, . . . , Un} is an
open cover of X. Now let W2 = V1 ∪ U3 ∪ · · · ∪ Un and F2 = X\W2. Now F2 ⊆ U2 and as above we
can find an open V2 such that F2 ⊆ V2 ⊆ V2 ⊆ U2. This is equivalent to {V1, V2, U3, . . . , Un} being
an open cover. Going on like this, we consecutively construct open Vk ⊆ Uk satisfying Vk ⊆ Uk and
such that {V1, . . . , Vk, Uk+1, . . . , Un} is an open cover. Once we have arrived at k = n, we are done.
�

It is now natural to ask whether Lemma 8.1.53 remains true for an infinite open cover U . If X
is compact, this is easy: Just choose a finite subcover U ′ ⊆ U , apply Lemma 8.1.53 to the latter to
obtain a shrinking V ′ = {VU}U∈U ′ of U ′ such that VU ⊆ U ∀U ∈ U ′. Defining VU = ∅ if U ∈ U\U ′,
{VU}U∈U is a shrinking of U . In the absence of compactness, one needs a certain weak finiteness
condition on U :

Definition 8.1.54 An open cover U of a topological space (X, τ) is called point-finite if each x ∈ X
is contained in finitely many U’s, i.e. #{U ∈ U | x ∈ U} <∞ ∀x ∈ X.

Proposition 8.1.55 If X is normal and U is a point-finite open cover then there is an open cover
V = {VU}U∈U such that VU ⊆ U ∀U ∈ U .

Proof. The generalization of Lemma 8.1.53 to countable covers could be proven using induction, but
uncountable covers would require transfinite induction. We prefer to use Zorn’s lemma instead. The
idea is to consider open shrinkings V = {Vi}i∈I of U such that (*) for each i ∈ I either Vi = Ui or
Vi ⊆ Ui holds. Define a partial ordering on the set F of these shrinkings by declaring that V ≤ W
if Vi 6= Ui ⇒ Wi = Vi. Now let C ⊆ F be a chain, i.e. a totally ordered subset. Define a family
W = {Wi}i∈I by Wk =

⋂
V∈C Vk for all k ∈ I. It is clear that (*) holds, but one must check that W

is a cover, i.e.
⋃
iWi = X. Let x ∈ X. Since U is point-finite, the set Jx = {i ∈ I | x ∈ Ui} ⊆ I is

finite. If Wj = Uj for some j ∈ Jx then x ∈ Uj = Wj ⊆
⋃
W . It remains to consider the case where

Wj ⊆ Uj for all j ∈ Jx. By definition of ≤ and since C is a chain, for every j ∈ Jx there is an element
Vj ∈ C such that Vj = Wj for every V ≥ Vj. Now let Z = maxj∈Jx Vj. Since Z ∈ C is a cover, we
have x ∈

⋃
i Zi =

⋃
i

⋂
j∈Jx V

j
i =

⋃
iWi =

⋃
W . Thus W is cover, and it clearly is an upper bound

for the chain C.
Now Zorn’s lemma applies and gives the existence of a maximal element V = {Vi} of (F ,≤). If

we can prove that Vi ⊆ Ui for all i ∈ I, we are done (since V ∈ F by definition is a cover). So assume
that instead there is an i0 ∈ I such that Vi0 = Ui0 . But then we can argue as in the proof of Lemma
8.1.53 to find an open V ′i0 such that V ′i0 ⊆ Ui0 and such that V with Vi0 replaced by V ′i0 still covers
X. But this would be a cover V ′ strictly larger than V (w.r.t. ≤), contradicting the maximality of
the latter. �
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Exercise 8.1.56 Prove that a point-finite cover U has a subcover V from which no element can be
omitted without losing the covering property. (One says V is irreducible.) Hint: Zorn’s lemma.

8.2 Urysohn’s “lemma” and its applications

The usefulness of the notion of normality was already seen in Proposition 8.1.18 and its Corollary
8.1.19. Now we will study some deeper ones, all of which rely on Urysohn’s “lemma” proven next.

8.2.1 Urysohn’s Lemma

Given a general topological space X, it is by no means obvious how to produce a non-constant
continuous function f : X → R. The following result therefore is one of the most important (and
beautiful) results in general topology:

Theorem 8.2.1 (Urysohn’s Lemma) 2 If (X, τ) is normal and C,D ⊆ X are closed and disjoint,
there exists a function f ∈ C(X, [0, 1]) such that f �C = 0, f �D = 1.

Before beginning with the proof, we note that given f ∈ C(X, [0, 1]) and defining Ur = f−1([0, r))
for r ∈ (0, 1), the sets Ur are open and satisfy r < s ⇒ Ur ⊆ Us. Conversely, one can construct a
f ∈ C(X, [0, 1]) from such a family of open sets, where it is enough to have Ur for r in any dense
subset S ⊆ (0, 1):

Lemma 8.2.2 Let S ⊆ (0, 1) be dense and let {Vr ⊆ X}r∈S be open sets satisfying

r < s⇒ Vr ⊆ Vs. (8.1)

Then

f(x) =

{
inf{s ∈ S | x ∈ Vs} if x ∈

⋃
s∈S Vs

1 if x 6∈
⋃
s∈S Vs

defines a continuous function f : X → [0, 1] such that

f(x) = 0⇔ x ∈
⋂
s∈S

Vs and f(x) = 1⇔ x 6∈
⋃
s∈S

Vs.

Proof. If x ∈
⋂
s∈S Vs then f(x) = inf(S) = 0 since S ⊆ (0, 1) is dense. If f(x) = 0 then there

are s ∈ S arbitrarily close to zero such that x ∈ Vs. In view of (8.1) this implies x ∈
⋂
s∈S Vs. If

x 6∈
⋃
s∈S Vs then f(x) = 1 by definition. Since x ∈ Vs implies f(x) ≤ s, we see that f(x) = 1 implies

x 6∈
⋃
s∈S Vs. It remains to prove that f is continuous. Since {[0, a) | 0 < a ≤ 1}∪{(b, 1] | 0 ≤ b < 1}

is a subbase for the topology of [0, 1], it suffices to show that f−1([0, a)) and f−1((b, 1]) are open.
(I.e. f is upper and lower semicontinuous.)

If T ⊆ R and a ∈ R then inf(T ) < a is equivalent to the existence of t ∈ T with t < a. Thus

x ∈ f−1([0, a))⇔ inf{s ∈ S | x ∈ Vs} < a⇔ ∃s ∈ S ∩ (0, a) : x ∈ Vs ⇔ x ∈
⋃

s∈S∩(0,a)

Vs.

Thus f−1([0, a)) =
⋃
s∈S∩(0,a) Vs, which is open. To consider f−1((b, 1]), assume f(x) = inf{s ∈

S | x ∈ Vs} > b. Since S ⊆ (0, 1) is dense, we can choose u, v ∈ S such that b < u < v < f(x).

2Pavel S. Urysohn (1898-1924), Russian mathematician. Drowned in the Atlantic off the French coast at age 26.
The Jahrbuch website (http://www.emis.de/MATH/JFM/JFM.html) lists 38 publications, appearing until 1929! (Many
were finished by U.’s collaborators and colleagues.)
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Then we have Vu ⊆ Vv and x 6∈ Vv (since f(x) > v), thus x ∈ X\Vv ⊆ X\Vu ⊆
⋃
s∈S∩(b,1)X\Vs.

Conversely, if x ∈
⋃
s∈S∩(b,1)X\Vs then there is an s ∈ S ∩ (b, 1) such that x 6∈ Vs. Then clearly

x 6∈ Vs and thus f(x) ≥ s > b. Thus f−1((b, 1]) =
⋃
s∈S∩(b,1)X\Vs, which clearly is open. �

Proof of Theorem 8.2.1. If C,D are disjoint closed subsets, we have C ⊆ U with U = X\D open.
By normality and Lemma 8.1.4, there is an open set V 1

2
such that C ⊆ V 1

2
⊆ V 1

2
⊆ U . Applying

Lemma 8.1.4 to C ⊆ V 1
2

and to V 1
2
⊆ U , we find open sets V 1

4
and V 3

4
such that

C ⊆ V 1
4
⊆ V 1

4
⊆ V 1

2
⊆ V 1

2
⊆ V 3

4
⊆ V 3

4
⊆ U.

Going on like this, we find V 1
8
, V 3

8
, V 5

8
, V 7

8
such that

C ⊆ V 1
8
⊆ V 1

8
⊆ V 2

8
⊆ · · · ⊆ V 6

8
⊆ V 7

8
⊆ V 7

8
⊆ U.

Iterating this, we obtain an open set Vs for every s ∈ (0, 1)∩D, where D is the set of dyadic rationals
D = { n

2m
| n ∈ Z, m ∈ N0}. (Note that we have used DCω.) By construction, we have

C ⊆ Vs ⊆ Vs ⊆ U and s < t ⇒ Vs ⊆ Vt. (8.2)

Since the dyadic rationals are dense in R, Lemma 8.2.2 applies and provides f ∈ C(X, [0, 1]). Since
C ⊆

⋂
s∈(0,1)∩D Us, we have f �C = 0, and

⋃
s∈(0,1)∩D Us ⊆ X\D implies f �D = 1. �

It is convenient to reformulate Urysohn’s result in terms of the following:

Definition 8.2.3 Let X be a topological space. Two subsets A,B ⊆ X are completely separated if
there is f ∈ C(X, [0, 1]) such that f �A = 0 and f �B = 1.

For A,B ⊆ X we clearly have: A,B completely separated ⇒ A ∩ B = ∅ ⇒ A,B separated
(Definition 8.1.31) ⇒ A ∩B = ∅. Urysohn’s lemma gives:

Corollary 8.2.4 In a normal space, we have A∩B = ∅ if and only if A,B are completely separated.

Remark 8.2.5 1. Obviously, the interval [0, 1] can be replaced by any bounded interval [a, b].
2. All that was used about the field R is this proof were the facts that (i) it contains Q (i.e.

characteristic zero), (ii) is ordered (this actually implies (i)) and that (iii) bounded sets have an
infimum, i.e. the order completeness. But these properties already characterize R uniquely as a field.

3. Urysohn’s Lemma has many applications, of which we will consider the following: Tietze’s
extension theorem (Section 8.2.3), the construction of ‘partitions of unity’ (Section 8.2.5), and the
metrization results of Sections 8.2.4 and 8.5.4.

4. We have isolated a part of the proof as Lemma 8.2.2 since it has several other applications,
e.g. in the proof of Theorem D.2.3.

5. Urysohn’s lemma remains true as stated for spaces satisfying “T4−T1”. But then of course we
cannot conclude that continuous functions separate points from each other or from closed sets. 2

8.2.2 Perfect normality (T6)

Urysohn’s Lemma only claims that for disjoint closed C,D there is an f ∈ C(X, [0, 1]) such that
f−1(0) ⊇ C, f−1(1) ⊇ D. It is natural to ask whether one can choose f such that f−1(0) =
C, f−1(1) = D. (Lemma 8.2.2 would give this if we knew that

⋂
r Ur = C,

⋃
r = X\D, but that

does not follow from the above construction of {Ur}.) We will see that there actually are normal
spaces where this is false! As usual, this motivates another definition:
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Definition 8.2.6 A space X is called perfectly normal or T6 if it is T1 and for any two disjoint
closed subsets C,D there exists an f ∈ C(X, [0, 1]) such that f−1(0) = C and f−1(1) = D.

Note that (as in the definition of normality) we allow that C or D is empty. It is clear that
T6 ⇒ T4. We will see that also T6 ⇒ T5. The following saves many words:

Definition 8.2.7 A set A ⊆ X is called a zero-set or functionally closed if there is a f ∈ C(X, [0, 1])
such that A = f−1(0).

Exercise 8.2.8 Let X be a topological space. Prove:

(i) Every zero-set is closed and Gδ.

(ii) If X is normal then every closed Gδ-set is a zero-set.

(iii) For a T1-space X the following are equivalent:

(α) X is perfectly normal (T6).

(β) Every closed set is a zero-set.

(γ) X is normal and every closed set is Gδ.

Exercise 8.2.9 Prove:

(i) Every subspace of a T6-space is T6, thus the T6-property is hereditary.

(ii) T6 ⇒ T5.

(iii) Metric spaces are T6.

Some authors call spaces, in which every closed sets are Gδ, perfect. In view of (γ) above, this
fits well with ‘perfect normality’, but it clashes with other uses of ‘perfect’.

The following should be compared with Lemma 8.1.14:

Lemma 8.2.10 A T1-space X is perfectly normal (T6) if and only if for every open U there is a
countable family {Wn}n∈N of open sets such that Wn ⊆ U ∀n and U =

⋃
nWn.

Proof. ⇒ Since X is T6, then by (β) of Exercise 8.2.8 there is an f ∈ C(X, [0, 1]) such that U =
f−1((0, 1]). Then Wn = f−1((1/n, 1]) is open for each n ∈ N, satisfies Wn ⊆ f−1([1/n, 1]) ⊆ U and
clearly

⋃
nWn = U .

⇐ Given {Wn}n∈N as stated, we have U =
⋃
nWn ⊆

⋃
nWn ⊆ U , thus U =

⋃
nWn. Thus every

open set is Fσ, which is equivalent to every closed set being Gδ. If C ⊆ U is closed then we trivially
have C ⊆ U =

⋃
nWn. Now X is normal by Lemma 8.1.14, and therefore T6 by Exercise 8.2.8. �

Corollary 8.2.11 A countable or second countable T3-space is perfectly normal (T6).

Proof. Countable families {Wn}n∈N satisfying the hypothesis of Lemma 8.2.10 were already obtained
in the proofs of (i) and (ii) of Proposition 8.1.16. �

Remark 8.2.12 1. Recall from Corollary 8.1.30 that there are Lindelöf T3-spaces that are not T5.
Combining this with Exercise 8.2.9(ii) it is clear that Lindelöf T3 6⇒ T6.

2. The Sorgenfrey line is Lindelöf T3, but not second countable. Nevertheless, one has: 2



8.2. URYSOHN’S “LEMMA” AND ITS APPLICATIONS 211

Exercise 8.2.13 Prove that the Sorgenfrey line is perfectly normal. Hint: Look at Exercise 7.1.8
for ideas.

The following provides simple examples of T5-spaces that are not T6:

Exercise 8.2.14 Let S be a set and let A(S) be the one-point compactification of (S, τdisc) (which
is T5 by Exercise 8.1.29). Prove that A(S) is perfectly normal (T6) if and only if S is countable.

Remark 8.2.15 For countable S, Corollary 8.2.40 will give the better result that A(S) is metrizable.
(By the above, A(S) is not T6 for uncountable S, thus not metrizable.) 2

Exercise 8.2.16 Let X be a topological space. Prove:

(i) X is T1 and first countable ⇒ all singletons {x} are Gδ-sets ⇒ X is T1.

(ii) If X is compact Hausdorff (or just countably compact and T3) and all singletons {x} are Gδ-sets
then X is first countable.

(iii) Countably compact T6 ⇒ first countable.

Remark 8.2.17 1. Compare (iii) with compact metrizable ⇒ second countable.
2. Spaces in which every singleton is Gδ are said to have ‘countable pseudocharacter’.
3. Since metric spaces are first countable and T1 and their closed sets are Gδ, the fact that first

countable spaces are quite close to metric spaces (cf. Remark 5.2.28.2) and Exercise 8.2.16(i) could
lead one to expect that every closed set in a first countable T1-space is Gδ. This is not true: The�

lexicographical order topology on [0, 1]2 is Hausdorff by Exercise 4.2.7 (actually even T5 by Theorem
8.1.34) and first countable by Exercise 4.3.11. Thus singletons are Gδ by Exercise 8.2.16(i). But
there are closed sets that are not Gδ. (This also provides another example of a T5-space that is not
T6.)

4. By Exercise 8.2.13, the Sorgenfrey line (R, τS) is T6, but by Proposition 8.1.39 its square
(R, τS)2 is not even T4. Thus also the T6-property is not preserved by products.

5. It is not true that compact T6 implies metrizable. Cf. [269, Space 95]. 2

The following easy exercise shows that all separation axioms behave well w.r.t. direct sums:

Exercise 8.2.18 Let Xi, i ∈ I be topological spaces. Show for every p ∈ {0, 1, 2, 3, 4, 5, 6} that the
direct sum X =

⊕
iXi is Tp if and only if each Xi is Tp.

Remark 8.2.19 1. Since the notions of of zero-sets and of complete separation of a pair of sets will
play a rôle later, we use Lemma 8.2.2 to give ‘intrinsic’ characterizations of them:

(i) Two sets C,D ⊆ X are completely separated if and only if there is a family {Ur}r∈(0,1)∩D of
open sets satisfying (α) : r, s ∈ (0, 1) ∩ D, r < s⇒ Ur ⊆ Us and (β) : C ⊆ Ur ⊆ X\D ∀r.

(ii) Similarly, A ⊆ X is a zero-set if and only if there exists a family {Ur}r∈(0,1)∩D of open sets
satisfying (α) and (γ) :

⋂
r Ur = A.

2. Instead of (0, 1)∩D one could use any countable dense subset of (0, 1), but the dyadic rationals
are the simplest choice. Since they are still somewhat complicated, one may ask whether the criteria
(α) + (β) and (α) + (γ) really are more ‘intrinsic’ (see Remark 8.3.7.2 for a discussion of this notion)
than being a zero set or completely separated. Consider the set {0, 1}∗ = {a ∈ {0, 1}N | 1 ≤
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#{n | an = 1} < ∞} of finite sequences ending with 1, ordered lexicographically. (I.e. if a 6= b and
i = min{j | aj 6= bj} then a < b ⇔ ai = 0, bi = 1.) Now a 7→

∑∞
n=1 2−nan is an order preserving

bijection {0, 1}∗ → (0, 1)∩D. This description of (0, 1)∩D seems simple enough to be called intrinsic.
2

8.2.3 The Tietze-Urysohn extension theorem

Let X be topological space, Y ⊆ X a subspace. It is natural to ask whether a continuous real valued
function f ∈ C(Y,R) on Y can be extended to a continuous function on X. More precisely: Is there

an f̂ ∈ C(X,R) whose restriction to Y coincides with f? This question arises in many contexts.

Theorem 8.2.20 (Tietze-Urysohn extension theorem) 3 Let (X, τ) be normal, Y ⊆ X closed

and f ∈ Cb(Y,R). Then there exists f̂ ∈ Cb(X,R) such that f̂ �Y = f .

We follow the exposition in [115] which is somewhat more conceptual than the standard one.
Recall that for any topological space X and metric space Y , (2.6) defines a complete metric on
Cb(X, Y ). For Y = R, the metric D comes from the norm ‖f‖ = supx |f(x)|, thus (Cb(X,R), ‖ · ‖)
is Banach space. Now we observe that the restriction map T : Cb(X,R)→ Cb(Y,R), f 7→ f �Y is a
norm-decreasing map, and proving the extension theorem is equivalent to proving that T is surjective.
Be begin with a general approximation result (used also in the proof of the Open Mapping Theorem
G.5.15) which deduces surjectivity of a bounded map A : E → F between normed spaces from some
form of ‘almost surjectivity’:

Lemma 8.2.21 Let E be a Banach space, F a normed space (real or complex) and T : E → F a
linear map. Assume also that there are m > 0 and r ∈ (0, 1) such that for every y ∈ F there is an
x0 ∈ E with ‖x0‖E ≤ m‖y‖F and ‖y − Tx0‖F ≤ r‖y‖F . Then for every y ∈ F there is an x ∈ E
such that ‖x‖E ≤ m

1−r‖y‖F and Tx = y. In particular, T is surjective.

Proof. It suffices to consider the case ‖y‖ = 1. By assumption, there is x0 ∈ E such that ‖x0‖ ≤ m
and ‖y − Tx0‖ ≤ r. Applying the hypothesis to y − Tx0 instead of y, we find an x1 ∈ E with
‖x1‖ ≤ rm and ‖y − T (x0 + x1)‖ ≤ r2. Continuing this inductively, we obtain a sequence {xn} such
that

‖xn‖ ≤ rnm, (8.3)

and
‖y − T (x0 + x1 + · · ·+ xn)‖ ≤ rn+1. (8.4)

Now, (8.3) together with completeness of E implies, cf. Lemma 3.1.8, that
∑∞

n=0 xn converges to an
x ∈ E with

‖x‖ ≤ ‖x0‖+ ‖x1‖+ · · · ≤ m+ rm+ r2m+ · · · = m

1− r
,

and taking n→∞ in (8.4) gives Y = Tx. �

Proof of Theorem 8.2.20. As noted above, the restriction map T : Cb(X,R)→ Cb(Y,R), f 7→ f �Y
satisfies ‖Tf‖ ≤ ‖f‖ w.r.t. the supremum norms on X and Y . Let f ∈ Cb(Y,R), where we may
assume ‖f‖ = 1, i.e. f(Y ) ⊆ [−1, 1]. Let A = f−1([−1,−1/3]) and B = f−1([1/3, 1]). Then A,B are
disjoint closed subsets of Y , which are also closed in X since Y is closed. Thus by Urysohn’s Lemma,
there is a g ∈ C(X, [−1/3, 1/3]) such that g �A = −1/3 and g �B = 1/3. Thus ‖g‖X = 1/3 and
‖Tg − f‖Y ≤ 2/3. (You should check this!) Now the above lemma is applicable with m = 1/3 and

3H. F. F. Tietze (1880-1964) proved this for metric spaces. The generalization to normal spaces is due to Urysohn.
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r = 2/3 and gives the existence of f̂ ∈ C(X,R) with T f̂ = f and ‖f̂‖ = ‖f‖ (since m/(1− r) = 1).
�

Remark 8.2.22 1. Adding a constant to f we can arrange that inf f = − sup f . Together with
‖f̂‖ = ‖f‖, this shows that if f ∈ C(Y, [a, b]) then f̂ ∈ C(X, [a, b]).

2. The proof of the extension theorem used the axiom DCω of Countable Dependent Choice
twice: In the proof of Urysohn’s lemma and of Lemma 8.2.21. 2

Exercise 8.2.23 Prove that for a T1-space X, the following are equivalent: (i) X is T4, (ii) the
conclusion of Urysohn’s Lemma holds, and (iii) the conclusion of Tietze’s theorem holds.

Exercise 8.2.24 (i) Prove the following modification of Tietze’s theorem: If (X, τ) is normal,

Y ⊆ X closed and f ∈ C(Y, (0, 1)), then there exists f̂ ∈ C(X, (0, 1)) such that f̂ �Y = f .

(ii) Use (i) to prove that, for normal X and closed Y ⊆ X, every f ∈ C(Y,R) has an extension

f̂ ∈ C(X,R).

Remark 8.2.25 1. By the same argument, we can extend functions f : Y → [0, 1). (With Proposi-
tion 9.2.1, it will follow that there are extensions for every f ∈ C(Y, Z) with Z ⊆ R connected.)

2. We now know the following: If X is normal, Y ⊆ X is closed, and Z is [0, 1], [0, 1), (0, 1)

or R then every f ∈ C(Y, Z) extends (non-uniquely) to f̂ ∈ C(X,Z). Since a continuous function
f →

∏
i Zi into a product space just is an aggregate of continuous functions {X → Zi}i∈I and the

extension theorem can be applied to each Zi individually, we have a similar extension theorem for
every space Z that is a (possibly infinite) product of (open or closed) intervals and copies of R. (For
example, using C ∼= R2, Tietze’s theorem also holds for complex-valued functions.) Here is a slight
generalization: 2

Exercise 8.2.26 Let X be normal, Y ⊆ X closed, Z ⊆ Rn compact convex and f ∈ C(Y, Z). Prove

that there is a continuous extension f̂ : X → Z.

Remark 8.2.27 1. A more serious extension result than that of the exercise was given by Dugundji.
In this result Rn is replaced by any locally convex vector space and f is not required to be bounded,
at the expense of requiring X to be metrizable, cf. Theorem 8.5.37.

2. However, for spaces Z that are not products of intervals or copies of R or at least convex, the
extension statement often fails! For example, while X = R is normal and Y = (−∞,−1]∩ [1,∞) ⊆ R
is closed, the map Y → {±1}, x 7→ x/|x| cannot be continuously extended to R. (We will see this as
a consequence of the connectedness of R.) Another example: The identity map id : S1 → S1 cannot
be extended to a continuous map f : D2 → S1, where S1 = ∂D2 ⊆ D2. 2

The following application of Tietze extension was already mentioned:

Lemma 8.2.28 A pseudocompact normal space is countably compact.

Proof. Assume that X is normal and pseudocompact but not countably compact. Then by Exercise
7.7.8, there is a countably infinite closed discrete subspace Y . Choosing a bijection f : Y → N
and considering f as a function Y → R, f is continuous. Thus by Tietze’s extension theorem (for

unbounded functions, cf. Exercise 8.2.24) there is a continuous extension f̂ : X → R. Since f is

unbounded, so is f̂ , contradicting pseudocompactness. �
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8.2.4 Urysohn’s metrization theorem

Given a topological space (X, τ), the metrization problem consists in finding a metric d inducing the
topology τ . The following criterion for τ = τd is quite trivial, but exactly what we need:

Lemma 8.2.29 Let (X, τ) be a topological space and d a metric on X. Then the following are
equivalent:

(i) τ = τd.

(ii) Given x ∈ U ∈ τ , there exists r > 0 such that Bd(x, r) ⊆ U , and
Bd(x, r) ∈ τ ∀x ∈ X, r > 0.

(iii) Given x ∈ U ∈ τ , there exists r > 0 such that Bd(x, r) ⊆ U , and d : X × X → [0,∞) is
continuous w.r.t. the topology τ on X.4

Proof. That (i) implies (ii) and (iii) is immediate by the definition of τd. The two assumptions in (ii)
imply τ ⊆ τd and τd ⊆ τ , respectively, thus (i). And in view of Bd(x, r) = f−1

x ((−∞, r)), (iii) implies
(ii). �

Here is a first application:

Exercise 8.2.30 Prove that for a compact Hausdorff space X, the following are equivalent:

(i) X is metrizable.

(ii) The diagonal ∆ ⊆ X ×X is Gδ.

(iii) There exists f ∈ C(X ×X,R) such that f−1(0) = ∆.

Hint: For (iii)⇒(i), prove that d(x, y) = supz∈X |f(x, z)− f(y, z)| is a metric and use Lemma 8.2.29.

Definition 8.2.31 A family D of pseudometrics on a topological space (X, τ) separates points from
closed sets if for every closed C and x ∈ X\C there is a d ∈ D such that infy∈C d(x, y) > 0.

Proposition 8.2.32 If (X, τ) is a T1-space and D is a countable family of continuous pseudometrics
on X separating points from closed sets, then X is metrizable.

Proof. If d is a (continuous) pseudometric then also d′(x, y) = min(1, d(x, y)) is a (continuous)
pseudometric. In view of infy∈C d

′(x, y) = min(1, infy∈C d(x, y)), also D′ = {d′ | d ∈ D} separates
points from closed sets. Thus we may assume that all d ∈ D are bounded by one. Choosing a
bijection N→ D, n 7→ dn and defining

d(x, y) =
∞∑
n=1

2−ndn(x, y),

it is clear that d is a continuous pseudometric. If C is closed and x ∈ X\C, by assumption there
is an n ∈ N such that α = infy∈C dn(x, y) > 0. Thus infy∈C d(x, y) ≥ 2−nα > 0. Applying this to
the closed (by T1) set C = {y}, we see that x 6= y implies d(x, y) > 0, so that d is a metric. If now
x ∈ U ∈ τ , then C = X\U is open and x 6∈ C, thus by the above we have β = infy∈C d(x, y) > 0.
This implies B(x, β) ∩ C = ∅, and therefore B(x, β) ⊆ U . Now the implication (iii)⇒(i) of Lemma
8.2.29 gives τ = τd. Thus X is metrizable. �

4By Exercise 2.1.4, separate continuity already implies joint continuity.
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Theorem 8.2.33 (Urysohn’s Metrization Theorem) A second countable T3-space is metrizable.

Proof. By Proposition 8.1.16, the space X is T4. Let B = {U1, U2, . . . } be a countable base for the
topology, and let

S = {(n,m) ∈ N2 | Un ⊆ Um}.
For every (n,m) ∈ S use Urysohn’s Lemma to find a function f(n,m) ∈ C(X, [0, 1]) such that f(n,m) �
Un = 0, f(n,m) �X\Um = 1. Let C ⊆ X be closed and x ∈ X\C. With U = X\C, we have x ∈ U ,
and since B is a base, there is m ∈ N such that x ∈ Um ⊆ U . By normality and Lemma 8.1.4(iii),
there is an open V such that x ∈ V ⊆ V ⊆ Um ⊆ U . Using again that B is a base, there is n ∈ N
such that x ∈ Un ⊆ V ⊆ V ⊆ Um ⊆ U . Thus (n,m) ∈ S, and we have f(n,m)(x) = 0 (since x ∈ Un)
and f(n,m) �X\Um = 1. In view of Um ⊆ U , we have C = X\U ⊆ X\Um, thus f(n,m) �C = 1. It is
clear that dn,m(x, y) = |fn,m(x) − fn,m(y)| is a continuous pseudometric (bounded by 1). If C ⊆ X
is closed, x ∈ X\C and (n,m) ∈ S is chosen as above, we have infy∈C dn,m(x, y) = 1 > 0. Thus
D = {dn,m | (n,m) ∈ S} is a countable family of pseudometrics separating points from closed sets,
so that X is metrizable by Proposition 8.2.32. �

Remark 8.2.34 An alternative way of deducing metrizability of X goes as follows: One first notes
that the family F = {fn,m | (n,m) ∈ S} ⊆ C(X, [0, 1]) ‘separates points from closed sets’ in the
sense of Definition 8.3.15. Then by Proposition 8.3.16 the map

ιF : X → [0, 1]F =
∏
f∈F

[0, 1], x 7→
∏
f∈F

f(x)

is an embedding. Since F is countable, [0, 1]F is metrizable, cf. Corollary 6.5.36. Thus the same
holds for X ∼= ι(X) ⊆ [0, 1]F .

In view of the way Corollary 6.5.36 is proven, this reasoning is not fundamentally different from
the one given above. Both approaches have their virtues: The above ιF is an embedding irrespective
of countability of F , and this will be useful in Section 8.3.3. On the other hand, Proposition 8.2.32
will be reused in the proof of the Nagata-Smirnov metrization theorem, which also applies to spaces
that are not second countable and thus do not embed into [0, 1]N. 2

Urysohn’s theorem does not apply to non-second countable spaces, some of which are metrizable.
Nevertheless, it gives rise to some if-and-only-if statements.

Corollary 8.2.35 For a topological space X, the following are equivalent:

(i) X is T3 and second countable.

(ii) X is metrizable and separable (⇔ second countable ⇔ Lindelöf).

Proof. In view of Urysohn’s metrization theorem, we only need to observe that metrizable spaces are
T3 and that separability and second countability are equivalent for metric spaces. �

From this one can draw the somewhat silly conclusion is that a second countable space is metriz-
able if and only if it is T3. But for compact spaces one has a very satisfactory statement:

Corollary 8.2.36 A compact Hausdorff space is metrizable if and only if it is second countable.

Proof. By Proposition 8.1.8, a compact Hausdorff space is T4, and the ‘if’ statement follows from
Urysohn’s metrization theorem. On the other hand, every compact metrizable space is second count-
able by Corollary 7.7.27. �
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Remark 8.2.37 We cannot replace ‘second countable’ by ‘Lindelöf’ in Theorem 8.2.33: This follows
from the implications metrizable⇒ T6 ⇒ T5 and the existence of Lindelöf T3-spaces that are not T5,
like the Sorgenfrey line or a cube of uncountable dimension. (The non-metrizability of the latter
follows already from its failure to be first countable, cf. Exercise 6.5.15(iii).) 2

Now we can prove metrizability of certain quotient spaces:

Corollary 8.2.38 Let X be compact metrizable.

(i) If Y is Hausdorff and f : X → Y is a continuous surjection then Y is compact metrizable.

(ii) If ∼ is a closed equivalence relation on X then X/∼ is compact metrizable. (If ∼ is not closed,
X/∼ is not even Hausdorff.)

Proof. (i) By Proposition 7.4.11, f is closed. By Corollary 7.7.27, X is second countable. Thus by
Proposition 7.4.17, Y is second countable. Since Y is compact by Lemma 7.3.4 and Hausdorff by
assumption, it is T3. Now Y is metrizable by Urysohn’s metrization theorem.

(ii) By closedness of ∼, the quotient map is closed. Thus by Proposition 8.1.18, X/∼ is T4. Now
apply (i). (The last sentence follows from Proposition 7.4.11.) �

This can be generalized a bit:

Corollary 8.2.39 If X is metrizable and second countable (=separable) and ∼ is a closed equivalence
relation such that each equivalence class [x] ⊆ X is compact, then X/∼ is metrizable.

Proof. A metrizable space is normal, thus the quotient by a closed equivalence relation is normal. By
Remark 7.4.18.1 and the compactness of [x], X/∼ is second countable. Now apply Theorem 8.2.33.
�

For a locally compact T2-space X, the following provides necessary and sufficient conditions for
the metrizability of X and X∞:

Corollary 8.2.40 Let X be locally compact Hausdorff space, and consider the following statements:

(i) X∞ is metrizable.

(ii) X∞ is second countable.

(iii) X is second countable.

(iv) X ∼=
⊕

i∈I Xi, where all Xi are second countable.

(v) X is metrizable.

Then (i) ⇔(ii) ⇔(iii)⇒(iv)⇔(v). Furthermore, (iv) 6⇒(iii).

Proof. The implications (ii)⇒(iii)⇒(iv) and (i)⇒(v) are obvious.
(i)⇔(ii) follows from Corollary 8.2.36 since X∞ is compact Hausdorff.
(iii)⇒(ii) was Exercise 7.8.45(ii).
(iv)6⇒(iii) Example: Any uncountable discrete space.
(iv)⇒(v) A locally compact Hausdorff space is T3 by Corollary 8.1.9. Together with second

countability this gives metrizability by Urysohn’s metrization theorem. Thus each Xi is metrizable,
and a direct sum of metrizable spaces is metrizable, cf. Exercise 6.3.9(i).
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(v)⇒(iv) The proof involves the concept of paracompactness and several non-trivial results in-
volving the latter. Cf. Corollary 8.5.22. �

In Section 8.5 we will also prove a metrization theorem that applies to all spaces. (But there are
many others.)

Exercise 8.2.41 Prove in a purely set-theoretic way (no continuous functions) that every compact
Hausdorff space with Gδ diagonal ∆ ⊆ X × X is second countable. (Combined with Urysohn’s
theorem this gives a new proof for the non-trivial implication in Exercise 8.2.30.)

8.2.5 Partitions of unity. Locally finite families

Definition 8.2.42 If X is a topological space and f is a real (or complex) valued function on X
then the support of f is defined as supp(f) = {x ∈ X | f(x) 6= 0}.

Definition 8.2.43 Let U = {Ui}i∈I be an open cover of a space X. Then a partition of unity
subordinate to U is a family F = {fi}i∈I ⊆ C(X, [0, 1]) satisfying

(i) supp(fi) ⊆ Ui ∀i ∈ I,

(ii)
∑

i∈I fi(x) = 1 ∀x ∈ X.

For the sake of transparency and in order to motivate later definitions, we first prove the following
under restrictive assumptions:

Proposition 8.2.44 If X is normal then given a finite open cover U of X there is a partition of
unity subordinate to U .

Proof. Let U = {Ui}i∈I . By Lemma 8.1.53, we can find an open shrinking {Vi}i∈I such that Vi ⊆ Ui ∀i.
We can repeat this and find an open shrinking {Wi} such that Wi ⊆ Vi ∀i. Now, Wi and X\Vi are
disjoint closed subsets. Thus by Urysohn’s lemma, there are functions gi ∈ C(X, [0, 1]) such that
gi �Wi = 1 and gi �X\Vi = 0. The latter implies supp(gi) = {x ∈ X | gi(x) 6= 0} ⊆ Vi ⊆ Ui. Now,
define h(x) =

∑
i∈I gi(x). As a finite sum of continuous functions, h is continuous. Since the gi are

non-negative, we have h ≥ gi ∀i. Together with gi �Wi = 1 and the fact that {Wi} is a cover of X we
have h(x) ≥ 1 ∀x. Thus the functions fi = gi/h are continuous, satisfy

∑
i fi =

∑
i gi/h = h/h = 1

and the support condition supp(fi) ⊆ Ui. �

Remark 8.2.45 1. Partitions of unity are an extremely useful tool for many purposes, mostly in
differential topology. The point is that they can be used to reduce a global construction to local ones
which are easier, in particular when the elements U ∈ U of the covering have a simple structure, like
U ∼= Rn.

2. Some authors define the support of a function f : X → R without the closure, i.e. as
supp(f) = X\f−1(0). If one does this, the above proof simplifies since one shrinking suffices instead
of two. 2

What about generalizing the proposition to infinite covers? Lemma 8.1.53 applies only to finite
covers, but Proposition 8.1.55 gives the same conclusion provided we assume U to be point-finite.
Now the above proof goes through up to the definition h(x) =

∑
i gi(x). Since U is point-finite, only

finitely many gi(x) are non-zero for any x ∈ X. Thus h exists and satisfies h ≥ 1. But trying to
prove continuity of h we run into the problem that we have no control over the dependence of the
sets {i ∈ I | gi(x) 6= 0} on x, thus cannot relate h(x) to h(y) for x 6= y. This motivates defining the
following strengthening of the notion of point-finite family of sets:
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Definition 8.2.46 A family U ⊆ P (X) of subsets of a topological space X is called discrete (re-
spectively locally finite) if every x ∈ X has an open neighborhood V such that V has non-trivial
intersection with most one (resp. at most finitely many) elements of U .

Definition 8.2.47 A family F ⊆ C(X, [0, 1]) of functions is called locally finite if the associated
family {supp(f) | f ∈ F} of subsets is locally finite.

Lemma 8.2.48 If X is a topological space and F ⊆ C(X,R) is a locally finite family of functions
then g(x) =

∑
f∈F f(x) defines a continuous function.

Proof. By local finiteness of F , every x ∈ X has a neighborhood Ux such that Fx = {f ∈ F | Ux ∩
supp(f) 6= ∅} is finite. Thus for y ∈ Ux we have g(y) =

∑
f∈Fx f(y), which is a finite sum of

continuous functions, thus continuous. Since the Ux cover X and the functions g � Ux coincide on
intersections Ux ∩ Uy, we conclude that g is continuous on X, cf. Corollary 6.2.6. �

Theorem 8.2.49 If X is normal then given a locally finite open cover U of X there is a partition
of unity subordinate to U .

Proof. In view of the remarks preceding Definition 8.2.46, we only need to prove continuity of h =∑
i gi. But a partition of unity subordinate to a locally finite cover is locally finite, so that Lemma

8.2.48 applies. �

Remark 8.2.50 It is natural to ask whether Theorem 8.2.49 can be generalized further. One can
of course drop the local finiteness from Definition 8.2.43, interpreting

∑
f∈F f(x) in the sense of

unordered summation, cf. Example 5.1.26. (It then becomes a non-trivial fact that the partial sums
x 7→

∑
i∈J fi(x) are continuous for every J ⊆ I, cf. Exercise 5.2.32(viii).) But since local finiteness

played a crucial rôle in the proof of Theorem 8.2.49, it is not clear how to construct a partition of
unity without this assumption. If the open cover U admits a locally finite open shrinking V then
there is a partition of unity subordinate to V , which obviously also is subordinate to U . Spaces where
this is always possible are called paracompact. Cf. Section 8.5 for the basics of that subject. 2

The following application of local finiteness should be viewed in the light of Remark 2.6.7.2:

Exercise 8.2.51 Let X be a topological space and Yi ⊆ X ∀i ∈ I. Prove:

(i) If {Yi}i∈I is locally finite then {Yi}i∈I is locally finite.

(ii) If {Yi}i∈I is locally finite then
⋃
i Yi =

⋃
i Yi.

(iii) If {Yi}i∈I is locally finite with all Yi closed then
⋃
i Yi is closed.

Local finiteness also gives new intrinsic characterizations of pseudocompactness and the missing
implication in the proof of Proposition 7.7.33:

Proposition 8.2.52 Let X be a topological space. Consider the following statements:

(i) Every locally finite family of non-empty open sets in X is finite.

(ii) Every locally finite open cover of X by non-empty sets is finite.

(iii) Every locally finite open cover of X has a finite subcover.
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(iv) X is pseudocompact.

Then (i)⇒(ii)⇒(iii)⇒(iv), and (i) implies statement (ii) in Proposition 7.7.33. If X is completely
regular (Definition 8.3.1) then (iv)⇒(i).

Proof. (i)⇒(ii)⇒(iii) is obvious. (iii)⇒(iv) Let f ∈ C(X,R) and for i ∈ Z define Ui = f−1((i− 1, i+
1)). Then {Ui}i∈Z is an open cover of X that is locally finite since (i−1, i+1)∩ (j−1, j+1) is empty
unless |i− j| ≤ 1. Now the existence of a finite subcover given by (iv) means that f is bounded.

(i)⇒ Proposition 7.7.33(ii): Let F be a family {Ui}i∈N of non-empty open sets such that Ui+1 ⊆
Ui ∀i. Then (ii) implies that this family is not locally finite. Thus there exists an x ∈ X such that
that every neighborhood of X meets infinitely many Ui. Since the Ui are decreasing, we conclude
that x ∈ Ui ∀i, thus

⋂
i Ui 6= ∅.

(iv)+complete regularity⇒(i) If U is an infinite locally finite family of non-empty open sets, we
can pick an injective map N → U , n 7→ Un. For each n ∈ N, choose an xn ∈ Un. By regularity,
we can find open Vn such that x ∈ Vn ⊆ Vn ⊆ Un ∀n. By complete regularity there are functions
fn ∈ C(X,R) such that fn(xn) = n and fn �X\Vn = 0. Thus supp(fn) ⊆ Un. By local finiteness
of U and Lemma 8.2.48, the function f(x) =

∑
n fn(x) is well-defined and continuous. In view of

fn(xn) = n, f is unbounded, contradicting the pseudocompactness. �

The natural continuation of the above discussion of locally finite families is Section 8.5 on para-
compactness. But since a (minor) rôle in that discussion will be played by the notion complete
regularity, we treat the latter first.

8.3 Completely regular spaces. Stone-Čech compactifica-

tion

8.3.1 T3.5: Completely regular spaces

One may wonder whether, analogously to Urysohn’s Lemma for normal spaces, given a closed subset
C ⊆ X of a T3-space and x ∈ X\C, there is an f ∈ C(X, [0, 1]) with f(x) = 0 and f �C = 1. Putting
U = X\C and appealing to Lemma 8.1.5, one can find an open V 1

2
such that x ∈ V 1

2
⊆ V 1

2
⊆ U .

Applying Lemma 8.1.5 again, one can also find an open V 1
4

such that x ∈ V 1
4
⊆ V 1

4
⊆ V 1

2
. But in

order to squeeze an open V 3
4

between V 1
2

and U , one would need Lemma 8.1.4, which is not available
unless X is T4.

In fact, it turns out that the conclusion we were trying to prove is not true in all T3-spaces! This
motivates the following definition:

Definition 8.3.1 A T1-space X is called completely regular or T3.5 if for every closed C ⊆ X and
x ∈ X\C there is f ∈ C(X, [0, 1]) such that f(x) = 0 and f �C = 1.

Remark 8.3.2 In analogy to Remark 8.1.3.2, many authors also consider spaces without the T1-
property. They would call our completely regular spaces ‘Tychonov spaces’ and use complete regu-
larity for the analogous definition without the T1-axiom. 2

Lemma 8.3.3 T4 ⇒ T3.5 ⇒ T3.

Proof. The first implication follows from Urysohn’s Lemma together with closedness of points (T1),
and the second is proven as (ii)⇒(i) in Exercise 8.2.23. �
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Exercise 8.3.4 Let X be a T3.5-space, C ⊆ X closed and K ⊆ X compact with C ∩ K = ∅.
Construct a function f ∈ C(X, [0, 1]) such that f �C = 0 and f �K = 1.

Hint: Do not attempt to use Urysohn’s Lemma. It won’t work.

Like the Tp-properties with p ≤ 3, the T3.5-property is well-behaved w.r.t. subspaces and products:

Exercise 8.3.5 Prove:

(i) The T3.5-property is hereditary.

(ii) Let Xi 6= ∅ ∀i ∈ I. Then X =
∏

iXi is a T3.5-space if and only if each Xi is a T3.5-space.

Corollary 8.3.6 (i) Every product of T4-spaces is completely regular.

(ii) Every subspace of a T4-space is completely regular.

(iii) Every subspace of a compact Hausdorff space is completely regular.

(iv) Every locally compact Hausdorff space is completely regular.

(v) T3.5 6⇒ T4. Locally compact Hausdorff 6⇒ T4.

Proof. (i) All normal spaces are T3.5, and products of T3.5-spaces are T3.5 by Exercise 8.3.5(ii).
(ii) A T4-space is T3.5, and the T3.5-property is hereditary by Exercise 8.3.5(i).
(iii) Compact Hausdorff spaces are normal. Now apply (ii).
(iv) A locally compact Hausdorff space has a Hausdorff compactification. Now use (iii).
(v) In Exercise 8.1.29 we constructed a compact Hausdorff (thus normal) space X with a p ∈ X

such that Y = X\{p} is non-normal. Since Y is locally compact and T3.5, it is a counterexample for
both implications. �

Thus in particular the Sorgenfrey plane (R, τS)× (R, τS) is T3.5.

Remark 8.3.7 1. Also T3 6⇒ T3.5, but the usual counterexamples are a bit involved. Cf. e.g. [89,
Example 1.5.9]. For a simpler one, cf. [218].

2. As evidenced by Section 8.2, the T4-property has very useful and desirable properties but as we
have seen, it is badly behaved w.r.t. subspaces and products. The T3.5-property is somewhat weaker,
but much better behaved. For this reason both axioms play central rôles in topology. In the remainder
of Section 8.3, we will consider the most important applications and different characterization of
complete regularity. (Cf. Theorem 8.3.21.)

3. Whereas the definitions of the other separation axioms are intrinsic, in that they refer only to
the space and its topology, the T3.5-axiom is extrinsic, since it involves also another space, here [0, 1]
with its standard topology. (Countability axioms are considered intrinsic even though they involve
the smallest infinite cardinal number ℵ0 = #N.) One usually prefers intrinsic definitions. There does
in fact exist an equivalent intrinsic definition of complete regularity, cf. Exercise 8.3.11, but it is not
very convenient. For this reason, in this case the extrinsic definition is more useful.

4. We quickly return to Remark 5.2.21.3 about the uselessness of the notion of a ‘topological’
property: While the fact of being ‘topological’ is utterly evident for all intrinsic properties, a very
small amount of work may actually be needed to prove that an extrinsic property is topological, cf.
the exercise below, but again this becomes a triviality if one has done it once. 2

Exercise 8.3.8 Prove that complete regularity and metrizability are topological properties.



8.3. COMPLETELY REGULAR SPACES. STONE-ČECH COMPACTIFICATION 221

Definition 8.3.9 A set U ⊆ X is called a cozero-set or functionally open if there is a f ∈ C(X, [0, 1])
such that U = f−1((0, 1]). (Equivalently, X\U is a zero-set.)

Exercise 8.3.10 Prove that a T1-space is completely regular if and only if it has a base consisting
of cozero-sets.

The characterization of complete regularity in the preceding exercise is not entirely intrinsic, since
the notion of (co)zero-set isn’t. (But see Remark 8.2.19.) The following was discovered quite late
(Frink 1964, Zaitsev 1967):

Exercise 8.3.11 Let (X, τ) be a T1-space.

(i) Prove that X is completely regular (T3.5) if and only if it admits a base B satisfying

(α) If x ∈ U ∈ B then there is V ∈ B such that x 6∈ V and U ∪ V = X.

(β) If U, V ∈ B such that U ∪ V = X then there are U ′, V ′ ∈ B such that U ′ ∩ V ′ = ∅ and
X\U ⊆ U ′, X\V ⊆ V ′.

Hint: For ⇐ use Lemma 8.2.2.

(ii) Show directly, i.e. not using (i) and Urysohn’s lemma, that (α) and (β) are satisfied if X is
normal and we take B = τ .

We briefly discuss the implications among the separation axioms between complete regularity and
the Hausdorff property:

Definition 8.3.12 A T1-space X is called

(i) strongly Hausdorff if given x 6= y there are open U 3 x, V 3 y such that U ∩ V = ∅.

(ii) completely Hausdorff if given x 6= y there is an f ∈ C(X,R) such that f(x) 6= f(y). We also
say: ‘C(X,R) separates the points of X’.

(Some authors write T2.5 for what we call completely Hausdorff, others take it to mean strongly
Hausdorff. We prefer to avoid the notation.)

Lemma 8.3.13 For a T1-space, the following implications hold:

T4 ========- T3.5 ========- T3 =====- semiregular

completely

T2

?

wwwwwwww
====-

strongly

T2

?

wwwwwwww
========- T2

?

wwwwwwwwww
Proof. The implication T3 ⇒ strongly T2 was Corollary 8.1.6. If X is completely Hausdorff and
x 6= y, pick f ∈ C(X,R) such that f(x) 6= f(y). If ε = |f(x)− f(y)|/3 and

U = f−1((f(x)− ε, f(x) + ε)), V = f−1((f(y)− ε, f(y) + ε))

then x ∈ U, y ∈ V and U ⊆ f−1([f(x) − ε, f(x) + ε]), V = f−1([f(y) − ε, f(y) + ε]), implying
U ∩ V = ∅. That regularity (T3) implies semiregularity was Exercise 8.1.24. Let X be semiregular
and x, y ∈ X, x 6= y. By the T1-property there is an open U such that x ∈ U 63 y. By semiregularity
there is an open V such that x ∈ V ⊆ V ⊆ U 63 y. Defining W = X\V , we have y ∈ W and
V ∩W = ∅, thus X is Hausdorff. �
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Exercise 8.3.14 (i) Prove that a space X is locally compact Hausdorff if and only if C0(X,R)
separates the points of X.

(ii) Let X be any topological space. Prove that the relations ∼,∼0 defined by

x ∼ y ⇔ f(x) = f(y) ∀f ∈ C(X,R),

x ∼0 y ⇔ f(x) = f(y) ∀f ∈ C0(X,R).

are equivalence relations.

(iii) Prove that X/∼ is completely Hausdorff.

(iv) Prove that X/∼0 is locally compact Hausdorff.

(v) Prove that there are isomorphisms C(X,R) ∼= C(X/∼,R) and C0(X,R) ∼= C0(X/∼0,R) of
R-algebras, the first one also being unital.

We call X/∼ and X/∼0 the completely Hausdorff and locally compact Hausdorff quotients, re-
spectively, of X.

8.3.2 Embeddings into products

Definition 8.3.15 Let X and Yi, i ∈ I, be topological spaces. A family {fi : X → Yi}i∈I of
continuous functions separates points from closed sets if for every closed C ⊆ X and x ∈ X\C there

is an i ∈ I such that fi(x) 6∈ fi(C).

Proposition 8.3.16 If the family {fi : X → Yi}i∈I of continuous functions separates points from
closed sets and all spaces are T1 then the map F : X →

∏
i Yi, x 7→ (fi(x))i∈I is an embedding.

Proof. If x, y ∈ X with x 6= y then {y} is closed since X is T1. Since the family {fi} separates points
from closed sets, there is i ∈ I such that fi(x) 6∈ fi({y}) = {fi(y)} = {fi(y)}, where we used that Yi
is T1. This proves that F is injective, so that F : X → F (X) is a bijection. Continuity of F is clear
by Proposition 6.5.2. Now let C ⊆ X be closed, x ∈ X and assume F (x) ∈ F (C). Then for each
i ∈ I we have

fi(x) = pi(F (x)) ∈ pi(F (C)) ⊆ pi(F (C)) = fi(C),

where the inclusion ⊆ is due to the continuity of pi, cf. Exercise 5.2.8(v). Since this holds for all i ∈ I
and the family {fi} separates points from closed sets, we have x ∈ C. Thus F (x) ∈ F (C) implies
x ∈ C, which means that F separates points from closed sets. Now F is an embedding by Lemma
6.2.9(ii). �

Remark 8.3.17 Here is an alternative proof for the second half of the proposition, using nets
instead of Lemma 6.2.9: The map F : X → F (X) being a bijection, by Proposition 5.2.5 it is a
homeomorphism if and only if every net {xι} in X converges if and only if {F (xι)} converges. By
Lemma 6.5.3, the second condition holds if and only if {fi(xι)} converges in Yi for every i ∈ I. It
is clear that convergence of {xι} implies convergence of {fi(xι)} for every i. So assume that the net
{xι} in X does not converge. Then for every x ∈ X there is an open neighborhood U 3 x such
that xι 6∈ U frequently, thus xι ∈ C = X\U frequently. Since the family {fi} separates points from
closed sets, there is an fi such that fi(x) 6∈ fi(C). Thus Yi\fi(C) is an open neighborhood of fi(x).
Since xι ∈ C holds frequently, we frequently have fi(xι) ∈ fi(C) ⊆ fi(C), thus pi(F (xι)) = fi(xι)
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frequently is not in Yi\fi(C). This means that F (xι) frequently is not in the open neighborhood
p−1
i (Yi\fi(C) = X\p−1

i (fi(C)) of F (x). Thus for every x ∈ X there is an open neighborhood of F (x)
in which F (xι) frequently is not. This means that F (xι) does not converge to any point of F (X) (in
which a limit of F (xι) would have to lie). 2

8.3.3 The Stone-Čech compactification

Completely regular spaces by definition have enough continuous [0, 1]-valued functions to separate
points from closed sets. Taking into account Proposition 8.3.16, we are thus led to the following:

Definition 8.3.18 If X is any topological space, we define a map

ιX : X → [0, 1]C(X,[0,1]) =
∏

f∈C(X,[0,1])

[0, 1], x 7→
∏

f∈C(X,[0,1])

f(x).

(Thus ιX(x) is the map C(X, [0, 1])→ [0, 1] given by f 7→ f(x).)
Now we define βX = ιX(X) ⊆ [0, 1]C(X,[0,1]).

It is clear that ιX is continuous and βX is compact Hausdorff, thus normal, for any X.

Theorem 8.3.19 The map ιX : X → [0, 1]C(X,[0,1]) is an embedding if and only if X is completely
regular. In this case, (βX, ιX) is a Hausdorff compactification of X. If X is compact Hausdorff (thus
completely regular) then ιX : X → βX is a homeomorphism.

Proof. ⇒ By definition, ιX(X) is a subspace of the compact Hausdorff space [0, 1]C(X,[0,1]), thus
completely regular by Corollary 8.3.6(iii). Thus if ιX : X → ιX(X) is a homeomorphism then X is
completely regular.
⇐ If X is completely regular, then given a closed set C ⊆ X and x ∈ X\C, complete regularity

provides an f ∈ C(X, [0, 1]) such that f(x) = 0 and f �C ≡ 1. Thus f(x) = 0 6∈ {1} = f(C), so that
the family C(X, [0, 1]) separates points from closed sets in the sense of Definition 8.3.15. Now ιX is
an embedding by Proposition 8.3.16.

Since ιX : X → [0, 1]C(X,[0,1]) is an embedding and βX = ιX(X) is compact Hausdorff with dense
subspace ιX(X) ∼= X, the pair (βX, ιX) is a Hausdorff compactification of X.

If X is compact then ιX(X) ⊆ [0, 1]C(X,[0,1]) is compact, thus closed, implying that ιX : X →
ιX(X) = ιX(X) = βX is a homeomorphism. �

Definition 8.3.20 If X is completely regular, (βX, ιX) is the Stone-Čech compactification5 of X.

Now we have the characterization of spaces which admit a Hausdorff compactification:

Theorem 8.3.21 For a space (X, τ), the following are equivalent:

(i) X is completely regular.

(ii) The topology τ coincides with the initial topology (also called weak topology) induced by C(X, [0, 1]).

(iii) X is homeomorphic to a subspace of some cube IN , where N is some cardinal number.

(iv) X is homeomorphic to a subspace of a compact Hausdorff space.

5Defined in 1937 by Marshall Harvey Stone (1903-1989) and Eduard Čech (1893-1960).



224 CHAPTER 8. STRONGER SEPARATION AXIOMS AND THEIR USES

(v) X admits a Hausdorff compactification.

Proof. (i)⇔(ii) The product topology on [0, 1]C(X,[0,1]) by definition is the initial topology induced by
the ‘projections’, which in this case are the evaluations in the points of X. Thus also the subspace
topology on ιX(X) ⊆ [0, 1]C(X,[0,1]) is an initial topology.

(i)⇒(iii) This is the Stone-Čech compactification, cf. Theorem 8.3.19.
(iii)⇒(iv) Trivial.
(iv)⇒(v) If ι : X ↪→ Y is an embedding with Y compact Hausdorff, then ι : X → ι(X) is a

Hausdorff compactification.
(v)⇒(i) This is Corollary 8.3.6(iii). �

Remark 8.3.22 1. The equivalence (i)⇔(iv) should be compared with Corollary 7.8.31, according
to which X is locally compact Hausdorff if and only if it is homeomorphic to an open subspace of a
compact Hausdorff space.

2. One motivation for introducing the Stone-Čech compactification is that it proves the implica-
tion (i)⇒(v) in the theorem above, which was already used in the proof of Theorem 8.5.26. But most
of its applications will have to do with Corollary 8.3.31 below, while others rely on deep connections
to logic and model theory.

3. Using ideas from the proof of Urysohn’s metrization theorem, one can show that every T3.5

space (X, τ) embeds into [0, 1]χ whenever τ admits a base of cardinality ≤ χ. (I.e. if χ ≥ w(X),
where w(X) is the weight of X.) 2

Now we state an (imperfect) analogue for compact spaces of Proposition 3.2.7:

Corollary 8.3.23 (i) If X is compact then f(X) ⊆ Y is closed for every continuous injective
f : X → Y with Y Hausdorff. (By Proposition 7.4.11, f automatically is an embedding.)

(ii) If X is completely regular and f(X) ⊆ Y is closed for every embedding f : X → Y into a
Hausdorff space then X is compact.

Proof. (i) By Lemma 7.3.4, f(X) is compact, thus by Lemma 7.4.2, f(X) ⊆ Y is closed.
(ii) If X is completely regular but not compact, it embeds into the compact Hausdorff space βX

as a non-closed subspace. Thus X is not universally closed. �

Since [0, 1]χ is compact, the image of the embedding ιX is closed if and only if X is compact. One
may wonder which spaces admit a closed embedding into some Rχ.

Definition 8.3.24 A topological space is called realcompact (or Hewitt complete) if it is homeomor-
phic to a closed subspace of Rχ, for some cardinal number χ.

Lemma 8.3.25 (i) Every realcompact space is completely regular (T3.5).

(ii) Compact Hausdorff ⇔ realcompact + pseudocompact.

Proof. (i) Complete regularity is hereditary and preserved by products. Since R is completely regular,
the same holds for Rχ and any subspace of it.

(ii)⇒ A compact Hausdorff space X is pseudocompact (cf. Section 7.7.4) and completely regular.
Thus by the above there is an embedding ιX : X → [0, 1]C(X,[0,1]) ⊆ RC(X,[0,1]). Since X is compact,
so is ιX(X), which thus is closed.
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⇐ By realcompactness, there is an embedding ι : X → Rχ with closed image. By pseudocom-
pactness the coordinate functions pi ◦ ι : X → R of ι are all bounded, to wit −∞ < inf(pi ◦ ι) <
sup(pi ◦ ι) <∞. Thus

∏
ι[inf(pi ◦ ι), sup(pi ◦ ι)] is compact. Since ι(X) is closed, it is compact, thus

X is compact. �

Here some more facts:

• Obviously closed subspaces and arbitrary products of realcompact spaces are realcompact.

• The example R shows that realcompact 6⇒ compact.

• The subspace NR ⊆ RR is closed, thus realcompact, but not normal by Proposition 8.1.45.
Thus realcompact 6⇒ normal.

• Not every completely regular space is realcompact. For criteria equivalent to realcompactness
of a completely regular space, cf. Theorems 3.11.10 and 3.11.11 of [89].

• Every Lindelöf T3-space is realcompact. Thus the Sorgenfrey line and all separable metric
spaces are realcompact.

• It is natural to ask whether every discrete space is realcompact. It turns out that this is true if
and only if every cardinal number is ‘non-measurable’. Whether this is the case is independent
of the ZF+AC! In low-brow terms, measurability of all cardinals is equivalent to the statement
that for every uncountable set X there is a map µ : P (X) → {0, 1} that is additive on all
families F of mutually disjoint subsets of X, where F has cardinality strictly lower than X.
(Allowing #F = #X would mean µ(Y ) =

∑
y∈Y µ({y}) and amount to allowing only the

uninteresting measures of the form µx(Y ) = χY (x) for some x ∈ X.)

8.3.4 ? Topologies vs. families of pseudometrics

Pseudometrics provide an interesting perspective on complete regularity:

Lemma 8.3.26 A topological space (X, τ) is completely regular if and only there is a family D of
continuous pseudometrics on X that separates points from closed sets (in the sense of Definition
8.2.31). (We may assume all d ∈ D to be bounded by 1.)

Proof. ⇒ If X is completely regular then F = C(X, [0, 1]) separates points from closed sets. Now
D = {df (x, y) = |f(x) − f(y)|}f∈F is a family of continuous pseudometrics on X that separates
points from closed sets. Note that df ∈ C(X ×X, [0, 1]).
⇐ If D is a family of continuous pseudometrics on X that separates points from closed sets

then F = {x 7→ d(y, x)}y∈X,d∈D is a family of continuous functions separating points from closed
sets. Then ιF : X → RF , x 7→

∏
f∈F f(x) is an embedding. Since RF is completely regular, so is

X ∼= ιF(X) ⊆ RF . �

As we saw in Section 8.3.3, if F is a family of continuous functions on (X, τ) that separates points
from closed sets, the topology τ coincides with the initial topology induced by F . This leads to the
question whether we can define a topology in terms of a family of pseudometrics, as in the case of a
single metric.

Lemma 8.3.27 Let X be a set and D a family of pseudometrics on X. Let τD be the initial topology
on X induced by the family {x 7→ d(x, y)}y∈X,d∈D ⊆ Fun(X,R). Then
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(i) An open neighborhood base for x ∈ X is given by Ux = {
⋂n
i=1B

di(x, ri)}d1,...,dn∈D,ri>0.

(ii) The following are equivalent:

(α) D separates the points of X. (I.e., if x 6= y then d(x, y) > 0 for some d ∈ D.)

(β) τD is T0.

(γ) τD is completely regular.

(iii) If D separates the points of X and is countable then τD is metrizable, thus T6.

Proof. (i) By construction, each d ∈ D is τD-continuous in one variable, thus in both by Exercise
2.1.4. Since R has the subbase {(−∞, a)} ∪ {(a,∞)}, a subbase for τD is given by

S = {{x ∈ X | d(x, y) < r}d∈D,y∈X,r>0 ∪ {{x ∈ X | d(x, y) > r}d∈D,y∈X,r>0.

Now, {x ∈ X | d(x, y) > r} is open w.r.t. the topology τd and thus a unit of balls Bd(z, ε). Thus we
can replace S by

S = {{x ∈ X | d(x, y) < r}d∈D,y∈X,r>0 = {Bd(y, r)}d∈D,y∈X,r>0.

And if x ∈ Bd(y, r), then x ∈ B(x, s) for some s > 0, thus Ux is a neighborhood base for x.
(ii) (γ) ⇒ (β) is trivial. (β) ⇒ (α). Assuming that (i) is false, there are x, y ∈ X with x 6= y

such that d(x, y) = 0 for all d ∈ D. This implies y ∈ Bd(x, r) for all d ∈ D, r > 0 and similarly for
x↔ y. Thus every open set containing one of the points contains both, so that τD is not T0.

(α) ⇒ (γ) Let C be τD-closed and x ∈ X\C =: U . Then x ∈ U ∈ τD, so that there are
d1, . . . , dn ∈ D and r1, . . . , rn > 0 such that

⋂n
i=1 B

di(x, ri) ⊆ U . But this means that the continuous
function f : y 7→ maxni=1 di(x, y)/ri satisfies infy∈C f(y) ≥ 1 and f(x) = 0 trivially. Thus C(X,R)
separates points from closed sets, so that X is completely regular by Section 8.3.3.

(iii) By definition of τD, the d ∈ D are continuous and D separates points from closed sets. Now
apply Proposition 8.2.32. �

Remark 8.3.28 If (X, τ) is any space that is completely regular, but not normal, cf. Corollary 8.3.6,
then the topology τ is the initial topology induced by F = C(X, [0, 1]), thus also τ = τD, where
D = {(x, y) 7→ |f(x)−f(y)|}f∈F . This shows that τD need not be T4. Why does the proof of Lemma
8.1.11 not extend to families of pseudometrics separating points? 2

8.3.5 Functoriality and universal property of βX

In Section 7.8.5 we have seen that one-point compactification X 7→ X∞ is functorial (only for proper
maps!). We will now show also the Stone-Čech compactification X 7→ βX is a functor.

Proposition 8.3.29 If X, Y are completely regular and g ∈ C(X, Y ) then there is a unique ĝ ∈
C(βX, βY ) such that ĝ ◦ ιX = ιY ◦ g.

Proof. Uniqueness of ĝ follows from the fact that ιX(X) ⊆ βX is dense and the prescription that ĝ be
continuous and equal to ιY ◦ g ◦ ι−1

X on ιX(X), cf. Exercise 6.5.18(iii). It remains to prove existence.
If f ∈ C(Y, [0, 1]) then f ◦g ∈ C(X, [0, 1]). Recall that an element of [0, 1]C(X,[0,1]) =

∏
f∈C(X,[0,1])[0, 1]

is a map e : C(X, [0, 1]) → [0, 1], f 7→ e(f) and similarly for [0, 1]C(Y,[0,1]). This allows to define a
map

γg : [0, 1]C(X,[0,1]) → [0, 1]C(Y,[0,1])
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by γg(e)(f) = e(f ◦ g) for every e ∈ [0, 1]C(X,[0,1]) and f ∈ C(Y, [0, 1]). By construction, the diagram

X
ιX- [0, 1]C(X,[0,1])

Y

g

?

ιY

- [0, 1]C(Y,[0,1])

γg

?

commutes, since

x
ιX- (f 7→ f(x))

g(x)

g

?

ιY

- (f 7→ f(g(x)))

γg

?

Now, by Lemma 6.5.3, a net ei in [0, 1]C(X,[0,1]) converges to e if and only if ei(f) → e(f) for all
f ∈ C(X, [0, 1]). But this implies that ei(f ◦ g) → e(f ◦ g) for all f ∈ C(Y, [0, 1]). Thus γg is
continuous. Now,

γg(βX) = γg(ιX(X)) ⊆ γg(ιX(X)) = ιY (g(X)) ⊆ ιY (Y ) = βY,

where the first inclusion is due to continuity of γg, cf. Exercise 5.2.8(v). Thus if we define ĝ = γg �βX,
we have ĝ(βX) ⊆ βY . It is clear by construction that ĝ : βX → βY is the unique continuous function
satisfying ĝ ◦ ιX = ιY ◦ g. �

In analogy to Corollary 7.8.58 we now have:

Corollary 8.3.30 Stone-Čech compactification X 7→ βX, f 7→ f̂ is a functor from the category
T OPT3.5 of completely regular spaces to the category T OPcH of compact Hausdorff spaces.

(Both categories contain all continuous maps as morphisms and thus are full subcategories of the
category T OP of all topological spaces and continuous maps.)

Proof. It only remains to show that îdX = idβX and ĥ ◦ g = ĥ ◦ ĝ for continuous X
g→ Y

h→ Z. The
first statement is immediate since g = idX implies γg = id[0,1]C(X,[0,1]) , and the second follows from
γh◦g = γh ◦ γg which is (almost) equally obvious. �

The results collected below are the main reason for studying βX despite its unwieldiness:

Corollary 8.3.31 Let X be completely regular. Then

(i) If Y compact Hausdorff and f ∈ C(X, Y ) then there is a unique f̂ : βX → Y such that

f̂ ◦ ιX = f .

(ii) The Stone-Čech compactification (βX, ιX) is an initial object in the category C(X) of Haus-
dorff compactifications of X. Since initial objects are unique up to isomorphisms, this is a
characterization.

(iii) Let F ∈ {R,C}. The map C(βX,F) → Cb(X,F) given by f 7→ f � X is a bijection and an
isomorphism of commutative unital F-algebras.

Proof. (i) Being compact Hausdorff, Y is completely regular, and as already noted in Theorem
8.3.19, the map ιY : Y → βY is a homeomorphism. Identifying Y with βY , the claim follows from
Proposition 8.3.29.

(ii) If (X̂, ι) is some Hausdorff compactification of X, just apply (i) to Y = X̂ and f = ι to obtain

a unique f̂ : βX → X̂ such that f̂ ◦ ιX = ι. Thus f̂ is a morphism (βX, ιX) → (X̂, ι) in C(X), and
since it is unique, (βX, ιX) is an initial object.

(iii) F = R: Since βX is compact, every f ∈ C(βX,R) is bounded, thus f � X ∈ Cb(X,R).
Conversely, if f ∈ Cb(X,R) then f ∈ C(X, [a, b]) for some a < b. Since [a, b] is compact, (i) gives a
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unique extension f̂ ∈ C(βX, [a, b]) ⊆ C(X,R) such that f̂ �X = f . The restriction and extension

maps are inverses of each other: For f 7→ f̂ 7→ f this is true by definition. Conversely, if g ∈ C(βX,R)

and f = g �X then g is one extension of f , and by uniqueness we have ĝ �X = g. The restriction
map f 7→ f �X clearly is a unit-preserving homomorphism of R-algebras, thus by the above it is a
unit-preserving algebra-isomorphism.

F = C: If f ∈ Cb(X,C) then we can use (i) to separately extend the real and imaginary parts of
f to βX. Now the rest of the proof works as for R. �

Any compactification (X̂, ι) of X having the above property (i) also satisfies (ii) and therefore is
isomorphic in C(X) to (βX, ιX) by uniqueness of initial elements. But we have more:

Proposition 8.3.32 Let X be completely regular. Then a Hausdorff compactification (X̂, ι) of X is

isomorphic to (βX, ιX) in C(X) if and only if every f ∈ C(X, [0, 1]) has an extension f̂ ∈ C(X̂, [0, 1]).

Proof. ⇒ is clear since (βX, ιX) has this property as a consequence of Corollary 8.3.31(i). ⇐ Let
Y be compact Hausdorff. Then ιY : Y → [0, 1]C(Y,[0,1]) is an embedding. If f ∈ C(X, Y ) then

F = ιY ◦ f ∈ C(X, [0, 1]C(Y,[0,1])), and coordinatewise extension gives a continuous function F̂ ∈
C(βX, [0, 1]C(Y,[0,1])). By density of X ⊆ βX and closedness of ιY (Y ), we have F̂ (βX) ⊆ ιY (Y ), so

that f̂ = ι−1
Y ◦ F̂ ∈ C(βX, Y ) is an extension of f . (This extension is unique by density of X in X̂.)

Now argue as just preceding the proposition. �

Remark 8.3.33 If X is non-compact then the algebra C0(X,F) is non-unital. In Section 7.8.7 we
encountered the rather trivial way of ‘unitizing’ C0(X,F) by adding the constant functions by hand.
This is related to the one-point compactification X∞ by C0(X,F)1 ∼= C(X∞,F). The embedding
C0(X,F) ↪→ Cb(X,F) gives a different (a priori) unitization of C0(X,F), and the above shows that
it is closely related to βX. Interestingly, these two ways of unitizing generalize to certain non-
commutative algebras, cf. Remark G.7.26. 2

Exercise 8.3.34 Let X be completely regular.

(i) Use idempotents in Cb(X,R) (i.e. functions satisfying f 2 = f) to prove that every clopen
C ⊆ X is of the form D ∩X for a unique clopen D ⊆ βX.

(ii) Conclude that βX is connected if and only if X is connected.

From now on, let X be discrete and infinite.

(iii) Prove that βX is not discrete.

(iv) For all Y ⊆ X, prove that Y ∩X\Y = ∅ (closures in βX).

(v) Prove that disjoint open sets in βX have disjoint closures.

(vi) Deduce that U ⊆ βX is open for every open U ⊆ βX.

(vii) Prove that for any x, y ∈ βX, x 6= y there is a clopen C ⊆ βX such that x ∈ C 63 y.

We quickly look at a foundational aspect of the Stone-Čech compactification:

Proposition 8.3.35 The following statement is equivalent (over ZF) to the Ultrafilter Lemma:
Stone-Čech Theorem: If X is completely regular, there exist a compact Hausdorff space βX and
a dense embedding ιX : X → βX, both unique in the obvious sense, such that for every compact
Hausdorff space Y and f ∈ C(X, Y ) there is a unique f̂ ∈ C(βX, Y ) satisfying f̂ ◦ ιX = f .
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Proof. The above proof of the Stone-Čech theorem used ιX : X 7→ [0, 1]C(X,[0,1]), x 7→ (f(x)). Since
we explicitly produce points in the cartesian product, there is no invocation of axiom of choice. But
the proof of Theorem 8.3.19 needs compactness of this cube. Since [0, 1] is Hausdorff, we know from
Theorem 7.5.25 that the Ultrafilter Lemma suffices to prove compactness of the cube in question and
therefore the Stone-Čech theorem.

For the converse, let I be any set and let 2 = {0, 1} with the discrete topology. Then X = 2I with
the product topology is completely regular, so that the Stone-Čech Theorem applies and gives βX.
Since the coordinate projections pi : X → {0, 1} are continuous, there are continuous p̂i : βX → [0, 1]
such that p̂i ◦ ιX = pi. Collect these maps into a continuous map p̂ : βX → [0, 1]I such that qi ◦ p̂ = p̂i
(where qi are the coordinate maps [0, 1]I → [0, 1]). Then by construction p̂ ◦ ιX = idX , so that
p̂ : βX → X is surjective. Since βX is compact, it follows that X = 2I is compact. Now Proposition
7.5.27(ii) gives us the truth of UF. �

Remark 8.3.36 1. Corollary 8.3.31(ii) should be compared to Corollary 7.8.60, where we showed
that a terminal object in C(X) exists if and only if X is locally compact Hausdorff.

2. The Stone-Čech compactification functor is ‘better’ than the one-point compactification in two
respects: It is defined on a larger class of objects (completely regular spaces as opposed to locally
compact Hausdorff spaces), and it is defined for all morphisms (continuous maps), not only the
proper ones. And being initial in C(X), all Hausdorff compactifications are quotients of βX, which
makes βX a very useful tool for the study of all Hausdorff compactifications.

3. On the other hand, whenever X is non-compact, βX is a huge space that is rather difficult to
analyze. This is true even in the simplest case βN, where N has the discrete topology. (There are
entire books about the Stone-Čech compactification, e.g. [290]!) However, for discrete X there is a
simpler interpretation of βX, cf. Theorem 11.1.82(iv).

4. The Stone-Čech compactification functor β : T OPT3.5 → T OPcH is a left adjoint of the
inclusion functor ι : T OPTcH

→ T OP3.5, thus the full subcategory T OPTcH
⊆ T OP3.5 is reflective.

Cf. Appendix A.5 for definitions of these notions.
5. In Corollary 8.3.31(ii) and Proposition 8.3.32, we have already given two characterizations of

the compactification (βX, ιX). Here is another one that makes contact with the general theory of
Hausdorff compactifications in Section 7.8.2. 2

Proposition 8.3.37 Let X be completely regular and (X̂, ι) a Hausdorff compactification of X.
Then:

(i) If C,D ⊆ X are such that ι(C) ∩ ι(D) = ∅ then C,D are completely separated.

(ii) (X̂, ι) is isomorphic to (βX, ιX) in the category C(X) if and only if complete separation of
C,D ⊆ X implies ι(C) ∩ ι(D) = ∅.

Proof. (i) Since X̂ is compact Hausdorff, thus normal, Urysohn gives an f ∈ C(X̂, [0, 1]) such that
f � ι(A) = 0, f � ι(B) = 1. Restricting f to X shows that A,B are completely separated.

(ii) ⇒ Let C,D ⊆ X be separated by f ∈ C(X, [0, 1]). Let f̂ ∈ C(βX, [0, 1]) be the unique

function satisfying f̂ ◦ ιX = f , cf. Corollary 8.3.31(i). Assuming ιX(C) ∩ ιX(D) 6= ∅, we have

∅ 6= f̂
(
ιX(C) ∩ ιX(D)

)
⊆ f̂

(
ιX(C)

)
∩ f̂

(
ιX(D)

)
⊆ f̂ (ιX(C)) ∩ f̂ (ιX(D)) = {0} ∩ {1} = ∅,

which is absurd. (The first inclusion is just set theory, and the second is continuity of f̂ .)
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⇐ By Corollary 8.3.31(i), the continuous map ι : X → X̂ has a unique extension ι̂ : βX → X̂.

Now ι̂(βX) ⊆ X̂ is closed since βX is compact and X̂ Hausdorff. On the other hand ι(X) ⊆ X̂

is dense, thus ι̂ : βX → X̂ is surjective. Thus ι̂ is a homeomorphism, once we show that it is
injective. If x, y ∈ βX, x 6= y, Urysohn’s lemma gives f ∈ C(βX, [0, 1]) with f(x) = 0, f(y) = 1. Let
g = f �X and C = g−1([0, 1/3]), D = g−1([2/3, 1]). Then C,D ⊆ X are completely separated by the
function g′(x) = 3 max(1/3,min(2/3, g(x))) − 1, so that ι(C) ∩ ι(D) = ∅ holds by our assumption.
By construction, x ∈ ClβX(C), thus ι̂(x) ∈ ι̂(ClβX(C)) ⊆ ι̂(C) = ι(C), and similarly ι̂(y) ∈ ι(D).
This implies ι̂(x) 6= ι̂(y), thus ι̂ is injective. �

For normal spaces, this simplifies considerably:

Corollary 8.3.38 Let X be normal and (X̂, ι) a Hausdorff compactification of X. Then (X̂, ι) ∼=
(βX, ιX) in C(X) if and only if ι(C) ∩ ι(D) = ∅ whenever C,D ⊆ X are closed and disjoint.

Proof. Immediate consequence of Corollary 8.2.4 and Proposition 8.3.37. �

Remark 8.3.39 The construction of βX is complicated and does not give much immediate insight
into the nature of βX. It can also be critizised for not being intrinsic, in that it uses the continuous
functions X → [0, 1]. The same holds for all our characterizations of βX since they either involve all
other compactifications (initial object definition) or [0, 1]-valued functions. On the other hand, we
know from Exercise 8.3.11 that the T3.5 property, which is necessary and sufficient for the existence
of Hausdorff compactifications, has an intrinsic (if complicated) characterization. Thus there should
be purely set theoretic characterizations and construction of βX. The [0, 1]-valued functions can in
principle be eliminated from Proposition 8.3.37 since the notion of complete separation of sets can
be defined without invoking functions to [0, 1], cf. Remark 8.2.19. In the next section we will study
a construction of βX in terms of z-ultrafilters, whose definition involves zero-sets of [0, 1]-valued
functions. Again, one can eliminate the reference to [0, 1] by using the characterization of zero-sets
given in Remark 8.2.19, but this leads to a very unwieldy definition of βX. Fortunately, the Stone-
Čech compactification of normal spaces has an intrinsic construction involving only ultrafilters of
closed sets. And for discrete spaces X, this boils down to βX being nothing other than the (suitably
topologized) set of all ultrafilters on X. Then X ⊆ βX consists of the principal ultrafilters. 2

It is somewhat interesting to ask whether there are (non-compact) spaces that have a unique
Hausdorff compactification. Simple experiments to not lead anywhere. But we have:

Corollary 8.3.40 ([140]) Let X be completely regular and non-compact. Then the following are
equivalent:

(i) X has a unique (up to isomorphism) Hausdorff compactification.

(ii) X is locally compact and X∞ ∼= βX in C(X).

(iii) X is locally compact and disjoint closed non-compact sets C,D ⊆ X cannot be separated by an
f ∈ C(X, [0, 1]) (in the sense of f �C = 0, f �D = 1).

Proof. In Remark 7.8.61.3 we have seen that existence of a unique Hausdorff compactification X̂
implies X̂ ∼= X∞ and therefore local compactness of X. Since βX is initial and X∞ is terminal
in C(X), the equivalence (i)⇔(ii) is now clear. It remains to show that, for locally compact X,
the isomorphism βX ∼= X∞ is equivalent to the condition under (iii). Applying the criterion in
Proposition 8.3.37(ii) to X∞ we see that X∞ ∼= βX is equivalent to: Whenever C,D ⊆ X are
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separated by an f ∈ C(X, [0, 1]) we have ι∞(C)∩ ι∞(D) = ∅. It is clear that we can assume C,D to
be closed (in X). By Exercise 7.8.18, the closure in X∞ of a closed C ⊆ X is either C or C ∪ {∞}
for compact and non-compact C, respectively. Thus for disjoint closed C,D ⊆ X, the intersection
ι∞(C) ∩ ι∞(D) is either empty or {∞}, the second alternative holding if and only if C and D are
both non-compact. In view of this the condition in Proposition 8.3.37(ii) amounts to: Whenever
closed C,D ⊆ X are separated by a continuous function (in particular they are disjoint) then at
least one of them is compact. This is the contraposition of (iii). �

The above does not seem very helpful for constructing actual examples. But they do exist
abundantly:

Exercise 8.3.41 Let X be any non-compact completely regular space and x ∈ βX\X. Prove that
Y = βX\{x} is locally compact Hausdorff and Y∞ = βY = βX.

Another common example is the space X = [0, ω1), where ω1 is the first uncountable ordinal.
Since we avoid ordinal numbers in this text, we instead refer to the pedestrian construction in
Proposition A.3.32.

Proposition 8.3.42 Let (X,≤) be a well-ordered set such that X is uncountable but {y ∈ X | y < x}
is countable for each x ∈ X. Equip X with the order topology induced by ≤. Then

(i) X is non-compact, but X∞ = X ∪ {∞} is compact if ∞ 6∈ X is larger than all elements of X.

(ii) X is locally compact Hausdorff, and X∞ is the one-point compactification.

(iii) X is completely regular.

(iv) Every f ∈ C(X,R) is constant eventually, i.e. on {y ∈ X | y > x} for some x ∈ X.

(v) βX = X∞.

Proof. (i) The existence of such (X,≤) was proven in Proposition A.3.32, where it is also noted that
X has no largest element. Then (X, τ) is non-compact by Theorem 7.6.2. Since X is well-ordered,
every non-empty subset has a smallest element, thus an infimum, and the same holds in X∞. In X∞
also the empty set has a largest lower bound, namely ∞. Thus X∞ is compact by Theorem 7.6.2.

(ii) The order topology of X clearly is the restriction to X of the order topology of X∞. Since the
latter is compact Hausdorff, X = X∞\{∞} is locally compact Hausdorff. Since X is non-compact,
Exercise 7.8.19 gives that X ∪ {∞} is (isomorphic to) the one-point compactification X∞.

(iii) Locally compact T2 ⇒ T3.5.
(iv) We follow an argument in [269, Space 43] quite closely. We first notice that every subset of X∞

has a supremum. If S ⊆ X is countable then the properties of X imply that
⋃
s∈S{y ∈ X | y ≤ s}

is countable, while X is not. Thus X has elements larger than all s ∈ S, thus sup(S) < ∞,
to wit sup(S) ∈ X. We now claim that there is an increasing sequence {xn} ⊆ X such that
|f(y)− f(xn)| < 1/n whenever y > xn. If no such sequence existed, there would be ε > 0 for which
we could construct inductively an increasing sequence {yi} ⊆ X such that |f(yi) − f(yi−1)| ≥ ε
for each i. But the sequence {yi} converges to its least upper bound (which is in X by the above)
whereas the sequence {f(yi)} by construction does not converge. This contradicts the continuity of
f , so that a sequence {xn} ⊆ X as required exists. Again, x = sup{xn | n ∈ N} <∞. Now f clearly
is constant on {y ∈ X | y > x}.

(v) Let f ∈ C(X, [0, 1]). Now (iv) clearly implies that f∞ = limx↗∞ f(x) exists, and defining

f̂ : X∞ → [0, 1] by f̂ �X = f, f̂(∞) = f∞ we have f̂ ∈ C(X∞, [0, 1]). Since X∞ is a Hausdorff
compactification of X, Proposition 8.3.32 gives (X∞, ι) ∼= (βX, ιX). �
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The above is one of the rare examples where βX can be determined explicitly (but X was not
very explicit. . . ).

Exercise 8.3.43 Why is β((0, 1]) 6= [0, 1]?

8.3.6 Stone-Čech compactification via ultrafilters

In this section we will describe two different, but closely related, alternative constructions of βX in
terms of (modified) filters.

Let (X, τ) be a topological space. In this section, C will always stand either for the set Cc of
closed subsets of X or for the set Cz of zero-sets in X. When discussing Cc we will always assume X
to be T1 (and ultimately T4) and when working with Cz we assume X to be completely regular. In
either case, C contains X and is closed under finite intersections.

Definition 8.3.44 Let X be a topological space and C as above. Then a C-filter on X is a family
F ⊆ C satisfying the filter axioms (i), (iii), (iv) from Definition 5.1.40 and (ii’): If F ∈ F and
F ⊆ G ∈ C then G ∈ F . A C-ultrafilter is a C-filter on X that is maximal among the C-filters on X.
The set of C-ultrafilters on X is denoted UFCX.

For each x ∈ X we define ιC(x) = {Y ∈ C | x ∈ Y }.

Lemma 8.3.45 Let X be a topological space and C a family as above.

(i) ιC(x) ∈ UFCX for each x ∈ X, and ιC : X → UFCx is injective.

(ii) If F1,F2 ∈ UFCX,F1 6= F2 then there are C1, C2 ∈ C with C1 ∩ C2 = 0 and C1 ∈ F1, C2 ∈ F2.

(iii) Every C-filter on a topological space is contained in a C-ultrafilter.

Proof. (i) A filter F properly containing ιC(x) would contain a Y ∈ C that does not contain x. Since
Cc contains {x}, this would lead to the contradiction ∅ = Y ∩ {x} ∈ F ′. This shows that ιc(x) is an
ultrafilter. Injectivity of ιc follows from the fact that {x} ∈ ιc(y) if and only if x = y.

If x 6= y then there is an f ∈ C(X, [0, 1]) with f(x) = 0, f(y) = 1. Then the zero set f−1(0) is in
ιz(x) but not in ιz(y), proving injectivity of ιz. ******** show: ιz(x) is z-ultrafilter !!!

(ii) If F1,F2 are different C-ultrafilters then obviously there is a C ∈ C that is contained in precisely
of F1,F2. Assume C ∈ F1. If C ∩ D 6= ∅ was true for all D ∈ F2 then F ′2 = F2 ∪ {C ∩ D | D ∈
F2} would be a C-filter strictly containing F2 (since it contains C = C ∩ X, which is not in F2),
contradicting the assumption that F2 is an ultrafilter. Thus there is a D ∈ F2 such that C ∩D = ∅.
An analogous argument applies if C ∈ F2.

(iv) Proven by Zorn’s lemma, modifying Lemma 7.5.18 in the obvious way. �

Since ιC : X → UFCX is injective, we will identifyX with its image in UFCX. The set of UFCX\X
of non-principal ultrafilters is denoted UF′CX. For U ∈ τ let Ũ = {F ∈ UFCX | ∃C ∈ F : F ⊆ U}.
Clearly X̃ = UFCX. If U1, U2 ∈ τ satisfy U1 ∩ U2 6= ∅ then clearly

⊆ Ũ1 ∩ U2 ⊆ Ũ1 ∩ Ũ2

@@@

Theorem 8.3.46 Let X be a topological space. Then (βX, ιX) is isomorphic to . . .

(i) (UFzX, ιc) if X is completely regular.
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(ii) (UFcX, ιz) if X is normal.

(iii) (UFX, ιz) if X is discrete

Proof. It only remains to prove (iii), but this follows immediately from (ii) since Cc = P (X) for
discrete X. �

Remark 8.3.47 1. If X is T6 then Cc = Cz, so that (i) and (ii) become equivalent. But if X is only
normal then we only know Cz ⊆ Cc, so that (ii) is non-trivial.

2. Later we will add a fourth item to the list: (βX, ιX) ∼= (UFco, ιco), where UFco is the set of
ultrafilters consisting of clopen sets on X, if X is strongly zero dimensional, cf. Proposition 11.1.39.
This also gives a new proof of (iii), and yet another one will be obtained via Stone duality. 2

8.4 ? Applications of the Stone-Čech compactification

8.4.1 Čech-completeness

We already know that complete metric spaces are Baire spaces, i.e. countable intersections of dense
open sets are dense. There is another large class of Baire spaces:

Theorem 8.4.1 (i) Every compact Hausdorff space is a Baire space.

(ii) Every Gδ-set in a compact Hausdorff space is a Baire space.

Proof. (i) Let Ui ⊆ X be dense and open for every i ∈ N. Let ∅ 6= W ∈ τ . By Lemma 2.7.9,
W ∩ U1 6= ∅, so that we can choose x1 ∈ W ∩ U1. By regularity, we can find an open V1 such that
x1 ∈ V1 ⊆ V1 ⊆ W ∩ U1. (The point x1 only served as a stepping stone for getting a non-empty V1.)
Since U2 is dense, V1 ∩ U2 6= ∅. As before, we find an open V2 such that ∅ 6= V2 ⊆ V2 ⊆ V1 ∩ U2.
Iterating this, we find non-empty open sets Vi such that Vn ⊆ Vn ⊆ Vn−1∩Un for all n. Now all Vn are
non-empty and V1 ⊇ V2 ⊇ · · · . The family {Vi} clearly has the finite intersection property, so that
(countable) compactness gives

⋂
i Vi 6= ∅. By construction,

⋂
i Vi ⊆ W ∩

⋂
i Ui, thus W ∩

⋂
i Ui 6= ∅,

proving density of
⋂
i Ui.

(ii) Let X be compact Hausdorff and Y ⊆ X Gδ, thus Y =
⋂
iWi with Wi ⊆ X open for every

i ∈ N, and let Ui ⊆ Y be dense open for every i ∈ N. Clearly X ′ := Y is compact Hausdorff
and Y ⊆ X ′ dense. The W ′

i = Wi ∩ X ′ ⊆ X ′ are open and dense in X ′ since each contains Y .
Furthermore, there are open Vi ⊆ X ′ such that Ui = Y ∩ Vi. Since Y is dense in X ′ and Ui is dense
in Y , each Ui is dense in X ′, thus the opens Vi ⊇ Ui are dense in X ′. Now Z =

⋂
i Ui =

⋂
i(Y ∩Vi) =⋂

iWi ∩
⋂
i Vi is a countable intersection of dense open sets in X ′, thus dense in X ′ by (i). Therefore

ClY (Z) = Z ∩ Y = X ′ ∩ Y = Y , so that Z is dense in Y . This proves that Y is Baire. �

Corollary 8.4.2 Locally compact Hausdorff spaces are Baire spaces.

Proof. A locally compact Hausdorff space X is (by definition of τ∞) an open subset of its one-point
compactification X∞, which is compact Hausdorff. Now apply Theorem 8.4.1(ii). �

Remark 8.4.3 We have just proven that every countable intersection of dense open sets in a compact
Hausdorff space is dense. The simplest form of Martin’s axiom, mentioned in connection with the
Souslin property (Section 6.5.2), is equivalent to the statement that every intersection of at most
c = #R dense open sets in a compact Hausdorff space with the Souslin property is dense. (Cf. [184,
Theorem II.3.4].) 2
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The fact that complete metric spaces and Gδ-subsets of compact Hausdorff spaces are Baire can
be traced back to a common property:

Definition 8.4.4 A topological space (X, τ) is called Čech-complete if it is completely regular and

X ≡ ιX(X) is a Gδ-set in the Stone-Čech compactification βX.

Proposition 8.4.5 Locally compact T2 ⇒ Čech-complete ⇒ Baire space.

Proof. (i) A locally compact Hausdorff space X is completely regular. Since βX is Hausdorff, Propo-
sition 7.8.32 implies that X ⊆ βX is locally closed. Thus X is an open subset of X = βX. Thus X
is open in βX, thus a fortiori Čech-complete.

(ii) If X is Čech-complete then X is Gδ in βX. Since βX is compact Hausdorff, the result follows
from Theorem 8.4.1(ii). �

Proposition 8.4.6 For a completely regular space X, the following are equivalent:

(i) X is Čech-complete, i.e. Gδ in βX.

(ii) f(X) ⊆ Z is Gδ whenever f : X → Z is a dense embedding with Z completely regular.

Proof. For (ii)⇒(i) it suffices to notice that X ↪→ βX is a dense embedding into a compact Hausdorff,
thus completely regular, space.

(i)⇒(ii) Let Ui ⊆ βX open for all i ∈ N such that X =
⋂
i Ui, let X̂ be T3.5 and f : X → Z a

dense embedding. By functoriality there is an extension f̂ : βX → βZ. Since f(X) ⊆ Z is dense,

f̂(βX) is dense in βZ, but since βX is compact, f̂(βX) is closed. Thus f̂ : βX → βZ is surjective.

Now, Vi = βZ\f̂(βX\Ui) ⊆ βZ is open since βX\Ui is closed, thus compact, so that f̂(βX\Ui) is
compact, thus closed. Now for each i we have (using the first half of Lemma A.1.6)

f̂−1(Vi) = f̂−1(βZ\f̂(βX\Ui)) = βX\f̂−1(f̂(βX\Ui)) ⊆ βX\(βX\Ui) = Ui. (8.5)

Since f : X → Z is an embedding, the extension f̂ : βX → βZ restricts to a homeomorphism

X → f(X). Since also X ⊆ βX is dense, Lemma 7.8.8 applies to the situation X ⊆ βX
f̂→ βY

and gives f(X) ∩ f̂(βX\X) = ∅. In view of X ⊆ Ui we conclude f(X) ∩ f̂(βX\Ui) = ∅. This is

equivalent to f(X) = f̂(X) ⊆ βZ\f̂(βX\Ui) = Vi and in turn to X ⊆ f̂−1(Vi). Combining this

with (8.5), we have X ⊆ f̂−1(Vi) ⊆ Ui for all i. This implies X ⊆
⋂
i f̂
−1(Vi) ⊆

⋂
i Ui = X, thus

X =
⋂
i f̂
−1(Vi) = f̂−1 (

⋂
i Vi). Thus f̂(X) = f

(
f̂−1 (

⋂
i Vi)

)
. This equals

⋂
i Vi by the surjectivity

of f̂ shown above (and the second half of Lemma A.1.6). Thus f(X) = f̂(X) =
⋂
i Vi =

⋂
i(Vi ∩ Z).

Since each Vi ∩ Z is open in Z, we conclude that f(X) ⊆ Z is Gδ. �

There also exists a characterization of Čech-complete spaces that does not involve the embedding
into βX, but involving countable families of open covers it is not exactly simple:

Theorem 8.4.7 A completely regular space X is Čech-complete if and only if there exists a countable
family {Ui}i∈N of open covers of X such that

⋂
F 6= ∅ holds for every family F of closed subsets of

X having the finite intersection property and such that for every i ∈ N there is an F ∈ F and a
U ∈ Ui such that F ⊆ U .

Proof. See [89, Theorem 3.9.2]. �
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8.4.2 Characterization of completely metrizable spaces

Theorem 8.4.8 For a metric space (X, d) the following are equivalent:

(i) (X, τd) is Čech-complete, i.e. X ⊆ βX is Gδ.

(ii) ι(X) ⊆ Z is Gδ whenever ι : X → Z is a dense embedding with Z completely regular.

(iii) ι(X) ⊆ X ′ is Gδ for every isometry ι : (X, d)→ (X ′, d′).

(iv) (X, d) is completely metrizable.

Proof. We recall first that metric spaces are normal, thus completely regular.
(i)⇒(ii) This was the non-trivial implication of Proposition 8.4.6.
(ii)⇒(iii) If ι : (X, d) → (X ′, d′) is an isometry then ι(X) ⊆ ι(X) is a dense embedding into a

completely regular space, thus Gδ by (ii). As a closed set in a metric space, ι(X) ⊆ X ′ is Gδ (Exercise
3.3.12). Thus ι(X) ⊆ X ′ is Gδ (Exercise 3.3.11(i)).

(iii)⇔(iv) is part of Theorem 3.4.20.
(iii)⇒(i) We want to prove that τd is Čech-complete. Since τd is not affected if we replace d

by an equivalent metric, by Exercise 2.2.14 we may assume d to be bounded by some constant
C. Now Corollary 8.3.31(i) with Y = [0, C] shows that for each t ∈ X the continuous function

ft : X → [0, C], x 7→ d(t, x) extends to a continuous function f̂t : βX → [0, C]. Thus for all
x, y ∈ βX we can define6

d̃(x, y) = sup
t∈X
|f̂t(x)− f̂t(y)| ≤ 2C <∞.

It is obvious that d̃(x, y) = d̃(y, x) and d̃(x, x) = 0. Furthermore,

d̃(x, z) = sup
t∈X
|f̂t(x)− f̂t(z)| ≤ sup

t∈X

(
|f̂t(x)− f̂t(y)|+ |f̂t(y)− f̂t(z)|

)
≤ sup

t∈X
|f̂t(x)− f̂t(y)|+ sup

t∈X
|f̂t(y)− f̂t(z)| = d̃(x, y) + d̃(y, z).

Thus d̃ is a pseudometric on βX, and (2.3) gives d̃�X = d.

Let a ∈ X, b ∈ βX be such that d̃(a, b) = 0. By definition of d̃, this implies f̂t(b) = f̂t(a) = d(t, a)
for all t ∈ X, in particular for t = a. Since X ⊆ βX is dense, we can choose a net {b′ι} in X

converging to b. By continuity of b 7→ f̂a(b), we have lim d(bι, a) = lim f̂a(bι) = f̂a(b) = d(a, a) = 0.
Thus lim d(bι, a) = 0, so that bι → a. Since βX is Hausdorff, we have b = a.

Let ∼ be the equivalence relation on βX defined by a ∼ b⇔ d̃(a, b) = 0. If p : βX → βX/∼=: K

is the quotient map, we obtain a (true) metric d̃′ on K. (Cf. Exercise 2.1.7.)
By what we have shown above, if a ∼ b for a ∈ X, b ∈ βX then a = b. In particular, ∼ is trivial

on X (as also follows directly from d̃ �X = d). Thus p is injective on X ⊆ βX, and we have an

isometric embedding (X, d) ↪→ (K, d̃′). And since ∼ identifies no point of X with an infinite point
(i.e. of βX\X), we have p−1(X) = X.

Since we assume (iii), X ⊆ K is Gδ. Now Exercise 3.3.11(iv) gives that p−1(X) ⊆ βX is Gδ.
Combining this with p−1(X) = X, we see that X ⊆ βX is Gδ, proving (i). �

Corollary 8.4.9 A topological space (X, τ) is completely metrizable if and only if it is metrizable
and Čech-complete.

6In [298] this is done with inf instead of sup. This is a mistake since then d̃ �X = d does not hold. A related

problem is that Willard claims d̃ to be continuous, which is not obvious.
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In order to have a really satisfactory characterization of completely metrizable spaces, we still
need to characterize the metrizable spaces. (So far we only have the sufficient condition in Theorem
8.2.33.) One of many such characterizations will be provided in Theorem 8.5.32. But we already
have:

Corollary 8.4.10 For a topological space X, the following are equivalent:

(i) X is completely metrizable and separable.

(ii) X is second countable, T3 and Čech-complete.

Such spaces are called Polish spaces.

Proof. Follows from the above and Corollary 8.2.35. �

8.4.3 From Hausdorff compactifications to Proximities

The criterion for the equivalence of Hausdorff compactifications provided by Proposition 7.8.9 is best
understood in terms of the notion of proximity:

Definition 8.4.11 A proximity on a set X is a binary relation δ on the powerset P (X) satisfying

(i) AδB ⇔ BδA.

(ii) AδB ⇒ A 6= ∅ 6= B.

(iii) A ∩B 6= ∅ ⇒ AδB.

(iv) (A ∪B)δC ⇔ AδC ∨BδC.

(v) A 6δB ⇒ ∃E ⊆ X : A 6δE ∧ (X\E) 6δB.

A proximity δ is called separated if also

(vi) xδy ⇒ x = y.

(Here xδy is short notation for {x}δ{y}.)

Example 8.4.12 Let (X, d) be a metric space. For A,B ⊆ define

AδB ⇔ A 6= ∅ 6= B ∧ dist(A,B) = 0.

One easily checks that δ is a separated proximity, called the metric proximity. 2

Definition 8.4.13 A pair (X, δ), where X is a set and δ a proximity on it, is called a proximity
space.

Exercise 8.4.14 Let (X, δ) be a proximity space. Prove that the family {C ⊆ X | xδC ⇒ x ∈ C}
satisfies the axioms for closed sets and therefore defines a topology τδ on X.

A topology τ and a proximity δ on a set X are called compatible if τ = τδ. (And every uniform
structure U gives rise to a proximity δU such that τU = τδU . Thus proximity spaces are intermediate
between uniform spaces and topological spaces.) There is an extensive theory of proximity spaces,
cf. [222], but here we are only interested in the application to compactifications.
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Lemma 8.4.15 Let X̂ be a normal space and X ⊆ X̂. For A,B ⊆ X define AδB :⇔ A ∩ B 6= ∅,
where the closures are in X̂. Then δ is a separated proximity on X.

Proof. (i) is obvious. (ii) follows from ∅ = ∅, (iii) from A ⊇ A, and (iv) from A ∪B = A ∪ B. If

A 6 δB then A ∩ B = ∅. Then by normality of X̂ there are disjoint open sets U, V ⊆ X̂ such that
A ⊆ U, B ⊆ V . By Lemma 2.6.3, we have U ∩ V = ∅ and thus A ∩ V = ∅. Openness of V gives

X̂\V ∩ B = (X̂\V ) ∩ B = ∅. Putting E = V ∩ X, we have A 6 δE and (X\E) 6 δB, thus (v) holds.
Separatedness is obvious since our definition of normality includes T1, i.e. closedness of singletons.
�

In particular, taking Y = X in Lemma 8.4.15 gives us a separated proximity δn on every normal
space X. (This may fail for non-normal spaces since normality was used in the proof of (v).)

Corollary 8.4.16 Let X be completely regular. Then:

(i) If X̂ is a Hausdorff compactification of X then AδX̂B ⇔ A ∩ B 6= ∅ defines a separated
proximity δX̂ on X.

(ii) Two Hausdorff compactifications X̂1, X̂2 of X are isomorphic in C(X) if and only if δX̂1
= δX̂2

.

Proof. (i) X̂ is normal. Now apply Lemma 8.4.15 to X ⊆ X̂.
(ii) follows from Proposition 7.8.9. (In the latter, only disjoint closed sets A,B appear. But for

non-disjoint A,B we always have AδB. And the closedness may be dropped since ι(A) = ι(A) by
continuity of ι.) �

We now exhibit the proximities corresponding to the Stone-Čech and Alexandrov compactifica-
tions.

Lemma 8.4.17 Let (X, τ) be completely regular (but not necessarily normal). Then

(i) Putting AδB if and only if A and B are not completely separated defines a proximity δcr on X.
If X is normal, then δcr = δn.

(ii) δcr coincides with the proximity δβX on X arising from Stone-Čech compactification βX.

Proof. (i) That δcr satisfies axioms (i) and (iii) in Definition 8.4.11 is obvious. If A or B is empty,
a complete separation exists, thus A 6 δcrB. This gives axiom (ii). (A ∪ B) 6 δC means that C is
completely separated from A ∪ B, thus also from A and B separately. Thus (A ∪ B) 6 δC implies
A 6δC and B 6δC, which is the contraposition of implication⇐ in axiom (iv). Assume C is completely
separated from A and from B. Then there are f, g ∈ C(X, [0, 1]) such that f �C = g �C = 1 and
f �A = g �B = 0. Then f · g � (A ∪ B) = 0 and f · g �C = 1. Thus C is completely separated from
A∪B, proving axiom (iv). If A 6δB then there is a function f ∈ C(X, [0, 1]) with f �A = 0, f �B = 1.
Define E = f−1([1/2, 1]). It is then clear that A,E are completely separated, thus A 6 δE, and that
B is completely separated from X\E = f−1([0, 1/2)), thus B 6 δ(X\E). This proves axiom (v).
Separatedness (vi) follows from the fact that in a completely regular space, continuous functions
separate the points.

If X is normal then A ∩ B = ∅ and complete separation of A and B are equivalent (Corollary
8.2.4), thus δcr = δn.

(ii) By Proposition 8.3.37(i)-(ii), for ι : X → βX we have that complete separation of A and B
is equivalent to ι(A) ∩ ι(B) = ∅. Now for A,B ⊆ X we have

AδcrB
def.⇔ A,B not completely separated ⇔ ι(A) ∩ ι(B) 6= ∅ def.⇔ AδβXB,
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proving δβX = δcr. �

Remark 8.4.18 1. If X is locally compact Hausdorff, the one-point compactification X∞ is a
Hausdorff compactification of X. Now Exercise 7.8.18(iii) immediately shows that the corresponding
separated proximity δX∞ on X is given by:

Aδ∞B ⇔ A ∩B 6= ∅ ∨ A,B are both non− compact.

(If X is not locally compact Hausdorff, δ∞ will still satisfy axioms (i)-(iv) (whose proof in Lemma

8.4.15 required no assumption on X̂), but not necessarily (v). It will be separated if and only if
x 6= y ⇒ {x} ∩ {y} = ∅, which is intermediate between T0 and T1.)

2. Comparing the proximity δ∞ to δcr from Lemma 8.4.17, we obtain another proof of Corollary
8.3.40. 2

8.4.4 From proximities to Hausdorff compactifications

Remarkably, one has the following converse of Lemma 8.4.15:

Theorem 8.4.19 (Smirnov) 7 Let (X, τ) be completely regular. Then for every separated proximity

δ on X there exists a Hausdorff compactification ((X̂, τ̂), ι) of X such that the corresponding proximity
on X equals δ.

Corollary 8.4.20 For every completely regular space X there is a bijection between separated prox-
imities on X and isomorphism classes of Hausdorff compactifications of X.

Remark 8.4.21 The theorem can be proven from scratch, cf. Smirnov’s papers or the book [222].
Alternatively, one can use compactification w.r.t. a uniformity (due to P. Samuel), [153] or [89, Section
8.4]. We will follow the more economical (but apparently little known) route [205] of constructing

the compactification X̂ corresponding to δ as a quotient of βX. 2

Lemma 8.4.22 Let (X, τ) be completely regular and δ a separated proximity on X. Consider X as
a subspace of βX. Define a binary relation ∼ on βX by

p ∼ q ⇔ there do not exist A,B ⊆ X such that p ∈ A, q ∈ B and A 6δB.

(The closures are in βX.) Then ∼ is a closed equivalence relation.

Proof.
�

Let (X, τ), δ and the equivalence relation as in the lemma. Define X̂ = βX/∼, and let p :

βX → X̂ be the quotient map. βX is compact Hausdorff, thus X̂ is compact, and since ∼ is closed,
X̂ is Hausdorff by Corollary 8.1.19. We have an obvious map ι : X → X̂ given as composition
X ↪→ βX

p→ X̂. Since X ⊆ βX is dense, ι(X) ⊆ X̂ is dense. Now the proof of Theorem 8.4.19 is
completed by the following:

Proposition 8.4.23 Let (X, τ), δ be given as in the lemma and ∼, X̂, p as defined above. Then

7Yuri Mikhailovich Smirnov (1921-2007). Russian topologist. Also known as one of the discoverers of the Bing-
Nagata-Smirnov metrization theorem.
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(i) The restriction of p : βX → X̂ to X ⊆ βX is injective.

(ii) For A,B ⊆ X, we have cl(ι(A)) ∩ cl(ι(B)) 6= ∅ ⇔ AδB, where cl denotes closure in X̂.

Thus (X̂, ι) is a Hausdorff compactification of X, and the corresponding proximity equals δ.

Proof.
�

8.4.5 Freudenthal compactification of rimcompact spaces

As an easy application of the formalism of the preceding section, we discuss the ‘end compactification’
due to Freudenthal8. There are very few expositions of the latter in the textbook literature (the only
ones known to the author are [22, p. 57-70] and [153, p. 109-116], which however makes heavy use of
uniform spaces), possibly because of the considerable effort necessary for a direct approach.

Definition 8.4.24 A space (X, τ) is rim-compact if τ admits a base consisting of open sets with
compact boundaries.

Lemma 8.4.25 (i) Every locally compact Hausdorff space is rim-compact.

(ii) Every zero-dimensional space is rim-compact. (Cf. Definition 11.1.15: The topology has a base
consisting of clopen sets.)

Proof. (i) By Lemma 7.8.25, τ has a base of open sets with compact closures. Now the claim follows
from, since compactness of U implies compactness of ∂U .

(ii) Follows immediately from the fact that a set is clopen if and only if its boundary is empty. �

8.5 Paracompactness and some of its uses

The notion of paracompactness has many applications, some of which do not even involve paracom-
pactness in their statements, like Theorem 8.1.43 or Corollary 8.5.22. It bears on the problem of
normality of product spaces, allowing to prove Theorem 8.1.43, and thus is responsible for one di-
rection of Theorem 8.1.47. Metric spaces are paracompact, and notions related to paracompactness
appear in many characterizations of metrizable spaces. (This subsection was not part of Section 7
on compactness and its generalizations because it strongly relies on Sections 8.1-8.2 on separation
axioms, both technically and for motivation.)

8.5.1 The basic facts

In Section 8.2.5 we have encountered the notion of local finiteness of a family of sets, in particular of
a cover, in connection with the existence of partitions of unity. This raises the question which spaces
allow to find locally finite subcovers for all open covers. The following shows that this condition is
too strong, since it is equivalent to compactness:

Lemma 8.5.1 Let X be a topological space.

8Hans Freudenthal (1905-1990). German-Dutch mathematician.
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(i) If X is non-compact then for every x ∈ X there is an open cover U of X such that no subcover
V ⊆ U is point-finite at x.

(ii) If every open cover of X has a point-finite subcover then X is compact.

(iii) If every open cover of X has a locally finite subcover then X is compact.

Proof. (i)⇒(ii)⇒(iii) are obvious.
(i) [Due to Mike F on stackexchange] Assume X is non-compact and x ∈ X. Assume that X\U

is compact for every open neighborhood U of x. Let U be an open cover. Then there is a U ∈ U
with x ∈ U . By assumption X\U is compact, thus it is covered by a finite subfamily V ⊆ U . Now
V ∪ {U} ⊆ U is a finite subcover of X. Since U was arbitrary, we have a contradiction with the
assumption that X is non-compact. We conclude that there is an open neighborhood of x such that
X\U is non-compact. The latter fact means that there is an open cover V ⊆ τX\U of X\U that
admits no finite subcover. Choosing W0 ⊆ τ such that V = {W ∩ (X\U) | W ∈ W0}, W has no
finite subfamily whose union contains X\U . Now W = {W ∪ U | W ∈ W0} is an open cover of X.
Since x is contained in every element of W , every subcover that is point-finite at x is finite. But by
construction, no finite subfamily of W can cover X. This proves the claim. �

We therefore need to work with a generalization of subcovers, like the notion of shrinkings that
we have already met. It is advantageous to generalize that even further:

Definition 8.5.2 A refinement of a cover U of X is a cover V such that for every V ∈ V there is a
U ∈ U such that V ⊆ U . We call V open (closed) if every V ∈ V is open (closed).

Remark 8.5.3 The notion of refinement of a cover generalizes that of a shrinking (which in turn
generalizes subcovers): Instead of having one subset VU ⊆ U of each U ∈ U , we only require that
every V ∈ V is contained in some U ∈ U . (In the notation U = {Ui}i∈I ,V = {Vj}j∈J this means that
instead of Vi ⊆ Ui ∀i we have a map α : J → I such that Vj ⊆ Uα(j) ∀j ∈ J .) 2

Lemma 8.5.4 If an open cover admits a finite refinement then it also has a finite subcover.

Proof. If V is a finite refinement of U (open or not), for each V ∈ V choose a UV ∈ U such that
V ⊆ UV . Now {UV }V ∈V ⊆ U is a finite subcover since

⋃
V UV ⊇ V = X. �

Thus the existence of finite shrinkings or refinements (open or not) of all open covers is again
equivalent to compactness. But the following statements will turn out to be weaker:

Lemma 8.5.5 For a topological space X, the following are equivalent:

(i) Every open cover of X has a locally finite open shrinking.

(ii) Every open cover of X has a locally finite open refinement.

Proof. (i)⇒(ii) Again this is obvious since a shrinking in particular is a refinement.
(ii)⇒(i) Let U = {Ui}i∈I be an open cover of X. Choose a locally finite open refinement W =

{Wj}j∈J of U and a map f : J → I such that Wj ⊆ Uf(j) ∀j ∈ J . Now for i ∈ I define Vi =⋃
j∈f−1(i) Wj. This is open, and in view of

⋃
i∈I Vi =

⋃
i∈I
⋃
j∈f−1(i) Wj =

⋃
j∈JWj = X, V covers X.

We have Vi ⊆ Ui by the very definition of f , thus V is an open shrinking of U . By local finiteness of
W , every x ∈ X has an open neighborhood N such that K = {j ∈ J | N ∩Wj 6= ∅} is finite. Now
N ∩ Vi 6= ∅ holds if and only if N ∩Wj 6= ∅ for some j ∈ f−1(i), which is equivalent to i ∈ f(K).
Since f(K) is finite, V is locally finite. �
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Definition 8.5.6 A topological space X is called paracompact9 if every open cover of X has a locally
finite open refinement.

Remark 8.5.7 1. Lemma 8.5.5 shows that paracompactness could be defined in terms of shrinkings,
dispensing with refinements. But the added generality of refinements is often useful.

2. It is clear that every compact space is paracompact. The converse is not true. For example,
we will see that every metrizable space is paracompact.

3. As in the case of compactness, some authors include the Hausdorff property in the definition
of paracompactness, but we do not do this. 2

Since paracompactness is weaker than compactness, the following improves Proposition 8.1.8:

Proposition 8.5.8 Every paracompact Hausdorff space is normal.

Proof. Let C ⊆ X be closed and x ∈ X\C. Since X is Hausdorff, for every y ∈ C there are disjoint
open Uy 3 x, Vy 3 y. This implies x 6∈ Vy. Now V = {Vy | y ∈ C} ∪ {X\C} is an open cover of X.
Pick a locally finite refinementW of V and define V =

⋃
{W ∈ W |W ∩C 6= ∅}. Then V is open and

contains C. Since {W ∈ W | W ∩C 6= ∅} is locally finite, Exercise 8.2.51(ii) gives V =
⋃
{W | W ∈

W , W∩C 6= ∅}. W being a refinement of V , every W with W∩C 6= ∅ is contained in some Vy (since it
clearly is not contained in X\C), thus W ⊆ Vy. Thus V =

⋃
{W | W ∈ W , W ∩C 6= ∅} ⊆

⋃
y∈C Vy,

which implies x 6∈ V . Thus U = X\V is an open neighborhood of x disjoint from V , so that X is T3.
In order to prove that X is T4, let C,D be disjoint closed subsets. By the T3-property just

proven, every for every y ∈ C we can find an open Vy 3 y such that Vy∩D = ∅. Repeating the above
argument, we can construct an open V ⊇ C such that V ∩D = ∅, proving normality. �

Remark 8.5.9 A T1-space is called collectionwise normal if given a discrete family {Ci ⊆ X} of
mutually disjoint closed sets, there is a family of mutually disjoint open sets {Ui} such that Ui ⊇ Ci ∀i.
(If this is true, it is easy to achieve discreteness of the family {Ui}.) A discrete family of mutually
disjoint closed sets has closed union (Exercise 8.2.51), thus satisfies the condition in Exercise 8.1.13,
so that metrizable spaces are collectionwise normal. It is not difficult to prove that every paracompact
Hausdorff space is collectionwise normal, cf. [89, Theorem 5.1.18]. 2

The following should be compared with Lemma 8.2.28 to the effect that pseudocompact normal
spaces are countably compact:

Corollary 8.5.10 A pseudocompact paracompact Hausdorff space is compact.

Proof. By Proposition 8.5.8, a paracompact Hausdorff space is normal, thus completely regular. If U is
an open cover, paracompactness provides a locally finite open refinement V . By pseudocompactness,
complete regularity and Proposition 8.2.52, the locally finite cover V is finite. Now Lemma 8.5.4
shows that U has a finite subcover. �

Remark 8.5.11 1. A topological space X is called metacompact10 if every open cover of X has
a point-finite open refinement. Obviously paracompact ⇒ metacompact. Since point-finiteness of

9Paracompactness was invented/discovered in 1944 by Jean Dieudonné (1906-1992). He was incredibly productive:
Besides writing > 15 books on his own and Elements de Géometrie Algébrique I (joint with Grothendieck), he was
responsible for the final version of almost everything published by the Bourbaki group.

10Metacompactness was introduced in 1950 by Richard F. Arens (1919-2000) and James Dugundji (1919-1985).
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a cover is not sufficient for the existence of a subordinated partition of unity, metacompactness is
much less important than paracompactness. Nevertheless, it has some interesting applications.

2. Example: A (weakly) countably compact and metacompact space is compact.
Proof. Let U be an open cover. By metacompactness, it has a point-finite open refinement V . By
Exercise 8.1.56, there is an irreducible subcover W ⊆ V . For every W ∈ W , we have

⋃
(W\{W}) (

X, thus we can choose a point xW ∈ X\(
⋃

(W\{W})). Then {xW | W ∈ W} is a closed discrete
subset of X, which must be finite by definition of weak countable compactness (implied by countable
compactness, cf. Exercise 7.7.8). Thus W is a finite refinement of U , and by Lemma 8.5.4 U has a
finite subcover.

3. To compare the above with Corollary 8.5.10, recall that paracompact ⇒ metacompact and
countably compact ⇒ pseudocompact. One can actually show that already complete regularity,
metacompactness and pseudocompactness imply compactness, cf. [293]. 2

Now we can answer the question posed in Remark 8.2.50:

Theorem 8.5.12 For a Hausdorff space X, the following are equivalent:

(i) X is paracompact.

(ii) For every open cover U of X there is a locally finite partition of unity subordinate to U .

(iii) For every open cover U of X there is a family F ⊆ C(X, [0, 1]) such that {supp(f) | f ∈ F} is
a locally finite (closed) refinement of U and

∑
f∈F f(x) = 1 ∀x ∈ X.

Proof. (i)⇒(ii) Assume X is paracompact, and let U be an open cover. By Lemma 8.5.5 we can
find a locally finite open shrinking V of U . Since X is normal by Proposition 8.5.8, Theorem 8.2.49
provides a partition of unity F subordinate to V . It is clear that F is locally finite and subordinate
to U .

(ii)⇒(iii): This is trivial.
(iii)⇒(i): Let U be an open cover of X. Pick a family F with the properties under (iii). Since

the f ∈ F are continuous and satisfy
∑

f∈F f(x) = 1 ∀x, we see that W = {X\f−1(0) | f ∈ F} is
an open cover of X. It obviously is a shrinking of V = {supp(f) | f ∈ F}, which by assumption is
a locally finite (closed) refinement of U . Thus W is a locally finite open refinement of U , proving
paracompactness. �

We have met three classes of spaces that are automatically normal: (i) Compact T2-spaces,
(ii) Lindelöf T3-spaces and (iii) metrizable spaces. For the first class (which is contained in the
second) paracompactness is trivial. For the other two classes, we have the following strengthenings
of Proposition 8.1.16(iii) and Lemma 8.1.11:

Proposition 8.5.13 Lindelöf T3-spaces are paracompact.

Proof. Let U = {Ui}i∈I be an open cover. For each x ∈ X choose an ix ∈ I such that x ∈ Uix . Since
X is T3, there are open Vx,Wx such that x ∈ Vx ⊆ Vx ⊆ Wx ⊆ Wx ⊆ Ux. (Begin with Wx or use
that X is T4 by Proposition 8.1.16.) Now V = {Vx}x∈X is an open cover of X, which by the Lindelöf
property has a countable subcover {Vx1 , Vx2 , . . .}. Take T1 = Wx1 and, for n ≥ 2 define inductively
Tn = Wxn ∩X\(V x1 ∪ · · · ∪ V xn−1), which is open. Paracompactness will follow once we prove that
T = {Tn}n∈N is a locally finite refinement of U . By definition, Tn ⊆ Wxn ⊆ Uxn ∈ U , thus T refines
U . By construction, Tn ⊇ Wxn\(Wx1 ∪· · ·∪Wxn−1), thus

⋃n
k=1 Tk ⊇

⋃n
k=1Wxk . Since {Vxi} covers X,

so does {Wxi} and therefore {Tn}. Every x is contained in some Vxk , and by construction Vxk∩Tl = ∅
whenever l ≥ k. Thus Vk is an open neighborhood of x meeting only finitely many Tk, and {Tk} is
locally finite. �
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Theorem 8.5.14 Metrizable spaces are paracompact.

Proof. Let U = {Ui}i∈I be an open cover of a metric space (X, d). By the Well-Ordering Principle
(which is equivalent to the axiom of choice by Theorem A.3.27) there is a well-ordering ≤ on I.
Recall that this means that every J ⊆ I has a ≤-smallest element min(J). In particular, for every x
there is a unique i ∈ I, namely i = min({j ∈ I | x ∈ Uj}), such that x ∈ Ui\

⋃
j<i Uj.

For i ∈ I, n ∈ N define, inductively over n,

Vi,n =
⋃

x∈Xi,n

B(x, 2−n), where Xi,n = {x ∈ X | B(x, 3 · 2−n) ⊆ Ui, (8.6)

x 6∈
⋃
j<i

Uj ∪
⋃

j∈I,k<n

Vj,k}. (8.7)

We claim that V = {Vi,n}i∈I,n∈N is a locally finite open refinement of U , proving paracompactness.
Openness of the Vi,n is obvious.

By (8.6), B(x, 2−n) ⊆ B(x, 3 · 2−n) ⊆ Ui for every ball contributing to Vi,n, thus Vi,n ⊆ Ui, and V
refines U .

For x ∈ X, put i = min{j ∈ I | x ∈ Uj} and choose n ∈ N such that (8.6) holds. Then by (8.7),
either x ∈ Vj,k for some j ∈ I and k < n or we have x ∈ Xi,n ⊆ Vi,n. Thus V covers X.

For x ∈ X, put i = min{j ∈ I | x ∈
⋃
n∈N Vj,n}. Then we can choose n, k ∈ N such that

B(x, 2−k) ⊆ Vi,n. We will prove:

(i) If l ≥ n+ k then B(x, 2−n−k) intersects no Vj,l.

(ii) If l < n+ k then B(x, 2−n−k) intersects Vj,l for at most one j ∈ I.

These claims imply that the open neighborhood B(x, 2−n−k) of x can meet at most n+k−1 elements
of V , thus V is locally finite.

Proof of (i): Let y ∈ Xj,l. In view of l > n, (8.7) implies that y 6∈ Vi,n. Together with
B(x, 2−k) ⊆ Vi,n, this implies d(x, y) ≥ 2−k. We have l ≥ k + 1 (by assumption) and n + k ≥ k + 1
(trivially). Now z ∈ B(x, 2−n−k) ∩B(y, 2−l) would imply

d(x, y) ≤ d(x, z) + d(z, y) < 2−n−k + 2−l ≤ 2−k−1 + 2−k−1 = 2−k,

which is a contradiction. Thus B(x, 2−n−k)∩B(y, 2−l) = ∅, i.e. B(x, 2−n−k) is disjoint from the balls
{B(y, 2−l), y ∈ Xj,l} whose union is Vj,l.

Proof of (ii): Let x ∈ Vi,l, y ∈ Vj,l where i < j. By definition of the V ’s, there are x′, y′ such that
x ∈ B(x′, 2−l) ⊆ Vi,l, y ∈ B(y′, 2−l) ⊆ Vj,l. By (8.6), B(x′, 3 · 2−l) ⊆ Ui, but by (8.7) y′ 6∈ Ui. This
implies d(x′, y′) ≥ 3 · 2−l, and with the triangle inequality we have

3 · 2−l ≤ d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) < d(x, y) + 2−l + 2−l,

thus d(x, y) > 2−l. This obviously implies Vi,l ∩ Vj,l = ∅ whenever i 6= j. It also implies that every
ball of radius 2−l−1 intersects Vi,l for at most one i, and in view of l < n+ k, i.e. n+ k ≥ l + 1, this
conclusion a fortiori holds for every B(x, 2−n−k). �

Remark 8.5.15 1. The above proof, given in 1969 by M. E. Rudin [250], in surely complicated, but
less so than the original one by A. H. Stone (1948).

2. The above proof still applies to (X, τd) when d is only a pseudometric, since axiom (iii) of
Definition 2.1.1 (equivalent to τd being T2) was used nowhere.
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3. The cover V = {Vi,n}i∈I,n∈N can be written as V =
⋃
n∈N Vn, where Vn = {Vi,n}i∈I . As noted in

the proof of Theorem 8.5.14, the elements of Vn are mutually disjoint. Thus the family Vn is discrete
for each n, and as a union of countably many discrete families, V is σ-discrete.

Thus we have: If the topology of a space arises from a pseudometric then every open cover has
a refinement that is both locally finite and σ-discrete. 2

Remark 8.5.16 1. We now know that (i) Lindelöf T3-spaces and (ii) metric spaces are paracompact.
Since there are metric spaces that are not Lindelöf and Lindelöf T3-spaces that are not metrizable,
paracompactness (even together with T2) does not imply metrizability or Lindelöf.

2. The preceding results might lead one to think that every normal space is paracompact, but
this is false! The counterexamples are complicated. Cf. e.g. Example 20.11 and Problem 20H in �

[298].
3. Just as normality, paracompactness is neither hereditary nor preserved by products: 2

Example 8.5.17 1. By Corollary 8.1.30, a subspace Y of a compact Hausdorff (thus paracompact)
space X can fail to be normal. Since Y in any case is Hausdorff, such a Y is not paracompact
by Proposition 8.5.8. Thus paracompactness is not hereditary (so that one studies hereditarily
paracompact spaces).

2. As already noted in Remark 8.2.37, the Sorgenfrey line (R, τS) is Lindelöf and T3, thus
paracompact by Proposition 8.5.13. By Proposition 8.1.39, the Sorgenfrey plane (R, τS)2 is not
normal (but Hausdorff), thus not paracompact. This shows that paracompactness is not preserved
by products. 2

At least, in analogy to Exercise 8.1.26, we have:

Lemma 8.5.18 Closed subspaces of paracompact spaces are paracompact.

Proof. Let (X, τ) be paracompact and Y ⊆ X closed. Let U ⊆ τY be an open cover of Y . For every
U ∈ U , choose an open VU ∈ τ such that U = Y ∩ VU . Then U ′ = {VU | U ∈ U} ∪ {X\Y } is an
open cover of X. By paracompactness of X, there is a locally finite refinement V ′ ⊆ τ of V . Now
V = {V ∩ Y | V ∈ V ′} is an open refinement of U . If x ∈ Y then by local finiteness of V ′ there
is a τ -open neighborhood W of x meeting only finitely many V ∈ V ′. Then W ∩ Y is a τY -open
neighborhood of x meeting only finitely many V ∈ V , so that V is locally finite. �

(In analogy to Exercise 8.1.27, every Fσ-subset of a paracompact space is paracompact, cf. e.g.
[298].)

Like normality, paracompactness behaves well under closed maps, at least when combined with
the Hausdorff property. For the proof (which simplifies if f is also proper) see [298, 89].

Proposition 8.5.19 Let X be paracompact Hausdorff and f : X → Y continuous, closed and
surjective. Then Y is paracompact Hausdorff.

Exercise 8.5.20 Prove that
⊕

i∈I Xi is paracompact if and only if each Xi is paracompact.

8.5.2 Paracompactness and local compactness

Proposition 8.5.21 A locally compact Hausdorff space X is paracompact if and only if X ∼=⊕
i∈I Xi, where all Xi are Lindelöf (equivalently: σ-compact).
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Proof. ⇐ Since X ∼=
⊕

i∈I Xi is locally compact Hausdorff, each Xi is locally compact Hausdorff
(Exercise 7.8.36). Now, locally compact Hausdorff spaces are T3 (Corollary 8.1.9), so that the claim
follows from the paracompactness of Lindelöf T3-spaces (Proposition 8.5.13) and of arbitrary direct
sums of paracompact spaces (Exercise 8.5.20). (The equivalence of σ-compactness and the Lindelöf
property for locally compact spaces was shown in Exercise 7.8.44(i-ii).)
⇒ Using local compactness pick, for every x ∈ X, an open Ux and a compact Kx such that x ∈

Ux ⊆ Kx. Since X is Hausdorff, Kx is closed. Thus Ux ⊆ Kx is compact. Now by paracompactness,
the cover U = {Ux}x∈X has a locally finite refinement V , and it is automatic that V is compact for
every V ∈ V . For every x ∈ X, let Wx 3 x be an open set meeting only finitely many V ’s. If V ∈ V
and x ∈ V then V ⊆ V ⊆

⋃
x∈V Wx. Since V is compact, we conclude that V is contained in the

union of finitely many Wx’s. Thus each V ∈ V meets only finitely many other elements of V . (This
is stronger than local finiteness.)

For V0 ∈ V and k ∈ N, consider chains V1, V2, . . . , Vk ∈ V satisfying Vi∩Vi+1 6= ∅ for i = 0, . . . , k−1.
The above finiteness property of V implies that only finitely many Vk ∈ V are connected to V0 by a
chain of length k. Thus the family F (V0) of V ′s connected to V0 by a chain of finite length is at most
countable. The union S(V0) =

⋃
F (V0) of these V ′s is open, and for any V, V ′ ∈ V it is clear from

this construction that either S(V ) = S(V ′) or S(V )∩S(V ′) = ∅. Since V is a cover of X, each S(V )
is the complement of the union of the S(V ′) 6= S(V ), and therefore is closed. Thus X is a disjoint
union of clopen subsets, thus a direct sum.

Now, S(V ) = S(V ) =
⋃
{V | V ∈ F (V0)} =

⋃
{V | V ∈ F (V0)}, where the last identity is due

to the fact that F (V0) ⊆ V is locally finite and Exercise 8.2.51(ii). Thus each S(V ) is a countable
union of compact subsets of X, i.e. σ-compact. As such it also is Lindelöf, cf. Exercise 7.8.44(i). �

Now we can prove the missing implication (v)⇒(iv) in Corollary 8.2.40.

Corollary 8.5.22 A locally compact Hausdorff space X is metrizable if and only if X ∼=
⊕

i∈I Xi,
where all Xi are second countable.

Proof. ⇐ This was implication (iv)⇒(v) in Corollary 8.2.40. ⇒ Since X is metrizable, it is para-
compact by Theorem 8.5.14. Thus Proposition 8.5.21 gives X ∼=

⊕
i∈I Xi, where all Xi are Lindelöf.

Each Xi is a subspace of X, thus metrizable and therefore second countable by Exercise 7.1.9. �

That direct sums appear in Proposition 8.5.21 and Corollary 8.5.22 simply is a consequence of
the fact that local compactness, paracompactness and metrizability are preserved under arbitrary
direct sums, but not compactness, second countability and the Lindelöf property.

Corollary 8.5.23 A connected locally compact Hausdorff space is . . .

(i) paracompact if and only if it is Lindelöf (equivalently, σ-compact),

(ii) metrizable if and only if it is second countable.

Proof. This follows directly from Proposition 8.5.21 and Corollary 8.5.22 since connectedness implies
that only one summand appears in the direct sum. �

8.5.3 Paracompactness and normality of product spaces

Despite Example 8.5.17.2, paracompactness behaves somewhat better with respect to products than
normality does:

Proposition 8.5.24 If X is paracompact and Y is compact then X × Y is paracompact. If, in
addition, X and Y are Hausdorff then X × Y is normal.
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Proof. Let U be an open cover of X × Y and let x ∈ X. Since Y ∼= {x} × Y is compact, there are
finitely many Ux,1, . . . , Ux,nx ∈ U such that {x} × Y ⊆

⋃nx
i=1 Ux,i. By Lemma 7.5.1 and compactness

of Y , there is an open Vx 3 x such that Vx × Y ⊆
⋃nx
i=1 Ux,i. Clearly V = {Vx}x∈X is an open cover

of X, which by paracompactness has a locally finite refinement W . For every W ∈ W choose an
xW ∈ X such that W ⊆ VxW . Now define

S = {(W × Y ) ∩ UxW ,i | W ∈ W , i = 1, . . . , nxW }.

Every S ∈ S is open and contained in some U ∈ U . SinceW is a cover of X, every x ∈ X is contained
in some W ∈ W . By construction, this W is contained in VxW , and VxW × Y ⊆

⋃nxW
i=1 UxW ,i. Thus⋃

S = X × Y , and S is an open refinement of U . Finally, if (x, y) ∈ X × Y , there is an open
neighborhood T ⊆ X of x meeting only finitely many W ∈ W (by local finiteness of W). Then
T × Y is an open neighborhood of (x, y) that can meet only those elements (W × Y ) ∩ UxW ,i of S
for which T ∩W 6= ∅. Since these are finitely many, S is locally finite, proving paracompactness of
X × Y .

If X and Y are Hausdorff, then so is X×Y and combining this with the paracompactness proven
above, Proposition 8.5.8 gives normality of X × Y . �

Combining this with Theorem 8.5.14 gives the following, which was used in Section 8.5.6:

Corollary 8.5.25 If X is metrizable and Y is compact Hausdorff then X×Y is paracompact Haus-
dorff, thus normal.

The preservation of normality under products with compact Hausdorff spaces actually character-
izes paracompact Hausdorff spaces:

Theorem 8.5.26 A space X is paracompact Hausdorff if and only if X × Y is normal for every
compact Hausdorff space Y .

Proof. ⇒ Cf. Proposition 8.5.24. ⇐ Taking Y to be a one-point space, which is compact Hausdorff,
we have X ∼= X × Y , thus the assumption implies that X is normal. Thus X is completely regular
and therefore admits a Hausdorff compactification X̂ by Theorem 8.3.21. By our assumption, X×X̂
is normal, so that the following Proposition 8.5.27 gives the result. �

Proposition 8.5.27 (H. Tamano (1960)) If X admits a Hausdorff compactification X̂ such that

X × X̂ is normal then X is paracompact.

Proof. Since X̂ is T2, the diagonal ∆ = {(x, x) | x ∈ X} ⊆ X × X̂ is closed, cf. Exercise 8.2.30(i).

Let U = {Ui}i∈I be an open cover of X. Considering X as a subspace of X̂, for each i we can pick

an open Vi ⊆ X̂ such that Ui = X ∩ Vi. Now Z = X̂\
⋃
i∈I Vi ⊆ X̂\X is closed. Thus X × Z and ∆

are disjoint closed subsets of the space X × X̂. The latter being normal by assumption, Urysohn’s
lemma gives an f ∈ C(X × X̂, [0, 1]) such that f �∆ = 0 and f �X × Z = 1. Then

d(x, y) = sup
z∈X̂
|f(x, z)− f(y, z)|,

is finite by compactness of X̂ and continuity of f . It is easy to check (as in Exercise 8.2.30) that
d is a pseudometric on X. Exercise 7.7.45(i) implies d(xι, x0) → 0 as xι → x0. Thus every net
that converges w.r.t. the original topology τ is τd-convergent, which means that τd is coarser than τ .
By Remark 8.5.15, the cover {Bd(x, 1/2)}x∈X of X has a locally finite open refinement refinement
{Wt}t∈T , where both ‘locally finite’ and ‘open’ refer to τd. Since τd is coarser than τ , {Wt}t∈T is also
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open and locally finite w.r.t. τ . If x ∈ X and y ∈ Bd(x, 1/2), we have f(x, y) = |f(x, y)− f(y, y)| ≤
d(x, y) < 1/2 (we used f �∆ = 0). Thus f(x, y) ≤ 1/2 for all y ∈ ClX̂(Bd(x, 1/2)). For t ∈ T there
is an x ∈ X such that Wt ⊆ Bd(x, 1/2). Then ClX̂(Wt) ⊆ ClX̂(Bd(x, 1/2)), so that y ∈ ClX̂(Wt)
implies f(x, y) ≤ 1/2. On the other hand, by construction we have f(x, y) = 1 whenever y ∈ Z. This
implies ClX̂(Wt) ∩ Z = ∅, so that we have ClX̂(Wt) ⊆

⋃
i∈I Vi ∀t ∈ T . Since ClX̂(Wt) is compact,

there is a finite set Jt ⊆ I such that ClX̂(Wt) ⊆
⋃
i∈Jt Vi, and since Wt ⊆ X ∩ ClX̂(Wt), we have

Wt ⊆
⋃
i∈Jt Ui. This implies that {Wt ∩ Ui}t∈T,i∈Jt is an open cover of X refining U . This cover is

locally finite, as follows from the local finiteness of {Wt} and the finiteness of the Jt. �

Remark 8.5.28 1. Theorem 8.5.26 together with the existence of normal spaces that are not para-
compact shows that there are normal spaces X such that X × Y is non-normal for some compact
Hausdorff Y .

2. The last few results show that the notion of paracompactness is relevant not only for the
existence of partitions of unity subordinate to any open cover, but also for intrinsic questions of
general topology, like the difficult problem of normality of product spaces. Cf. Subsection 8.5.6 for
an application of this circle of ideas.

3. One can prove that the following are equivalent for a normal space X, cf. [298]:

(i) Every countable open cover of X has a locally finite refinement.

(ii) For every countable open cover {Un}n∈N of X there is a locally finite open shrinking {Vn ⊆ Un}
such that Vn ⊆ Un ∀n.

(iii) If {Cn}n∈N are closed sets in X such that
⋂
nCn = ∅ then there are open sets (or Gδ-sets)

Un ⊇ Cn ∀n such that
⋂
n Un = ∅.

(iv) X × [0, 1] is normal.

(v) X × Y is normal for every Y that is second countable compact T2 (=compact metrizable).

(vi) The conclusion of Theorem 8.5.34 holds. (Cf. [89, Problem 5.5.20].)

Such spaces are called countably paracompact. Clearly every countably compact space is countably
paracompact.

4. There exist spaces that are countably compact, thus countably paracompact, but not para-
compact, cf. e.g. [89, Example 5.1.21].

5. Countably paracompact normal spaces are also called binormal. A normal space that is not
binormal is called a Dowker space. That such spaces exist was first shown by M. E. Rudin by a
complicated construction. For a simpler (and smaller) example cf. [16].

6. Every perfectly normal (T6) space is countably paracompact, thus binormal. This follows from
(iii) since closed sets are Gδ. 2

We summarize some of the implications involving compactness, metrizability, (countable) para-
compactness and the separation axioms Ti, i ≥ 4:

compact
metrizable

===-
separable metr.=

2nd cnt. T3 ====- metrizable =========- T6 =========- T5

compact T2

?

wwwwwwwww
===- Lindelöf T3

?

wwwwwwwwww
===- paracompact T2

?

wwwwwwwwww
==- countably

paracompact
T4

?

wwwwwwwww
=====- T4

?

wwwwwwwwww
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Remark 8.5.29 1. None of the implications is reversible. The space II is compact T2, but not T5.
This already provides a counterexample for all vertical implications. R is in the second column, but
not in the first. Every uncountable discrete space is in the third column, but not in the second.
The Sorgenfrey line is T6, but not metrizable. Spaces that are T5, but not T6 were encountered in
Exercise 8.2.14.

2. For the first two squares we actually have that a space with the properties in the upper right
and lower left corner also has the property in the upper left corner. But in the right half of the
diagram, this is not the case. E.g., the Sorgenfrey line is Lindelöf and T6 (thus also paracompact)
but not metrizable. 2

8.5.4 The Nagata-Smirnov metrization theorem

Definition 8.5.30 If X is a topological space, a family U ⊆ P (X) is called σ-locally finite if U =⋃
i∈N Ui where the Ui are locally finite families.

Lemma 8.5.31 A T3-space admitting a σ-locally finite base is T6.

Proof. We will prove that for every open U ⊆ X there is a countable family {Wn}n∈N of open sets such
that Wn ⊆ U ∀n and U =

⋃
nWn. Given that, we have U =

⋃
nWn ⊆

⋃
nWn ⊆ U , thus U =

⋃
nWn.

Thus every open set is Fσ, which is equivalent to every closed set being Gδ. Furthermore, the
condition in Lemma 8.1.14 is clearly satisfied (since it would even hold for C = W ). Thus X is
normal and therefore T6 by Exercise 8.2.8.

Let V be a σ-locally finite base and V =
⋃
n∈N Vn, where each Vn = {Vn,ı}i∈In is locally finite. Let

U ⊆ X be open. Since X is regular, for every x ∈ U there is an open Vx such that x ∈ Vx ⊆ Vx ⊆ U .
Since V is a base, there are nx ∈ N, ix ∈ Inx such that x ∈ Vn,i ⊆ Vx. Thus also Vnx,ix ⊆ U . Defining
Wn =

⋃
{Vnx,ix | x ∈ X,nx = n}, we have a family {Wn}n∈N of open sets such that U =

⋃
n∈NWn.

Since {Vnx,ix | nx = n} ⊆ Vn is locally finite, Exercise 8.2.51(ii) gives Wn =
⋃
{Vnx,ix | nx = n} =⋃

{Vnx,ix | nx = n} ⊆ U ∀n, and we are done. �

Theorem 8.5.32 (Nagata-Smirnov metrization theorem (1950/1)) A topological space X is
metrizable if and only if it is T3 and its topology has a σ-locally finite base.

Proof. ⇒ By Lemma 8.1.11, a metric space is T3. By Remark 8.5.15, the open cover Un =
{B(x, 1/n)}x∈X has a σ-discrete open refinement Vn. Then V =

⋃
n∈N Vn is σ-discrete. Now, if

x ∈ U ∈ τ then there is an n ∈ N such that B(x, 1/n) ⊆ U . Since V2n is a cover of X, there is a
V ∈ V2n such that x ∈ V . Since V2n is subordinate to U2n, there is y ∈ X such that V ⊆ B(y, 1/2n).
Thus d(z, x) < 2/2n = 1/n ∀z ∈ V , to wit V ⊆ B(x, 1/n) ⊆ U , so that V is a σ-discrete base, thus
also σ-locally finite.
⇐: Let V be a σ-locally finite base and V =

⋃
n∈N Vn, where each Vn = {Vn,i}i∈In is locally

finite. Since X is T6 by Lemma 8.5.31, Exercise 8.2.8 gives functions fn,i ∈ C(X, [0, 1]) such that
X\Vn,i = f−1

n,i (0). Since {Vn,i}i∈In is a locally finite family in X, the family {(Vn,i×X)∪(X×Vn,i)}i∈In
in X ×X is locally finite. Thus

dn(x, y) =
∑
i∈In

|fn,i(x)− fn,i(y)|

is a continuous function function dn : X ×X → [0,∞) by Lemma 8.2.48, and it clearly is a pseudo-
metric on X. Let C ⊆ X be closed and x ∈ X\C =: U . Then x ∈ U ∈ τ , and since V is a base,
there exist n ∈ N and i ∈ In such that x ∈ Vn,i ⊆ U . By construction, fn,i(x) > 0 and fn,i = 0
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on X\Vn,i ⊇ C. Thus infy∈C dn(x, y) = fn,i(x) > 0, so that D = {dn}n∈N is a countable family of
continuous seminorms that separates points from closed sets. Thus X is metrizable by Proposition
8.2.32. �

Remark 8.5.33 1. Urysohn’s metrization theorem (Theorem 8.2.33) follows immediately from The-
orem 8.5.32: By second countability there is a countable base B = {Ui}i∈N. Now B =

⋃
i∈N Bi, where

Bi = {Ui} trivially is a locally finite family, thus B is σ-locally finite.
2. The family F = {fn,i} ⊆ C(X, [0, 1]) constructed in the proof separates points from closed

sets, but if X is not second countable, F must be uncountable, as noted in Remark 8.2.34. The
essential idea of the above proof is to use the σ-local finiteness of V to produce a countable family
{dn} of continuous functions separating points from closed sets, but they live on X ×X rather than
X ! (This is related to the notion of ‘uniform structures’.)

3. Many other statements equivalent to metrizability have been found, but they involve concepts
beyond the scope of these notes. (E.g. ‘developments’, which are certain countable families of covers.)
Cf. e.g. [298, 89] and [130, Sections e02, e03]. 2

8.5.5 Two applications of paracompactness

Here is an application to semicontinuous functions:

Theorem 8.5.34 Let X be paracompact. Then given functions f, g : X → R that are upper and
lower semicontinuous, respectively, with f(x) < g(x) ∀x ∈ X, there exists a continuous h : X → R
such that f(x) < h(x) < g(x) ∀x ∈ X.

Proof. For each r ∈ Q, define Ur = f−1((−∞, r)) ∩ g−1((r,∞)), which is open by the semicontinuity
properties. We have Ur = {x ∈ X | f(x) < r < g(x)}, implying that {Ur}r∈Q is an open cover of X.
By Theorem 8.5.12 there is a locally finite partition of unity {fr}r∈Q subordinate to {Ur}. The local
finiteness implies that h(x) =

∑
r∈Q rfr(x) is continuous. Every x ∈ X is contained in finitely many

Ur. If ax = min{s ∈ Q | x ∈ Us}, bx = max{s ∈ Q | x ∈ Us} then f(x) < ax ≤ bx < g(x). Since h(x)
is a convex combination of {s ∈ Q | x ∈ Us} we have ax ≤ h(x) ≤ bx. Combining these inequalities,
we obtain f(x) < h(x) < g(x) ∀x. �

Our second application of paracompactness is more substantial in that it uses not only the defi-
nition, but also the non-trivial fact that metric spaces are paracompact.

Definition 8.5.35 A topological vector space V (over R or C) is called locally convex if it is T0 and
0 ∈ V has a neighborhood base consisting of convex open sets.

Locally convex topological vector spaces will be studied in a bit more depth in Section G.8. For
now, we just observe the following:

Lemma 8.5.36 If V is a vector space over R or C and ‖ · ‖ is a norm on it, the norm topology
(coming from the metric d(x, y) = ‖x− y‖) is locally convex.

Proof. The balls B(0, r) form a neighborhood base at 0 and are convex by Lemma 7.7.59. �

Theorem 8.5.37 (Dugundji’s Extension Theorem (1951)) Let X be a metrizable space, A ⊆
X closed and L a locally convex topological vector space. Then

(i) There is a linear map C(A,L)→ C(X,L), f 7→ f̂ satisfying f̂ �A = f and f̂(X) ⊆ conv(f(A)).
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(ii) If K ⊆ L is convex then every f ∈ C(A,K) has an extension f̂ ∈ C(X,K).

Proof. (i) Let d be a metric on X compatible with the topology. Since A is closed, for each x ∈ X\A
we have εx := dist(x,A)/4 > 0. Then B(x, εx) ⊆ X\A. Since X\A is paracompact, the open
cover {B(x, εx)}x∈X\A has a locally finite refinement U . Recall the notation Aε from (3.1). Now,
if x 6∈ A2η (i.e. dist(x,A) ≥ 2η) then B(x, εx) ∩ Aη = ∅ by our choice of εx. Thus (*) if U ∈ U
intersects Aη and U ⊆ B(x, εx) (such an x exists since U refines {B(x, εx)}) then x ∈ A2η, implying
diam(U) ≤ 2εx = dist(x,A)/2 ≤ η.

For each non-empty U ∈ U pick any xU ∈ U and then choose aU ∈ A such that d(xU , aU) <
2dist(xU , A). Now the cover U and the points {aU}U∈U satisfy the following claim (**):

If a ∈ A and W ⊆ X is an open neighborhood of a then there is an open V ⊆ W containing a such
that U ∈ U , U ∩ V 6= ∅ implies aU ∈ A ∩W .

It suffices to prove this for W = B(a, ε). Put V = B(a, ε/6). If now U ∈ U intersects V then
it intersects Aε/6, thus by (*) we have diam(U) ≤ ε/6. This implies U ⊆ B(a, ε/4), which gives
d(a, xU) < ε/4 and therefore dist(xU , A) < ε/4. Now,

d(aU , a) ≤ d(aU , xU) + d(xU , a) ≤ 2dist(xU , A) + dist(xU , A) ≤ 3dist(xU , A) ≤ 3

4
ε < ε.

This proves aU ∈ W , thus the claim.
Let now {φU}U∈U be a partition of unity subordinate to the cover U . For f ∈ C(A,L) define

f̂ : X → L by

f̂(x) =

{
f(x) x ∈ A∑

U∈U φU(x)f(aU) x ∈ X\A

From this definition it is clear that f̂ �A = f , that the assignment f 7→ f̂ is linear and that f̂ takes
values in the convex hull of f(A). (Note that no closure is needed since the family {φU} is locally

finite!) It remains to prove continuity of f̂ . Each point of the open set X\A has a neighborhood V

on which only finitely many φU are non-zero. Thus f̂ � V is a finite sum of products of continuous
functions, thus continuous on V and therefore on X\A.

Let now a ∈ A and S ⊆ L an open neighborhood of f(a). Since L is locally convex and f
continuous, there is a convex open C ⊆ S and an open W ⊆ X containing a such that f(W ∩ A) ⊆
C ⊆ S. Let now V ⊆ W be as provided by (**). It is clear that f̂(V ∩ A) = f(V ∩ A) ⊆ C ⊆ S.
And if x ∈ V \A then x belongs to at most finitely many U1, . . . , Un ∈ U . Each of these Ui intersects

V , so that (**) gives aUi ∈ A ∩W ∀i = 1, . . . , n. Thus f(aUi) ∈ C ∀i, and since f̂(x) is a convex

combination of the f(aUi), we conclude f̂(x) ∈ C ⊆ S. Thus f̂(V ) ⊆ S, proving continuity of f̂ at
each point of A, and therefore everywhere on X.

(ii) Obvious consequence of (i). �

8.5.6 ?? A glimpse at generalized metric spaces

There have been many attempts at defining a notion of ‘generalized metric spaces’ by enlarging the
class of metric spaces while maintining as many of its desirable properties as possible. Here we briefly
look at the most accessible of these attempts, based on Corollary 8.5.25:

Definition 8.5.38 A paracompact M-space is a topological space that is homeomorphic to a closed
subspace of a space M ×K with K compact Hausdorff and M metrizable. The class of paracompact
M-spaces is denoted by PM.
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Corollary 8.5.39 (i) All spaces in PM are paracompact Hausdorff, thus normal.

(ii) The class PM is closed w.r.t. passage to closed subspaces and countable products.

Proof. (i) Follows from Corollary 8.5.25 and Lemma 8.5.18.
(ii) Follows from the following facts: Closed subspaces and arbitrary products of compact spaces

are compact, countable products of metrizable spaces are metrizable, and a product
∏

i Yi of closed
subspaces Yi ⊆ Xi is closed in

∏
iXi. �

It clearly follows that P is the smallest class of spaces containing the metrizable and the compact
Hausdorff spaces and being closed w.r.t. closed subspaces and countable products. There is an
alternative characterization:

Proposition 8.5.40 A topological space X is a paracompact M-space if and only if it is completely
regular and admits a continuous closed proper map f : X →M with M metrizable.

Proof. ⇒ Let X ⊆ M × K be closed with K compact Hausdorff and M metrizable. Clearly X is
T3.5. Now p1 : M ×K → M is closed by Exercise 7.5.5. Since X is closed, every closed C ⊆ X is
closed in M ×K, thus f = p1 �X is closed. If C ⊆ M is compact then f−1(C) = X ∩ (C ×K) is a
closed subset of the compact space C ×K and therefore compact. Thus f : X → M is continuous,
closed and proper with M is metrizable.
⇐ Let X be completely regular and f : X → M continuous, closed and proper with M metric.

Then the map g : X → M × βX, x 7→ (f(x), ιX(x)) (where βX denotes the Stone-Čech compact-
ification) is continuous and injective. Since ιX : X → βX is an embedding, the same is true for
g = (f, ιX) (since p2 ◦ g = idX). Since M is metric and βX compact Hausdorff, X ∼= g(X) is a
paracompact M-space provided we show that g(X) ⊆M × βX is closed.

Thus assume g(X) is non-closed and define X̂ := g(X) ⊆ M × βX. Then g = (f, ι), considered

as a map X → X̂ is an embedding. Clearly, p1 ◦ g = f . Identifying X with g(X) ⊆ X̂, this means

that p1 : X̂ →M is a continuous extension of the closed proper map f : X →M to a strictly larger
Hausdorff space X̂ ⊇ X. This contradicts Lemma 7.8.74, thus g(X) ⊆M × βX must be closed. �

Remark 8.5.41 The argument in the last paragraph of Proposition 8.5.40 works for any Hausdorff
compactification, not just βX. The statement also has a converse (whose proof is similar to the proof
of ⇒ in the proposition). This leads to the following characterization of closed proper maps: If X is
completely regular, then a continuous f : X → Y is closed and proper if and only if the embedding

g = (f, ι) has closed image for some (equivalently, every) Hausdorff compactification X
ι
↪→ X̂. 2

8.6 Summary of the generalizations of compactness

We briefly collect the generalizations of the notion of compactness that we have encountered. Most
of them are implied by compactness. (For sequential compactness we also need first countability, for
rimcompactness and realcompactness we need the Hausdorff property.)

0. Lindelöf property: Every open cover has a countable subcover.

1. compactness: Every open cover has a finite subcover.

2. sequential compactness: Every sequence has a convergent subsequence.

3. countable compactness: Every countable open cover has a finite subcover.
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4. weak countable compactness: Every closed discrete subspace is finite.

5. pseudocompactness: Every continuous R-valued function is bounded. Equivalently (for T3.5-
spaces), every locally finite open cover is finite.

6. realcompactness: There is an embedding into Rχ for some cardinal number χ.

7. σ-compactness: There is a countable compact cover.

8. hemicompactness: There is a countable compact cover such that every compact set is contained
in an element of the cover.

9. local compactness: Every point has a compact neighborhood.

10. strong local compactness: There is a base whose elements have compact closures.

11. compact generation (=k-spaces): A subset is closed if and only if its intersection with every
compact set is closed.

12. rimcompactness: There is a base whose elements have compact boundaries.

13. metacompactness: Every open cover has a point-finite refinement.

14. paracompactness: Every open cover has a locally finite refinement.

15. countable paracompactness: Every countable open cover has a locally finite refinement.
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Part III:

Connectedness. Steps towards algebraic topology
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Chapter 9

Connectedness: Fundamentals

So far, connectedness has been encountered only passingly. We have postponed the full treatment of
the concept up to this point since we consider it as a part of algebraic topology, or at least located
on the boundary between general and algebraic topology. This is not often stated explicitly, but
it is quite obvious: Connectedness has a functorial nature (Theorem 11.1.4) and admits a ‘higher-
dimensional’ generalization that is close to (co)homology, cf. Section 10. Furthermore, connectedness
is related to (but different from) path-connectedness, whose higher-dimensional extensions (of which
we only consider the first, i.e. fundamental group and groupoid) belong to homotopy theory.

9.1 Connected spaces and components

9.1.1 Basic results

Recall that a space (X, τ) is called connected if it has no clopen subsets other than ∅ and X. Now
we will go deeper into the subject, and we begin by studying the behavior of connectedness under
the various constructions. Connectedness is preserved by continuous functions:

Lemma 9.1.1 If f : (X, τ)→ (Y, σ) is continuous and (X, τ) is connected then the subspace f(X) ⊆
Y is connected. In particular, quotients of connected spaces are connected.

Proof. If the subspace f(X) ⊆ Y is not connected, it contains a non-trivial clopen subset C. But
then f−1(C) ⊆ X is non-trivial and clopen, contradicting the connectedness of X. �

We summarize what we know so far about connectedness:

(i) Lemma 9.1.1 in particular implies that quotient spaces of connected spaces are connected.

(ii) Connectedness of products will be the subject of Exercise 9.1.5.

(iii) By Exercise 2.5.9, connectedness is not hereditary.

(iv) In Section 6.3 we saw that a non-trivial direct sum X ∼= X1 ⊕X2 never is connected, and that
the converse is also true, i.e. every non-connected space is a direct sum.

(v) If X1, X2 are nontrivial and connected then X1⊕X2 = ι1(X1)∪ ι2(X2) is non-connected. Thus
connectedness of Y1, Y2 ⊆ X does not imply connectedness of Y1 ∪ Y2. But:

Lemma 9.1.2 If Yi ⊆ (X, τ) is connected for each i ∈ I and there exists i0 ∈ I such that Yi ∩ Yi0 6=
∅ ∀i then Y =

⋃
i Yi is connected. (A simpler sufficient condition is

⋂
i Yi 6= ∅.)

255
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Proof. Assume that we have Y = U1 ∪U2 with U1, U2 ∈ τY and U1 ∩U2 = ∅. For each i ∈ I it follows
that Vi = U1 ∩ Yi and Wi = U2 ∩ Yi are disjoint open sets such that Vi ∪Wi = Yi. Since each Yi is
connected, we must have Vi = Yi,Wi = ∅ or ↔. In the first case we have U1 ∩ Yi = Yi, thus Yi ⊆ U1.
In the second case, Yi ⊆ U2. Since U1 ∩ U2 = ∅ and each Yi has non-trivial intersection with Yi0 ,
all Yi must be contained in the same Uk (k ∈ {1, 2}) as Yi0 . But this means that either U2 = ∅ or
U1 = ∅, thus Y =

⋃
i Yi is connected. If

⋂
i Yi 6= ∅, we clearly have Yi ∩ Yj 6= ∅ ∀i, j. Thus the above

holds for any choice of i0 ∈ I. �

Exercise 9.1.3 Let ∅ 6= Yi ⊆ X be connected for each i ∈ I. Define an undirected graph G by
V (G) = I and E(G) = {(i, j) | Yi ∩ Yj 6= ∅}. Let Y =

⋃
i∈I Yi. Prove

(i) If G is connected then Y is connected.

(ii) If all Yi are open and Y is connected then G is connected.

Lemma 9.1.4 If Y ⊆ (X, τ) is connected then Y is connected.

Proof. It is sufficient to prove this in the case that Y is dense in X, i.e. Y = X. Assume that we
have Y = U1 ∪ U2 with U1, U2 ∈ τ and U1 ∩ U2 = ∅. Let Vi = Ui ∩ Y . Then V1, V2 are disjoint open
subsets in (Y, τY ) whose union is Y . Since Y is connected, we must have V1 = Y, V2 = ∅ or ↔. We
may assume that the first alternative holds, which means U1 ∩ Y = Y and U2 ∩ Y = ∅. This implies
Y ⊆ U1, and since U1 is clopen, we have Y ⊆ U1. Therefore U2 = ∅, thus Y is connected. �

Exercise 9.1.5 (Connectivity of products) (i) Assume that Xi 6= ∅ ∀i ∈ I. Prove that if
X =

∏
iXi is connected then each Xi is connected.

(ii) Let X, Y be non-empty and connected. Prove that X × Y is connected. Hint: Apply Lemma
9.1.2 to (X × {y0}) ∪

⋃
x∈X({x} × Y ).

(iii) Let Xi 6= ∅ be connected ∀i. Choose z = (zi) ∈
∏

iXi. For J ⊆ I define XJ = {x ∈ X | xi =
zi ∀i ∈ I\J}. Prove that XJ is connected for every finite J ⊆ I.

(iv) Continuing (iii), prove that Y =
⋃
J⊆I

#J<∞

XJ ⊆ X is dense and connected, so that Lemma 9.1.4

implies connectedness of X.

Exercise 9.1.6 Let X be a topological space and A,B ⊆ X connected subspaces. Prove or disprove
the following claims:

(a) If A ∩B 6= ∅ then A ∪B is connected.

(b) If A ∩B 6= ∅ then A ∪B is connected.

(c) If A ∩B 6= ∅ then A ∪B is connected.

Exercise 9.1.7 Prove that a topological space X is connected if and only if it does not admit an
open cover U such that #U ≥ 2 and all elements of U are non-empty and mutually disjoint.

Remark 9.1.8 The preceding exercise is just the starting point of the beautiful (more so than the
singular theory, in this author’s view) Čech homology and cohomology theories, cf. e.g. [291, Chapters
5-7]. 2
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9.1.2 Connected components and local connectedness

Lemma 9.1.9 Let X be a topological space. For x, y ∈ X say x ∼ y if and only if there exists a
connected Y ⊆ X such that {x, y} ⊆ Y . Then

(i) ∼ is an equivalence relation.

(ii) The ∼ equivalence class [x] of x is connected, closed, and equals the union of all connected
subsets containing x.

Instead of [x] we write C(x), which we call the connected component of x. A subset Y ⊆ X is called
a connected component of X if Y = C(x) for some x ∈ X.

Proof. (i) Reflexivity and symmetry of ∼ are obvious. If x ∼ y ∼ z, there are connected sets Y, Z ⊆ X
such that {x, y} ⊆ Y and {y, z} ⊆ Z. Then Y ∩ Z contains y, thus Y ∪ Z is connected by Lemma
9.1.2. Thus x ∼ z.

(ii) By definition, y ∈ [x] if and only if there is a connected Y ⊆ X containing x and y. Thus [x]
is the union of the connected Y that contain x. In particular [x] is itself connected, again by Lemma
9.1.2. By Lemma 9.1.4, [x] is connected and thus contained in [x] by definition. Thus [x] is closed.
�

Since ∼ is an equivalence relation, any two equivalence classes C(x), C(y) are either disjoint or
equal. Obviously, X is connected if and only if C(x) = X ∀x ∈ X.

As we have seen, connected components are always closed. Are they always open?

Example 9.1.10 Consider X = {1/n | n ∈ N} ∪ {0} ⊆ [0, 1], which is a closed, thus compact
subspace of [0, 1]. (We know this space from Exercises 5.2.18, 5.2.22 and Remark 7.8.16.3.) All
the singletons {1/n} are clopen, whereas {0} is closed but not open since every neighborhood of
0 contains infinitely many 1/n. Thus X is not discrete, yet we have C(x) = {x} ∀x ∈ X. The
component C(0) = {0} is not open, thus connected components need not be open! As the same�

time, this example shows that a compact space can have infinitely many connected components!
(The two phenomena are related, cf. Proposition 9.1.13. See also Exercise 11.1.23.) 2

Definition 9.1.11 A topological space (X, τ) is (weakly) locally connected if every x ∈ X has a
connected open neighborhood.

Proposition 9.1.12 For a space (X, τ), the following are equivalent:

(i) All connected components C(x) are open.

(ii) X is locally connected.

(iii) There is a homeomorphism (X, τ) ∼=
⊕

i(Xi, τi), where all (Xi, τi) are connected subspaces of
X.

Proof. (i)⇒(ii) For each x, the component C(x) is a connected open neighborhood.
(ii)⇒(i) Fix x ∈ X. For each y ∈ C(x) there is a connected open neighborhood Uy. Lemma 9.1.2

implies that C(x)∪Uy is connected and therefore contained in C(x). Thus Uy ⊆ C(x). This implies
C(x) =

⋃
y∈C(x) Uy, which is open.

(i)⇔(iii) This is clear in view of the discussion in Section 6.3. �

Proposition 9.1.13 Let X be a topological space and consider the following statements:
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(i) X is compact and locally connected.

(ii) X has finitely many connected components.

(iii) X is locally connected.

Then (i)⇒(ii)⇒(iii). For compact spaces, (ii)⇔(iii).

Proof. (i)⇒(ii): If X is locally connected, then by Proposition 9.1.12, we have X ∼=
⊕

i∈I Xi where
the Xi are mutually disjoint connected subspaces. Since {Xi}i∈I is an open cover of X, compactness
implies #I <∞.

(ii)⇒(iii): Since the components C(xi) form a partitioning of X, for each i ∈ {1, . . . , n} we have
X\C(xi) =

⋃
j 6=iC(xj). This is a finite union of closed sets, thus closed. Therefore C(xi) is open. �

Remark 9.1.14 Finiteness of the number of connected components follows neither from local con-
nectedness (consider an infinite discrete space) nor from compactness, as we saw in Example 9.1.10.
(And (ii) does not imply compactness, since we will soon see that R is connected.) 2

Exercise 9.1.15 Let X be compact and locally connected. Prove that there is a finite subset A ⊆ X
such that the quotient space X/A obtained by identifying the points of A is connected.

Exercise 9.1.16 Let (Xi, τi) 6= ∅ ∀i ∈ I. Give necessary and sufficient conditions in order for
∏

kXk

to be (a) locally connected, (b) strongly locally connected.

In Example 9.1.10, we have seen a compact space with infinitely many components. In Section
11.1, we will consider badly disconnected spaces. In particular, we will see that a compact space can
be second countable and yet have uncountably many connected components! (Such a space clearly
cannot be discrete.) Before we turn to such (apparent) oddities, we will consider Euclidean spaces.

9.1.3 ? Quasi-components

The following relative of the notion of connected component has a number of applications:

Definition 9.1.17 The quasi-component Q(x) of a point x in a topological space X is defined as the
intersection of all clopen sets C ⊆ X that contain x. (Thus each Q(x) is closed.)

Exercise 9.1.18 Prove that C(x) ⊆ Q(x) ∀x ∈ X.

Proposition 9.1.19 If X is compact Hausdorff then Q(x) = C(x) for all x ∈ X.

Proof. We will show that Q(x) is connected. This implies Q(x) ⊆ C(x), and the converse being
known from Exercise 9.1.18, we have Q(x) = C(x). So assume Q(x) = A∪B where A,B are clopen
(in Q(x)) and A ∩ B = ∅. A is closed in Q(x) and Q(x) is closed in X, thus A is closed in X, and
the same is true for B. X is compact T2, thus normal. Therefore, there are open U, V ⊆ X such
that A ⊆ U, B ⊆ V, U ∩ V = ∅. Thus

Q(x) =
⋂
{C ⊆ X | C clopen, x ∈ C} ⊆ U ∪ V.

Since X\(U ∪ V ) is closed, thus compact, by Remark 7.3.3 we conclude that there are finitely many
clopens C1, . . . , Cn such that x ∈ Ci and C :=

⋂n
i=1Ci ⊆ U ∪ V . As the intersection of finitely many

clopen sets, C is clopen, and by construction we have Q(x) ⊆ C. Now,

U ∩ C ⊆ U ∩ C = U ∩ C = U ∩ C ∩ (U ∪ V ) = U ∩ C,
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since U ∩ V = ∅. Thus U ∩ C is clopen, and the same holds for V ∩ C. Since x ∈ Q(x), we either
have x ∈ A ⊆ U or x ∈ B ⊆ V . In the first case, we have Q(x) ⊆ U (since U ∩ C is clopen and
contains x) thus B = ∅. Similarly, in the second case we have A = ∅. Thus Q(x) is connected. �

Corollary 9.1.20 Let X be compact Hausdorff. Then whenever x 6∼ y there is a clopen C ⊆ X with
x ∈ C 63 y.

Proof. y 6∼ x is equivalent to y 6∈ C(x), and Proposition 9.1.19 gives y 6∈ Q(x). But then the definition
of Q(x) means that there is a clopen C with x ∈ C 63 y. �

Proposition 9.1.21 For a compact Hausdorff space X the equivalence relation ∼ from Lemma 9.1.9
is closed.

Proof. We need to show that for every closed A ⊆ X the ∼-saturation A∼ is closed. To this purpose,
let z ∈ X\A∼. This means that z 6∼ x for every x ∈ A. Then Corollary 9.1.20 gives, for every x ∈ A,
a clopen Cx ⊆ X such that x ∈ Cx 63 z. Now A ⊆ X is closed, thus compact. Thus the open cover
{Cx}x∈A of A has a finite subcover. To wit, there are x1, . . . , xn ∈ A such that A ⊆

⋃n
i=1Cxi =: D.

As a finite union of clopens, D is closed. Thus X\D is open, and in view of z ∈ X\D ⊆ X\A∼, we
have shown that A∼ is closed. �

9.2 Connectedness of Euclidean spaces

9.2.1 Basics

By Euclidean space we mean the spaces Rn and their subspaces, equipped with the standard metric
topologies. Applied to a subset X ⊆ R, convexity simply means that a, b ∈ X, a < b implies
[a, b] ⊆ X, thus ‘X has no holes’.

Proposition 9.2.1 A subspace X ⊆ R is connected if and only if X is convex.

Proof. If X is non-convex then there are a < b < c such that a, c ∈ X, but b 6∈ X. But then
X = (X ∩ (−∞, b)) ∪ (X ∩ (b,∞)). The sets X ∩ (−∞, b) and X ∩ (b,∞) are both non-empty and
are both open (in X) since (−∞, b) and (b,∞) are open subsets of R. Thus we have a decomposition
of X into non-empty disjoint open subsets. Thus X is not connected.

We now prove that [a, b], where a < b, is connected. Assume that C ⊆ [a, b] is clopen and
∅ 6= C 6= [a, b]. Let D = [a, b]\C. We either have a ∈ C or a ∈ D. We may assume that a ∈ C. With
s = inf(D), we have s ∈ D = D by closedness of D. Since a 6∈ D, we have s > a. Thus [a, s) ⊆ C.
Now closedness of C implies s ∈ C, thus s ∈ C ∩D, contradicting C ∩D = ∅.

Now let X ⊆ R be an arbitrary convex subset. Let x, y ∈ X. If x < y put Y = [x, y] and
Y = [y, x] otherwise. By convexity of X we have Y ⊆ X, and by the above Y is connected. This
shows y ∈ C(x), and since y was arbitrary, we have C(x) = X. Thus X is connected. �

Remark 9.2.2 1. It should be clear that a convex subset of R is of one of the following types:
∅,R, [a,∞), (a,∞), (−∞, a], (−∞, a), (a, b), (a, b], [a, b), [a, b].

2. Proposition 9.2.1 again shows that subspaces of connected spaces and unions of connected
subspaces need not be connected.

3. We will later see that convex subsets of Rn are connected. But the converse is false for n ≥ 2,
as follows already from the connectedness of Sn ⊆ Rn+1 for n ≥ 1: 2
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Proposition 9.2.3 In,Rn, Sn are connected for all n ∈ N.

Proof. Connectedness of In and Rn is immediate by Proposition 9.2.1 and Exercise 9.1.5. Define
Sn± = {x ∈ Sn ⊆ Rn+1 | ± xn+1 ≥ 0}. For x ∈ Sn±, we have xn+1 = ±

√
1−

∑n
i=1 x

2
i . Thus

the continuous maps p± : Sn± → Dn, (x1, . . . , xn+1) 7→ (x1, . . . , xn) are bijective, and therefore
homeomorphisms by Proposition 7.4.11. Thus Sn±

∼= Dn ∼= In is connected. Now, Sn+ ∩ Sn− = {x ∈
Sn | xn+1 = 0} ∼= Sn−1 6= ∅, so that Sn = Sn+ ∪ Sn− is connected by Lemma 9.1.2. (Connectedness
of Sn also follows from the fact that Sn can be considered as a quotient space of In, cf. Exercise
7.8.21(iii).) �

Connectedness can be used to distinguish spaces, i.e. prove them to be non-homeomorphic.

Definition 9.2.4 If X is connected and x ∈ X then x is called a cut-point if X\{x} is not connected.

Exercise 9.2.5 (i) If f : X → Y is a homeomorphism, prove that x ∈ X is cut-point⇔ f(x) ∈ Y
is cut-point.

(ii) Use (i) to prove that the spaces [0, 1], [0, 1), (0, 1) are pairwise non-homeomorphic.

Exercise 9.2.6 Prove the following claims:

(i) For all n ≥ 1 we have Rn\{0} ∼= Sn−1 × (0,∞). (S0 = {±1}.)

(ii) Rn\{x} is connected if and only if n ≥ 2.

(iii) Rn 6∼= R when n ≥ 2.

(iv) For n ≥ 2 we have S1 6∼= Sn.

(v) For n ≥ 2 we have I 6∼= In.

The following exercise provides a generalization of Proposition 9.2.1 to ordered spaces:

Exercise 9.2.7 Let (X,≤) be a totally ordered set. Prove that the order topology, cf. Definition
4.2.5, is connected if and only if both of the following hold:

(i) whenever a < b, we have (a, b) 6= ∅. (I.e. a < c < b for some c ∈ X.)

(ii) (X,≤) is complete, i.e. every subset that is bounded above has a supremum.

Hint: For the ‘if’ part, adapt the proof of Proposition 9.2.1.

Exercise 9.2.8 Prove that the open and closed long rays and the long line are connected.

Exercise 9.2.9 Prove that for every continuous function f : S2 → S1 exactly one of the following
statements is true:

(i) f is surjective.

(ii) f is constant.

(iii) f(S2) ∼= [0, 1].
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9.2.2 Intermediate value theorem and applications

The following shows that the intermediate value theorem from classical analysis is best understood
as a consequence of the connectedness of intervals:

Corollary 9.2.10 (Intermediate Value Theorem) Let f ∈ C([a, b],R) and let y ∈ [f(a), f(b)]
or y ∈ [f(b), f(a)] (depending on whether f(a) or f(b) is bigger). Then there is x ∈ [a, b] such that
f(x) = y.

Proof. By Proposition 9.2.1, the space [a, b] is connected. Thus by Lemma 9.1.1, f([a, b]) is connected
and therefore, using Proposition 9.2.1 again, convex. Thus every y that lies between f(a) and f(b)
is contained in f([a, b]), meaning that there is x ∈ [a, b] such that f(x) = y. �

Remark 9.2.11 1. The intermediate value theorem has the following immediate consequences,
where I = [0, 1]:

(i) If f ∈ C(I,R) satisfies f(0) ≤ 0, f(1) ≥ 0 then there is x ∈ [0, 1] with f(x) = 0.

(ii) If f ∈ C(I, I) satisfies f(0) = 0, f(1) = 1 then f(I) = I.

It is easy to see that each of these statements implies Corollary 9.2.10.
2. Both (i) and (ii) have natural higher-dimensional versions, cf. Corollaries 10.3.1 and 10.3.7. 2

Definition 9.2.12 A point x such that f(x) = x is a fixed point of f . A topological space (X, τ) has
the fixed point property if every f ∈ C(X,X) has a fixed point.

Lemma 9.2.13 [0, 1] has the fixed point property.

Proof. Given f : I → I, define g : I → R, x 7→ x− f(x). Clearly, g(0) ≤ 0 and g(1) ≥ 0. Thus there
exists x ∈ I such that g(x) = 0. This is equivalent to f(x) = x. �

The following notion has many applications, in particular in algebraic topology:

Definition 9.2.14 Let (X, τ) be a topological space and Y ⊆ X. A retraction of X to Y is a
continuous map r : X → Y such that r �Y = idY .

Remark 9.2.15 1. If y0 ∈ Y then the map X × Y → X × {y0} ⊆ X × Y, (x, y) 7→ (x, y0) is a
retraction.

2. The map r : x 7→ x
‖x‖ is a retraction Rn\{0} → Sn−1, and by restriction we have a retraction

r : Dn\{0} → Sn−1 = ∂Dn. (In view of Exercise 9.2.6(i), both of these examples can be considered
as applications of 1.)

3. Later we will prove that there is no retraction r : Dn → ∂Dn for any n ≥ 1. For n = 1,
this is easy: A retraction r : [0, 1] → {0, 1} is a map r : I → I fixing the endpoints, thus the
intermediate value theorem, cf. the version given in Remark 9.2.11(ii), implies r(I) = I, contradicting
r(I) ⊆ {0, 1}. 2

Lemma 9.2.16 If X is Hausdorff and r : X → Y is a retraction then Y is closed.

Proof. If x ∈ Y then r(x) = x. If x ∈ X\Y then r(x) ∈ Y implies r(x) 6= x. Thus Y = {x ∈ X | x =
r(x)}, and the claim follows from Exercise 6.5.18(ii). �
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Lemma 9.2.17 If r : X → Y ⊆ X is a retraction and X has the fixed point property then Y has
the fixed point property.

Proof. Given f ∈ C(Y, Y ), define g = f ◦ r ∈ C(X,X). Since X has the fixed point property, there
is x ∈ X such that x = g(x) = f(r(x)). Since f takes values in Y , we have x ∈ Y . Since r is a
retraction, this implies x = r(x). Thus x = g(x) = f(r(x)) = f(x), so that x is a fixed point of f .
Since f ∈ C(Y, Y ) was arbitrary, Y has the fixed point property. �

The above results can be used to obtain a simple inverse function theorem:

Exercise 9.2.18 Let f : [a, b]→ R be continuous and strictly increasing, i.e. x < x′ ⇒ f(x) < f(x′).
Prove:

(i) There are real numbers c ≤ d such that f([a, b]) = [c, d].

(ii) f : [a, b]→ [c, d] is a bijection.

(iii) The inverse function f−1 is continuous, i.e. f is a homeomorphism.

Remark 9.2.19 1. If f is also differentiable with f ′(x) > 0 everywhere, one proves that also g = f−1

is differentiable with g′(y) = 1/f ′(f−1(y)). (This identity follows from g ◦ f(x) = x and the chain
rule.)

2. Generalizing the proposition to higher dimensions is not trivial since there is no obvious
analogue of monotonicity. But the following provides a hint: If f : [a, b] → R is continuously
differentiable (C1) and there is an x0 ∈ (a, b) with f ′(x0) 6= 0 then by continuity f ′ 6= 0 on some
open neighborhood (a′, b′) of x0. Then f � (a′, b′) is strictly increasing, thus f � [a′′, b′′], where
a′ < a′′ < x0 < b′′ < b, satisfies the assumption of Exercise 9.2.18. The condition f ′(x0) 6= 0 does
generalize to higher dimensions. Cf. Appendix ?? for several inverse function theorems involving
such conditions. 2

9.2.3 n-th roots in R and C
If F is a field, x ∈ F and n ∈ N then by an n-th root of x we mean a w ∈ F such that wn = x.

Exercise 9.2.20 Use the Intermediate Value Theorem to prove:

(i) For x > 0 and n ∈ N there is a unique positive n-th root x1/n.

(ii) Every polynomial P ∈ R[x] with real coefficients and odd degree has a zero.

(iii) Every z ∈ C has a square root z1/2. Do not use the polar representation z = reiφ!

Corollary 9.2.21 (i) If n ∈ N is odd then every z ∈ C has an n-th root z1/n.

(ii) For z ∈ C, n ∈ N there is an n-th root z1/n.

Proof. (i) In view of Exercise 9.2.20(ii), the claim is true for z ∈ R so that we may assume z 6∈ R.
Writing z = |z|z′, we have |z′| = 1, and now (i) or (ii) provides |z|1/n. We thus may and will assume
z 6∈ R and |z| = 1. By (iii) we can find c ∈ C with c2 = z. Clearly |c| = 1 and c 6∈ R. Define

P (x) = i(c(x+ i)n − c(x− i)n).
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This is a polynomial in x, and for x ∈ R we have P (x) = P (x). Thus P ∈ R[x]. The highest order
term ixn(c − c) is non-zero since c 6∈ R. Thus P is of odd order, and by (ii) there is x ∈ R with
P (x) = 0. Thus c(x+ i)n = c(x− i)n. Since |c| = 1 implies c = c−1, we have(

x− i
x+ i

)n
= c2 = z,

so that (x− i)/(x+ i) is an n-th root of z.
(ii) Write n = 2km withm odd. Now use (i) and Exercise 9.2.20(iii) to define w = (((z1/m)1/2)1/2)

···

(k square roots), which clearly satisfies wn = z. �

Remark 9.2.22 1. The above proof is from [78, Chapter 3, §5].
2. The standard proof of (ii) uses the fact that for every z ∈ C with |z| = 1 there is a t ∈ R with

z = exp(it). Thus writing z = r exp(it) with r = |z| > 0, an n-th root of z is given by r1/n exp(it/n).
But the above argument is more elementary since it does not require the somewhat involved proof
of surjectivity of the map R→ S1, t 7→ exp(it) (which also involves the intermediate value theorem).

3. The result of Exercise 9.2.20 was already used to prove the algebraic closedness of C, cf.
Theorem 7.7.57. In Exercise 13.7.19, another topological proof of that result will be given, using
some more information about the map t 7→ exp(it),R→ S1 ⊆ C, namely that the latter is a covering
map. 2
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Chapter 10

Higher-dimensional connectedness

10.1 Introduction

We have just seen that one can get considerable milage out of the simple fact that the interval
I = [0, 1] is connected, namely the intermediate value theorem, the fixed point property of I, and
non-homeomorphisms Rn 6∼= R, In 6∼= I, Sn 6∼= S1 for n 6= 1. The aim of this section is to show
that all these results generalize to arbitrary (finite) dimension. (Versions of Brouwer’s fixed point
theorem even hold in infinite dimension!)

These generalizations are usually proven using (co)homology theory, which belongs to algebraic
topology. As nicely stated by Spanier [266, p. 155], “[Homology] measures higher dimensional con-
nectedness, and some of the applications of homology are to prove higher dimensional analogues of
results obtainable in low dimensions by using connectedness considerations.”

However, (co)homology theory is a sophisticated machinery, whose proper definition and study
takes weeks of lectures. It therefore is quite welcome that one can actually base fairly elementary
proofs of the desired higher-dimensional results on the essential idea contained in the cited phrase,
which is using a notion of higher-dimensional connectedness:

Definition 10.1.1 Let I = [0, 1] and n ∈ N. The faces of the n-cube In are given by

I−i = {x ∈ In | xi = 0}, I+
i = {x ∈ In | xi = 1} (i = 1, . . . , n).

Theorem 10.1.2 (Higher connectedness of In) Let H+
i , H

−
i ⊆ In, i = 1, . . . , n, be closed sets

such that I±i ⊆ H±i and H−i ∪H+
i = In ∀i ∈ {1, . . . , n}. Then

⋂n
i=1(H−i ∩H+

i ) 6= ∅.

For n = 1, this is just the statement that there is no clopen C ⊆ [0, 1] such that 0 ∈ C 63 1.
This immediately follows from the connectedness of I proven earlier (and is equivalent to it). But
for n ≥ 2, the theorem is new, since it gives more than just the connectedness of In.

For n = 2, there is a fairly easy proof based on Theorem 13.2.4 and Exercise 13.1.15. But for
arbitrary n, the proof requires a certain amount of combinatorics (< 3 pages). It should not be
conceiled that the mentioned combinatorics are closely related to those of (co)homology theory, of
which they in a sense represent the essential core, cf. [154]. The same is true, cf. [155, 156], for proofs
of Brouwer’s fixed point theorem using calculus methods like [77, Section V.12] or [189].

This chapter is organized as follows: Theorem 10.1.2 will be proven in the next section by
combinatorial methods. In Sections 10.3 and 10.4 we will prove the fixed point theorems of Brouwer
and Schauder, and in Sections 10.5 and 10.6 we give a short introduction to dimension theory and
prove that the cubes In for different n are mutually non-homeomorphic. All these results depend
only on Theorem 10.1.2.

265
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10.2 The cubical Sperner lemma. Proof of Theorem 10.1.2

We begin with some more notations:

• For k ∈ N, we put Zk = k−1Z = {n/k | n ∈ Z}. Clearly Znk ⊆ Rn.

• ei ∈ Znk is the vector whose coordinates are all zero, except the i-th, which is 1/k.

• C(k) = In ∩ Znk =
{

0, 1
k
, . . . , k−1

k
, 1
}n

. (The combinatorial n-cube.)

• C±i (k) = I±i ∩ Znk . (The faces of the combinatorial n-cube C(k).)

• ∂C(k) =
⋃
i(C

+
i (k) ∪ C−i (k)). (The boundary of the combinatorial n-cube C(k).)

• A subcube of C(k) is a set C = {z0 +
∑n

i=1 aiei | a ∈ {0, 1}n} ⊆ C(k), where z0 ∈ C(k).

Proposition 10.2.1 (Cubical version of Sperner’s Lemma) 1 Let ϕ : C(k)→ {0, . . . , n} be a
map such that

(i) x ∈ C−i (k) ⇒ ϕ(x) < i.

(ii) x ∈ C+
i (k) ⇒ ϕ(x) 6= i− 1.

Then there is a subcube C ⊆ C(k) such that ϕ(C) = {0, . . . , n}.

Proof of Theorem 10.1.2 assuming Proposition 10.2.1. We define F0 = In and Fi = H+
i \I−i for all

i ∈ {1, . . . , n}. Now define a map ϕ : In → {0, . . . , n} by

ϕ(x) = max

{
j : x ∈

j⋂
k=0

Fk

}
.

Since I−i ∩ Fi = ∅, we have x ∈ I−i ⇒ ϕ(x) < i. On the other hand, if x ∈ I+
i then ϕ(x) 6= i − 1.

Namely, ϕ(x) = i − 1 would mean that x ∈
⋂i−1
k=0 Fk and x 6∈ Fi. But this is impossible since

x ∈ I+
i ⊆ H+

i and I+
i ∩ I−i = ∅, thus x ∈ Fi.

By the above, the restriction of ϕ to C(k) ⊆ In satisfies the assumptions of Proposition 10.2.1.
Thus for every k ∈ N there is a subcube Ck ⊆ C(k) such that ϕ(Ck) = {0, . . . , n}. Now, if
ϕ(y) = i ∈ {1, . . . , n} then y ∈ Fi = H+

i \I−i ⊆ H+
i . On the other hand, if ϕ(x) = i−1 ∈ {0, . . . , n−1}

then x 6∈ Fi = H+
i \I−i , which is equivalent to x 6∈ H+

i ∨ x ∈ I−i . The first alternative implies x ∈ H−i
(since H+

i ∪ H−i = In), as does the second (since I−i ⊆ H−i ). In either case, x ∈ H−i . Combining
these facts, we find that ϕ(Ck) = {0, . . . , n} implies Ck ∩H+

i 6= ∅ 6= Ck ∩H−i ∀i, thus the subcube
Ck meets all the H±i .

We clearly have diam(Ck) =
√
n/k, and since k was arbitrary, Lemma 7.7.46 applied to X =

In, Sk = Ck and {K1, . . . , K2n} = {H±i } completes the proof. �

Definition 10.2.2 An n-simplex in Znk is an ordered set S = [z0, . . . , zn] ⊆ Znk such that

z1 = z0 + eα(1), z2 = z1 + eα(2), . . . , zn = zn−1 + eα(n),

where α is a permutation of {1, . . . , n}. The subset Fi(S) = [z0, . . . , zi−1, zi+1, . . . , zn] ⊆ S, where
i ∈ {0, . . . , n}, is called the i-th face of the n-simplex S.

A finite ordered set F ⊆ Znk is called a face if it is a face of some simplex.
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Any subset [zOS*, Zi-lzi+lvv%n] C S, i - O,...,n, is said to be the 
(n - l)-face of the n-simplex S. A subset C c Zkn of the form 

{ 1 k 1 An 
C=C(k)=t°kS¢ k 1J 

is said to be a combinatorial n-cube. Define the i-th combinatorial back and front 
faces of C as 

Ci- = Ci-(k) = {Z E C:z(i) = O}, Ci = Ci+(k) = {Z E C:Z(i) = 1}, 

and the bounda7y as 

dC = U{Ci UCi+:i-l...n} 

Defilnition 2. Let S = [Zo S zn] C Zkn be an n-simplex. Then for each point 
zi E S there exists exactly one n-simplex T= s[i] such that 

S r) T= {Zo,...,Zi-1,Zi+l,***Zn} 

We shall define the i-neighbour S[i] of the simplex S (see Figure 1) as 

(a) If O < i < n, then S[i] = [Z07 * * * S Zi-l S Xis Zi+l S * * * S zn] where xi-Zi-1 + 
(Zi+l - Zi) 3 Zi-l + e(il) 

(b) If i = O, then S[0] = [z1, w ., zn xo] where xO = zn + (zl-zo 
(c) If i = n, then S[n] = [Xns zO, . . ., Zn-l ] where xn = zO + (Zn-l-zn 

l 

1 

n=2 k=4 
Fire 1 

We leave it to the reader to prove that the n-simplexes S[i] are well-defined and 
that they are the only possible i-neighbours of the n-simplex S. 

From Definition 2 the following observation is immediate: 

Observation. Any (n- 1)-face of an n-simplex contained in the combinatorial 
n-cube C is an (n - 1)-face of exactly one or tWQ n-simpleses from C, depending 
on whether or not it lies on the boundary dC. 
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Figure 10.1: The neighbors of a simplex in Z2
4. From [181] in Amer. Math. Monthly.

Note that the faces Fi(S) are (n− 1)-simplices in the above sense only if i = 0 or i = n.

Lemma 10.2.3 (i) Let S = [z0, . . . , zn] ⊆ Znk be an n-simplex. Then for every i ∈ {0, . . . , n}
there is a unique n-simplex S[i], the i-th neighbor of S, such that S ∩ S[i] = Fi(S).

(ii) If S ⊆ C(k) and i ∈ {0, . . . , n} then S[i] ⊆ C(k) holds if and only if Fi(S) 6⊆ ∂C(k).

Proof. (i) Existence: We define the i-th neighbor S[i] as follows:

(a) S[0] = [z1, . . . , zn, x0], where x0 = zn + (z1 − z0).

(b) 0 < i < n: Take S[i] = [z0, . . . , zi−1, xi, zi+1, . . . , zn], where xi = zi−1 + (zi+1 − zi).

(c) S[n] = [xn, z0, . . . , zn−1], where xn = z0 − (zn − zn−1).

It is obvious that #(S ∩ S[i]) = n in all three cases. In the three cases, the distances between
consecutive points of S[i] are given by (a) eα(2), . . . , eα(n), eα(1), (c) eα(n), eα(1), . . . , eα(n−1), and (b)
eα(1), . . . , eα(i−1), eα(i+1), eα(i), eα(i+2), . . . , eα(n). (Figure 10.1 should make this quite clear.) Thus S[i]
is a legal n-simplex for each i ∈ {0, . . . , n}. Uniqueness: It remains to show that these are the only
ways of defining S[i] consistently with S ∩ S[i] = {z0, . . . , zi−1, zi+1, . . . , zn}. In the cases i = 0 or
i = n, the latter condition implies that S[i] has a string of n consecutive zi’s in common with S, and
therefore also their differences given by n−1 mutually different vectors ej. This means that only one
such vector is left, and the only way to use it so that S[i] is an n-simplex different from S is to use it
at the other end of the string of z’s. This shows the uniqueness of the above definitions in cases (a)
and (c). In the case 0 < i < n, S and S[i] have two corresponding substrings of z’s. A little thought
shows that the order of these two substrings must be the same in S[i] as in S, so that all we can do
is exchange two adjacent difference vectors eα(i), eα(i+1), as done in the definition of S[i] in case (b).

(ii) We must check whether S[i] ⊆ C(k), which amounts to checking whether the new point xi
is in In. In case (a), we have S = [z1 − eα(1), z1, z2, . . . , zn] and S(0) = [z1, . . . , zn, zn + eα(1)]. If
F0(s) = [z1, . . . , zn] ⊆ Cε

j (k) then z1, . . . , zn all have the same j-coordinate c, thus we must have
α(1) = j and c = 1 (since S ⊆ In). But then S[0] 6⊆ In. Conversely, if both S and S[0] are in
In, then z1 must have α(1)-th coordinate > 0 and zn must have α(1)-th coordinate < 1. All other
coordinates of z1, . . . , zn are non-constant since the vectors eα(2), . . . , eα(n) appear as differences. Thus
F0(S) is not contained in any face Iεi . The cases (b) and (c) are checked similarly. �

1Emanuel Sperner (1905-1980). German mathematician.
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Proof of Proposition 10.2.1. For later use, we note the following fact (*): If S ⊆ In satisfies
ϕ(S ∩ Iεi ) = {0, . . . , n − 1} then i = n and ε = −. [The statement ϕ(S ∩ Iεi ) = {0, . . . , n − 1} is
contradicted by assumption (ii) if ε = + and by (i) if ε = − and i < n.]

We call a subset S ⊆ C(k) with l + 1 elements full if ϕ(S) = {0, . . . , l}. By (vi), a full n-simplex
S meets all H±i . We will prove that the number Nk of full n-simplices in C(k) is odd, thus non-zero,
for all k. The proof of Nk ≡ 1 (mod 2) proceeds by induction over the dimension n of C(k) (for fixed
k). For n = 0 we have C(k) = {0}, and there is exactly one full n-simplex, namely S = [z0 = 0].
Thus N0 = 1.

For an n-simplex S ⊆ C(k), let N(S) denote the number of full (n − 1)-faces of S. If S is full
then N(S) = 1. [Since ϕ(S) = {0, . . . , n} and the only full (n− 1)-face is obtained by omitting the
unique zi for which ϕ(zi) = n.] If S is not full then N(S) = 0 in the case {0, . . . , n − 1} 6⊆ ϕ(S)
[since omitting a zi cannot give a full (n-1)-face] or N(S) = 2 in the case ϕ(S) = {0, . . . , n−1} [since
there are i 6= i′ such that zi = zi′ , so that S becomes full upon omission of either zi or zi′ ]. Thus

Nk ≡
∑
S

N(S) (mod 2), (10.1)

where the summation extends over all n-simplices in C(k).

Now by the Lemma, an (n − 1)-face F ⊆ C(k) belongs to one or two n-simplices in C(k),
depending on whether F ⊆ ∂C(k) or not. Thus only the full faces F ⊆ ∂C(k) contribute to (10.1):

Nk ≡ #{F ⊆ ∂C(k) full (n− 1)−face} (mod 2).

If F ⊆ ∂C(k) is a full (n − 1)-face then (*) implies F ⊆ C−n (k). We can identify C−n (k) = C(k) ∩
I−n with Cn−1(k), and under this identification F is a full (n − 1)-simplex in Zn−1

k . Thus Nk ≡
Nk−1 (mod 2). By the induction hypothesis, Nk−1 is odd, thus Nk is odd.

Thus there is a full n-simplex S = [z0, . . . , zn], and if C = {z0 +
∑n

i=1 aiei | a ∈ {0, 1}n} we have
S ⊆ C so that ϕ(C) = {0, . . . , n}. �

Remark 10.2.4 Sperner’s lemma in its original form [267, 175] works with standard simplices, i.e.
∆n = {(x0, . . . , xn) ∈ Rn+1

≥0 | x0 + · · · + xn = 1}. Cubical versions of Sperner’s lemma were first
considered in [180] and differently in [300, Lemma 1]. The proof given above is due to Kulpa [181].
2

10.3 The theorems of Poincaré-Miranda and Brouwer

Theorem 10.1.2 has many important classical results about continuous functions on In as corollaries,
for all n ∈ N. Since it expresses a higher-dimensional form of connectedness, it implies a higher-
dimensional generalization of the version of the intermediate value theorem given in Remark
9.2.11(i):

Corollary 10.3.1 (Poincaré-Miranda theorem) 2 Let f = (f1, . . . , fn) ∈ C(In,Rn) satisfy
fi(I

−
i ) ⊆ (−∞, 0], fi(I

+
i ) ⊆ [0,∞) for all i. Then there is x ∈ In such that f(x) = 0.

2Henri Poincaré (1854-1912) was the greatest French mathematician of around 1900 (often compared to Hilbert).
He was one of the fathers of algebraic topology, but he worked in almost all fields of mathematics and mathematical
physics.
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Proof. Put H−i = f−1
i ((−∞, 0]), H+

i = f−1
i ([0,∞)). Then clearly I±i ⊆ H±i and H−i ∪H+

i = In, for
all i. By Theorem 10.1.2, there exists x ∈

⋂
i(H

−
i ∩H+

i ). This means fi(x) ∈ (−∞, 0] ∩ [0,+∞) for
all i, thus f(x) = 0. �

Remark 10.3.2 The one-dimensional intermediate value theorem provides points x1, . . . , xn ∈ In

such that fi(x
i) = 0 for each i. But the existence of a point x where all fi(x) vanish simultaneously

is much deeper! 2

Exercise 10.3.3 Deduce Theorem 10.1.2 from Corollary 10.3.1.

Just as for n = 1, the intermediate value theorem implies the fixed point property of In:

Corollary 10.3.4 (Brouwer’s fixed point theorem) 3 Let g ∈ C(In, In). Then there exists
x ∈ In such that g(x) = x. (I.e., In has the fixed point property.)

Proof. Put f(x) = x−g(x). Now xi = 0⇒ fi(x) = 0−gi(x) ≤ 0 and xi = 1⇒ fi(x) = 1−gi(x) ≥ 0.
Thus the assumptions of Corollary 10.3.1 are satisfied, so that there is an x ∈ In for which f(x) = 0.
Thus g(x) = x. �

Remark 10.3.5 1. The history of these two results is quite convoluted and interesting. See the
introduction of [181] for a glimpse. Brouwer’s proof was given in 1912, cf. [41].

2. Brouwer’s fixed point theorem is often deduced from the non-existence of retractions Dn →
Sn−1, see below, but the deduction from the Poincaré-Miranda theorem is simpler, and it is just the
higher-dimensional version of the proof for n = 1.

3. The fixed point theorem is the best known of a whole cluster of results that are mutually
equivalent in the sense discussed in a footnote to Remark 7.5.14. These results have countlessly
many applications in pure and applied mathematics. E.g., they can be used to prove the Perron-
Frobenius theorem of linear algebra, cf. e.g. [32], and the existence of Nash equilibria in game theory,
cf. [224], as well as many results in the ‘general equilibrium theory’ of Walras. We will encounter
several applications within topology, e.g. Exercise 10.3.10 and the ‘invariance of dimension’ (Corollary
10.5.7). 2

Corollary 10.3.6 Let X ⊆ Rn be compact and convex. Then X has the fixed point property.

Proof. By Proposition 7.7.62, there is a homeomorphism X
∼=−→ Dm ∼= Im for some m ≤ n. Now use

Corollary 10.3.4. �

Note that the convexity assumption cannot be omitted. E.g., the reflection map Sn → Sn, x 7→
−x has no fixed point.

Corollary 10.3.7 Let g ∈ C(In, In) satisfy g(I±i ) ⊆ I±i ∀i. Then g(In) = In.

Proof. Let p ∈ In, and put f(x) = g(x)− p. Now xi = 0⇒ fi(x) = 0− p ≤ 0 and xi = 1⇒ fi(x) =
1−p ≥ 0. Thus f satisfies the assumptions of Corollary 10.3.1, so that there is x ∈ In with f(x) = 0.
This means g(x) = p, so that g is surjective. �

Also the version of the intermediate value theorem given in Remark 9.2.11(ii) and the no-
retraction result (Remark 9.2.15.3) generalize to higher dimensions:

3Luitzen Egbertus Jan Brouwer (1881-1966). Dutch mathematician. Many important contributions to topology.
Founder of a controversial philosophy of mathematics (intuitionism).
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Corollary 10.3.8 Let X ⊆ Rn be compact and convex with X0 6= ∅. Then

(i) If f ∈ C(X,X) satisfies f �∂X = id then f(X) = X.

(ii) There are no retractions X → ∂X.

Proof. We prove the claims for X = In. The general result follows from the homeomorphism (X ⊇
∂X) ∼= (Dn ⊇ ∂Dn = Sn−1) proven in Section 7.7.6.

(i) If g ∈ C(In, In) satisfies g �∂In = id then g(I±i ) ⊆ I±i ∀i, thus Corollary 10.3.7 applies.

(ii) If r : X → ∂X is a retraction, it satisfies the hypothesis of (i), thus satisfies r(X) = X, which
is absurd since X0 6= ∅ implies X 6= ∂X. �

The preceding results generalize to compact subsets of Rn that are not necessarily convex:

Corollary 10.3.9 Let X ⊆ Rn be compact with X0 6= ∅.

(i) If f ∈ C(X,X) satisfies f �∂X = id∂X then f(X) = X.

(ii) There exists no retraction r : X → ∂X.

(If X0 = ∅ then X = ∂X, in which case (i) is trivially true and (ii) is false.)

Proof. (i) Choose a > 0 such that X ∪ f(X) ⊆ (−a, a)n. Let C = [−a, a]n and define f̂ : C → C

by f̂(x) �X = f and f̂(x) = x for x ∈ C\X. Since X and C\X are closed, f̂ is continuous on both

subsets of C and both prescriptions coincide on the intersection X ∩C\X = ∂X, f̂ is continuous, cf.

Exercise 6.2.5. Furthermore, f̂ �∂C = id since ∂C ∩X = ∅. Now Corollary 10.3.8 implies f̂(C) = C,

and since f̂(C\X) ∩X = ∅, we have f(X) = X.

(ii) This follows from (i) in the same way as in the preceding corollary. �

Brouwer’s theorem has a nice application to vector fields, which for our purposes just are contin-
uous maps Rn ⊇ X → Rn:

Exercise 10.3.10 Let f : Dn → Rn be a continuous function satisfying f(x) · x > 0 for all x ∈
Sn−1 = ∂Dn (or f(x) · x < 0 for all x ∈ Sn−1). Prove:

(i) There is a constant 0 6= λ ∈ R such that gλ(x) = x− λf(x) maps Dn into itself.

(ii) There is a x ∈ (Dn)0 such that f(x) = 0.

(iii) If n ≥ 2, the hypothesis can be weakened to f(x) · x 6= 0 for all x ∈ Sn−1. (For n = 1 this fails,
as f ≡ 1 : D1 = [0, 1]→ R shows.)

For a different approach (but also ultimately relying on Brouwer’s theorem) to proving the exis-
tence of zeros of vector fields, cf. Theorem 13.1.16.

10.4 ? Schauder’s fixed point theorem

In this section we consider generalizations of Brouwer’s fixed point theorem, more precisely of Corol-
lary 10.3.6, to infinite dimensional vector spaces.
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Theorem 10.4.1 (Schauder) 4 Every non-empty compact convex subset K of a normed vector
space has the fixed point property. (I.e. every continuous f : K → K has a fixed point.)

Proof. Let (V, ‖ · ‖) be a normed vector space, K ⊆ V a non-empty compact convex subset and f :
K → K continuous. Let ε > 0. Since K is compact, thus totally bounded, there are x1, . . . , xn ∈ K
such that K ⊆

⋃n
i=1B(xi, ε). Thus if we define αi(x) ≥ 0 by

αi(x) =

{
0 if ‖x− xi‖ ≥ ε

ε− ‖x− xi‖ if ‖x− xi‖ < ε
∀i = 1, . . . , n, (10.2)

we see that for each x ∈ K there is at least one i such that αi(x) > 0. The functions αi clearly are
continuous. Thus also the map

Pε : K → K, x 7→
∑n

i=1 αi(x)xi∑n
i=1 αi(x)

is continuous. Since Pε(x) is a convex combination of those xi for which ‖x − xi‖ < ε, we have
‖Pε(x) − x‖ < ε for all x ∈ K. The finite dimensional subspace Vn = span(x1, . . . , xn) ⊆ V is
isomorphic to some Rm, and by Theorem 7.7.51 the restriction of the norm ‖ · ‖ to Vn is equivalent
to the Euclidean norm on Rm. Thus the convex hull conv(x1, . . . , xn) ⊆ Vn into which Pε maps is
homeomorphic to a compact convex subset of Rm and thus has the fixed point property by Corollary
10.3.6. Thus if we define fε = Pε ◦ f then fε maps conv(x1, . . . , xn) into itself and thus has a fixed
point x′ = fε(x

′). Now,

‖x′ − f(x′)‖ ≤ ‖x′ − fε(x′)‖+ ‖fε(x′)− f(x′)‖ = ‖fε(x′)− f(x′)‖ = ‖Pε(f(x′))− f(x′)‖ < ε.

Since ε > 0 was arbitrary, we find inf{‖x − f(x)‖ | x ∈ K} = 0. Since K is compact and x 7→
‖x− f(x)‖ continuous, the infimum is assumed (Corollary 7.7.30), thus f has a fixed point in K. �

Corollary 10.4.2 Let K be a non-empty closed convex subset of a Banach space, and let f : K → K
be continuous with f(K) compact. Then f has a fixed point x ∈ K.

Proof. The closed convex hull conv(f(K)) of f(X) is compact and convex and mapped into itself by
f . Now the theorem applies. �

Remark 10.4.3 1. The above results were proven by Juliusz Schauder in 1930. In 1934 Tychonov
generalized them to locally convex vector spaces. (For an exposition, cf. e.g. [77, Section V.10].)
The ultimate generalization to all topological vector spaces with T0-property (thus T3.5, cf. Section
D.2.3) was only proven in 2001 by R. Cauty5 [58].

2. Schauder style fixed point theorems in infinitely many dimensions have many applications, for
example to the theory of differential equations. Cf. e.g. [44, 69]. 2

10.5 The dimensions of In and Rn

Definition 10.5.1 If A,B,C ⊆ X are closed sets such that X\C = U ∪ V , where U, V are disjoint
open sets such that A ⊆ U and B ⊆ V , we say that C separates A and B.

4Juliusz Schauder (1899-1943). Born in Lwow/Lviv (Ukraine, then Lemberg in the Austrian empire) and killed by
the nazis during WW2.

5Robert Cauty (19??-2013), French mathematician.
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The following result plays an essential rôle in virtually all accounts of dimension theory. While
it is usually derived from Brouwer’s fixed point theorem, we obtain it more directly as an obvious
corollary of Theorem 10.1.2.

Corollary 10.5.2 Whenever C1, . . . , Cn ⊆ In are closed sets such that Ci separates I−i and I+
i for

each i, then
⋂
iCi 6= ∅.

Proof. In view of Definition 10.5.1, we have open sets U±i such that I±i ⊆ U±i , U+
i ∩ U−i = ∅ and

U+
i ∪ U−i = X\Ci for all i. Define H±i = U±i ∪ Ci. Then X\H±i = U∓i , thus H±i is closed. By

construction, I±i ⊆ H±i and H+
i ∪ H−i = In, H+

i ∩ H−i = Ci, for all i. Now Theorem 10.1.2 gives⋂
iCi =

⋂
i(H

−
i ∩H+

i ) 6= ∅. �

The preceding result will provide a lower bound on the dimension of In. The next result, taken
from [208], will provide the upper bound:

Proposition 10.5.3 Let A1, B1, . . . , An+1, Bn+1 ⊆ In be closed sets such that Ai ∩Bi = ∅ ∀i. Then
there exist closed sets Ci separating Ai and Bi for all i and satisfying

⋂
iCi = ∅.

Proof. Pick real numbers r1, r2, . . . such that ri − rj 6∈ Q for i 6= j. (It suffices to take rk = k
√

2.)
Then the sets Ei = ri + Q are mutually disjoint dense subsets of R.

Let A,B ⊆ In be disjoint closed sets and E ⊆ R dense. Then for every x ∈ A we can find an open
neighborhood Ux = In ∩

∏n
i=1(ai, bi) with ai, bi ∈ E such that Ux is disjoint from B. Since A ⊆ In is

closed, thus compact, there are x1, . . . , xk ∈ A such that U = Ux1 ∪· · ·∪Uxk ⊇ A. Now C = ∂U ⊆ In

is closed and X\C = U ∪ V , where V = In\U . U, V are open and disjoint such that A ⊆ U,B ⊆ V ,
thus C separates A and B. If x ∈ ∂(In∩

∏
i(ai, bi)) then at least one of the coordinates xi of x equals

ai or bi, and thus is in E. Now, C = ∂U ⊆ ∂Ux1 ∪ · · · ∪ ∂Uxk ⊆ {x ∈ In | ∃j ∈ {1, . . . , n} : xj ∈ E}.
We can thus find, for each pair (Ai, Bi) a closed set Ci ⊆ {x ∈ In | ∃j : xj ∈ Ei} that separates

Ai and Bi. Let now x ∈
⋂
iCi. Then for every i ∈ {1, . . . , n+ 1} there is a ji ∈ {1, . . . , n} such that

xji ∈ Ei. By the pigeonhole principle there are i, i′ ∈ {1, . . . , n+ 1} such that i 6= i′ and ji = ji′ = j.
But this means that xj ∈ Ei ∩ Ei′ ∈ ∅, which is absurd. Thus

⋂
iCi = ∅. �

Proposition 10.5.3 should be compared with Corollary 10.5.2. In order to this systematically, the
following is convenient:

Definition 10.5.4 Let X be a topological space. We define the separation-dimension s-dim(X) ∈
{−1, 0, 1, . . . ,∞} as follows:

• We put s-dim(X) = −1 if and only if X = ∅.

• If X 6= ∅ and n ∈ N0, we say that s-dim(X) ≤ n if, given closed sets A1, B1, . . . , An+1, Bn+1

such that Ai ∩ Bi = ∅ ∀i, there exist closed Ci separating Ai and Bi and satisfying
⋂
iCi = ∅.

(This is consistent: If s-dim(X) ≤ n and n < m then s-dim(X) ≤ m.)

• If s-dim(X) ≤ n holds, but s-dim(X) ≤ n− 1 does not, we say s-dim(X) = n.

• If there is no n ∈ N such that s-dim(X) ≤ n then s-dim(X) =∞.

Lemma 10.5.5 If X and Y are homeomorphic then s-dim(X) = s-dim(Y ).

Proof. Obvious since s-dim(X) is defined in terms of the topology of X. �

Theorem 10.5.6 s-dim(In) = n.
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Proof. In view of Definition 10.5.4, Proposition 10.5.3 amounts to the statement s-dim(In) ≤
n. On the other hand, it is clear that s-dim(X) ≥ n holds if and only if there are closed sets
A1, B1, . . . , An, Bn ⊆ X satisfying Ai ∩ Bi = ∅ ∀i such that any closed sets Ci separating Ai and Bi

satisfy
⋂
iCi 6= ∅. This is exactly what is asserted for X = In by Corollary 10.5.2. �

The preceding result shows that the intuitive dimension of the cube In, namely n, can indeed
be recovered from the topology of In via the notion of separation-dimension. Since the latter is a
topological invariant, we have proven of the ‘invariance of dimension’:

Corollary 10.5.7 We have In ∼= Im if and only if n = m.

Remark 10.5.8 The first correct proof of this result was given by Brouwer [40] in 1911. His proof
did not (explicitly) involve associating a topologically defined dimension to In. This was for the first
time done in [42]. With some delay, this led to the rapid development of ‘dimension theory’. This
is a branch of point-set topology (as opposed to algebraic topology), but in order to compute the
dimension of Euclidean spaces, one cannot avoid invoking some result equivalent to Brouwer’s fixed
point theorem. Cf. [90] for a comprehensive contemporary account of dimension theory. 2

Proposition 10.5.9 If Y ⊆ X is closed, we have s-dim(Y ) ≤ s-dim(X).

Proof. Assume s-dim(X) ≤ n, and let Ai, Bi ⊆ Y, i = 1, . . . , n+1, be closed sets satisfying Ai∩Bi = ∅.
Since Y is closed, Ai, Bi are closed in X. Thus there exist closed sets Ci ⊆ X separating Ai and
Bi and

⋂
iCi = ∅. Now the sets Di = Ci ∩ Y ⊆ Y are closed and separate Ai and Bi in Y . Thus

s-dim(Y ) ≤ n. �

The above already implies s-dim(Rn) ≥ n and n ≤ s-dim(Sn) ≤ n + 1. (Since Sn has the closed
subspaces Snε = {x ∈ Sn ⊆ Rn+1 | εxn+1 ≥ 0} ∼= Dn ∼= In and, in turn, is a closed subspace of
[−1, 1]n+1 ∼= In+1.) In order to go further, we need the following:

Proposition 10.5.10 (Sum Theorem) Let X be normal. If X =
⋃
k∈N Yk, where each Yk ⊆ X is

closed with s-dim(Yk) ≤ n then s-dim(X) ≤ n.

Proof. Omitted. The only proof known to the author proceeds by proving the ‘sum-theorem’ for
the covering dimension cov(X) defined in Section 10.6, and the identity s-dim(X) =cov(X). These
results are Theorems 3.1.8 and 3.2.6 in [90], respectively. It would be desirable to work out a direct
proof of the sum-theorem for the separation dimension s-dim. �

Corollary 10.5.11 s-dim(Rn) = s-dim(Sn) = n. Thus Rn ∼= Rm ⇔ n = m ⇔ Sn ∼= Sm.

Proof. By Proposition 10.5.9, s-dim(Rn) ≥ s-dim(In) = n. On the other hand, Rn is the union of
countably many closed cubes

∏
i[ai, ai+1] with a = (ai) ∈ Zn. Using Theorem 10.5.6 and Proposition

10.5.10, we have s-dim(Rn) ≤ n. Similarly, Sn = Sn+ ∪ Sn−. Since Snε
∼= Dn, we have s-dim(Snε ) = n,

and Proposition 10.5.10 gives s-dim(Sn) ≤ n. �

Corollary 10.5.12 If X is T6 and U ⊆ X is open then s-dim(U) ≤ s-dim(X)).

Proof. A T6 space is normal and every closed set is Gδ. Thus every open set is Fσ, so that there
are closed sets {Ci}i∈N such that U =

⋃
iCi. By Proposition 10.5.9, s-dim(Ci) ≤ s-dim(X) ∀i. Now

Proposition 10.5.10 implies s-dim(U) = s-dim(
⋃
iCi) ≤ n. �

Since Rn ∼= (0, 1)n, which is an open subspace of [0, 1]n, this again gives s-dim(Rn) ≤ n.
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Exercise 10.5.13 Prove:

(i) s-dim(X) = 0 holds if and only if X 6= ∅ and for any pair of disjoint closed sets A,B ⊆ X
there exists a clopen set C such that A ⊆ C and B ⊆ X\C. (T1-spaces with this property will
be called strongly zero-dimensional, cf. Definition 11.1.38.)

(ii) If X is T1 and s-dim(X) = 0 then every point has a neighborhood base of clopen sets. (Thus
X is zero-dimensional in the sense of Definition 11.1.15.)

Remark 10.5.14 1. When it comes to distinguishing topological spaces, the power of dimension
theory is quite limited. After all, dim(In) = dim(Sn) = dim(Rn) = n, while In, Sn,Rn are mutually
non-homeomorphic. (E.g., since In, Sn are compact while Rn is not, and In,Rn are contractible, but
Sn is not, cf. Theorem 13.1.11.) Another huge disadvantage of topological dimensions is that they
are not functorial. The more useful invariants of topological spaces are functorial. Cf. the functors
πc, π0, π1,Π1 defined in these notes.

2. The methods used to prove Theorems 10.1.2 and its applications like Corollary 10.3.1 and
Theorem 10.5.6 can be pushed further to prove other results that are usually obtained using algebraic
topology, in particular ‘domain invariance’. Cf. e.g. [182, 152]. 2

10.6 Other notions of topological dimension

Our definition of the ‘separation-dimension’ of a space X is rather non-standard (but motivated by
the treatment in [208]). In dimension theory, a branch of general topology, various other notions
of dimension have been defined and studied intensely. We briefly consider those definitions and
summarize some known comparison results. Cf. e.g. [150, 90] for the full story.

Definition 10.6.1 Let (X, τ) be a topological space. We define the small inductive dimension ind(X) ∈
{−1, 0, 1, . . . ,∞} as follows:

• We put ind(X) = −1 if and only if X = ∅.

• If X 6= ∅ and n ∈ N0, we say that ind(X) ≤ n if, whenever x ∈ U ∈ τ , there exists V ∈ τ such
that x ∈ V ⊆ V ⊆ U and ind(∂V ) ≤ n− 1.

• If ind(X) ≤ n holds, but ind(X) ≤ n− 1 does not, we say ind(X) = n.

• If there is no n ∈ N such that ind(X) ≤ n then ind(X) =∞.

Remark 10.6.2 1. Since ∂V = ∅ if and only if V is clopen, it is immediate that a T1-space X
satisfies ind(X) = 0 if and only if it is zero-dimensional in the sense of Definition 11.1.15.

2. Since every neighborhood of x ∈ Rn contains a closed ball B(x, ε), whose boundary is an
(n− 1)-sphere, it is very easy to see that ind(Rn) ≤ n.

3. The small inductive dimension is the most intuitive of the notions of topological dimension.
But it has some technical disadvantages, which motivate the next definition. 2

Definition 10.6.3 The large inductive dimension Ind(X) ∈ {−1, 0, 1, . . . ,∞} is defined like ind(X)
except that in the second clause, x ∈ U ∈ τ is replaced by C ⊆ U ∈ τ , where C is closed.
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Remark 10.6.4 1. It is obvious that ind(X) ≤ Ind(X) for every T1-space X.
2. We have Ind(X) = 0 if and only given C ⊆ U ⊆ X with C closed and U open, there is a

clopen V such that C ⊆ V ⊆ U . This is equivalent to the statement that for any two disjoint closed
sets C,D there is a clopen that contains C and is disjoint to D. Combined with the T1-axiom, this
again is the property of strong zero-dimensionality. 2

Definition 10.6.5 An open cover U of a topological space X has order ≤ n if every x ∈ X is
contained in at most n+ 1 elements of U .

Definition 10.6.6 Let (X, τ) be a topological space. We define the covering dimension cov(X) ∈
{−1, 0, 1, . . . ,∞} as follows:

• We put cov(X) = −1 if and only if X = ∅.

• If X 6= ∅ and n ∈ N0, we say that cov(X) ≤ n if, whenever U is an open cover of X, there is
an open refinement V of U of order ≤ n.

• If cov(X) ≤ n holds, but cov(X) ≤ n− 1 does not, we say cov(X) = n.

• If there is no n ∈ N such that cov(X) ≤ n then cov(X) =∞.

Remark 10.6.7 1. It is clear that cov(X) = 0 if and only if every open cover U has a refinement V
consisting of disjoint open sets. Such a space obviously has no connected subspaces with more than
one point and thus is ‘totally disconnected’.

2. One can show that cov(Rn) ≤ n with just a little more effort than for the small inductive
dimension. Cf. e.g. [219]. 2

Naturally one needs to understand the relationships between the four notions of dimension that
we have defined. They are summarized in the following

Theorem 10.6.8 Let X be a topological space.

(i) If X is normal then s-dim(X) = cov(X).

(ii) If X is metrizable then s-dim(X) = cov(X) = Ind(X).

(iii) If X is separable metrizable (=second countable T3) then s-dim(X) = cov(X) = Ind(X) =
ind(X). In this case we write dim instead.

Proof. (i) See [90, Theorem 3.2.6].
(ii) The fact that cov(X) = Ind(X) for every metrizable space X was proven independently by

Katetov and Morita in the first half of the 1950s. This can be found in most expositions of dimension
theory, including the concise ones in [89] and [61].

(iii) That cov(X) = Ind(X) = ind(X) for separable metric spaces is even more classical. Cf.
again the short treatments in [89, 61] or the full-blown books [90]. �

We will see in Corollary 11.1.44 that a second countable zero-dimensional space embeds into R.
This has a generalization to higher dimensions:

Theorem 10.6.9 If X is a second countable T3-space with dim(X) ≤ n then there is an embedding
X ↪→ R2n+1.

(Compare with Whitney’s embedding theorem, according to which a smooth manifold of dimen-
sion n embeds smoothly into R2n+1.)
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Chapter 11

Highly disconnected spaces. Peano curves

11.1 Highly disconnected spaces

11.1.1 Totally disconnected spaces. The connected component functor
πc

Definition 11.1.1 A topological space is called totally disconnected if C(x) = {x} for each x. Equiv-
alently, X has no connected subspaces other than singletons and ∅.

Remark 11.1.2 1. Clearly, every discrete space is totally disconnected, but not conversely as Ex-
ample 9.1.10 shows. Another example is provided by the subspace Q ⊆ R. Since Q contains no
intervals, it is totally disconnected by Proposition 9.2.1. But Q is dense-in-itself and thus is far from
being discrete.

2. Some authors write ‘hereditarily disconnected’ instead of totally disconnected, since every
subspace (with more than one point) is disconnected.

3. If X is totally disconnected then every Y ⊆ X with #Y ≥ 2 is totally disconnected.
4. Every totally disconnected space is T1 (since {x} = C(x) ∀x and C(x) is closed). But a totally

disconnected space need not be T2, cf. Exercise 11.1.10.
5. Total disconnectedness is not a very convenient condition to check since it involves all subspaces

of the space. (It is clear that X is totally disconnected if and only if for every S ⊆ X with #S ≥ 2
there are open U, V ⊆ X such that U ∪ V ⊇ S, U ∩ S 6= ∅ 6= V ∩ S and U ∩ V ∩ S = ∅.) Therefore
also other notions of disconnectedness have been defined, some of which we will encounter below. 2

Totally disconnected spaces arise in a very natural way:

Proposition 11.1.3 Let (X, τ) be a topological space and ∼ the equivalence relation of being in the
same connected component.

(i) The quotient space X/∼ is T1 and totally disconnected.

(ii) If X is compact Hausdorff then X/∼ is Hausdorff (and compact).

(iii) The quotient space X/∼ is discrete if and only if X is locally connected.

(iv) The map p : X → X/∼ is a homeomorphism if and only if X is totally disconnected.

Proof. By Lemma 6.4.12, X/∼ is T1 (respectively discrete) if and only if the ∼-equivalence classes,
in this case the connected components, are closed (respectively open). Connected components are

277
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always closed, and by Proposition 9.1.12 openness of the connected components is equivalent to local
connectedness. This proves (iii) and the first half of (i).

We must prove that X/∼ does not have connected subspaces with more than one point. Let
p : X → X/∼ be the quotient map and let S ⊆ X/∼ with #S ≥ 2. Then p−1(S) ⊆ X is the union
of at least two connected components of X and therefore not connected. There thus is a clopen
T ⊆ p−1(S) with ∅ 6= T 6= p−1(S). This T is itself a union of connected components of X. (Assume
Y ⊆ X is connected with Y ∩ T and Y \T both non-empty. Then Y is the union of two non-empty
clopen subsets, contradicting connectedness.) Thus T = p−1(p(T )). In view of the definition of the
quotient topology it is clear that a subset Z of X/∼ is clopen if and only if p−1(Z) ⊆ X is clopen.
In view of T = p−1(p(T )) and the fact that T is clopen, we thus have that p(T ) is clopen. It is clear
that p(T ) ⊆ S with ∅ 6= p(T ) 6= S. Therefore S is not connected.

(ii) For compact Hausdorff X, it is clear that X/∼ is compact. Furthermore, the equivalence
relation ∼ is closed by Proposition 9.1.21. Now Corollary 8.1.19 implies that X/∼ is Hausdorff (in
fact normal).

(iv) If X is totally disconnected then the equivalence relation ∼ is trivial, thus the quotient map
p is a homeomorphism. By (i), X/∼ is totally disconnected. Thus if p is a homeomorphism then X
is totally disconnected. �

In fact, the assignment X ; X/∼ is only the object-part of a functor from the category T OP
to the category T OPtotdisc of totally disconnected spaces:

Theorem 11.1.4 Write πc(X) = X/∼. Every f ∈ C(X, Y ) defines a map πc(f) : πc(X) → πc(Y )
that is continuous w.r.t. the quotient topologies on both spaces and such that the diagram

X
f - Y

πc(X)

pX

?

πc(f)
- πc(Y )

pY

?

(11.1)

commutes. The assignments X 7→ πc(X), f 7→ πc(f) constitute a functor πc : T OP → T OPtotdisc.

Proof. Let f ∈ C(X, Y ). If x, x′ ∈ E ⊆ X, where E is connected, then f(E) ⊆ Y is connected by
Lemma 9.1.1. Thus f(x), f(x′) are in the same connected component, so that pY (f(x)) = pY (f(x′)).
Thus the diagonal map g = pY ◦ f : X → πc(Y ), which clearly is continuous, is constant on the
connected components of X. Since the connected components are precisely the ∼-equivalence classes,
Proposition 6.4.8 provides a unique continuous map g̃ : πc(X)→ πc(Y ) such that g̃◦pX = g = pY ◦f .
Calling this map πc(f), we have the commutativity of (11.1).

It is entirely obvious that πc(idX) = idπc(X). If g ∈ C(Y, Z), by the first part of the proof there
is a unique continuous πc(g) : πc(Y )→ πc(Z) such that pZ ◦ g = πc(g) ◦ pY . Then

pZ ◦ g ◦ f = πc(g) ◦ pY ◦ f = πc(g) ◦ πc(f) ◦ pX ,

thus pZ ◦ (g ◦ f) = (πc(g) ◦ πc(f)) ◦ pX . But we also know that there is a unique πc(g ◦ f) such
that pZ ◦ (g ◦ f) = πc(g ◦ f) ◦ pX . This proves πc(g ◦ f) = πc(g) ◦ πc(f). Thus πc is a functor from
topological spaces to topological spaces. �

Exercise 11.1.5 Let f : X → Y be continuous, where Y is totally disconnected. Prove:
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(i) f is constant on the connected components of X.

(ii) There is a unique continuous f̃ : X/∼→ Y such that f = f̃ ◦ pX .

(iii) Use this to give another proof of Theorem 11.1.4.

(Notice that the first proof of the theorem is simpler in that it does not make explicit use of the
total disconnectedness of πc(Y ),which was the hardest part of Proposition 11.1.3.)

The functor πc is a variation of the path-component functor π0, which we will study later, but
since it is topologically better behaved it also has applications unrelated to algebraic topology:

Exercise 11.1.6 Let (G, ·, e) be a topological group, cf. Definition 7.8.24.

(i) Prove that Ge := C(e), the connected component of the unit element, is a closed normal
subgroup.

(ii) Show that the equivalence relations ∼ given by connectedness and by group theory, cf. x ∼G
y ⇔ gh−1 ∈ Ge, coincide.

(iii) Conclude that the group theoretical quotient map G → G/Ge can be identified with the
topological quotient G→ πc(G).

(iv) Conclude that every topological group G has a connected closed normal subgroup Ge such
that the quotient group G/Ge is totally disconnected, the quotient being discrete if and only
if Ge ⊆ G is open.

11.1.2 Totally separated spaces

As noted before, the notion of total separation is not very convenient. The following related concept
is better behaved:

Definition 11.1.7 A space X is called totally separated if for any x, y ∈ X, x 6= y there is a clopen
set C such that x ∈ C 63 y.

Exercise 11.1.8 (i) Prove that every X ⊆ R with X0 = ∅ is totally separated.

(ii) Use (i) to prove that Q and R\Q are totally separated.

Lemma 11.1.9 A totally separated space is Hausdorff and totally disconnected.

Proof. If x 6= y and x ∈ C 63 y with C clopen, then C and X\C are disjoint open neighborhoods of
x, y, respectively. If {x, y} ⊆ S then S ∩ C is a clopen subset of S different from ∅, S, thus S is not
connected. Thus x 6∼ y. �

The converse is not true:

Exercise 11.1.10 Consider X = Q×{0, 1}, where Q has the (totally separated) topology as above.
Let Y = X/∼ where ∼ identifies (x, 0) and (x, 1) provided x 6= 0. Then Y is totally disconnected,�

but not Hausdorff, thus not totally separated. (Compare Example 6.4.17.)

However, for compact Hausdorff spaces, the two notions are equivalent, the key being:

Exercise 11.1.11 Prove that X is totally separated if and only if Q(x) = {x} for every x ∈ X,
where Q(x) is the quasi-component.
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Corollary 11.1.12 A totally disconnected compact Hausdorff space is totally separated.

Proof. If X is compact Hausdorff and totally disconnected, then x 6= y ⇒ x 6∼ y, so that the identity
Q(x) = C(x) from Proposition 9.1.19 implies total separation. �

Exercise 11.1.13 Let Xi be totally separated for each i. Prove that X =
∏

iXi is totally separated.

Exercise 11.1.14 For a topological space X, let x ∼q y ⇔ Q(x) = Q(y), thus πq(X) = X/∼q is the
set of quasi-components of X.

(i) Show that the quotient topology on πq(X) is totally separated.

(ii) If f : X → Y is continuous, where Y is totally separated, show that f is constant on the
quasi-components of X.

(iii) Given a continuous f : X → Y , use (i)-(ii) to canonically define πq(f) : πq(X)→ πq(Y ), giving
rise to a functor from topological spaces to totally separated spaces.

11.1.3 Zero-dimensional spaces. Stone spaces

Definition 11.1.15 A space (X, τ) is called zero-dimensional if it is T0 and τ has a base consisting
of clopen sets.

Remark 11.1.16 The above definition can be restated as follows: If x ∈ U ∈ τ then there is a
clopen set C such that x ∈ C ⊆ U . Then, of course, D = X\C is clopen, disjoint from C and it
contains the closed set X\U . Thus a T0-space is zero-dimensional if and only if “points are separated
from closed sets by clopen sets”. 2

Exercise 11.1.17 Prove that every element [a, b) of the canonical base of the Sorgenfrey topology
τS on R is clopen. Deduce that (R, τS) is zero-dimensional.

Lemma 11.1.18 A zero-dimensional space is totally separated and completely regular (T3.5).

Proof. If x 6= y, we can find an open U containing precisely one of the two points. If that point is x,
zero-dimensionality gives us a clopen C such that x ∈ C ⊆ U . Clearly y 6∈ C, and similarly if y ∈ U .
Thus the space is totally separated and thereby T2. If now x ∈ U ∈ τ , zero dimensionality gives a
clopen V such that x ∈ V ⊆ U . Since V is closed, we have x ∈ V ⊆ V ⊆ U . In view of Lemma
8.1.5, X is T3. The above also shows that, given a closed D ⊆ X and x ∈ X\D, there is a clopen
C such that x ∈ C, D ⊆ X\C. Since C is clopen, the characteristic function χC is continuous and
χC(x) = 1, χC �D = 0. Thus X is completely regular. �

Thus we have zero-dimensional ⇒ totally separated ⇒ totally disconnected.

Exercise 11.1.19 Prove that the properties of being totally separated and zero-dimensional are
both hereditary.

Exercise 11.1.20 Prove: If (X, τ) is a compact Hausdorff space and totally separated then X is
zero-dimensional. Hint: Show that the clopen sets in X form the base for a Hausdorff topology τ ′

weaker than τ . Then prove τ ′ = τ .

Corollary 11.1.21 For compact Hausdorff spaces, the properties of total disconnectedness, total
separation and zero-dimensionality are equivalent.



11.1. HIGHLY DISCONNECTED SPACES 281

Proof. Combine Lemma 11.1.9, Corollary 11.1.12, Lemma 11.1.18 and Exercise 11.1.20. �

Definition 11.1.22 A Stone space is a totally disconnected compact Hausdorff space.

In Exercise 8.3.34(vii) we saw that the Stone-Čech compactification of any discrete space is totally
separateded, thus a Stone space. Unsurprisingly, he same holds for one-point compactifications:

Exercise 11.1.23 Prove that the one-point compactification X∞ of every discrete space X is a
Stone space.

Remark 11.1.24 Stone spaces are important for many reasons: In the next section we will see that
infinite products of finite discrete spaces are Stone spaces. More generally, Stone spaces are precisely
the ‘inverse limits’ (a generalization of direct products) of finite discrete spaces, cf. Section 11.1.10.

For every space X, the set Clop(X) of clopens in X is a boolean algebra. The latter is trivial if
and only if X is connected. On the other hand, in Section 11.1.11 we will prove Stone duality’1, which
associates a Stone space Spec(A) to every boolean algebra A. Then Stone spaces are precisely those
spaces for which X ∼= Spec(Clop(X)), thus those for which Clop(X) contains all the information of
X. 2

11.1.4 Extremally disconnected spaces. Stonean spaces

Definition 11.1.25 A topological space X is called extremally disconnected2 if the closure of every
open set is open (and, of course, closed, thus clopen).

An extremally disconnected compact Hausdorff space is called Stonean space.

Exercise 11.1.26 Prove: X is extremally disconnected ⇔ disjoint open sets have disjoint closures.

• Obviousy, every discrete and every indiscrete space is extremally disconnected.

• In Exercise 8.3.34(vi) we have seen that the Stone-Čech compactification of any infinite discrete
space is extremally disconnected.

• Indiscrete spaces show that extreme disconnectedness alone does not imply any separation
properties and can even coexist with connectedness (since indiscrete spaces are connected).
This can also happen for T1-spaces: If X is infinite, the cofinite topology on X is irreducible,
and therefore connected (by Exercise 2.8.3 (iii) and (i)). On the other hand:

Exercise 11.1.27 Prove that the cofinite topology on any set is extremally disconnected.

But combined with a separation propery ≥ T2, extreme disconnectedness really is a strong form
of disconnectedness:

Exercise 11.1.28 Let X be extremally disconnected. Prove:

(i) If X is T2 then it is totally separated.

(ii) If X is T3 then it is zero-dimensional.

1The same M. H. Stone as in Stone-Čech compactification.
2The word ‘extremally’ does not exist, but insisting on ‘extremely’ seems pointless in view of the majority practice.
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Whether a space is extremally disconnected can be characterized in terms of the Boolean algebra
Clop(X) of clopen sets in X:

Definition 11.1.29 A Boolean algebra A is complete if every subset B ⊆ A has a least upper bound
(for the partial order defined by a ≤ b⇔ a ∨ b = b), denoted

∨
B or sup(B).

Proposition 11.1.30 Let X be a topological space.

(i) If X is extremally disconnected then Clop(X) is complete.

(ii) If X is zero-dimensional and Clop(X) is complete then X is extremally disconnected.

(iii) A Stone space is stonean if and only if Clop(X) is complete.

Proof. (i) Let F ⊆ Clop(X). Then U =
⋃
F =

⋃
V ∈F V is open. Since X is extremely disconnected,

C = U is clopen. Since C contains every V ∈ F and clearly is the smallest clopen with that property,
C is the supremum of F , and Clop(X) is complete.

(ii) By assumption, X has a base consisting of clopens. Thus for every open U ⊆ X there is a
family F ⊆ Clop(X) such that U =

⋃
F . By completeness of Clop(X), the family F has a least

upper bound C = sup(F). Thus there is a smallest clopen C such that C ⊇
⋃
F = U . Thus extreme

disconnectedness of X follows, if we show that C = U . Since C is closed, we have U ⊆ C = C.
On the other hand, if x 6∈ U then x ∈ V = X\U . Now by zero-dimensionality, there is a clopen D
with x ∈ D ⊆ V = X\U . Thus U ⊆ X\D. Since C is the smallest clopen containing U , we have
C ⊆ X\D, and therefore x 6∈ C. This completes the proof of U = C.

(iii) Stone spaces are compact Hausdorff and zero-dimensional. Now apply (i) and (ii). �

In Section 11.1.11 we will prove that every Boolean algebra is isomorphic to Clop(X) for some
Stone space X. This, together with Proposition 11.1.30 and the fact that there are non-complete
Boolean algebras, proves that extreme disconnectedness is stronger than the three disconnectedness
properties considered earlier, even in the compact Hausdorff case where the latter are equivalent.
I.e., there are Stone spaces that are not Stonean.

11.1.5 Infinite products of discrete spaces

We have already extensively studied infinite products in connection with compactness (Section 7.5)
and normality (Section 8.1.4). Now we will study the connectedness properties of infinite products.

Exercise 11.1.31 Prove that a finite direct product of discrete spaces is discrete.

Assume I is infinite and Xi is discrete and finite with #Xi ≥ 2 ∀i ∈ I. By Tychonov’s theorem,
X =

∏
iXi is compact, but #X ≥ 2N is infinite. Since compact discrete spaces are finite, X cannot

be discrete. In fact, the following is a stronger result under weaker assumptions:

Lemma 11.1.32 Let I be infinite and Xi discrete with #Xi ≥ 2 for all i ∈ I. Then every neighbor-
hood of every point of X =

∏
iXi has cardinality at least 2N = #R. In particular, X is dense-in-itself.

Proof. Let x = (xi) ∈ X. If U is an open neighborhood of x, there is a basic open set V ⊆ U with

V = p−1
i1

(Ui1) ∩ · · · ∩ p−1
in

(Uin) =
∏

i∈{i1,...,in}

Ui ×
∏

i 6∈{i1,...,in}

Xi.
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Since I is infinite and #Xi ≥ 2 for all i ∈ I, the factor
∏

i 6∈{i1,...,in}Xi is infinite. Thus every

neighborhood of x ∈ X contains at least 2N = #R points, thus uncountably many. Thus obviously,
no point is isolated. �

We collect (most of) what we know about infinite products of discrete spaces:

Theorem 11.1.33 Let Xi be discrete with #Xi ≥ 2 ∀i ∈ I. Then X =
∏

iXi is totally separated.
Furthermore:

(i) I is finite ⇔ X is discrete.

(ii) I is infinite ⇔ X is perfect.

(iii) All Xi are finite ⇔ X is compact, thus a Stone space.

(iv) I is countable ⇔ X is metrizable.

(v) At most countably many Xi are infinite ⇔ X is paracompact ⇔ X is normal.

(vi) I is countable and all Xi are countable ⇔ X is second countable.

Remark 11.1.34 Statement (iii) of course does not mean that every Stone space is (homeomorphic
to) an infinite direct product of finite discrete spaces. But: Every zero-dimensional space embeds
into a product {0, 1}χ, cf. Lemma 11.1.36. And every Stone space is an inverse (=projective) limit
of finite discrete spaces. Cf. Section 11.1.10. 2

The simplest infinite product of discrete spaces clearly is

K = {0, 1}N :=
∞∏
n=1

{0, 1},

thus the set of {0, 1}-valued sequences. By Theorem 11.1.33, K is a second countable perfect Stone
space. Remarkably, K is characterized by these properties:

Theorem 11.1.35 If X is a second countable perfect Stone space then X ∼= K.

This is somewhat surprising since, e.g., the space L = {1, 2, 3}N satisfies the assumptions while

it is not obvious how a homeomorphism K
∼=→ L could look like. We do not give the proof (cf.

e.g. [298, 61]), but Proposition 11.1.41, while simpler, goes in the same direction. Cf. also Theorem
11.1.55 for another universal property of K.

11.1.6 Zero-dimensional spaces: βX and embeddings X ↪→ K

In Section 8.3.3, we defined a map ιX : X → [0, 1]C(X,[0,1]) and showed that it is an embedding
if and only if X is completely regular. In this section, we study the analogous construction,
where C(X, [0, 1]) is replaced by its subset C(X, {0, 1}). In view of the obvious bijection between
C(X, {0, 1}) and Clop(X) given by f 7→ f−1(1) and C 7→ χC , we parametrize the functions by the
associated clopens.

Lemma 11.1.36 For a space X, define

ι̃X : X → {0, 1}Clop(X), x 7→
∏

C∈Clop(X)

χC(x).

Then
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(i) ι̃X is injective if and only if X is totally separated.

(ii) ι̃X is an embedding if and only if X is a zero-dimensional space.

Proof. (i) Just as for ιX , it is clear that ι̃X is injective if and only if for every x 6= y there is a
C ∈ Clop(X) such that χC(x) 6= χC(y). Clearly this is the case if and only if for any x 6= y there is
a clopen C such that x ∈ C 63 y, which is the definition of total separatedness.

(ii) The space {0, 1}Clop(X) is compact Hausdorff and, by Exercise 11.1.13, totally separated.
Thus by Exercise 11.1.20, it is zero-dimensional. (One can also show directly that products of zero-
dimensional spaces are zero-dimensional). Thus if ι̃X is an embedding, X is zero-dimensional by
Exercise 11.1.19.

Conversely, let X be zero-dimensional. By Lemma 11.1.18, X is totally separated, so that ι̃X is
injective by (i), and T3.5. But the proof of Lemma 11.1.18 also showed that given a closed D ⊆ X
and x ∈ X\D there is an f ∈ C(X, {0, 1}) such that f(x) = 1, f �D = 0. This shows that the
{0, 1}-valued continuous functions separate points from closed sets. Thus by Proposition 8.3.16, ι̃X
is an embedding. �

Corollary 11.1.37 If X is zero-dimensional and γX = ι̃X(X) then (γX, ι̃X) is a Hausdorff com-
pactification of X.

Proof. By Tychonov’s theorem, {0, 1}Clop(X) is compact Hausdorff, thus γX is compact Hausdorff,
and by Lemma 11.1.36(ii), ι̃ is an embedding. �

Since a zero-dimensional space X is T3.5 by Lemma 11.1.18, it also has a Stone-Čech compactifi-
cation βX, and it is natural to ask how γX is related to βX.

Definition 11.1.38 A space X is called strongly zero-dimensional if it is T1 and for any two disjoint
closed sets A,B ⊆ X there is a clopen C such that A ⊆ C ⊆ X\B.

It is clear that a strongly zero-dimensional space is zero-dimensional and normal. Every discrete
space being strongly zero-dimensional, the following generalizes Exercise 8.3.34:

Proposition 11.1.39 If X is strongly zero-dimensional then βX ∼= γX in C(X), and βX is a Stone
space.

Proof. As noted, X is zero-dimensional, thus by the above, ι̃X : X → γX is an embedding. If A,B ⊆
X are disjoint closed sets and C is a clopen such that A ⊆ C ⊆ X\B, then the characteristic function
χC separates A and B, and as in the proof of Proposition 8.3.37, one concludes ι̃X(A) ∩ ι̃X(B) = ∅.
Since X also is normal, Corollary 8.3.38 implies γX ∼= βX. Now, γX by construction is a closed
subspace of {0, 1}Clop(X), thus totally separated and compact Hausdorff, thus Stone. �

Remark 11.1.40 1. Leaving aside total disconnectedness, the other disconnectedness assumptions
above form a hierarchy similar to that of T2, T3, T4: The weakest is the statement that points can be
separated by clopens (total separatedness). The next is that X be T0 and clopens separate points
from closed sets, i.e. zero-dimensionality. Finally T0 combined with separation of disjoint closed sets
by clopens, i.e. strong zero-dimensionality. It is tempting to call these properties D2, D3, D4 since
Dk ⇒ Tk. Notice that D3 + T4 does not imply D4! (Cf. [89, Example 6.2.20].) But in analogy to �

Proposition 8.1.16, one can show that D3+Lindelöf⇒ D4, cf. [89, Theorem 6.2.7]. Thus in particular
Stone spaces are strongly zero-dimensional.

2. γX is closely related to Stone duality and ultrafilters, cf. Theorem 11.1.82. 2
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The compactification γX was defined by embedding X into {0, 1}Clop(X), similar to the Stone-
Čech compactification. If X is second countable, one may ask whether X embeds into K = {0, 1}N,
similar to what was done in proving Urysohn’s metrization theorem.

Proposition 11.1.41 A zero-dimensional space embeds into K if and only if it is second countable.

Proof. By Lemma 11.1.18, X is T3.5. Zero dimensionality means that every x ∈ X has a neighborhood
base Nx consisting of clopens. Now V =

⋃
xNx is a base for τ that consists of clopens. Thus

Proposition 7.1.10 provides a countable base {V1, V2, . . .} = V0 ⊆ V , so that X has a countable base
consisting of clopens.

Now define a map ι : X → K = {0, 1}N by ι(x) = (ι(x)1, ι(x)2, . . .), where ι(x)n = χVn(x).
Again, this map is continuous since the Vn are clopen. If C ⊆ X is closed and x ∈ X\C =: U then
x ∈ U ⊆ τ . Since V0 is a base, there is an i such that x ∈ Vi ⊆ U . Thus V0 separates points from
closed sets, so that ι is an embedding by Proposition 8.3.16. The converse follows from the fact that
K is second countable, together with heriditarity of this property. �

Remark 11.1.42 We will soon see that K embeds into R. By X ↪→ K ↪→ R, X embeds into R.
This is the simplest case of the general result, proven in topological dimension theory, that a space
of dimension N embeds into R2N+1. 2

11.1.7 Embeddings K ↪→ R. The Cantor set

Proposition 11.1.43 Let c > 1 and define

Fc : K → R, (a1, a2, . . .) 7→ (c− 1)
∞∑
n=1

c−nan.

(For c = 2 this is the well-known binary expansion 0.x1x2x3 . . . of x ∈ [0, 1].) Then

(i) Fc(K) ⊆ [0, 1].

(ii) Fc : K → R is continuous, thus Fc(K) ⊆ [0, 1] is compact and closed.

(iii) Fc : K → [0, 1] is not a bijection.

(iv) If c > 2 then Fc is injective, thus an embedding.

(v) If c ∈ (1, 2] then Fc is surjective, thus a quotient map.

(vi) Fc is not injective if c ∈ (1, 2] and not surjective if c > 2.

Proof. (i) This follows from
∞∑
n=1

c−n =
1

1− 1
c

− 1 =
1

c− 1
. (11.2)

(ii) For a, b ∈ K, we have |Fc(a) − Fc(b)| = (c − 1)
∑∞

n=1 c
−n|an − bn|. If an = bn for n ≤ N ,

this implies |Fc(a)− Fc(b)| ≤ 2(c− 1)
∑∞

n=N+1 c
−n = 2c−N . Since c > 1, for every ε > 0 we can find

N ∈ N such that 2c−N < ε. Now UN(a) = {x ∈ K | xi = ai ∀i ≤ N} is an open neighborhood of a,
and we have x ∈ UN(a) ⇒ |Fc(a)− Fc(x)| < ε. Thus Fc is continuous. As continuous image of the
compact space K, Fc(K) is compact. Since R is Hausdorff, Fc(K) is closed.
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(iii) If Fc was a bijection, it would be a homeomorphism by Proposition 7.4.11. But this is not
possible since [0, 1] is connected, while K is totally disconnected.

(iv) Let a, b ∈ K with a 6= b. Define N = min{n ∈ N | an 6= bn}. Then aN 6= bN , and we may
assume aN = 0, bN = 1. Now

Fc(a) ≤ (c− 1)

(
N−1∑
n=1

c−nan +
∞∑

n=N+1

c−n

)
, Fc(b) ≥ (c− 1)

(
N−1∑
n=1

c−nan + c−N

)
,

thus

Fc(b)− Fc(a) ≥ (c− 1)(c−N −
∞∑

n=N+1

c−n) = (c− 1)c−N − c−N(c− 1)
∞∑
n=1

c−n = c−N(c− 2).

Thus for c > 2 and a 6= b we have Fc(a) 6= Fc(b), thus injectivity. Now Proposition 7.4.11(iii) implies
that Fc is an embedding.

(v) Let x ∈ [0, 1], and put y = x/(c − 1). Thus y ≤ 1/(c − 1). Put an = 0 for all n ∈ N and
N = 1. Now consider the following algorithm3:

(*) If x = 0 then we stop. If x ≥ 1/c, put aN = 1 and replace x by x− 1/c, else do nothing. Now
multiply x by c, increase N by 1 and return to (*).

If the algorithm stops at a certain value of N , it should be clear that y =
∑N−1

n=1 c
−nan, thus

x = Fc(a), where the sequence a is finite (in the sense of having finitely many non-zero an’s).
Now consider the case where the algorithm does not stop. We first verify that the variable x of

the algorithm always stays bounded by 1/(c − 1): If x < 1/c (thus cx < 1) at the beginning of one
iteration then x gets replaced by cx < 1 ≤ 1/(c− 1) (since c ≤ 2). Whereas if x ≥ 1/c then the new
value of x is c(x− 1/c) = cx− 1, which is bounded by c/(c− 1)− 1 = 1/(c− 1). After N steps, the
algorithm has computed a1, . . . , aN , and we know that 0 ≤ y −

∑N
n=1 c

−nan ≤ c−N/(c − 1). Since

this tends to zero as N →∞, we have lim
∑N

n=1 c
−nan = y, thus Fc(a) = x.

(vi) Now we have proven that Fc is surjective for c ∈ (1, 2] and injective for c > 2. Combining
this with (iii), we know that Fc is not injective for c ∈ (1, 2] and not surjective for c > 2. �

Corollary 11.1.44 Every second countable zero-dimensional space embeds into R.

Proof. Combine the embeddings X ↪→ K of Proposition 11.1.41 and Fc : K ↪→ R, where c > 2, of
Proposition 11.1.43(iii). �

Theorem 11.1.45 Let c > 2. Then

(i) Fc(K) is a perfect Stone space.

(ii) Fc(K) ⊆
[
0,

1

c

]
∪
[
1− 1

c
, 1

]
.

(iii) Fc(K) is self-similar in the sense of

c

(
Fc(K) ∩

[
0,

1

c

])
= Fc(K) = c

(
Fc(K) ∩

[
1− 1

c
, 1

]
−
(

1− 1

c

))
. (11.3)

(iv) Fc(K) is the maximal set satisfying (ii) and (iii).

3This is an example of a ‘greedy’ algorithm.
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Proof. (i) Obvious consequence of Fc(K) ∼= K.
(ii) Let a ∈ K with a1 = 0. Then Fc(A) ≤ (c− 1)

∑∞
n=2 c

−N = c−1(c− 1)
∑∞

n=1 c
−N = c−1, using

(11.2). If a1 = 1 then clearly Fc(a) ≥ (c− 1)c−1 = 1− 1/c.
(iii) As seen in (ii), if x = Fc(K) ∩ [0, 1/c] then x = Fc(a), where a1 = 0. Now

cFc(a) = c(c− 1)
∞∑
n=2

c−nan = (c− 1)
∞∑
n=2

c−n+1an = Fc(σ(a)),

where σ(a) = (a2, a3, . . .). If x = Fc(K) ∩ [1− 1/c, 1] then x = Fc(a) where a1 = 1. Then

c

(
Fc(a)−

(
1− 1

c

))
= c(c− 1)

∞∑
n=2

c−nan = Fc(σ(a)).

Now (11.3) follows from the obvious fact K = σ(K).
(iv) Assuming that x ∈ [0, 1] satisfies (ii) and (iii), we must show x ∈ Fc(K). Similar to the proof

of Proposition 11.1.43(ii), we do this by giving an algorithm that computes a ∈ K such that x = Fc(a).
Put N = 1. (*) By assumption (ii), we have x ∈ [0, 1/c] or x ∈ [1 − 1/c, 1]. According to which is
the case, define aN = 0 or aN = 1. Now assumption (iii) implies that x′ = c(x − aN/c) ∈ Fc(K).
Replace x by x′, increase N by one, and return to (*).

The above algorithm defines a map βc : Fc(a) → K. It is obvious that βc ◦ Fc = idK . That
Fc ◦ βc = idFc(K) is seen by the same convergence argument as in Proposition 11.1.43(ii). �

Remark 11.1.46 We have proven that Fc(K) is the largest subset of R satisfying (ii) and (iii)
of Theorem 11.1.45. One can actually prove the stronger result that already (iii) alone has only
three solutions: ∅, Fc(K),R. This can be generalized considerably and is proven using a contraction
principle for compact subsets rather than points. Cf. Section B.3. 2

The result of (iv) can be reformulated equivalently as follows: Let C0 = [0, 1] and define the open
interval U0 = (1/c, 1− 1/c). Define C1 = C0\U0. Clearly, C1 = [0, 1/c] ∪ [1− 1/c, 1], which consists
of two closed intervals of length 1/c. Now

U1 = c−1(1/c, 1− 1/c) ∪
(
c−1(1/c, 1− 1/c) + (1− 1/c)

)
is the union of two open intervals, which upon rescaling [0, 1/c] and [1 − 1/c, 1] to [0, 1] become
(1/c, 1− 1/c). Then C2 = C1\U1 a union of four closed intervals of length c−2. By now it should be
clear that this construction can be iterated. We obtain open sets Un ⊆ [0, 1] such that each Un is
the union of 2n open intervals of length c−(n+1). Furthermore, Cn = [0, 1]\(

⋃n−1
k=0 Uk) is the union of

2n closed intervals of length c−n. Now

Fc(K) =
∞⋂
n=0

Cn = [0, 1]\
∞⋃
k=0

Uk.

The above construction simplifies slightly when c = 3, since then (1/c, 1 − 1/c) = (1/3, 2/3) is
the middle open third of [0, 1]. For this (and only this) reason, Fc(K) plays a distinguished rôle and
has a name:

Definition 11.1.47 The subset Γ = F3(K) ⊆ [0, 1] is called Cantor’s middle third set or just the
Cantor set.
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Remark 11.1.48 In the proof of Theorem 11.1.45(iii), we constructed an inverse Fc(K) → K of
Fc. Since F3 : K → Γ is a homeomorphism, βc = F−1

c (K) : Fc(K) → K is continuous. This can
be shown directly: If a sequence xi ∈ Fc(K) converges to x ∈ Fc(K), then xi is eventually either
in [0, 1/c] or in [1 − 1/c, 1]. Since 1/c < 1 − 1/c, βc(xi)1 is eventually constant. Since {0, 1} is
discrete, this is equivalent to βc(xi)1 → βc(x)1.) By the same inductive reasoning as above, we see
that limi βc(xi)j = βc(x)j for each j ∈ N. By the definition of the product topology on K = {0, 1}N,
this implies that βc(xi)→ βc(x) in K. Thus βc : Γ→ K is continuous.

By the alternative construction Fc(K) =
⋂
iCi is a closed subset of [0, 1], it is compact. Since

β : Fc(K)→ K is a continuous bijection (and K is Hausdorff), β is a homeomorphism. This gives a
proof of the compactness of K = {0, 1}N that is independent of Tychonov’s theorem! 2

Exercise 11.1.49 Use the alternative construction Fc(K) =
⋂
iCi (thus not the homeomorphism

Fc(K) ∼= K) to prove that Fc(K) is

(i) totally disconnected,

(ii) perfect.

We now use the homeomorphism K ∼= Fc(K) for c > 2 to prove a result about K.

Lemma 11.1.50 Consider Γ = F3(K).

(i) Let (li, ri) be one of the open intervals removed from I in the construction of the Cantor set Γ.
Let a = β(li), b = β(ri), where β = F−1

3 : Γ→ K is as above. Then there is N ∈ N0 such that

a = (a1, a2, . . . , aN , 0, 1, 1, 1, . . .), b = (a1, a2, . . . , aN , 1, 0, 0, 0, . . .).

(Here N = 0 is interpreted as absence of a1, . . . , aN .)

(ii) Let x, y, z ∈ Γ satisfy x < y < z and y = (x+ z)/2. (Equivalently, y − x = z − y, i.e. x, y, z is
an arithmetic progression.) Let a = β(x), b = β(y), c = β(z). Then there is N ∈ N0 such that
either

a = (a1, . . . , aN , 0, 0, 0, 0, . . .), b = (a1, . . . , aN , 0, 1, 1, 1, . . .), c = (a1, . . . , aN , 1, 0, 0, 0, . . .)

or

a = (a1, . . . , aN , 0, 1, 1, 1, . . .), b = (a1, . . . , aN , 1, 0, 0, 0, . . .), c = (a1, . . . , aN , 1, 1, 1, 1, . . .)

In either case, y is a boundary point of one of the intervals (li, ri).

Remark 11.1.51 For N = 0, we have (l, r) = (1/3, 2/3) in (1), and in (2) we find that (x, y, z)
equals either (0, 1/3, 2/3) or (1/3, 2/3, 1). 2

Exercise 11.1.52 Prove Lemma 11.1.50. (The preceding remark should help.)

Part (ii) of the lemma has the following remarkable consequence:

Proposition 11.1.53 Every closed subset F ⊆ Γ of the Cantor set admits a retraction r : Γ → F .
The same holds for K.
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Proof. For y ∈ F , we must define r(y) = y. If y ∈ Γ\F , let d = inf{|x − y| | x ∈ F} > 0. Clearly,
this infimum is assumed either by one point x ∈ F or by two points x, z, in which case we may
assume x < y < z. In the first case, we define r(y) = x. In the second case, we apply part (ii) of
Lemma 11.1.50 and see that either y = li or y = ri for one of the open intervals (li, ri) ⊆ I\Γ. (y
cannot have removed intervals to its left and right, since that would mean that it is an isolated point,
contradicting the perfectness of Γ.) If y = li, we define r(y) = x and if y = ri we define r(y) = z.
This uniquely defines a map r : Γ→ F satisfying r �F = idF .

It remains to show continuity of r. Consider a sequence {xi} ∈ Γ converging to x0 ∈ Γ. This
means that for every m ∈ N there is an N ∈ N such that for n ≥ N the first m components of
β(xn) ∈ K do not change anymore. I.e., xn remains in one of the 2m closed intervals of width 3−m

that are left of the interval I (and whose union is called Cm) after the first m steps of the construction
of Γ. As long as these successively shorter closed intervals in Cm contain points of F , r(xn) stays
close to xn (concretely, |xn− r(xn)| ≤ 3−m). If xn eventually lands in a closed interval containing no
point of F , r(xn) stops changing. In any case, r(xn) is a Cauchy series, and thus convergent (since
F is closed in Γ and thus in I and therefore complete).

That the same conclusion holds for K is obvious in view of K ∼= Γ. �

11.1.8 K maps onto every compact metrizable space

As we saw in Proposition 11.1.43, the map f1 ≡ F2 : K → [0, 1] defined by

f1(a) =
∞∑
n=1

2−nan (11.4)

is continuous and surjective, but not injective. (The non-injectivity can also be seen directly, since
the points a = (1, 0, 0, 0, . . .) and b = (0, 1, 1, 1, . . .) of K have the same image 1/2.)

This construction can be generalized: For every d ∈ N we can define a continuous surjective map
fd : K → Id by

fd(a) = (fd,1(a), . . . , fd,d(a)), where fd,i(a) =
∞∑
j=1

2−jad(j−1)+i.

Using a bijection k : N× N→ N one can even define a continuous surjective map fℵ0 : K → IN by

fℵ0(a) = (fℵ0,1(a), fℵ0,2(a), . . .), where fℵ0,i(a) =
∞∑
j=1

2−jak(i,j).

Thus:

Proposition 11.1.54 For every d ∈ N ∪ {ℵ0}, there is a continuous surjection fd : K → [0, 1]d.

We now combine the above results to prove that K (or Γ) is a ‘universal space’ among the second
countable compact Hausdorff spaces (= compact metrizable spaces):

Theorem 11.1.55 (Hausdorff) For every second countable compact Hausdorff space X there exists
a continuous surjection f : K → X. Conversely, if X is Hausdorff and continuous image of K then
X is compact and second countable.



290 CHAPTER 11. HIGHLY DISCONNECTED SPACES. PEANO CURVES

Proof. As in the proof of Urysohn’s metrization theorem we have an embedding ι : X ↪→ IN. Since
X is compact, ι(X) ⊆ IN is compact, thus closed. By the preceding discussion, we have a continuous
surjective map fℵ0 : K → IN. Now by continuity, F = f−1

ℵ0
(ι(X)) ⊆ K is closed. By Proposition

11.1.53, there is a retraction r : K → F . Now f = ι−1 ◦ fℵ0 ◦ r : K → X is the desired surjection.

The converse follows from the fact that K is compact Hausdorff, the Hausdorff property of X
and Corollary 8.2.38. �

Remark 11.1.56 1. This theorem can also be proven without embedding X into a cube, cf. [298].

2. In a similar way one shows that every compact Hausdorff space is the continuous image of
{0, 1}χ for χ a sufficiently large cardinal number. 2

11.1.9 Projective limits of topological spaces

********************* define projective limits. projective limits of compact (totally disc) spaces
are compact (totally disc)

Definition 11.1.57 Let J be a small category and F : J → Top be a functor. Let X be a space

*** cofiltered ****

Proposition 11.1.58 Let P be a property of topological spaces that is preserved under products and
closed subspaces. Then any projective limits of spaces with property P has property P .

Examples: T0, T1, T2, T3, T3.5, compactness, total separation

Corollary 11.1.59 A projective limit of Stone spaces is Stone. In particular, a projective limit of
finite discrete spaces is Stone.

Remark 11.1.60 Projective limit of finite discrete groups (=profinite group) is Stone space and
topological group. Application to Galois theory of infinite algebraic field extensions. Cf. e.g. [213,
Chapter 17]. 2

11.1.10 Stone spaces = profinite spaces. Profinite groups

Definition 11.1.61 A topological space is profinite if it is (homeomorphic to) a projective limit of
finite discrete spaces.

Theorem 11.1.62 A topological space is a Stone space if and only if it is profinite.

Proof. By Theorem 11.1.33, any product of finite discrete spaces is a Stone space. By construction,
an inverse limit lim←Xi is a closed subspace of the product

∏
iXi. Since total disconnectedness is

hereditary, we find that every profinite space is compact Hausdorff and totally disconnected, thus
Stone.

Now let X be a Stone space. Let E be the set of equivalence relations ∼ on X for which X/∼ is a
finite discrete space. (We have ∼⊆ X×X, thus every ∼ is a point in P (X×X) and E ⊆ P (X×X)
clearly is a set.) If ∼1,∼2∈ E and x ∼1 y ⇒ x ∼2 y, we write ∼2≥∼1. (∼2 is ‘stronger’ since it
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identifies more.) It is easy to see that ≤ is a partial order on E. For every ∼∈ E, we have a canonical
quotient map p : X 7→ X/∼. And if ∼1≥∼2, there is a canonical map q12 : X/∼1→ X/∼2 such that

X
q1 - X/∼1

X/∼2

q12

?

q
2

-

commutes. This shows that we have a family {Xi = X/∼i}∼∈E of finite discrete spaces and connecting
maps qij : Xi → Xj whenever j ≥ i, thus an inverse system, and maps pi : X → Xi compatible with
the maps qij : Xi → Xj. Let Y = lim←Xi be the projective limit of the system {Xi, qij}, and let
pi : Y → Xi be the canonical projection maps. Then we have a canonical continuous map p : X → Y
such that

X
qi - Xi

Y

p

?

pj
-

p i

-

Xj

qij

?

q
j

-

proficommutes whenever i ≤ j. By construction, Y is a profinite space. Thus we are done if we
prove that p : X → Y is a homeomorphism. By construction p is continuous. Since X is compact
and Y Hausdorff, p automatically is a homeomorphism, provided it is a bijection. (Cf. Proposition
7.4.11(ii).) By assumption X is Stone, thus totally separated. Thus if x 6= y, there is a clopen C ⊆ X
such that x ∈ C 63 y. Let ∼ be the equivalence relation on X having C and X\C as equivalence
classes. Then clearly X/∼ is a two-point space that is discrete (since the equivalence classes are
closed), and the quotient map q : X → X/∼ satisfies q(x) 6= q(y). Thus already the maps from X to
discrete two-point spaces separate the points of X. Thus certainly the map q =

∏
i qi : X →

∏
iXi

is injective. Since Y = lim←Xi ⊆
∏

iXi is contained in the image of p and the map p : X → Y is
nothing but q considered as a map into lim←Xi, also p is injective.

Since X is compact, p(X) ⊆ Y is closed. In order to prove surjectivity of p it therefore suffices to
show that p(X) ⊆ Y is dense. A point of Y is a point in x ∈

∏
iXi such that qij(xi) = xj whenever

i ≤ j.

*********

�

If X is compact Hausdorff but not necessarily Stone, we have lim←Xi
∼= X/∼, the Stone space

πc(X) of connected components!! (In the next section, we will give yet another interpretation of this
space, namely as the Stone dual of the Boolean algebra Clop(X).)

Definition 11.1.63 A profinite group is an in an inverse limit of finite groups, where the connecting
maps of the inverse system are group homomorphisms.

It is almost immediately obvious that the inverse limit of an inverse system consisting of groups
and group homomorphisms again has a group structure. Thus a profinite group actually is both a
group and a Stone space. It is natural to ask for a characterization of the topological groups arising
in this way.
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Corollary 11.1.64 Let G be a compact T0-topological group whose topology such that for every
e 6= g ∈ G there is a closed normal subgroup N of finite index such that e 6∈ N . Then G is a profinite
group, i.e. an inverse limit (as group and as topological space) of finite discrete groups.

Proof. By Theorem D.2.3 (or simply by assumption), the topology τ is Hausdorff. By the last
assumption, the family of quotient maps G → G/N with finite discrete quotients separates the
points of G. Now we redo the proof of Theorem 11.1.62, replacing the set E of all equivalence
relations on G with finite discrete G/∼ by the subset En ⊆ E of equivalence relations arising from
closed normal subgroups N of finite index. Thus for every ∼∈ En, the quotient map G → G/∼
is a surjective homomorphism to a finite discrete group. As before, one shows that the canonical
map G → lim←Gi, which now is a group homomorphism, is a homeomorphism. (And thus an
isomorphism of topological groups.) �

************** this is not the best result: it suffices to assume that τ is Stone!!

Remark 11.1.65 1. There are situation, e.g. in number theory, where one needs a generalization
of profiniteness. A topological space is called locally profinite if it is locally compact Hausdorff and
totally disconnected. In such a space every point has an open neighborhood base whose elements have
compact closures and thus are Stone and therefore profinite. Examples are provided by the p-adic
numbers Qp, the completions of Q w.r.t. the norms ‖ · ‖p from Example 2.1.9, and finite dimensional
vector spaces over them. (Thus also finite algebraic extensions k ⊇ Qp and finite dimensional vector
spaces over them.)

2. The most immediate examples of profinite spaces actually are profinite groups. But in the
next section we will see that every Boolean algebra gives rise to a Stone space, and thus by Theorem
11.1.62 to a profinite space. In these cases, there is no natural group structure. 2

11.1.11 Stone duality. Connections to βX

If C,D are clopen subsets of a space X then C ∩ D, C ∪ D and X\C are clopen. Since ∅, X are
clopen, it turns out that the set of clopen C ⊆ X forms a Boolean algebra.

Definition 11.1.66 A Boolean algebra is a sextuple (A,∧,∨,¬,0,1), where A is a set, ∧ and ∨ are
binary operations on A, ¬ is a unary operation and 0 6= 1 ∈ A are constants. These data must
satisfy the following axioms (not all independent):

1. ∨ and ∧ are associative and commutative.

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (Distributivity).

3. x ∨ x = x = x ∧ x (Idempotency).

4. x ∨ (x ∧ y) = x = x ∧ (x ∨ y) (Absorption).

5. ¬¬x = x

6. ¬(x ∨ w) = ¬x ∧ ¬w, ¬(x ∧ w) = ¬x ∨ ¬w (de Morgan laws).

7. x ∨ ¬x = 1, x ∧ ¬x = 0.

8. x ∨ 0 = x, x ∧ 1 = x, x ∨ 1 = 1, x ∧ 0 = 0.

For a, b ∈ A, we write a ≤ b if a ∧ b = a. (Thus a ≤ a ∨ b and a ∧ b ≤ a.)
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Example 11.1.67 For every set X, the power set P (X) is a Boolean algebra (with ∨ = ∪,∧ =
∩,0 = ∅,1 = X and ¬Y = X\Y ). 2

Example 11.1.68 Let (X, τ) be a topological space. Then A = Clop(X), equipped with the same
operations as in the preceding example, is a Boolean algebra. 2

It is clear that in general the assignment X 7→ Clop(X) is not injective. E.g., whenever X is
connected, Clop(X) is the minimal Boolean algebra {0,1}. However, we will see that if X is a Stone
space, it be recovered from the Boolean algebra Clop(X).

Exercise 11.1.69 Let R be a commutative ring with unit 1. Let A = {p ∈ R | p2 = p} be the set
of idempotents in R. For p, q ∈ A, define p ∧ q = pq, p ∨ q = p + q − pq, ¬p = 1 − p. Prove that
(A,∨,∧,¬, 0, 1) is a Boolean algebra.

Remark 11.1.70 If R is a unital ring (non-necessarily commutative) and p a non-trivial (p 6∈ {0, 1})
idempotent in the center of R then x 7→ (px, (1 − p)x), R 7→ pR ⊕ (1 − p)R is a ring-isomorphism.
Conversely, if R, S are unital rings then (1, 0), (0, 1) are complementary central idempotents in R⊕S.
Thus a ring has a non-trivial direct sum decomposition if and only if it has non-trivial central
idempotents. (For this reason, rings without non-trivial central idempotents are called connected.)
There are many analogies with the topological situation, beginning with Proposition 6.3.7. Just as
a topological space need not be a direct sum of connected subspaces, not even in the compact case,
a ring need not be a direct sum of connected rings. If X is compact Hausdorff, then the space πc(X)
of connected components is a Stone space by Proposition 11.1.3(i)-(ii). On the other hand, Theorem
11.1.74 below will associate a Stone space to the Boolean algebra of idempotents of a commutative
ring R. This space is called the Pierce spectrum of R. It plays an important rôle in the Galois theory
of commutative rings, cf. [200, 31]. 2

Definition 11.1.71 Let (A,∧,∨,¬,0,1) be a Boolean algebra. A subset I ⊆ A is an ideal if

(i) 0 ∈ I.

(ii) If a, b ∈ I then a ∨ b ∈ I.

(iii) If b ∈ I and a ≤ b then a ∈ I.

An ideal I is called proper if 1 6∈ I. A proper ideal is called maximal if it is not properly contained
in another proper ideal.

If I ⊆ A is a proper ideal we cannot have a ∈ I and ¬a ∈ I, since axiom (ii) would imply
1 = a ∨ ¬a ∈ I, contradicting properness. If a ∈ I then a ∧ b ≤ a, thus a ∧ b ∈ I, and similarly if
b ∈ I. The next lemma shows when the converse of these statements holds:

Lemma 11.1.72 If A is a Boolean algebra and I ⊆ A is an ideal then the following are equivalent:

(i) I is maximal.

(ii) For every a ∈ A exactly one of the statements a ∈ I and ¬a ∈ I holds.

(iii) a ∧ b ∈ I holds if and only if a ∈ I or b ∈ I.
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Proof. (ii)⇒(i) Let J be a proper ideal properly containing I. If a ∈ J\I, then ¬a ∈ I ⊆ J . Thus
1 = a ∨ ¬a ∈ J , which contradicts properness of J .

(i)⇒(ii) If a 6∈ I and ¬a 6∈ I, define J = {x ∨ z | z ≤ a ∨ y, x, y ∈ I}. Then J is a proper ideal
containing J and a.

(ii)⇒(iii) Assume a ∧ b ∈ I. If a ∈ I we are done, so assume a 6∈ I. By (ii), ¬a ∈ I. By axiom
(ii), I 3 (a ∧ b) ∨ ¬a = (a ∨ ¬a) ∧ (b ∨ ¬a) = b ∨ ¬a ≥ b. Thus b ∈ I by axiom (iii).

(iii)⇒(ii) For every a, we have a ∧ ¬a = 0 ∈ I. Now by (iii), we have a ∈ I or ¬a ∈ I. �

Lemma 11.1.73 Every proper ideal is contained in a maximal ideal.

Proof. The set of ideals is partially ordered under inclusion ⊆, and it is easy to see that if C is a
chain (totally ordered family) of proper ideals then

⋃
C is a proper ideal. Now the claim follows from

Zorn’s lemma. �

Theorem 11.1.74 For every Boolean algebra (A,∧,∨,¬,0,1) there is a Stone space Spec(A), the
spectrum of A, such that A ∼= Clop(Spec(A)) as Boolean algebras. (Spec(A) is not to be confused
with the spectrum Spec(R) of a commutative ring.)

Proof. Let Spec(A) ⊆ P (A) be the set of all maximal ideals in A. For each a ∈ A we define

V (a) = {M ∈ Spec(A) | a 6∈M}.

We have V (0) = ∅ and V (1) = Spec(A) (since every ideal contains 0 and maximal ideals are proper).
If I is any ideal then axioms (ii) and (iii) for ideals imply that a∨ b ∈ I ⇔ a ∈ I and b ∈ I. And if
M is a maximal ideal then by Lemma 11.1.72(i), a ∧ b ∈M ⇔ a ∈M or b ∈M . Thus:

V (a) ∪ V (b) = {M ∈ Spec(A) | a 6∈M or b 6∈M} = {M ∈ Spec(A) | ¬(a ∈M and b ∈M)}
= {M ∈ Spec(A) | ¬(a ∨ b ∈M)} = V (a ∨ b). (11.5)

V (a) ∩ V (b) = {M ∈ Spec(A) | a 6∈M and b 6∈M} = {M ∈ Spec(A) | ¬(a ∈M or b ∈M)}
= {M ∈ Spec(A) | ¬(a ∧ b ∈M)} = V (a ∧ b). (11.6)

Thus the family B = {V (a)}a∈A is closed w.r.t. intersection and contains Spec(A) = V (1). By
Proposition 4.1.21, the family of all unions of elements of B is a topology τ on Spec(A) (the Stone
topology) having B as a base. By Lemma 11.1.72(ii), for a ∈ A and M ∈ Spec(A), we either have
a ∈M or ¬a ∈M . Thus

V (¬a) = {M ∈ Spec(A) | ¬a 6∈M} = {M ∈ Spec(A) | a ∈M} = Spec(A)\V (a), (11.7)

which implies that the elements of the base B are clopen, thus B ⊆ Clop(Spec(A)). This means that
Spec(A) has a base B consisting of clopens, thus Spec(A) is zero-dimensional.

If M1,M2 ∈ Spec(A) with M1 6= M2 we cannot have M1 ⊆ M2 since M1 is maximal, thus there
is a ∈ M1\M2. By the above considerations, we have ¬a 6∈ M1,¬a ∈ M2, thus ¬a ∈ M2\M1.
Now M1 ∈ V (¬a) and M2 ∈ V (a) = Spec(A)\V (¬a), and since the V ’s are open, (Spec(A), τ) is
Hausdorff.

Consider now a cover of Spec(A) by elements of B, i.e. we have {bt ∈ A}t∈T be such that⋃
t∈T V (bt) = Spec(A). Let I be the set of a ∈ A for which there are finitely many t1, . . . , tn such

that a ≤ bt1 ∨ · · · ∨ btn . It is easy to check that I is an ideal. If I is proper, we can find a maximal
ideal M containing I, as shown above. By definition, we have bt ∈ I ⊆ M for each t ∈ T . Since
{V (bt)}t∈T covers Spec(A), we have M ∈ V (bt) for some t ∈ T . But this means bt 6∈ M , and we
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have a contradiction. Thus I = A. In particular 1 ∈ I, so that there are t1, . . . , tn ∈ T such that
1 = bt1 ∨ · · · ∨ btn . But this implies

V (bt1) ∪ · · · ∪ V (btn) = V (bt1 ∨ · · · ∨ btn) = V (1) = Spec(A).

Thus every cover of Spec(A) by elements of the base B has a finite subcover, and by Exercise 7.2.3,
Spec(A) is compact. Therefore Spec(A) is a Stone space.

Let U ⊆ Spec(A) be clopen. Since U is open, it is a union of elements of the base B. Since U is
closed, it is compact, thus a finite number of elements of B suffices. Thus

U = V (a1) ∪ · · · ∪ V (an) = V (a1 ∨ · · · ∨ an) ∈ B,

so that B ⊆ Clop(Spec(A)) actually exhausts Clop(Spec(A)).
Now in view of (11.5-11.6) and V (1) = Spec(A), V (0) = ∅, the map f : A→ Clop(Spec(A)), a 7→

V (a) is a homomorphism of Boolean algebras, whose surjectivity is obvious since B := {V (a) | a ∈
A} = Clop(Spec(A)). If a 6= 0 then I = {b ≤ ¬a} is a proper ideal. If M is a maximal ideal
containing I, we have ¬a ∈ I ⊆ M , thus a 6∈ M and therefore M ∈ V (a). Thus a 6= 0⇒ V (a) 6= ∅.
Assume now a 6= b. Then a ∧ ¬b 6= 0 or b ∧ ¬a 6= 0. Assume the former. Then V (a)\V (b) =
V (a) ∩ V (¬b) = V (a ∧ ¬b) 6= ∅, thus V (a) 6= V (b). The same conclusion holds if b ∧ ¬a 6= 0. Thus
f : A→ Clop(Spec(A)) is injective, and therefore an isomorphism of Boolean algebras. �

Corollary 11.1.75 If A1, A2 are Boolean algebras then A1
∼= A2 ⇔ Spec(A1) ∼= Spec(A2).

Proof. In view of the definition of Spec(A) it is obvious that A1
∼= A2 ⇒ Spec(A1) ∼= Spec(A2). As to

the converse, assume Spec(A1) ∼= Spec(A2). Using the trivial implication X1
∼= X2 ⇒ Clop(X1) ∼=

Clop(X2) and Clop(Spec(A)) ∼= A, we have A1
∼= Clop(Spec(A1)) ∼= Clop(Spec(A2)) ∼= A2. �

Corollary 11.1.76 Every finite Boolean algebra is isomorphic to P (X) = {0, 1}#X for some finite
X and thus has 2n elements for some n ∈ N.

Proof. Let A be a finite Boolean algebra and X = Spec(A). Finiteness of A and Stone duality
imply that the Stone space X has finitely many clopens. But that implies that X is a direct sum of
connected subspaces. Since X is totally separated, the latter all are singletons, thus X is discrete,
and Clop(X) = P (X). Now compactness implies that X is finite. The Boolean algebra of clopens of
a finite set X is isomorphic to 0, 1#X . �

If X is any topological space, then Clop(X) is a Boolean algebra (whose elements we will de-
note by C instead a), so that Spec(Clop(X)) is a Stone space. By construction, Spec(Clop(X)) ⊆
P (Clop(X)).

Proposition 11.1.77 Let X be a topological space. Define a map X → P (Clop(X)) by

F : X → P (Clop(X)), x 7→ {C ∈ Clop(X) | x 6∈ C}.

(i) F is injective if and only if X is totally separated.

(ii) F (x) is a maximal ideal in Clop(X) for every x ∈ X, thus F : X → Spec(Clop(X)).

(iii) F : X → Spec(Clop(X)) is continuous.

(iv) F (X) is dense in Spec(Clop(X)).
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(v) If X is compact then F : X → Spec(Clop(X)) is surjective.

(vi) F : X → Spec(Clop(X)) is a homeomorphism if and only if X is Stone.

Proof. (i) From the definition of F : X → P (Clop(X)) it is clear that F is injective if and only if
x 6= y implies the existence of a clopen C such that x ∈ C 63 y. But this is precisely the definition of
total separatedness.

(ii) We verify the axioms in Definition 11.1.71: (i) Since x 6∈ ∅, we have 0 = ∅ ∈ F (x). (ii) If
C,D ∈ F (x) then x 6∈ C,X 6∈ D, thus x 6∈ C ∪D, so that C ∨D ∈ F (x). (iii) If C ⊆ D ∈ F (x) then
x 6∈ D, thus x 6∈ C, and therefore C ∈ F (x). Thus F (x) ⊆ Clop(X) is an ideal. Since x 6∈ C ∩ D
holds if and only if x 6∈ C or x 6∈ D, thus if and only if C ∈ F (x) or D ∈ F (x), Lemma 11.1.72
implies that F (x) is a maximal ideal.

(iii) Since the topology of Spec(Clop(X)) has B = {V (C) | C ∈ Clop(X)} as base, it is sufficient
to show that F−1(V (C)) ⊆ X is open for each C ∈ Clop(X). Let thus C ∈ Clop(X). Now

F−1(V (C)) = {x ∈ X | F (x) ∈ V (C)} = {x ∈ X | C 6∈ F (x)}
= {x ∈ X | C 6∈ {D ∈ Clop(X) | x 6∈ D}} = C. (11.8)

Since C ⊆ X is clopen, thus open, F is continuous.
(iv) In view of Lemma 2.7.9, it is enough to show that every element V (C) 6= ∅ of the base of

the Stone topology contains F (x) for some x ∈ X. But in view of (11.8), we have F (x) ∈ V (C)
whenever x ∈ C. In view of C 6= ∅ ⇔ V (C) 6= ∅, we are done.

(v) If X is compact then F (X) ⊆ Spec(Clop(X)) is compact by (iii), thus closed since Spec(A)
is Hausdorff for every A. With (iv), F (X) = F (X) = Spec(Clop(X)), i.e. surjectivity.

(vi) ⇐ By (i) and (v), F is a bijection. As a continuous bijection between compact Hausdorff
spaces, F is a homeomorphism. The converse is obvious. �

Corollary 11.1.78 If X1, X2 are Stone spaces then X1
∼= X2 ⇔ Clop(X1) ∼= Clop(X2).

Proof. ⇒ is trivial. And Clop(X1) ∼= Clop(X2) implies Spec(Clop(X1)) ∼= Spec(Clop(X2)). Proposi-
tion 11.1.77(vi) now gives X1

∼= Spec(Clop(X1)) ∼= Spec(Clop(X2)) ∼= X2. �

Remark 11.1.79 The maps A 7→ Spec(A), X 7→ Clop(X) can be extended to full and faithful
contraviant functors between the categories of Boolean algebras and Stone spaces. Corollaries 11.1.75
and 11.1.78 then amount to essential surjectivity of the functors, which thus establish a contravariant
equivalence between the two categories. 2

Lemma 11.1.80 For every topological space X, define αX : P (Clop(X))→ {0, 1}Clop(X) by

αX(F)(C) = 1− χF(C).

Then αX is a bijection, and the diagram (recall that F (X) ⊆ Spec(Clop(X)))

X
F- Spec(Clop(X))

{0, 1}Clop(X)

αX

?

ι̃X

-

(11.9)

commutes, where F is as in Lemma 11.1.77 and ι̃X as in Lemma 11.1.36. The restriction of αX to
Spec(Clop(X)) ⊆ P (X) is continuous (w.r.t. the Stone topology on Spec(Clop(X)) and the product
topology on {0, 1}Clop(X)).



11.1. HIGHLY DISCONNECTED SPACES 297

Proof. We identify P (Clop(X)) with {0, 1}Clop(X) by the usual identification of functions {0, 1}X with
subsets Y ⊆ X via Y ; χY and f ; f−1(1). In the definition F : x 7→ {C ∈ Clop(X) | x 6∈ C} =
{C ∈ Clop(X) | χC(x) = 0} a negation appears, whereas there is none in ι̃X(x) = {C 7→ χC(x)}.
Correcting this by the exchange 0↔ 1, it is clear that αX is a bijection and that (11.9) commutes.

In view of Exercise 5.2.8, in order to prove continuity of αX it is sufficient to show that α−1
X (S) is

open for the elements of the canonical subbase SΠ for the product topology on {0, 1}Clop(X), i.e. for
S = p−1

C (v), where C ∈ Clop(X) and v ∈ {0, 1}. Now, p−1
C (1) = { h : Clop(X)→ {0, 1} | h(C) = 1}.

Thus α−1
X (p−1

C (1)) = {F ⊆ Clop(X) | C 6∈ F} = V (C), which is open by definition of the Stone
topology. Similarly, α−1

X (p−1
C (0)) = {F ⊆ Clop(X) | C ∈ F} = Spec(Clop(X))\V (C) = V (X\C) by

(11.7). Thus αX �Spec(Clop(X)) is continuous. �

The following result relates F : X → Spec(Clop(X)) to the compactifications γX and βX and
provides an interpretation of βX for discrete X in terms of ultrafilters on X.

Definition/Proposition 11.1.81 For a set X, let UF(X) denote the set of ultrafilters on X. Then
there is a topology τ ′ on UF(X) that has {V (C) = {D ⊆ X | D ⊇ C} | C ⊆ X} as base. G(x) =
{C ⊆ X | x ∈ C} is an ultrafilter, called principal. G : X → UF(X) is injective.

Theorem 11.1.82 Let X be any topological space. Then

(i) αX �Spec(Clop(X)) is a homeomorphism Spec(Clop(X))→ γX ⊆ {0, 1}Clop(X).

(ii) If X is zero-dimensional then (Spec(Clop(X)), F ) is a Hausdorff compactification of X, and
(Spec(Clop(X)), F ) ∼= (γX, ι̃X) in C(X).

(iii) If X is strongly zero-dimensional then (Spec(Clop(X)), F ) ∼= (γX, ι̃X) ∼= (βX, ιX).

(iv) If X is discrete then (UF(X), G) ∼= (Spec(P (X)), F ) ∼= (γX, ι̃X) ∼= (βX, ιX).

Proof. (i) Consider the diagram

X
F - F (X) ⊂ - Spec(Clop(X)) ⊂- P (Clop(X))

ι̃X(X)

αX

?
⊂ -

ι̃
X

-

γX

αX

?
⊂ - {0, 1}Clop(X)

αX

?

where all horizontal arrows except the one labelled F are inclusions. (Ignore the middle vertical arrow
for a minute.) By the Lemma, the left triangle commutes, as well as the boundary of the diagram.
The map αX �Spec(Clop(X)) is a homeomorphism of Spec(Clop(X)) onto its image, which is closed
in {0, 1}Clop(X). Thus γX = ι̃X(X) ⊆ αX(Spec(Clop(X)). And since F (X) is dense in Spec(Clop(X))
and αX(F (X)) = ι̃X(X), we have ι̃X(X) ⊇ αX(Spec(Clop(X)), implying αX(Spec(Clop(X)) = γX.
This justifies the middle vertical arrow.

(ii) If X is zero-dimensional, ι̃X : X → γX is an embedding, thus (γX, ι̃X) is a Hausdorff compact-
ification. Now the claim follows from commutativity of the above diagram and the homeomorphism
αX : Spec(Clop(X)) → γX. (That F : X → Spec(Clop(X)) is an embedding for zero-dimensional
X can be shown directly, using (11.8).)

(iii) If X is strongly zero-dimensional then (βX, ιX) ∼= (γX, ι̃X) by Proposition 11.1.39. Combine
this with (ii).

(iv) Since a discrete space is strongly zero-dimensional and Clop(X) = P (X), in view of (iii) it
suffices to establish a bijection between Spec(P (X)) and the set of ultrafilters on X. Recall that
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a maximal ideal M ∈ Spec(P (X)) is a family M ⊆ P (X) that contains the empty set, is closed
under union and subsets, does not contain X, and is maximal w.r.t. these properties. Then the
family F = {X\C | C ∈ M} is an ultrafilter, cf. Definitions 5.1.40 and 7.5.15. It is clear that this
establishes a bijection between maximal ideals in P (X) and ultrafilters on X. �

Every topological space X gives rise to a Boolean algebra Clop(X) of clopens and thus to a Stone
space Spec(Clop(X)). It is more than natural to ask whether there is a more direct relation between
X and Spec(Clop(X)).

Proposition 11.1.83 If X is compact Hausdorff then the Stone space Spec(Clop(X)) is homeomor-
phic to X/∼, where ∼ is the connectedness equivalence relation. (That X/∼ is Stone was proven
directly in Proposition 9.1.21.)

Proof. (Sketch) For the compact Hausdorff space X we have C(x) = Q(x), i.e. connected components
and quasi-components coincide. Thus x ∼ y if and only if x, y are contained in the same clopens.
Thus the set of clopens is in canonical bijection to X/∼. ************ This is TOO sketchy!
*********** �

Proposition 11.1.84 If X is completely regular, we have a homeomorphism Spec(Clop(X)) ∼=
βX/∼, where ∼ denote equivalence relation x ∼ y ⇔ C(X) = C(y) on βX.

Proof. From Exercise 8.3.34 we have a bijection between clopens C ⊆ X, idempotents p2 = p ∈
Cb(X,R) ∼= C(βX,R) and clopens in βX. Since every isomorphism between commutative alge-
bras gives rise to an isomorphism of the respective Boolean algebras of idempotents, Clop(βX) →
Clop(X), D 7→ D∩X actually is an isomorphism of Boolean algebras. By the preceding proposition,
we have Spec(Clop(βX)) ∼= βX/∼. Thus Spec(Clop(X)) ∼= Spec(Clop(βX)) ∼= βX/∼. �

We summarize:

• If X is Stone then Spec(Clop(X)) ∼= X.

• If X is compact T2 then Spec(Clop(X)) ∼= πc(X) = X/∼.

• If X is completely regular then Spec(Clop(X)) ∼= πc(βX) = βX/∼.

• If X is strongly zero dimensional then Spec(Clop(X)) ∼= βX.

Warning: if X is completely regular and zero-dimensional it does NOT follow that βX is zero-
dimensional!

Thus βX is given by ultrafilters of z-sets if X is T3.5, by ultrafilters of closed sets if X is T4 (cf.
Section 8.3.6), by ultrafilters of clopens if X is strongly zero-dimensional (and thus by ultrafilters of
all subsets if X is discrete).

11.2 Peano curves and the problem of dimension

It was known since Cantor’s work on set theory in the 1870’s that the sets Rn have the same
cardinality as R for all finite n, thus there are bijections between them. From the point of view of
topology, this is not particularly disturbing, since topology is (almost) only interested in continuous
maps. It was much more disturbing and surprising when in 1890 Peano4 constructed a continuous
surjection f : I → I2. This motivates the following

4Giuseppe Peano (1858-1932). Italian mathematician, also known for his axiomatization of N and many other
things. In 1888 he gave the modern definition of a vector space which unfortunately was ignored for 30 years.
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Definition 11.2.1 A Peano curve in a space X is a continuous surjective map f : I → X.

(Note that a curve is the same as a path.) Since then, many other constructions have been given.
The beautiful overview [256] is highly recommended. Constructions of Peano curves tend to be either
quite arithmetic, based e.g. on the binary expansion of real numbers, or rather geometric, the more
satisfactory ones being those that can be interpreted either way.

Exercise 11.2.2 Assume some continuous surjection f2 : I → I2 is given.

(i) Use this to define continuous surjections fd : I → Id for all d ∈ N.

(ii) Prove the existence of continuous surjections S1 → Sd and R→ Rd for all d ∈ N.

At first encounter, the existence of Peano maps, i.e. continuous surjections I → Id, S1 → Sd,R→
Rd, is quite troublesome since it throws doubt on the whole concept of dimension. It is true that the
spaces {Rn}n∈N are mutually non-isomorphic as vector spaces, since dimR(Rn) = n. But topology is

not restricted to linear maps, so that there might well be non-linear homeomorphisms Rn
∼=−→ Rm

for n 6= m. As we saw in Section 10.5, that this is not the case was only proven by Brouwer in 1911,
cf. [40].

In the next three subsections, we explain three different constructions of Peano curves, all of
which take the continuous surjections fd : K → Id of the Section 11.1.8 as their starting point.

11.2.1 Peano curves using the Cantor set and Tietze extension

Theorem 11.2.3 (Peano) There are continuous surjective maps f̂d : I → Id for every d ∈ N∪{ℵ0}.

Proof. In Section 11.1.8, we have constructed continuous surjective maps fd : K → Id, where
K = {0, 1}N and d ∈ N ∪ {ℵ0}. Since K is homeomorphic to the Cantor set Γ ⊆ [0, 1], we can
interpret fd as a function Γ → Id. Since [0, 1] is metric, thus normal, and Γ ⊆ [0, 1] is closed, we

can apply Tietze’s extension theorem and obtain continuous functions f̂d : [0, 1] → Id such that

f̂d �Γ = fd. Since fd is already surjective, so is f̂d : I → Id. �

Remark 11.2.4 1. Tietze’s extension theorem is quite non-constructive, since the construction of
the extension f̂ involves many choices. (The same is true for Urysohn’s Lemma, which is used in the

proof.) In particular, apart from continuity, we know nothing about the behaviors of f̂d on I\K. In
the next two subsections we will consider two much more concrete ways of extending fd : Γ → Id

to I ⊇ Γ. These two methods are complementary: The first is such that f̂d is smooth (infinitely

differentiable) on the open set I\Γ, whereas the second can be proven to give functions f̂d that are
nowhere differentiable!

2. In view of K ∼= Γ, we have a continuous surjection g : Γ → X. Since Γ is a closed subset of
[0, 1], one would like to extend g to a continuous map ĝ : [0, 1] → X. However, Tietze’s extension
theorem applies only to maps X ⊇ A → Id, where d is some cardinal number. Applying it to a
map [0, 1] ⊇ Γ→ ι(X) ⊆ Id, there is no reason why the image ĝ([0, 1]) ⊆ Id of the extension should
still be contained in ι(X). Yet, with the additional assumptions that X is connected and locally
connected, and using the metrizability of X one can show that every continuous surjection g : Γ→ X
has an extension ĝ : [0, 1]→ X, giving the Hahn-Mazurkiewicz theorem, mentioned in Section 12. 2
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11.2.2 Lebesgue’s construction and the Devil’s staircase

Most space-filling curves are nowhere differentiable, but not all! To see this, we now describe a
different way, due to Lebesgue, of producing continuous extensions f̂d : I → Id of the continuous
surjection fd : Γ → Id. (The construction works for all d ∈ N, and we drop the subscript d.) We
recall that Γ is obtained by removing countably many open intervals from I:

I\Γ = (1/3, 2/3) ∪ (1/9, 2/9) ∪ (7/8, 8/9) ∪ · · · =
∞⋃
i=1

Ui, Ui = (li, ri).

Now we define

f̂ : I → Id, t 7→
{

f(t) for t ∈ Γ
f(li)(ri−t)+f(ri)(t−li)

ri−li for t ∈ (li, ri)
(11.10)

i.e. by linear interpolation between f(li) and f(ri) on (li, ri).

Theorem 11.2.5 f̂ ∈ C(I, Id).

Proof. It is clear that f̂ is continuous – in fact C∞ – on each of the open intervals (li, ri) and thus on⋃
i(li, ri) = I\Γ. On the other hand, despite the fact that f : Γ→ Id is continuous and f̂ �Γ = f , it

is by no means obvious that f̂ is continuous at every t ∈ Γ. The point is that Γ has empty interior
and therefore every neighborhood of t0 ∈ Γ contains points from Γ and from I\Γ. If t0 is the left

boundary li of one of the intervals (li, ri), continuity of f̂ at t0 from the right is clear by construction.
Similarly for continuity on the left if t0 = ri. The other cases require proof. We only prove continuity
from the right.

Let t0 ∈ Γ and ε > 0. Since f ∈ C(Γ, Id) and Γ is compact, f is uniformly continuous, cf.
Proposition 7.7.38. Thus there is δ > 0 such that ‖f(t1) − f(t2)‖ < ε for all t1, t2 ∈ Γ with
|t1 − t2| < δ. If now t ∈ I\Γ then t ∈ (li, ri) for some i, thus

f̂(t)− f̂(t0) =
f(li)(ri − t) + f(ri)(t− li)

ri − li
− f(t0)

=
(f(li)− f(t0))(ri − t) + (f(ri)− f(t0))(t− li)

ri − li

By Lemma 11.1.50 we may assume t0 6= li for any i, considering t ∈ (t0, t0 + δ) sufficiently close to
t0, we will have t ∈ (li, ri), where t0 < li < ri < t0 + δ, and therefore

‖f̂(t)− f̂(t0)‖ ≤ ‖f(li)− f(t0)‖(ri − t) + ‖f(ri)− f(t0)‖(t− li)
ri − li

≤ ε(ri − t+ t− li)
ri − li

= ε.

Continuity from the left of t0 ∈ Γ is shown in the same way. This proves that f̂ is continuous on Γ,
and thus on I. �

Remark 11.2.6 Notice that Lebesgue’s f̂ is differentiable (even smooth) on I\Γ, i.e. almost every-
where! In Section 11.2.4 we will show that a space-filling curve cannot be differentiable everywhere.
2

Our aim in this section was to produce continuous surjections f̂d : I → Id, d ≥ 2. But Lebesgue’s
extension f̂d ∈ C(I, Id) of fd ∈ C(Γ, Id) is interesting even when d = 1. The resulting function

f̂1 : I → I is called ‘the devil’s staircase’ (or more prosaically the Cantor-Lebesgue function) in
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view of its strange properties, which we briefly study. (As before, we drop the superscript 1.) By

construction, f̂ is a continuous surjection I → I, which it is smooth on I\Γ, but we can say more.

To begin, it satisfies f̂(0) = 0 and f̂(1) = 1.

Corollary 11.2.7 If f = f1 : I → I and (li, ri) is one of the open intervals constituting I\Γ
then f(li) = f(ri). Therefore f̂ it is constant on each of the intervals (li, ri). Furthermore, f̂ is
monotonously increasing.

Proof. In view of (i) of Lemma 11.1.50 and the definition of f : Γ→ I, we have

f(li) =
N∑
n=1

an2−n +
∞∑

n=N+2

2−n =
N∑
n=1

an2−n + 2−(N+1) = f(ri).

Since the extension f̂ of f is defined by linear interpolation on (li, ri), the first claim follows.

In view of the definition of Γ and of the bijection β : K → Γ, it is clear that β(a) > β(b)
for a, b ∈ K if and only if a > b in the lexicographic ordering, i.e. there exists N ∈ N0 such that
ai = bi ∀i ≤ N and aN+1 > bN+1 (which amounts to aN+1 = 1, bN+1 = 0). Now, the definition of
f implies that the map K → I is weakly order preserving in the sense that a > b ⇒ f(a) ≥ f(b).

Since f̂ is constant on I\Γ, also f̂ is weakly monotonous. �

1

1/2

1/3 2/3 11/9 2/9 7/9 8/9

3/4

1/4

Figure 11.1: The Cantor-Lebesgue function f̂ (1)

Remark 11.2.8 1. For the graph of f̂ see Figure 11.1.

2. Since f̂ is constant on I\Γ, it is differentiable almost everywhere, with f ′(x) = 0. Obviously

the Lebesgue integral
∫ 1

0
f ′(x)dx is zero and fails to coincide with f(1)−f(0) = 1. Thus, in order for

the ‘fundamental theorem of calculus’
∫ b
a
f ′(x)dx = f(b) − f(a) to hold it is not sufficient that f is

continuous and almost everywhere differentiable, even if the almost-everywhere-defined function f ′

is Lebesgue integrable.
∫ b
a
f ′(x)dx = f(b) − f(a) does hold if f is ‘absolutely continuous’. One can

show that this is equivalent to f being (i) continuous, (ii) of bounded variation and (iii) ‘negligent’.

Our f̂ is continuous, and being monotonous, it has bounded variation. But ‘negligent’ means that
f(S) has measure zero whenever S has measure zero, a property that out f̂ manifestly doesn’t have
since it maps the Cantor set Γ to [0, 1]. For the missing definitions and proofs, cf. e.g. [271]. 2
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11.2.3 Schöneberg’s construction

Theorem 11.2.9 There exists a continuous surjective map I → I2.

Proof. We use the identification K ∼= Γ to interpret f2 : K → I2 as a map Γ→ I2. Since Γ ⊆ [0, 1],
the only problem is to extend f2 to I in a continuous way. We define a function p : R → R with
period 2 by

p(t) =


0 for 0 ≤ t ≤ 1

3

3t− 1 for 1
3
≤ t ≤ 2

3

1 for 2
3
≤ t ≤ 1

 , p(−t) = p(t), p(t+ 2) = p(t). (11.11)

See also Figure 11.2.

0 1/3 2/3 1 4/3 5/3 2 7/3−1/3−2/3−1−4/3

1

Figure 11.2: Schöneberg’s function p

Now we define

f1(t) =
∞∑
k=1

2−kp(32k−2t), f2(t) =
∞∑
k=1

2−kp(32k−1t).

Since p ∈ C(R, [0, 1]), the sums converge uniformly and we have f1, f2 ∈ C(R, [0, 1]). Defining

f̂(t) = (f1(t), f2(t)) ∈ I2, we claim that f̂ �Γ = f (2). By definition,

f (2) : Γ→ I2, 2
∞∑
k=1

an3−n 7→

(
∞∑
k=1

2−ka2k−1,
∞∑
k=1

2−ka2k

)
.

Thus f̂ �Γ = f (2) follows if

p

(
32k−2(2

∞∑
n=1

an3−n)

)
= a2k−1, p

(
32k−1(2

∞∑
n=1

an3−n)

)
= a2k (11.12)

for all k ∈ N. We have

p

(
32k−2(2

∞∑
k=1

an3−n)

)
= p

(
2
∞∑
n=1

an32k−n−2

)

The terms in the sum over n ∈ N for which 2k − n− 2 ≥ 0 can be omitted since they contribute an
integer multiple of 2 to the sum and p has period 2. Thus

= p

(
2

∞∑
n=2k−1

an32k−n−2

)
= p

(
2

3
a2k−1 +

2

9
a2k+1 +

2

27
a2k+3 + · · ·

)
.
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Now,
2

9
a2k+1 +

2

27
a2k+3 + · · · ≤ 2

9

∞∑
k=0

3−k =
2

9

1

1− 1/3
=

1

3
,

and therefore 2
∑∞

n=2k−1 an32k−n−2 lies in [0, 1/3] if a2k−1 = 0 and in [2/3, 1] if a2k−1 = 1. With the
definition (11.11) of p, this proves the first identity in (11.12). The proof of the second is entirely
similar.

We thus have proven f̂ ∈ C(R, I2) and f̂ �Γ = f (2). In view of f (2)(Γ) = I2, this implies f̂(I) = I2,

thus f̂ : I → I2 is a Peano curve. �

Remark 11.2.10 1. One can prove by completely elementary means that the two functions f1, f2 :
I → I that make up Schöneberg’s f̂ = (f1, f2) : I → I2 are nowhere differentiable, cf. [256, Theorem
7.2]. (We don’t do this here since we already know, albeit non-constructively, that nowhere differen-
tiable functions are even dense in the continuous functions. The proofs of nowhere-differentiability
of specific functions are usually not very illuminating – unless they use important general techniques
like ‘lacunarity’.)

2. It is not hard to generalize Schöneberg’s construction such as to obtain continuous surjections
I → Id and I → IN, cf. [256], but we leave the matter here. 2

11.2.4 There are no differentiable Peano maps

All known Peano curves f : I → Id are manifestly non-differentiable, cf. [256]. In this section we will
see that this is not due our lack of ingenuity. We need the following notion:

Definition 11.2.11 By a cube of edge λ in Rn we mean a product D =
∏n

i=1[ai, bi] of n intervals in
R with |ai − bi| = λ for all i. We write |D| = λn. Now, a set C ⊆ Rn has measure zero if for every
ε > 0 there exist countably many cubes {Di ⊆ Rn}i∈N such that

C ⊆
∞⋃
i=1

Di and
∞∑
i=1

|Di| < ε.

Remark 11.2.12 1. It is important to understand that measure zero is a relative notion. The
interval I = [0, 1] ⊆ R has non-zero measure, but I × 0 ⊆ R2 has measure zero!

2. We would arrive at the same notion of measure zero if we replace closed by open cubes.
Since the ratio of the volumes of a cube and the circumscribed ball depends only on n, U ⊆ Rn

has measure zero if and only if it can be covered by countably many balls of arbitrarily small total
volume. Similarly, one could use rectangles, balls, etc. 2

Lemma 11.2.13 The Cantor set Γ ⊆ R has measure zero.

Proof. We can cover Γ by one interval of length 1 or by two intervals of length 1/3 or, more generally,
by 2n intervals of length 3−n, thus total length (2/3)n. Since this is true for any n ∈ N, Γ has measure
zero. �

Lemma 11.2.14 Let {Ci ⊆ Rn}i∈N be sets of measure zero. Then
⋃
iCi has measure zero.

Proof. Let ε > 0. Since Ci has measure zero we can pick a sequence {Dj
i , j ∈ N} of cubes such that

Ci ⊆
⋃
j D

j
i and

∑
j |D

j
i | < 2−iε. Then {Dj

i , i, j ∈ N} is a countable cover of
⋃
iCi and we have∑

i,j |D
j
i | < ε

∑
i 2
−i = ε. �
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Exercise 11.2.15 Prove: If m < n then Rm ∼= Rm × 0 ⊆ Rn has measure zero.

Proposition 11.2.16 Let U ⊆ Rm be open and f : U → Rm differentiable (C1). If C ⊆ U has
measure zero then f(C) ⊆ Rm has measure zero.

Proof. Let ‖ · ‖ be the Euclidean norm on Rm. Every p ∈ U belongs to an open ball B ⊆ U such
that ‖f ′(q)‖ (where f ′(q) ∈ EndRm) is uniformly bounded on B, say by κ > 0. Then

‖f(x)− f(y)‖ ≤ κ‖x− y‖

for all x, y ∈ B. Thus, if C ⊆ B is an m-cube of edge λ then f(C) is contained in an m-cube of
edge less than

√
mκλ. It follows that f(C) has measure zero if C has measure zero. Writing U as a

countable union of such C, the claim follows by Lemma 11.2.14. �

Remark 11.2.17 A function Rn ⊇ U → Rm is called Lipschitz-continuous if there is C > 0 such
that ‖f(x)− f(y)‖ ≤ ‖x− y‖ ∀x, y ∈ U . A function is called locally Lipschitz if every point x ∈ U
has a neighborhood restricted to which f is Lipschitz. Ex: f : R → R, x 7→ x2 is locally Lipschitz
(like every C1-function), but not (globally) Lipschitz. The proof of Proposition 11.2.16 clearly works
for all locally Lipschitz functions. 2

Proposition 11.2.18 Let U ⊆ Rm be open and f : U → Rn differentiable, where n > m. Then
f(U) ⊆ Rn has measure zero. (Thus in particular, empty interior.)

Proof. Define f̂ : U × Rn−m → Rn by f̂(x, y) = f(x). Since U × {0} ⊆ Rn is open and has measure

zero, Lemma 11.2.16 implies that f(U) = f̂(U × {0}) ⊆ Rn has measure zero. �

Corollary 11.2.19 If n < m, there is no differentiable surjective map f : Rn → Rm.

Remark 11.2.20 1. The conclusion of Proposition 11.2.18 also holds if f is continuous and S
is countable, where S = {x ∈ U | f is not differentiable at x}. However, requiring S to have

measure zero does not suffice, as shown by Lebesgue’s f̂ (n) : I → In almost everywhere differentiable
surjections.

2. There are much stronger results: If f = (fx, fy) : I → I2 is such that at each t ∈ I at least
one of f ′x(t), f

′
y(t) exists, then f(I) ⊆ I2 has measure zero, cf. [214]. 2

11.2.5 Digression: Sard’s theorem and other uses of measure zero

Proposition 11.2.18 (and its easy generalization to differentiable manifolds) is called the ‘trivial case’
of Sard’s theorem. Since this theorem is one of the cornerstones of ‘differential topology’, we allow
ourselves the digression of discussing it briefly. In order to state it, we recall that if f : Rm ⊇ U → Rn

is differentiable at x ∈ U then f ′(x) is a linear map Rm → Rn. If f ′(x) is not surjective, one calls
x ∈ U a critical point and f(x) a critical value. Now one has:

Theorem 11.2.21 (Morse-Sard) 5 If n,m ∈ N, r ≥ max(1,m − n + 1), U ⊆ Rm is open and
f ∈ Cr(U,Rn) then the set

C = {f(x) | x ∈ U, f ′(x) : Rm → Rn is not surjective} ⊆ Rn

of critical values has measure zero.
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Warning: The set of critical points need not have measure zero. E.g. if f is constant then every �

x ∈ U is a critical point.
Theorem 11.2.21 clearly contains Proposition 11.2.18, since no linear map Rm → Rn with m < n

is surjective. Thus C = {f(x) | x ∈ U} = f(U) has measure zero.
There seems to be essentially only one proof of Sard’s theorem. Involving a double induction, it

is not pretty, e.g. [143]. But the theorem is non-trivial already for n = m = 1, in which case there is
a nice and instructive proof. We cannot resist the urge to state it.

Theorem 11.2.22 (Sard’s Theorem for n = m = 1, r = 2) If f ∈ C2(U,R), where U ⊆ R is
open, then the set

f
(
f ′−1(0)

)
= {f(x) | x ∈ U, f ′(x) = 0} ⊆ R

of critical values of f has measure zero.

Proof. Let C ⊆ U be the set of critical points. We first show that f(C ∩ [a, b]) has measure zero for
each closed interval [a, b] with a < b. Since f ′′ is continuous, it is bounded by some constant M on
the compact set [a, b]. Let N ∈ N and put h = (b − a)/N . Define In = [a + nh, a + (n + 1)h], n =
0, . . . , N − 1, and let A = {n ∈ {0, . . . , N − 1} | In ∩ C 6= ∅}. Then f(C ∩ [a, b]) =

⋃
n∈A f(C ∩ In).

By construction, each In contains an x with f ′(x) = 0. Then the Mean Value Theorem, applied to
f ′, gives that |f ′(x)| ≤Mh for all x ∈ In. Applying the Mean Value Theorem to f , this implies that
f(In) is contained in an interval of length at most Mh2. Thus f(C ∩ [a, b]) is contained in a union

of at most N intervals of length Mh2 = M
(
b−a
N

)2
. The sum of these lengths is bounded by

NM

(
b− a
N

)2

=
M(b− a)2

N
,

which can be made arbitrarily small by making N large. This proves that f(C ∩ [a, b]) has measure
zero. If now U =

⋃
i∈I [ai, bi], where different intervals [ai, bi] overlap at most in one (boundary)

point, then I can be at most countable. (As is seen, e.g., by choosing a rational number qi ∈ (ai, bi)
for each i ∈ I. These qi are all different since the intervals have disjoint interiors.) Thus Lemma
11.2.14 implies that f(C) has measure zero. �

Remark 11.2.23 1. Theorem 11.2.22 is intuitively quite natural if one looks at the extreme cases:
If f is constant then the set f ′−1(0) = U is big, but f assumes only one value. If we try to make f
assume more values, the set f ′−1(0) – and therefore also f(f ′−1(0)) – gets smaller. However, giving
a rigorous general proof is a different matter.

2. Sets of measure zero arise at many places in analysis, not only in Lebesgue integration theory.
They appear in the criterion for Riemann integrability, cf. Remark 5.1.29. If f : [a, b] → R is
monotonous, it is easy to show that f is continuous on [a, b]\S, where S is at most countable. In
fact, under the same assumptions one can prove that f is differentiable on [a, b]\T , where T ⊇ S has
measure zero (but may be uncountable). This is ‘Lebesgue’s differentiation theorem’ and is a good
deal harder to prove than Theorem 11.2.22.

3. Simplifying a bit, one can say that continuity considerations tend to lead to Gδ-sets, at least
when metric spaces are involved. On the other hand, when differentiation and/or integration are
involved, sets of measure zero are more relevant. Cf. also [230]. 2

5Anthony Perry Morse (1911-1984), Arthur Sard (1909-1980). American mathematicians. (A.P. Morse should not
be confused with Marston Morse (1892-1977), the founder of ‘Morse theory’.)
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Chapter 12

Paths in topological and metric spaces

12.1 Paths. Path components. The π0 functor

As noted in Remark 10.5.14, the methods of Section 10 are of limited scope and should be replaced
by functorial ones. In Section 11.1.1 we already encountered the connected component functor
πc. We now turn to the closely related notion of path-connectedness, which is more intuitive than
connectedness (at the expense of being less intrinsic and technically less well-behaved). Like the
‘higher dimensional’ notion of connectedness considered in Section 10, there are higher versions of
the path-component functor π0. In Section 13 we will extensively study π1 (and encounter πn in an
exercise).

Definition 12.1.1 Let (X, τ) be a topological space and x, y ∈ X. A path from x to y is a continuous
function p : [0, 1]→ X such that p(0) = x, p(1) = y.

Definition 12.1.2 (i) If p is a path from x to y, then the reversed path p−1 is given by t 7→ p(1− t).
It is a path from y to x.

(ii) If p is a path from x to y and q is a path from y to z, the composite path q • p is the path
from x to z given by

(q • p)(t) =

{
p(2t) for t ∈ [0, 1/2]

q(2t− 1) for t ∈ [1/2, 1]

Remark 12.1.3 In the topological literature, there is no agreement about the way composite paths
are denoted. Some authors would write p • q instead of q • p. In Sections 13.4 we will interpret
composition of paths in categorical terms, which is why already here we write compositions of paths
from right to left, as is customary for composition of morphisms in a category.1 2

Now the following is obvious:

Lemma 12.1.4 The relation ∼p on X defined by x ∼p y ⇔ ‘there is a path from x to y’ is an
equivalence relation.

As always, the equivalence relation R gives rise to a decomposition of X.

Definition 12.1.5 The ∼p-equivalence classes in X are the path-components of X. For x ∈ X, we
write P (x) = [x]∼p = {y ∈ X | ∃p ∈ C([0, 1], X), p(0) = x, p(1) = y}.

The set X/∼p of path-components is denoted π0(X).

1There are actually (some) authors who denote the composite morphism X
f→ Y

g→ Z by f ◦ g instead of g ◦ f .
One may find this convention more readable, but it is awkward for composite functions: g(f(x)) = (fg)(x) !
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The following is obvious:

Lemma 12.1.6 For a topological space X, the following are equivalent:

(i) For any x, y ∈ X there is a path from x to y.

(ii) P (x) = X ∀x ∈ X.

(iii) X has only one path-component, i.e. #π0(X) = 1.

Definition 12.1.7 A topological space satisfying the equivalent statements in Lemma 12.1.6 is called
path-connected.

Definition 12.1.8 A set X ⊆ Rn is called star-shaped if there is an x0 ∈ X such that for every
x ∈ X and t ∈ [0, 1] one has tx+ (1− t)x0 ∈ X.

Exercise 12.1.9 For a subset X ⊆ Rn, prove: convex ⇒ star-shaped ⇒ path-connected.

Lemma 12.1.10 Let f : X → Y be continuous. Then

(i) If x, y ∈ X are in the same path-component of X then f(x), f(y) are in the same path-
component of Y .

(ii) If X is path-connected then f(X) ⊆ Y is path-connected.

Proof. For (i), it suffices to observe that if p : I → X is a path from x to y then f ◦ p : I → Y is a
path from f(x) to f(y). (ii) is an obvious consequence. �

Proposition 12.1.11 A continuous function f : X → Y defines a map π0(f) : π0(X) → π0(Y )
given by [x] 7→ [f(x)]. Now the assignments X 7→ π0(X), f 7→ π0(f) constitute a functor π0 :
T OP → SET .

Proof. If C ∈ π0(X), pick any x ∈ C and define π0(f)(C) = [f(x)] ∈ π0(Y ). By Lemma 12.1.10(i),
this is independent of the choice of x ∈ C, thus well-defined. It is clear that π0(idX) = idπ0(X), and
π0(g ◦ f) = π0(g) ◦ π0(f) follows from the observation (g ◦ f) ◦ p = g ◦ (f ◦ p). We omit the easy
details. �

Corollary 12.1.12 If f : X → Y is a homeomorphism, π0(f) : π0(X)→ π0(Y ) is a bijection.

Proof. Since f is a homeomorphism, there exists a continuous g : Y → X such that g ◦ f = idX and
f ◦ g = idY . Functoriality of π0 implies π0(g) ◦ π0(f) = π0(g ◦ f) = π0(idX) = idπ0(X) and similarly
π0(f) ◦ π0(g) = idπ0(Y ). Thus π0(f) is a bijection. �

Remark 12.1.13 1. Applying the functor π0 to a topological space clearly entails a huge loss of
information. E.g. π0(X) is a one-point space for every path-connected X. But this is exactly the
philosophy of algebraic topology where one studies functors from some category of topological spaces
to a simpler one. An immediate consequence of the corollary is that two spaces whose π0’s are
different (i.e. have different cardinality) cannot be homeomorphic. In the case of π0 this is rather
trivial, but the functors considered in algebraic topology are much more sophisticated. (We will meet
the connected component functor πc and the fundamental group and groupoid functors π1,Π1.)

2. If one gives π0(X), π0(Y ) the quotient topologies, Proposition 6.4.8 shows that π0(f) : π0(X)→
π0(Y ) is continuous. But there is not much point in doing so since there are no good general results
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about the quotient-topology on π0(X) = X/∼p. We will see that path-components need not be open
or closed, so that π0(X) need not even be T1. (For the space Z of Example 12.2.3, π0(Z) is our
Example 2.8.5 for a T0-space that is not T1.) 2

Exercise 12.1.14 Let {Xi}i∈I be topological spaces and X =
∏

i∈I Xi. Prove:

(i) There is a bijection π0(X)→
∏

i∈I π0(Xi).

(ii) If Xi 6= ∅ ∀i ∈ I then X is path-connected if and only if each Xi is path-connected.

Exercise 12.1.15 Prove that Sn with n ≥ 1 and Rn\{x} with n ≥ 2 are path-connected.

Exercise 12.1.16 Prove that the open and closed long rays and the long line are path-connected.

12.2 Path-connectedness vs. connectedness

Paths are defined in terms of I = [0, 1]. The fact that I is connected provides an implication between
path-connectedness and connectedness:

Lemma 12.2.1 If X is path-connected, it is connected.

Proof. Assume C ⊆ X is clopen and non-trivial, i.e. ∅ 6= C 6= X. Choose points x ∈ C, y ∈ X\C. By
path-connectedness, there is a path f : [0, 1]→ X from x to y. Now A = f−1(C) is a clopen subset
of the interval [0, 1] that is non-trivial since 0 ∈ A 63 1. But this contradicts the connectedness of
[0, 1] proven in Proposition 9.2.1. �

Corollary 12.2.2 For X ⊆ R, connectedness and path-connectedness are equivalent.

Proof. In view of Lemma 12.2.1, it is enough to show that connectedness implies path-connectedness.
This follows from Proposition 9.2.1 and Exercise 12.1.9. �

This result does not generalize to subsets of Rn, as the next example shows:

Example 12.2.3 (The topologist’s sine curve) Define X,Z ⊆ R2 by

X =

{(
x, sin

1

x

)
| 0 < x ≤ 1

}
, Z = X.

Figure 12.1: Topologist’s sine curve (drawn by Maple©)



310 CHAPTER 12. PATHS IN TOPOLOGICAL AND METRIC SPACES

As the image of the path-connected space (0, 1] under the continuous map x 7→ (x, sin(1/x)),
X is path-connected, thus connected. Therefore, by Lemma 9.1.4, Z = X is connected. Now, us-
ing Lemma 2.7.3, one easily shows that Z = X ∪ Y , where Y = {0} × [−1, 1] is the straight line
segment from (0,−1) to (0,+1). It is clear that Y is path-connected, so that Z has at most two path-
components. We now claim that there is no path in Z connecting a point in X to a point in Y . Thus
Z is not path-connected and has precisely two path-components, X and Y .

To prove this, assume that f : [0, 1] → Z is a path that begins in X and ends in Y . Writing
f(t) = (f1(t), f2(t)), this means f1(0) > 0 and f1(1) = 0. With s = inf{t ∈ [0, 1] | f1(s) = 0},
continuity of f implies s > 0 and f1(s) = 0. For t ∈ [0, s) we have f1(t) > 0 and thus f2(t) = sin 1

f1(t)

(since f(t) ∈ X). Now, as t ↗ s, we have f1(t) → 0, but f2(t) = sin 1
f1(t)

clearly has no limit as

t↗ s since for every ε > 0 we have f2((s− ε, s)) = [−1, 1]. This contradicts the continuity of f , and
thus no such path exists. 2

Thus connectedness does not imply path-connectedness! In view of Lemma 12.2.1, we have
P (x) ⊆ C(x) for every x, but a connected component C(x) can consist of several path components �

P (y). The example Z also shows that path-components need be neither open nor closed: X ⊆ Z is
open but not closed, whereas Y ⊆ Z is closed but not open!

By our standard terminological conventions, a space is locally path-connected if every point has a
path-connected neighborhood and strongly locally path-connected if every point has an neighborhood
base consisting of path-connected sets.

Lemma 12.2.4 If X is (weakly) locally path-connected then the path-components are clopen and
coincide with the connected components. Thus X is a direct sum of path-connected spaces.

Proof. Weak local path-connectedness means that for every y ∈ P (x) there is a path-connected
neighborhood Ny. Clearly Ny ⊆ P (x), and since Ny contains an open neighborhood of y, it follows
that P (x) is open. Since P (x) is the complement of the union of all other path-components, which is
open, P (x) is also closed. Now this implies that C(x), which a priori could be larger then P (x), must
equal P (x) since otherwise the latter would be a non-trivial clopen subspace of C(x), contradicting
connectedness of the latter. The last statement now is a consequence of the discussion in Section
6.3. �

Corollary 12.2.5 If (X, τ) is connected and (weakly) locally path-connected, then it is path-connected.

The following class of spaces was already briefly encountered in Section 7.8.4:

Definition 12.2.6 A topological space is locally Euclidean if every point has an open neighborhood
that is homeomorphic to Rn for some n ∈ N. (n may depend on x.)

Lemma 12.2.7 Locally Euclidean spaces are strongly locally path-connected.

Proof. Follows from the fact that the open balls B(x, r) are convex, thus path-connected. �

Remark 12.2.8 If X ⊆ Rn is open then it is locally Euclidean, thus strongly locally path-connected.
Thus connected components and path-components coincide. In particular, X is path-connected if
and only if it is connected. 2

Exercise 12.2.9 Let (X, τ) be a smallest neighborhood space, cf. Section 2.8.3 (for example a finite
topological space). Let Ux be the smallest neighborhood Ux of each x ∈ X.
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(i) For every y ∈ Ux, construct a path from x to y (continuous of course).

(ii) Conclude that Ux is path-connected.

(iii) Deduce that X strongly locally path-connected.

Thus connected components and path components coincide for smallest neighborhood spaces.

It is trivial that a path-connected space is weakly locally path-connected. But there are spaces�

that are path-connected, but not strongly locally path-connected!

Exercise 12.2.10 (The topologist’s comb) Consider the following subspace of the first quadrant
in the plane:

X = {(x, y) ∈ [0, 1]2 | y = 0 ∨ x = 0 ∨ x = 1/n with n ∈ N},

cf. Figure 12.2. Prove:

(i) X, with the topology induced from R2, is path-connected, thus connected.

(ii) X is neither strongly locally path-connected nor strongly locally connected.

11
2

1
3

1
4

· · ·

Figure 12.2: The topologist’s comb

Remark 12.2.11 Recall that comparing the separation axiom T3.5 with the other ones, we made
the distinction between intrinsic and extrinsic properties. Clearly, connectedness is intrinsic, but
path-connectedness is extrinsic, involving the space [0, 1]. Corollary 12.2.5 allows us to replace a
global extrinsic condition by a global intrinsic and a local extrinsic condition. This is still not very
satisfactory. One would like to have a purely intrinsic criterion equivalent to path-connectedness, or
at least implying it. We cite one such result without proofs. (Two others, of a more geometric flavor,
will be discussed in Section 12.4.) 2

Theorem 12.2.12 (Hahn-Mazurkiewicz ∼1915) 2 Let (X, τ) be compact, Hausdorff, second
countable (=compact metrizable), and strongly locally connected. Then

(i) X is strongly locally path-connected. (Thus connected components and path-components coin-
cide and are clopen, thus direct summands.)

(ii) If X is connected then (it is path connected and) there exists a continuous surjective map
[0, 1]→ X.

2Hans Hahn (1879-1934, German), Stefan Mazurkiewicz (1888-1945, Polish)



312 CHAPTER 12. PATHS IN TOPOLOGICAL AND METRIC SPACES

Conversely, a Hausdorff space that is a continuous image of [0, 1] has the above properties.

Remark 12.2.13 1. Spaces X satisfying the conditions in (ii) of Theorem 12.2.12 are called
Peano-spaces since they admit a Peano map, i.e. a continuous surjective map [0, 1] → X. For
proofs see any of the books [298, 61, 91]. There are generalizations to locally compact spaces, but
then [0, 1] must must be replaced by a tree that depends on X. Cf. e.g. [14].

2. The first step in the proof of Theorem 12.2.12 is noting that X is metrizable. The rest of the
proof strongly relies on metric space methods. 2

Using similar methods, one can give intrinsic characterizations of the spaces [0, 1] and S1:

Theorem 12.2.14 Let X be second countable compact Hausdorff (=compact metrizable) and con-
nected.

(i) If X has precisely two non-cut-points then X ∼= [0, 1].

(ii) If X has no cut-points but becomes disconnected upon removal of two points then X ∼= S1.

12.3 The Jordan curve theorem

Having met the notion of paths, we briefly consider a closely related notion:

Definition 12.3.1 A Jordan curve in a topological space X is a continuous injective map f : S1 →
X.

Remark 12.3.2 1. When X is Hausdorff, which is the only case we are interested in, compactness
of S1 implies that f : S1 → X is an embedding, cf. Proposition 7.4.11(iii). Thus C = f(S1) ⊆ X is
a closed subspace homeomorphic to S1.

2. Actually, some authors mean by ‘Jordan curve’ not a map f : S1 → X, but a subspace Y ⊆ X
homeomorphic to S1. They might call our notion of Jordan curve ‘parametrized’. 2

If f is a Jordan curve in Rn, then C = f(S1) is closed. Thus Rn\C is open and therefore locally
path connected, thus its connected components and path-components coincide. But how many are
there? For n ≥ 3, the answer is ‘one’, whereas:

Theorem 12.3.3 (Jordan Curve Theorem) Let f : S1 → R2 be a Jordan curve. Then R2\C,
where C = f(S1), has exactly two connected components, both having C as boundary. One of these
is bounded and one unbounded.

This theorem was first stated by Jordan3 in the 1890s. While it may appear obvious, the first
correct proof was only given by Veblen4 in 1905. (Also proving connectedness of Rn\f(S1) for n ≥ 3
is non-trivial!)

Exercise 12.3.4 (i) Prove the Jordan curve theorem for C = S1 (the unit circle).

(ii) Use (i) to prove the JCT for C = ∂X, where X ⊆ R2 is compact convex with X0 6= ∅.
3Camille Jordan (1838-1922). Also responsible for the Jordan normal form and much more.
4Oswald Veblen (1880-1960). American mathematician.
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In this section we explain the very short and elegant proof given by Maehara [199]. The only
modification is that instead of Brouwer’s fixed point theorem we use two other results from Section
10.3, namely Corollaries 10.3.1 and 10.3.7(i), which are more convenient. The proof uses two lemmas.
The first of these is of a very general nature:

Lemma 12.3.5 Let f, g : I → I2 be paths such that f(0) ∈ I−1 , f(1) ∈ I+
1 , g(0) ∈ I−2 , g(1) ∈ I+

2 .
Then there are s, t ∈ I such that f(s) = g(t).

Proof. Define h : I2 → I2 by h1(s, t) = f1(s)− g1(t), h2(s, t) = g2(s)− f2(t). Then

h1(I−1 ) ⊆ [−1, 0], h1(I+
1 ) ⊆ [0, 1], h1(I−2 ) ⊆ [−1, 0], h2(I+

2 ) ⊆ [0, 1],

and by Poincaré-Miranda (Corollary 10.3.1) there is (s, t) ∈ I2 such that h(s, t) = 0, thus f(s) = g(t).
�

Remark 12.3.6 1. The statement of the lemma may seem even more obvious than the Jordan curve
theorem, but this impression is false. The connectedness of intervals is not sufficient to prove it. We
obtained it as a corollary of Theorem 10.1.2 in the case n = 2, but it can also be deduced from the
much simpler Theorem 13.2.4.

2. The Jordan curve theorem, or at least Lemma 12.3.5, plays a crucial rôle in the discussion of
planarity of graphs, in particular in proving that the complete graph K5 and the complete bipartite
graph K3,3 cannot be embedded into the plane. 2

Lemma 12.3.7 If R2\C is not connected, then ∂U = C for each component U of R2\C.

Proof. Let V be a connected component of R2\C. Since R2\C is assumed disconnected, it has another
component W 6= V . Since V,W are open and disjoint, W ∩ V = ∅, and thus W ∩ ∂V = ∅. Since
this holds for every component W of R2\C and since ∂V ∩ V = ∅, we must have ∂V ⊆ C. Assume
∂V ( C. Then there exists an arc A ⊆ C such that ∂V ⊆ A. If V is bounded, choose a point
p ∈ V . Otherwise choose p ∈ W , where W is a bounded component. Let D be a disk with center p
that is large enough to contain C. Then ∂D is contained in the unbounded component U of R2\C.
Since the arc A is homeomorphic to [0, 1], the identity map A → A has a continuous extension to
r : D → A by Tietze’s Theorem 8.2.20. Now define q : D → D by

q(z) =

{
r(z) if z ∈ V
z if z ∈ D\V if V is bounded, thus V ⊆ D

q(z) =

{
z if z ∈ D ∩ V
r(z) if z ∈ D\V if V is unbounded, i.e. V = U.

On ∂V = V ∩ (X\V ) this is well-defined, since r is the identity on A ⊇ ∂V . Now q is continuous
by Exercise 6.2.5. For bounded V , we have q(D) = A ∪ D\V , and for unbounded V we have
q(D) = A ∪ (D ∩ V ). In either case, we by construction have q ∈ D\q(D). Thus q is not surjective,
but since it is the identity on ∂D, this contradicts Corollary 10.3.7(i). This proves ∂V = C. �

Proof of Theorem 12.3.3. (1) The compact space C = p(S1) ⊆ R2 is closed and bounded. Thus
R2\C is open, and locally path-connected. Thus R2\C is a union of path-connected open subsets of
R2. Since C is bounded, precisely one component U is unbounded.

(2) Preliminaries: Since C is compact, there are points a, b ∈ C such that d(a, b) = supx,y∈C d(x, y),
where d is the Euclidean distance. Rotating and rescaling, we may assume that a = (−1, 0), b = (1, 0).
Now the curve C is contained in B((−1, 0), 2)∩B((1, 0), 2) ⊆ [−1, 1]× [−2, 2] =: R, and a, b are the
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Figure 12.3: From [199] in Amer. Math. Monthly.

only points of C on the boundary ∂R. The curve C ∼= S1 is separated by a, b into two arcs, each of
which connects a to b. Let n = (0, 2), s = (0,−2) be the midpoints of the ‘northern’ and ‘southern’
boundaries of R, cf. Figure 12.3. Lemma 12.3.5 implies that the line segment ns intersects both arcs.
Denote Jn the arc of C whose intersection with ns has the largest y-coordinate, and let Js be the
other arc. Let l and m be the points in Jn ∩ ns with maximal, respectively minimal, y-coordinate.
(We have l = m if and only if #(Jn ∩ ns) = 1.) Now the line segment ms must meet Js, since

otherwise nl+ l̂m+ms would be a path from n to s that does not intersect Js, contradicting Lemma
12.3.5. (Here l̂m denotes the subarc of Jn between l and m.) Let p and q denote the points in Js∩ms
with maximal, respectively minimal, y-coordinate. (Notice that Js may intersect ns above m, cf.
the figure.) Let z be the midpoint of the segment mp, and call V be the component of R2\C that
contains z.

(3) We claim that V is bounded: If this is not the case, and since V is path-connected, there
must be a path α from z that leaves the rectangle R. Let w be the first point where α meets the
boundary ∂R, and let αw be the subpath of α from z to w. If w is in the lower half of ∂R (i.e.
has y-coordinate < 0) then there is a path ŵs ⊆ ∂R from w to s containing neither a nor b. Now

nl + l̂m + mz + αw + ŵs is a path from n to s avoiding Js, which is impossible by Lemma 12.3.5.
Similarly, if w is in the upper half of ∂R then we can find ŵn ⊆ ∂R such that sz+αw + ŵn avoiding
Jn, which again is impossible by Lemma 12.3.5. Thus V must be bounded and in particular V 6= U .
Therefore R2\C has at least the two components U and V .

(4) We claim that V is the only bounded component: assume there was another bounded com-

ponent W 6= U of R2\C. We would have W ⊆ R. Let β = nl + l̂m + mp + p̂q + qs. Since nl and

qs lie in the unbounded component, l̂m and p̂q on C and mp in U , β is disjoint from W . Since β
is closed and does not contain a, b, there are open neighborhoods Na 3 a,Nb 3 b disjoint from β.
But Lemma 12.3.7 implies {a, b} ⊆ C ⊆ W , thus Na ∩W 6= ∅ 6= Nb ∩W by Lemma 2.7.3. Choose

a′ ∈ W ∩Na, b
′ ∈ W ∩Nb and a path â′b′ in W . Then the path aa′ + â′b′ + b′a is a path from a to

b that does not meet the path β from n to s. Since this contradicts Lemma 12.3.5, there is no third
component W .
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(5) Now that we know that R2\C has precisely two components, Lemma 12.3.7 implies that each
of them has C as boundary, and we are done. �

Remark 12.3.8 1. According to a theorem of Schoenflies, the Jordan curve theorem can be im-
proved considerably: Whenever S1 ∼= C ⊆ R2, there is a homeomorphism α : R2 → R2 that maps
the bounded component V of R2\C to the open unit disc B(0, 1) and C = ∂V to S1 = ∂B. Fairly
few books contain the proof, cf. e.g. [61].

2. For d > 2, there is the following analogue of the Jordan curve theorem: Whenever Sn−1 ∼=
C ⊆ Rn, the complement Rn\C has two connected components U, V such that ∂U = ∂V = C, with
V bounded and U unbounded. Usually this is proven using homology theory, cf. e.g. [36], but there
are also more elementary proofs, cf. e.g. [91].

3. However, the analogue of the Schoenflies theorem is false for d > 2: In that case, if V is
bounded and ∂V ∼= Sn−1, it is not necessarily true that V ∼= Dn, since there are ‘wild embeddings’
ι : Sn−1 ↪→ Rn. (For examples cf. [91, Section 4.3].) If one wants to conclude that the bounded
component of Rn\ι(Sn−1) is homeomorphic to a ball, one needs to make stronger assumptions on ι.
Cf. e.g. [36, Theorem IV.19.11]. 2

12.4 Paths in metric spaces. Geodesic spaces. Length spaces

12.4.1 Geodesic metric spaces. Menger’s theorem

In this subsection and the next, we trivially generalize our definition of paths as continuous maps
to X defined on [0,M ] instead of [0, 1]. The following property clearly is a strong form of path-
connectedness:

Definition 12.4.1 Let (X, d) be a metric space. If x, y ∈ X, a map f : [0, d(x, y)]→ X that satisfies
f(0) = x, f(d(x, y)) = y and is isometric (d(f(s), f(t)) = |s − t|) is called a geodesic (or geodesic
path) from x to y.

The space (X, d) is called geodesic if there exists a geodesic from x to y for any x, y ∈ X.

Exercise 12.4.2 If (V, ‖ · ‖) is a normed space and d(x, y) = ‖x− y‖, prove that (V, d) is geodesic.

We now discuss two simpler conditions:

Definition 12.4.3 A metric space (X, d) has strict midpoints if for every x, y ∈ X there exists
z ∈ X with d(x, z) = d(z, y) = d(x, y)/2.

Definition 12.4.4 Let (X, d) be a metric space.

• If x, y, z ∈ X are all different and d(x, z) + d(z, y) = d(x, y) then ‘z lies between x and y’.

• If for every x, y ∈ X, x 6= y there is a z ∈ X, x 6= z 6= y between x and y then (X, d) is called
metrically convex.

Exercise 12.4.5 Let X ⊆ Rn and d the Euclidean metric. Prove that (X, d) is metrically convex if
and only if X is convex.

It is obvious that (X, d) is geodesic⇒ (X, d) has strict midpoints⇒ (X, d) is metrically convex.
For complete metric spaces the converse implications are true. The first is easy:
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Lemma 12.4.6 Every complete metric space with strict midpoints is geodesic.

Proof. Let x 6= y and write T = d(x, y). Since (X, d) has strong midpoints, we can find a point
xT/2 ∈ X such that d(x, xT/2) = d(xT/2, y) = T/2, thus xT/2 lies between x and y. In the same way
we find points xT/4, x3T/4 such that d(x, xT/4) = d(xT/4, dT/2) = d(xT/2, x3T/4) = d(x3T/4, y) = T/4.
Iterating this in the obvious manner we find a point xr for each r ∈ (D ∩ [0, 1])T , where D are the
dyadic rationals, such that d(r, s) = |r−s| for all r, s ∈ (D∩[0, 1])T . Thus the map f : (D∩[0, 1])T →
X, t 7→ xt is an isometry. Since an isometry is uniformly continuous and (D ∩ [0, 1])T is dense in

[0, T ], Corollary 3.4.13 gives a unique f̂ ∈ C([0, T ], X) extending f . By continuity, also f̂ is an

isometry. Clearly f̂(0) = x, f̂(T ) = y, thus f̂ is a geodesic from x to y. �

Notice the close formal similarity between this proof and that of Urysohn’s lemma (Theorem
8.2.1)! Since the condition of metric convexity tells us nothing a priori about the position of the
points whose existence it asserts, it looks much weaker than that of having strict midpoints. But in
combination with completeness we actually have:

Lemma 12.4.7 Let (X, d) be a metrically convex complete metric space. Then for any x, y ∈ X
with x 6= y and 0 < λ < d(x, y) there is a z ∈ X between x and y such that d(x, z) = λ.

Combining Lemmas 12.4.6 and 12.4.7 we immediately obtain:

Theorem 12.4.8 (Menger 1928) 5 Every metrically convex complete metric space is geodesic.
(Thus a complete metric space is geodesic if and only if it is metrically convex.)

It remains to prove Lemma 12.4.7. We write (xzy) when z is between x and y. We will need the
following elementary and classical lemma:

Lemma 12.4.9 (Transitivity of betweenness) In every metric space we have

(pqr) ∧ (prs) ⇔ (pqs) ∧ (qrs).

Proof. Assume (pqr) and (prs). Then the points p, q, r, s are all different except perhaps q = s. But
that would imply (pqr) ∧ (prq). Thus d(p, q) + d(q, r) = d(p, r), d(p, r) + d(r, q) = d(p, q), which in
turn imply d(p, q) < d(p, r), d(p, r) < d(p, q), thus a contradiction. Thus q 6= s.

Combining d(p, q) + d(q, r) = d(p, r) and d(p, r) + d(r, s) = d(p, s), we obtain

d(p, q) + d(q, r) + d(r, s) = d(p, s) ≤ d(p, q) + d(q, s).

Adding d(p, q) to the triangle inequality d(q, s) ≤ d(q, r) + d(r, s), we have

d(p, q) + d(q, s) ≤ d(p, q) + d(q, r) + d(r, s).

Combining the two inequalities, we have

d(p, q) + d(q, r) + d(r, s) = d(p, s) ≤ d(p, q) + d(q, s) ≤ d(p, q) + d(q, r) + d(r, s).

Since the left and right most terms agree, the inequalities in fact are equalities, and this gives (pqs)
and (qrs), as claimed. The converse implication is proven similarly. �

If x 6= y and 0 < λ < d(x, y) we put

B(x, y) = {z ∈ X | (xzy)},
S(x, y, λ) = {z ∈ B(x, y) | d(x, z) ≤ λ} ∪ {x}.

5Karl Menger (1902-1985), Austrian-American mathematician. Many contributions to dimension theory, metric
geometry, mathematical economics, in particular game theory.
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Lemma 12.4.10 Let (X, d) be a complete metric space, x, y ∈ X with x 6= y and 0 < λ < d(x, y).
Then there is a zλ ∈ S(x, y, λ) such that u ∈ B(x, y) ∧ (xzλu) ⇒ d(x, u) > λ.

Proof. The set {z ∈ X | d(x, z) + d(z, y) = d(x, y)} is closed (by continuity of d), thus the same is
true for its intersection with B(x, λ), which equals S(x, y, λ) =: S. Thus (S, d) is complete.

The function φ : S → R, z 7→ −d(z, x) is continuous and bounded below by −λ. Thus Ekeland’s
Variational ‘Principle’ B.2.6(i) implies the existence of a z ∈ S such that

S 3 u 6= z ⇒ φ(u)− φ(z) > −d(z, u).

With our definition of φ this means that S 3 u 6= z implies d(x, z) − d(x, u) > −d(z, u), which
is the same as d(x, z) + d(z, u) > d(x, u). Thus u ∈ S(x, y, λ)\{z} ⇒ ¬(xzu). This is equivalent
to impossibility of the combination u ∈ B(x, y), d(x, u) ≤ λ, (xzu). This in turn is equivalent to
u ∈ B(x, y) ∧ (xzu)⇒ d(x, u) > λ. Thus zλ = z does the job. �

Proof of Lemma 12.4.7. Lemma 12.4.10 gives a point zλ ∈ S(x, y, λ) such that:

u ∈ B(x, y) ∧ (xzλu) ⇒ d(x, u) > λ. (12.1)

Another invocation of Lemma 12.4.10 with λ′ = d(x, y)− λ gives a yλ′ ∈ S(y, zλ, λ
′) such that

u ∈ B(y, zλ) ∧ (yyλ′u) ⇒ d(y, u) > λ′. (12.2)

We claim that zλ = yλ′ . Assume zλ 6= yλ′ . Then by metric convexity of (X, d) there is w ∈
X such that (zλwyλ′). Thus we have the betweenness statements (xzλy), (zλyλ′y), (zλwyλ′). Now
the Transitivity Lemma 12.4.9 gives that also (xwy), xzλw), (zλwy), (wyλ′y) hold. Now, (xwy) +
(xzλw)+(12.1) implies d(x,w) > λ, and (ywzλ)+(yyλ′w)+(12.2) implies d(w, y) > λ′. Thus d(x, y) =
d(x,w) + d(w, y) > λ+ λ′ = d(x, y), which is a contradiction.

With zλ = yλ′ we have d(x, zλ) ≤ λ and d(zλ, y) ≤ λ′ = d(x, y) − λ. Now d(x, zλ) < λ would
imply the contradiction d(x, y) ≤ d(x, zλ) + d(zλ, y) < λ + λ′ = d(x, y). Thus d(x, zλ) = λ, and we
are done. �

Remark 12.4.11 The above proof of Lemma 12.4.10 is inspired by the one in [112], which however
uses Caristi’s fixed point theorem instead of Ekeland’s variational principle, making it less transparent
and less constructive since it then needs the full axiom of choice. 2

12.4.2 Path lengths

Definition 12.4.12 Let (X, d) be a metric space and f : [a, b]→ X a path in X. The length of the
path f is defined as

L(f) = sup

{
N−1∑
i=0

d(f(ti), f(ti+1)) | a = t0 < t1 < · · · < tN = b

}
∈ [0,∞]. (12.3)

If L(f) <∞, the path is called rectifiable.

Remark 12.4.13 The set T of finite sequences {ti} containing the endpoints {0,M} is partially
ordered by inclusion {t0, t1, . . . , tN} ⊆ {s0, s1, . . . , sN ′} and directed (exactly as in the discussion of
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Example 5.1.29). Thus the map {t0, t1, . . . , tN} 7→
∑N−1

i=0 d(f(ti), f(ti+1)) is a net T → [0,∞). If
T ≤ S, the triangle inequality gives (via an easy induction)

N−1∑
i=0

d(f(ti), f(ti+1)) ≤
N ′−1∑
i=0

d(f(si), f(si+1)).

Thus the net is increasing, which implies that its limit equals its supremum. 2

Exercise 12.4.14 Let f : [0,M ] → Rn be a path such that the coordinate functions fi = pi ◦ f :
[0,M ]→ R are continuously differentiable. Prove that

L(f) =

∫ M

0

√√√√ n∑
i=1

f ′i(t)
2dt, (12.4)

thus f is rectifiable. (The integral is the Riemann integral.)

Remark 12.4.15 Differentiability of the fi is a rather strong condition. One can show that a path
f in Rn is rectifiable if and only if all the fi have bounded variation (in addition go being continuous,
of course), cf. e.g. [271, Theorem III.3.1]. Under this condition, all fi are differentiable almost
everywhere, but (12.4) need not hold, even if understood as Lebesgue integral. (This is already clear
for n = 1 if f1 is the Cantor-Lebesgue function, cf. Section 11.2.2. The latter has derivative zero
almost everywhere, so that (12.4) vanishes, whereas L(f) = d(f1(0), f1(1)) = |1− 0| = 1.) However,
(12.4) does hold under the stronger assumption that each fi is absolutely continuous, cf. e.g. [271,
Theorem III.4.1]. (Absolute continuity of a function f is equivalent to f being continuous, having
bounded variation and mapping sets of measure zero to sets of measure zero. The latter condition is
clearly violated by the Cantor-Lebesgue function since it maps to Cantor set Γ to [0, 1].) 2

Lemma 12.4.16 Let (X, d) be a metric space and f : [0,M ]→ X a path from x to y.

(i) We have L(f) ≥ d(x, y).

(ii) If d(f(t), f(t′)) ≤ C|t− t′| ∀t, t′ then f is rectifiable and L(f) ≤ CM .

(iii) If 0 < N < M then L(f) = L(f � [0, N ]) + L(f � [N,M ]). In particular f is rectifiable if and
only if f � [0, N ] and f � [N,M ] are rectifiable.

(iv) If f : [a′, b′]→ X is a path and h : [a, b]→ [a′, b′] is continuous, non-decreasing and surjective
then L(f ◦ h) = L(f).

(v) If f is rectifiable then the map ` : [0,M ] → [0, L(f)], t 7→ L(f � [0, t]) is non-decreasing,
continuous and surjective.

(vi) The map ` from (v) is constant on [a, b] ⊆ [0,M ] if and only if f is constant on [a, b].

(vii) The map C([0,M ], X)→ [0,∞], f 7→ L(f) is lower semicontinuous (w.r.t. either pointwise or
uniform convergence of paths).
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Proof. (i) L(f) is defined as a supremum over all partitions of [0,M ]. But taking the minimal
partition {0,M}, the right hand side of (12.3) is just d(x, y).

(ii) The assumption implies, for every partition {t0, . . . , tN} ∈ T , that

N−1∑
i=0

d(f(ti), f(ti+1)) ≤ C

N−1∑
i=0

|ti − ti+1| = CM.

Thus also the supremum L(f) of this over T is bounded by CM .
(iii) Since L(f) is defined as the supremum over the set of all partitions T and the net T → [0,∞]

is non-decreasing, we may as well restrict ourselves to partitions containing the point N . But then
the additivity is obvious.

(iv) f ′ = f ◦ h is continuous, thus a path. If {a = t0 < t1 < · · · < tN = b} is a partition of [a, b],
in computing L(f ◦ h) we encounter the sum

N−1∑
i=0

d(f ′(ti), f
′(ti+1)) =

N−1∑
i=0

d(f(h(ti)), f(h(ti+1)). (12.5)

Since h is non-decreasing, {h(ti), i = 0, . . . , N} is a partition of [a′, b′], and since h is surjective, the
supremum of (12.5) over the partitions of [a, b] coincides with the supremum over the partitions of
[a′, b′]. Thus L(f ◦ h) = L(f).

(v) Let 0 ≤ t ≤ t′. Then by (iii), L(f � [0, t′]) = L(f � [0, t]) + L(f � [t, t′]). Since lengths are
non-negative, this implies L(f � [0, t′]) ≥ L(f � [0, t]).

Let s ∈ (0,M ] and ε > 0. Choose a partition 0 = t0, . . . , tN = s such that d(f(tN−1, f(s)) < ε/2
and

∑N−1
i=0 d(f(ti, tt+1) > L(f � [0, s])− ε/2 = `(s)− ε/2. Then

`(s) < ε/2 +
N−2∑
i=0

d(f(ti), f(ti+1)) + d(f(tN−1), f(tN))

≤ ε/2 + L(f � [0, tN−1]) + ε/2 = `(tN−1) + ε.

Thus with s′ = tN−1 < s we have `(s′) > `(s) − ε, proving continuity of ` from the left. Now the
additivity `(t) = `(s) + L(f � [s, t]) proves that s 7→ `(s) is also continuous from the right.

It is clear that `(0) = 0 and `(M) = L(f). Since ` is continuous, the intermediate value theorem
implies `([0,M ]) = [0, L(f)], i.e. surjectivity.

(vi) In view of additivity (iii), it is enough to show that L(f) = 0 ⇔ f is constant. The
implication ⇐ is obvious. If f is non-constant, e.g. f(t) 6= f(t) for some t < t′, then L(f) ≥ L(f �
[t, t′]) ≥ d(f(t), f(t′)) > 0.

(vii) We will prove lim inf L(fi) ≥ L(f) whenever {fι} is a net of rectifiable paths converging
pointwise to f . This implies the claim for both topologies on the C([0,M ], X). Let ε > 0. Pick a
partition 0 = t0, . . . , tN = M such that

∑N−1
k=0 d(f(tk), f(tk+1)) > L(f) − ε. Since fι → f pointwise

(and the partition has finitely many points), there is a ι such that d(fι(tk), f(tk)) < ε/2N for all
k = 0, . . . , N . Then d(f(tk), f(tk+1)) ≤ d(fι(tk), fι(tk+1)) + ε/N , thus

L(f) ≤ ε+
N−1∑
k=0

d(f(tk), f(tk+1)) ≤ ε+ ε+
N−1∑
k=0

d(fι(tk), fι(tk+1)) ≤ 2ε+ L(fι).

Since ε was arbitrary, the claim follows. (For the uniform topology, which is metric and thus first
countable, one may replace ‘net’ by ‘sequence’.) �

By Lemma 12.4.16, reparametrizations f ; f ◦ h, where h is continuous non-decreasing, do not
change the length of a curve. It is therefore natural to ask whether there is a best way to parametrize
a curve.
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Definition 12.4.17 If a path f : [0,M ] → (X, d) satisfies L(f � [0, t]) = t for all t ∈ [0,M ], it is
parametrized by arc-length. (Obviously, then L(f) = M <∞, thus f is rectifiable.)

Lemma 12.4.18 A path f from x to y is geodesic if and only if it is arc-length parametrized and
L(f) = d(x, y).

Proof. ⇒ A geodesic f is isometric, thus satisfies the assumption of Lemma 12.4.16 (ii) with C = 1.
This gives L(f) ≤M . Combining this with Lemma 12.4.16(i), we have d(x, y) ≤ L(f) ≤M . Since f
is geodesic, we have d(x, y) = d(f(0), f(M)) = M , and thus L(f) = M = d(x, y). Applying the same
consideration to f � [0, t] gives L(f � [0, t]) = d(f(0), f(t)) = t, thus f is parametrized by arc-length.
⇐ If f : [0,M ] → X is parametrized by arc-length then clearly M = L(f). By assumption,

L(f) = d(x, y), thus M = d(x, y). Again by arc-length parametrization, we have

t = L(f � [0, t]) ≥ d(x, f(t)) and d(x, y)− t = L(f � [t, d(x, y)]) ≥ d(f(t), y)

for all t ∈ [0, d(x, y)]. Adding these two inequalities and using the triangle inequality we have

d(x, y) ≥ d(x, f(t)) + d(f(t), y) ≥ d(x, y),

thus d(x, f(t)) + d(f(t), y) = d(x, y) for every t. (In the terminology of the preceding section: f(t) is
between x and y.) Combining this with d(x, f(t)) ≤ t, d(f(t), y)) ≤ d(x, y)− t we have d(x, f(t)) = t
and d(f(t), y) = d(x, y)− t. If now t ≤ t′ then

d(f(t), f(t′)) ≥ d(x, y)− d(x, f(t))− d(f(t′), y) = d(x, y)− t− (d(x, y)− t′) = t′ − t

by the triangle inequality. On the other hand, d(f(t), f(t′)) ≤ L(f � [t, t′]) = t′ − t by Lemma
12.4.16(i) and arc-length parametrization. Thus d(f(t), f(t′)) = |t′ − t|, so that f is geodesic. �

Example 12.4.19 Consider the path given by f : [0, 2π]→ R2, t 7→ (cos t, sin t). This is well-known
to be parametrized by arc-length with L(f) = 2π, but f is not geodesic since d(f(0), f(2π)) = 0 6=
L(f). 2

Proposition 12.4.20 Let f : [0,M ] → X be rectifiable. Define `(t) = L(f � [0, t]). Then there is a
rectifiable path g : [0, L(f)]→ X that is parametrized by arc-length and satisfies f = g ◦ `.

Proof. Consider the diagram
[0,M ]

[0, L(f)]

`

?

g
- X

f

-

where f is given and ` is as in Lemma 12.4.16(vi), and thus continuous and surjective. If t < t′ and
`(t) = `(t′) then the monotonicity of ` implies that ` is constant on [t, t′], and Lemma 12.4.16(vii)
implies that f is constant on [t, t′]. Now Proposition 6.4.8 implies that there is unique a continuous
function g : [0, L(f)] → X such that f = g ◦ `. (The topology on [0, L(f)] is the quotient topology
defined by ` since [0,M ] is compact.)

Lemma 12.4.16(v-vi) imply `(t) = L(f � [0, t]) = L(g ◦ ` � [0, t]) = L(g � [0, `(t)]) for all t ∈ [0,M ].
Since ` is surjective, this implies L(g � [0, t]) = t, thus g is parametrized by arc-length. �
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Remark 12.4.21 1. By Lemma 12.4.16(vii), `(t) = L(f � [0, t]) is strictly increasing if and only if
f is not constant on any interval. In this case ` has a continuous inverse function `−1, and we have
g = f ◦ `−1.

2. If f is a path from x to y such that L(f) = d(x, y) then its arc-length reparametrization g is
geodesic. (This follows from Lemma 12.4.18 since L(g) = L(f).)

3. Some authors, e.g. of [15], call our geodesic paths ‘minimal geodesic’ and use ‘geodesic’ for
paths parametrized by arc-length (possibly rescaled). 2

12.4.3 Length spaces. The Hopf-Rinow theorem

Definition 12.4.22 A metric space (X, d) is a length space if for any two x, y ∈ X and ε > 0 there
is a path f from x to y such that L(f) < d(x, y) + ε.

Remark 12.4.23 1. By the very definition, every length space is path connected. And in view of
Lemma 12.4.18 every geodesic space is a length space.

2. Rn with one point removed is not geodesic, but a length space. 2

Exercise 12.4.24 Recall from Exercise 2.2.11 that

B(x, r) = B(x, r) ∀x ∈ X, r > 0 (12.6)

does not hold in every metric space.

(i) Prove that (12.6) is true in all length spaces.

(ii) Give an example showing that (12.6) does not follow from path-connectedness.

Definition 12.4.25 A metric space (X, d) has approximate midpoints if for every x, y ∈ X and

ε > 0 there is z ∈ X such that max(d(x, z), d(z, y)) ≤ d(x,y)
2

+ ε.

Proposition 12.4.26 (i) Every length space has approximate midpoints.

(ii) Every complete metric space having approximate midpoints is a length space.

Proof. (i) Let x, y ∈ X and ε > 0. By assumption there is a path f : [0,M ] → X from x to y with
L(f) < d(x, y) + 2ε. By Lemma 12.4.16(vi), the map ` : t 7→ L(f � [0, t]) is surjective onto [0, L(f)].
Thus there is a t ∈ [0,M ] such that `(t) = L(f � [0, t]) = L(f)/2. By additivity of lengths, also
L(f � [t,M ]) = L(f)/2. Defining z = f(t) we have d(x, z) ≤ L(f � [0, t]) = L(f)/2 < d(x, y)/2 + ε,
and similarly d(z, y) < d(x, y)/2 + ε.

(ii) The proof is quite similar to that of Lemma 12.4.6, but a bit more involved since we have to
take some ε’s into account. Let x, y ∈ X and εk > 0 for all k ∈ N such that C =

∏∞
k=1(1 + εk) <∞.

(We know from analysis that this is equivalent to
∑

k εk < ∞.) By the existence of approximate

midpoints, we can find z1/2 ∈ X such that max(d(x, z1/2), d(z1/2, y)) ≤ (1 + ε1)d(x,y)
2

. Then we choose
points z1/2, z3/4 such that

max(d(x, z1/4), d(z1/4, z1/2), d(z1/2, z3/4), d(z3/4, y)) ≤ (1 + ε2)
(1 + ε1)d(x,y)

2

2
.

Iterating this construction we find points zt ∈ X for all t ∈ D∩(0, 1) such that d(zt, zt′) ≤ Cd(x, y)|t−
t′| ∀t, t′ ∈ D ∩ [0, 1] (where z0 = x, z1 = y). Then the map f : D ∩ [0, 1] → X, t 7→ zt is uniformly
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continuous, and since D ∩ [0, 1] is dense in [0, 1], Corollary 3.4.13 gives us a (unique) extension

f̂ : [0, 1] → X satisfying d(f̂(t), f̂(t′)) ≤ Cd(x, y)|t − t′| ∀t, t′ ∈ [0, 1]. By Lemma 12.4.16(ii), f is
a rectifiable path of length L(f) ≤ Cd(x, y). By appropriate choice of the εk we can bring C > 1
arbitrarily close to 1. Thus (X, d) is a length space. �

Theorem 12.4.27 (Hopf-Rinow) 6 Let (X, d) be a locally compact length space. Then the follow-
ing are equivalent:

(i) (X, d) is proper. (I.e. closed bounded subsets are compact.)

(ii) (X, d) is complete.

(iii) (X, d) is geodesically complete: Every isometry f : [0,M)→ X can be extended to [0,M ].

(iv) There is a point x0 ∈ X such that every isometry f : [0,M) → X with f(0) = x0 can be
extended to [0,M ].

These (equivalent) conditions imply that (X, d) is geodesic.

Proof. (i)⇒(ii) By Lemma 7.8.84, every proper metric space is complete (and locally compact).
(ii)⇒(iii) Since isometries are uniformly continuous, this is an immediate consequence of Corollary

3.4.13.
(iii)⇒(iv) Obvious.
(iv)⇒(i) Defining R = sup{r | B(x0, r) is compact}, local compactness of X implies R > 0.

Properness of X, i.e. compactness of all closed balls, is equivalent to R =∞. Assuming R <∞, we
will use (iii) to prove that B(x0, R) is compact.

*****************
In view of Exercise 12.4.24 this implies that B(x0, R) is compact. Since X is locally compact,

for every x ∈ B(x0, R) there is εx > 0 such that B(x, εx) = B(x, εx) is compact. Since B(x0, R) is
compact, there are x1, . . . , xn such that B(x0, R) ⊆

⋃n
i=1 B(xi, εxi). Now,

⋃n
i=1 B(xi, εxi) is compact,

and this contains B(x0, R + ε) where ε = min(εx1 , . . . , εxn) > 0, which therefore is compact. This
contradicts the definition of R. Thus R =∞, proving properness

Now we prove that every proper length space is geodesic. Let x 6= y. By the length space
property we can choose, for every n ∈ N a path fn from x to y such that L(fn) ≤ d(x, y) + 1/n. By
Proposition 12.4.20 we can first parametrize the fn by arc-length, and then rescale linearly so that
they are defined on [0, 1]. Then

|t− t′| = L(fn � [t, t′])

L(fn)
≥ d(fn(t), fn(t′))

d(x, y) + 1
,

implying that the family {fn} is equicontinuous (even uniformly). All paths fn begin at x and have
length ≤ d(x, y)+1, thus they live in B(x, d(x, y)+1) ⊆ Y , which is compact by properness. Thus the
assumptions of the Ascoli-Arzelà Theorem 7.7.67 are satisfied, and we obtain a subsequence {fnm} of
{fn} that converges uniformly to some g ∈ C([0, 1], X). By Lemma 12.4.16(viii) the map f 7→ L(f)
is lower semicontinuous, thus in view of Exercise 5.2.33 we have L(g) ≤ lim inf L(fnm) = d(x, y).
Since the converse L(g) ≥ d(x, y) holds for every path from x to y, we have L(g) = d(x, y). It
is clear from the construction that g is parameterized by arc-length, rescaled to [0, 1]. Defining

g′(t) = g
(

t
d(x,y)

)
, it follows that g′ is parametrized by arc-length. This does not affect the length,

thus L(g′) = L(g) = d(x, y), so that Lemma 12.4.18 implies that g′ is a geodesic. �

6Heinz Hopf (1894-1971), Willi Rinow (1907-1979). German mathematicians.
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Corollary 12.4.28 A length space is proper if and only if it is locally compact and complete.

Remark 12.4.29 1. The Hopf-Rinow theorem was proved in 1931 (by Hopf and Rinow) for Rie-
mannian manifolds and generalized to metric spaces by S. Cohn-Vossen.

2. The construction of geodesics in the second half of the proof can be considered a part of
variational calculus, where one looks for the function f minimizing a certain functional F , here the
length L(f). This is a very classical subject going back to the 18th century (the Bernoullis, Euler,
Lagrange) and was originally approached by transforming the variational problem into a (roughly)
equivalent differential equation. This works for sufficiently smooth problems like those considered
originally (the isoperimetric problem and the ‘brachistochrone problem’). However, in our metric
setting one needs to use the ‘direct method’ of variational calculus, which was invented much later:
One picks a sequence {fi} of functions such that F (fi) converges to the infimum of F , uses a
compactness argument to find a subsequence of {fi} that converges uniformly to some function f
and finally invokes lower semicontinuity of F to conclude F (f) = inf F . (The first to propose this
was Riemann with his ‘Dirichlet principle’ (1851, 1857), whose rigorous proof was only given in 1900
by Hilbert.) For more on direct methods in variational calculus, cf. e.g. [192] or the book-length
treatment [109].

3. The subject of length and geodesic spaces discussed above belongs to ‘metric geometry’ or
the ‘geometry of metric spaces’. People started being interested in metric spaces for the purposes of
geometry at the same time when metric spaces were displaced by topological spaces within topology.
One motivation was to generalize results from differential geometry (Riemannian manifolds) to the
simpler and more general setting of metric spaces. For the classical results see books like [30, 246]
from the 1950s. More recently, metric geometry became quite popular again, in particular the study
of metric spaces with ‘curvature’ bounded above or below, cf. e.g. [52, 49, 39]. This subject has
many ramifications towards combinatorial/geometric group theory (hyperbolic groups), to analysis
on groups and ‘non-commutative geometry’ [227, 247] and analysis on metric spaces [4, 134]. We
(reluctantly) leave this beautiful subject here. 2



324 CHAPTER 12. PATHS IN TOPOLOGICAL AND METRIC SPACES



Chapter 13

Homotopy. The Fundamental
Group(oid). Coverings

13.1 Homotopy of maps and spaces. Contractibility

In this section, I = [0, 1].

Definition 13.1.1 Let X, Y be topological spaces and f, g ∈ C(X, Y ). A homotopy from f to g,
occasionally denoted h : f → g, is a continuous function h : X × I → Y, (x, t) 7→ h(x, t) such that
h(x, 0) = f(x) and h(x, 1) = g(x) ∀x ∈ X. We usually write ht(x) instead of h(x, t).

Two functions f, g ∈ C(X, Y ) are called homotopic, f ∼ g, if there exists a homotopy from f to
g.

Homotopies are, in a sense, arrows between continuous maps that have the same source and
target. A good way to visualize the situation is this:

X

f

��

g

BBYh

��

Lemma 13.1.2 (i) If f, g, k ∈ C(X, Y ) and h : f → g and h′ : g → k are homotopies then

h′′t (x) =

{
h2t(x) if t ∈ [0, 1/2],
h′2t−1(x) if t ∈ [1/2, 1]

defines a homotopy h′′ = h′ ◦ h : f → k. Symbolically:

X

f

��

k

GGg
// Y

h

��

h′

��

; X

f

��

k

BBYh′′

��

(ii) For all X, Y , homotopy is an equivalence relation on C(X, Y ).

325
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Proof. (i) This is quite obvious: We have h′′0 = h0 = f and h′′1 = h′1 = k. Continuity at t = 1/2
follows from h1(x) = h′0(x) = g(x).

(ii) If f ∈ C(X, Y ) then defining ht(x) = f(x), it is clear that h is a homotopy from f to f , thus
f ∼ f . If h is a homotopy from f to g then h1−t is a homotopy from g to f , thus f ∼ g implies
g ∼ f . That f ∼ g ∼ k implies f ∼ k follows from (i). �

Remark 13.1.3 If one topologizes C(X, Y ) suitably it turns out that a homotopy between f, g ∈
C(X, Y ) is nothing but a continuous path in C(X, Y ) from f to g. See Section 7.9, in particular
Theorem 7.9.11. (In the rather special case where X is compact and Y metrizable, this follows from
the bijection C(Z × X, Y ) ↔ C(Z,C(X, Y )) established in Exercise 7.7.45 by taking Z = [0, 1].)
Then the composition of homotopies reduces to the composition of paths in C(X, Y ) and the lemma
reduces to the fact that the path relation ∼p from Section 12.1 is an equivalence relation. 2

Lemma 13.1.4 If f, g : X → Y, f ′, g′ : Y → Z and h : f → g and h′ : f ′ → g′ are homotopies then
h′′t = h′t ◦ ht is a homotopy f ′ ◦ f → g′ ◦ g.

X

f

��

g

BBYh

��

f ′

��

g′

BBZh′

��

; X

f ′◦f

��

g′◦g

BBZh′◦h

��

Proof. Let h : X × I → Y be a homotopy from f to g and h′ : Y × I → Z a homotopy from f ′ to
g′. Define h′′t (x) = h′t ◦ ht(x). Now (x, t) 7→ ht(x) is a continuous function X × I → Z that clearly
satisfies h′′0(x) = f ′ ◦ f(x) and h′′1(x) = g′ ◦ g(x). Thus g′ ◦ g ∼ f ′ ◦ f . �

Remark 13.1.5 We thus have defined two different ways of composing homotopies: In Lemma 13.1.2
we have the vertical composition of homotopies h : f → g and h′ : g → k, where f, g, k ∈ C(X, Y ),
giving rise to a homotopy h′′ : f → k. While in Lemma 13.1.4 we consider the horizontal composition
of homotopies h : f → g and h′ : f ′ → h′, where f, g ∈ C(X, Y ) and f ′, g′ ∈ C(Y, Z), giving a
homotopy h′′ : f ′ ◦ f → g′ ◦ g. These compositions should not be confused! (Yet we denote both by
◦.) 2

Definition 13.1.6 A map f ∈ C(X, Y ) is called a homotopy equivalence if there is a map g ∈
C(Y,X) such that g ◦ f ∈ C(X,X) is homotopic to idX and f ◦ g ∈ C(Y, Y ) is homotopic to idY .
Two spaces X, Y are called homotopy equivalent, denoted X ∼ Y , if there is a homotopy equivalence
f : X → Y .

Exercise 13.1.7 Show that homotopy equivalence of spaces is an equivalence relation.

Remark 13.1.8 There is a third way of composing homotopies! If h1 : f1 → g1 is a homotopy
between f1, g1 ∈ C(X1, Y1) and h2 : f2 → g2 is a homotopy between f2, g2 ∈ C(X2, Y2) then h3,t =
h1,t × h2,t is a homotopy between f1 × f2 and g1 × g2, both of which are maps X1 ×X2 → Y1 × Y2.

Using this one easily shows that the existence of homotopy equivalences X ∼ X ′, Y ∼ Y ′ implies
a homotopy equivalence X × Y ∼ X ′ × Y ′.

(In modern language this means that topological spaces, continuous maps and homotopies form
a ‘monoidal 2-category’...) 2
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Since classification of topological spaces up to homeomorphism is hopeless, one may hope to
classify them up to homotopy equivalence. This is still too hard, but there is some hope. But we will
see that homotopy ideas can also be used to distinguish certain spaces that are homotopy equivalent
(but not homeomorphic), like the spaces Rn for different n ∈ N.

Definition 13.1.9 A space (X, τ) is contractible if it is homotopy equivalent to a one-point space.

Exercise 13.1.10 (i) Show that a space (X, τ) is contractible if and only if idX is homotopic to
a constant map.

(ii) Deduce that a contractible space is path-connected.

(iii) Prove that every star-shaped subspace X ⊆ Rn is contractible.

Combining with Exercise 12.1.9, we have the implications

convex ⇒ star-shaped ⇒ contractible ⇒ path-connected.

The converses of the above implications are far from true. This is easy to see for the first two
implications, but proving non-contractibility for a given path-connected space can be quite hard –
even when it is intuitively obvious as in the following case.

Theorem 13.1.11 Sn is not contractible for all n ≥ 0. (S0 = {±1}.)

Proof. By Exercise 13.1.10, contractibility of Sn−1 is equivalent to existence of a homotopy ht :
Sn−1 → Sn−1 satisfying h0(·) = x0 and h1 = idSn−1 . But then the map r : Dn → ∂Dn defined by

r(x) =

{
x0 ‖x‖ ≤ 1

2

h2‖x‖−1( x
‖x‖) ‖x‖ ≥

1
2

is a retraction, contradicting Corollary 10.3.7(ii). �

Remark 13.1.12 For n = 0, this is just connectedness of [0, 1]. For n = 1 a short direct proof is
given below, and yet another one follows from the computation of the fundamental group π1(S1). 2

Corollary 13.1.13 If X ⊆ Rn is compact convex then ∂X is not contractible (unless #X = 1).

Corollary 10.3.1

Poincare−Miranda

Corollary 10.3.2

Brouwer

(surjectivity)

Corollary 10.3.6a, 7a

(no retraction)

Corollaries 10.3.6b, 7b Corollary 10.2.2

dim I^n=n

Theorem 10.1.1

S^n not contractible

Figure 13.1: Implications involving higher connectedness
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Remark 13.1.14 1. The preceding results, as well as those of Sections 10.3 and 10.5 were all
deduced from Theorem 10.1.2, cf. Figure 13.1. Usually these results are proven using homology
theory, which most naturally yields the non-existence of a retraction Dn → Sn−1. The following
exercise shows that the implications in Figure 13.1 can be reversed. 2

Exercise 13.1.15 Prove the following implications:

(i) idSn−1 not homotopic to constant map ⇒ non-existence of retractions Dn → Sn−1. (Hint:
ht(x) = r(tx).)

(ii) Non-existence of retractions Dn → Sn−1 ⇒ if f : Dn → Dn satisfies f � ∂Dn = id then
f(Dn) = Dn. (If f �∂Dn = id, but f(Dn) 6= Dn, use f to produce a retraction.)

(iii) Non-existence of retractions Dn → Sn−1 ⇒ Brouwer’s fixed point theorem. (Assume f : Dn →
Dn has no fixed point, and define r(x) as the point where the ray from f(x) to x meets Sn−1.)

(iv) Brouwer’s fixed point theorem ⇒ Poincaré-Miranda theorem. (Define gi(x) = xi + εifi(x) and
prove that g has a fixed point for suitable choice of the εi.)

(v) Poincaré-Miranda theorem ⇒ Theorem 10.1.2. (Hint: fi(x) = d(x,H−i )− d(x,H+
i ).)

Theorem 13.1.11 can be used to give a new proof of the statement in Exercise 10.3.10:

Theorem 13.1.16 Let n ∈ N and f ∈ C(Dn,Rn) such that f(x) · x > 0 for all x ∈ Sn−1 or
f(x) · x < 0 for all x ∈ Sn−1. Then there is x ∈ (Dn)0 such that f(x) = 0.

Proof. We consider the first case. We have f(x) 6= 0 for all x ∈ Sn−1, so that g : x 7→ f(x)
‖f(x)‖ defines a

continuous map Sn−1 → Sn−1. We claim that g is homotopic to idSn−1 . To see this, observe that for
all x ∈ Sn−1, t ∈ [0, 1] we have

[(1− t)f(x) + tx] · x = (1− t)f(x) · x+ tx · x = (1− t)f(x) · x+ t > 0,

thus (1− t)f(x)+ tx 6= 0. Thus h(x, t) = (1−t)f(x)+tx
‖(1−t)f(x)+tx‖ defines a continuous map Sn−1× [0, 1]→ Sn−1.

Clearly h(·, 0) = g and h(·, 1) = idSn−1 , thus h is a homotopy from g to idSn−1 .

Assuming f(x) 6= 0 for all x ∈ Dn, we can define k : Sn−1 × [0, 1]→ Sn−1, (x, t) 7→ f(tx)
‖f(tx)‖ . Then

k(·, 0) = f(0)
‖f(0)‖ =: c, and k(x, 1) = f(x)

‖f(x)‖ = g(x). Thus k is a homotopy from the constant map x 7→ c
to g.

Thus there is a composite homotopy h ◦ k from the constant map x 7→ c to idSn−1 , contradicting
Theorem 13.1.11. Thus f must have a zero, which then must lie in Int(Dn). �

Exercise 13.1.17 Let X, Y be topological spaces. Prove:

(i) If f, g : X → Y are continuous functions that are homotopic then π0(f) = π0(g).

(ii) If X ∼ Y (homotopy equivalence) then π0(X) ∼= π0(Y ) (bijection).
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13.2 Alternative proof of non-contractibility of S1. Borsuk-

Ulam for S1, S2

We begin with an easy observation:

Lemma 13.2.1 There is no embedding S1 ↪→ R.

Proof. Let f : S1 → R. Let W = (−1, 0), O = (1, 0) and a = f(W ), b = f(O). Recall that
S1
± = {x ∈ S1 | ± x2 ≥ 0} ∼= I. Therefore the intermediate value theorem (Corollary 9.2.10)

implies that f(S1
+) and f(S1

−) both contain the entire interval between a and b. Thus f clearly is
not injective. �

Intuitively, this is not surprising, but the next result, which is slightly stronger, perhaps is:

Lemma 13.2.2 (Borsuk-Ulam Theorem for S1) 1 If f ∈ C(S1,R) then there is x ∈ S1 such
that f(x) = f(−x).

Proof. Assume f(x) 6= f(−x) ∀x ∈ S1. Then k : S1 → S0 = {±1}, x 7→ h(x)−h(−x)
|h(x)−h(−x)| is continuous.

Since it satisfies k(−x) = −k(x) it assumes both values ±1, contradicting the connectedness of S1.
�

Proposition 13.2.3 Let X be compact metrizable.

(i) f ∈ C(X,S1) is homotopic to the constant function 1 if and only if there exists h ∈ C(X,R)
such that f(x) = eih(x) ∀x ∈ X.

(ii) If f, g ∈ C(X,S1) then f ∼ g if and only if f/g ∼ 1, where (f/g)(x) = f(x)/g(x).

Proof. (i) ⇐ If f(x) = eih(x) then ht(x) = eith(x) is a homotopy from 1 to f .
⇒ If f, g ∈ C(X,S1), where f(x) = eih(x) (we say f is of exponential form) and |f(x)− g(x)| < 2

for all x ∈ S1 then f(x) 6= −g(x) for all x, thus g(x)
f(x)
6= −1. Thus there is k ∈ C(X, (−π, π)) such

that g(x)/f(x) = eik(x), and therefore g(x) = ei(h(x)+k(x)). Thus g is of exponential form.
Let now h : I × S1 → S1 be a homotopy from 1 to idS1 . Since I and S1 are compact, Exercise

7.7.45(iii) gives that ht(x) is continuous in t uniformly in x. Thus there is an ε > 0 such that
|t − t′| < ε implies |ht(x) − ht′(x)| < 2 for all x ∈ S1. Let 0 = t0 < t1 < t2 < · · · < tN = 1
be a subdivision such that ti+i − ti < δ ∀i. Since h0 = 1 = eit0 is of exponential form, successive
application of the above observation implies that each x 7→ hti(x) is of exponential form, thus h1 is.

(ii) ht is a homotopy from f to g if and only if ht/g is a homotopy from f/g to 1. �

Theorem 13.2.4 S1 is not contractible.

Proof. If S1 were contractible, by Exercise 13.1.10 there would be a homotopy from idS1 to a constant
function, which we clearly can take to be 1. Then Proposition 13.2.3 implies x = eih(x) ∀x ∈ S1 for
some h ∈ C(S1,R). Since idS1 is injective, h must be injective. But this is impossible by Lemma
13.2.1 or Lemma 13.2.2. �

Theorem 13.2.5 (Borsuk-Ulam Theorem for S2) If f ∈ C(S2,R2) then there is x ∈ S2 such
that f(x) = f(−x).

1Karol Borsuk (1905-1982), Stanislaw Ulam (1909-1984). Polish mathematicians. (Ulam later became US citizen
and invented the hydrogen bomb.)
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Proof. Assume f(x) 6= f(−x) ∀x ∈ S2. Then k : S2 → S1, x 7→ h(x)−h(−x)
‖h(x)−h(−x)‖2 is continuous and

satisfies k(−x) = −k(x). Since S2
+
∼= D2, the restriction k � S2

+ is a homotopy between k � ∂S2
+,

where ∂S2
+ = {x ∈ S2 ⊆ R3 | x3 = 0} ∼= S1, and the constant map of value k(N), N = (0, 0, 1).

With the inclusion map ι : S1 ↪→ S2, (x1, x2) → (x1, x2, 0), Proposition 13.2.3 gives that the map
l : S1 → S1, x 7→ k(ι(x)) is exponential: l(x) = eih(x) for some h ∈ C(S1,R). The property
k(−x) = −k(x) translates to eih(−x) = −eih(x), which is equivalent to ei(h(x)−h(−x)) = −1 ∀x. Since
{t ∈ R | eit = −1} = iπ(1 + 2Z) is discrete, this implies that x 7→ h(x) − h(−x) is constant:
h(x) − h(−x) = c ∀x. But h(x) − h(−x) is odd, thus c = 0. This gives h(x) − h(−x) = 0 ∀x, but
this contradicts ei(h(x)−h(−x)) = −1 ∀x. �

Remark 13.2.6 1. The Borsuk-Ulam theorem holds for all n ∈ N. The above proof for S2 suggests
that the result for Sn can be proven by induction over n. This is indeed the case, cf. [53], but the
proof uses analytic methods.

2. There is a nice proof of Borsuk-Ulam by combinatorial methods similar to those of Section
10.2, but more involved, cf. [75, Section II.5] and [203], which is a book entirely dedicated to the
Borsuk-Ulam theorem and its many applications.

3. If n > m then every open U ⊆ Rn has subspaces homeomorphic to Sm. Now the Borsuk-
Ulam theorem for C(Sm,Rm) implies that no f ∈ C(U,Rm) is injective, providing a nice proof of
the invariance of dimension for Rn. Lemma 13.2.2 and Theorem 13.2.5 thus prove Rm 6∼= Rn for
n > m ≤ 2. 2

13.3 Path homotopy. Algebra of paths

In Section 12, we discussed paths as a more intuitive and geometric approach to studying connectivity
of spaces. We defined composition and reversal of paths in order to show that the existence of a
path connecting two points defines an equivalence relation. Our aim now is to use paths in a
more substantial manner, mainly in order to distinguish spaces. This makes it desirable to study
composition of paths algebraically. If p is a path from x to y and q a path from y to z then q ◦ p is
a path from x to z. This clearly is reminiscent of composition of morphisms in a category, but not
entirely: Composition of morphisms in a category is required to be associative, but composition of
paths is not! Consider paths x

p1→ y
p2→ z

p3→ w. (Meaning that pi ∈ C(I,X), p1(0) = x, p1(1) = y, etc.)
Recalling that we write composition of paths from right to left, p = (p3 •p2)•p1 and q = p3 • (p2 •p1)
are paths from x to w, and p(I) = q(I) as subsets of X. But as maps I → X, usually p and q are
different: By definition of •, we have:

t p3 • (p2 • p1) (p3 • p2) • p1

0 x x
1/4 y p1(1/2)
1/2 z y
3/4 p3(1/2) z
1 w w

Recall that cx denotes the function I → X of constant value x ∈ X. If now p is a path from x to
y then we have p • cx 6= p 6= cy • p and p−1 • p 6= cx, p • p−1 6= cy unless x = y and p = cx. It turns
out that composition of paths has much better properties if considered up to path homotopy.
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Definition 13.3.1 Let x, y ∈ X and p, q : I → X be paths x→ y. Let h ∈ C(I×I,X), (s, t) 7→ ht(s)
a homotopy from p to q. (I.e., h0 = p, h1 = q.) h is called a path homotopy if ht(0) = x and ht(1) = y
for all t ∈ I. (I.e., each ht is a path x→ y.)

Being a sharpening of homotopy, also path homotopy is an equivalence relation.

Example 13.3.2 If X ⊆ Rn is convex, x, y ∈ X and p, q are paths x→ y then ht(s) = tq(s) + (1−
t)p(s) is a path homotopy from p to q. 2

Definition 13.3.3 A reparametrization of a path p : I → X is a composite map I
f→ I

p→ X, where
f : I → I is continuous and satisfies f(0) = 0, f(1) = 1. (This condition implies that the path p ◦ f
has the same start and end points as p.)

Lemma 13.3.4 If p : I → X is a path, then every reparametrization p ◦ f is path-homotopic to p.

Proof. Since I is convex, we have a path homotopy ht(s) = (1 − t)s + tf(s) from the identity map
idI to f . Now kt(s) = p(ht(s)) clearly is a path homotopy from p = p ◦ idI to p ◦ f . �

Exercise 13.3.5 Let paths x
p1→ y

p2→ z
p3→ w in X be given. Define a map f : I → I by

f(s) =


s/2 if s ∈ [0, 1/2]

s− 1/4 if s ∈ [1/2, 3/4]
2s− 1 if s ∈ [3/4, 1]

Prove that ((p3 • p2) • p1)(s) = (p3 • (p2 • p1))(f(s)) ∀s ∈ [0, 1].

Corollary 13.3.6 Given paths x
p1→ y

p2→ z
p3→ w, there is a path homotopy (p3•p2)•p1 → p3•(p2•p1).

Proof. By Exercise 13.3.5, the paths (p3 • p2) • p1 and p3 • (p2 • p1) are reparametrizations of each
other and therefore path-homotopic by Lemma 13.3.4. �

Lemma 13.3.7 If p is a path x→ y then p is path-homotopic to cy • p and to p • cx.

Proof. Define f1, f2 : I → I by f1(s) = min(1, 2s) and f2(s) = max(0, 2s − 1). Now p ◦ f1 = cy • p
and p ◦ f2 = p • cx, thus cy • p and p • cx are path-homotopic to p by Lemma 13.3.4. �

Lemma 13.3.8 Let p : x→ y be a path. Then there is a path homotopy cx → p−1 • p.

Proof. Define f : I → I by f(s) = 2s for s ∈ [0, 1/2] and f(s) = 2 − 2s for s ∈ [1/2, 1]. Clearly,
p ◦ f = p−1 • p. By Example 13.3.2, f is path-homotopic to the map c0 : I → I, s 7→ 0. Thus
p−1 • p = p ◦ f is path-homotopic to p ◦ c0 = cx. �

Lemma 13.3.9 (i) If p, p′ are paths from x to y and ht(s) is a path homotopy from p to p′ then
ht(1− s) is a path homotopy from p−1 go p′−1.

(ii) If p, p′ : x → y and q, q′ : y → z are paths and u : p → p′ and v : q → q′ are path homotopies,
then q • p and q′ • p′ are path-homotopic.
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Proof. (i) Obvious. (ii) Define

wt(s) =

{
ut(2s) for s ∈ [0, 1/2]

vt(2s− 1) for s ∈ [1/2, 1]

Then w is a path homotopy from q • p to q′ • p′. �

For a path p : x→ y, we write [p] for the set of paths x→ y that are path-homotopic to p. Then
Lemma 13.3.9 amounts to [p] = [p′] ⇒ [p−1] = [p′−1] and [p] = [p′], [q] = [q′] ⇒ [q • p] = [q′ • p′].
This allows us to define reversal and composition of path homotopy classes by [p]−1 = [p−1] and
[q] • [p] := [q • p]. I.e. the reversal or composition of path homotopy classes is defined by choosing
representer(s), reversing or composing them and passing to the path homotopy class(es).

Corollary 13.3.10 Composition of path-homotopy classes of paths has the following properties:

(i) Strict Inverses: Let [p] be a path homotopy class of paths x → y. Then [p]−1 • [p] = [cx] and
[p] • [p]−1 = [cy].

(ii) Associativity: If [p], [q], [r] are path homotopy classes of paths x→ y → z → t, then ([r] • [q]) •
[p] = [r] • ([q] • [p]).

Proof. Immediate consequence of Lemma 13.3.9. �

13.4 The fundamental groupoid functor Π1 : Top → Grpd

Since passing to path homotopy-classes fixes the problem with associativity of composition of paths,
we have:

Proposition 13.4.1 Let X be a topological space. Then there is a category Π1(X), called the
fundamental groupoid of X, defined by

• Obj(Π1(X)) = X. (I.e., the points of X).

• For x, y ∈ X = Obj(Π1(X)), we define HomΠ1(X)(x, y) as the set of path homotopy classes of
paths x→ y.

• The identity morphism of x is the (path homotopy class of the) constant path [cx].

• Composition of morphisms is given by composition of path homotopy classes as above. Thus if
[p] ∈ HomΠ1(X)(x, y), [q] ∈ HomΠ1(X)(y, z) then [q]• [p] ∈ HomΠ1(X)(x, z) is defined by [q]• [p] =
[q • p].

Every morphism [p] ∈ HomΠ1(X)(x, y) has an inverse [p]−1 ∈ HomΠ1(X)(y, x).

Proof. Corollary 13.3.10 gives the associativity of composition of morphisms and the fact that [cx]
behaves under composition as a unit should. Given [f ] ∈ HomΠ1(X)(x, y), [f ]−1 is an inverse morphism
of [f ]. �

The fact that every morphism in Π1(X) has an inverse means that Π1(X) actually is a groupoid:

Definition 13.4.2 A groupoid is a category that is small, in the sense that the objects form a set
(and not just a class), and in which all morphisms have inverses. The category of groupoids, which
is a full subcategory of Cat, is denoted Grpd.
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Remark 13.4.3 1. Let C be a category and X ∈ Obj C. If s, t ∈ EndC(X,X) := HomC(X,X) (the
set of endomorphisms of X) then s and t can be composed, the composition is associative and has
idX as a unit. Thus EndC(X) is a monoid for each X ∈ Obj C. If C is a groupoid, then in addition
every s ∈ EndC(X) has an inverse, thus EndC(X) is a group for each X ∈ Obj C.

2. If a category C has only one object, say Obj C = {X}, then all its information is contained
in the monoid EndC(X). In this sense, the notion of ‘category’ is a generalization of the notion of
‘monoid’, and similarly groupoids are a generalization of groups.

3. For someone reasonably familiar with categories, this really is the most transparent definition
of groupoids. However, we briefly describe two alternative definitions, leaving it to the reader to
convince him/herself that the three definitions are equivalent.

Definition 2: A groupoid consists of two sets G,B, where B is called the base space, two maps
s, t : G→ B, the source and target maps, a unit map from u : B → G, an inverse map G→ G, g 7→
g−1 and a product map

m : G×B G := {(g, h) ∈ G×G | s(g) = t(h)} → G.

These data have to satisfy some axioms that are easy to figure out via the correspondence to the
categorical Definition 13.4.2. If G is a groupoid in the sense of the latter, we obtain the data of
Definition 2 by putting B = Obj(G) and G =

⊕
X,Y ∈Obj(G) HomG(X, Y ). In view of the definition of

the disjoint union ⊕, cf. Section A.2, we have a map G → B × B, which associates to every g ∈ G
its source and target in B. The unit map is given by X 7→ idX ∈ G, etc.

Definition 3: A groupoid is a set G, together with an inverse map G→ G, g 7→ g−1 and a partially
defined multiplication map m : G2 → G, where G2 is a subset of G×G. Among the axioms, one has:
(g, h) ∈ G2 and (m(g, h), k) ∈ G2 hold if and only if (h, k) ∈ G2 and (g,m(h, k)) ∈ G2. In this case,
m(m(g, h), k) = m(g,m(h, k)). It is probably clear that G2 corresponds to the G×B G appearing in
Definition 2. 2

Applying Remark 13.4.3.1 to C = Π1(X), the fundamental groupoid of a space X, leads to:

Definition 13.4.4 Let X be a topological space and x0 ∈ X. Then the fundamental group2 π1(X, x0)
for basepoint x0 is the group HomΠ1(X)(x0, x0).

Lemma 13.4.5 Every path p : x0 → x1 induces an isomorphism π1(X, x0) → π1(X, x1) via α[p] :
[q] 7→ [p] • [q] • [p]−1. This map depends only on the path-homotopy class [p].

Proof. This map is a homomorphism:

α[p]([q]) • α[p]([r]) = ([p] • [q] • [p]−1) • ([p] • [r] • [p]−1) = [p] • [q] • [r] • [p]−1 = α[p]([q] • [r]).

That α[p] is a bijection follows by consideration of the map π1(X, x1)→ π1(X, x0), [q] 7→ [p]−1•[q]•[p],
which clearly is an inverse of α[p]. �

Remark 13.4.6 1. Lemma 13.4.5 just is a special case of the general fact that in a groupoid every
s ∈ Hom(X, Y ) gives rise to a group isomorphism End(X)→ End(Y ) via t 7→ s ◦ t ◦ s−1.

2. For path-connected X, Lemma 13.4.5 gives us isomorphisms π1(X, x0)
∼=→ π1(X, x1) for all

x0, x1. This allows to omit the base point x0 from the notation and to simply write π1(X). But
strictly speaking, this is not a concrete group, but only an isomorphism class of groups!

2The fundamental group was defined by Poincaré in 1895. Groupoids were introduced in 1927 by Heinrich Brandt
(1886-1954), and the fundamental groupoid was introduced by Ronald Brown (1935-) in 1967.
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3. A path f in X such that f(0) = f(1) = x0 is called a loop based at x0. It is clear that a loop
in X based at x0 is the same as a map S1 → X mapping 1 ∈ S1 to x0. Now it is clear that π1(X, x0)
can be defined directly as the set of path-homotopy classes of loops based at x0, the group structure
given by composition and reversion of homotopy classes.

But other than to avoid groupoids, there is no good reason to do so. On the one hand, π1(X, x0)
depends on x0, and if x0, x1 are contained in different path-components of X, the fundamental groups
π1(X, x0), π1(X, x1) can be totally unrelated. Thus in order not to waste information provided by
π1, one needs to consider the whole family {π1(X, x0) | x0 ∈ X} of groups. The latter information
is, of course, contained in the fundamental groupoid Π1(X). But the latter also contains the in-
formation about the path-components of X. Namely, for x, y ∈ X we have x ∼p y if and only if
HomΠ1(X)(x, y) 6= ∅. Since all morphisms in Π1(X) are isomorphisms, there is an obvious (and ‘natu-
ral’ in the technical categorical sense) bijection between the set π0(X) = X/∼p of path-components
of X (Definition 12.1.5) and the set Obj(Π1(X))/∼= of isomorphism classes of objects in the groupoid
Π1(X). 2

Definition 13.4.7 A topological space is simply connected if it is path-connected and π1(X, x0) = 0
for some (thus every) x0 ∈ X.

Proposition 13.4.8 S1 is path-connected, but not simply connected.

Proof. We already know the path-connectedness. Thus the fundamental groups π(S1, x0) are all
isomorphic and we may consider x0 = 1. Since the identity map idS1 defines a loop in S1 based at
1, simple connectedness would mean that idS1 is path homotopic, thus homotopic, to the constant
loop c1. Exercise 13.1.10(i) then would imply that S1 is contractible, contradicting Theorem 13.1.11
(or Theorem 13.2.4). �

Remark 13.4.9 For many applications, like the proof of the Jordan curve theorem, it is sufficient
to know that π1(S1) is nontrivial, which we denote π1(S1) 6= 0. For others, however one needs to
know it explicitly, and we will compute π1(S1) in Section 13.7. 2

Let f : X → Y be a continuous map. By definition, it associates a point f(x) ∈ Y to every
x ∈ X. But as noted in Section 12, we have more: If p is a path in X from x to x′ then f ◦ p is a
path in Y from f(x) to f(x′). If ht is a path-homotopy from p to a second path p′ from x to y, then
f ◦ht is a path-homotopy between the paths f ◦p and f ◦p′ in Y . Thus [p] = [p′] ⇒ [f ◦p] = [f ◦p′].
This allows us to define a map

Π1(f) : HomΠ1(X)(x, y)→ HomΠ1(Y )(f(x), f(y)), [p] 7→ [f ◦ p]. (13.1)

Proposition 13.4.10 The maps Obj(Π1(X)) = X
f→ Y = Obj(Π1(Y )) and (13.1) define a functor

Π1(f) : Π1(X)→ Π1(Y ) between the fundamental groupoids Π1(X) and Π1(Y ).

Proof. It only remains to show that Π1(f) maps identity morphisms to identity morphisms and
commutes with composition of morphisms. (Cf. (i) and (ii) in Definition A.5.12.)

If cx is the constant path at x ∈ X then f ◦ cx is the constant path at f(x). In view of idx = [cx],
we have Π1(f)(idx) = Π1(f)([cx]) = [cf(x)] = idf(x). Furthermore,

Π1(f)([p • p′]) = [f ◦ (p • p′)] = [(f ◦ p) • (f ◦ p′)] = [(f ◦ p)] • [(f ◦ p′)] = Π1([p]) • Π1([p′]),

thus Π(f) commutes with composition of morphisms. �
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Theorem 13.4.11 Π1 defines a functor T OP → GRPD from topological spaces to groupoids.

Proof. Let f : X → Y, g : Y → Z be continuous maps. By Proposition 13.4.10, we have a functor
Π1(f) : Π1(X) → Π1(Y ). It remains to show that the map C(X, Y ) → Fun(Π1(X),Π1(Y )), f 7→
Π1(f) is functorial, cf. Definition A.5.12. If X = Y and f = idX it is clear that Π1(f) acts identically
on the objects and morphisms of Π1(X), thus Π1(idX) = idΠ1(X), the identity functor of Π1(X).

Now consider continuous maps X
f→ Y

g→ Z. If x ∈ X = Obj(Π1(X)) then Π1(g)(Π1(f)(x)) =
g(f(x)) = Π1(g ◦f)(x), thus Π1(g ◦f) = Π1(g)◦Π1(f) holds on objects. On the other hand, let [p] ∈
HomΠ1(X)(x, y) be a homotopy class of paths in X. By definition of Π1, we have Π1(f)([p]) = [f ◦ p]
and Π1(g)(Π1(f)([p])) = [g ◦ f ◦ p] = Π1(g ◦ f)([p]). Thus Π1(g ◦ f) = Π1(g) ◦ Π1(f) also holds on
morphisms, and Π1 indeed is a functor from T OP → GRPD. �

Corollary 13.4.12 If f : X → Y is a homeomorphism then Π1(f) : Π1(X)→ Π1(Y ) is an isomor-
phism of groupoids. (Cf. Definition A.5.18.)

Proof. Since f is a homeomorphism, there is a continuous map g : Y → X such that g ◦ f = idX and
f ◦ g = idY . Now functoriality of Π1 implies Π1(g) ◦ Π1(f) = idΠ1(X) and Π1(f) ◦ Π1(g) = idΠ1(Y ).
Thus Π1(f) is an isomorphism of categories (and thus of groupoids). �

It is clear that this result can be used to prove that certain spaces are not homeomorphic to each
other. Examples will be given as soon as we have computed some fundamental group(oid)s.

Focusing our attention on the fundamental groups, we have the following consequences:

Corollary 13.4.13 A continuous map f : X → Y gives rise to a homomorphism π1(f) : π1(X, x0)→
π1(Y, f(x0)) of groups for every x0 ∈ X.

If f is a homeomorphism then the above homomorphisms π1(f) are isomorphisms.

Corollary 13.4.13 looks somewhat like the statement that π1 is a functor from topological spaces
to groups, but there are two (related) problems: (i) The natural domain of a functor π1 is not given
by topological spaces, but by spaces together with a chosen point. (ii) The fundamental group in
which π1(f)([p]), where [p] ∈ π1(X, x0), lives depends on f(x0). This motivates:

Definition 13.4.14 The category T OP∗ of pointed topological spaces is the category whose objects
are pairs (X, x0), where X is a topological space and x0 ∈ X. The morphisms are given by

HomT OP∗((X, x0), (Y, y0)) = {f ∈ HomT OP(X, Y ) = C(X, Y ) | f(x0) = y0}.

Corollary 13.4.15 We have a functor π1 : T OP∗ → Grp given by (X, x0) 7→ π1(X, x0) and
HomT OP∗((X, x0), (Y, y0))→ HomGrp(π1(X, x0), π1(Y, y0)), [p] 7→ [f ◦ p].

Exercise 13.4.16 Let y0 ∈ Y ⊆ X and let ι : Y → X be the inclusion map.

(i) Give an example of this situation such that π1(ι) : π1(Y, y0)→ π1(X, y0) is not injective.

(ii) Prove that π1(ι) : π1(Y, y0)→ π1(X, y0) is injective if there exists a retraction X → Y .

Exercise 13.4.17 (Products) (i) For (X, x0), (Y, y0) ∈ Top∗, prove the isomorphism π1(X ×
Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).

(ii) For X, Y ∈ T OP , prove Π1(X × Y ) ∼= Π1(X) × Π1(Y ). (This includes defining the product
C × D of two categories C,D, but it should be clear how to do this.)
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Exercise 13.4.18 π1(Sn) = 0 for n ≥ 2.

(i) Consider Sn ⊆ Rn+1 as a metric space via the Euclidean metric of Rn+1 and cover it by open
balls of diameter 1. If p : [0, 1]→ Sn is a path (with p(0) = p(1)), show that there is a partition
0 = t0 < t1 < · · · < tn = 1 such that p([ti, ti+1]) is contained in one of the balls, for each i.

(ii) Show that p� [ti, ti+1] is homotopic to a path p(ti)→ p(ti+1) along a great circle.

(iii) Conclude that p is homotopic to a path p′ consisting of finitely many arcs on great circles and
conclude that p′([0, 1]) 6= Sn.

(iv) Show that p′, thus p is homotopic to a constant loop.

The spheres S2 and S3 are actually characterized by their simple connectedness:

Theorem 13.4.19 Let d ∈ {2, 3} and let X be compact, Hausdorff, second countable, simply con-
nected and such that every x ∈ X has an open neighborhood homeomorphic to Rd. Then X ∼= Sd.

Remark 13.4.20 For d = 2, this is part of the classification of surfaces, which has been known
since the 1860s, even though rigorous proofs appeared only in the 20th century. Cf. e.g. [61, 91, 219].
For d = 3, this was conjectured by Poincaré in 1904 (correcting a false conjecture from 1900)
and proven by Perelman3 around 2002-3. The proof uses Riemannian geometry (which belongs
to differential geometry, thus differential topology) and nonlinear partial differential equations! A
reasonably self-contained exposition of the proof occupies an entire book like [215] (plus the fact that
every topological 3-manifold admits a smooth structure, proven in the 1950s by Moise and Bing). 2

Exercise 13.4.21 (“Eckmann-Hilton argument”) Consider (S, e, •,×), where S is a set, e ∈ S
and •,× are binary operations S × S → S that satisfy the distributivity law

(g • h)× (g′ • h′) = (g × g′) • (h× h′) ∀g, g′, h, h′ (13.2)

and have e as two-sided unit:

g × e = e× g = g • e = e • g = g ∀g. (13.3)

Prove that g × h = h × g = g • h = h • g for all g, h ∈ S. (I.e. the two operations coincide and are
abelian.)

Exercise 13.4.22 (π1(X) is abelian for topological monoids) (i) Let (M, ·,1) be a topolog-
ical monoid. If g, h are loops in M based at 1, define g×h by (g×h)(t) = g(t) ·h(t). Show that
g × h is a loop based at 1. Show that if there are path homotopies g ∼= g′, h ∼= h′ then there
is a path homotopy g × h ∼= g′ × h′. Conclude that × descends to an operation on π1(M,1)
having [c1] as unit.

(ii) Use (i) and Exercise 13.4.21 to prove that π1(M,1) is abelian.

(iii) If G is a topological group, prove that π1(G, g) is abelian for every g ∈ G.

3Grigori Perelman (1966-) Russian mathematician, working mainly in Riemannian geometry. Fields medal (de-
clined).
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Exercise 13.4.23 (Higher homotopy groups) Let X be a topological space and x0 ∈ X. Let
I = [0, 1]. For n ≥ 2, let

Pn = {f ∈ C(In, X) | f �∂In = x0}.

(i) Let f, g ∈ Pn and k ∈ {1, , . . . , n}. Define f ◦k g : In → X by

f ◦k g(x) =

{
f(x1, . . . , 2xk, . . . , xn) if xk ∈ [0, 1/2]

g(x1, . . . , 2xk − 1, . . . , xn) if xk ∈ [1/2, 1]

Prove that f ◦k g ∈ Pn. (A picture helps!)

(ii) Define an equivalence relation ∼ on Pn by f ∼ g ⇔ there is a homotopy ht from f to g such
that ht �∂In = x0 ∀t ∈ [0, 1].

For i ∈ {1, . . . , n} and f, f ′, g, g′ ∈ Pn with f ∼ f ′ and g ∼ g′, prove that f ◦i g ∼ f ′ ◦i g′.

Use this to define, for each i ∈ {1, . . . , n}, a unique binary operation •i on πn = Pn/∼ such
that [f ◦i g] = [f ] •i [g].

(iii) Show that the class [x0] of the constant function is a unit for all operations •i.

(iv) Use Exercise 13.4.21 to prove that f •i g = f •j g ∀i, j ∈ {1, . . . , n}, so that we can define
f • g := f •i g for i arbitrary, and that f • g = g • f .

(v) Show that (πn, •, [x0]) is an abelian group. We denote it πn(X, x0).

Exercise 13.4.24 (πn as functors) Let n ≥ 2.

(i) Extend the definition of πn(X, x0) to functors πn : Top∗ → Ab. (Recall that Ab is the category
of abelian groups.)

(ii) Prove that if f : X → Y is a homotopy equivalence then (πn)∗(f) : πn(X, x0) → πn(Y, f(x0))
is an isomorphism of abelian groups.

(iii) Prove that πn(Sn) 6= 0 ∀n ≥ 2. Hint: Use Theorem 13.1.11.

Remark 13.4.25 Since S0 is the discrete space {±1}, it is clear that π0(S0) is a two-element set. We
already know that π1(S1) 6= 0, and in the next subsection we will prove that π1(S1) ∼= Z. Similarly,
one can prove πn(Sn) ∼= Z for all n ≥ 2, but this is beyond the scope of this course. 2

13.5 Homotopy invariance of π1 and Π1

In Exercise 13.1.17 we have seen that the functor π0 is homotopy invariant, in the sense that it sends
homotopic maps f, g : X → Y to identical maps π0(f) = π0(g) : π0(X)→ π0(Y ). In this section we
will prove analogous (but more complicated) results for the functors π1 and Π1.
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13.5.1 Homotopy invariance of π1

According to Corollary 13.4.12 the functor Π1(f) : Π1(X)→ Π1(Y ) is an isomorphism of categories
when f : X → Y is a homeomorphism. As we have seen, the notion of homeomorphism is vastly
generalized by that of homotopy equivalence. This raises the question what can be said about Π1(f)
if f : X → Y is a homotopy equivalence and, more generally, how Π1(f) and Π1(g) are related if
f, g : X → Y are homotopic. This question has a very simple and satisfactory answer, cf. Proposition
13.5.5 below.

Since the latter is somewhat abstract, we first consider the question at the level of fundamental
groups. Let x0 ∈ X. The existence of a homotopy h between f, g : X → Y does not imply
f(x0) = g(x0). Thus the homomorphisms π1(f) : π1(X, x0) → π1(Y, f(x0)) and π1(g) : π1(X, x0) →
π1(Y, g(x0)) typically have different groups as images, so that we cannot hope to prove homotopy
invariance in the form π1(f) = π1(g). We begin with the following

Lemma 13.5.1 Let ht be a homotopy between the maps f, g : X → Y and let p be a path in X from
x0 to x1. Let u(t) = ht(x0), v(t) = ht(x1). Then the composite paths

f(x0)
u−→ g(x0)

g◦p−→ g(x1) and f(x0)
f◦p−→ f(x1)

v−→ g(x1)

are path-homotopic.

Proof. Consider the diagram

f(x0) = h0(p(0))
[t7→ht(p(0))]- h1(p(0)) = g(x0)

f(x1) = h0(p(1))

[s 7→h0(p(s))]

?

[t7→ht(p(1))]
- h1(p(1))

[s 7→h1(p(s))]

?

= g(x1)

(13.4)

where the arrows represent paths in Y . Let q1, q2 be the paths in I× I that go from (0, 0) to (1, 1) at
constant speed, with q1 passing through (1, 0) and q2 through (0, 1). Since I × I is convex, Example
13.3.2 implies the path-homotopy q1 ∼ q2. Defining k : I × I → Y, (s, t) 7→ ht(p(s)) we thus have
k ◦ q1 ∼ k ◦ q2. Now, the path k ◦ q1 in Y coincides with the composite path in (13.4) along the
left and bottom edges, thus k ◦ q1 = v • (f ◦ p), and similarly k ◦ q2 = (g ◦ p) • u. We thus have
[v] • [f ◦ p] = [g ◦ p] • [u]. �

Proposition 13.5.2 Let h be a homotopy between the maps f, g : X → Y and x0 ∈ X. Then the
diagram

π1(X, x0)
π1(f)- π1(Y, f(x0))

π1(Y, g(x0))

α[u]

?

π
1 (g)

-

(13.5)

commutes, where α[u] is the change-of-basepoint isomorphism, cf. Lemma 13.4.5, arising from the
path u : t 7→ ht(x0) from f(x0) to g(x0).
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Proof. When dealing with fundamental groups, we consider loops, i.e. x0 = x1. Thus the functions
u, v in the Lemma coincide, and we have [u] • [f ◦ p] = [g ◦ p] • [u]. This is equivalent to π1(g)([p]) =
[u] • π1(f)([p]) • [u]−1. In view of Lemma 13.4.5, the right hand side coincides with α[u](π1(f)([p])).
�

Corollary 13.5.3 (i) If f : X → Y is a homotopy equivalence and x0 ∈ X then π1(f) :
π1(X, x0)→ π1(Y, f(x0)) is an isomorphism.

(ii) If X is contractible then it is simply connected.

Proof. (i) Pick a g : Y → X such that g◦f ∼ idX and f ◦g ∼ idY . Then π1(g)◦π1(f) = π1(g◦f) = α◦
π1(idX) = α, where α is the isomorphism from Lemma 13.5.1. Thus π1(f) : π1(X, x0)→ π1(Y, f(x0))
is injective (and π1(g) is surjective). Similarly, we have

π1(f) ◦ π1(g) = π1(f ◦ g) = β ◦ π1(idY ) = β as maps π1(Y, f(x0))→ π1(X, fgf(x0)),

where β is an isomorphism. This implies that π1(f) : π1(X, gf(x0)) → π1(Y, fgf(x0)) is surjective.
Now, the homotopy gf ∼ idX gives rise to a path p : gf(x0)→ x0. Since the diagram

π1(X, gf(x0))
π1(f)- π1(Y, fgf(x0))

π1(X, x0)

α[p]

?

π1(f)
- π1(Y, f(x0))

α[f◦p]

?

commutes, the vertical arrows are isomorphisms and the top morphism is a surjection, also the
bottom morphism π1(f) : π1(X, x0)→ π1(Y, f(x0)) is a surjection, thus an isomorphism.

(ii) As a contractible space, X is path-connected, cf. Exercise 13.1.10(ii). Now (i) implies
π1(X, x0) = 0 for any x0 ∈ X. �

Remark 13.5.4 The converse is in general not true. In Exercise 13.4.18 it is shown that π1(Sn) = 0
for all n ≥ 2, thus the spheres S2, S3, . . . are simply connected. But by Theorem 13.1.11 the spheres
are not contractible. (S0 is not even path-connected, and S1 is path-connected but not simply
connected since π1(S1) 6= 0 as we have seen in Section 13.2. 2

It remains to explicitly compute π1(S1). This can be done by elementary but somewhat ad-hoc
methods, cf. e.g. [298, Section 34]. We will instead give two conceptual ones which proceed via
methods that have a much wider applicability, namely via a Seifert-van Kampen theorem for the
fundamental groupoid in Section 13.6 and the more conventional one via covering spaces in Section
[?].

13.5.2 Homotopy invariance of Π1

Now we turn to the – conceptually more satisfactory – Π1-version of the above results:

Proposition 13.5.5 Every homotopy h between maps f, g : X → Y gives rise to a natural isomor-
phism α : Π1(f)→ Π1(g) between the functors Π1(f),Π1(g) : Π1(X)→ Π1(Y ).
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Proof. In order to improve readability of the proof and to make contact with the definitions in Section
A.5, we write C = Π1(X),D = Π1(Y ), F = Π1(f), G = Π1(g). Now F and G are functors C → D, and
we want a natural isomorphism α : F → G, i.e. a family of isomorphisms {αX : F (X)→ G(X)}X∈C
such that (A.3) commutes. The objects of Π1(X) and of Π1(Y ) are the points of X, Y , respectively,
and a morphism s ∈ HomC(x, x

′) is a path-homotopy class s = [p] of a path in X from x to x′. By
definition, F (s) = [f ◦p], G(s) = [g◦f ] are homotopy classes of paths f(x)→ f(x′) and g(x)→ g(x′)
in Y . The diagram (A.3) thus specializes to:

f(x)
αx - g(x)

f(x′)

[f◦p]

?

αx′
- g(x′)

[g◦p]

?

(13.6)

Thus in order to define a natural isomorphism, we must choose for each x ∈ X a (homotopy class
of a) path αx from f(x) to g(x) such that the diagram commutes. An obvious choice is to define
αx = [t 7→ ht(x)]. In view of h0 = f, h1 = g, αx is a path from f(x) to g(x), for every x ∈ X. It
remains to show that this choice of α makes (A.3) commute for every (homotopy class of a) path [p]
in X from x to x′. Inserting our choice of αx in (13.6), replacing f and g by h0 and h1, as well as x
and x′ by p(0) and p(1), respectively, the diagram becomes (13.4). By Lemma 13.5.1, the diagram
commutes up to homotopy, which gives the commutativity of (13.6). �

Now we can prove the following important generalization of Corollary 13.4.12:

Corollary 13.5.6 If f : X → Y is a homotopy equivalence then the functor Π1(f) : Π1(X)→ Π1(Y )
is an equivalence of groupoids. (Cf. Definition A.5.21.)

Proof. By definition, there are a map g : Y → X and homotopies h : g◦f → idX , h
′ : f ◦g → idY . By

Proposition 13.5.5, there are natural isomorphisms αh : Π1(g)◦Π1(f) = Π1(g◦f)→ Π1(idX) = idΠ1(X)

and αh′ : Π1(f) ◦Π1(g) = Π1(g ◦ g)→ Π1(idY ) = idΠ1(Y ). Thus Π1(f) is an equivalence of categories.
�

The above can be used to give an alternative proof of Corollary 13.5.3:

Proof. We already know that X is path-connected. By Corollary 13.5.6, Π1(X) is equivalent to
Π1({z}), which consists only of the object z and its identity morphism. Now Proposition A.5.22
implies π1(X, x0) = HomΠ1(X)(x0, x0) ∼= HomΠ1({z})(z, z) = 0. �

Remark 13.5.7 1. Provided one knows the categorical prerequisites, the above proofs are simpler
and more natural than those for π1. In particular, the proof of Corollary 13.5.3(i) is just an ad-hoc
proof, in this special situation, of Proposition A.5.22.

2. In terms of diagrams, the situation in Proposition 13.5.5 can be represented as follows:

X

f

��

g

BBYh

��

; Π1(X)

Π1(f)

""

Π1(g)

<<
Π1(Y )α

��



13.6. THE SEIFERT-VAN KAMPEN THEOREM I 341

What lies behind these diagrams is the following: We know that topological spaces and continuous
maps form the category Top and that (small) categories together with functors form the category Cat.
But taking also homotopies into account as ‘2-morphisms’, we obtain a ‘2-category’ Top. Similarly,
the category Cat of categories and functors becomes a 2-category Cat with natural transformations
as 2-morphisms. Now the proposition amounts to the statement that the functor Π1 : Top→Grpd
extends to a ‘2-functor’ Top→Cat between 2-categories. 2

13.6 The Seifert-van Kampen theorem I

Here a traditional proof (via manipulation of paths) of Seifert-van Kampen for fundamental groupoids.
Cf. [45, Section 6.7] or [284, Sections 2.6-2.7]. Application: Computation of π1(S1) without use of
coverings.

13.7 Covering spaces and applications

13.7.1 Covering spaces. Lifting of paths and homotopies

Definition 13.7.1 Let p : X̂ → X be continuous. An open subset U ⊆ X is evenly covered by p if

p−1(U) ⊆ X̂ is a union of disjoint open sets, called sheets, each of which if mapped homeomorphically
to U by p. Equivalently, there is a homeomorphism α : p−1(U)→ U ×J , where J is a discrete space,
such that the diagram

p−1(U)
αU- U × J

U

p

?
≡≡≡≡≡≡≡≡≡ U

p1

?

commutes. Such an αU is called a local trivialization of p.

The map p is called a covering map if it is surjective and every x ∈ X has an open neighborhood

that is evenly covered by p. The discrete subspace p−1(x) ⊆ X̂ is the fiber of x.

Example 13.7.2 The quotient map p : Sn → RPn = Sn/∼, where x ∼ y ⇔ x = ±y, is a covering
map. As a quotient map, it is continuous and surjective by construction. If y ∈ RPn and x ∈ Sn
such that p(x) = y, we can find an open V ⊆ Sn containing x and such that V ∩ (−V ) = ∅. Now
U = p(V ) is an open neighborhood of y that is covered by p−1(U) = V ∪ −V . Restricted to V or
−V , p is is injective and thus a homeomorphism. The fiber of each y ∈ RPn has two elements. 2

Example 13.7.3 The map p : R → S1, x 7→ e2πix is a covering map. Continuity is obvious, and
surjectivity will be assumed known. Given y ∈ S1, pick x ∈ R such that y = p(x) and ε ∈ (0, 1/2).
Then U = p((x − ε, x + ε)) is open and p−1(U) =

⋃
n∈Z(x − ε + n, x + ε + n) ∼= U × Z. Since

p : (x − ε + n, x + ε + n) → U is a homeomorphism for each n ∈ Z, p is a covering map. Thus the
fiber p−1(y) = x+ Z of each y ∈ S1 has countably many elements. 2

These two examples can be generalized, and we will do so later.
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Definition 13.7.4 If p : Ŷ → Y is a covering map and f : X → Y is continuous, a lift of f is a

continuous map f̂ : X → Ŷ such that the following commutes:

Ŷ

X
f
-

f̂

-

Y

p

?

Lemma 13.7.5 Let p : Ŷ → Y be a covering map, X connected and f : X → Y continuous. If
f̂1, f̂2 : X → Ŷ are lifts of f such that f̂1(x) = f̂2(x) for some x ∈ X then f̂1 = f̂2.

Proof. We define C = {x ∈ X | f̂1(x) = f̂2(x)}. We will show that C is clopen. Since X is connected

and C 6= ∅ by assumption, we have C = X, implying f̂1 = f̂2.
For every x ∈ X, we can find an open neighborhood U of f(x) ∈ Y that is evenly covered by p.

Let αU : p−1(U) → U × J be a local trivialization of p, cf. Definition 13.7.1. Since f is continuous,

V = f−1(U) ⊆ X is an open neighborhood of x. In view of p ◦ f̂i = f , we have f̂i(V ) ⊆ p−1(U).

Thus we can consider the composites αU ◦ f̂i : V → U × J for i = 1, 2. Now define

CV = {x ∈ V | p2 ◦ αU ◦ f̂1(x) = p2 ◦ αU ◦ f̂2(x)}.

This is the subset of V on which the two lifts f̂1, f̂2 take values in the same sheet above U . In view
of the definitions of C and CV , we have CV = C ∩V . Since the space J labeling the sheets is discrete
and the maps under consideration are continuous, CV is a clopen subset of V . Now the following
lemma implies that C is clopen, and we are done. �

Lemma 13.7.6 If X is a topological space, C ⊆ X and every x ∈ X has an open neighborhood Ux
such that Ux ∩ C is clopen (in Ux), then C is clopen.

Proof. We have C =
⋃
x(Ux∩C), which is open. On the other hand, X\C =

⋃
x(Ux\C) is open since

Ux\C ⊆ Ux is open. Thus C is closed. �

Proposition 13.7.7 (Path lifting) Let p : X̂ → X be a covering map, f : I → X a path, and

x̂0 ∈ p−1(f(0)). Then there is a unique continuous lift f̂ : I → X̂ of f such that f̂(0) = x̂0.

Proof. For each y ∈ X, choose an open neighborhood Uy that is evenly covered by p. The open
sets f−1(Uy) form an open cover of I. Since I is compact metric, we can find a Lebesgue number
λ > 0. Choose 1/λ < M ∈ N. Then the partitioning 0 = s0 < s1 < · · · < sM = 1 of I = [0, 1]
into M intervals of length 1/M has the property that f([si, si+i]) is contained in some Uyi . Since
p(x̂0) = f(0) ∈ Uy0 , there is an open neighborhood V0 of x̂0 that is mapped homeomorphically to Ux0

by p. Now define f̂ on the interval [0, s1] as (p�V0)−1 ◦ f . Then f̂(0) = x̂0 and p ◦ f̂ = f on [0, s1].

Now we have p ◦ f̂(s1) = f(s1) ∈ Uy1 , and since f([s1, s2]) ⊆ Uy1 , there is an open neighborhood

V1 of f̂(s1) that is mapped homeomorphically to Uy1 by p. Now define f̂ on [s1, s2] as (p�V1)−1 ◦ f .

Continuing in this way, we obtain the lift f̂ in M steps.
Uniqueness of f̂ follows from Lemma 13.7.5. �

We will need a generalization of path-lifting to families of paths continuously parametrized by a
space Z, i.e. continuous maps h : Z × I → X.
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Theorem 13.7.8 Let p : X̂ → X be a covering map, h ∈ C(Z × I,X) and k ∈ C(Z, X̂) such that

p(k(x)) = h(x, 0) ∀x ∈ Z. Then there is a unique continuous lift ĥ : Z × I → X̂ of h such that

Z
k - X̂

Z × I

ι0

?

h
-

ĥ

-

X

p

?

(13.7)

commutes, where ι0(x) = (x, 0). (Thus p ◦ ĥ = h and ĥ(z, 0) = k(z).)

Proof. For every z ∈ Z, we have a path hz : I → X defined by hz(s) = h(z, s). By Proposition 13.7.7,

there is a unique lift ĥz : I → X̂ such that p(ĥz(s)) = hz(s) = h(z, s) ∀s ∈ I and ĥz(0) = k(z).

Defining ĥ : Z × I → X̂ by ĥ(z, s) = ĥz(s), it is clear that (13.7) commutes. It remains to show that

ĥ is continuous. (So far, we only have continuity w.r.t. s ∈ I for every fixed z ∈ Z.)

Let x̂ ∈ X̂. Since p is a covering map, there is an open neighborhood W 3 x̂ such that p(W ) ⊆ X

is open and p : W → p(W ) is a homeomorphism. In view of p◦ ĥ = h, we have ĥ−1(W ) = h−1(p(W )),

which is open by continuity of h. Since every open V ⊆ X̂ can be represented as a union of W ’s as
above, ĥ−1(V ) is open for every open V ⊆ X̂. �

Remark 13.7.9 A continuous map p : X̂ → X is called fibration if given X, h, k as in Theorem
13.7.8 there is a (not necessarily unique) ĥ making (13.7) commute. Thus Proposition 13.7.8 says
that every covering map is a fibration with unique diagonals. But not every fibration is a covering
map, and the added generality of fibrations is important in higher homotopy theory. 2

Corollary 13.7.10 (Homotopy lifting) Let p : X̂ → X be a covering map. Assume f, f ′ are

paths in X from x0 to x1, and h is a path-homotopy from f to f ′. If x̂0 ∈ p−1(x0) and f̂ , f̂ ′ are the

unique lifts of f, f ′ beginning at x̂0 then f̂(1) = f̂ ′(1), and h lifts to a path-homotopy ĥ from f̂ to f̂ ′.

(Thus if f, f ′ are path-homotopic paths and f̂ , f̂ ′ are lifts beginning in the same fiber over x0 then
they end in the same fiber over x1, and they are path-homotopic.)

Proof. Let ht be a path-homotopy h : f → f ′, thus h0 = f, h1 = f ′. Now take Z = I, k = cx̂0 and
h(t, s) = ht(s). Then the hypothesis in Theorem 13.7.8 is satisfied since p(k(t)) = p(x̂0) = x0 =
h(t, 0) ∀t ∈ I = Z. (We used that ht is a path-homotopy, thus h(t, 0) = x0 for all t.) Thus the

theorem gives us a lift ĥ : I × I → X̂ of h satisfying ĥ(t, 0) = k(t) = x̂0 ∀t and p ◦ ĥ = h. In

particular, ĥ(t, 1) ∈ p−1(h(t, 1)) = p−1(x1) (again since h is a path-homotopy of paths from x0 to

x1). Since t 7→ ĥ(t, 1) is continuous and the fiber p−1(x1) is discrete, we find that ĥ(t, 1) is constant,

and we call this value x̂1. Thus the paths ĥt = ĥ(t, ·) are lifts of ht for every t, all beginning in x̂0

and ending in x̂1. Since ĥ0 = f̂ and ĥ1 = f̂ ′ by construction, we find that ĥ is a path-homotopy from
f̂ to f̂ ′. �

Exercise 13.7.11 Let p : X̂ → X be a covering map and x̂0 ∈ X̂. Prove that the homomorphism
π1(p) : π1(X̂, x̂0)→ π1(X, p(x̂0)) is injective.
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13.7.2 Computation of some fundamental groups

Proposition 13.7.12 Let p : X̂ → X be a covering map and x̂0 ∈ X̂. Then with x0 = p(x̂0), there

is a unique map α : π1(X, x0)→ p−1(x0) defined by α([f ]) = f̂(1), where f̂ is the lift of f satisfying

f̂(0) = x̂0.

If X̂ is path-connected then α is surjective. If X̂ is simply connected then α a bijection.

Proof. Let f be a loop in X based at x0. By Proposition 13.7.7, there is a unique lift f̂ : I → X̂ of
f such that f̂(0) = x̂0. We have p(f̂(1)) = f(1) = x0, thus f̂(1) ∈ p−1(x0). By Corollary 13.7.10,

if two paths f, f ′ are path-homotopic, their lifts satisfying f̂(0) = f̂ ′(0) = x̂0 automatically satisfy

f̂(1) = f̂ ′(1). Thus f̂(1) depends only on the homotopy class [f ] ∈ π1(X, x0), and α : [f ] 7→ f̂(1) is
well-defined.

Now assume that X̂ is path-connected, and let x̂1 ∈ p−1(x0). We can choose a path g from x̂0

to x̂1. Now f = p ◦ g : I → X is a path in X from p(x̂0) = x0 to p(x̂1) = x0, thus a loop based at

x0, and [f ] ∈ π1(X, x0). The unique lift f̂ of f satisfying f̂(0) = x̂0 equals g by uniqueness of path

lifting. Thus α([f ]) = f̂(1) = g(1) = x̂1, so that α is surjective.

Finally, let X̂ be simply connected, and assume that f, f ′ are loops in X based at x0 such that

α([f ]) = α([f ′]). I.e., the lifts f̂ , f̂ ′ beginning at x̂0 satisfy f̂(1) = f̂ ′(1). Then f̂ ′
−1
◦ f̂ is a loop in X̂

based at x̂0. Since X̂ is simply connected, there is a path-homotopy ĥ from this loop to the constant
loop at x̂0. But then h = p ◦ ĥ is a path-homotopy from f ′−1 ◦ f to the constant loop at x0. This
means that [f ′−1][f ] = [f ′−1 ◦ f ] = [cx0 ] = 1, thus [f ′] = [f ] in π1(X, x0). This proves the injectivity
of α. �

We can give the first application:

Corollary 13.7.13 For every n ≥ 2, we have π1(RPn, x0) ∼= Z/2Z. Thus RPn 6∼= Sn.

Proof. For n ≥ 2, Sn is simply connected by Exercise 13.4.18. Since p is a double covering, i.e. all
fibers have two elements, Proposition 13.7.12 implies that π1(RPn, x0) has two elements. The claim
follows from the fact that every two-element group is isomorphic to Z/2Z. The second claim follows
from π1(Sn) = 0 ∀n ≥ 2, cf. Exercise 13.4.18. �

Applying the same reasoning to the covering map p : R → S1, x 7→ e2πix and noting that R is
simply connected, we see that π1(S1, x0) has countably infinitely many elements, but this does not
uniquely determine the group structure, and an additional argument is needed. Since S1 is connected,
the choice of the base-point does not matter, and for simplicity we take x0 = 1. Then p−1(1) = Z,
thus by Proposition 13.7.12 there is a bijection π1(S1, 1)→ Z.

Proposition 13.7.14 The bijection π1(S1, 1)→ Z is an isomorphism of groups.

Proof. Let f1, f2 : I → S1 be loops based at 1. Let h1, h2 : I → R be lifts to R beginning at 0, i.e.
fi(t) = e2πihi(t). Define

h3(t) =

{
h1(2t) if 0 ≤ t ≤ 1/2

h1(1) + h2(2t− 1) if 1/2 ≤ t ≤ 1

It is easy to see that f3(t) = e2πih3(t) is the composite path f1 • f2, and h3 is the lift of f3. Now
h3(1) = h1(1) + h2(2). Since hi(1) is the image of [fi] under the map π1(S1, 1)→ Z, we have proven
that the latter is a homomorphism. �
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Remark 13.7.15 The number α([f ]) ∈ Z associated to a loop f based at 1 is called the index or
winding number. 2

Definition 13.7.16 The n-torus is defined by T n = (S1)×n, i.e. as the product of n circles S1.

Now we can state a first application of the fundamental group(oid) to the classification of topo-
logical spaces:

Corollary 13.7.17 For n,m ∈ N0, we have T n ∼= Tm if and only if n = m.

Proof. It is is trivial that n = m ⇒ T n ∼= Tm. Since S1 is path-connected, so is T n for every n, so
that it makes sense to write π1(T n). Using π1(S1) ∼= Z and Exercise 13.4.17(i), we have π1(T n) ∼= Zn.
For n 6= m we know from group theory that Zn 6∼= Zm, thus π1(T n) 6∼= π1(Tm), implying T n 6∼= Tm. �

Remark 13.7.18 1. Similar to the proof of s-dim(Sn) = n one can show s-dim(T n) = n. Thus the
above corollary also follows from dimension theory. But the latter is useless for the classification of
surfaces mentioned next, since they all have dimension 2.

2. Another class of spaces which can be distinguished by their fundamental groups are the
compact orientable (2-dimensional) surfaces without boundary. The simplest examples are the 2-
sphere S2 and the 2-torus T 2. The latter can be considered as the 2-sphere with one ‘handle’
attached. Attaching n handles to S2 gives the surface Mg with ‘g holes’. One can show that π1(Mg)
is isomorphic to the finitely presented group Gg = 〈a1, . . . , bg | [a1, b1] · · · [ag, bg] = e〉. (For g = 0 this
is the trivial group and for g = 1 this is Z2, consistent with M0 = S2,M1 = T 2.) For g ≥ 2, Gg is
non-abelian and somewhat complicated. (The Poincaré conjecture in three dimensions has a purely
algebraic reformulation involving the groups Gg and the free groups Fn. The only known proof of
this algebraic statement is via Perelman’s proof of the Poincaré conjecture!) But it is easy to see
that the abelianization of Gg is Z2g, so that the spaces Mg are mutually non-homeomorphic. 2

The homotopy theory developed thus far can be used to give another proof of the algebraic
closedness of C, i.e. the fact that every non-constant polynomial P ∈ C[x] has a zero.

Exercise 13.7.19 (Fundamental theorem of algebra) As usual, write S1 = {z ∈ C | |z| = 1}.
Let P (z) = anz

n + . . . + a0 be a polynomial of degree n ≥ 1 without zeros. We may assume that
an = 1.

(i) For R ≥ 0 define

fR : S1 → S1, z 7→ P (Rz)

|P (Rz)|
.

Use this to prove that f1 : S1 → S1 is homotopic with a constant map.

(ii) Define g : S1 × [0, 1]→ C by

g(z, t) =

{
f1/t(z) t ∈ (0, 1]
zn t = 0

Prove that g is a homotopy between f1 and the map z 7→ zn.

(iii) Show that the conclusion of (ii) contradicts results we proved above.
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13.7.3 Properly discontinuous actions of discrete groups

The above computation of π1(S1) can be generalized considerably:

Definition 13.7.20 Let X be a topological space and G a (discrete) group. An action of G on X is
a map G×X → X, (g, x) 7→ gx such that x 7→ gx is continuous for each g ∈ G, and (gh)x = g(hx)
and ex = x for all g, h ∈ G, x ∈ X. An action of G on X is called

• free if g 6= e implies gx 6= x for all x ∈ X,

• properly discontinuous if every x ∈ X has a neighborhood V such that gV ∩ V = ∅ ∀g 6= e.

Remark 13.7.21 1. In view of g−1(gx) = (g−1g)x = x, the map x 7→ gx is a homeomorphism for
each g. Therefore, an action of a discrete group G on X is the same as a group homomorphism of G
to the group Aut(X) of homeomorphisms of X (i.e. automorphisms of X in the category Top).

2. Freeness of a G-action on X is easily seen to be equivalent to injectivity of the map G →
X, g 7→ gx for each x ∈ X.

3. While a properly discontinuous action clearly is free, a free action may fail to be properly
discontinuous. But see the next exercise. 2

Exercise 13.7.22 Let X be a Hausdorff space and G a finite group. Then every free G-action on
X is properly discontinuous.

Example 13.7.23 1. G = {+,−} ∼= Z/2Z acts properly discontinuously on X = Sn by (±, x) =
±x. Since G is finite, this follows from freeness, which is obvious since −x 6= x ∀x ∈ Sn.

2. While G = Z is infinite, it still is easy to see that it acts properly discontinuously on X = R
by (n, x) = n+ x. 2

An action of G on X defines an equivalence relation by x ∼G y ⇔ x ∈ Gy. We write X/G instead
of X/∼G.

Exercise 13.7.24 Prove that ∼G is an equivalence relation.

Theorem 13.7.25 Let X be a space acted upon properly discontinuously by the group G. Pick
x0 ∈ X and put x′0 = q(x0) ∈ X/G. Then

(i) The quotient map q : X → X/G is a covering map.

(ii) The homomorphism q∗ : π1(X, x0)→ π1(X/G, x′0) is injective.

(iii) There is a unique homomorphism β : π1(X/G, x′0) → G such that the path in X beginning at
x0 obtained by lifting a loop p in X/G based at x′0 ends at β([p])x0. We have ker(β) = im(q∗).

(iv) If X is path-connected then β is surjective, thus we have a short exact sequence of groups:

1 → π1(X, x0)
q∗−→ π1(X/G, x′0)

β−→ G → 1. (If X is not path-connected, remove → 1 at the
end).

(v) If X is simply connected then β : π1(X/G, x′0)→ G is an isomorphism.
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Proof. (i) The map q : X → X/G is continuous and surjective by construction. Since G acts
properly discontinuously, for every x ∈ X we can find an open neighborhood V ⊆ X such that
gV ∩ V = ∅ ∀g 6= e. This clearly implies gV ∩ hV = ∅ whenever g 6= h. Then U = q(V ) is
a neighborhood of q(x) evenly covered by q, thus q is a covering map, the sheets over U being
{gV }g∈G.

(ii) Follows from (i) and Exercise 13.7.11.

(iii) Proposition 13.7.12 provides a map α : π1(X/G, x′0)→ q−1(x′0) = Gx0 such that α([f ]) = f̂(1)
(terminology as in that proposition). G acts properly discontinuously, thus freely, thus the map
γ : G → Gx0 = q−1(x′0), g 7→ gx0 is a bijection. Now the composite β = γ−1 ◦ α : π1(X/G, x0) → G
is the desired map. That β is a group homomorphism is shown in essentially the same way as in the
proof of Proposition 13.7.14. The identity ker(β) = im(q∗) follows from the fact that [p] ∈ ker(β)
holds for a loop in X/G based at x′0 if and only if the lift of p to a path in X beginning at x0 is a
loop. This is equivalent to [p] being in the image of q∗.

(iv) Since γ is a bijection, it follows from Proposition 13.7.12 that β is a surjection if X is
path-connected and a bijection if X is simply connected. This also proves (v). Alternatively, if
π1(X, x0) = 0 then (v) follows since ker(β) = im(q∗) = 0, which gives injectivity of β. �

As a very special case, we again have:

Corollary 13.7.26 π1(S1, x0) ∼= Z for every x0 ∈ S1.

Proof. As noted above, Z acts properly discontinuously on R by (n, x) 7→ n+ x. The quotient space
R/Z is homeomorphic to S1. Since R is simply connected, Theorem 13.7.25(v) implies π1(S1) ∼= Z.
�

In the computation of π1(S1) we have more structure than in the computation of π1(RPn): R is
a topological group containing Z as a subgroup. This motivates the following generalization:

Corollary 13.7.27 If G is a topological group and N ⊆ G a discrete normal subgroup then the
quotient map p : G→ G/N is a covering map and there is a homomorphism π1(G/N, e)→ N . The
latter is surjective if G is path-connected and bijective if G is simply connected.

Proof. We let N act on G by (n, g) 7→ ng. The discreteness of N implies that the action is properly
discontinuous, and the rest follows from Theorem 13.7.25. �

We have seen in Exercise 13.4.21 that the fundamental group of a topological group is abelian.
The preceding corollary thus implies that every discrete normal subgroup N ⊆ G of a path-connected
topological group is abelian. Actually, it is easy to give a direct proof of a stronger result:

Lemma 13.7.28 If G is a connected topological group and N ⊆ G is a discrete normal subgroup
then N ⊆ Z(G). (Z(G) = {g ∈ G | gh = hg ∀h ∈ G is the center of G.)

Proof. Fix n ∈ N and consider the map G→ N, g 7→ gng−1. Since N is discrete and G connected,
this map must be constant, thus gng−1 = n for all g ∈ G. But this is equivalent to n ∈ Z(G). Since
this holds for all n ∈ N , we have N ⊆ Z(G). �

Example 13.7.29 1. The group SU(n) can be shown to be simply connected for every n ≥ 2. Its
center is given by Z(SU(n)) = {c1 | cn = 1} ∼= Z/nZ. Thus if A ⊆ Z(n) is a subgroup, we have
π1(SU(n)/A) ∼= A.

2. It is well known that there is a double covering of SO(3) by SU(2). Thus SO(3) ∼=
SU(2)/Z(SU(2)), “explaining” the fact π1(SO(3)) = Z/2Z.
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3. More generally, for every n ≥ 3 there is a simply connected compact group Spin(n) whose
center is Z/2Z and such that Spin(n)/Z(Spin(n))/ ∼= SO(n). (In fact, Spin(3) ∼= SU(2).) 2

13.7.4 Deck transformations

Definition 13.7.30 Let X be a connected space and p : X → Y be a surjective covering map. Then
a covering transformation4is a homeomorphism α : X → X such that α ◦ p = p. The covering
transformations form a group, denoted Deck(p).

Example 13.7.31 Let X = Y = C∗ with covering map p : X → Y, z 7→ z2. Now α : X → X, z 7→
−z clearly is a covering transformation, and G = {idX , α} is isomorphic to C2. One easily checks
that G acts properly discontinuously. Note that with X = Y = C, the map p : z 7→ z2 would not be
a covering map since #p−1(z) is not locally constant. 2

13.7.5 The universal covering space

Here the standard construction of the universal covering of a semilocally simply connected space.
Perhaps some comments on non-connected spaces.

13.7.6 Classification of covering spaces

Here the classification of coverings of a semilocally simply connected space in terms of subgroups of
π1. (Merge this with Section 13.7.3.) Connections to Galois theory. ([31, 174, 262, 277, 288])

13.7.7 Seifert-van Kampen Theorem II: Via coverings

Here a Grothendieck-style proof of Seifert-van Kampen (in the connected case) via covering space
theory. References: [102, 34, 73, 176, 260]

4Or ‘deck transformation’ from the German word for covering.



Appendix A

Background on sets and categories

A.1 Reminder of basic material

The basic material from (naive) set theory recalled in this subsection is fundamental and is used all
the time. One should not attempt to study topology before everything, including the proofs (most
of which are not given here) appears utterly evident.

A.1.1 Notation. Sets. Cartesian products

The following is a rapid summary of the notions, notations and facts that are assumed known.

Definition/Proposition A.1.1 • ∨ stands for ‘or’, ∧ for ‘and’, ¬ for ‘not’.

• The contraposition of A⇒ B is the equivalent statement ¬B ⇒ ¬A.

• We write N = {1, 2, . . .} (thus 0 is NOT considered a natural number), N0 = {0, 1, 2, . . .} and
R≥0 = [0,∞).

• If A,B are sets, A ⊆ B means x ∈ A⇒ x ∈ B, thus ⊆ denotes not necessarily strict inclusion.
Strict (or proper) inclusion (A ⊆ B, but A 6= B) is denoted by A ( B.1

• The set of all subsets of X, the powerset of X, is denoted by P (X).

• If F ⊆ P (X) is a family of subsets of X then
⋃
F denotes the union of all F ∈ F , i.e.⋃

F =
⋃
F∈F

F = {x ∈ X | ∃F ∈ F : x ∈ F}.

• If Yi ⊆ X ∀i then De Morgan’s formulae2 hold:

X\
⋃
i

Yi =
⋂
i

(X\Yi) , X\
⋂
i

Yi =
⋃
i

(X\Yi) .

• The cardinality of a set X is denoted by #X. ℵ0 := #N and c = #R = #P (N) = 2ℵ0.

1It might be more “logical” or more consistent with the use of < vs. ≤ to simply write ⊂ instead of ( to denote
strict inclusion. It is a fact, however, that a vast majority of mathematicians uses ⊂ to denote non-strict inclusion, so
that doing otherwise (as some authors insist on doing) can only create confusion. We therefore prefer to avoid ⊂ and
⊃ altogether, as done e.g. in [281].

2Augustus de Morgan (1806-1871). British mathematician and logician.
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• “X is countable” means #X ≤ ℵ0. Occasionally we write ‘at most countable’, but this is only
for emphasis. When #X = ℵ0 is intended, we always write “X is countably infinite”.

• Given two sets X, Y , there is another set, the Cartesian (or direct) product X × Y , having as
elements the pairs (x, y), where x ∈ X, y ∈ Y . Finite direct products X1× · · · ×Xn are defined
by induction.

• A function (or map) f : X → Y is a subset G(f) ⊆ X × Y such that #{y ∈ Y | (x, y) ∈
G(f)} = 1 for each x ∈ X. The unique y ∈ Y such that (x, y) ∈ G(f) is denoted f(x). (We
can consider f and G(f) as the same thing, which is probably better than considering G(f) as
the graph of the function f , the latter being considered as primary in some unclear sense.)

• If f : X → Y is a function and Z ⊆ X then f �Z or f|Z denotes the restriction of f to Z, i.e.
the function Z → Y defined by z 7→ f(z) for z ∈ Z. Clearly G(f �Z) = G(f) ∩ (Z × Y ).

• There are projection maps p1 : X × Y → X, p2 : X × Y → Y such that p1((x, y)) =
x, p2((x, y)) = y. (Alternatively, we may write pX , pY .)

• The set of all functions from X to Y is denoted Fun(X, Y ) or Y X .

• If X is a set, the characteristic function of X is defined by χX(x) = 1 if x ∈ X and χX(x) = 0
if x 6∈ X.

• If Y ⊆ X then χY ∈ {0, 1}X . (Strictly speaking, we should write χY � X, but we don’t.)
Conversely, if χ ∈ {0, 1}X then Y = {x ∈ X | χ(x) = 1} ⊆ X. One easily checks that this
establishes a bijection P (X)↔ {0, 1}X .

• A union of countably many countable sets is countable.

• A product of finitely many countable sets is countable.

• Cantor’s diagonal argument: #P (X) > #X for every set X. In particular, P (N) is uncount-
able.

• It is not true that countable products (defined later) of countable sets are countable! In fact,
if I is infinite and #X ≥ 2 then #XI ≥ #{0, 1}I ≥ #{0, 1}N = #P (N) > #N, thus XI is
uncountable. (This will be generalized in the next subsection.)

• If X is infinite and Y is finite then there is a bijection X × Y ∼= X. In terms of cardinal
numbers: nχ = χ whenever n ∈ N and χ ≥ #N.

Remark A.1.2 Central as the notion of products is, experience tells that there are widespread
misconceptions involving it and its difference to the (disjoint) union of sets. This leads to many �

mistakes. Here is a list of the most frequent ones:

• If A = ∅ or B = ∅ then A × B = ∅. Everything else is nonsense. (Like: If A = ∅ then A × B
‘does not exist’ or ‘A×B = {b | b ∈ B}’.)

• If A ⊆ X and B ⊆ Y then A × B ⊆ X × Y . But ‘most’ subsets of X × Y are not of this
form, as the example of the plane shows (where X = Y = R). If C ⊆ X × Y and one defines
A = p1(C) ⊆ X,B = p2(C) ⊆ Y then C ⊆A × B, but equality only holds if C is of the form
A′ ×B′ in the first place.
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• If A,B ⊆ X and C,D ⊆ Y then (A× C) ∩ (B ×D) = (A ∩B)× (C ∩D). But:

(A× C) ∪ (B ×D)⊆ (A ∪B)× (C ∪D) . Here ⊆ can be replaced by = only in special cases,

like A = B or C = D which lead to the distributivity laws (A× C) ∪ (A×D) = A× (C ∪D)
and (A × C) ∪ (B × C) = (A ∪ B) × C, as well as some uninteresting degenerate cases like
(A = X and C = Y ) or (A = ∅ and C ⊆ D) and some others.

• If A ⊆ X,B ⊆ Y then

{(x, y) | x 6∈ A ∧ y 6∈ B} = (X\A)× (Y \B) ⊆ (X × Y )\(A×B) = {(x, y) | x 6∈ A ∨ y 6∈ B}.

Equality holds only in very degenerate cases, namely when at least one of the following condi-
tions holds: (1) X = ∅, (2) Y = ∅, (3) A = B = ∅, (4) A = X, B = Y .

• Let X1 = X2 = {a, b} and X = X1×X2. If Y = {(a, a), (a, b), (b, b)} ⊆ X then X\Y = {(b, a)}.
Now p1(Y ) = {a, b} and p1(X\Y ) = {b}. Thus it is not true that Xi\pi(Y ) = pi(X\Y ) for
each Y ⊆ X.

• Two corollaries of the preceding point are: If Y, Z ⊆ X =
∏

iXi satisfy Y ∩ Z = ∅ then it
does not follow that pi(Y ) ∩ pi(Z) = ∅. (This is related to the fifth point of Lemma A.1.7.) In
particular x 6∈ Y does not imply pi(x) 6∈ pi(Y ).

Why these mistakes are made is mysterious. After all, everyone understands that the family of
rectangles in the plane (with edges parallel to the axes) is closed under intersection, but not under
union or complements. It is even more evident that not every subset of R2 is such a rectangle. 2

A.1.2 More on Functions

Definition A.1.3 If f : X → Y is a function, y ∈ Y and A ⊆ Y , we define

f−1(y) = {x ∈ X | f(x) = y}, f−1(A) = {x ∈ X | f(x) ∈ A}.

Clearly, the two definitions are consistent in that f−1({x}) = f−1(x).

Definition A.1.4 Let f : X → Y be a function.

• f is injective if f(x) = f(y) implies x = y. (I.e., #f−1(y) ≤ 1 ∀y ∈ Y .)

• f is surjective if for every y ∈ Y we have f−1(y) 6= ∅. (I.e., #f−1(y) ≥ 1 ∀y ∈ Y .)

• f is bijective if it is injective and surjective.

Lemma A.1.5 Let f : X → Y and g : Y → Z be functions.

• If f and g are injective then g ◦ f is injective. If f and g are surjective then g ◦ f is surjective.

• If g ◦ f is injective then f and g �f(X) are injective, but g need not. If g ◦ f is surjective then
g is surjective, but f need not.

• f is bijective (=injective and surjective) if and only if it has an inverse function, i.e. a function
h : Y → X such that h ◦ f = idX , f ◦ h = idY .

Lemma A.1.6 Let f : X → Y be a function. Then
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• S ⊆ X ⇒ S⊆ f−1(f(S)). Equality holds for all S ⊆ X if and only if f is injective.

• T ⊆ Y ⇒ f(f−1(T ))⊆T . Equality holds for all T ⊆ Y if and only if f is surjective.

Lemma A.1.7 Let f : X → Y be a function, A,Ai, B ⊆ X and C,Ci, D ⊆ Y . Then

• f−1
(⋂

i∈I Ci
)

=
⋂
i∈I f

−1(Ci).

• f−1
(⋃

i∈I Ci
)

=
⋃
i∈I f

−1(Ci).

• f−1(C)\f−1(D) = f−1(C\D).

• f
(⋃

i∈I Ai
)

=
⋃
i∈I f(Ai).

• f(A ∩B)⊆ f(A) ∩ f(B). Equality holds for all A,B if and only if f is injective.

• f(A)\f(B)⊆ f(A\B). Equality holds for all A,B if and only if f is injective.

A.1.3 Relations

Definition A.1.8 If X is a set, a (binary) relation on X is a subset R ⊆ X × X. Instead of
(x, y) ∈ R one often writes xRy. A relation R on X is called

(i) reflexive if xRx for all x ∈ X,

(ii) transitive if the combination of xRy and yRz implies xRz,

(iii) symmetric if xRy ⇔ yRx,

(iv) antisymmetric if the combination of xRy and yRx implies x = y,

(v) preorder if R is reflexive and transitive,

(vi) partial order if R is reflexive, transitive, and antisymmetric.

(viii) equivalence relation if R is reflexive, transitive, and symmetric,

Equivalence relations are usually denoted by one of the symbols ∼,',∼=, depending on the context.
Partial orders are usually denoted by ≤.

Remark A.1.9 More generally, a relation on sets X1, . . . , Xn is a subset R of X1 × · · · × Xn. In
particular, functions are special cases of relations: A relation R on X × Y is a function if and only
if it is left-total (for every x ∈ X there is at least one y ∈ Y such that (x, y) ∈ R) and right-unique
(for every x ∈ X there is at most one y ∈ Y such that (x, y) ∈ R). 2

For more on partial orders, cf. Section A.3.3. Here we focus on equivalence relations.

Exercise A.1.10 Let ≤ be a preorder on X. Prove that x ∼ y :⇔ (x ≤ y ∧ y ≤ x) defines an
equivalence relation.
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For every subset S ⊆ X ×X, there is a smallest equivalence relation ∼ on X such that (x, y) ∈
S ⇒ x ∼ y. Just define ∼ to be the intersection of all equivalence relations R ⊆ X ×X such that
S ⊆ R.

Let ∼ be an equivalence relation on a set X. For x ∈ X define [x] = {y ∈ X | y ∼ x}, the
equivalence class of x. We write X/∼= {[x] | x ∈ X} for the set of ∼-equivalence classes. For x, y ∈
X one either has [x] = [y] or [x] ∩ [y] = ∅. Thus the equivalence relation gives rise to a partitioning
of X in disjoint subsets. Conversely, a partitioning X =

⋃
i∈I Xi, where i 6= j ⇒ Xi ∩ Xj = ∅,

defines an equivalence relation ∼ via x ∼ y ⇔ ∃i : {x, y} ⊆ Xi.
There is an obvious surjective map p : X → X/∼, x 7→ [x]. On the other hand, every function

f : X → Y defines an equivalence relation ∼ on X via x ∼ y ⇔ f(x) = f(y). The equivalence classes
are the non-empty sets of the form f−1(y). If f is surjective then the ‘non-empty’ can be dropped
and there is a unique map g : X/∼→ Y such that g ◦ p = f . The above constructions essentially
give a bijection between equivalence relations on X and surjective maps f : X → Y . [In order to
make the ‘essentially’ precise, we call surjective maps f1 : X → Y1, f2 : X → Y2 isomorphic if there is
a bijection h : Y1 → Y2 such that h ◦ f1 = f2. Then there is a bijection between equivalence relations
on X and isomorphism classes of surjections f : X → Y .]

Given a function f : X → Y and an equivalence relation ∼ on X, it is important to know when
f ‘descends’ to a function X/∼→ Y :

Lemma A.1.11 (i) If X, Y are sets and ∼ is an equivalence relation on X then there is a bijection
between maps g : X/∼→ Y and maps f : X → Y that are constant on equivalence classes (i.e.
x ∼ x′ implies f(x) = f(x′)) such that f = g ◦ p, i.e. the diagram

X

X/∼

p

?

g
- Y

f

-

(A.1)

commutes.

(ii) g is injective if and only if f(x) = f(y) ⇒ x ∼ y.

(iii) g is surjective if and only if f : X → Y is surjective.

Proof. (i) Let p : X → X/∼ be the quotient map and g : X/∼→ Y a map. Clearly f := g◦p : X → Y
is constant on equivalence classes. Conversely, given f : X → Y constant on equivalence classes,
define g : X/∼→ Y as follows: For c ∈ X/∼ take a representer x ∈ c and define g(c) = f(x). It
is clear that the choice of x ∈ c does not matter. It is easy to see that these two constructions are
inverses of each other.

(ii) By assumption on f , we have x ∼ y ⇒ f(x) = f(y). If f(x) = f(y) then g(p(x)) = g(p(y)),
thus if g is injective we have p(x) = p(y), which is equivalent to x ∼ y. Conversely, assume
f(x) = f(y) ⇒ x ∼ y, and let c, d ∈ X/∼ satisfy g(c) = g(d). Then f(x) = f(y) whenever
x ∈ c, y ∈ d. But then the assumption on f implies x ∼ y and thus c = d. Thus g is injective.

(iii) In view of f = g ◦ p and the surjectivity of p, this is immediate by Lemma A.1.5. �

A.2 Disjoint unions and direct products
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A.2.1 Disjoint unions

Occasionally, given a family {Xi}i∈I of sets, we need a set X “containing each Xi as a subset”, or
rather more precisely a set X together with injective maps ιi : Xi → X. The obvious solution is
X =

⋃
i∈I Xi with ιi the inclusion maps. However, this leads to a ‘loss of points’ if the Xi are not

all mutually disjoint: {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5} has 5 elements instead of 6 = 3 + 3. What
one really wants is a set X together with injective maps ιi : Xi → X such that X =

⋃
i ιi(X) and

ιi(Xi)∩ ιj(Xj) = ∅ whenever i 6= j. The simplest solution is obtained by keeping track of from which
Xi a point x ∈ X originates:

Definition A.2.1 Let Xi be a set for every i ∈ I. Then the disjoint union is defined by⊕
i∈I

Xi = {(i, x) ∈ I ×
⋃
k∈I

Xk | i ∈ I, x ∈ Xi}.

For every k ∈ I, we define the inclusion map

ιi : Xi →
⊕
k∈I

Xk, x 7→ (i, x).

We also define b :
⊕

k∈I Xk → I by (i, x) 7→ i.

Remark A.2.2 1. The disjoint union of sets is also called the direct sum or coproduct, since its
properties are dual to that of the product, cf. below. Frequently the symbols

∐
or ·∪ are used instead

of ⊕. We will consistently use ⊕ for sets and topological spaces.
2. The point of this construction is that

⊕
i∈I Xi is a set that contains all the Xi, i ∈ I as subsets,

keeping track of ‘from which Xi a point x comes’, even if Xi ∩Xj 6= ∅. The following Lemma makes
this precise. 2

Lemma A.2.3 Let Xi be a set for every i ∈ I. Then

(i) The maps ιi : Xi →
⊕

k∈I Xk are injective.

(ii) If i 6= j then ιi(Xi) ∩ ιj(Xj) = ∅.

(iii)
⋃
i∈I

ιi(Xi) =
⊕
k∈I

Xk.

(iv) b(ιi(x)) = i ∀x ∈ Xi.

(v) The map b is surjective if and only if Xi 6= ∅ for each i ∈ I.

Proof. Obvious. �

Lemma A.2.4 Let Ai, Bi ⊆ Xi ∀i ∈ I. Then

(
⊕
i

Ai) ∪ (
⊕
i

Bi) =
⊕
i

(Ai ∪Bi), (
⊕
i

Ai) ∩ (
⊕
i

Bi) =
⊕
i

(Ai ∩Bi)

(
⊕
i

Xi)\(
⊕
i

Ai) =
⊕
i

(Xi\Ai).
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The following is the ‘universal property’ of the disjoint union of set and characterizes it (up to
isomorphism):

Proposition A.2.5 Let {Xi}i∈I be a family of sets and Y a set. Then there is a bijection between
maps f :

⊕
kXk → Y and families of maps {fi : Xi → Y }i∈I .

Proof. If f :
⊕

kXk → Y is given, define fi = f ◦ ιi. If a family {fi : Xi → Y }i∈I is given, define
f :

⊕
kXk → Y by f((i, x)) = fi(x). It is clear that these two constructions are inverses of each

other. �

A.2.2 Arbitrary direct products

Here we generalize the notion of a direct product of any family {Xi}i∈I of sets. Since we write
X1 ×X2 in infix notation, it may seem natural to write×i∈I Xi for general products, but very few
authors (like those of [91]) do this. We follow the standard practice of writing

∏
i∈I Xi. (Conversely,

X1

∏
X2 is even less common.)

Definition A.2.6 Let Xi be a set for every i ∈ I. Then the direct product is defined by

∏
i∈I

Xi =

{
f : I →

⋃
k∈I

Xk | f(i) ∈ Xi ∀i ∈ I

}
.

The projection maps are defined by

pi :
∏
k∈I

Xk → Xi, f 7→ f(i).

Again, there is a universal property:

Proposition A.2.7 Given a set X and a family of sets {Yi, i ∈ I}, there is a bijection between maps
f : X →

∏
k Yk and families of maps {fi : X → Yi}i∈I .

Proof. Given f : X →
∏

k Yk, define fi = pi ◦ f . If a family {fi : X → Yi}i∈I is given, define
f : X →

∏
k Yk by f(x) : I →

⋃
k Yk, i 7→ fi(x). Again, it is easy to see that the constructions are

inverses of each other. �

Lemma A.2.8 Let Ai, Bi ⊆ Xi ∀i ∈ I. Then

(
∏
i

Ai) ∩ (
∏
i

Bi) =
∏
i

(Ai ∩Bi), (
∏
i

Ai) ∪ (
∏
i

Bi)⊆
∏
i

(Ai ∪Bi),

∏
i

(Xi\Ai)⊆ (
∏
i

Xi)\(
∏
i

Ai).

As in the case of finite products, replacing the ⊆ by = gives formulas that are hardly ever true! (It
is instructive to work out when this is the case.)

Remark A.2.9 IMPORTANT: Let I and {Xi}i∈I be finite sets. Then

#

(⊕
i∈I

Xi

)
=
∑
i

#Xi, #

(∏
i∈I

Xi

)
=
∏
i

#Xi,
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cf. e.g. [210, Exercise 3 (!)]. It is therefore obvious that the two construction are not the same – just
as addition and multiplication of natural numbers are not the same! As recalled in the preceding
subsection, a countable union of countable sets is countable and a finite product of countable sets is
countable. But if I is infinite and #Xi ≥ 2 ∀i ∈ I then

#
∏
i∈I

Xi ≥ #{0, 1}I ≥ #{0, 1}N = #P (N) > #N,

as everyone has learned in the basic courses on set theory, basic logic (cf. e.g. [210, Proposition 1.1.5])
and analysis, cf. e.g. [280, Section 8.3]. (In this topology course, it reappears e.g. in the surjection
{0, 1}N → [0, 1] of (11.4) and in Lemma 11.1.32.) Thus: An infinite product (countable or not) of
non-trivial (in the sense of #Xi ≥ 2 ∀i) sets is uncountable! 3 2

It is clear that
∏

i∈I Xi = ∅ if Xi = ∅ for some i ∈ I (since in that case we cannot satisfy
f(i) ∈ Xi). At least when I is infinite, the usual axioms of set theory (whatever they are, like
Zermelo-Frenkel) do not imply that

∏
i∈I Xi 6= ∅, even when Xi 6= ∅ ∀i ∈ I. This leads to the Axiom

of Choice, which will be discussed next.

A.3 Choice axioms and their equivalents

A.3.1 Three formulations of the Axiom of Choice

Definition A.3.1 Axiom of Choice (AC):
∏

i∈I Xi 6= ∅ whenever Xi 6= ∅ ∀i ∈ I.

We will give two equivalent versions of the Axiom of Choice that are often useful. This requires
some more definitions.

Definition A.3.2 Let f : X → Y and g : Y → X be functions such that g ◦ f = idX . In this
situation, g is called a left-inverse of f , and f is a right-inverse or section of g.

Lemma A.3.3 (i) Let f : X → Y, g : Y → X satisfy g ◦ f = idX . Then f is injective and g is
surjective.

(ii) If f : X → Y is injective then it has a left-inverse g : Y → X.

Proof. (a) Lemma A.1.5(ii). (b) Choose some x0 ∈ X. Now define g : Y → X by

g(y) =

{
x if f(x) = y
x0 if y 6∈ f(X)

The second case clearly poses no problem, and the first case is well defined since f is injective. It is
evident that g ◦ f = idX . �

Notice that in the above proof, we had to make a single choice, that of x0, for which no Axiom
of Choice is needed!

Now the only remaining question is whether every surjective map f : X → Y has a right-inverse
or section g : Y → X. When Y is infinite, this involves infinitely many choices! In fact, we have the
following

3If this remark seems superfluous, I know otherwise from experience with an exam where less than 10% of the
students got this unambiguously right, after ≥ 2.5 years of study!
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Theorem A.3.4 The following statements are equivalent:

(i) Axiom of Choice.

(ii) Whenever X 6= ∅, there is a map h : P (X)\{∅} → X such that h(S) ∈ S for every S ∈
P (X)\{∅} → X. (I.e., h assigns to every non-empty subset S of X a point in S.)

(iii) For every surjective f : X → Y there is a map g : Y → X such that f ◦ g = idY .

Proof. (i)⇒(ii) Take I = P (X)\{∅} and XS = S for every S ∈ I. Now the Axiom of Choice gives a
map that assigns to every S ∈ I (thus ∅ 6= S ⊆ X) an element of XS = S.

(ii)⇒(iii) Since (ii) holds, we have a function h : P (X)\{∅} → X such that h(Y ) ∈ Y for
∅ 6= Y ⊆ X. Now, surjectivity of f means that for every y ∈ Y we have Ky := f−1(y) 6= ∅. Thus
each Ky is a non-empty subset of X. Now we define g : Y → X by g(y) = h(Ky). By definition,
g(y) is in X and satisfies f(g(y)) = y, thus g is a right inverse for f .

(iii)⇒(i). Let Xi 6= ∅ ∀i ∈ I. By Lemma A.2.3.(v), the map b :
⊕

iXi → I is surjective. Thus by
(iii) it has a section, i.e. a function s : I →

⊕
iXi such that b(s(i)) = i ∀i ∈ I. But this means that

s(i) ∈ Xi ∀i ∈ I. Thus s is an element of
∏

iXi, proving AC. �

Remark A.3.5 In the literature, one can find all three statements above called the Axiom of Choice.
In view of the theorem, this can cause no problem. 2

A.3.2 Weak versions of the Axiom of Choice

For some purposes, the following weaker axiom is sufficient. Some authors find that acceptable, but
not AC. (This is an attitude that the present author fails to understand.)

Definition A.3.6 The Axiom of Countable Choice (ACω) coincides with AC, except that I must be
countable.

It is easy to prove that ACω is equivalent to the existence of sections for surjective maps f : X → Y
with countable Y . There is no ACω-analogue for (ii) in Theorem A.3.4 since P (X) is either finite or
uncountable.

We will encounter another weakened version of AC:

Definition A.3.7 The Axiom of Countable Dependent Choice (DCω) is the following statement:
Let X be a set and R ⊆ X × X a relation such that for every x ∈ X there exists y ∈ X with
xRy. (I.e. R is left-total.) Then for every x1 ∈ X there exist {xn}n≥2 such that xnRxn+1 for all
n ∈ N.

Exercise A.3.8 (i) Prove the implications AC⇒DCω ⇒ACω.

(ii) Can you prove ACω⇒DCω?

Remark A.3.9 1. One can define choice axioms DCκ for κ 6= ω, but we will never need them. We
only write DCω instead of DC for emphasis and recognizability.

2. What we called the Axiom of Countable Dependent Choice (DCω) actually differs from what
most authors mean by this term. The standard definition, which we call DC’ω, is the following
statement: If X is a non-empty set and R ⊆ X × X is a relation such that for every x ∈ X there
exists y ∈ X with xRy, then there exists a sequence {xn}n∈N such that xnRxn+1 for all n ∈ N. Thus
there is no restriction on the beginning x1 of the sequence. It is trivial to see that DCω ⇒DC’ω. The
converse requires some work: 2
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Exercise A.3.10 Prove that DC’ω ⇒DCω. Hint: The proof involves constructing new pair (X ′, R′),
such that DC’ω for (X ′, R′) implies DCω for (X,R).

A.3.3 Zorn’s Lemma

The material concerning Zorn’s lemma in this subsection is needed for the proof of Tychonov’s
theorem in Section 7.5, but also in some other places. In fact, it plays an important rôle in many
parts of mathematics. We begin with a heuristic discussion.

Often in mathematics, one wants to prove the existence of a set that is maximal w.r.t. a certain
property. In favorable cases, this can be done by taking the union of all sets with that property. For
example, the interior Y 0 of Y ⊆ X, to wit the maximal open set contained in Y , can be obtained as
the union of all open U with U ⊆ Y . This works since the union of an arbitrary number of open sets
is open. However, the property that the maximal object is supposed to have is not always preserved
under arbitrary unions. Consider the problem of finding a basis B in a vector space. While a basis
is the same as a maximal linearly independent subset, it is clear that B cannot be obtained as the
union of all finite linearly independent subsets, since a union of linearly independent sets has no
reason to be linearly independent. On the other hand, the union over a totally ordered family of
linearly independent sets actually is linearly independent, and this is the exactly the situation for
which Zorn’s lemma was proved.

Recall the definition of partial orders given as part of Definition A.1.8. Here we write ≤ instead
of R.

Definition A.3.11 A (partial) order ≤ where for all x, y ∈ X we have x ≤ y or y ≤ x is called a
total order or linear order.

A partially (totally) ordered set is a pair (X,≤), where X is a set and ≤ is a partial (total)
ordering on X. A subset S ⊆ X is understood to be ordered by the restriction of ≤. Partially
(totally) ordered sets are often called posets (respectively, chains). In particular, a chain in a poset
is a totally ordered subset.

Definition A.3.12 If (X,≤) is a partially ordered set and S ⊆ X, then y ∈ X is called an
upper bound for S if x ≤ y for all x ∈ S. (An upper bound for S need not satisfy y ∈ S, but if
it does it is called greatest element of S. One easily sees that greatest elements are unique.)

If (X,≤) is a partially ordered set, m ∈ X is called maximal if m ≤ x ∈ X implies x = m.
Lower bounds, smallest and minimal elements are defined analogously.

Remark A.3.13 A greatest element of a poset X also is a maximal element. If X is totally ordered,
a maximal element also is (the unique) greatest element, but this is not true for general posets.
Maximality then just means that there are no truly bigger elements. And of course, an upper bound
for a subset S ⊆ X need not be a maximal element of X. 2

Lemma A.3.14 (Zorn (1935)) 4 Let (X,≤) be a non-empty partially ordered set in which every
chain has an upper bound. Then X has a maximal element.

Assuming Zorn’s Lemma, we can return to our motivating problem.

Proposition A.3.15 (i) Every vector space has a basis.

4Max August Zorn (1906-1993), German mathematician
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(ii) Every commutative unital ring has a maximal ideal, i.e. a proper ideal not contained in a larger
proper ideal.

Proof. (i) Let V be a vector space (over some field F) and define

B = {S ⊆ V | the elements of S are linearly independent}.

The set B is partially ordered by inclusion ⊆. We claim that every chain in (B,⊆) has a maximal

element: Just take the union Ŝ of all sets in the chain. Since any finite subset of the union over a
chain of sets is contained in some element of the chain, every finite subset of Ŝ is linearly independent.
Thus Ŝ is in B and clearly is an upper bound of the chain. Thus the assumption of Zorn’s Lemma
is satisfied and (B,⊆) has a maximal element M . We claim that M is a basis for V : If this was
false, we could find a v ∈ V not contained in the span of M . But then M ∪ {v} would be a linearly
independent set strictly larger than M , contradicting the maximality of M .

(ii) If R is a commutative unital ring, let I be the set of the ideals I in R that are proper, i.e.
I 6= R, partially ordered by inclusion. If C is a chain in I, it is easy to see that

⋃
C = ∪I∈CI is an

ideal, which clearly is an upper bound for C. By Zorn’s lemma, there is a maximal element M of I,
and it is clear that M is a maximal ideal. �

Remark A.3.16 Each of the statements (i), (ii) implies the Axiom of Choice. See [29] and [20],
respectively. 2

Using Zorn’s Lemma in order to prove existence of certain maximal structures typically is quite
easy: The choice of the partially ordered set (X,≤) usually is obvious, and proving that every chain
has an upper bound easy. In some cases, like (ii) above, the existence of a maximal element asserted
by Zorn’s lemma is exactly what one wants to show. In other cases another short argument is
required, as in (i) above or in the following:

Proposition A.3.17 Zorn’s Lemma implies the Axiom of Choice.

Proof. Let Xi 6= ∅ ∀i ∈ I. A partial choice function is a pair (J, f), where J ⊆ I and f : J →
⋃
kXk

satisfies f(j) ∈ Xj ∀j ∈ J . The set of partial choice functions is partially ordered as follows:

(J, f) ≤ (J ′, f ′) :⇔ J ⊆ J ′ and f ′ �J = f.

To see that every chain of partial choice functions has an upper bound, let Ĵ be the union of all the
J ’s in the chain and define f̂ : Ĵ →

⋃
kXk by saying f̂(i) = f(i) for any member (J, f) of the chain

such that i ∈ J . (This is well defined is clear in view or the definition of ≤.) Clearly (Ĵ , f̂) is an
upper bound for the chain. Thus by Zorn’s lemma, there is a partial choice function (M, f) that is
maximal. We claim that M = I, such that f is a choice function as required by the Axiom of Choice.
If we had M ( I, we could pick a j′ ∈ I\M and an x ∈ Xj′ and extend f̂ to M ∪{j′} by mapping j′

to x. But this would contradict the fact that (M, f) is a maximal element in the set of partial choice
functions. �

The converse implication AC⇒ Zorn is also true, but the proof is somewhat trickier and requires
the introduction of some further terminology. It is given in the following (optional) subsection.

Remark A.3.18 1. The second application of Zorn’s lemma shows that the discussion at the be-
ginning of the section was somewhat simplistic: The elements of the partially ordered set to which
Zorn’s lemma is applied need not be subsets of some big set X. Often they are families of subsets of
X (thus again subsets of P (X)), or something more general.
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2. Apart from Zorn’s Lemma, the Axiom of Choice is equivalent to many other statements,
e.g. the Maximal Chain Principle, the Well-Ordering Principle and the Teichmüller-Tukey Lemma.
(For the first two, cf. Section A.3.5.) It is quite misleading that these equivalent statements are
called Axiom, Principle, Lemma, respectively, since they are logically on exactly the same footing.
However, it seems natural to consider the three elementary statements considered in Theorem A.3.4
as more ‘fundamental’, in particular the desirable and ‘intuitively obvious’ ones “Every product of
non-empty sets is non-empty” and “Every surjection admits a section”.

3. The equivalent purely set (and order) theoretic statements listed above have many applications
in algebra, general topology and analysis. Some of the facts deduced from the axiom of choice actually
also imply it, e.g. the fact that every vector space has a basis, cf. [29], Krull’s “every commutative
unital ring has a maximal ideal”, cf. [147], and Tychonov’s theorem (“every product of compact
topological spaces is compact”), cf. Theorem 7.5.13. 2

A.3.4 Proof of AC ⇒ Zorn

We will follow [190]; for alternative approaches cf. e.g. [125, 234].

Definition A.3.19 A poset (X,≤) is called well-ordered if every non-empty subset S ⊆ X has a
smallest element.

Remark A.3.20 1. A well-ordered set is totally ordered: Consider its subsets of the form {x, y}.
2. N is well-ordered, but Z is not: {. . . ,−2,−1, 0} has no smallest element. Similarly, Z,Q,R

are not well-ordered, but also R≥0 is not: An open subset (a, b) has a lower bound (namely a), but
no smallest element.

3. If (X,≤) is well-ordered and x ∈ X is not largest element of X then Y = {y ∈ X | y > x}
is non-empty, thus has a smallest element by well-orderedness of X. This element is the immediate
successor of x, also denoted x+ 1.

4. For more on well-orders see the next two sections. 2

If (X,≤) is a poset, x ∈ X and Y ⊆ X, we define

L(x) = {y ∈ X | y < x}, LY (x) = L(x) ∩ Y = {y ∈ Y | y < x}.

Subsets of this form are called initial segments (in Y ).

Proof of AC ⇒ Zorn. Let (X,≤) be a poset in which every chain has an upper bound. In order to
arrive at a contradiction, we assume that X has no maximal element, i.e. for every x ∈ X there is a
y ∈ X such that y > x (i.e. x ≤ y and x 6= y). If C is a chain in X, by assumption it has an upper
bound b. Then any y > b satisfies y > x for all x ∈ C. Thus the set S(C) = {y ∈ X | y > x ∀x ∈ C}
of strict upper bounds of C is non-empty. By AC, there is a function f that assigns to every chain
C ⊆ X a strict upper bound f(C) ∈ S(C).

With these preparations in place, a subset A of X is called conforming if (X,≤) is well-ordered
and x = f(LA(x)) for every x ∈ A.

Lemma A.3.21 Under the above assumptions, let A 6= B be conforming subsets of X. Then one of
these subsets is an initial segment of the other.

Proof. We assume that A\B 6= ∅. (Otherwise we have A ⊆ B and are done.) Let x be the smallest
element of A\B, which exists by the well-orderedness. Then LA(x) ⊆ B We claim that LA(x) = B.
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To obtain a contradiction, assume that B\LA(x) 6= ∅, and let y be the smallest element of B\LA(x).
Given any element u ∈ LB(y) and any element v ∈ A such that v < u, it is clear that v ∈ LB(y).
Therefore if z is the smallest member of A\LB(y), we have LA(z) = LB(y). Note that z ≤ x. But
since

z = f(LA(z)) = f(LB(y)) = y,

and since y ∈ B, we cannot have z = x. Therefore z < x, and we conclude that y = z ∈ LA(x),
contradicting the choice of y. �

Using the property of comparability of conforming subsets that we have just proved, we now
observe that if A is a conforming subset of X and x ∈ A, then whenever y < x, either y ∈ A or y
does not belong to any conforming set. It now follows easily that the union U of all the conforming
subsets of X is conforming, and we deduce from this fact that if x = f(U), then the set U ∪ {x} is
conforming. Therefore, x ∈ U , contradicting the fact that x is a strict upper bound of U . �

A.3.5 Some other statements equivalent to AC and Zorn’s Lemma

There are several other statements that are equivalent to the Axiom of Choice and Zorn’s Lemma
that can be stated without introducing further terminology.

Definition A.3.22 Hausdorff’s Maximal Chain Principle (MCP): Every poset (X,≤) contains a
maximal chain, i.e. a chain that is not properly contained in another one.

Proposition A.3.23 MCP ⇔ ZL.

Proof. ⇒: Let (X,≤) satisfy the hypothesis in ZL, i.e. every totally ordered subset S ⊆ X has an
upper bound. By MCP there is a maximal totally ordered subset M . By assumption, the latter has
an upper bound y ∈ X. We claim that y is a maximal element of X: Let z ∈ X such that y ≤ z. If
z 6∈M then M ∪{z} is a totally ordered set properly containing M . This contradicts the maximality
of M , and therefore we must have z ∈M . But since y is an upper bound for M , we also have z ≤ y
and therefore z = y. Thus y is maximal.

⇐ Given an ordered set (X,≤), let Y be the set of totally ordered subsets of X, ordered by
inclusion. If C is a chain in the poset (Y,⊆),

⋃
C is a subset of X. If x, y ∈

⋃
C, then by the total

order of C there is a Y ∈ C such that x, y ∈ Y , implying that x and y are comparable. Thus
⋃
C is

totally ordered, thus in Y and it clearly is an upper bound for C. Now Zorn’s lemma immediately
gives a maximal element. �

In view of the above, an alternative if less direct proof of AC⇒ Zorn can be obtained by proving
AC ⇒ MCP, as is done in [36, App. B] and [252, Appendix].

There is a closely related equivalent statement:

Definition A.3.24 MCP’: Every chain in a poset is contained in a maximal chain.

Clearly MCP’ implies MCP, and proving MCP’ from ZL works just as the proof of MCP, except
that one applies the ZL to the set of chains containing the given one.

The other statement we consider uses the notion of well (thus also totally) ordered sets:

Definition A.3.25 Well-Ordering Principle (WOP): Every set X admits a partial order ≤ such
that (X,≤) is well-ordered.
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Remark A.3.26 1. The order ≤ provided by the WOP typically has nothing to do with a previously
given ‘natural’ order on X.

2. The WOP is useful since well-orderings are the basis for ‘transfinite induction’, which gener-
alizes ordinary mathematical induction (over N), cf. Section A.3.6. 2

Theorem A.3.27 WOP is equivalent to AC and ZL.

Proof. It is trivial to prove WOP⇒AC, version (ii): Give X a well-ordering and define the choice
function f : P0(X)→ X by mapping S ∈ P0(X) to its smallest element.

Also proving ZL⇒WOP is not hard: Let X be a set, and put

W = {(Y,≤) | Y ⊂ X, ≤ well-ordering on Y }.

Order W by saying that (Y1,≤1) ≤ (Y2,≤2) if Y1 = LY2(y) for some y ∈ Y2 and ≤1 is the restriction
of ≤2 to Y1. If C = {(Yι,≤ι)} is a chain inW , one constructs an upper bound for C in the usual way:
Put Y =

⋃
ι Yι. If y, y′ ∈ Y then there is ι such that y, y′ ∈ Yι. Now put y ≤Y y′ if and only y ≤Yι y′.

Now Zorn’s lemma gives a maximal element (M,≤M) for (W ,≤). If M 6= X, pick x ∈ X\M , define
M ′ = M ∪ {x} and extend ≤M to M ′ be declaring x larger than every element of M . This gives an
element of W larger than (M,≤M), which is a contradiction. Thus M = X, and ≤M is the desired
well-ordering on X. �

A.3.6 More on well-orderings. Transfinite induction. ∆-system lemma

An important application of well-orderings is the following:

Lemma A.3.28 (Transfinite Induction) Let (X,≤) we a well-ordered set. If Y ⊆ X is such that
L(y) ⊆ Y implies y ∈ Y then Y = X.

Proof. Assume Y 6= X, thus X\Y 6= ∅. Let y be the smallest element of X\Y . By definition of y we
have z ∈ Y for all z < y, thus L(y) ⊆ Y . Now the hypothesis gives the contradiction y ∈ Y . �

Remark A.3.29 For X = N with its usual ordering, the Lemma reduces to ‘strong induction’: If
the truth of statement P (m) for all m < n implies the truth of P (n) then P (n) holds for all n ∈ N.
2

Lemma A.3.30 If (X,≤) is well-ordered and Y ⊆ X then (Y,≤) is order isomorphic to (X,≤) or
to an initial segment of X.

Proof. ************
�

Theorem A.3.31 Let (X,≤), (Y,≤′) be well-ordered sets. Then they are either order isomorphic or
(X,≤) is order isomorphic to an initial segment of (X ′,≤′) or conversely. These three alternatives
are mutually exclusive.

Proof. We follow [125]: Let X0 ⊆ X be the set of those x for which there exists a y ∈ Y such that
there is an order isomorphism LX(x) ∼= LY (y). Such a y is unique, if it exists. Sending x ∈ X0 to
the corresponding y, we have a map α : X0 → Y . Let Y0 = α(X0) ⊆ Y .

*********
�
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Proposition A.3.32 (ω1) (i) There is a well ordered, thus totally ordered, set (X,≤) such that
X is uncountable but L(x) = {y ∈ X | y < x} is countable for each x ∈ X.

(ii) An ordered set as in (i) has no upper bound.

(iii) Any two ordered sets with the properties in (i) are order isomorphic.

(iv) There exists no uncountable set X ′ with cardinality strictly smaller than X.

Proof. (i) Let X0 be any uncountable set (like R or P (N)) and use WOP to put a well-ordering
on it. If (X0,≤) has the desired property, we put X = X0 and are done. If not, define B =
{x ∈ X0 | L(x) is uncountable}. Since (X0,≤) is well-ordered, B has a smallest element b. Define
X = L(b). Now X is uncountable (since b ∈ B) but L(x) is countable for each x ∈ X since x < b
implies x 6∈ B. As an initial segment of a well-ordered set, (X,≤) still is well-ordered, and we are
again done.

(ii) If (X,≤) had an upper bound u, we would have X = L(u)∪{u}, leading to the contradiction
that X is countable.

(iii) Let (X1,≤1), (X2,≤2) have the properties in (i). By Theorem A.3.31 they are either order
isomorphic, in which case we are done, or one of them is isomorphic to an initial segment of the
other. But by definition, any initial segment of (X1,≤1) is countable and therefore cannot be order
isomorphic to (X2,≤2), and vice versa. Thus (X1,≤1) ∼= (X2,≤2).

(iv) If there was a set X ′ with #N < #X ′ < #X then we could do the construction in (i) with
X0 = X ′. But then the resulting X ′′ would have #X ′′ ≤ #X ′ < #X, contradicting the uniqueness
statement in (iii). �

Remark A.3.33 1. A more high-brow approach to obtaining a well-ordered set with the properties
in (i) would be to note that the smallest uncountable ordinal number ω1 has these properties. (This
can even be done without invoking the Axiom of Choice.) But we prefer to avoid ordinal numbers.
Anyway, by the above uniqueness result, our (X,≤) “is” ω1.

2. While the above produces a set with the smallest uncountable cardinality, we do not know
whether the latter is #R or strictly smaller, since that depends on whether the continuum hypothesis
holds in our set theory. For the applications this will not be a problem.

3. The ordered set ω1 = (X,≤) is used in the proof of Lemma A.3.35 below, but it has other
applications in topology. The associated ordered topological space, often denoted [0, ω1), and its one-
point compactification [0, ω1] are interesting for many reasons. We will show in Proposition 8.3.42
that [0, ω1] also is the Stone-Čech compactification of [0, ω1). And ω1 is the essential ingredient in
the construction of the long ray and the long line, cf. Definitions 4.2.10 and 6.4.24. 2

Proposition A.3.34 (Transfinite recursion) Let a well-ordered set (X,≤), a set Y and a func-
tion f :

⊕
x∈X Y

L(x) → Y [thus f assigns an element of Y to every Y -valued function defined on
some L(x), where x ∈ X] be given.

Then there is a unique function F : X → Y such that F (x) = f(F �L(x)) ∀x ∈ X.

Proof. Uniqueness: Let F,G : X → Y be functions satisfying the assertion. Let Z = {x ∈ X | F (x) =
G(x)}. Assume L(x) ⊆ Z, thus F �L(x) = G�L(x). Then

F (x) = f(F �L(x)) = f(G�L(x)) = G(x),

thus x ∈ Z. Now transfinite induction (Lemma A.3.28) gives Z = X, thus F = G.
The proof of existence of F uses transfinite induction, but it is more work.
************ include proof [125, p.71]. �
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Lemma A.3.35 (∆-system lemma) If A is an uncountable family of finite sets then there exists
an uncountable subfamily A0 ⊆ A and a finite set A such that X ∩ Y = A for all X, Y ∈ A0 with
X 6= Y .

Proof. Let An = {A ∈ A | #A = n}. Since A =
⋃
nAn is uncountable, there must be an n ∈ N such

that An is uncountable. Replacing A by such an An, we may assume that #A = n for all A ∈ A. We
will prove the lemma by induction over n. Since n = 0 would mean that the elements of A are empty,
thus #A ≤ 1, we begin with n = 1. A family of singletons clearly satisfies X 6= Y ⇒ X ∩ Y = A
with A = ∅. Assume that the lemma is true for families of sets with cardinality < m. Let A be an
uncountable family of sets that have cardinality m. Now there are two cases:

Case (i): There is a B ∈ A that intersects uncountably many A ∈ A. Since B is finite, there
is an x ∈ B that is contained in uncountably many A ∈ A. Defining A′ = {A\{x} | x ∈ A ∈ A},
each element of A′ has cardinality m− 1, thus by the induction hypothesis there is an uncountable
subfamily A′′ ⊆ A′ and finite set A′ such that X, Y ∈ A′′, X 6= Y ⇒ X∩Y = A′. Now A0 = {A | x ∈
A ∈ A} is an uncountable subfamily of A, and X, Y ∈ A0, X 6= Y ⇒ X ∩ Y = A′ ∪ {x} =: A, as
desired.

Case (ii): {A ∈ A | A ∩ B 6= ∅} is countable for every B ∈ A. We use a well ordered set
(I,≤) as provided by Proposition A.3.32 with I uncountable but L(i) countable for every i ∈ I.
Our aim is to use transfinite recursion to define a map F : I → A, which we denote i 7→ Ai for
readability. An element of AL(i), where i ∈ I, is the same as a a family {Aj ∈ A | j < i}. The
hypothesis of Case (ii) together with the countability of L(i) for each i ∈ I implies that there are
at most countably many B ∈ A that have non-trivial intersection with some Aj where j < i. Since
A is uncountable, there exists a B ∈ A such that B ∩

⋃
j<iAj = ∅. Using the axiom of choice, we

therefore can define a map f :
⊕

i∈I AL(i) → A such that f({Aj ∈ A | j < i}) ∩
⋃
j<iAj = ∅. Now

Proposition A.3.34 gives a map F : I → A such that F (i) = f(F �L(i)). By construction, we have
Ai = F (i) = f(F �L(i)) ⊆

⋃
A\
⋃
j<iAj, thus Ai ∩ Aj = ∅ whenever j < i, thus whenever i 6= j.

Therefore A0 = {Ai | i ∈ I} is an uncountable family of mutually disjoint sets, so that the lemma
holds (with A = ∅). �

A.4 Lattices. Boolean algebras

Definition A.4.1 A lattice is a poset (partially ordered set) (L,≤) in which each two-element subset
has an infimum and a supremum. If a, b ∈ L, we write a ∨ b = sup{a, b}, a ∧ b = inf{a, b}.

Comments:

• Equivalently, we could require that every finite subset has an infimum and a supremum.

• Since the infimum and supremum (of any subset, provided they exist) are unique, we can
consider (a, b) 7→ a ∨ b and (a, b) 7→ a ∧ b as binary operations on L.

• It is obvious that the operations ∨,∧ are commutative and associative and satisfy idempotency:
a ∨ a = a = a ∧ a.

• We have a ∧ b ≤ a ≤ a ∨ b and therefore for all a, b the absorption identities

a ∨ (a ∧ b) = a = a ∧ (a ∨ b) (A.2)

hold.
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• We have a ≤ b ⇔ a ∧ b = a ⇔ a ∨ b = b.

Definition A.4.2 An algebraic lattice is a triple (L,∨,∧), where L is a set and ∨,∧ are binary
operations L× L→ L satisfying associativity, commutativity and absorption (A.2).

Lemma A.4.3 Let (L,∨,∧) be an algebraic lattice. Then:

(i) Idempotency holds: a ∨ a = a = a ∧ a.

(ii) We have a ∧ b = a ⇔ a ∨ b = b.

(iii) Defining a ≤ b :⇔ a ∧ b = a, the relation ≤ is a partial order on L.

(iv) The partially ordered set (L,≤) is a lattice, and sup≤{a, b} = a ∨ b, inf≤{a, b} = a ∧ b.

Proof.
�

Thus for every set L, there is a bijection between lattice structures ≤ on L and algebraic structures
(L,∨,∧) satisfying (a),(b).

Definition A.4.4 A lattice (L,≤) is called bounded if (L,≤) has a smallest and a largest element,
called 0 and 1 respectively.

It is clear that 0, 1 are unique, if they exist and that we have

a ∨ 0 = a = a ∧ 1, a ∧ 0 = 0, a ∨ 1 = 1

for all a ∈ L.

Definition A.4.5 A lattice (L,≤) is called distributive if for all a, b, c ∈ L we have

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Definition A.4.6 A Boolean algebra is a bounded distributive lattice (L,≤, 0, 1) coming with a
complementation, i.e. a map L→ L, a 7→ ¬a such that

************

A.5 Basic definitions on categories

Example A.5.1 Let G be the set of all groups. (There is a set-theoretic problem here, related to
Russel’s paradox. This problem can be avoided in several ways, e.g. by taking G to be the class of
all groups. But this discussion is only marginally relevant here, and we ignore it.) If G,H ∈ G, thus
G,H are groups, we denote by Hom(G,H) the set of all group homomorphisms from G to H. (This
really is a set, since Hom(G,H) ⊆ Fun(G,H) ⊆ P (G × H).) Instead of α ∈ Hom(G,H) we also
write α : G → H. For every G ∈ G, we have a distinguished morphism idG ∈ Hom(G,G), namely
the identity map. If α ∈ Hom(G,H), β ∈ Hom(H,K) then the composite map β ◦ α is an element,
clearly uniquely defined, in Hom(G,K). It is clear that for α : G→ H we have idH ◦α = α = α◦ idG,

thus the idG are identities for the composition ◦. Finally, if G
α→ H

β→ K
γ→ L then we have the

associativity γ ◦(β ◦α) = (γ ◦β)◦α which holds for any composition of functions. Thus the operation
◦ is associative.
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Now observe that if we pick any field k and replace G by the ‘set’ Vk of k-vector spaces and by
Hom(V,W ) we mean k-linear maps from V to W , the rest of the discussion goes through unchanged.
It should be clear by now that a similar situation arises if we talk about all sets with all functions
as morphisms, or about topological spaces together with continuous maps. This situation arises
virtually everywhere in mathematics, which leads to the following definition. 2

Definition A.5.2 A category C consists of a class Obj C of objects and, for every pair X, Y ∈ Obj C
of objects, a set HomC(X, Y ) of morphisms from X to Y . If s ∈ HomC(X, Y ), we also write s : X →
Y or X

s→ Y . For every X ∈ Obj C, there is a distinguished morphism idX : X → X. Whenever

X
f→ Y

g→ Z, there is a morphism g ◦ f : X → Z, the composite of f and g. These data satisfy:

• If X
f→ Y

g→ Z
h→ W , we have associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• If f : X → Y then f ◦ idX = f = idY ◦ f .

We write EndC(X) := HomC(X,X). When there is no risk of confusion, we write Hom(X, Y ) and
End(X) instead of HomC(X, Y ) and EndC(X).

Remark A.5.3 1. Categories (and functors and natural transformations, cf. below) were invented
(discovered?) in the years 1942-43 for the purposes of topology and homological algebra and formally
defined in 1945, cf. [81]. They are now an indispensable part of the mathematical toolkit, without
which a large part of modern (1945-) mathematics would be unthinkable. (Some people even think
that categories should replace sets as foundation of mathematics, but I wouldn’t go that far.)

2. Usually we will use upper-case letters for objects and lower-case letters for morphisms. We
will mostly write X ∈ C instead of X ∈ Obj C. 2

Definition A.5.4 A morphism f : X → Y is called isomorphism if it admits an inverse, i.e. a
morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY . (Such a g is unique.)

Two objects X, Y are called isomorphic, X ∼= Y , if an isomorphism between them exists.

Definition A.5.5 A morphism f : X → Y is called . . .

• monic (or monomorphism) if f ◦ g = f ◦ h, where g, h : Z → X, implies g = h.

• epic (or epimorphism) if g ◦ g = h ◦ f , where g, h : Y → Z, implies g = h.

Exercise A.5.6 (i) Prove that every isomorphism is both monic and epic.

(ii) For a morphism f in the category SET of sets, prove: f is monic ⇔ f is injective, and f is
epic ⇔ f is surjective.

(iii) Conclude that in SET we have: f is an isomorphism⇔ f is a bijection⇔ f is monic and epic.
(Warning: There are categories where f monic+epi does not imply that f is an isomorphism!)

Definition A.5.7 If C is a category, an object X ∈ C is called initial (resp. terminal) if for every
Y ∈ C, there is exactly one morphism f : X → Y (resp. f : Y → X).

Example A.5.8 If C = Set then the empty set ∅ is initial and every one-point set (=singleton) {x}
is terminal. In C = Grp, the trivial group {e} is both initial and terminal. 2
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Exercise A.5.9 Prove that any two initial objects are isomorphic, and any two terminal objects are
isomorphic.

Definition A.5.10 A subcategory of a category C is a category D such that ObjD ⊆ Obj C and,
HomD(X, Y ) ⊆ HomC(X, Y ) for all X, Y ∈ ObjD. The composition of morphisms in D is inherited
from C, and the unit morphisms of D are those of C.

A subcategory D ⊆ C is called full if HomD(X, Y ) = HomC(X, Y ) for all X, Y ∈ ObjD.

Definition A.5.11 Let C be a category. The opposite category Cop is defined by

Obj Cop = Obj C, HomCop(Xop, Y op) = HomC(Y,X).

An object X ∈ Obj C is written Xop when it is considered as an object of Cop. When s ∈ HomC(X, Y )
is interpreted as an element of HomCop(Y op, Xop) it is written sop. If s ∈ HomC(X, Y ) = HomCop(Y op, Xop)
and t ∈ HomC(Y, Z) = HomCop(Zop, Y op) then the composite sop◦top is given by (t◦s)op. The identity
morphisms are given by idXop = (idX)op.

Categories are just a type of algebraic structure like groups or vector spaces. Since there is a
notion of homomorphism of groups and of vector spaces, it is only natural to ask for a notion of
homomorphisms between categories. Since a homomorphism of algebraic objects should preserve all
the structures on that object (composition, units, etc.), we are naturally led to the following (except
for the name of the notion):

Definition A.5.12 If C,D are categories, a functor from C to D, denoted F : C → D, consists
of a map F : Obj C → ObjD and, for every pair X, Y ∈ Obj C, of a map F : HomC(X, Y ) →
HomD(F (X), F (Y )). These maps satisfy

(i) For every X ∈ Obj C, we have F (idX) = idF (X).

(ii) Given X
f→ Y

g→ Z, we have F (g ◦ f) = F (g) ◦ F (f).

The class of all functors C → D is denoted Fun(C,D).

Lemma A.5.13 There is a category Cat whose objects are categories and such that HomCat(C,D)
is given by the functors F : C → D.

Proof. It is clear that functors C F→ D G→ E can be composed to give a functor G ◦ F : C → E , and
that this, together with identity functors idC, satisfies the axioms of a category. �

Remark A.5.14 In order to avoid set theoretic problems, one should define Cat as the category of
small categories, but we won’t bother. 2

Example A.5.15 1. There are many forgetful functors, like the functor F : Grp→Sets, which sends
any group to its underlying set, forgetting the group structure, and every group homomorphism to
the underlying set map.

2. There are the functors F : Set→Ab and Gk : Set→Vectk which associate to every set X the
free abelian group which has the elements of X as generators, respectively the k-vector space that
has X as basis (the “finite linear combinations of elements of X with coefficients in k”). Every set
map f : X → Y induces a homomorphism F (f) : F (X) → F (Y ) of abelian groups, respectively
a k-linear map Gk(f) : Gk(X) → Gk(Y ). Both are determined by specifying that F (f) sends the
generator (resp. basis element) x ∈ F (X) to the generator (basis element) f(x) ∈ F (Y ).
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3. An example from topology: There is a functor T from the category of metric spaces and
continuous maps to the category T OP of topological spaces, defined by T ((X, d)) = (X, τd) and as
the identity map on morphisms. The functor T is injective on morphisms, but not on objects (since
there are equivalent metrics).

4. More interesting functors will be encountered later, their existence being the main reason why
we introduce the categorical language. 2

Definition A.5.16 Let F : C → D be a functor. F is called

• faithful if the maps HomC(X, Y )→ HomD(F (X), F (Y )) are injective for all X, Y ∈ C.

• full if the maps HomC(X, Y )→ HomD(F (X), F (Y )) are surjective for all X, Y ∈ C.

• essentially surjective if for every Y ∈ D there is an X ∈ C such that F (X) ∼= Y .

Remark A.5.17 If D ⊆ C is a subcategory, then obvious inclusion functor ι : D ↪→ C is always
faithful, and it is full if and only if D is a full subcategory. 2

In view of Lemma A.5.13 and Definition A.5.4 it is clear what an isomorphism of categories is,
but we state it explicitly anyway:

Definition A.5.18 A functor F : C → D is an isomorphism of categories if there exists a functor
G : D → C such that G ◦ F = idC and F ◦ G = idD. If an isomorphism C → D exists, we write
C ∼= D.

Definition A.5.19 If C,D are categories, a contravariant functor F : C → D is a functor F : C →
Dop (or, equivalently, F : Cop → D).

For many purposes the notion of isomorphism of categories is too restrictive and therefore of
limited usefulness. (E.g., compare Corollaries 13.4.12 and 13.5.6.) In order to define a generalization
(as well as for many other purposes) we need a new concept:

Definition A.5.20 Let C,D be categories and F,G : C → D functors. A natural transformation
from F to G is a family of morphisms {αX : F (X)→ G(X)}X∈C such that the diagram

F (X)
αX- G(X)

F (Y )

F (s)

?

αY

- G(Y )

G(s)

?

(A.3)

commutes for every s ∈ HomC(X, Y ). A natural isomorphism is a natural transformation α where
αX is an isomorphism for every X ∈ C.

Definition A.5.21 A functor F : C → D is called an equivalence of categories if there exist a
functor G : D → C and natural isomorphisms G ◦ F → idC and F ◦G→ idD.

Two categories C,D are called equivalent, C ' D if an equivalence F : C → D exists.

There is a very useful criterion for a functor to be an equivalence, cf. [198]:
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Proposition A.5.22 A functor F : C → D is an equivalence if and only if it is full, faithful, and
essentially surjective.

Proof. Assume F to be an equivalence. Then we have a functor G : Y → X and natural isomorphisms
α : G ◦ F → idC and β : F ◦ G → idD. The isomorphisms GF (X) ∼= X for X ∈ C imply essential
surjectivity of G, and similarly for F . G ◦ F maps HomC(X, Y ) to HomC(GF (X), GF (Y )), and
for s ∈ HomC(X, Y ) we have s ◦ αX = αY ◦ GF (s). Since αX , αY are isomorphisms, the map
s 7→ GF (s) is a bijection. This implies that F : HomC(X, Y )→ HomD(F (X), F (Y )) is injective and
that G : HomD(F (X), F (Y ))→ HomC(GF (X), GF (Y )) is surjective. A similar reasoning applied to
F ◦G shows that G : HomD(X, Y )→ HomC(G(X), G(Y )) is injective and F : HomC(G(X), G(Y ))→
HomD(FG(X), FG(Y )) is surjective. Thus F and G are faithful. Fullness now follows using essential
surjectivity and the bijections Hom(X, Y ) ∼= Hom(X ′, Y ′) when X ∼= X ′, Y ∼= Y ′.

We omit the proof of the converse implication, since we will not need it. �

Definition A.5.23 Let C,D be categories and F : C → D, G : D → C functors. We say that F is a
left adjoint of G and G a right adjoint of F if the following holds: For every X ∈ Obj C, Y ∈ ObjD
there is a bijection αX,Y : HomD(F (X), Y ) → HomC(X,G(Y )) that is natural w.r.t. X, Y . I.e. if
s ∈ HomC(X

′, X), t ∈ HomD(Y, Y ′) then the diagrams

HomC(F (X), Y )
αX,Y- HomD(X,G(Y ))

HomC(F (X), Y ′)

t∗

?

αX,Y ′
- HomD(X,G(Y ′))

(Gt)∗

?

HomC(F (X), Y )
αX,Y- HomD(X,G(Y ))

HomC(F (X ′), Y )

(Fs)∗

?

αX′,Y

- HomD(X ′, G(Y ))

s∗

?

commute. Here the vertical maps are given by

t∗ : u 7→ t ◦ u, (Gt)∗ : w 7→ G(t) ◦ w, F (s)∗ : v 7→ v ◦ F (s), s∗ : k 7→ k ◦ s.

It is not hard to show that if F : C → D is an equivalence then the functor G : D → C showing
this (cf. Definition A.5.21) is both a left and a right adjoint of F . But there are many adjoint pairs
of functors that are not equivalences.

Definition A.5.24 A full subcategory D ⊆ C of category C is called reflective if the inclusion functor
ι : D ↪→ C has a left adjoint.
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Appendix B

The fixed point theorems of Banach and
Caristi

B.1 Banach’s contraction principle and variations

Definition B.1.1 If (X, d) is a metric space, a map f : X → X is a contraction if there is a
constant K such that 0 ≤ K < 1 and d(f(x1), f(x2)) ≤ Kd(x1, x2) for all x1, x2 ∈ X.

Obviously, a contraction is continuous. We denote the m-fold composition f ◦ · · · ◦ f as fm.

Theorem B.1.2 (Banach’s fixed point theorem, contraction principle) Every contraction f
in a non-empty complete metric space (X, d) has a unique fixed point z.

More precisely, given any x ∈ X we have fn(x)→ z at the rate given by

d(fn(x), z) ≤ Kn

1−K
d(x, f(x)) ∀n. (B.1)

Proof. Let f : X → X have contraction constant K < 1. If x1, x2 are fixed points then the assumption
implies d(x1, x2) = d(f(x1), f(x2)) ≤ Kd(x1, x2). Thus d(x1, x2) = 0 and therefore x1 = x2. This
proves the uniqueness.

Induction gives
d(fm(x1), fm(x2)) ≤ Kmd(x1, x2). (B.2)

The triangle inequality and the fact that f is a contraction give

d(x1, x2) ≤ d(x1, f(x1)) + d(f(x1), f(x2)) + d(f(x2), x2)

≤ d(x1, f(x1)) +Kd(x1, x2) + d(f(x2), x2),

thus
(1−K)d(x1, x2) ≤ d(x1, f(x1)) + d(f(x2), x2).

In view of K < 1 we have 1−K > 0, so that dividing by 1−K gives

d(x1, x2) ≤ d(x1, f(x1)) + d(x2, f(x2))

1−K
∀x1, x2. (B.3)

Let x ∈ X be arbitrary. Putting x1 = fn(x), x2 = fm(x) in (B.3) and using (B.2), we have

d(fn(x), fm(x)) ≤ d(fn(x), fn(f(x))) + d(fm(x), fm(f(x)))

1−K

≤ Kn +Km

1−K
d(x, f(x)) (B.4)

371
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Since K < 1, it follows immediately that the sequence {fn(x)} is Cauchy. Since X is complete,
this sequence converges to some z ∈ X. Using continuity of f , we have f(z) = f(limn f

n(x)) =
limn f

n+1(x) = z, thus z is a fixed point. Taking the limit m→∞ in (B.4), we get (B.1). �

Remark B.1.3 1. The above proof, due to Palais [232], avoids summing a geometric series, making
it marginally simpler than the standard textbook proof (and perhaps also prettier).

2. The first statement of a general contraction principle (albeit not quite in the above form)
appears in the 1922 Ph.D. thesis of Stefan Banach. But the idea already underlied the 19th century
work of Picard, Lindelöf and Lipschitz on the existence and uniqueness of solutions for ordinary
differential equations. The contraction principle still plays a central rôle in the theory of ordinary
and partial differential equations. 2

There are many variations on the contraction principle, cf. e.g. [173, Section 3.2]. We consider
two of them.

Corollary B.1.4 Let (X, d) be a complete metric space and f : X → X such that fn is a contraction
for some n ∈ N. Then f has a unique fixed point.

Proof. By the contraction principle, there is a unique x ∈ X such that fn(x) = x. Now f(x) =
f(fn(x)) = fn(f(x)), thus f(x) is a fixed point of fn. But then uniqueness of the latter implies
f(x) = x. Thus x is a fixed point of f . If x, y are fixed points of f , we have x = fn(x) and y = fn(y),
and uniqueness of the fixed point of fn implies x = y. �

Definition B.1.5 Let (X, d) be a metric space. A map f : X → X is called a weak contraction if
d(f(x), f(y)) < d(x, y) whenever x 6= y.

Obviously, every contraction is a weak contraction, but the converse is not true. In fact, a weak
contraction of a complete metric space need not have a fixed point. But:

Theorem B.1.6 (Edelstein 1962 [79]) Let (X, d) be a non-empty compact metric space and f :
X → X a weak contraction. Then

(i) f has a unique fixed point z.

(ii) For every x ∈ X we have fn(x)→ z.

Proof. (i) Let x 6= y be fixed points. Then d(x, y) = d(f(x), f(y)) < d(x, y), which is absurd. This
proves uniqueness.

Every weak contraction is continuous. Thus g : X → R, x 7→ d(x, f(x)) is continuous. By
Corollary 7.7.30, C = inf g(X) is finite and there is a z ∈ X such that g(z) = C. Assuming
C > 0, we have C = g(z) = d(z, f(z)) > 0, thus z 6= f(z). Then by assumption g(f(z)) =
d(f(z), f(f(z))) < d(z, f(z)) = C, contradicting the fact that C is the infimum of g. Thus C = 0.
But now 0 = C = g(z) = d(z, f(z)) implies that f(z) = z, i.e. z is a fixed point.

(ii) Let x ∈ X. If fn(x) = z for some n, the sequence is stationary, thus fn(x) → z. We may
therefore assume that fn(x) 6= z for all n. Then

d(fn+1(x), z) = d(fn+1(x), f(z)) < d(fn(x), z),

thus the non-negative sequence {d(fn(x), z)} is strictly decreasing and therefore converges to some
r ≥ 0. Since compact metric spaces are sequentially compact, the sequence {fn(x)} has a subsequence
{fnm(x)} that converges to some z′ ∈ X. Since this implies

d(z′, z) = lim
m
d(fnm(x), z) = r = lim

m
d(fnm+1(x), z) = d(f(z′), z),
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we have d(z′, z) = d(f(z′), z) = d(f(z′), f(z)). Since f is a weak contraction, we must have z′ = z, so
that fnm(x)→ z. Thus the non-increasing sequence {d(fn(x), z)} has a subsequence {d(fnm(x), z)}
converging to zero and thus converges to zero itself. This proves fn(x)→ z. �

For a nice application of Theorem B.1.6, cf. [258] where it is used to give a quick proof of
the Perron-Frobenius theorem. This approach has the advantage of avoiding Brouwer’s fixed point
theorem, whose proof invariably involves a certain amount of combinatorics.

B.2 Caristi’s fixed point theorem

The following easy result is proved mainly to motivate what follows and may be skipped.

Proposition B.2.1 Let (X, d) be a non-empty complete metric space, φ : X → R bounded below
and f : X → X a continuous function satisfying

d(x, f(x)) ≤ φ(x)− φ(f(x)) ∀x ∈ X. (B.5)

Then {fn(x)} converges to a fixed point of f for every x in X.

Proof. The assumption (B.5) implies φ(f(x)) ≤ φ(x). Thus the sequence {φ(fn(x))} is weakly
decreasing and bounded below, thus converges to some r ∈ R. If n < m we have

d(fn(x), fm(x)) ≤
m−1∑
k=n

d(fk(x), fk+1(x)) ≤
m−1∑
k=n

φ(fk(x))− φ(fk+1(x)) = φ(fn(x))− φ(fm(x))

by the triangle inequality, (B.5) and ‘telescoping’. For n,m→∞ the right hand side tends to r−r =
0, implying that {fn(x)} is a Cauchy sequence, thus convergent to some z ∈ X by completeness.
Now f(z) = z follows from continuity of f as at the end of the proof of Theorem B.1.2. �

Note that uniqueness of the fixed point is not claimed and that continuity of f is used only in
the last step where, however, it is indispensable. Surprisingly, replacing the continuity of f by lower
semicontinuity of φ, one can still prove the following:

Theorem B.2.2 (Caristi 1976 [54]) Let (X, d) be a non-empty complete metric space, φ : X → R
bounded below and lower semicontinuous, and let f : X → X satisfy

d(x, f(x)) ≤ φ(x)− φ(f(x)) ∀x ∈ X. (B.6)

Then f has a fixed point.

The brunt of proving this is borne by the following widely applicable result:

Proposition B.2.3 Let (X, d) be a non-empty complete metric space and φ : X → R lower semi-
continuous and bounded below. Define a binary relation ≤ on X by

x ≤ y ⇔ d(x, y) ≤ φ(x)− φ(y).

(i) Then ≤ is a preorder (i.e. reflexive and transitive).

(ii) This preorder has a maximal element.
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Proof. (i) If x ≤ y ≤ z then d(x, y) ≤ φ(x)−φ(y) and d(y, z) ≤ φ(y)−φ(z). Adding these inequalities
we have d(x, z) ≤ d(x, y) + d(y, z) ≤ φ(x) − φ(z), thus x ≤ z so that ≤ is transitive. Reflexivity of
≤ is obvious.

(ii) For every x ∈ X, define the set of (nonstrict) majorants by

M(x) = {y ∈ X | y ≥ x} = {y ∈ X | φ(y) + d(x, y) ≤ φ(x)}.

Since φ is lower semicontinuous and d is (jointly) continuous, the function φx : y 7→ φ(y) + d(x, y) is
lower semicontinuous. Thus φ−1

x ((a,∞)) is open for any a, thus M(x) = φ−1
x ((−∞, φ(x)]) is closed.

Choose x0 ∈ X arbitrarily and inductively define a sequence {xn} as follows: Given xn, choose
xn+1 ∈ M(xn) such that φ(xn+1) < inf(φ(M(xn))) + 1/n. (This can be done since the infimum
is finite, φ being bounded below.) By construction xn+1 ≥ xn, and for x ∈ M(xn+1) ⊆ M(xn)
(transitivity!) we have

φ(x) ≥ inf(φ(M(xn))) > φ(xn+1)− 1

n
,

thus φ(xn+1)−φ(x) < 1/n. Since x ≥ xn+1, we have d(x, xn+1) ≤ φ(xn+1)−φ(x) and thus d(x, xn+1) <
1/n. This implies diam(M(xn+1)) ≤ 2/n. Combining this with the closedness of the sets X ⊇
M(x0) ⊇ M(x1) ⊇ · · · and completeness of (X, d), Cantor’s Intersection Theorem (Exercise 3.1.9)
gives a z ∈ X such that

⋂
nM(xn) = {z}. This means z ≥ xn ∀n, so that x ≥ z implies x ∈ M(xn)

for all n and therefore x = z. This means that z is maximal w.r.t. ≤. �

Proof of Theorem B.2.2. Defining ≤ as in Proposition B.2.3, the latter gives a maximal element
z ∈ X. Since (B.6) is equivalent to f(x) ≥ x ∀x, we have f(z) ≥ z, so that maximality of z gives
f(z) = z. �

Remark B.2.4 1. Theorem B.2.2 asserts neither uniqueness of the fixed point nor convergence of
{fn(x)} for every (or any) x ∈ X.

2. It is also true that Caristi’s theorem implies Proposition B.2.3(ii): If ≤ had no maximal
element, we could pick an f(x) > x for every x ∈ X. This implies d(x, f(x)) ≤ φ(x) − φ(f(x)) ∀x,
so that Caristi’s theorem provides a fixed point z = f(z), contradicting the construction of f .

3. The above proof of Proposition B.2.3, which closely followed [235], clearly uses the axiom
of countable dependent choice (DCω). (Cantor’s intersection theorem uses only ACω.) It has been
shown [46] that Proposition B.2.3 also implies the axiom of countable dependent choice and therefore
is equivalent to it. (As noted earlier, the same holds for Baire’s Theorem 3.3.1.)

4. Since Theorem B.2.2 follows from Proposition B.2.3 without invoking choice axioms, it follows
from DCω. Remarkably, Theorem B.2.2 can be proven without using only the axiom ACω of count-
able choice, cf. [43]. This is no contradiction to the preceding remark, since the deduction of the
Proposition from the Theorem clearly used the full AC. (There are papers claiming to prove Caristi’s
theorem [263, 201] without any choice axiom, but they are hard to read and verify.)

5. The existence part of Theorem B.1.2 (but not fn(x) → z ∀x) can be deduced from Caristi’s
Theorem B.2.2: If f : X → X is a contraction of a complete metric space (X, d) with contraction

constant 0 ≤ K < 1, it is obvious that φ : X → R by φ(x) = d(x,f(x))
1−K is continuous and bounded

below. In view of

d(x, f(x)) =
d(x, f(x))−Kd(x, f(x))

1−K
≤ d(x, f(x))− d(f(x), f 2(x))

1−K
= φ(x)− φ(f(x)),

Caristi’s theorem gives that f has a fixed point.
6. So far, Caristi’s fixed point theorem seems to have made it only into specialized texts on

metric fixed point theory [112, 173] and into advanced books on non-linear (functional) analysis like
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[12, 69]. Indeed, most of its applications seem to be in non-linear analysis and infinite dimensional
geometry. (We already used Caristi’s theorem for proving Theorem 12.4.8, following [112].) 2

If φ : X → R is bounded below, inf φ is finite, but it does not follow that infimum is assumed, i.e.
that there is z ∈ X with φ(z) = inf φ. We know that compactness of X together with continuity of φ
is sufficient, cf. Corollary 7.7.30. Using Proposition B.2.3 one has another set of sufficient conditions:

Corollary B.2.5 (Takahashi [278]) Let (X, d) be a complete metric space and φ : X → R bounded
below and lower semicontinuous. Suppose that

x ∈ X, φ(x) > inf φ ⇒ ∃y 6= x : φ(y) < φ(x)− d(x, y). (B.7)

Then φ assumes its infimum.

Proof. Proposition B.2.3 provides a maximal element z for the preorder ≤ defined by φ. By assump-
tion (B.7), φ(x) > inf φ implies the existence of y 6= x such that φ(y) < φ(x)− d(x, y). This implies
y > x. For the maximal element z no y > z can exist, thus φ(z) = inf φ. �

Imposing an additional condition on the function φ whose infimum one would like to be assumed
is not an option in most cases. Part (ii) of the next result shows that even without a condition like
(B.7) one can always find good approximate minima. The preliminary result (i) is nothing but a less
snappy (but equivalent) restatement of Proposition B.2.3:

Theorem B.2.6 (Ekeland’s Variational ‘Principle’ 1974 [84]) Let (X, d) be a non-empty com-
plete metric space and φ : X → R lower semicontinuous and bounded below. Then

(i) There exists z ∈ X such that

x 6= z ⇒ φ(x)− φ(z) > −d(z, x).

(ii) For every ε, δ > 0 and y ∈ X with φ(y) ≤ inf φ+ ε there exists z ∈ X such that

d(z, y) ≤ δ, φ(z) ≤ φ(y), x 6= z ⇒ φ(x) > φ(z)− ε

δ
d(x, z).

Proof. (i) Let z ∈ X be a maximal element for the preorder ≤ as provided by Proposition B.2.3.
Maximality of z means that x > z, to wit d(x, z) ≤ φ(z)− φ(x) ∧ x 6= z, is impossible. Thus x 6= z
implies d(x, z) > φ(z)− φ(x). This is precisely what we claimed.

(ii) Since φ is lower semicontinuous, φ−1((−∞, φ(y)]) ⊆ X is closed. Also B(y, δ) is closed, thus
X ′ = φ−1((−∞, φ(y)]) ∩ B(y, δ) ⊆ X is closed (and non-empty since y ∈ X ′), thus complete. In
view of δ > 0, d′(x, y) = d(x, y)/δ is a metric equivalent to d, thus (X ′, d′) is complete. Since
φ′(x) = φ(x)/ε lower semicontinuous and bounded below, (X ′, d′) and φ′ satisfy the assumptions of
(i), so that we obtain a point z ∈ X ′ ⊆ X. By construction, z satisfies d(z, y) ≤ δ and φ(z) ≤ φ(y).
And if x 6= z, by the conclusion of (i) we have

φ(x)− φ(z)

ε
= φ′(x)− φ′(z) > −d′(z, x) =

d(z, x)

δ
,

which gives the last of the claims in (ii). �
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Remark B.2.7 1. It is obvious that the result generalizes to functions φ : X → R∪{+∞} that are
not identically +∞.

2. Ekeland’s variational ‘principle’ actually predates Caristi’s theorem. It is clear that Proposition
B.2.3, Theorem B.2.2 and Theorem B.2.6 all imply each other.

3. Several other equivalent statements and many applications can be found in [38]. Unsurprisingly,
Ekeland’s variational principle has applications to the direct approach to variational problems, cf.
[109]. 2

B.3 Application: Iterated function systems

Definition B.3.1 An iterated function system on a metric space (X, d) is a family S1, . . . , Sm of
contractions of (X, d).

The aim of this section is to prove the following theorem:

Theorem B.3.2 Let (X, d) be a complete metric space and S1, . . . , Sm an iterated function system
on (X, d). Then there is a unique non-empty compact set F ⊆ X, called the attractor of the iterated
function system S1, . . . , Sm, such that

F =
m⋃
i=1

Si(F ).

It is easy to see that for m = 1 one gets F = {z}, where z is the unique fixed point of the
contraction S1. But for n ≥ 2, one can obtain fairly interesting attractors. In order to prove the
theorem we need some tools.

Definition B.3.3 Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of two non-empty
subsets A,B ⊆ X is defined as

Dist(A,B) = max

(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

)
.

Remark B.3.4 1. The Pompeiu-Hausdorff distance Dist(A,B) must not be confused with the
ordinary distance dist(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}. Note that we always have dist(A,B) ≤
Dist(A,B).

2. Equivalently one could define Dist(A,B) = inf{ε > 0 | A ⊆ Bε ∧ B ⊆ Aε}. 2

Proposition B.3.5 For every metric space (X, d), the Pompeiu-Hausdorff distance is a metric on
the family B of bounded subsets of X.

Proof. If A is bounded, the triangle inequality gives

sup
a∈A

dist(a,B) ≤ dist(A,B) + diam(A) <∞.

Similarly boundedness of B gives supb∈B dist(b, A) <∞, and thus Dist(A,B) <∞.
It is clear that Dist(A,B) = Dist(B,A). By definition, we have Dist(A,B) = 0 if and only if

supa∈A dist(a,B) = supb∈B dist(b, A) = 0, which in turn is equivalent to dist(a,B) = dist(b, A) = 0
for all a ∈ A, b ∈ B. By closedness of A and B, this implies A ⊆ B, B ⊆ A, thus A = B. It is even
clearer that Dist(A,A) = 0.

***** triangle ineq.
�
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Remark B.3.6 ************ check !!! usually this is stated for compact subsets ! *******
One can show, cf. [136], that if (X, d) is complete, resp. totally bounded, then (B,Dist) is complete,

resp. totally bounded. Thus if (X, d) is compact then so is (B,Dist). We will not need this in the
sequel. 2

Remark B.3.7 1. In Theorem B.3.2 the metric space (X, d) was arbitrary. More can be said
if X = Rn with the Euclidean metric. To every subset F ⊆ Rn one can associate its Hausdorff
dimension dimH(F ) which can (a priori) assume every value in [0, n]. Under somewhat stronger
assumptions on the contractions Si, one can compute dimH(F ) in terms of the contraction constants
C1, . . . , Cn. Namely dimH(F ) equals the unique real number s ≥ 0 for which

m∑
i=1

Cs
i = 1.

(For a proof cf. [93, Theorem 9.3].) If Ci = C ∀i, this gives dimH(F ) = logm
log(1/c)

. In particular we see

that m = 1 implies dimH(F ) = 0, consistent with F being a single point.
2. The standard Cantor C ⊆ [0, 1] set is the attractor of the iterated function system

X = [0, 1], m = 2, S1(x) = x/3, S2(x) =
x+ 2

3
,

where C1 = C2 = 1/3. Then 1. gives dimH(C) = log 2
log 3
≈ 0.631. 2
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Appendix C

Spectra of commutative rings. Spectral
spaces

A commutative ring is called unital if it has a unit 1 ∈ R. A prime ideal p is a proper ideal such
that ab ∈ p ⇒ a ∈ p ∨ b ∈ p.

Definition/Proposition C.1 If R is a commutative unital ring, the prime spectrum Spec(R) is the
set of prime ideals in R. If I is any ideal in R, we define

V (I) = {p ∈ Spec(R) | p ⊇ I} ⊆ Spec(R).

Then the family {V (I) | I ⊆ R an ideal} satisfies the axioms for the closed sets in a topological space,
cf. Lemma 2.4.2, and thus defines a topology τ on Spec(R), the Zariski topology1.

Proof. We have V ({0}) = Spec(R) and V (R) = ∅ (since no proper ideal contains R). Furthermore,
given any family Ii of ideals, we define

∑
i

Ii =

{∑
i

ai | ai ∈ Ii ∀i, #{i | ai 6= 0} <∞

}
,

which again is an ideal. (Obviously,
∑

k Ik ⊇ Ii ∀i, and
∑

k Ik is the smallest ideal containing all Ii.)
Now we have ⋂

i

V (Ii) = {p ∈ Spec(R) | p ⊇ Ii ∀i} = V (
∑
i

Ii).

Given ideals I1, I2, we define

I1 · I2 =

{
n∑
k=1

xkyk | xk ∈ I1, yk ∈ I2

}
,

the ideal generated by I1 and I2. Clearly I1 · I2 ⊆ I1 ∩ I2. (But the inclusion can be proper.) Thus
if p ⊇ I1 or p ⊇ I2 then p ⊇ I1 ∩ I2 ⊇ I1 · I2, and we have V (I1) ∪ V (I2) ⊆ V (I1 · I2). In order to
prove the converse inclusion V (I1 · I2) ⊆ V (I1) ∪ V (I2), let p ∈ V (I1 · I2). If p ∈ V (I1), we are done,
so assume p 6∈ V (I1). This means p 6⊇ I1, so that we can find a ∈ I1 with a 6∈ p. Now, if b ∈ I2, we

1The topology on Spec(R) generalizes the Zariski topology on kn that we have met in Section 2.4. In principle,
it should be called after Alexander Grothendieck (1928-2014) who proposed to consider the prime spectrum as a
topological space. But the term Grothendieck topology is in use for something else – outside topology as understood
here!

379
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have ab ∈ I1 · I2 ⊆ p, since p ∈ V (I1 · I2). Since a 6∈ p and p is prime, we have b ∈ p. This is true for
all b ∈ I2, thus I2 ⊆ p, which is equivalent to p ∈ V (I2). �

In order to see whether Spec(R) is T1, we compute the closure of a point (=one-point set):

{p} =
⋂
{V (I) | {p} ∈ V (I)} =

⋂
{V (I) | p ⊇ I} = V (p) = {q ∈ Spec(R) | q ⊇ p}. (C.1)

Lemma C.2 Spec(R) is T0. It is T1 if and only if every prime ideal in R is maximal.

Proof. By (C.1), the singleton {p} is closed if and only if the ideal p is maximal. Also, q ∈ {p} holds
if and only if q ⊇ p. Thus if p 6= q we have q 6∈ {p} or p 6∈ {q}, thus {p} 6= {q}. Thus Spec(R) is T0.
�

Very few rings satisfy the restrictive condition that prime ideals be maximal. E.g., in an integral
domain the zero ideal 0 is prime, and it is clear that {0} = Spec(R). And indeed, 0 is maximal if
and only if R is a field, in which case Spec(R) is a one-point space.

Proposition C.3 Spec(R) is compact. If R is Noetherian then Spec(R) is hereditarily compact.

Proof. We first note that V (I) = ∅ holds if and only if I = R, since every proper ideal is contained
in a maximal ideal, thus in a prime ideal. Furthermore, an ideal is proper if and only if it does not
contain the unit 1. Now let {Ii} be a family of ideals such that the family {V (Ii)} of closed sets
has the finite intersection property. Since

⋂
i V (Ii) = V (

∑
i Ii) for any family of ideals, the finite

intersection property means that sum of any finite number of the ideals Ii is a proper ideal, i.e. does
not contain 1. But by definition, an element of

∑
i Ii is finite sum of elements of the Ii and therefore

already contained in a finite sum of Ii’s, which is proper as we saw. Therefore no element of
∑

i Ii
equals 1, thus

∑
i Ii is proper, and

⋂
i V (Ii) 6= ∅. Thus Spec(R) is compact.

By Exercise 7.4.9, Spec(R) is hereditarily compact if and only if every strictly decreasing chain
of closed sets is finite. So let V (I1) ) V (I2) ) · · · . In view of V (I1) ∩ V (I2) = V (I1 + I2), we have
V (Ik) = V (Jk), where the ideals Jk =

∑k
i=1 Ii satisfy J1 ( J2 ( · · · . If R is Noetherian, i.e. satisfies

the ascending chain condition for ideals, this chain of ideals must terminate. Thus the decreasing
chain of closed subsets is finite, and Spec(R) is hereditarily compact. �

Exercise C.4 Is Noetherianness of R necessary in order for Spec(R) to be hereditarily compact?

Definition C.5 Let R be a commutative unital ring. Then the maximal spectrum Specm(R) of R is
the subspace of Spec(R) consisting of the closed points, i.e. the maximal ideals.

Obviously, Specm(R) is a T1-space for any R. In order to make the connection with the more
classical Zariski topology on affine space, take R = k[x1, . . . , xn], which is Noetherian. Thus Spec(R)
is hereditarily compact, and so is the subspace Specm(R). Every point in z ∈ An gives rise to a
maximal ideal Mz, generated by {x1 − z1, x2 − z2, . . . , xn − zn}, i.e. consisting of the polynomials
vanishing in z. The map z 7→ Mz is injective. If k is algebraically closed, Hilbert’s Nullstellensatz
implies that every maximal ideal in R is of this form. This gives a bijection between Specm(R) and
An. Under this bijection, the closed set Vm(I) := V (I) ∩ Specm(R) corresponds to {x ∈ An | p(x) =
0 ∀p ∈ I}, which is the classical definition of the algebraic set defined by I. Since the Zariski-closed
sets in An are precisely these algebraic sets, we obtain a homeomorphism

Specm(k[x1, . . . , xn]) ∼= An

between the subspace Specm(k[x1, . . . , xn]) ⊆ Spec(k[x1, . . . , xn]) and affine space An with the (clas-
sical) Zariski topology. The latter is well known to be T1 and hereditarily compact, but this follows
directly from our more general considerations on Spec(R).
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Exercise C.6 Let R be a commutative unital ring. Show that Spec(R) is irreducible if and only if
I1 · I2 6= {0} whenever I1, I2 are non-zero ideals.
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Appendix D

More on Topological Groups

D.1 Basics

Recall Definition 7.8.24:

Definition D.1.1 A topological group is a group (G, ·, e) equipped with a topology τ such that the
group operations are τ -continuous. (It suffices to require that the map (g, h) 7→ gh−1 be jointly
continuous.)

It is important the the group operation be jointly continuous!

Exercise D.1.2 1. Let (G, ·, e) be any group. Show that equipping (G, ·, e) with either the discrete
topology or the indiscrete topology produces a topological group.

2. Let G = (R,+, 0) and τ the cocountable topology. Prove that + is continuous w.r.t. both
arguments, but not jointly. Thus (R,+, 0, τ) is not a topological group!

3. Let F ∈ {R,C} and n ∈ N. Let GL(n,F) be the set of invertible n × n-matrices with entries
in F, equipped with the topology induced from Fn×n. Then (GL(n,F), ·, e) is a topological group
w.r.t. matrix multiplication and e the unit matrix. (The product of two matrices is polynomial in
the entries of the matrices, thus jointly continuous. The fact that inversion of invertible matrices
is continuous follows from Cramer’s formula and continuity of A 7→ det(A).) Now any subgroup
G ⊆ GL(n,F) also is a topological group.

If G is a topological group and A,B ⊆ G then we write AB := {ab | a ∈ A, b ∈ B}. gH and Hg
are definied analogously. If h ∈ G, the maps i : g 7→ g−1, lh : g 7→ hg and rg : g 7→ gh are continuous
bijections with continuous inverses i, lh−1 , rh−1 , respectively, thus homeomorphisms. Thus if U is
open then so are U−1 ≡ {g−1 | g ∈ U} and hU, Uh.

Exercise D.1.3 If {Gi}i∈I are topological groups, prove that
∏

iGi equipped with the product
group structure and the product topology is a topological group.

Lemma D.1.4 Let G be a topological group.

(i) Every open subgroup is closed, thus clopen.

(ii) If H ⊆ G is a (normal) subgroup then H is a (normal) subgroup.

Proof. (i) If H is open, so are all cosets gH since lg is a homeomorphism. Thus U =
⋃
{gH | gH 6= H}

is open, and H = G− U is closed.
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(ii) Since i : G → G is a homeomorphism, we have H
−1

= i(H) = i(H) = H−1 = H, thus
H is closed under inverses. Since lg is a homeomorphism, we have gH = lg(H) = lg(H) = gH.
For h ∈ H we have hH = H so that hH = H. Thus H is closed under left multiplication with
elements of H. Analogously one proves Hh = H, thus HH = H = HH. Let now h, h′ ∈ H.

Then hh′ ∈ hH = lh(H) = lh(H) = hH ⊆ HH = H, thus H H = H, so that H is closed under
multiplication. Thus H is a subgroup. �

Lemma D.1.5 Let G be a topological group.

(i) If U, V ⊆ G and U (or V ) is open then UV ⊆ G is open.

(ii) If K,L ⊆ G are compact then KL is compact.

(iii) A =
⋂
AV =

⋂
V A, where the intersection is over the open sets V containing e.

Proof. (i) If U is open then UV =
⋃
v∈V Uv, which is a union of open sets, thus open. Similarly if V

is open.
(ii) K × L is compact, thus KL = m(K × L) is compact since m : G×G→ G is continuous.
(iii) We have x ∈ A if and only if A ∩ U 6= ∅ for every open neighborhood U of x. Every open

U 3 x is of the form V x for some open V 3 e. Now, A ∩ V x 6= ∅ is equivalent to V −1A ∩ {x} 6= ∅,
i.e. x ∈ V −1A. Since V 7→ V −1 is an involution on the set of open neighborhoods of e, we have
A =

⋂
V V A. Replacing V x by xV , one obtains A =

⋂
V AV . �

Definition D.1.6 Let G be a topological group. A subset U called symmetric if e ∈ U and U = U−1.

Lemma D.1.7 Let G be a topological group. Then for every open neighborhood U of e there is a
symmetric open neighborhood V of e such that V V ⊆ U . (I.e. g, h ∈ V ⇒ gh ∈ U .) Any such V
satisfies V ⊆ U .

Proof. Write m : G × G → G for the multiplication map. Then m−1(U) ⊆ G × G is open and
contains (e, e). By definition of the product topology, there open U1, U2 containing e such that
U1×U2 ⊆ m−1(U). Then V0 = U1 ∩U2 is open, contains e, and V0×V0 ⊆ U1×U2 ⊆ m−1(U) implies
V0V0 ⊆ U . Now take V = V0 ∩ V −1

0 , which still is an open neighborhood of e.
Lemma D.1.5(iii) in particular gives A ⊆ AV for any A and any open V , thus U ⊆ U2 for open

U . �

D.2 Separation axioms and metrizability for topological groups

Proposition D.2.1 Every T0-topological group is T3.

Proof. Let e 6= g ∈ G. We claim that there is an open U such that e ∈ U 63 g. By the T0-axiom,
there is an open U such that #(U ∩ {e, g}) = 1. In the case e ∈ U 63 g we are done. In the case
g ∈ U 63 e, note that g−1U contains e but not g−1. Then (g−1U)−1 contains e, but not g, and again
we are done. Let now g 6= h. By the above, there is an open neighborhood U of e not containing
g−1h. Then gU is an open neighborhood of g not containing h. Thus G is T1.

Lemma D.1.7 tells us that given e ∈ U ∈ τ , there is an open V such that e ∈ V ⊆ V ⊆ U . Let
now g ∈ U ∈ τ be given. Now given g ∈ U ∈ τ , there is an open V such that e ∈ V ⊆ V ⊆ g−1U ,
and it follows that g ∈ gV ⊆ gV ⊆ U . Thus G is T3 by Lemma 8.1.5. �
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Exercise D.2.2 Let G be a T0-topological group, K ⊆ G compact and L ⊆ G closed. Prove that
KL and LK are closed. Hint: Use Exercise 7.5.5 or nets.

The combination of the axioms of group theory and of topology has some very strong conse-
quences:

Theorem D.2.3 Every T0-topological group is completely regular (T3.5).

Proof. The T1-property was proven in Proposition D.2.1. For complete regularity, it suffices to prove
that given an open U 3 e there is f ∈ C(G, [0, 1]) such that f(e) = 0 and f �G\U = 1. The general
situation g ∈ U then follows by translation as in the proof of Proposition D.2.1. Define U0 = U and
use Lemma D.1.7 to inductively pick symmetric open neighborhoods Ui of e satisfying U2

i+1 ⊆ Ui. If
n < N then

Un+1 · · ·UN−1UN ⊆ Un+1 · · ·UN−1UN−1 = Un+1 · · ·UN−2U
2
N−1 ⊆ Un+1 · · ·UN−2UN−2

⊆ Un+1 · · ·U2
N−3 ⊆ · · · ⊆ U2

n+1 ⊆ Un,

thus
Un+1Un+2 · · ·UN ⊆ Un. (D.1)

We write
{0, 1}∗ = {a ∈ {0, 1}N | `(a) := max{i | ai = 1} <∞} ⊆ {0, 1}N.

To every a ∈ {0, 1}∗ we associate a Va ⊆ G by

Va = Ua1
1 Ua2

2 · · ·U
a`
` , ` = `(a),

where U1 = U and U0 = {e}. Ordering the elements of {0, 1}∗ lexicographically as in Remark 8.2.19,
we claim that a, b ∈ {0, 1}∗, a < b⇒ Va ⊆ Vb.

To prove this assume that ai = bi ∀i < n and an = 0, bn = 1. Now,

Va = Ua1
1 Ua2

2 · · ·U
an−1

n−1 {e} U
an+1

n+1 · · ·U
a`(a)

`(a)

⊆ Ua1
1 Ua2

2 · · ·U
an−1

n−1 {e} Un+1 · · ·U`(a)

⊆ Ua1
1 Ua2

2 · · ·U
an−1

n−1 Un

⊆ Ua1
1 Ua2

2 · · ·U
an−1

n−1 Un U
bn+1

n+1 · · ·U
b`(b)
`(b) = Vb,

where the second inclusion is due to (D.1). Thus a < b ⇒ Va ⊆ Vb. Now define a′ ∈ {0, 1}∗ by
a′ = (a1, . . . , a`(a), 1). We then have a′ < b, thus Va′ ⊆ Vb. By definition of Va, we have Va′ = VaU`(a)+1.
Lemma D.1.5(iii) gives A ⊆ AV for every open V 3 e, thus

Va ⊆ VaU`(a)+1 = Va′ ⊆ Vb,

completing the proof of Va ⊆ Vb.
Now we invoke the order-preserving bijection α : (0, 1) ∩ D → {0, 1}∗ to define Wr = Vα(r). We

clearly have e ∈
⋂
rWr and

⋃
rWr ⊆ U . Thus Lemma 8.2.2 provides a function f ∈ C(G, [0, 1]) such

that f(e) = 0 and f �G\U = 1. �

Example D.2.4 The space G = RR =
∏

x∈R R is a topological group and a topological vector space
(w.r.t. coordinatewise operations). Now G is T3.5 by Exercise 8.3.5, but non-normal by Corollary
8.1.46. 2
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Remark D.2.5 1. Theorem D.2.3 is hard to find in the literature (the most accessible account
probably being the one in [142]), which is a pity in view of its generality. The main reason probably
is that most texts on topological groups quickly specialize to locally compact groups, for which the
complete regularity follows without further reference to the group structure from local compactness
and the Hausdorff property (which is either assumed or deduced from T0 or T1 as we did).

2. Combining Theorem D.2.3 with the results of Section 8.3.4, we see that the topology of a T0

topological group can be described in terms of a family of pseudometrics. In the special case of a
topological vector space it therefore is natural to ask whether its topology arises from a family of
seminorms. In Section G.8 we will see that this is the case precisely for the locally convex vector
spaces, briefly encountered in Section 8.5.5. 2

No natural necessary and sufficient condition for normality of a topological group seems to be
known, but here is a sufficient one:

Proposition D.2.6 A locally compact T0-group is normal and paracompact.

Proof. By local compactness, there are e ∈ V ⊆ K with V open and K compact. Then U = V ∩V −1

is symmetric and U is compact. By construction, H =
⋃
n∈N U

n is closed under multiplication and
inversion (since U is symmetric). Thus H ⊆ G is an open subgroup, thus closed by Lemma D.1.4(i).
By Lemma D.1.7, U ⊆ U2. Thus H =

⋃
n U

n =
⋃
n U

n
. By Lemma D.1.5(ii), U

n
is compact, thus H

is σ-compact, thus Lindelöf. Since G is T3 by Proposition D.2.1, Propositions 8.1.16 and 8.5.13 give
normality and paracompactness of H. The same hold for the cosets gH. Since G topologically is a
direct sum of cosets gH, G is normal and paracompact. �

For the stronger property of metrizability there is a very satisfactory criterion:

Theorem D.2.7 (i) A topological group is metrizable if and only if it is T0 and the unit e has
a countable neighborhood base. In that case, the metric can be taken to be left-invariant, i.e.
d(kg, kh) = d(g, h) ∀g, h, k.

(ii) If G is compact metrizable, d can be chosen two-sided invariant, i.e. d(kgl, khl) = d(g, h).



Appendix E

Between topology and functional
analysis: C0(X,F)

On several occasions, we have met functions from a (locally) compact Hausdorff (or just completely
regular) space with values in R (or C). (Recall the discussion of C0(X) in Section 7.8.6 and the rôle
of R-valued functions in the discussion of completely regular spaces and the Stone-Čech compacti-
fication.) In this section we discuss several major results involving R-valued functions, all of which
lie on the boundary of point set topology and functional analysis.

E.1 Weierstrass’ theorem

The following fundamental theorem of Weierstrass (1885) has been proven in many ways. A fairly
standard proof (Landau, 1908) involves convolution of f with a sequence {gn} of functions that is a
polynomial approximate unit, cf. e.g. [281, Section 14.8]. The proof given in 1913 by Sergei Bernstein
has the advantage of using no integration.

Theorem E.1.1 1 Let f : [0, 1] → R be continuous and ε > 0. Then there exists a polynomial
P ∈ R[x] such that |f(x)− P (x)| ≤ ε for all x ∈ [0, 1].

Proof. For n ∈ N and x ∈ [0, 1], define

Pn(x) =
n∑
k=0

f

(
k

n

)(n
k

)
xk(1− x)n−k.

Clearly Pn is a polynomial of degree at most n, called Bernstein polynomial. In view of

1 = 1n = (x+ (1− x))n =
n∑
k=0

(n
k

)
xk(1− x)n−k (E.1)

we have

f(x)− Pn(x) =
n∑
k=0

(
f(x)− f

(
k

n

))(n
k

)
xk(1− x)n−k,

thus

|f(x)− Pn(x)| ≤
n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk)xk(1− x)n−k. (E.2)

1Karl Theodor Wilhelm Weierstrass (1815-1897). German mathematician and one of the fathers of rigorous analysis.
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Since [0, 1] is compact and f : [0, 1] → R is continuous, it is bounded and uniformly continuous, cf.
Section 7.7.4. Thus there is M such that |f(x)| ≤M for all x, and for each ε > 0 there is δ > 0 such
that |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Let ε > 0 be given, and chose a corresponding δ > 0 as above. Let x ∈ [0, 1]. Define

A = {k ∈ {0, 1, . . . , n} |
∣∣∣∣kn − x

∣∣∣∣ < δ}.

For all k we have |f(x) − f(k/n)| ≤ 2M , and for k ∈ A we have |f(x) − f(k/n)| < ε. Thus with
(E.2) we have

|f(x)− Pn(x)| ≤ ε
∑
k∈A

(n
k

)
xk(1− x)n−k + 2M

∑
k∈Ac

(n
k

)
xk(1− x)n−k

≤ ε+ 2M
∑
k∈Ac

(n
k

)
xk(1− x)n−k, (E.3)

where we used (E.1) again. In an exercise, we will prove the purely algebraic identity

n∑
k=0

(n
k

)
xk(1− x)n−k(k − nx)2 = nx(1− x) (E.4)

for all n ∈ N0 and x ∈ [0, 1] (in fact all x ∈ R). Accepting this for a minute and using that k ∈ Ac
is equivalent to | k

n
− x| ≥ δ and to (k − nx)2 ≥ n2δ2, we have

n2δ2
∑
k∈Ac

(n
k

)
xk(1− x)n−k ≤

∑
k∈Ac

(n
k

)
xk(1− x)n−k(k − nx)2

≤
n∑
k=0

(n
k

)
xk(1− x)n−k(k − nx)2 = nx(1− x). (E.5)

This implies ∑
k∈Ac

(n
k

)
xk(1− x)n−k ≤ nx(1− x)

n2δ2
≤ 1

nδ2
, (E.6)

where we used the obvious inequality x(1 − x) ≤ 1 for x ∈ [0, 1]. (In fact x(1 − x)/ ≤ 1
4
∀x, but

we don’t need this.) Plugging (E.6) into (E.3) we have |f(x) − Pn(x)| ≤ ε + 2M
nδ2 . This holds for all

x ∈ [0, 1] since, by uniform continuity, δ depends only on ε, not on x. Thus for n > 2M
εδ2 we have

|f(x)− Pn(x)| ≤ 2ε ∀x ∈ [0, 1] and are done. �

Remark E.1.2 The inequality (E.5) is a very special case of Chebychev’s inequality in measure
theory. Cf. e.g. [63, Proposition 2.3.10]. And the inequality (E.6) appears in more general form in
the proof of the Weak Law of Large Numbers in probability theory, cf. e.g. [63, Theorem 10.2.1]. 2

Exercise E.1.3 Prove (E.4). Hint: Use basic properties of the binomial coefficients or differentiate
(x+ y)n =

∑n
k=0

(
n
k

)
xkyn−k twice with respect to x and then put y = 1− x.
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E.2 The Stone-Weierstrass theorem

E.2.1 The main result

An immediate consequence of Theorem E.1.1 is the following:

Corollary E.2.1 There exists a sequence {pn}n∈N ⊆ R[x] of real polynomials that converges uni-
formly on [0, 1] to the function x 7→

√
x.

This can also be proven directly, even constructively if one proves (iii):

Exercise E.2.2 Define a sequence {pn}n∈N0 of polynomials by p0 = 0 and

pn+1(x) = pn(x) +
x− pn(x)2

2
. (E.7)

Prove by induction that the following holds:

(i) pn(x) ≤
√
x for all n ∈ N0, x ∈ [0, 1].

(ii) The sequence {pn(x)} increases monotonously for each x ∈ [0, 1] and converges uniformly to√
x.

(iii) (BONUS) Prove
√
x− pn(x) ≤ 2

√
x

2 + n
√
x
≤ 2

n
for all n ∈ N0, x ∈ [0, 1].

Theorem E.1.1 says that the polynomials, restricted to [0, 1] are uniformly dense in C([0, 1]). Our
aim is to generalize this, replacing replacing [0, 1] by (locally) compact Hausdorff spaces. In order to
see what should take the place of polynomials, notice that a polynomial on R is a linear combination
of powers xn, and the latter can be seen as powers fn (under pointwise multiplication) of the identity
function f = idR. Thus the polynomials are the unital subalgebra P ⊆ C(R,R) generated by the
single element idR. Now, if X is a topological space and F ∈ {R,C} then C(X,F) is a unital algebra,
and we will consider subalgebras (not necessarily singly generated) A ⊆ C(X,F). Since the functions
on a (locally) compact Hausdorff space separate points, we clearly need to impose the following if
we want to prove A = C(X):

Definition E.2.3 A subalgebra A ⊆ C(X,F) separates points if for any x, y ∈ X, x 6= y there is a
f ∈ A such that f(x) 6= f(y).

Theorem E.2.4 (M. H. Stone 1937) If X is compact Hausdorff and A ⊆ C(X,R) is a unital
subalgebra separating points then A = C(X,R).

Proof. Replacing A by A, the claim is equivalent to showing that A = C(X). We proceed in several
steps. We claim that f ∈ A implies |f | ∈ A. Since f is bounded by Corollary 7.7.30(i), it clearly
is enough to prove this under the assumption |f | ≤ 1. With the pn of Corollary E.2.1, we have
(x 7→ pn(f 2(x))) ∈ A since A is a unital algebra. Since pn ◦ f 2 converges uniformly to

√
f 2 = |f |,

closedness of A implies |f | ∈ A. In view of

max(f, g) =
f + g + |f − g|

2
, min(f, g) =

f + g − |f − g|
2

,

and the preceding result, we see that f, g ∈ A implies min(f, g), max(f, g) ∈ A. By induction, this
extends to pointwise minima/maxima of finite families of elements of A.
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Now let f ∈ C(X). Our goal is to find fε ∈ A satisfying ‖f − fε‖ < ε for each ε > 0. Since A is
closed, this will give A = C(X).

If a 6= b, the fact that A separates points gives us an h ∈ A such that h(a) 6= h(b). Thus

the function ha,b(x) = h(x)−h(a)
h(b)−h(a)

is in A, continuous and satisfies h(a) = 0, h(b) = 1. Thus also

fa,b(x) = f(a) + (f(b) − f(a))ha,b(x) is in A, and it satisfies fa,b(a) = f(a) and fa,b(b) = f(b). This
implies that the sets

Ua,b,ε = {x ∈ X | fa,b(x) < f(x) + ε}, Va,b,ε = {x ∈ X | fa,b(x) > f(x)− ε}

are open neighborhoods of a and b, respectively, for every ε > 0. Thus keeping b, ε fixed, {Ua,b,ε}a∈X
is an open cover of X, and by compactness we find a finite subcover {Uai,b,ε}ni=1. By the above
preparation, the function fb,ε = min(fa1,b,ε, . . . , fan,b,ε) is in A. If x ∈ Uai,b,ε then fb,ε(x) ≤ fai,b,ε(x) <
f(x) + ε for all x ∈ X, and since {Uai,b,ε}ni=1 covers X, we have fb,ε(x) < f(x) + ε ∀x. For all
x ∈ Vb,ε =

⋂n
i=1 Vai,b,ε, we have fai,b,ε(x) > f(x)−ε, and therefore fb(x) = mini(fai,b,ε) > f(x)−ε. Now

{Vb,ε}b∈X is an open cover of X, and we find a finite subcover {Vbj ,ε}nj=1. Then fε = max(fb1,ε, . . . , fbn)
is in A. Now fε(x) = maxj(fbj ,ε) ≤ f(x) + ε holds everywhere, and for x ∈ Vbj ,ε we have fε(x) ≥
fbj ,ε > f(x) − ε. Since {Vbj ,ε}j covers X, we conclude that fε(a) ∈ (f(x) − ε, f(x) + ε) for all x, to
wit ‖f − fε‖ < ε. �

Since the polynomial ring R[x] is an algebra, and the polynomials clearly separate the points of
R, Theorem E.2.4 recovers Theorem E.1.1, which is not circular if one has used Exercise E.2.2.

E.2.2 Generalizations

Having proven Theorem E.2.4, it is easy to generalize it to locally compact spaces or/and subalgebras
of C(0)(X,C).

Definition E.2.5 A subalgebra A ⊆ C(X,C) is self-adjoint if f ∈ A implies f ∗ ∈ A, where f ∗(x) :=

f(x).

Corollary E.2.6 If X is compact Hausdorff and A ⊆ C(X,C) is a self-adjoint unital subalgebra
separating points then A = C(X,C).

Proof. Define B = A ∩ C(X,R). Let f ∈ A. Since f ∗ ∈ A, we also have Re(f) = f+f∗

2
∈ B and

Im(f) = f−f∗
2i

= −Re(if) ∈ B. Thus A = B + iB. It is obvious that Re(A) ⊆ C(X,R) is a unital
subalgebra. If x 6= y then there is f ∈ C(X,C) such that f(x) 6= f(y). Thus Re(f)(x) 6= Re(f)(y)
or Re(if)(x) 6= Re(if)(y) (or both). Since Re(f),Re(if) ∈ B, we see that B separates points. Thus
B = C(X,R) by Theorem E.2.4, implying A = B + iB = B+ iB = C(X,R) + iC(X,R) = C(X,C).
�

Definition E.2.7 A subalgebra A ⊆ C0(X,F) vanishes at no point if for every x ∈ X there is an
f ∈ A such that f(x) 6= 0.

Corollary E.2.8 If X is locally compact Hausdorff and A ⊆ C0(X) is a subalgebra separating points
and vanishing at no point then A = C0(X).

Proof. Recall that every f ∈ C0(X) extends to f̂ ∈ C(X∞) with f̂(∞) = 0. Then B = {f̂ | f ∈
A}+R1 clearly is a unital subalgebra of C(X∞). We claim that B separates the points of X∞. This
is obvious for x, y ∈ X, x 6= y since already A does that. Now let x ∈ X. Since A vanishes at no
point, there is f ∈ A such that f(x) 6= 0. Let f̂ ∈ C(X) be the extension to X∞ with f̂(∞) = 0, cf.
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Exercise 7.8.64. In view of f̂(x) = f(x) 6= 0, we see that B also separates ∞ from the points of X,
so that Theorem E.2.4 gives B = C(X). In view of B = A + R1 and C(X) �X = C0(X), we have
A = B �X = C0(X). �

Corollary E.2.9 If X is locally compact Hausdorff and A ⊆ C0(X,C) is a self-adjoint subalgebra
separating points and vanishing at no point then A = C0(X,C).

Proof. The proof just combines the ideas of the proofs of Corollaries E.2.6 and E.2.8. �

E.2.3 Applications

We discuss some applications of Theorem E.2.4 and its corollaries.

Definition E.2.10 Put S1 ≡ {z ∈ C | |z| = 1}. A trigonometric polynomial is a finite linear
combination of the functions S1 → C, z 7→ zn, where n ∈ Z.

Corollary E.2.11 The trigonometric polynomials are dense in C(S1,C).

Proof. The trigonometric polynomials evidently form a unital subalgebra A ⊆ C(S1,C). For z ∈ S1

we have (zn)∗ = zn = z−n, thus A is self-adjoint. Since A contains the identity map z1, it separates
the points of S1. Now apply Corollary E.2.6. �

Proposition E.2.12 Let X be compact Hausdorff. Then the following are equivalent:

(i) The metric space (C(X), D) is second countable (⇔ separable).

(ii) X is second countable (⇔ metrizable).

Proof. (i)⇒(ii) Since (C(X), D) is metric, second countability and separability are equivalent. Let
F ⊆ C(X) be a subset that is dense w.r.t. τD, i.e. uniformly. Let C ⊆ X be closed and x ∈
X\C. Since X is completely regular, there is an f ∈ C(X) such that f(x) 6∈ f(C). Thus r =
dist(f(x), f(C)) > 0. Since F ⊆ C(X) is dense, we can find f ′ ∈ F such that ‖f − f ′‖ < r/3. Then
it is immediate that dist(f ′(x), f ′(C)) > 0, so that f ′(x) 6∈ f ′(C). Thus F separates points from
closed sets. This means that

ιF : X →
∏
f∈F

[inf f, sup f ], x 7→
∏
f∈F

f(x)

is an embedding. Thus if F is countable then X ∼= ιF (X) ⊆
∏

f∈F [inf f, sup f ] is second countable
and metrizable.

(ii)⇒(i) As in the proof of Urysohn’s Metrization Theorem 8.2.33, we construct a countable family
F1 ⊆ C(X, [0, 1]) separating points from closed sets. Let F2 denote the set of all finite products of
elements of F1, which is clearly countable. Interpreting the empty product as the function 1, we have
1 ∈ F2. Then also the set F3 of finite linear combinations of elements of F2 with Q-coefficients is
countable. Since A = F3 contains the finite linear combinations of elements of F2 with coefficients in
R, it is a unital R-algebra. Since already F1 separates the points of X, the same holds for A. Thus
the Stone-Weierstrass theorem gives C(X) = A = F3. Thus C(X) has F3 as countable dense subset.
�

Corollary E.2.13 If X is locally compact Hausdorff then the spaces X,X∞, (C(X∞), D), (C0(X), D)
are either all second countable or they all are not.
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Proof. Second countablility of X∞ obviously implies that of X, and the converse was proven in
Exercise 7.8.45(ii). Second countability of X∞ and (C(X∞), D) are equivalent by the preceding
result. Second countability of C(X∞) ∼= C0(X)⊕R implies second countability of C0(X). Finally, If

F ⊆ C0(X) is dense then {f̂ | f ∈ F}+ Q1 ⊆ C(X∞) is dense. �

Remark E.2.14 Results analogous to the above hold for the algebras of complex-valued functions.
The only change in the proofs consists in replacing Q by Q + iQ. 2

E.3 Weak Gelfand duality: Characters of C0(X,F)

Definition E.3.1 A normed algebra is a normed space A over F ∈ {R,C} equipped with a bilinear
and associative product operation A× A→ A such that ‖ab‖ ≤ ‖a‖ ‖b‖ ∀a, b ∈ A. A normed unital
algebra is a normed algebra with unit 1 satisfying ‖1‖ = 1. (Unital) Banach algebras are complete
normed (unital) algebras. An involution on a complex algebra is an antilinear map A → A, a 7→ a∗

such that a∗∗ = a, (ab)∗ = b∗a∗. A C∗-algebra is a Banach algebra with an involution satisfying
‖a∗a‖ = ‖a‖2. (If F = R put ∗ = id.)

Lemma E.3.2 If (X, τ) is any topological space and F ∈ {R,C} then C0(X,F) is a commutative
C∗-algebra under pointwise addition and multiplication, with f ∗(x) = f(x).

Proof. Clearly C0(X,F) ⊆ Cb(X,F), thus ‖f‖ <∞ for each f ∈ C0(X,F). One has

‖fg‖ = sup
x∈X
|f(x)g(x)| ≤ sup

x∈X
|f(x)| · sup

x∈X
|g(x)| = ‖f‖ · ‖g‖,

‖f ∗f‖ = sup
x∈X
|f(x)|2 =

(
sup
x∈X
|f(x)|

)2

= ‖f‖2.

It remains to prove that the normed space (C0(X,F), ‖ · ‖) is complete. If {fn} is a Cauchy sequence
in C0(X,F) then {fn(x)} is a Cauchy sequence in F, thus convergent, for each x ∈ X. Define
g(x) = limn→∞ fn(x). By the same argument as in Proposition 3.1.12 we have continuity of g and
‖fn − g‖ → 0. Given ε > 0, there is an n such that ‖g − fn‖ < ε/2. Since fn ∈ C0(X,F),
there is a compact K ⊆ X such that |f(x)| < ε/2 for all x ∈ X\K. Now for x ∈ X\K we have
|g(x)| < |fn(x)|+ ε/2 < ε/2 + ε/2 = ε. This proves that g ∈ C0(X,R), and we are done. �

The aim of this appendix is to show that (X, τ) can be recovered from C(X,F).

Definition E.3.3 Let F ∈ {R,C}. A character on an an F-algebra A is a an algebra homomorphism
ϕ : A → F (i.e. a linear map that is also multiplicative ϕ(ab) = ϕ(a)ϕ(b)). The set of non-zero
characters ϕ : A→ F is denoted Ω(A).

Definition E.3.4 Let F ∈ {R,C}. An ideal in an F-algebra A is a linear subspace I ⊆ A such that
x ∈ I, y ∈ A⇒ xy, yx ∈ I. An ideal I ⊆ A is maximal if I 6= A and every ideal containing I equals
either I or A.

Lemma E.3.5 Let (X, τ) be locally compact Hausdorff and F ∈ {R,C}.

(i) If x ∈ X then ϕx : C0(X,F)→ F, f 7→ f(x) is a non-zero character.

(ii) The map X → Ω(C0(X,F)), x 7→ ϕx is injective.
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(iii) If ϕ : C0(X,F) → F is a non-zero character then Iϕ = ker(ϕ) = {f ∈ C0(X,F) | ϕ(f) = 0} is
a maximal ideal.

Proof. (i) Follows from ϕx(f+g) = (f+g)(x) = f(x)+g(x) = ϕx(f)+ϕx(g) and ϕx(fg) = (fg)(x) =
f(x)g(x) = ϕx(f)ϕx(g). By Urysohn’s lemma, for every x ∈ X there is an f ∈ C0(X,F) such that
ϕx(f) = f(x) 6= 0.

(ii) If x 6= y, Urysohn’s lemma provides an f0 ∈ C(X,F) such that f(x) = 1, f(y) = 0. Then
f ∈ ker(ϕy), but f 6∈ ker(ϕx). Thus ker(ϕx) 6= ker(ϕy), so that M can equal ϕx for at most one
x ∈ X.

(iii) Defining Iϕ = {f ∈ C0(X,F) | ϕ(f) = 0}, it is immediate that Iϕ is an ideal. Since ϕ 6≡ 0,
there is an f such that ϕ(f) 6= 0. Thus C0(X,F)/Iϕ ∼= F, so that the ideal Iϕ has codimension one
and therefore is maximal. �

Proposition E.3.6 Let (X, τ) be compact Hausdorff and F ∈ {R,C}. For x ∈ X define Mx :=
ker(ϕx) ⊆ C(X,F). Then for every maximal ideal M ⊆ C(X,F) there is unique xM ∈ X such that
M = MxM .

Proof. Uniqueness follows from the injectivity of x 7→ ϕx proven in the lemma.
Existence: Assume M 6= Mx for all x ∈ X. Since the ideals M,Mx are maximal, this implies

M 6⊆Mx (and Mx 6⊆M) for all x ∈ X. Thus for each x ∈ X there exists fx ∈M\Mx, thus fx(x) 6= 0.
Defining Ux = {y ∈ X | fx(y) 6= 0}, we have x ∈ Ux ∀x so that {Ux}x∈X is an open cover of X. By
compactness, there are x1, . . . , xn such that X =

⋃
i Uxi . Defining f(x) =

∑n
i=1 fxi(x)fxi(x), we have

f ∈ M and f(x) 6= 0 ∀x (since each x is contained in some Uxi and |f | ≥ |fxi |2 > 0 on Uxi). Thus
x 7→ 1/f(x) is in C(X,F), so that 1 = f 1

f
∈ M . But an ideal containing 1 equals C(X,F), which

the maximal ideal M cannot do. This contradiction proves M = Mx for some x ∈ X. �

Theorem E.3.7 Let X be locally compact Hausdorff space and F ∈ {R,C}. Then the map x 7→ ϕx
from X to non-zero characters of C0(X,F) is a bijection.

Proof. For compact X this is immediate by Lemma E.3.5 and Proposition E.3.6. If X is non-
compact (but locally compact Hausdorff), we still have injectivity of X 7→ Ω(C0(X)), but need to
reprove surjectivity. The one-point compactification X∞ of X is compact Hausdorff, and C(X∞,F) ∼=
C0(X,F) ⊕ F by Exercise 7.8.64. If ϕ is a non-zero character of C0(X,F) it therefore has a unique
extension to a character ϕ̂ of C(X∞,F), defined by sending the constant function 1 to 1. Now by
Proposition E.3.6, there is an x ∈ X∞ such that ϕ̂ = ϕx. In view of ϕ∞ �C0(X,F) = 0 6= ϕ, we have
x 6=∞, thus x ∈ X. �

Remark E.3.8 1. Also for non-compact locally compact X, one has a bijection between between
X (and Ω(C0(X,F))) and certain maximal ideals of Ω(C0(X,F)), the modular ones. For this cf. e.g.
[220].

2. If we equip Ω(C0(X,F)) with the initial topology induced by the characters, i.e. ϕι → ϕ if
and only if ϕι(x) → ϕ(x) for all x ∈ X then it is clear that x 7→ ϕx is continuous, and with little
more effort one can show it to be a homeomorphism. Thus X can be reconstructed as a topological
space from Ω(C0(X,F)). We omit the details since with Theorem G.7.22 we will prove a better
result later: For every commutative C∗-algebra A over F there is a unique (up to homeomorphism)
locally compact Hausdorff space X such that A ∼= C0(X,F). Now X is compact if and only if A
is unital. Furthermore, this extends to a contravariant equivalence of the categories of compact
Hausdorff spaces and commutative unital C∗-algebras. We will prove part of this in Section G.7, but
this requires some preparation. 2
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Appendix F

The sequence spaces `p(S)

In this chapter we will consider another important class of normed spaces on the interface between
general topology and functional analysis. They provide a first encounter with the Lebesgue spaces
Lp(X,A, µ) without the measure and integration theoretic baggage needed for the latter.1

F.1 Basics. 1 ≤ p ≤ ∞: Hölder and Minkowski inequalities

Definition F.1.1 (`p-Spaces) If F ∈ {R,C}, 0 < p <∞, S is a set and f : S → F, define

‖f‖∞ = sup
s∈S
|f(s)| ∈ [0,∞], ‖f‖p =

(∑
s∈S

|f(s)|p
)1/p

∈ [0,∞],

where ∞1/p =∞ and we recall Example 5.1.26. Now for all p ∈ (0,∞] put

`p(S,F) := {f : S → F | ‖f‖p <∞}.

Lemma F.1.2 For all p ∈ (0,∞] and f : S → F we have:

(i) ‖f‖p = 0 if and only if f = 0.

(ii) For all c ∈ F we have ‖cf‖p = |c|‖f‖p (with the understanding that 0 · ∞ = 0).

(iii) If S is finite then `p(S,F) = {f : S → F} = FS. If #S = 1 then all the ‖ · ‖p coincide.

Proof. Trivial. �

Lemma F.1.3 (i) (`p(S,F), ‖ · ‖p) are normed vector spaces for p = 1 and p =∞.

(ii) If f ∈ `1(S,F) and g ∈ `∞(S,F) then∣∣∣∣∣∑
s∈S

f(s)g(s)

∣∣∣∣∣ ≤ ‖fg‖1 ≤ ‖f‖1‖g‖∞.

1As exlained in the Preface, the author would disagree with the view that the spaces considered in this section
belong solely to functional analysis and therefore have no place in an introduction to topology. There is an entire
branch of topology, infinite-dimensional topology, cf. e.g. [208], concerned with such spaces, in particular `2(N).

395
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Proof. `p(S,F) obviously is stable under scalar multiplication. And

‖f + g‖∞ = sup
s
|f(s) + g(s)| ≤ sup

s
|f(s)|+ sup

s
|g(s)| = ‖f‖∞ + ‖g‖∞,

‖f + g‖1 =
∑
s

|f(s) + g(s)| ≤
∑
s

(|f(s)|+ |g(s)|) = ‖f‖1 + ‖g‖1.

Thus for p ∈ {1,∞} and f, g ∈ `p(S,F) we have f + g ∈ `p(S,F), so that `p(S,F) is an F-vector
space and ‖ · ‖p a norm on it. For (ii) we only need the triviality |f(s)g(s)| ≤ ‖g‖∞|f(s)| and the
fact proven in Exercise 5.1.27(iii). �

For 1 < p <∞ define q ∈ (1,∞) by 1
p

+ 1
q

= 1. (This is equivalent to pq = p + q, which often is

useful.) Whenever p, q appear together they are supposed to be a dual pair in this sense. We extend
this in a natural way by declaring (1,∞) and (∞, 1) to be dual pairs.

Proposition F.1.4 Let 1 < p <∞ and q dual. Then

(i) For all f, g : S → F we have ‖fg‖1 ≤ ‖f‖p‖g‖q. (Inequality of Hölder2)

(ii) For all f, g : S → F we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p. (Inequality of Minkowski3)

Proof. (i) We may assume ‖f‖p, ‖g‖q to be finite. The exponential function x 7→ ex is convex, to
that with of 1

p
+ 1

q
= 1 we have

ea/peb/q = exp

(
a

p
+
b

q

)
≤ ea

p
+
eb

q
∀a, b ∈ R.

With ea = up, eb = vq, where u, v > 0 this becomes

uv ≤ up

p
+
vq

q
∀u, v ≥ 0. (F.1)

(The validity also for u = 0 or v = 0 is obvious.)
Putting u = |f(s)|, v = |g(s)| in (F.1), we have |f(s)g(s)| ≤ p−1|f(s)|p + q−1|g(s)|p, so that

summing over s gives ‖fg‖1 ≤ p−1‖f‖pp + q−1‖g‖qq. If ‖f‖p = ‖g‖q = 1 then this reduces to ‖fg‖1 ≤
1
p

+ 1
p

= 1. If now f, g are non-zero but otherwise arbitrary, put f ′ = f/‖f‖p, g′ = g/‖g‖q. Now

‖f ′‖p = 1 = ‖g′‖q, so that ‖f ′g′‖1 ≤ 1, and inserting the definitions of f ′, g′ gives ‖fg‖1 ≤ ‖f‖p‖g‖q.
Of course the inequality is trivially true if f or g vanishes.
(ii) Again we assume that ‖f‖p, ‖g‖p are finite, thus f, g ∈ `p(S,F). Then∑
s

|f(s) + g(s)|p ≤
∑
s

(|f(s)|+ |g(s)|)p ≤
∑
s

(2 max(|f(s)|, |g(s)|))p ≤ 2p(‖f‖pp + ‖g‖qq) <∞,

so that ‖f + g‖p < ∞ and f + g ∈ `p(S,C). If h ∈ `p then s 7→ |h(s)|p−1 is in `q (with q dual)
since

∑
s |h(s)|(p−1)q =

∑
s |h(s)|p < ∞ by pq = p + q. In particular |f + g|p−1 ∈ `q. Furthermore,

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1. Thus with Hölder’s inequality we have

‖f + g‖pp =
∑
s

|f(s) + g(s)|p ≤
∑
s

(|f(s)|+ |g(s)|) |f(s) + g(s)|p−1

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1‖q = (‖f‖p + ‖g‖p) ‖f + g‖p/qp .

2Otto Hölder (1859-1937), German mathematician. Important contributions to analysis and algebra.
3Hermann Minkowski (1864-1909), German mathematician. Contributions to number theory, relativity and other

fields.
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If ‖f + g‖p 6= 0, we can divide by ‖f + g‖p/q and with p(1− 1/q) = p1
p

= 1 we obtain

‖f + g‖p = ‖f + g‖p(1−1/q)
p ≤ ‖f‖p + ‖g‖p.

Since this clearly also holds if ‖f + g‖p = 0, we are done. �

For p = q = 2, the inequality of Hölder is known as the Cauchy-Schwarz inequality. We will also
call the trivial inequalities of Lemma F.1.3 for {p, q} = {1,∞} Hölder and Minkowski inequalities.
Now the analogue of Lemma F.1.3 for 1 < p <∞ is clear:

Corollary F.1.5 Let 1 < p <∞. Then

(i) (`p(S,F), ‖ · ‖p) is a normed vector space.

(ii) If q is dual to p and f ∈ `p(S,F) and g ∈ `q(S,F) then∣∣∣∣∣∑
s∈S

f(s)g(s)

∣∣∣∣∣ ≤ ‖fg‖1 ≤ ‖f‖p‖g‖q.

F.2 0 < p < 1: The metric dp

Proposition F.2.1 If 0 < p < 1 and #S ≥ 2 then

(i) ‖ · ‖p violates subadditivity, thus is not a norm.

(ii) Nevertheless, `p(S,F) is a vector space.

(iii) Restricted to `p(S,F),

dp(f, g) =
∑
s∈S

|f(s)− g(s)|p (F.2)

defines a metric that is translation-invariant in the sense dp(f, g) = dp(f − g, 0).

(iv) `p(S,F) a topological vector space when given the metric topology τdp.

Proof. (i) Pick s, t ∈ S, s 6= t and put f = δs, g = δt. Now ‖f‖p = ‖g‖p = 1 and

2 < 21/p = ‖f + g‖p 6≤ ‖f‖p + ‖g‖p = 2

since 1/p > 1. Thus ‖ · ‖p is not subadditive and therefore not a norm.
(ii) It is clear that f ∈ `p(S,F) implies cf ∈ `p(S,F) for all c ∈ F. For a, b ≥ 0 we have

(a+ b)p ≤ (2 max(a, b))p ≤ 2p(ap + bp), whence the inequality

‖f + g‖pp =
∑
s∈S

|f(s) + g(s)|p ≤
∑
s∈S

(|f(s)|+ |g(s)|)p

≤ 2p
∑
s∈S

(|f(s)|p + |g(s)|p) = 2p(‖f‖pp + ‖g‖pp),

which still implies that f + g ∈ `p(S,F) for all f, g ∈ `p(S,F).
(iii) That dp(f, g) < ∞ for all f, g ∈ `p(S,F) follows from `p being a vector space. Translation

invariance of dp and the axioms dp(f, g) = dp(g, f) and dp(f, g) = 0 ⇔ f = g are all evident from
the definition. We claim that

0 < p < 1, a, b ≥ 0 ⇒ (a+ b)p ≤ ap + bp.
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Believing this for a minute, we have

dp(f, h) = dp(f − h, 0) =
∑
s

|f(s)− h(s)|p ≤
∑
s

(|f(s)− g(s)|+ |g(s)− h(s)|)p

≤
∑
s

(|f(s)− g(s)|p + |g(s)− h(s)|p) = dp(f − g, 0) + dp(g − h, 0) = dp(f, g) + dp(g, h),

as wanted, where first used the triangle inequality and then the claim.
Turning to our claim (a+ b) ≤ ap + bp, it is clear that this holds if a = 0. For a = 1 it reduces to

(1 + b)p ≤ 1 + bp ∀b ≥ 0. For b = 0 this is true, and for all b > 0 it follows from the fact that

d

db
(1 + bp − (1 + b)p) = p(bp−1 − (b+ 1)p−1) > 0

due to p− 1 < 0. If now a > 0 then

(a+ b)p = ap(1 + (b/a))p ≤ ap(1 + (b/a)p) = ap + bp,

and we are done.
(iv) In view of dp(f +g, 0) ≤ dp(f, 0)+dp(g, 0), it is clear that the addition operation `p× `p → `p

is jointly continuous at (0, 0), thus everywhere. It remains to show that scalar action F× `p → `p is
jointly continuous. By distributivity it suffices to do this at (0, 0). Now

dp(cf, 0) =
∑
s

|cf(s)|p = |c|p
∑
s

|f(s)|p = |c|pdp(f, 0),

and this goes to zero as (c, f) goes to zero in F× `p. �

From now on we let dp(f, g) stand for the formula in (F.2) if 0 < p < 1 and for ‖f − g‖p
if 1 ≤ p ≤ ∞. Thus

dp(f, g) =


∑

s∈S |f(s)− g(s)|p if 0 < p < 1,(∑
s∈S |f(s)− g(s)|p

)1/p
if 1 ≤ p <∞,

sups∈S |f(s)| if p =∞

We will use the notation ‖f‖p = (
∑

s∈S |f(s)|p)1/p also for p < 1, for reasons of notational
convenience. (Thus dp will be a metric for all p, but ‖ · ‖p will not be a norm for p < 1.)

Remark F.2.2 1. The proofs in the next two sections are involved with density questions. For
these we can work with ‖ · ‖p even when it is not since subadditive, since this will not be needed.
Implicitly we use that [0,∞) → [0,∞), t 7→ tp is a homeomorphism, so that ‖f − g‖p → 0 and
dp(f, g)→ 0 are equivalent.

2. The spaces `p(S,F) (and more generally Lp(X,A, µ)) with 0 < p < 1 are examples of F-spaces,
to which we will return later. Those F-spaces that are not locally convex are not very well behaved
and much less important and useful than Banach spaces and the locally convex spaces discussed
later. We nevertheless introduced `p for 0 < p < 1 early since the results and proofs of the next two
sections also hold for these spaces.

3. In view of the inequality dp(f + g, 0) ≤ dp(f, 0) + dp(g, 0), defining ‖f‖p =
∑

s∈S |f(s)|p (as
some authors do, calling this an ‘F-norm’) would lead to subadditivity ‖f + g‖p ≤ ‖f‖p + ‖g‖p. But
then ‖cf‖p = |c|‖f‖p holds only for |c| = 1. For our purposes, this would have no advantages. 2
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F.3 c00 and c0. Completeness of `p(S,F) and c0(S,F)

Definition F.3.1 For a set S and F ∈ {R,C} we define

c00(S,F) = {f : S → F | #(suppf) <∞},
c0(S,F) = {f : S → F | ε > 0 ⇒ #{s ∈ S | |f(s)| ≥ ε} <∞}.

Lemma F.3.2 If 0 < p ≤ q <∞, we have

(i) c00(S,F) ⊆ `p(S,F) ⊆ `q(S,F) ⊆ c0(S,F) ⊆ `∞(S,F),

(ii) ‖f‖q ≤ min(1, ‖f‖p/qp ), thus ‖f‖p → 0 ⇒ ‖f‖q → 0.

Proof. (i) If f ∈ c00(S,F) then clearly ‖f‖p < ∞ for all p ∈ (0,∞]. And f ∈ c0(S,F) implies
boundedness of f . This gives the first and last inclusion.

If f ∈ `p(S,F) with p ∈ (0,∞) then finiteness of
∑

s∈S |f(s)|p implies that {s ∈ S | |f(s)| ≥ ε}
is finite for each ε > 0, thus f ∈ c0(S,F). In particular F = {s ∈ S | |f(s)| ≥ 1} is finite. If now
0 < p < q <∞ then

‖f‖qq −
∑
s∈F

|f(s)|q =
∑
s∈S\F

|f(s)|q =
∑
s∈S\F

|f(s)|p·
q
p ≤

∑
s∈S\F

|f(s)|p ≤ ‖f‖pp <∞, (F.3)

since q/p > 1 and |f(s)| < 1, thus |f(s)|q/p ≤ |f(s)| for all s ∈ S\F . With the finiteness of∑
s∈F |f(s)|q this implies

∑
s∈S |f(s)|q <∞, thus f ∈ `q(S,F).

(ii) It suffices to observe that ‖f‖p < 1 implies that the set F in part (i) of the proof is empty, so

that (F.3) reduces to ‖f‖qq ≤ ‖f‖pp, thus ‖f‖q ≤ ‖f‖p/qp . �

Lemma F.3.3 Let p ∈ [1,∞] and dp(x, y) = ‖x− y‖p. Then (`p(S,F), dp) is complete for every set
S and F ∈ {R,C}.

Proof. Let {fn} ⊆ `p(S,F) be a Cauchy sequence w.r.t. dp, thus also w.r.t. ‖·‖p. Then |fn(s)−fm(s)| ≤
‖fn − fm‖p, so that {fn(s)} is a Cauchy sequence in F, thus convergent for each s ∈ S. Defining
g(s) = limn fn(s), it remains to prove g ∈ `p(S,F) and dp(fn, g)→ 0.

For p =∞ and ε > 0 we can find n0 such that n,m ≥ n0 implies ‖fn − fm‖∞ < ε, which readily
gives ‖fm‖∞ ≤ ‖fn0‖∞ + ε for all m ≥ n0. Thus also ‖g‖∞ ≤ ‖fn0‖∞ + ε < ∞. Taking m → ∞ in
sups |fn(s)− fm(s)| < ε gives sups |fn(s)− g(s)‖ ≤ ε, whence ‖fn − g‖∞ → 0.

For 0 < p <∞ we give a uniform argument. Since {fn} is Cauchy w.r.t. dp, for ε > 0 we can find
n0 such that n,m ≥ n0 implies dp(fn, fm) < ε. In particular dp(fm, fn0) < ε for all m ≥ n0, thus also
dp(g, fn0) ≤ ε, thus g ∈ `p(S,F). Applying the dominated convergence theorem (in the simple case
of an infinite sum rather than a general integral) to take m→∞ in dp(fn, fm) < ε gives d(fn, g) ≤ ε,
whence d(fn, g)→ 0. �

Lemma F.3.4 (i) We have

c00(S,F)
‖·‖p

=

{
`p(S,F) if 0 < p <∞
c0(S,F) if p =∞

(ii) (c0(S,F), ‖ · ‖∞) is complete.
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Proof. (i) Let 0 < p < ∞ and f ∈ `p(S,F). Then
∑

s∈S |f(s)|p = ‖f‖pp implies that for each ε > 0
there is a finite F ⊆ S such that ‖f‖pp −

∑
s∈F |f(s)|p < ε. Putting g(s) = f(s)χF (s), we have

g ∈ c00(S,F) and ‖f − g‖pp =
∑

s∈S\F |f(s)|p < ε. Since ε > 0 is arbitrary, c00 ∈ `p is dense.

If f ∈ c0(S,F) and ε > 0 then F = {s ∈ S | |f(s)| ≥ ε} is finite. Now g = fχF is in c00(S,F) and

‖f − g‖∞ < ε, proving f ∈ c00(S,F)
‖·‖∞

. And f ∈ c00(S,F)
‖·‖∞

means that for each ε > 0 there is a
g ∈ c00(S,F) with ‖f − g‖∞ < ε. But this means |f(s)| < ε for all s ∈ S\F , where F = supp(g) is
finite. Thus f ∈ c0(S,F).

(ii) Being the closure of c00(S,F) in `∞(S,F), c0(S,F) is closed, thus complete by completeness
of `∞(S,F), cf. Lemma F.3.3, and Lemma 3.1.10(i). �

While the finitely supported functions are not dense in `∞(S,F) (for infinite S), the finite-image
functions are:

Lemma F.3.5 The set {f : S → F | #f(S) <∞} of functions assuming only finitely many values,
equivalently, the set of finite linear combinations

∑K
k=1 ckχAk of characteristic functions, is dense in

`∞(S,F).

Proof. We prove this for F = R, from which the case F = C is easily deduced. Let f ∈ `∞(S,F) and

ε > 0. For k ∈ Z define Ak = f−1([kε, (k + 1)ε)). Define K = d‖f‖∞
ε
e + 1 and g = ε

∑
|k|≤K kχAk .

Then g has finite image and ‖f − g‖∞ < ε. �

F.4 Separability of `p(S,F) and c0(S,F)

In Section E.2.3 we discussed the question of separability of the normed spaces (Cb(X,F), ‖ · ‖∞).
Here we do the same for `p(S,F) and c0(S,F).

Proposition F.4.1 Let p ∈ (0,∞). The metric space (`p(S,F), dp), where dp(f, g) = ‖f − g‖p, is
separable (⇔ second countable) if and only if the set S is countable.

Proof. We prove this for F = R, from which the claim for F = C is easily deduced. For f : S → R,
let supp(f) := {s ∈ S | f(s) 6= 0} ⊆ S be the support of f . Now, if S is countable, then Y = {g :
S → Q | #(supp(g)) <∞} ⊆ `p(S,R) is countable, and we claim that Y = `p(S,R). To prove this,
let f ∈ `p(S,R) and ε > 0. Since ‖f‖pp =

∑
s∈S |f(s)|p <∞, there is a finite subset T ⊆ S such that∑

s∈S\T |f(s)|p < ε/2. On the other hand, since Q#T ⊆ R#T is dense, we can choose g : T → Q such

that
∑

t∈T |f(t)− g(t)|p < ε/2. Defining g to be zero on S\T , we have g ∈ Y and

‖f − g‖p =
∑
t∈T

|f(t)− g(t)|p +
∑
s∈S\T

|f(s)|p < ε

2
+
ε

2
= ε,

and since ε > 0 was arbitrary, Y ⊆ `p(S,R) is dense.
For the converse, assume that S is uncountable. By Lemma F.4.2 below supp(f) is countable for

every f ∈ `p(S,R). Thus if Y ⊆ `p(S,R) is countable then T =
⋃
f∈Y supp(f) ⊆ S is a countable

union of countable sets and therefore countable. Thus all functions f ∈ Y vanish on S\T 6= ∅, and
the same holds for f ∈ Y since the coordinate maps f 7→ f(s) are continuous in view of |f(s)| ≤ ‖f‖.
Thus Y cannot be dense. �

Lemma F.4.2 If S is a set and f : S → [0,∞) satisfies
∑

s∈S f(s) <∞ then T = {s ∈ S | f(s) 6= 0}
is countable.
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Proof. Defining Tn = {s ∈ S | f(s) > 1/n}, we clearly have T =
⋃
n∈N Tn. Now

#Tn
1

n
≤
∑
t∈Tn

f(t) ≤
∑
s∈S

f(s) <∞

implies #Tn <∞ for each n. Thus T is a countable union of finite sets, thus countable. �

Remark F.4.3 The vector space `2(S,F) of Definition F.1.1 is a Hilbert4 space with inner product
〈f, g〉 =

∑
s∈S f(s)g(s). On the other hand, every orthonormal basis B ⊆ H of an (abstract) Hilbert

space H gives rise to a unitary isomorphism H ∼= `2(B). In view of the above we thus see that a
Hilbert space H is separable (in the sense of Definition 4.1.10) if and only if it admits a countable
orthonormal basis. For this reason, the latter property is often taken as the definition of separability
of a Hilbert space. 2

Exercise F.4.4 With d∞(f, g) = ‖f − g‖∞ prove

(i) The space (`∞(S,F), d∞) is separable if and only if S is finite.

(ii) The space (c0(S,F), d∞) is separable if and only if S is countable.

Hint: For (i), consider {0, 1}S ⊆ `∞(S).

F.5 Compactness in function spaces II: `p(S,F) and Lp(Rn)

As done for the spaces C(X, Y ) in Section 7.7.7, we want to identify the compact subsets of the
sequence spaces `p(S), p ≥ 1. Since the set S is discrete, there is no question of (equi)continuity of
F ⊆ `p(S), but the fact that S typically is infinite, thus non-compact leads to a new conditon on F :

Definition F.5.1 A family F ⊆ `p(S) has equi-small tails if

lim
T↗S
T finite

sup
f∈F
‖f · χS\T‖p = 0.

Equivalently, for every ε > 0 there is a finite subset T ⊆ S such that
∑

s∈S\T |f(s)|p < εp for every
f ∈ F .

Theorem F.5.2 Consider `p(S) with the norm ‖f‖p = (
∑

s∈S |f(s)|p)1/p, where 1 ≤ p < ∞, cf.
Definition F.1.1. Then F ⊆ `p(S) is relatively compact if and only if

• F is pointwise bounded, i.e. supf∈F |f(s)| <∞ ∀s ∈ S,

• F has equi-small tails.

Proof. ⇒ If F ⊆ `p(S) is totally bounded, then F is compact, so that {f(s) | f ∈ F} is bounded for
every s ∈ S by the same argument as in the proof of Theorem 7.7.67. Let ε > 0. Since F is totally
bounded, there are g1, . . . , gn ∈ `p(S) such that `p(S) =

⋃
iB

D(gi, ε/2). Since gi ∈ `p(S), there is a

4David Hilbert (1862-1943). Eminent German mathematician who worked on many different subjects. Considered
the strongest and most influential mathematician in the decades around 1900, only Poincaré coming close.
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finite Ti ⊆ S such that ‖gi · χS\Ti‖p < ε/2. Take T =
⋃n
i=1 Ti. If f ∈ `p(S) then f ∈ BD(gi, ε/2) for

some i. Clearly, ‖(f − gi) · χS\T‖p ≤ ‖f − gi‖p < ε/2, which implies

‖f · χS\T‖p ≤ ‖gi · χS\T‖p +
ε

2
≤ ε

2
+
ε

2
= ε.

Since f ∈ `p(S) was arbitrary, F has equi-small tails.
⇐ Assume F is pointwise bounded and has equi-small tails. Let ε > 0. By the second assumption,

there is a finite T ⊆ S such that supf∈F ‖f · χS\T‖p < ε. Write T = {t1, . . . , tn} and define h : F →
Fn : f 7→ (f(t1), . . . , f(tn)). Now by pointwise boundedness of F , the image h(F) ⊆ Fn is bounded,
thus totally bounded by Lemma 7.7.47. If f, g ∈ F satisfy ‖h(f)−h(g)‖p = ‖(f − g) ·χT‖p < ε then

‖f − g‖p ≤ ‖(f − g) · χT‖p + ‖(f − g) · χS\T‖
≤ ‖(f − g) · χT‖p + ‖fχS\T‖p + ‖gχS\T‖p ≤ ε+ 2ε = 3ε.

Thus the assumptions of Lemma 7.7.66 are satisfied, and we obtain total boundedness of F . �

Remark F.5.3 If S is finite, F automatically has equi-small tails. Then F is relatively compact
w.r.t. ‖ · ‖p if and only if it is bounded w.r.t. ‖ · ‖∞. We could of course have obtained this from the
Heine-Borel theorem and the fact that all norms on a finite dimensional space are equivalent to the
Euclidean norm. 2

Exercise F.5.4 For g ∈ `p(S), define Fg = {f ∈ `p(S) | |f(s)| ≤ g(s) ∀s ∈ S} ⊆ `p(S). Prove
that Fg is compact and homeomorphic to the product space

∏
s∈S B(0, g(s)) (which is compact by

Tychonov’s theorem).

Remark F.5.5 1. In view of
∑

n∈N 1/n2 < ∞, we have as a special case the compactness of∏
n∈N[−1/n, 1/n] ⊆ `2(N,R), which is known as the Hilbert cube. (The point of course is not that

a countable product of closed intervals is compact, but that the `2-topology on the Hilbert cube
coincides with the product topology.)

2. There actually also is a homeomorphism between `2(N) and the infinite product RN =
∏

n∈N R.
For the proof (due to R. D. Anderson (1966)), cf. [208, §6.6].

3. See Remark F.8.3 for a characterization of compact subsets of the more general Lp-spaces. 2

F.6 Dual spaces of `p(S,F), 0 < p <∞, and c0(S,F)

If (V, ‖ · ‖) is a normed vector space over F and ϕ : V → F is a linear functional, we define

‖ϕ‖ = sup
06=x∈V

|ϕ(x)|
‖x‖

= sup
x∈V
‖x‖≤1

|ϕ(x)|.

Now we call V ∗ = {ϕ : V → F linear | ‖ϕ‖ < ∞} the dual space of V . In the next section we
will prove in generality that (V ∗, ‖ · ‖) is a normed space. Here we do this directly by concretely
identifying `p(S,F)∗ and c0(S,F)∗.

For the purpose of the following proof, it will be useful to define sgn : C→ C by sgn(0) = 0 and
sgn(z) = z/|z| otherwise. Then z = sgn(z)|z| and |z| = sgnz z for all z ∈ C.

Theorem F.6.1 (i) Let p ∈ [1,∞] with dual value q. Then for each g ∈ `q(S,F) the map ϕg :
`p(S,F) → F, f 7→

∑
s∈S f(s)g(s) satisfies ‖ϕg‖ ≤ ‖g‖q, thus ϕg ∈ `p(S,F)∗. And the map

ι : `q(S,F)→ `p(S,F)∗, g 7→ ϕg, called the canonical map, is linear with ‖ι‖ ≤ 1.
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(ii) For all 1 ≤ p ≤ ∞ the canonical map `q(S,F)→ `p(S,F)∗ is isometric.

(iii) If 1 ≤ p <∞, the canonical map `q(S,F)→ `p(S,F)∗ is surjective, thus `p(S,F)∗ ∼= `q(S,F).

(iv) The canonical map `1(S,F)→ c0(S,F)∗ is an isometric bijection, thus c0(S,F)∗ ∼= `1(S,F).

(v) If S is finite, the canonical map `1(S,F)→ `∞(S,F)∗ is surjective. If S is infinite, its image is
a proper closed subspace of `∞(S,F)∗.

Proof. (i) For all p ∈ [1,∞] and dual q we have

|
∑
s

f(s)g(s)| ≤
∑
s∈S

|f(s)g(s)| ≤ ‖f‖p‖g‖q <∞ ∀f ∈ `p, g ∈ `q

by Hölder’s inequality. In either case, the absolute convergence for all f, g implies that (f, g) 7→∑
s f(s)g(s) is bilinear.
(ii) If ‖g‖∞ 6= 0 and ε > 0 there is an s ∈ S with |g(s)| > ‖g‖∞ − ε. If f = δs : t 7→ δs,t, we have

|ϕg(f)| = |g(s)| > ‖g‖∞ − ε. Since ‖f‖1 = 1, this proves ‖ϕg‖ > ‖g‖ − ε. Since ε > 0 was arbitrary,
we have ‖ϕg‖ ≥ ‖g‖∞.

If ‖g‖1 6= 0, define f(s) = sgn(g(s)). Then ‖f‖∞ = 1 and
∑

s f(s)g(s) =
∑

s |g(s)| = ‖g‖1. This
proves ‖ϕg‖ ≥ ‖g‖1.

If 1 < p, q <∞ and ‖g‖q 6= 0, define f(s) = sgn(g(s))|g(s)|q−1. Then∑
s

f(s)g(s) =
∑
s

|g(s)|q = ‖g‖qq,

‖f‖pp =
∑
s

|f(s)|p =
∑

s, g(s)6=0

|g(s)|(q−1)p =
∑
s

|g(s)|q = ‖g‖qq,

where we used p+ q = pq, whence (q − 1)p = q. The above gives

‖ϕq‖ ≥
|
∑

s f(s)g(s)|
‖f‖p

=
‖g‖qq
‖f‖p

=
‖g‖qq
‖g‖q/pq

= ‖g‖q(1−1/p)
q = ‖g‖q.

We thus have proven ‖ϕg‖ ≥ ‖g‖q in all cases and since the opposite inequality is known from
(i), g 7→ ϕg is isometric.

(iii) Let 0 6= ϕ ∈ `1(S,F)∗. Define g : S → F by g(s) = ϕ(δs). With ‖δs‖1 = 1, we have
|g(s)| = |ϕ(δs)| ≤ ‖ϕ‖ for all s ∈ S, thus ‖g‖∞ ≤ ‖ϕ‖. If f ∈ `1(S,F) and F ⊆ S is finite,
we have ϕ(fχF ) = ϕ(

∑
s∈F f(s)δs) =

∑
s∈F f(s)g(s). In the limit F ↗ S this becomes ϕ(f) =∑

s∈S f(s)g(s) = ϕg(f) (since fg ∈ `1, thus the r.h.s. is absolutely convergent, and ‖f(1−χF )‖1 → 0
and ϕ is ‖ · ‖1-continuous). This proves ϕ = ϕg with g ∈ `∞(S,F).

Now let 1 < p, q < ∞, and let 0 6= ϕ ∈ `p(S,F)∗. Since `1(S,F) ⊆ `p(S,F) by Lemma F.3.2,
we can restrict ϕ to `1(S,F)∗, and the preceding argument gives a g ∈ `∞(S,F) such that ϕ(f) =∑

s∈S f(s)g(s) for all f ∈ `1(S,F). The arguments in the proof of (ii) also show that for 1 < p, q <∞
and any function g : S → F we have

‖g‖q = sup

{
|
∑
s∈S

f(s)g(s)| | f ∈ c00(S,F), ‖f‖p ≤ 1

}
.

Using this and ϕ(f) =
∑

s f(s)g(s) for all f ∈ c00(S,F) we have

‖g‖q = sup{|ϕ(f)| | f ∈ c00(S,F), ‖f‖p ≤ 1} = ‖ϕ‖ <∞.
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Now ϕ(f) =
∑

s∈S f(s)g(s) = ϕg(f) for all f ∈ `p(S,∞) follows as before from fg ∈ `1 and
‖f(1− χF )‖p → 0 as F ↗ S and the ‖ · ‖p-continuity of ϕ.

(iv) Let 0 6= g ∈ `1(S,F). Then ϕg ∈ `∞(S,F)∗, which we can restrict to c0(S,F). For finite

F ⊆ S define fF = fχF with f(s) = sgn(g(s)). Then fF ∈ c00(S,F) with ‖fF‖∞ = 1 (provided
F∩supp g 6= ∅) and ϕ(fF ) =

∑
s∈F |g(s)|. Thus ‖ϕ‖ ≥

∑
s∈F |g(s)| for all finite F intersecting supp g,

and this implies ‖ϕg‖ ≥ ‖g‖1. The opposite being known, we have proven that `1(S,F)→ c0(S,F)∗

is isometric.
To prove surjectivity, let 0 6= ϕ ∈ c0(S,F)∗ and define g : S → F, s 7→ ϕ(δs). If now f ∈ c0(S,F)

and F ⊆ S is finite, we have fχF =
∑

s∈F f(s)δs, thus ϕ(fχF ) =
∑

s∈F f(s)g(s). In particular with

f(s) = sgn(g(s)) we have ϕ(fχF ) =
∑

s∈F f(s)g(s) =
∑

s∈F |g(s)|. Again we have ‖fχf‖∞ ≤ ‖f‖∞ =
1, thus |ϕ(fχF )| ≤ ‖ϕ‖, and combining these observations gives ‖g‖1 ≤ ‖ϕ‖ <∞, thus g ∈ `1(S,F).
As F ↗ S, we have ‖f(1− χF )‖∞ = ‖fχS\F‖∞ → 0 since f ∈ c0, thus with ‖ · ‖∞-continuity of ϕ

ϕ(f) = lim
F↗S

ϕ(fχF ) = lim
F↗S

∑
s∈F

f(s)g(s) =
∑
s∈S

f(s)g(s) = ϕg(f),

where we again used fg ∈ `1. Thus ϕ = ϕg, so that `1(S,F)→ c0(S,F)∗ is an isometric bijection.
(v) It is clear that ι : `1(S,F)→ `∞(S,F)∗ is surjective if S is finite. Closedness of the image of ι

always follows from the completeness of `1(S,F) and the fact that ι is an isometry, cf. (ii), since this
implies that the image of ι is a complete, thus closed subspace. The failure of surjectivity is deeper
than the results of this section so far, so that it is illuminating to give two proofs.

First proof: Since S is discrete, `∞(S,F) = Cb(S,F) ∼= C(βS,F), where βS is the Stone-Čech
compactification of S, cf. Corollary 8.3.31(iii) The isomorphism is given by the unique continuous

extension Cb(S,F) → C(βX,F), f 7→ f̂ with the restriction map C(βS,R) → Cb(S,R) as inverse.

Since S is infinite discrete, thus non-compact, βS 6= S. If f ∈ C0(S,F) then f̂(x) = 0 for every x ∈
βS\S, cf. Lemma 7.8.63. Thus for such an x, the evaluation map ψx : C(βS,F)→ F, f̂ 7→ f̂(x) gives

rise to a non-zero bounded linear functional (in fact character) ϕ(f) = f̂(x) on Cb(S,F) = `∞(S,F)
that vanishes on c0(S,F). By (iv), the canonical map `1(S,F)→ c0(S,F)∗ is isometric, thus ϕg with
g ∈ `1(S,F) vanishes identically on c0(S,F) if and only if g = 0. Thus ϕ 6= ϕg for all g ∈ `1(S,F).

Second proof: If S is infinite, the closed subspace c0(S,F) ⊆ `∞(S,F) is proper since 1 ∈
`∞(S,F)\c0(S,F). Thus the quotient space Z = `∞(S,F)/c0(S,F) is non-trivial. In Section G.3
we will show that Z is a normed space admitting non-zero bounded linear maps ψ : Z → F and
that the quotient map p : `∞(S,F) → Z is bounded. Thus ϕ = ψ ◦ p is a non-zero bounded linear
functional on `∞(S,F) that vanishes on the closed subspace c0(S,F). Now we conclude as in the first
proof that ϕ 6= ϕg for all g ∈ `1(S,F). �

Remark F.6.2 The two proofs of non-surjectivity of the canonical map `1(S,F) → `∞(S,F)∗ for
infinite S given above are both very non-constructive: The first used the Stone-Čech compactification
βS whose very construction relies on Tychonov’s theorem for intervals, which is equivalent to the
ultrafilter lemma, while the second made use of the Hahn-Banach theorem, whose proof also relies
on the ultrafilter lemma.

In fact, the two proofs are essentially the same. The first proof implicitly uses the fact that
`∞(S), c0(S) are algebras, so that we can consider characters instead of all linear functionals. By
Theorem E.3.7, the characters on `∞(S) = Cb(S) = C(βS) correspond bijectively to the points of
βS, and those that vanish on c0(S) correspond to βS\S. The second construction is more func-
tional analytic, involving the Banach space quotient Cb(S)/c0(S) and general functionals instead of
characters. We will return to the subject at the end of the next section. 2
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The dual space of `p(S,∞) with 0 < p < 1 is a bit surprising:

Proposition F.6.3 For 0 < p < 1, the dual space `p(S,F)∗ coincides with `1(S,F)∗ ∼= `∞(S,F), i.e.
consists precisely of the functionals ϕg, where g ∈ `∞(S,F).

Proof. By Lemma F.3.2(i) we have `p(S,F) ⊆ `1(S,F). Thus every ϕ ∈ `1(S,F)∗ restricts to a linear
functional on `p(S,F). If ‖f‖p → 0 then Lemma F.3.2(ii) gives ‖f‖1 → 0, thus ϕ(f) → 0 by ‖ · ‖1-
continuity of ϕ. Thus ϕ is ‖ · ‖p-continuous and therefore in `p(S,F)∗. Of course we know already
from Theorem F.6.1(iii) that ϕ = ϕg for a unique g ∈ `∞(S,F).

If ϕ ∈ `p(S,F)∗, define g : S → F by g(s) = ϕ(δs). By continuity of ϕ, there is an ε > 0 such that
dp(f, 0) < ε implies |ϕ(f)| < 1. Pick c ∈ (0, ε1/p). Then for all s ∈ S we have d(cδs, 0) = |c|p < ε,
thus |cg(s)| = |cϕ(δs)| = |ϕ(cδs)| < 1. Therefore ‖g‖∞ ≤ |c|−1 <∞, to wit g ∈ `∞(S,F).

If F ⊆ S is finite and f ∈ `p(S,F) then ϕ(fχF ) =
∑

s∈F f(s)g(s). Taking the limit F ↗ S, which
we can do since ‖f(1 − χF )‖p → 0, ϕ is ‖ · ‖p-continuous and the r.h.s. is absolutely summable by
g ∈ `∞ and f ∈ `p ⊆ `1, this becomes ϕ(f) =

∑
s∈S f(s)g(s) = ϕg(f). �

Remark F.6.4 In the range 1 ≤ p < ∞, smaller p, thus smaller `p(S,F) means larger `p(S,F)∗ =
`q(S,F). Thus one might expect `p(S,F)∗ for p < 1 to be strictly larger than `∞(S,F). That this
does not hold for p < 1 is one indication for the unusual character of these `p spaces. Cf. also Remark
F.8.3. 2

It still remains to determine the full dual space `∞(S,F)∗, which will be the subject of the next
section. It will turn out that `∞(S,F)∗ is a space of (certain) functions, but on P (S) rather than S.
But first we give a characterization of the ϕ ∈ `∞(S,F)∗ that are of the form ϕg with g ∈ `1(S,F).

The following is a sort of dominated convergence theorem for nets instead of sequences, but only
for summation. (I.e. integration against the counting measure. It is known that the straightforward
generalization of the dominated convergence theorem to nets is false.)

Lemma F.6.5 Let g ∈ `1(S,F), and let {fι}ι∈I be a net of functions S → F that is uniformly
bounded, i.e. supι∈I sups∈S |fι(s)| < ∞, and converges pointwise to f . Then limι

∑
s∈S fι(s)g(s) =∑

s∈s f(s)g(s).

Proof. Put M = supι∈I sups∈S |fι(s)|. We may assume that g 6= 0 and M 6= 0 since otherwise there is
nothing to prove. Since g ∈ `1(S), for each ε > 0 there is a finite F ⊆ S such that

∑
s∈S\F |g(s)| < ε

4M
.

Since F is finite there is ι0 such that ι ≥ ι0 implies |f(s)−fι(s)| < ε
2‖g‖1 for all s ∈ F . Now for ι ≥ ι0

we have ∣∣∣∣∣∑
s∈S

(f(s)− fι(s))g(s)

∣∣∣∣∣ ≤ ∑
s∈F

|f(s)− fι(s)| |g(s)|+
∑
s∈S\F

|f(s)− fι(s)| |g(s)|

≤ ε

2‖g‖1

∑
s∈F

|g(s)|+ 2M
∑
s∈S\F

|g(s)| < ε

2
+
ε

2
= ε.

Thus limι

∑
s∈s(f(s)− fι(s))g(s)→ 0. �

Proposition F.6.6 If ϕ ∈ `∞(S,F)∗ then there is a (unique) g ∈ `1(S,F) such that ϕ = ϕg if and
only if ϕ(f) = limι ϕ(fι) holds for every net {fι}ι∈I of functions S → F that is uniformly bounded,
i.e. supι∈I sups∈S |fι(s)| <∞, and converges pointwise to f : S → F (which then is in `∞(S,F)).

Calling the ϕ ∈ `∞(S,F)∗ with this property normal and writing (`∞(S,F)∗)n for the set of normal
elements of `∞(S,F)∗, we thus have an isometric bijection `1(S,F) ∼= (`∞(S,F)∗)n.
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Proof. Let g ∈ `1(S,F). If {fι} ⊆ FS is a uniformly bounded net converging pointwise to f ∈ `∞(S,F)
then Lemma F.6.5 gives

ϕg(f) =
∑
s∈S

f(s)g(s) = lim
ι

∑
s∈S

fι(s)g(s) = lim
ι
ϕg(fι),

so that ϕg is normal.
Given ϕ ∈ (`∞(S,F)∗)n, define g : S → F, s 7→ ϕ(δs). With ‖δs‖∞ = 1 we have ‖g‖∞ ≤ ‖ϕ‖.

If now f ∈ `∞(S,F), for each finite F ⊆ S we have ϕ(fχF ) =
∑

s∈F f(s)g(s). Now the net {fχF},
indexed by the finite subsets of S, partially ordered by inclusion, clearly is uniformly bounded by
‖f‖∞ and converges pointwise to f (since (fχF )(s) = f(s) whenever F ≥ {s}). Thus by normality
of ϕ, we have

ϕ(f) = lim
F↗S

ϕ(fχF ) = lim
F↗S

∑
s∈F

f(s)g(s) =
∑
s∈S

f(s)g(s). (F.4)

In particular for f = sgn(g(s)) we have ‖f‖∞ ≤ 1 and

‖g‖1 =
∑
s

|g(s)| =
∑
s

sgn(g(s))g(s) =
∑
s

f(s)g(s) = ϕ(f) ≤ ‖ϕ‖,

so that g ∈ `1(S,F). Now (F.4) means that ϕ = ϕg. (Contrast this with the fact that a non-zero
non-normal ϕ ∈ `∞(S,F)∗ can vanish on c0(S,F), thus on all δs!) �

F.7 Dual space of `∞(S,F)

We have seen in in Theorem F.6.1(v) that there are bounded linear functionals ϕ ∈ `∞(S,F)∗ that
vanish on c0(S,F). Those clearly cannot be captured by the function g(s) = ϕ(δs) widely used
in the proof of Theorem F.6.1. This suggests to consider µϕ(A) = ϕ(χA) for arbitrary A ⊆ S

instead. If A1, . . . , AK are mutually disjoint, and A =
⋃K
k=1 Ak then χA =

∑K
k=1 χAk , thus µϕ(A) =∑K

k=1 µϕ(Ak), so that µϕ is finitely additive.5

Definition F.7.1 If S is a set, a finitely additive finite F-valued measure on S is a map µ : P (S)→
F satisfying µ(∅) = 0 and µ(A1 ∪ · · · ∪ AK) = µ(A1) + · · · + µ(AK) whenever A1, . . . , AK are
mutually disjoint subsets of S. The set of such µ, which we denote fa(S,F), is a vector space via
(c1µ1 + c2µ2)(A) = c1µ1(A) + c2µ2(A). For µ ∈ fa(S,F) we define

‖µ‖ = sup

{
K∑
k=1

|µ(Ak)| | K ∈ N, A1, . . . , AK ⊆ S, i 6= j ⇒ Ai ∩ Aj = ∅

}
,

‖µ‖′ = sup
A⊆S
|µ(A)|.

Theorem F.7.2 (i) ‖ · ‖ and ‖ · ‖′ are equivalent norms on fa(S,F). We write

ba(S,F) = {µ ∈ fa(S,F) | ‖µ‖′ <∞ (⇔ ‖µ‖ <∞)}.

(ii) (ba(S,F), ‖ · ‖) is a Banach space.

(iii) If ϕ ∈ `∞(S,F)∗ then ‖µϕ‖ ≤ ‖µ‖, thus we have a norm-decreasing linear map `∞(S,F)∗ →
ba(S,F), ϕ 7→ µϕ.

5The discussion in this section strongly borrows from [77].
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Proof. (i) It is immediate from the definition ‖cµ‖ = |c|‖µ‖ and ‖cµ‖′ = |c|‖µ‖′ for all c ∈ F, µ ∈
fa(S,F) and that ‖µ‖ = 0 ⇔ µ = 0 ⇔ ‖µ‖′ = 0. Also ‖µ1 + µ2‖′ ≤ ‖µ1‖′ + ‖µ2‖′ is quite obvious.
Now

‖µ1 + µ2‖ = sup

{
K∑
k=1

|µ1(Ak) + µ2(Ak)| | · · ·

}
≤ sup

{
K∑
k=1

|µ1(Ak)|+ |µ2(Ak)| | · · ·

}

≤ sup

{
K∑
k=1

|µ1(Ak)| | · · ·

}
+ sup

{
K∑
k=1

|µ2(Ak)| | · · ·

}
= ‖µ1‖+ ‖µ2‖.

Thus ‖ · ‖, ‖ · ‖′ are norms on fa(S,F). The definition of ‖ · ‖ clearly implies |µ(A)| ≤ ‖µ‖ for each
A ⊆ S, whence ‖µ‖′ ≤ ‖µ‖.

Assume µ ∈ fa(S,R) and ‖µ‖′ <∞. If A1, . . . , AK ⊆ S are mutually disjoint, put

A+ =
⋃
{Ak | µ(Ak) ≥ 0}, A− =

⋃
{Ak | µ(Ak) < 0}.

Now by finite additivity,
∑

k |µ(Ak)| = µ(A+) + µ(A−) ≤ 2‖µ‖′ since |µ(A±)| ≤ ‖µ‖′. Taking the
supremum over the families {Ak} gives ‖µ‖ ≤ 2‖µ‖′.

If µ ∈ fa(S,C), writing µ = Reµ+ i Imµ we find ‖µ‖ ≤ 4‖µ‖′. Thus ‖µ‖′ ≤ ‖µ‖ ≤ 4‖µ‖′ for all
µ, and the two norms are equivalent.

(ii) Here it is more convenient to work with the simpler norm ‖ · ‖′. Now let {µn} be a Cauchy
sequence in ba(S,F). Then |µn(A)−µm(A)| ≤ ‖µn−µm‖′, so that {µn(A)} is Cauchy, thus convergent.
Define µ(n) = limn µn(A). It is clear that µ(∅) = 0. If A1, . . . , AK are mutually disjoint then

µ(A1 ∪ · · · ∪ AK) = lim
n→∞

µn(A1 ∪ · · · ∪ AK) = lim
n→∞

(µn(A1) + · · ·+ µn(AK)) = µ(A1) + · · ·+ µ(AK),

so that µ is finitely additive. Since {µn} is Cauchy, for every ε > 0 there is n0 such that n,m ≥ n0

implies ‖µm−µn‖′ < ε. In particular there is n0 such that ‖µm‖′ ≤ ‖µn0‖′+1 for m ≥ n0. This implies
boundedness of µ. And taking m → ∞ in |µn(A) − µm(A)| ≤ ‖µn − µm‖′ < ε gives ‖µn − µ‖′ ≤ ε,
so that ‖µn − µ‖′ → 0. Thus ba(S,F) is complete (w.r.t. ‖ · ‖′, thus also w.r.t. ‖ · ‖).

(iii) It is clear that `∞(S,F)∗ → fa(S,F), ϕ 7→ µϕ is linear. Now let A1, . . . , AK ⊆ S be mutually
disjoint. Then

K∑
k=1

|µϕ(Ak)| =
K∑
k=1

sgn(µϕ(Ak))µϕ(Ak) =
K∑
k=1

sgn(µϕ(Ak))ϕ(χAk) = ϕ

(
K∑
k=1

sgn(µϕ(Ak))χAk

)
.

Since the Ak are mutually disjoint and |sgn(z)| ≤ 1, we have ‖
∑K

k=1 sgn(µϕ(Ak))χAk‖∞ ≤ 1, so that∑K
k=1 |µϕ(Ak)| ≤ ‖ϕ‖. Taking the supremum over the finite families {Ak} gives ‖µϕ‖ ≤ ‖ϕ‖. �

Theorem F.7.3 (i) For each µ ∈ ba(S,F) there is a unique linear functional
∫
µ
∈ `∞(S,F)∗ such

that
∫
µ
(χA) = µ(A) for all A ⊆ S. It satisfies ‖

∫
µ
‖ ≤ ‖µ‖.

(ii) The maps α : `∞(S,F)∗ → ba(S,F), ϕ 7→ µϕ and
∫

: ba(S,F) → `∞(S,F)∗, µ 7→
∫
µ

are

mutually inverse and isometric, thus `∞(S,F)∗ ∼= ba(S,F).

Proof. (i) If f ∈ `1(S,F) has finite image, write f =
∑K

k=1 ckχAk , where the Ak are mutually disjoint,
and define ∫

f dµ =
K∑
k=1

ckµ(Ak).
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(We write
∫
µ
(f) or

∫
f dµ according to convenience.) If f =

∑L
l=1 c

′
lχA′l is another representation

of f , then using finite additivity of µ it ia straightforward to check, using the finite additivity of µ,
that

∑K
k=1 ckµ(Ak) =

∑L
l=1 c

′
lµ(A′l), so that

∫
f dµ is well-defined. Now

∫
cf dµ = c

∫
f dµ for c ∈ F

is obvious, and
∫

(f + g)dµ =
∫
f dµ+

∫
g dµ for all finite-image functions follows from the fact that

f+g again is a finite-image function and the representation independence of
∫

. Thus
∫
µ

: f 7→
∫
f dµ

is a linear functional on the bounded finite image functions. It is clear that this is the unique linear
functional sending χA to µ(A) for each A ⊆ S. Now∣∣∣∣∫ f dµ

∣∣∣∣ ≤ K∑
k=1

|ck| |µ(Ak)| ≤ ‖f‖∞
K∑
k=1

|µ(Ak)| ≤ ‖f‖∞‖µ‖.

Thus
∫
µ

is a bounded functional, and since the bounded finite-image functions are dense in `∞(S,F)

by Lemma F.3.5,
∫
µ

has a unique extension to a linear functional
∫
µ
∈ `∞(S,F)∗ with ‖

∫
µ
‖ ≤ ‖µ‖.

(ii) If µ ∈ ba(S,F) then by definition of
∫
µ
, we have

∫
χA dµ = µ(A) for all A ⊆ S. Thus

α ◦
∫

= idba(S,F).
If ϕ ∈ `∞(S,F) then in view of the definition of

∫
we have

∫
χA dµϕ = µϕ(A) = ϕ(χA) for all

A ⊆ S. Thus ϕ and
∫
µϕ

coincide on all characteristic functions, thus on all of `∞(S,F) by linearity,

density of the finite-image functions and the ‖ · ‖∞ continuity of ϕ and
∫
µϕ

. Thus
∫
◦α = id`∞(S,F)∗ .

Since the maps α and
∫

are mutually inverse and both norm-decreasing, they actually both are
isometries. �

This completes the determination of `∞(S,F)∗. (Note that we did not use the completeness
of ba(S,F) proven in Theorem F.7.2(ii). Thus it would also follow from the isometric bijection
ba(S,F) ∼= `∞(S,F)∗ just established.)

Exercise F.7.4 Given µ ∈ ba(S,F), prove that µ is {0, 1}-valued if and only if
∫
µ
∈ `∞(S,F)∗ is a

character, i.e.
∫
µ
(fg) =

∫
µ
(f)
∫
µ
(g) for all f, g ∈ `∞(S,F).

Since `∞(S,F)∗ has a closed subspace ι(`1(S,F)), it is interesting to identify the corresponding
subspace of ba(S,F).

Definition F.7.5 A finitely additive measure µ ∈ ba(S,F) is called countably additive if for every
countable family A ⊆ P (S) of mutually disjoint sets we have

µ
(⋃
A
)

=
∑
A∈A

µ(A)

and totally additive if the same holds for any family of mutually disjoint sets. The set of countably
and totally additive measures on S are denoted ca(S,F) and ta(S,F), respectively.

Proposition F.7.6 For µ ∈ ba(S,F), consider the following statements:

(i) There is g ∈ `1(S,F) such that µ(A) =
∑

s∈A g(s) for all A ⊆ S.

(ii)
∫
µ
∈ `∞(S,F)∗ is normal, thus

∫
f dµ = limι

∫
fι dµ for every net {fι} ∈ FS that is pointwise

convergent and uniformly bounded.

(iii) µ is totally additive.

(iv) µ is countably additive.
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Then (i)⇔(ii)⇔(iii)⇒(iv). If S is countable then also (iv)⇒(iii).

Proof. (i)⇒(ii) If µ is of the given form then clearly
∫
µ
χA dµ = µ(A) =

∑
s∈A g(s) for each A ⊆ S.

By the way
∫
µ

is constructed from µ, it is clear that
∫
f dµ =

∑
s∈S f(s)g(s) for all f ∈ `∞(S,F).

Thus
∫
µ

= ϕg, and normality of
∫
µ

follows from Proposition F.6.6.

(ii)⇒(iii) We know that we can recover µ from
∫
µ

as µ(A) =
∫
χA dµ. Let A be a family of

mutually disjoint subsets of S. Then the net {fF = χ⋃
F}, indexed by the finite subsets F ⊆ A, is

uniformly bounded and converges pointwise to χB, where B =
⋃
A. Now normality of

∫
µ

implies

that µ(B) =
∫
µ
χB dµ = limF

∫
fF = limF

∑
A∈F µ(A) =

∑
A∈A µ(A), which is additivity of µ.

(iii)⇒(i) If we put g(s) = µ({s}) then additivity of µ means that µ(A) =
∑

s∈A g(s) for all A ⊆ S,
convergence being absolute. Now the finiteness of µ(S) gives ‖g‖1 <∞.

(iii)⇒(iv) is trivial. If S is countable then a family of mutually disjoint non-empty subsets of S
is at most countable, so that (iii) and (iv) are equivalent. �

Thus we have the situation of the following diagram:

`1(S,F)

(`∞(S,F)∗)n
∼= -

�

∼=

ta(S,F)

∼=

-

`∞(S,F)∗
?

∩

∼= - ba(S,F)
?

∩

where ta(S,F) can be replaced by ca(S,F) if S is countable.

Remark F.7.7 If F is a filter on S 6= ∅ then µ = χF , sending A ⊆ S to 1 if A ∈ F and to 0 otherwise,
clearly satisfies µ(∅) = 0, µ(S) = 1, and for for disjoint A1, A2 ⊆ S we have µ(A1) + µ(A2) ≤
µ(A1 ∪ A2) ≤ 1 since A1 and A2 cannot both be in F . If equality holds for all disjoint non-empty
A1, A2, then in particular for all ∅ 6= A1 6= S and A2 = S\A1. Thus either A1 or its complement A2

belongs to F . By Lemma 7.5.16 this characterizes the ultrafilters on S. Conversely, one easily checks
that if µ is a non-zero {0, 1}-valued finitely additive measure on S then F = {A ⊆ S | µ(A) = 1}
is an ultrafilter. Thus we have a bijection between such measures on S and ultrafilters on S. By
Theorem 11.1.82(iv) the ultrafilters on S are in bijection with the points of βS. Now we have
mutually consistent bijections

βS � - ultrafilters on S

non-zero characters on Cb(S) = C(βS)
?

6

�- {0, 1}-valued fin.add. non-zero measures on S
?

6

where the bijections on the left and at the bottom come from Theorem E.3.7 and Exercise F.7.4,
respectively. These bijections restrict to bijections between elements of S, principal ultrafilters on
S, non-zero characters on c0(S), and δ-measures µs(A) = χA(s). This closes the circle to Theorem
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F.6.1(v) and Remark F.6.2. (For information on finitely additive measures on N beyond the {0, 1}-
valued ones, cf. [285].) All this of course depends on the Axiom of Choice (AC).

There are set theoretic frameworks without AC (but with DCω) in which `∞(N)∗ ∼= `1(N), see
[259, §23.10]. In this situation, all finitely additive measures on N are countably additive and all
ultrafilters are principal.

The Banach-Tarski paradox, cf. e.g. [279], has to do with the non-existence of finitely additive
measures (on Rn or Sn) having certain invariance properties. 2

F.8 Outlook: Representation theorems. General Lp-spaces

Remark F.8.1 The results of Theorem F.6.1(iii), (iv), Proposition F.6.3 and Theorem F.7.3(ii) all
give characterizations of the dual space of some function space in more concrete terms. Such results
are called ‘representation theorems’. In most cases we discussed (`p with 0 < p <∞ and c0), the dual
space turned out to be again a function space. But for `∞ we found a space of measures. (The dual
space of `2 is `2 again. This generalizes to all Hilbert spaces, for which the proof actually is quite
easy and uses only some elementary Hilbert space geometry.) Since we considered the spaces C(0)(X)
to some extent in Appendix E, we want to mention the main results (due to F. Riesz, Markov and
Kakutani) on their dual spaces at least briefly, referrring to, e.g., [253] or [257] for precise formulations
and proofs. 2

Theorem F.8.2 Let X be a locally compact Hausdorff space. Then:

(i) If ϕ is a positive linear functional on the space Cc(X) of compactly supported functions then
ϕ(f) =

∫
f dµ for a certain unique positive regular Borel measure on X.

(ii) If ϕ is a continuous linear functional on C0(X) then there is a unique regular complex Borel
measure µ such that ϕ(f) =

∫
f dµ for all f ∈ C0(X).

Note that positive functionals are automatically continuous and that all measures appearing here are
countably additive.

Remark F.8.3 For an arbitrary measure space (X,A, µ) one can define normed spaces Lp(X,A, µ,F)
in a broadly analogous fashion. Since integration on measure spaces goes beyond the scope of this
text, we only give the definition: If f : X → F is a measurable function and 0 < p < ∞, then
‖f‖p = (

∫
|f(x)|pdµ(x))1/p ∈ [0,∞]. If p = ∞, put ‖f‖∞ = ess sup|f(s)|. Now L̃p(X,µ) =

{f : X → F measurable | ‖f‖p < ∞} is a vector space and ‖ · ‖p is a seminorm on it. Defin-

ing f ∼ g ⇔ ‖f−g‖p = 0, one proves that Lp(X,µ) = L̃p(X,µ)/∼ is a (complete) normed space. Cf.
e.g. [37] or [257]. If S is a set and µ is the counting measure, we have `p(S,F) = Lp(S, P (S), µ,F).

Some of the results of this chapter also hold for the Lp-spaces with some modifications. But the
analogue of Lemma F.3.2 is false for general measure spaces! In fact, if µ(X) <∞ then one has the
reverse inclusion: p ≤ q ⇒ Lq(X,A, µ) ⊆ Lp(X,A, µ). But in general, there is no inclusion relation
for the Lp with different p. Cf. [286].

For 1 < p, q < ∞ are dual, the canonical map Lq(X,A, µ) → Lp(X,A, µ)∗ is an isometric
bijection. (The proof of surjectivity now requires the Radon-Nikodym theorem.)

But in order for L∞(X,A, µ) → L1(X,A, µ)∗ to be an isometry (resp. isometric bijection) for
p = 1, the measure space (X,A, µ) must be ‘semifinite’ (resp. ‘localizable’), see [257]. To see why
additional conditions are needed, consider X = {x},A = P (X) = {∅, X} and µ : ∅ 7→ 0, X 7→ +∞.
Then L1(X,A, µ,F) ∼= {0}, so that F ∼= L∞(X,A, µ,F) 6∼= L1(X,A, µ,F)∗.
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In discussing the dual space of L∞(X,A, µ), one finds an isometric bijection of L∞(X,A, µ)∗

not with all finitely additive measures ν on (X,A), but only those that are absolutely continuous
w.r.t. the given µ (i.e. µ(A) = 0 ⇒ ν(A) = 0). This is due to the quotient operation involved in
the definition of L∞: It guarantees that functionals

∫
µ

vanish on the functions that are zero almost

everywhere. In the case of a general measure space (X,A, µ), Lemma F.6.5 is not available, but
a suitable version of the monotone convergence theorem still exists. One can therefore still give a
characterization of the image ι(L1(X,A, µ)) ⊆ L∞(X,A, µ)∗ similar to the one above, but it will
involve monotone convergence of nets of positive bounded functions. The positivity requirement
makes everything a bit more involved than in Proposition F.6.6.

The strangeness of the spaces Lp(X,A, µ) with 0 < p < 1 is more pronounced for continuous X,
like X = [0, 1] with Lebesgue measure: Then the dual space is {0}. Cf. e.g. [64]. In that case it is
clear by comparison with Proposition G.3.4(i) that the metric topology coming from dp cannot be
induced by a norm. But this also holds for `p(S,F) with 0 < p < 1.

Finally we state a characterization of the relatively compact subsets of Lp(Rn) (with Lebesgue
measure), the Kolmogorov6-M. Riesz7-Fréchet theorem:

Theorem F.8.4 Let 1 ≤ p <∞. If F ⊆ Lp(Rn) then F is relatively compact if and only if

(i) F is bounded w.r.t. ‖ · ‖p,

(ii) limz→0 supf∈F ‖fz − f‖p = 0, where fz(x) = f(x− z),

(iii) limr→∞ supf∈F ‖f · χRn\B(0,r)‖p = 0.

Note that now we have two conditions besides pointwise boundedness: (ii) is an Lp-version of
equicontinuity. (For p =∞ it reduces to uniform equicontinuity.) Condition (iii) is analogous to the
‘equi-small tail’ condition above, and is trivially true if all f ∈ F are supported in some bounded
Ω ⊆ Rn.

Theorem F.8.4 has been generalized in many ways, for example to an arbitrary locally compact
group instead of Rn, cf. [295, §12]. Since the theorem and its generalizations involve Lebesgue
integration, discussing them any further would lead us too far afield, cf. [128], [37, Theorem 4.26]. 2

6Andrey Nikolaevich Kolmogorov (1903-1987), eminent Russian mathematician.
7Marcel Riesz (1886-1969), Hungarian mathematician. Brother of Frigyes Riesz.
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Appendix G

Topological vector spaces (mostly
normed)

G.1 Preliminaries

We first met topological vector spaces in Definition 7.8.24. The latter makes sense for any topological
field F, but here we will assume F ∈ {R,C} throughout.

Exercise G.1.1 Let V be a vector space over R or C and ‖ · ‖ a norm on V . Prove that V becomes
a topological vector space when equipped with the topology induced by ‖ · ‖.

Definition G.1.2 A topological vector space V is normable if it admits a norm ‖ · ‖ that induces
the given topology on V .

Definition G.1.3 Let V be a vector space over R or C. A subset S ⊆ V is called bounded if for
every open neighborhood U of 0 there is a λ > 0 such that λS ⊆ U .

Now we can formulate the following characterization of normal TVS:

Theorem G.1.4 A topological vector space is normable if and only if it admits a subset S ⊆ V that
is convex and bounded.

Proposition G.1.5 Let V be a vector space and S ⊆ V . For x ∈ V we define

‖x‖S = inf{λ > 0 | x ∈ λS}

with the understanding that ‖x‖S = +∞ if no such λ > 0 exists. Then

(i) ‖x‖S <∞ for all x ∈ V if and only if
⋃
λ>0 λS = V .

(ii) ‖x‖S = 0 if and only if x ∈
⋂
λ>0 λS.

(iii) ‖tx‖S = t‖x‖S for all x ∈ V, t > 0.

(iv) If S is convex then ‖x+ y‖S ≤ ‖x‖S + ‖y‖S ∀x, y ∈ S.

Proof.
�

Proof of Theorem G.1.4.

413
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�

If A is an abelian group then both the indiscrete and the discrete topologies render A a topological
group. Analogously, if V is a vector space over a topological field F then it becomes a topological
vector space when equipped with the indiscrete topology. But the analogous statement is false for
the discrete topology since the map F → V, c 7→ cx fails to be continuous (unless x = 0 or F is
discrete). Still we have the following:

Exercise G.1.6 Prove that every vector space V over R admits a unique strongest topology making
it a topological vector space. Hint: Let τ be the topology on V generated by all topologies τ ′ that
make V a TVS. Prove that also τ does this. Uniqueness is then automatic.

It is natural to ask what can be said about this largest topology...

G.2 Linear functionals. Hahn-Banach theorems

If V is a vector space over a field F, a linear functional on V simply is a F-linear map ϕ : V → F.
The point of the Hahn-Banach theorem (which comes in many versions) is to show that there many
linear functionals.

G.2.1 First version of Hahn-Banach over R
Definition G.2.1 If V is a real vector space, a map p : V → R is called sublinear if it satisfies

• Positive homogeneity: p(cv) = cp(v) for all v ∈ V and c > 0.

• Subadditivity: p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V .

Theorem G.2.2 Let V be a real vector space and p : V → R a sublinear function. Let W ⊆ V be
a linear subspace and ϕ : W → R a linear functional such that ϕ(w) ≤ p(w) for all w ∈ W . Then
there is a linear functional ϕ̂ : V → R such that ϕ̂�W = ϕ and ϕ̂(v) ≤ p(v) for all v ∈ V .

Lemma G.2.3 Let V, p,W, ϕ be as in Theorem G.2.2 and S ⊆ V a finite set. Then there is a linear
functional ϕ̂ : Y = W + spanR(S) such that ϕ̂�W = ϕ and ϕ̂(v) ≤ p(v) for all v ∈ Y .

Proof. Let v′ ∈ V \W and d ∈ R. Then we can define ϕ̂(w + cv′) = ϕ(w) + cd for all w ∈ W and
c ∈ R. Since ϕ̂ is linear and trivially satisfies ϕ̂ �W = ϕ, it remains to show that d can be chosen
such that

ϕ̂(w + cv′) = ϕ(w) + cd ≤ p(w + cv′) ∀w ∈ W, c ∈ R.
For c = 0, this holds by assumption. If this holds for w ∈ W, c = ±1, i.e. ϕ(w)± d ≤ p(w± v′) then
for all e > 0 we have

ϕ̂(w ± ev′) = eϕ̂(e−1w ± v′) ≤ ep(e−1w ± v′) = p(w ± ev′),

thus the desired inequality holds for all w ∈ W, c ∈ R. We must therefore find d ∈ R satisfying

ϕ(w)− p(w − v′) ≤ d ≤ p(w′ + v′)− ϕ(w′) ∀w,w′ ∈ W.

Clearly this is possible if and only if ϕ(w)−p(w−v′) ≤ p(w′+v′)−ϕ(w′) for all w,w′ ∈ W , which is
equivalent to ϕ(w) +ϕ(w′) ≤ p(w− v′) + p(w′+ v′) ∀w,w′. This is indeed satisfied for all w,w′ ∈ W
since w + w′ ∈ W so that

ϕ(w) + ϕ(w′) = ϕ(w + w′) ≤ p(w + w′) ≤ p(w − v′) + p(w′ + v′)
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holds by the hypothesis on ϕ and subadditivity of p.
This proves the claim for S = {v′} where v′ 6∈ W . More generally, define W0 = W, ϕ0 = ϕ and

W1 = W0 + Rx1. If W1 = W0, put ϕ1 = ϕ0, otherwise use the above to obtain a linear extension
ϕ1 : W1 → R of ϕ0 satisfying ϕ1(w) ≤ p(w) for all w ∈ W1. Now put W2 = W1 +Rx2 and extend ϕ1

to ϕ2 : W2 → R, etc. After finitely many steps we have an extension ϕ̂ of ϕ to Y = W + spanR(S)
satisfying ϕ̂(y) ≤ p(y) for all y ∈ Y . �

Proof of Theorem G.2.2. Let E be the set of pairs (Z, ψ), where Z ⊆ V is linear subspace space
containing W and ψ : Z → R is a linear map extending ϕ such that ψ(z) ≤ p(z) ∀z ∈ Z.

First proof, using Zorn’s lemma (⇔ AC). We define a partial ordering on E by (Z, ψ) ≤ (Z ′, ψ′) ⇔
Z ⊆ Z, ψ′ � Z = ψ. If C ⊆ E is a chain, i.e. totally ordered by ≤, let Y =

⋃
(Z,ψ)∈C Z and define

ψY : Y → R by ψY (v) = ψ(v) for any (Z, ψ) ∈ C with v ∈ Z. This clearly is consistent and gives a
linear map. Now (Y, ψY ) is in element of E and an upper bound for C. Thus by Zorn’s lemma there is
a maximal element (YM , ψM) of E . Now ψM : YM → R is an extension of ϕ satisfying ψM(y) ≤ p(y)
for all y ∈ YM , so we are done if we prove YM = V . If this is not the case, we can pick v′ ∈ V \YM
and use Lemma G.2.3 to extend ψY to YM + Rv′, but this contradicts the maximality of (YM , ψM).

Second proof, using the Ultrafilter Lemma (UF): For each finite subset Y ⊆ V , define

EY = {(Z, ψ) ∈ E | Y ⊆ Z}.

By Lemma G.2.3, EY 6= ∅ for all finite Y . Clearly EY ∩ EY ′ = EY ∪Y ′ 6= ∅, so that the family
{EY | Y ⊆ V finite} has the finite intersection property. Thus by Lemma 7.5.19 (whose proof only
uses UF) it is contained in an ultrafilter F on E .

If now v ∈ V then Fv = {F∩Ev | F ∈ F} ⊆ Ev is an ultrafilter on Ev = E{v} by Corollary 7.5.17(ii).
We have a map v̂ : Fv → R, ψ 7→ ψ(v) taking values in [−p(−v), p(v)] (since ψ(±v) ≤ p(±v)).
By Corollaries 5.1.46 and 7.5.17(iii), this gives us an ultrafilter v̂(Fv) on [−p(−v), p(v)]. Since
[−p(−v), p(v)] is compact, Corollary 7.5.22 gives that v̂(Fv) converges, and since [−p(−v), p(v)] is
Hausdorff, the limit x ∈ [−p(−v), p(v)] is unique by Exercise 5.1.43. We call this number, which
clearly depends on v ∈ V , by ϕ̂(v). If w ∈ W then each (Z, ψ) ∈ E satisfies ψ(w) = ϕ(w), whence
ϕ̂(w) = ϕ(w). If v ∈ V, c ∈ R then Fcv = Fv and one has

ϕ̂(cv) = lim ĉv(Fcv) = c lim v̂(Fv) = cϕ̂(v).

If v1, v2 ∈ V then the rough argument

ϕ̂(v1 + v2) = lim v̂1 + v2(Fv1+v2) = lim v̂1 + v2(F{v1,v2}) = lim v̂1(Fv1) + v̂2(Fv2) = ϕ̂(v1) + ϕ̂(v2),

which the reader should make precise, gives linearity of ϕ̂. �

Remark G.2.4 The second proof is somewhat longer, but preferable insofar as the Ultrafilter
Lemma is strictly weaker than Zorn’s lemma, which is equivalent to the Axiom of Choice. The
first proof of the Hahn-Banach theorem using only UF (or rather the equivalent Tychonov theorem
for T2-spaces) is due to  Loś and Ryll-Nardzewski [195]. Later Luxemburg [196] gave a proof of HB
using ideas of non-standard analysis, and the above proof is an adaptation [23] of his argument
eliminating the use of ultra-powers but not, of course, the ultrafilters.

It is known that Hahn-Banach is strictly weaker than UF, see [236], yet it suffices to prove some
results [97, 233] that are usually considered as consequences of AC. 2
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G.2.2 Hahn-Banach for (semi)normed spaces

Later on, we will not need Theorem G.2.2 is its full generality, but only the following consequence:

Theorem G.2.5 (Hahn-Banach Theorem) If V be a vector space over F ∈ {R,C}, p a semi-
norm on it, W ⊆ V a linear subspace and ϕ : W → C a linear functional such that |ϕ(w)| ≤ p(w)
for all w ∈ W . Then there is a linear functional ϕ̂ : V → C such that ϕ̂ �W = ϕ and |ϕ̂(v)| ≤ p(v)
for all v ∈ V .

Proof. F = R This is an immediate consequence of Theorem G.2.2 since a seminorm p is sublinear
with the additional properties p(−v) = p(v) ≥ 0 for all v. In particular, −ϕ̂(z) = ϕ̂(−z) ≤ p(−z),
so that |ϕ̂(z)| ≤ p(z) ∀z.

F = C: Let V ⊇ W → C be given. Define ψ : W → R, w 7→ Re(ϕ(w)), which clearly is R-

linear. Thus by the real case just considered, there is an R-linear functional ψ̂ : V → R such that
|ψ̂(v)| ≤ p(v) for all v ∈ V . Define ϕ̂ : V → C by

ϕ̂(v) = ψ̂(v)− iψ̂(iv).

Again it is clear that ϕ̂ is R-linear. Furthermore

ϕ̂(iv) = ψ̂(iv)− iψ̂(−v) = ψ̂(iv) + iψ̂(v) = i(ψ̂(v)− iψ̂(iv)) = iϕ̂(v),

proving that ϕ̂ : V → C is C-linear. If w ∈ W then

ϕ̂(w) = ψ̂(w)− iψ̂(iw) = ψ(w)− iψ(iw) = Re(ϕ(w))− iRe(ϕ(iw))

= Re(ϕ(w))− iRe(iϕ(w)) = Re(ϕ(w)) + iIm(ϕ(w)) = ϕ(w),

so that ϕ̂ extends ϕ.

Given v ∈ V , let α ∈ C, |α| = 1 be such that αϕ̂(v) ≥ 0. Then αϕ̂(v) = ϕ̂(αv) = Re(ϕ̂(αv)) =

ψ̂(αv), so that |ϕ̂(v)| = |αϕ̂(v)| = ψ̂(αv) ≤ p(αv) = p(v). �

The following version of Hahn-Banach requires only countable dependent choice DCω for its proof:

Theorem G.2.6 (Hahn-Banach for separable spaces) Let V be a vector space over F ∈ {R,C}
and p a norm such that V is separable in the (Hausdorff) topology induced by p. Let W ⊆ V be a
linear subspace and ϕ : W → F a linear functional such that |ϕ(w)| ≤ p(w) for all w ∈ W . Then
there is a linear functional ϕ̂ : V → F such that ϕ̂�W = ϕ and |ϕ̂(v)| ≤ p(v) for all v ∈ V .

Proof. F = R: Since V is separable, there exists a countable dense subset S = {y1, y2, . . .} ⊆ V . Now
we inductively extend ϕ to functionals ϕ̂n : Wn = W + spanR{y1, . . . , yn} → R as in Lemma G.2.3,
except that we do this countably many times, so that we need DCω. Now put Y = W +spanR(S) and
define ϕ̂ : W → R by ϕ̂(v) = ϕ̂n(v) whenever v ∈ W . This clearly is a well-defined linear functional
satisfying ϕ̂(z) ≤ p(z) for all y ∈ y. Then also −ϕ̂(y) = ϕ̂(−y) ≤ p(−y) = p(y), so that |ϕ̂(y)| ≤ p(y)
for all y ∈ Y . Thus ϕ̂ : Y → R is uniformly continuous and has a unique continuous extension to Z
satisfying |ϕ̂(z)| ≤ p(z) for all z ∈ Z. It is clear that ϕ̂ is linear, and Z = V by density of S.

F = C: Combine the above proof for F = R with the proof of Theorem G.2.5 for F = C. �



G.3. LINEAR MAPS: BOUNDEDNESS AND CONTINUITY 417

G.3 Linear maps: Boundedness and continuity

Definition G.3.1 Let E,F be normed spaces and A : E → F a linear map. Then the norm
‖A‖ ∈ [0,∞] is defined by

‖A‖ = sup
06=e∈E

‖Ae‖
‖e‖

= sup
e∈E
‖e‖≤1

‖Ae‖.

If ‖A‖ < ∞ then A is called bounded. The set of bounded linear maps from E to F is denoted
B(E,F ). If E is a normed space over F ∈ {R,C}, we write E∗ instead of B(E,F).

If E,G,H are normed spaces and S : E → G, T : G → H are linear maps then it is immediate
that ‖T ◦ S‖ ≤ ‖S‖‖T‖.

Lemma G.3.2 Let E,F be normed spaces and A : E → F a linear map. Then the following are
equivalent:

(i) A is bounded.

(ii) A is continuous (w.r.t. the norm topologies).

(iii) A is continuous at 0 ∈ E.

Proof. (i)⇒(ii) For x, y ∈ E we have ‖Ax − Ay‖ = ‖A(x − y)‖ ≤ ‖A‖ ‖x − y‖. Since ‖A‖ < ∞,
continuity of E follows. (ii)⇒(iii) This is obvious.

(iii)⇒(i) By continuity at 0, there is C > 0 such that A(BE(0, C)) ⊆ BF (0, 1). By linearity of
A and the properties of the norm, this is equivalent to A(BE(0, 1)) ⊆ BF (0, D), where D = 1/C. If
0 6= x ∈ E then

Ax = 2‖x‖A
(

x

2‖x‖

)
,

thus ‖Ax‖ ≤ 2‖x‖‖A(x/2‖x‖)‖ < 2‖x‖D, and A is bounded. �

Proposition G.3.3 Let E,F be normed spaces.

(i) B(E,F ) is a vector space and B(E,F )→ [0,∞), A 7→ ‖A‖ is a norm in the sense of Definition
2.1.10.

(ii) If F is a Banach space, so is B(E,F ), and B(F ) ≡ B(F, F ) is a unital Banach algebra.

Proof. (i) If T : E → F is a linear map, it is clear that ‖αT‖ = |α|‖T‖ and that ‖T‖ = 0 if and only
if T = 0. If S, T ∈ B(E,F ) and x ∈ E then ‖(S + T )x‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ (‖S‖+ ‖T‖)‖x‖, so that
‖S + T‖ ≤ ‖S‖+ ‖T‖. This implies that B(E,F ) is a vector space.

(ii) Assume F is complete, and let {Tn} ⊆ B(E,F ) be a Cauchy sequence. Then there is n0

such that m,n ≥ n0 ⇒ ‖Tm − Tn‖ < 1, in particular Tm ∈ B(Tn0 , 1) for all n ≥ n0. Thus
with M = max(‖T1‖, . . . , ‖Tn0−1‖, ‖Tn0‖ + 1) we have ‖Tn‖ ≤ M for all n. If now x ∈ E then
‖(Tn − Tm)x‖ ≤ ‖Tn − Tm‖‖x‖, so that {Tnx} is a Cauchy sequence in F and therefore convergent
by completeness of F . Now define T : E → F by Tx = limn→∞ Tnx. It is staightforward to check
that T is linear. Finally, since ‖Tnx‖ ≤ M‖x‖ for all n, we have ‖Tx‖ = limn→∞ ‖Tn‖, so that
T ∈ B(E,F ). For the last claim it suffices to recall the submultiplicativity of operator norms and
the obvious fact ‖1F‖ = 1. �

Since R,C are complete, in particular E∗ is a Banach space for each normed space E.
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Proposition G.3.4 Let E be a normed space.

(i) For every 0 6= x ∈ E there is a ϕ ∈ E∗ with ‖ϕ‖ = 1 such that ϕ(x) = ‖x‖. Thus E∗ separates
the points of E.

(ii) There is an isometric embedding ιE : E → E∗∗, given by ι(x) : E∗ → F, ϕ 7→ ϕ(x).

(iii) The image ιE(E) ⊆ E∗∗ is closed if and only if E is complete (i.e. Banach).

(We usually just write ι instead of ιE.)

Proof. (i) Let F = Cx ⊆ E. The linear functional ϕ : F → F, αx 7→ α‖x‖ is isometric since
|F (x)| = ‖x‖, thus ‖ϕ‖ = 1. By the Hahn-Banach Theorem G.2.5 there exists a ϕ̂ ∈ E∗ with
‖ϕ̂‖ = ‖ϕ‖ = 1 and ϕ̂(x) = ϕ(x) = ‖x‖.

(ii) If x ∈ E, ϕ ∈ E∗ then |ϕ(x)| ≤ ‖x‖‖ϕ‖. Thus for each x ∈ E we have ‖ι(x)‖ ≤ ‖x‖. Since
linearity of ι(x) is clear we have ι(x) ∈ E∗∗. Now ι : E → E∗∗ is linear and ‖ι‖ ≤ 1. Let 0 6= x ∈ E.
By (i) there is ϕ ∈ E∗ with ‖ϕ‖ = 1 such that ϕ(x) = ‖x‖. Now ι(x)(ϕ) = ϕ(x) = ‖x‖. Thus
‖ι(x)‖ ≥ ‖x‖ for all x ∈ E, so that ι is isometric.

(iii) If E is complete then so is ι(E) ⊆ E∗∗ (since ι is an isometry), thus ι(E) ⊆ E∗∗ is closed.
The converse follows from completeness of E∗∗ and the fact that closed subspaces of complete metric
spaces are complete. (See Lemma 3.1.10 for the two claims.) �

It is customary to identify E with its image ι(E) in E∗∗.

Corollary G.3.5 Every normed space E embeds isometrically into a Banach space Ê as a closed
subspace. That space Ê is unique up to isometric isomorphism and is called the completion of E.

Proof. This can be proven by completing the metric space (E, d), where d(x, y) = ‖x−y‖ and showing
that the completion is a linear space, which is easy. Alternatively, define the completion of E as the
closure of ι(E) in E∗∗. The latter is a closed subspace of the Banach space E∗∗, thus complete.

Uniqueness of the completion follows with the same proof as for metric spaces, cf. Proposition
3.2.2. �

Exercise G.3.6 Let V be a Banach space and x ∈ V, φ ∈ V ∗. Prove that ιV ∗(φ)(ιV (x)) = φ(x).

Definition G.3.7 A Banach space E is called reflexive if ι : E → E∗∗ is surjective (thus an isometric
bijection).

Exercise G.3.8 (i) Prove that if E is reflexive then for each ϕ ∈ E∗ there is x ∈ E such that
‖x‖ = 1 and |ϕ(x)| = ‖ϕ‖.

(ii) Use (i) and Theorem F.6.1 to prove (again) that c0(N,C) is not reflexive.

Remark G.3.9 1. It is clear that every finite dimensional Banach space is reflexive. In Section
F.6 we saw that `p(S,F) is reflexive for all 1 < p < ∞. Since every Hilbert space is isometrically
isomorphic to `2(S,F) for some S, all Hilbert are reflexive.

2. The reflexivity of the Lp spaces with 1 < p <∞ can be put into context as follows: A Banach
space E is called uniformly convex if for every ε > 0 there is a δ > 0 such that x, y ∈ E with
‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x + y‖ > 2 − δ implies ‖x − y‖ < ε. Now one can prove that Lp is uniformly
convex for 1 < p < ∞ and the Pettis-Milman theorem, according to which every uniformly convex
space is reflexive. (The converse is not true.) See [129, 245] for relatively easy proofs.
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3. It is interesting to compare Exercise G.3.8(ii) with what we did in Appendix F: If S is any
set and E = c0(S,F) then by the Theorems F.6.1 and F.7.3 we have E∗ = `1(S,F), E∗∗ = `∞(S,F),
E∗∗∗ = ba(S,F). (Broadly analogous statements hold for Lp(X,A, µ).) If S is infinite then clearly
E∗∗ = `∞(S,F) 6∼= c0(S,F) = E. So far all these proofs are constructive (in the sense of using no
choice axioms). But proving that ι : E∗ = `1(S,F)→ `∞(S,F)∗ = E∗∗∗ is not surjective required non-
constructive reasoning involving the Stone-Čech compactification or Hahn-Banach, thus ultimately
the ultrafilter lemma.

4. It is easy to prove that reflexivity of E implies reflexivity of E∗. The converse is not much
harder, but besides Hahn-Banach it requires the notion of quotient space, which is why the proof
is given in the next section, cf. Theorem G.4.3. Thus for non-reflexive E none of the spaces
E∗, E∗∗, E∗∗∗, . . . is reflexive, so that E ( E∗∗ ( E∗∗∗∗ ( · · · and E∗ ( E∗∗∗ ( E∗∗∗∗∗ ( · · · ,
and we have two somewhat mysterious successions of ever larger spaces.

5. The converse of statement (i) in Exercise G.3.8 is also true, but its proof is much too long and
technical to be included here. Cf. [162] or [206, Theorem 1.13.15].

6. While reflexivity of E implies E ∼= E∗∗, there are Banach spaces E that are not reflexive, yet
E ∼= E∗∗ non-canonically, cf. [161] or [48, §2.4].

7. If E is a Banach space and F ⊆ E is a closed subspace then E is reflexive if and only both F
and E/F (next section) are reflexive. The proof uses only Hahn-Banach, cf. e.g. [48, Theorem 2.4.4]
or [301]. 2

Exercise G.3.10 How exactly does Theorem F.6.1 imply reflexivity of `p(S,F) for 1 < p <∞?

G.4 Quotient spaces of Banach spaces

Proposition G.4.1 If V is a normed space, W ⊆ V a linear subspace and V/W denotes the quotient
vector space, we define ‖ · ‖′ : V/W → [0,∞) by ‖v +W‖′ = infw∈W ‖v − w‖. Then

(i) ‖ · ‖′ is a seminorm on V/W , and the quotient map p : V → V/W satisfies ‖p‖ ≤ 1.

(ii) ‖ · ‖′ is a norm if and only if W ⊆ V is closed.

(iii) If W ⊆ V is closed, the topology on V/W induced by ‖ · ‖′ coincides with the quotient topology,
and the quotient map p : V → V/W is open.

(iv) If V is a Banach space and W ⊆ V is closed then (V/W, ‖ · ‖′) is Banach space.

(v) If V is a Banach space with closed subspace W and T ∈ B(V,E), where E is a normed space
with W ⊆ kerT then there is a unique T ′ ∈ B(V/W,E) such that T ′ ◦ p = T . Furthermore,
‖T ′‖ = ‖T‖. T ′ is surjective if and only if T is surjective and injective if and only if W = kerT .

(vi) If A is a normed algebra and I ⊆ A is a closed two-sided ideal, then A/I is a normed algebra.

Proof. (i) It is clear that ‖0‖′ = 0 (where we denote the zero element of V/W by 0 rather than W ).
For x ∈ V, λ ∈ C∗ we have

‖λ(x+W )‖′ = ‖λx+W‖′ = inf
w∈W
‖λx− w‖ = |λ| inf

w∈W
‖x− w/λ‖ = |λ| inf

w∈W
‖x− w‖ = |λ|‖x‖′,

where we used that W → W,w 7→ λw is a bijection. Now let x1, x2 ∈ V and ε > 0. Then there are
w1, w2 ∈ W such that ‖xi − wi‖ < ‖xi +W‖′ + ε/2 for i = 1, 2. Then

‖x1 + x2 +W‖′ = inf
w∈W
‖x1 + x2 +W‖ ≤ ‖(x1 − w1) + (x2 − w2)‖

≤ ‖x1 − w1‖+ ‖x2 − w2‖ < ‖x1 +W‖′ + ‖x2 +W‖′ + ε.
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Since ε > 0 was arbitrary, we have ‖x1 + x2 +W‖′ ≤ ‖x1 +W‖′ + ‖x2 +W‖′, proving subadditivity
of ‖ · ‖′. It is immediate that ‖v +W‖′ = infw∈W ‖v − w‖ ≤ ‖v‖.

(ii) If v ∈ V , the definition of ‖ · ‖′ readily implies that ‖v +W‖′ = 0 if and only if v ∈ W . Thus
if W is closed then w = v + W ∈ V/W has ‖w‖′ = 0 only if w is the zero element of W . And if W
is non closed then every v ∈ W\W satisfies ‖v + W‖′ = 0 even though v + W ∈ V/W is non-zero.
Thus ‖ · ‖′ is not a norm.

(iii) Continuity of p : (V, ‖ · ‖) → (V/W, ‖ · ‖′) follows from ‖p‖ ≤ 1, see (i). Since p is norm-
decreasing, we have p(BV (0, r)) ⊆ BV/W (0, r) for each r > 0. And if y ∈ V/W with ‖y‖ < r then
there is an x ∈ V with p(x) = y and ‖x‖ < r (but typically larger than ‖y‖). Thus p maps BV (0, r)
onto BV/W (0, r) for each r. Similarly, p(BV (x, r)) = BV/W (p(x, r)), and from this it is easly deduced
that p(U) ⊆ V/W is open for each open U ⊆ V . Thus p is open (w.r.t. the norm topologies on
V, V/W ). Now Lemma 6.4.5(ii) gives that p is a quotient map, thus the topology on V/W coming
from ‖ · ‖′ is the quotient topology.

(iv) Let {yn} ⊆ V/W be a Cauchy sequence. Then we can pass to a subsequence wn = yin such
that ‖wn −wn+1‖ < 2−n. Pick xn ∈ V such that p(xn) = wn and ‖xn − xn+1‖ < 2−n. (Why can this
be done?) Then {xn} is a Cauchy sequence converging to some x ∈ V by completeness of V . With
y = p(x) we have ‖yn − y‖ ≤ ‖xn − x‖ → 0. Thus yn → y, and V/W is complete.

(v) Existence and uniqueness of T ′ as linear map are standard. And using p(BV (0, 1)) =
BV/W (0, 1) we have

‖T ′‖ = sup{‖T ′y‖ | y ∈ BV/W (0, 1)} = sup{‖T ′p(x)‖ | x ∈ BV (0, 1)}
= sup{‖Tx‖ | x ∈ BV (0, 1)} = ‖T‖.

The statement about surjectivity follows from T = T ′ ◦ p together with surjectivity of p, which
gives T (V ) = T ′(V/W ). If W ( kerT , pick x ∈ (kerT )\W and put y = p(x). Then y 6= 0, but
T ′y = T ′px = Tx = 0, so that T ′ is not injective. Now assume W = kerT . If y ∈ kerT ′ then pick
x ∈ V with y = p(x). Then Tx = T ′px = T ′y = 0, thus x ∈ kerT = K, so that y = p(x) = 0,
proving injectivity of T ′.

(vi) It is known from algebra that A/I is again an algebra. By the above, it is normed. It remains
to prove that the quotient norm on A/I is submultiplicative. Let c, d ∈ A/I and ε > 0. Then there
are a, b ∈ A with p(a) = c, p(b) = d, ‖a‖ < ‖c‖ + ε, ‖b‖ < ‖d‖ + ε (see the exercise below). Then
‖cd‖ ≤ ‖ab‖ ≤ (‖a‖ < (‖c‖+ ε)(‖d‖+ ε), and since this holds for all ε > 0, we have ‖cd‖ ≤ ‖c‖‖d‖.
�

Exercise G.4.2 (i) If V is a normed space and W ⊆ V is a closed subspace, prove that for every
y ∈ V/W and every ε > 0 there is an x ∈ V with p(x) = y and ‖x‖ ≤ ‖y‖+ ε.

(ii) Give an example of V,W and y ∈ V/W for which no x ∈ V with y = p(x), ‖x‖ = ‖y‖ exists.

Theorem G.4.3 Let V be a Banach space. Then V is reflexive if and only if V ∗ is reflexive.

Proof. ⇒ Given surjectivity of the canonical map ιV : V → V ∗∗, we want to prove surjectivity of
ιV ∗ : V ∗ → V ∗∗∗. Let thus ϕ ∈ V ∗∗∗ = (V ∗∗)∗. Putting ϕ′ = ϕ ◦ ιV ∈ V ∗, the implication is proven
if we show ϕ = ιV ∗(ϕ

′), which means ϕ(x∗∗) = ιV ∗(ϕ
′)(x∗∗) for all x∗∗ ∈ V ∗∗. By surjectivity of

ιV : V → V ∗∗, this is equivalent to ϕ(ιV (x)) = ιV ∗(ϕ
′)(ιV (x)) for all x ∈ V . The l.h.s. is ϕ′(x) by

definition of ϕ′ and the r.h.s. equals ϕ′(x) by Exercise G.3.6.
⇐ Assume that V is not reflexive. Then ιV (V ) ⊆ V ∗∗ is a proper closed subspace, so that

Z = V ∗∗/ιV (V ) is a non-zero Banach space. By Proposition G.3.4, there exists 0 6= ψ ∈ Z∗. With
the quotient map p : V ∗∗ → Z, we put ϕ = ψ ◦ p ∈ (V ∗∗)∗ = V ∗∗∗. By construction, ϕ 6= 0 but
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ϕ � ιV (V ) = 0. Since V ∗ is reflexive, we have ϕ = ιV ∗(ϕ
′) for some ϕ′ ∈ V ∗. Using Exercise G.3.6

again, for each x ∈ V we have ϕ′(x) = ιV ∗(ϕ
′)(ϕ(ιV (x))) = ϕ(ιV (x)) = 0. But this means ϕ′ = 0,

thus ϕ = 0, a contradiction. �

The following provides an alternative characterization of continuity for linear functionals and an
easy special case of the (much more general) open mapping theorem proven later:

Exercise G.4.4 Let E be a Banach space over F and ϕ : E → F a linear functional.

(i) Prove that E is bounded if and only kerϕ ⊆ E is closed.

(ii) Prove that if E is bounded and non-zero then ϕ : E → F is an open map.

G.5 Applications of Baire’s theorem

There is a cluster of results in functional analysis that are usually proven using Baire’s Theorem
3.3.1: The Uniform Boundedness Theorem (sometimes called the Banach-Steinhaus Theorem), the
Open Mapping Theorem, the Closed Graph Theorem, and several applications. We will deviate from
the standard exposition in several respects: For the Uniform Boundedness Theorem we will give
a recent proof by Fellhauer that avoids not only Baire’s theorem but also the equivalent principle
DCω of countable dependent choice, using only the axiom of countable choice (ACω) instead. Thus
also the Banach-Steinhaus and Hellinger-Toeplitz theorems that follow from Uniform Boundedness
Theorem hold in ZF+ACω. We will then use Baire’s theorem to prove a sharper version of Uni-
form Boundedness that is sometimes preferable in applications. We will also briefly mention a few
alternative approaches to this complex of results.

G.5.1 The Uniform Boundedness Theorem (using only ACω)

Definition G.5.1 Let E,F be normed spaces and A ⊆ B(E,F ) a family of bounded linear maps.

(i) A is called pointwise bounded if supA∈A ‖Ax‖ <∞ for each x ∈ E.

(ii) A is called uniformly bounded if supA∈A ‖A‖ <∞.

Theorem G.5.2 [Uniform Boundedness Theorem (or ‘principle’)] Let E be a Banach space, F a
normed space and A ⊆ B(E,F ). Then pointwise and uniform boundedness of A are equivalent.

Proof. It is trivial that uniform boundedness of A implies pointwise boundedness. Now assume that
A is not uniformly bounded. Then the sets An = {A ∈ A | ‖A‖ ≥ 4n} are all non-empty, so that
using ACω (axiom of countable choice), we can pick an An ∈ An for each n ∈ N. By definition of
‖An‖, the sets Xn = {x ∈ E | ‖x‖ ≤ 1, ‖Anx‖ ≥ 2

3
‖An‖} are all non-empty, to that using ACω

again, we can choose an xn ∈ Xn for each n ∈ N.
Applying the triangle inequality to Az = 1

2
(A(y + z)− A(y − z)) gives

‖Az‖ =
1

2
‖(A(y+z)−A(y−z))‖ ≤ 1

2
(‖A(y+z)‖+‖A(y−z)‖) ≤ max(‖A(y+z)‖, ‖A(y−z)‖). (G.1)

With A = An+1, y = yn, z = ±3−(n+1)xn+1, and recalling ‖Anxn‖ ≥ 2
3
‖An‖, this implies that

‖An+1(yn ± 3−(n+1)xn+1)‖ ≥ 3−(n+1)‖An+1xn+1‖ ≥ 3−(n+1) 2

3
‖An+1‖
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holds for at least one of the signs ±. Thus defining a sequence {yn} ⊆ E by y1 = x1 and

yn+1 =

{
yn + 3−(n+1)xn+1 if ‖An+1(yn + 3−(n+1)xn+1)‖ ≥ 3−(n+1) 2

3
‖An+1‖

yn − 3−(n+1)xn+1 otherwise
(G.2)

we have ‖Anyn‖ ≥ 2
3
3−n‖An‖ for all n. (For n = 1 this is true since y1 = x1.) Since (G.2) involves

no further free choices, this inductive definition can be formalized in ZF. (The reader doubting this
is referred to [94], where the details are spelled out without surprises.)

In view of ‖xn‖ ≤ 1 for all n, we have ‖yn+1 − yn‖ ≤ 3−(n+1) for all n. Now for all m > n

‖ym − yn‖ =

∥∥∥∥∥
m−1∑
k=n

yk+1 − yk

∥∥∥∥∥ ≤
∞∑
k=n

3−(k+1) = 3−(n+1) 1

1− 1
3

=
1

2
3−n,

so that {yn} is Cauchy. By completeness of E we have yn → y ∈ E with ‖y − yn‖ ≤ 1
2
3−n. Another

use of the triangle inequality gives

‖Anyn‖ = ‖An(y − y + yn)‖ ≤ ‖Any‖+ ‖An(y − yn)‖ ≤ ‖Any‖+ ‖An‖‖y − yn‖,

so that with ‖y − yn‖ ≤ 1
2
3−n, ‖Anyn‖ ≥ 2

3
3−n‖An‖ and ‖An‖ ≥ 4n for all n we finally have

‖Any‖ ≥ ‖Anyn‖ − ‖An‖‖y − yn‖ ≥ ‖An‖
(

2

3
3−n − 1

2
3−n
)

=
1

6
3−n‖An‖ ≥

1

6

(
4

3

)n
→∞.

Thus y ∈ E is a witness for the failure of pointwise boundedness of A. �

Remark G.5.3 For a thorough history of the Uniform Boundedness Theorem see [275] (and [70] for
functional analysis in general). Early versions of this result appeared in [17, 124], but were anticipated
by Helly ten years earlier. All these proofs used the then popular gliding (or sliding) hump method,
of which also the above proof is a streamlined application. The usefulness of the inequality (G.1)
was observed in [265], and the replacement of the usual use of countable dependent choice (DCω) by
countable choice (ACω) via (G.2) is due to [94]. (The fact that the Uniform Boundedness Theorem
can be proven in ZF+ACω had been shown previously [47], but in a more complicated way.)

Beginning with [19], it became common to prove Theorem G.5.2 using Baire’s theorem, but the
gliding hump method survived both in pedagogical writings like [137, 265] and as a research method,
cf. the monography [276] and the extensive literature cited there (where the gliding hump method is
formalized as the ‘Antosik-Miskusinski matrix theorem’, proven using DCω). 2

We now consider some applications:

Corollary G.5.4 (Banach-Steinhaus) 1 If E is a Banach space, F a normed space and {An} ⊆
B(E,F ) is a sequence such that limn→∞Anx exists for each x ∈ E (one says ‘{An} converges
strongly’) then the map A : E → F, x 7→ limn→∞Anx is in B(E,F ), thus linear and bounded.

Proof. Linearity of A is quite obvious. The convergence of {Anx} for each x ∈ E implies boundedness
of {Anx | n ∈ N} for each x, so that A = {An | n ∈ N} ⊆ B(E,F ) is pointwise bounded and
therefore uniformly bounded by Theorem G.5.2. Thus there is T such that ‖An‖ ≤ T ∀n. But then
‖Ax‖ = ‖ limnAnx‖ = limn ‖Anx‖ ≤ T‖x‖ implies ‖A‖ ≤ T . �

(The same proof works for a net {Aι}ι∈I , except that boundedness of {Aιx | ι ∈ I} for each x ∈ E
must be assumed, cf. Exercise 5.1.24.)

1In the literature, one can find either this result or Theorem G.5.2 denoted as ‘Banach-Steinhaus theorem’.
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Corollary G.5.5 (Hellinger-Toeplitz theorem) 2 If H is a Hilbert space and A : H → H is a
linear map such that (Ax, y) = (x,Ay) for all x, y ∈ H then A is bounded.

Proof. The set A = {x 7→ (x,Ay) | y ∈ H, ‖y‖ ≤ 1} clearly is contained in H∗ = B(H,C). For each
x ∈ H we have

Ax = {(x,Ay) | y ∈ H, ‖y‖ ≤ 1} = {(Ax, y) | y ∈ H, ‖y‖ ≤ 1} ⊆ {z ∈ C | |z| ≤ ‖Ax‖},

so that A is pointwise bounded and therefore uniformly bounded by Theorem G.5.2. Thus there is
an M ∈ [0,∞) such that |(Ax, y)| = |(x,Ay)| ≤ M‖x‖ for all y ∈ H with ‖y‖ ≤ 1, and this implies
‖A‖ ≤M . �

Remark G.5.6 The Hellinger-Toeplitz Theorem shows that an unbounded linear operator on Hilbert
space satisfying (Ax, y) = (x,Ay) cannot be defined on all of H. This leads to the notion of a sym-
metric operator, a linear operator A : D → H, where D ⊆ H is a (usually dense) subspace, satisfying
(Ax, y) = (x,Ay) for all x, y ∈ D. The Hellinger-Toeplitz Theorem does not apply to unbounded
closed symmetric operators. 2

G.5.2 Improved version of uniform boundedness (using Baire)

If one is disposed to use Baire’s theorem, one can prove the following strenghthening of Theorem
G.5.2, useful in some applications, which one rarely sees in the literature, e.g. in [253, 299]:

Theorem G.5.7 Let E be a Banach space, F a normed space and A ⊆ B(E,F ). Then either A is
uniformly bounded or the set {x ∈ E | supA∈A ‖Ax‖ =∞} ⊆ E is dense Gδ.

Proof. The map F → R≥0, x 7→ ‖x‖ is continuous and each A ∈ A is bounded, thus continuous.
Therefore the map fA : E → R≥0, x 7→ ‖Ax‖ is continuous for every A ∈ A. Defining for each n ∈ N

Vn = {x ∈ E | sup
A∈A
‖Ax‖ > n},

the definition of sup implies

Vn = {x ∈ E | ∃A ∈ A : ‖Ax‖ > n} =
⋃
A∈A

{x ∈ E | ‖Ax‖ > n} =
⋃
A∈A

f−1
A ((n,∞)),

which is open by continuity of the fA.
If Vn is non-dense for some n ∈ N, there exists x0 ∈ E and r > 0 such that B(x0, r) ∩ Vn = ∅.

This means supA∈A ‖A(x0 + x)‖ ≤ n for all x with ‖x‖ < r. With x = (x0 + x)− x0 and the triangle
inequality we have

‖Ax‖ ≤ ‖A(x0 + x)‖+ ‖Ax0‖ ≤ 2n ∀A ∈ A, x ∈ B(0, r).

This implies ‖A‖ ≤ 2n/r for all A ∈ A, thus A is uniformly bounded.
If Vn ⊆ E is dense for all n ∈ N then Baire’s Theorem 3.3.1 gives that the Gδ-set X =

⋂
n∈N Vn

is dense. With the definition of the Vn it is obvious that X = {x ∈ E | supA∈A ‖Ax‖ =∞}. �

2Ernst David Hellinger (1883-1950), Otto Toeplitz (1881-1940). German mathematicians. Both were forced to
emigrate in 1939.
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Remark G.5.8 Proofs making use of Baire’s theorem like the one above are sometimes called “non-
elementary”. This qualification cannot refer to the non-constructive aspect of Baire’s theorem since
the latter is equivalent (in ZF) to the axiom of countable dependent choice, which most of the
supposedly elementary proofs of the uniform boundedness theorem like [137, 265] do not even attempt
to avoid (even though it may be possible). This leads to the suspicion that such remarks in reality
refer to the more explicitly set-theoretic nature of Baire-based proofs as opposed to the sequence
based gliding hump method. In a functional analysis context one may doubt whether this is a valid
argument.

On the other hand, the proof of uniform boundedness in [94] using only ACω has a real claim to
being called more elementary if one subscribes to the notion from reverse mathematics, cf. e.g. [272],
that a proof is the more elementary the weaker the axiomatic foundations that it requires. 2

G.5.3 Continuous functions with divergent Fourier series

Let f : R→ C be 2π-periodic, i.e. f(x+ 2π) = f(x) ∀x, and integrable over finite intervals. Define

cn(f) =
1

2π

∫ 2π

0

f(x)e−inx dx (G.3)

and

Sn(f)(x) =
n∑

k=−n

ck(f)eikx, n ∈ N. (G.4)

The fundamental problem of the theory of Fourier series is to find conditions for the convergence
Sn(f)(x)→ f(x) as n→∞, where convergence can be understood as (possibly almost) everywhere
pointwise or w.r.t. some norm, like the uniform one. Here we will discuss only continuous functions
and we identify continuous 2π-periodic functions with continuous functions on S1. It is not hard to
show that Sn(f)(x) → f(x) if f is differentiable at x (or just Hölder continuous: |f(x′) − f(x)| ≤
C|x′ − x|D with C,D > 0 for x′ near x) and that convergence is uniform when f is continuously
differentiable (or the Hölder condition holds uniformly in x, x′). (See any number of books on Fourier
analysis, e.g. [270, 177, 169].)

Assuming only continuity of f one can still prove that limn→∞ Sn(f)(x) = f(x) if the limit exists,
but there actually exist continuous functions f such that Sn(f)(x) diverges at some x. Such functions
were constructed in the 1870s using ‘condensation of singularities’, a predecessor of the gliding hump
method. Nowadays, most textbook presentations of such functions are based on Lemma G.5.10 below
combined with either the uniform boundedness theorem or constructions ‘by hand’, see the accounts
in [177, Section 18] or [169, Section II.2] which are quite close in spirit to the uniform boundedness
method3. With some care, this can be done avoiding any use of DCω or even ACω.

While a single continuous function whose Fourier series diverges in a point can thus be written
down in an entirely explicit and constructive way, using non-constructive arguments seems unavoid-
able if one wants to prove that there are many such functions (compare Theorem 3.3.19) as in the
following:

Theorem G.5.9 The set {f ∈ C(S1) | {Sn(f)(0)} diverges} ⊆ C(S1) is dense Gδ.

3Other approaches like [270, Section III.2.2] or [116, Exercise 3.4.7] use the Fourier series of the (non-continuous)
sawtooth function as their starting point.
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Proof. Inserting (G.3) into (G.4) we obtain

Sn(f)(x) =
1

2π

n∑
k=−n

eikx
∫ 2π

0

f(t)e−ikt dx =
1

2π

∫ 2π

0

f(t)

(
n∑

k=−n

eik(x−t)

)
dx = (Dn ? f)(x),

where ? denotes convolution [(f ? g)(x) = 1
2π

∫ 2π

0
f(t)g(x− t)dt] and

Dn(x) :=
n∑

k=−n

eikx =
sin(n+ 1

2
)x

sin x
2

is the Dirichlet kernel. The quickest way to check the last identity is:

(eix/2 − e−ix/2)Dn(x) =
n∑

k=−n

eix(k+1/2) −
n∑

k=−n

eix(k−1/2) = eix(n+1/2) − e−ix(n+1/2).

Since Dn(x) is an even function, we have

ϕn(f) := Sn(f)(0) = (2π)−1

∫ 2π

0

f(x)Dn(x)dx.

It is clear that the norm of the map ϕn : (C(S1), ‖ · ‖∞) → C is bounded above by ‖Dn‖1. For

gn(x) = sgn(Dn(x)) we have ϕn(gn) = (2π)−1
∫ 2π

0
|Dn(x)|dx =: ‖Dn‖1. While gn is not continuous, we

can find a sequence of continuous gn,m such that gn,m
m→∞−→ gn pointwise. Now Lebesgue’s dominated

convergence theorem implies ϕn(gn,m) → ϕn(gn) = ‖Dn‖1, thus ‖ϕn‖ = ‖Dn‖1. By Lemma G.5.10
below, ‖Dn‖1 →∞ as n→∞. Thus the family A = {ϕn} ⊆ B(C(S1),C) is not uniformly bounded.
Now Theorem G.5.7 implies the claim. �

Lemma G.5.10 We have ‖Dn‖1 ≥
4

π2
log n for all n ∈ N.

Proof. Using | sinx| ≤ |x| for all x ∈ R, we compute

‖Dn‖1 =
1

2π

∫ π

−π
|Dn(x)|dx ≥ 2

π

∫ π

0

∣∣∣∣sin(n+
1

2

)
x

∣∣∣∣ dxx
=

2

π

∫ (n+1/2)π

0

| sinx| dx
x
≥ 2

π

n∑
k=1

∫ kπ

(k−1)π

| sinx|
x

dx

≥ 2

π

n∑
k=1

1

kπ

∫ π

0

sinx dx =
4

π2

n∑
k=1

1

k
≥ 4

π2
log n,

where we used
∑n

k=1 1/k ≥
∫ n+1

1
dx/x = log(n+ 1) > log n. �

Remark G.5.11 1. Much more is known about the ‘Lebesgue numbers’ ‖Dn‖1.
2. It is not too hard to show that for every set X ⊆ S1 of measure zero there exists an f ∈ C(S1)

such that Sn(f)(x) diverges for all x ∈ X. See [169].
3. With considerably more work one proves that for f ∈ C(S1) (more generally: f ∈ Lp([0, 2π])

for some p > 1) one has Sn(f)(x) → f(x) for almost all x, i.e. all x outside some set of measure
zero. This theorem of Carleson and Hunt was long considered one of the hardest results in analysis,
as well as an isolated gem, but this begins to change in the light of recent simplifications. 2
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G.5.4 Open mappings, Bounded inverses and Closed graphs

As in our presentation of Tietze’s extension theorem, we follow [115] in employing the Lemma 8.2.21,
which we restate here for convenience:

Lemma G.5.12 Let E be a Banach space, F a normed space (real or complex) and T : E → F a
linear map. Assume also that there are m > 0 and r ∈ (0, 1) such that for every y ∈ F there is an
x0 ∈ E with ‖x0‖E ≤ m‖y‖F and ‖y − Tx0‖F ≤ r‖y‖F . Then for every y ∈ F there is an x ∈ E
such that ‖x‖E ≤ m

1−r‖y‖F and Tx = y. In particular, T is surjective.

Corollary G.5.13 Let E be a Banach space, F a normed space and T ∈ B(E,F ) such that
T (BE(0, α)) is dense in BF (0, β) with α, β > 0. Then BF (0, β′) ⊆ T (BE(0, α)) for each β′ ∈ (0, β).

Remark G.5.14 Here “A is dense in B”, where A,B ⊆ X, means A ⊇ B. Note that in general this
is not equivalent to A ∩B = B since the left hand side can easily be empty even if A is dense in X.
But when B is open, as is the case here, the two notions are equivalent. Recall Lemma 2.7.10(i). 2

Proof. By homogeneity of the norm (cf. Definition 2.1.10), x 7→ λx is a homeomorphism for every
λ > 0 so that it is sufficient to consider β = 1. If T (BE(0, α)) is dense in BF (0, 1) then T (BE(0, α′))
is dense in BF (0, 1) for every α′ ≥ α. This in turn is equivalent to the statement that for every
y ∈ F and ε > 0 there exists an x ∈ E such that ‖y − Tx‖ ≤ ε‖y‖ and ‖x‖ ≤ α‖y‖. Now Lemma
G.5.12 provides for every y ∈ F an x ∈ E with Tx = y and ‖x‖ ≤ ‖y‖α/(1 − ε). Thus BF (0, 1) is
contained in T (BE(0, α′)) for every α′ > α which, again by homogeneity implies the claim. �

Theorem G.5.15 (Open Mapping Theorem) (Banach-Schauder) Let E,F be Banach spaces
and let T ∈ B(E,F ) (thus linear and bounded) be surjective. Then T is an open map.

Proof. Since T is surjective, we have

F = T (E) =
∞⋃
n=1

T (BE(0, n)).

Since F is a complete metric, thus Baire, and trivially has non-empty interior, Proposition 3.3.5
implies that at least one of the closed sets T (BE(0, n)) has non-empty interior. Thus there are
n ∈ N, y ∈ F, ε > 0 such that BF (y, ε) ⊆ T (BE(0, n)). In view of BF (y, ε) = y + BF (0, ε), we have
2BF (0, ε) ⊆ BF (y, ε)−BF (y, ε) and thus

BF (0, ε) ⊆ 1

2
(BF (y, ε)−BF (y, ε)) ⊆ 1

2
(T (BE(0, n))− T (BE(0, n))) ⊆ T (BE(0, n)).

Now Corollary G.5.13 implies that BF (0, ε′) ⊆ T (BE(0, n)) for every ε′ ∈ (0, ε). Appealing to
homogeneity again, we see that the image of every open ball around 0 ∈ E contains an open ball
around 0 ∈ F , and using linearity we conclude that T is open. �

Corollary G.5.16 (Bounded Inverse Theorem) If E,F are Banach spaces and T : E → F is
linear, bounded and bijective then also T−1 is bounded. (Thus T is a homeomorphism.)

Proof. By Theorem G.5.15, T is open. Thus the inverse T−1 that exists by bijectivity is continuous,
thus bounded by Lemma G.3.2. �
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Remark G.5.17 1. The Bounded Inverse Theorem is a special case of the Open Mapping Theorem,
but it also implies the latter: Assume that the former holds, that E,F are Banach spaces and that
T ∈ B(E,F ) is surjective. The kernel kerT ⊆ E is closed, so that the quotient space E/kerT is
a Banach space, and the quotient map p : E → E/kerT is continuous and open by Proposition

G.4.1. Since T is surjective, the induced map T̃ : E/kerT → F is a continuous bijection, so that

T̃−1 : F → E/kerT is continuous by the Bounded Inverse Theorem. Equivalently, T̃ is open, so that

the T = T̃ ◦ p is open as the composite of two open maps.
2. Also the Bounded Inverse Theorem has an interesting application to Fourier analysis: For

f ∈ L1([0, 2π]), we define the Fourier coefficients f̂(n) = (2π)−1
∫ 2π

0
f(t)e−intdt for all n ∈ N. It is

immediate that ‖f̂‖∞ ≤ ‖f‖1, and is not hard to prove the Riemann-Lebesgue theorem f̂ ∈ c0(Z,C)

and injectivity of the resulting map L1([0, 1]) → c0(Z,C), f 7→ f̂ , Cf. e.g. [253, Theorem 5.15] or

[169]. If this map was surjective, the Bounded Inverse Theorem would give ‖f‖1 ≤ C‖f̂‖∞. For the

Dirichlet kernel it is immediate that D̂n(m) = χ[−n,n](m), thus ‖D̂n‖∞ = 1 for all n ∈ N. Since we

know that ‖Dn‖1 → ∞, we would have a contradiction. Thus L1([0, 1]) → c0(Z,C), f 7→ f̂ is not
surjective.

3. The Open Mapping Theorem can be generalized to larger classes of topological vector spaces,
cf. [254]. There also is a (less well known) version for topological groups, cf. [142, Vol. I, Theorem
5.29], whose proof again involves a version of Baire’s theorem. (E.g., if G,H are locally compact
T0 topological groups, where G is Lindelöf (equivalently σ-compact, cf. Exercise 7.8.44), then every
continuous surjective homomorphism G→ H is open.) 2

If E,F are normed spaces then the (set-theoretic) product E⊕F is a vector space in the obvious
way and ‖(x, y)‖ = ‖x‖+‖y‖ is a norm. The projections p1 : E⊕F → E, p2 : E⊕F → F are bounded.
If E,F are Banach, then so is E ⊕ F . (The same holds w.r.t. the norm ‖(x, y)‖′ = max(‖x‖, ‖y‖),
which is equivalent to ‖(·, ·)‖ since ‖(x, y)‖′ ≤ ‖(x, y)‖ ≤ 2‖(x, y)‖′ for all (x, y).)

Lemma G.5.18 Let E,F be normed spaces and T ∈ B(E,F ). Then the following are equivalent:

(i) The graph G(T ) = {(x, Tx) | x ∈ E} ⊆ E ⊕ F of T is closed.

(ii) Whenever {xn}n∈N ⊆ E is a sequence such that xn → x ∈ E and Txn → y ∈ F , we have
y = Ax.

Proof. Since E⊕F is a metric space, G(T ) is closed if and only if it contains the limit (x, y) of every
sequence {(xn, yn)} in G(T ) that converges to some (x, y) ∈ E ⊕ F . But a sequence in G(T ) is of
the form {(xn, Txn)}, and (x, y) ∈ G(T ) ⇔ y = Tx. �

Definition G.5.19 If E,F are normed spaces, a linear map T ∈ B(E,F ) satisfying the equivalent
statements in the lemma is called closed.

Theorem G.5.20 (Closed Graph Theorem) If E,F are Banach spaces, then a linear map T :
E → F is bounded if and only if it is closed.

Proof. Let E,F be Banach spaces, and let T : E → F be linear. If T is bounded then it is continuous,
thus G(T ) is closed by Exercise 6.5.21. Now assume T is closed. The cartesian product E ⊕ F with
norm ‖(e, f)‖ = ‖e‖ + ‖f‖ is a Banach space. The linear subspace G(T ) ⊆ E ⊕ F is closed by
assumption, thus a Banach space. Since the projection p1 : G(T ) → E is a bounded bijection, by
Corollary G.5.16 it has a bounded inverse p−1

1 : E → G(T ). Then also T = p2 ◦ p−1
1 is bounded. �
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Exercise G.5.21 Show that the Bounded Inverse Theorem (Corollary G.5.16) can be deduced from
the Closed Graph Theorem. (Thus the three main results of this section are ‘equivalent’.)

Remark G.5.22 The Hellinger-Toeplitz Theorem (Corollary G.5.5) is very easily deduced from the
Closed Graph Theorem: Let {xn} ⊆ H be a sequence converging to x ∈ H and assume that Axn → y.
Then (Ax, z) = (x,Az) = limn(xn, Az) = limn(Axn, z) = (y, z) for all z ∈ H, thus Ax = y. Thus A
is closed and therefore bounded, by Theorem G.5.20. 2

Exercise G.5.23 Let A be a Banach algebra. A pair (L,R) of linear maps L,R : A → A is called
a double centralizer if L(ab) = L(a)b, R(ab) = aR(b), aL(b) = R(a)b ∀a, b ∈ A. Example: For c ∈ A,
define Lc, Rc : A→ A by Lc : a 7→ ca,Rc : a 7→ ac. Then (Lc, Rc) is a double centralizer.

Assume that the product of A is non-degenerate, i.e. if ab = 0 ∀b or ba = 0 ∀b then a = 0. Let
(L,R) be a double centralizer for A. Use the Closed Graph Theorem to prove that L,R are bounded,
thus in B(A).

Exercise G.5.24 Let E,F be Banach spaces and A ⊆ B(E,F ) a pointwise bounded family. Use
the Closed Graph Theorem to prove that A is uniformly bounded, as follows:

(i) Prove that FA = {{yA}A∈A ∈ FA = Fun(A, F ) | supA∈A ‖yA‖ <∞} is a Banach space.

(ii) Show that pointwise boundedness of A is equivalent to T (E) ⊆ FA.

(iii) Prove that the graph G(T ) ⊆ E ⊕ FA of T is closed (and thus bounded by Theorem G.5.20).

(iv) Deduce uniform boundedness of A from the boundedness of T .

(v) Remove the requirement that F be complete.

We close this section by mentioning briefly an alternative approach to proving its results, based
on the following

Lemma G.5.25 (Zabreiko, 1969) Let V be Banach space. Then every seminorm p on V that is
countably subadditive, that is p(

∑
n xn) ≤

∑
n p(xn) whenever

∑
n xn converges, is continuous.

Proof. See [302], where Baire’s theorem is used, or [206, Lemma 1.6.3], where an iterative construction
using DCω is given. �

Now one can deduce the Uniform Boundedness Theorem, the Open Mapping Theorem and the
Closed Graph Theorem from Lemma G.5.25, cf. [206, Section 1.6].

Remark G.5.26 The author is not too enthusiastic about the proof in Exercise G.5.24 and the
mentioned alternative approaches (via the Antosik-Miskusinski matrix theorem [276] or Zabreiko’s
Lemma [302, 206]) to the results of this section: The proof of the Uniform Boundedness Theorem
using only ACω in Section G.5.1 is beyond improvement, whereas using Baire’s theorem one obtains
the better Theorem G.5.7, out of reach of the alternative methods. Since deducing the Bounded
Inverse and Closed Graph Theorems from the Open Mapping Theorem is a triviality, the alternative
approaches do little more than providing an alternative – but certainly not shorter or more insightful
– proof of the Open Mapping Theorem. (As expounded in [276], the Antosik-Miskusinski matrix
theorem has many other applications.) 2
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G.6 Weak-∗ and weak topologies. Alaoglu’s theorem

G.6.1 The weak-∗ topology. Alaoglu’s theorem

We now consider a result in functional analysis that is often construed as an application of Tychonov’s
theorem. As we will see, it should rather be seen as an application of the circle of ideas around the
latter.

Definition G.6.1 If V is a Banach space, the σ(V ∗, V )-topology (or weak-* topology) is the topology
on the dual space V ∗ defined by the family {‖ · ‖x : V ∗ → [0,∞), ϕ 7→ |ϕ(x)|}x∈V of seminorms.
(Thus a net {ϕι} in V ∗ converges to ψ ∈ V ∗ if and only if ϕι(x)→ ψ(x) for every x ∈ V .)

Remark G.6.2 1. If {ϕι} ⊆ V ∗ satisfies ‖ϕι − ϕ‖ → 0 then ϕι(x) → ϕ(x) for all x ∈ V , thus
ϕι → ϕ in the weak-* topology, but the converse need not hold. Thus the weak-* topology on V ∗ is
coarser (or weaker) than the norm-topology. (Compare Exercise 5.1.25.)

2. The σ(V ∗, V )-topology is Hausdorff. This follows from Proposition G.3.4(i).
3. If V is infinite-dimensional, the weak-* topology τ ∗ does not arise from a norm, thus V ∗ is not

a Banach space, but only a locally convex vector space. 2

Theorem G.6.3 4 If V is a Banach space then (V ∗)≤1 = {ϕ ∈ V ∗ | ‖ϕ‖ ≤ 1} is compact in the
σ(V ∗, V )-topology.

Proof. First proof, using Tychonov’s theorem: Define

Z =
∏
x∈V

{z ∈ C | |z| ≤ ‖x‖},

equipped with the product topology. Since the closed discs in C are compact, Z is compact by
Tychonov’s theorem (which we only need for T2-spaces). Now consider the map

f : (V ∗)≤1 → Z, ϕ 7→
∏
x∈V

ϕ(x).

Since the map ϕ 7→ ϕ(x) is continuous for each x, f is continuous (w.r.t. the weak-∗ topology on
(V ∗)≤1). It is trivial that V separates the points of V ∗, thus f is injective. By definition, a net
{ϕι} in (V ∗)≤1 converges in the σ(V ∗, V )-topology if and only if ϕι(x) converges for all x ∈ V , and
therefore if and only if f(ϕι) converges. Thus f : (V ∗)≤1 → f((V ∗)≤1) ⊆ Z is a homeomorphism.

Now let z ∈ f((V ∗)≤1) ⊆ Z. Clearly, |zx| ≤ ‖x‖, thus x 7→ zx is a bounded map. Now, by
Proposition 5.1.21 and injectivity of f , there is a net ϕι in (V ∗)≤1 such that f(ϕι)→ z. This means
that ϕι(αx+βy) = αϕι(x) +βϕι(y)→ αzx +βzy and ϕι(αx+βy)→ zαx+βy, thus the map x 7→ zx is
bounded and linear, thus z = f(ϕ) for some ϕ ∈ (V ∗)≤1. This proves that f((V ∗)≤1) ⊆ Z is closed.

Now we have proven that (V ∗)≤1 is homeomorphic to the closed subset f((V ∗)≤1) of the compact
space Z, thus compact.

Second proof, using universal nets: Let {ϕι} be a universal net in (V ∗)≤1. If x ∈ V then by
Lemma 7.5.30(ii) {ϕι(x)} is a universal net in {z ∈ C | |z| ≤ ‖x‖}, which is compact Hausdorff. By
Proposition 7.5.32, ϕι(x) therefore converges for every x ∈ V to a unique number that we call ϕ(x).
We clearly have |ϕ(x)| ≤ ‖x‖ for all x ∈ V , and ϕ is linear by

ϕ(cx+ c′x′) = lim
ι
ϕι(cx+ c′x′) = lim

ι
(cϕι(x) + c′ϕι(x

′)) = cϕ(x) + c′ϕ(x′),

4Proven by Leonidas Alaoglu (1914-1981) in 1938 (PhD thesis)/1940 (paper).
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so that ϕ ∈ (V ∗)≤1. Since the weak-∗ topology on V ∗ is precisely the initial topology induced by
the family {x̂ : ϕ 7→ ϕ(x) | x ∈ V }, Proposition 6.1.9 gives that ϕι → ϕ in the weak-∗ topology.
Thus every universal net in (V ∗)≤1 is weak-∗ convergent. Now Proposition 7.5.32 gives that (V ∗)≤1

is weak-∗ compact. �

Remark G.6.4 1. One can also prove Alaoglu’s theorem using (ultra)filters, but this is very similar
to the proof using nets and slightly less transparent (and requires a filter version of Proposition 6.1.9,
but that is proven just like Lemma 7.5.24).

2. Our first proof of Alaoglu’s theorem, using Tychonov’s theorem, is the one most frequently
encountered in the literature. Note, however, that it only uses Tychonov’s theorem for Hausdorff
spaces, which we know to be equivalent to the Ultrafilter Lemma. The latter also suffices for the
second proof given above, using ultrafilters. The next result shows that Alaoglu’s theorem actually
is equivalent to UF over ZF. 2

Proposition G.6.5 Alaoglu’s theorem implies the Ultrafilter Lemma over ZF.

Proof. Let F be a filter on the set X. Then V = `∞(X,R) is a Banach space, well remembered
from Appendix F, and Σ = (V ∗)≤1 is weak-∗ compact, thus weak-∗-closed, by Alaoglu’s theorem.
Every x ∈ X gives rise to a bounded linear functional ϕx ∈ Σ, f 7→ f(x) with ‖ϕx‖ = 1. The map

ι : X → Σ, x 7→ ϕx is injective. Now put F = {ι(F )
w∗
| F ∈ F} ⊆ P (Σ). If F1, . . . , Fn ∈ F then by

injectivity of ι and finite intersection property of F we have
⋂
k ι(Fk)

w∗
⊇
⋂
k ι(Fk) = ι(

⋂
k Fk) 6= ∅,

so that F has the finite intersection property. Since the sets ι(F )
w∗
⊆ Σ are weak-∗ closed, and

Σ is weak-∗ compact, Lemma 7.2.1 gives
⋂
F 6= ∅. Pick ψ ∈

⋂
F ⊆ Σ ⊆ V ∗ and define a map

µ : P (X)→ C, S 7→ ψ(χS).

Now `∞(X,R) is an algebra and each ϕx is a character. Since ψ ∈ ι(F )
w∗

for each F ∈ F , it
also is a character: We have ψ = limλ ϕλ, where ϕλ is a net of characters converging in the weak-∗
topology, thus

ψ(fg) = lim
λ
ϕλ(fg) = lim

λ
ϕλ(f)ϕλ(g) = ψ(f)ψ(g).

And χS is idempotent for each S, thus ψ(χS) = ψ(χ2
S) = ψ(χS)2, implying µ(S) = ψ(χS) ∈ {0, 1} for

all S ⊆ X. We have µ(X) = ψ(1) = 1 (since ϕx(1) = 1 ∀x), and S ∩ T = ∅ implies χS∪T = χS + χT ,
so that µ(S ∪ T ) = µ(S) + µ(T ). Thus µ is a finitely additive {0, 1}-valued measure on X, and we

know from Remark F.7.7 that F̂ = {Y ⊆ X | µ(Y ) = 1} is an ultrafilter on X. If Y ∈ F then

ψ ∈
⋂
F =

⋂
F∈F ι(F )

w∗
implies ψ ∈ ι(Y )

w∗
= {ϕx | x ∈ Y }

w∗
. Since ϕx(χY ) = χY (x) = 1 for all

x ∈ Y , we have µ(Y ) = ψ(χY ) = 1, thus F ⊆ F̂ . We thus have embedded F into an ultrafilter. �

Remark G.6.6 We summarize some implications involving the main theorems of functional anal-
ysis: Alaoglu’s theorem is equivalent to the ultrafilter lemma UF (and the Boolean prime ideal
theorem BPI, the Alexander subbase lemma, etc.). This cluster of equivalent statements implies the
Hahn-Banach theorem, the latter being strictly weaker [236]. Baire’s ‘category’ theorem is equivalent
to DCω. Using Baire’s theorem one proves the Open Mapping Theorem and its equivalents, but it
seems not to be known whether Baire can be deduced from the latter. The Uniform Boundedness
Theorem can be proven using only ACω, which does not imply DCω even when combined wih UF
[146]. Thus most results of functional analysis can be proven in ZF+UF+DCω, which is strictly
weaker than ZF+AC [237]. (But let it be noted that many of the less desirable consequences of
AC already follow from Hahn-Banach [97, 233], so that they are not easily avoided.) However, the
Krein-Milman theorem (a compact convex set in locally convex vector spaces is the closure of the
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convex hull of its extreme points) cannot be proven in ZF+UF+DCω: It has been shown [25] that
UF+KM⇒AC. This proves (again) that we cannot have the cake and eat it! 2

G.6.2 The weak topology

For every Banach space V , one can define the weak topology, i.e. the σ(V, V ∗)-topology on V induced
by the family of seminorms {‖ · ‖ϕ = |ϕ(·)| | ϕ ∈ V ∗}. Thus {xι} ⊆ V converges weakly to x ∈ V if
and only if ϕ(xι)→ ϕ(x) for all ϕ ∈ V ∗. It is clear that a norm-convergent net is weakly convergent,

so that for every S ⊆ V we have S
‖·‖ ⊆ S

w
. In general the weak topology is strictly weaker than

the norm topology (but not for finite dimensional spaces since they have a unique topology topology
making them topological vector spaces). Thus there are weakly convergent nets that are not norm
convergent.

Example G.6.7 Let V = `p(N), where 1 < p ≤ ∞. The operator v : `p(N) → `p(N), δn 7→ δn+1

is clearly isometric. If ϕ ∈ `p(N)∗ then by Theorem F.6.1 there is a g ∈ `q(N), where q ∈ [1,∞) is
the exponent dual to p, such that ϕ = ϕg. Now ϕg(v

nf) =
∑∞

k=1 f(k)g(k + n), so that |ϕg(vnf)| ≤
‖f‖p‖gχ[n+1,∞)‖q → 0. Thus vnf

w→ 0, while ‖f‖p = ‖vnf‖p 6→ 0. 2

Thus in general the weak closure of a set is larger than the norm closure. But:

Proposition G.6.8 Let V be a Banach space and S ⊆ V a convex subset. Then

(i) The closures of S with respect to the norm topology and weak topology coincide.

(ii) S is norm-closed if and only if it is weakly closed. In particular, V≤1 is weakly closed.

Proof. (i) In view of the above comments, the claim it remains to prove that no net {xι} ⊆ S can

weakly converge to a point x ∈ V \S‖·‖.
************ See e.g. Lax, p.119, Thm. 3

(ii) The first statement follows readily from (i) and the second is obvious since V≤1 is norm-closed
and convex, cf. Lemma 7.7.59. �

Exercise G.6.9 Let V be a Banach space. Give a simpler proof of the weak closedness of V≤1, using
only the Hahn-Banach theorem or one of its corollaries.

Lemma G.6.10 Let V be a Banach space. Then V≤1 is σ(V ∗∗, V ∗)-dense in (V ∗∗)≤1.

Proof. ************ See [?, Prop. V.4.1]. �

Theorem G.6.11 Let V be a Banach space. Then the following are equivalent:

(i) V is reflexive.

(ii) V ∗ is reflexive.

(iii) V≤1 is weakly compact.
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Proof. We identify V with a closed subspace of V ∗∗ as usual and recall that V is reflexive if V = V ∗∗.
(i)⇔(ii) This was proven in Theorem G.4.3.
(i)⇒(iii) By Alaoglu’s theorem, applied to V ∗, (V ∗∗)≤1 is σ(V ∗∗, V ∗)-compact. With reflexivity,

i.e. V ∗∗ = V , this means that V≤1 is σ(V, V ∗)-compact, thus weakly compact.
(iii)⇒(i) Noting that the weak topology σ(V, V ∗) on V and the weak-∗ topology σ(V ∗∗, V ∗) on

V ∗∗ both come from the seminorms derived from the pairing with elements of V ∗, it is clear that
σ(V ∗∗, V ∗) � V = σ(V, V ∗). By (iii), V≤1 ⊆ V ∗∗ is σ(V, V ∗)-compact, thus σ(V ∗∗, V ∗)-compact
and therefore σ(V ∗∗, V ∗)-closed. Combining this with Lemma G.6.10 gives V≤1 = (V ∗∗)≤1, whence
V = V ∗∗. �

G.7 More on Banach and C∗-algebras. Gelfand duality

In this section, F = C, even though many results also hold for F = R. Cf. Remark G.7.27.

G.7.1 The spectrum of an element. Beurling-Gelfand. Gelfand-Mazur

Lemma G.7.1 Let A be a normed unital algebra and InvA ⊆ A the set of invertible elements. Then

(i) Inv(A) is a topological group (w.r.t. the norm topology).

(ii) If A is complete then 1− b ∈ InvA whenever b ∈ A, ‖b‖ < 1, and InvA ⊆ A is open.

Proof. (i) It is clear that Inv(A) is a group and that multiplication is continuous, since multiplication
A×A→ A is jointly continuous. It remains to show that the inverse map σ : Inv(A)→ Inv(A), a 7→
a−1 is continuous. To this purpose, let r, r + h ∈ Inv(A) and put (r + h)−1 = r−1 + k. We must
show that ‖h‖ → 0 implies ‖k‖ → 0. From 1 = (r−1 + k)(r + h) = 1 + r−1h + kr + kh we obtain
r−1h + kr + kh = 0. Multiplying this on the right by r−1 we have r−1hr−1 + k + khr−1 = 0,
thus k = −r−1hr−1 − khr−1. Therefore ‖k‖ ≤ ‖r−1‖2‖h‖ + ‖k‖‖h‖‖r−1‖, which is equivalent to
‖k‖(1− ‖h‖‖r−1‖) ≤ ‖r−1‖2‖h‖. Since we are considering ‖h‖ → 0, we may assume ‖h‖‖r−1‖ < 1.
Then

‖k‖ ≤ ‖r−1‖2

1− ‖h‖‖r−1‖
‖h‖,

from which it is clear that ‖h‖ → 0 implies ‖k‖ → 0.
(ii) If ‖b‖ < 1 then

∑∞
n=0 ‖bn‖ ≤

∑∞
n=0 ‖b‖n < ∞, so that the series

∑∞
n=0 b

n converges to some
c ∈ A by completeness and Lemma 3.1.8. Now clearly c = 1 + bc = 1 + cb, which is equivalent
to c(1 − b) = 1 = (1 − b)c to that 1 − b ∈ InvA. If now a ∈ InvA and ‖a − a′‖ < ‖a−1‖−1 then
‖1 − a−1a′‖ = ‖a−1(a − a′)‖ ≤ ‖a−1‖‖a − a′‖ < 1 so that a−1a′ = 1 − (1 − a−1a′) ∈ InvA, thus
a′ = a(a−1a′) ∈ InvA. This proves that InvA is open. �

Definition G.7.2 If A is a unital algebra and a ∈ A, the spectrum of a is defined as

σ(a) = {λ ∈ C | a− λ1 6∈ InvA}.

The spectral radius of a is r(a) = sup{|λ| | λ ∈ σ(a)}. (We will soon prove σ(a) 6= ∅ for all a ∈ A.)

The spectrum of a square matrix is its set of eigenvalues. If E is a normed space and A ∈ B(E)
then σ(A) contains the eigenvalues of A, but may be larger. E.g., if E = C([0, 1],R) and (Xf)(x) =
xf(x) then σ(X) = [0, 1]. The same holds for E = Lp([0, 1], λ), p ∈ [1,∞].



G.7. MORE ON BANACH AND C∗-ALGEBRAS. GELFAND DUALITY 433

Proposition G.7.3 If A is a unital Banach algebra and a ∈ A then σ(a) is closed and r(a) ≤ ‖a‖.

Proof. If a ∈ A then fa : C→ A, λ 7→ a− λ1 is continuous, thus f−1
a (InvA) ⊆ C is open by Lemma

G.7.1(ii). Now σ(a) = C\f−1
a (InvA) is closed.

If λ ∈ C, |λ| > ‖a‖ then ‖a/λ‖ < 1 so that 1 − a/λ ∈ InvA by Lemma G.7.1(ii). Thus
λ1− a ∈ InvA, so that λ 6∈ σ(a). �

It is much more work to prove that σ(a) 6= ∅ for every a ∈ A. The usual proof involves complex
analysis, but here we follow a more ‘elementary’ proof due to Rickart [244].

Theorem G.7.4 (Beurling-Gelfand) 56 Let A be a unital normed algebra and a ∈ A. Then

(i) σ(a) 6= ∅, and
r(a) ≥ inf

n∈N
‖an‖1/n = lim

n→∞
‖an‖1/n. (G.5)

(ii) If A is complete (thus a Banach algebra) then equality holds in (G.5).

Proof. (i) For every a ∈ A we trivially have

0 ≤ inf
n∈N
‖an‖1/n ≤ lim inf

n→∞
‖an‖1/n ≤ lim sup

n→∞
‖an‖1/n ≤ ‖a‖ <∞. (G.6)

Abbreviating ν = infn∈N ‖an‖1/n, for every ε > 0 there is a k such that ‖ak‖1/k < ν + ε. Now
every m ∈ N is of the form m = sk + r with unique k ∈ N0 and 0 ≤ r < k. Then

‖am‖ = ‖ask+r‖ ≤ ‖ak‖s‖a‖r < (ν + ε)sk‖a‖r,

‖am‖1/m ≤ (ν + ε)
sk
sk+r ‖a‖

r
sk+r .

Now m→∞ means sk
sk+r
→ 1 and r

sk+r
→ 0, so that lim supm→∞ ‖am‖1/m ≤ ν + ε. Since this holds

for every ε > 0, we have lim supm→∞ ‖am‖1/m ≤ infn∈N ‖an‖1/n. Together with (G.6) this implies
that limm→∞ ‖am‖1/m exists and equals infn∈N ‖an‖1/n.

Assume ν = 0 and a ∈ Inv(A). Then there is b ∈ A such that ab = ba = 1. Then 1 = anbn, thus
1 ≤ ‖1‖ = ‖anbn‖ ≤ ‖an‖‖bn‖ ≤ ‖an‖‖b‖n. Taking n-th roots, we have 1 ≤ ‖an‖1/n‖b‖, and taking
the lim sup gives the contradiction 1 ≤ ν‖b‖ = 0. Thus if ν = 0 then a is not invertible, so that
0 ∈ σ(a), thus σ(a) 6= ∅. Now (G.5) is obviously true. This proves (i) when ν = 0.

From now on assume ν > 0. If µ > ν, choose µ′ such that ν < µ′ < µ. Then the definition of
lim sup implies that there is a n0 such that n ≥ n0 ⇒ ‖an‖1/n < µ′. For such n we have ‖a

n‖
µn
≤ (µ′/µ)n

which tends to 0 as n→∞ since µ′ < µ. Thus for every µ > ν we have that (a/µ)n → 0 as n→∞.
(This is of course trivial if µ > ‖a‖, but our hypothesis is weaker when ν < ‖a‖.) On the other hand,
for all n ∈ N we have ‖an‖1/n ≥ ν. With ν > 0 this implies ‖(a/ν)n‖ ≥ 1, and therefore (a/ν)n 6→ 0.
These two facts will be essential later.

Assume that there is no λ ∈ σ(a) with |λ| ≥ ν. This implies that (a−λ1)−1 exists for all |λ| ≥ ν
and is continuous in λ by Lemma G.7.1(i). The same holds (note |λ| ≥ ν > 0) for the slightly more
convenient function

φ(λ) = (
a

λ
− 1)−1 (|λ| ≥ ν).

For 0 6= λ ∈ C and n ∈ N, put λk = λe
2πi
n
k, where k = 1, . . . , n. (One should really write λn,k, but

we suppress the n.) Then λ1, . . . , λn are the solutions of zn = λn, and we have zn−λn =
∏

k(z−λk),
5Arne Beurling (1905-1986). Swedish mathematician. Worked mostly on harmonic and complex analysis.
6Israel Moiseevich Gelfand (1913-2009). Outstanding Soviet mathematician. Many important contributions to

many areas of mathematics, in particular functional analysis and operator algebras.
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in particular,
∏

k λk = λn. Let |λ| ≥ ν and n ∈ N. Then our assumption (|λ| ≥ ν =⇒ λ 6∈ σ(a))
implies λk 6∈ σ(a) for all k = 1, . . . , n. Thus all a

λk
−1 are invertible, and so is ( a

λ
)n−1 =

∏
k(

a
λk
−1).

Direct computation proves

zn − λn = (z − λ)(zn−1 + zn−2λ+ · · ·+ zλn−2 + λn−1), (G.7)

and applying this with z ← a/λk, λ← 1 and observing λnk = λn, we have

(
a

λ
)n − 1 = (

a

λk
)n − 1 = (

a

λk
− 1)(1 +

a

λk
+ · · ·+ (

a

λk
)n−1)

and therefore
φ(λk) = (

a

λk
− 1)−1 = ((

a

λ
)n − 1)−1(1 +

a

λk
+ · · ·+ (

a

λk
)n−1).

If l ∈ {1, . . . , n− 1} then z = e
2πi
n
l satisfies z 6= 1 and zn = 1. Thus using (G.7) with λ = 1 we have

n∑
k=1

e
2πi
n
kl = e

2πi
n
l

n−1∑
k=0

zk = e
2πi
n
l z

n − 1

z − 1
= 0.

This implies
∑n

k=1( a
λk

)l = ( a
λ
)l
∑n

k=1 e
− 2πi

n
kl = 0 for l = 1, . . . , n− 1 and therefore

1

n

n∑
k=1

φ(λk) =
1

n
((
a

λ
)n − 1)−1

n∑
k=1

(1 +
a

λk
+ · · ·+ (

a

λk
)n−1) = ((

a

λ
)n − 1)−1. (G.8)

For any η > ν, the annulus Λ = {λ ∈ C | ν ≤ |λ| ≤ η} is compact. Thus the continuous map
φ : Λ→ A is uniformly continuous (Proposition 7.7.38). I.e., for every ε > 0 we can find δ > 0 such
that λ, λ′ ∈ Λ, |λ− λ′| < δ ⇒ ‖φ(λ)− φ(λ′)‖ < ε. If ν < µ < ν + δ, we have |νk − µk| = |ν − µ| < δ
and therefore ‖φ(νk) − φ(µk)‖ < ε for all n ∈ N and k = 1, . . . , n. Combining this with (G.8) we
have

‖((a
ν

)n − 1)−1 − ((
a

µ
)n − 1)−1‖ ≤ 1

n

n∑
k=1

‖φ(νk)− φ(µk)‖ < ε ∀n ∈ N. (G.9)

As we have shown before, µ > ν implies (a/µ)n → 0 as n → ∞. By continuity of the inverse map,
((a/µ)n−1)−1 → −1. Combining this with (G.9) we find that ‖((a/ν)n−1)−1 + 1‖ < 2ε for n large
enough. Since ε was arbitrary, we have ((a/ν)n − 1)−1 → −1 and therefore (a/ν)n → 0. But this is
false, as also proven above. This contradiction proves that our assumption that there is no λ ∈ σ(a)
with |λ| ≥ ν is false. Existence of such a λ obviously gives σ(a) 6= ∅ and r(a) ≥ ν, completing the
proof of (i).

(ii) If A is complete one has r(b) ≤ ‖b‖ ∀b ∈ A by Proposition G.7.3. Now, replacing z in (G.7)
by a ∈ A, both factors on the r.h.s. commute. If λ ∈ σ(a) then a− λ is not invertible, thus an − λn
is not invertible (see Exercise G.7.6(i) below), so that λn ∈ σ(an). Thus r(a) ≤ infn∈N r(a

n)1/n. Now
r(b) ≤ ‖b‖ ∀b gives r(an) ≤ ‖an‖ ∀n, whence r(a) ≤ ν. �

Theorem G.7.5 (Gelfand-Mazur Theorem)

(i) Every normed unital algebra over C other than C has non-zero non-invertible elements.

(ii) If A is a normed division algebra (i.e. unital with Inv(A) = A\{0}) over C then A = C1.

Proof. (i) If a ∈ A\C1 then by Theorem G.7.4 we can pick λ ∈ σ(a). Then a − λ1 is non-zero and
non-invertible. Now (ii) is immediate. �
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Exercise G.7.6 Let A be a unital algebra.

(i) If a, b ∈ A and ab = ba ∈ InvA with c = (ab)−1, prove that a, b ∈ InvA and a−1 = cb =
bc, b−1 = ca = ac.

(ii) Give an example of a unital algebra A and a, b ∈ A such that ab 6= ba ∈ InvA with a, b 6∈ InvA.

(iii) If a, b ∈ A and 1− ab ∈ InvA, prove 1− ba ∈ InvA.
Hint: Assume that A is Banach and ‖a‖‖b‖ < 1. Use this to find (1 − ba)−1 in terms of
(1− ab)−1 and prove that the resulting formula holds without the mentioned assumptions.

(iv) Deduce that σ(ab) ∪ {0} = σ(ba) ∪ {0} and r(ab) = r(ba).

Remark G.7.7 If P is a monic polynomial of degree d over C, one can easily construct a matrix
aP ∈ Md×d(C) such that has P (λ) = det(aP − λ1). Now Theorem G.7.4 gives σ(aP ) 6= ∅, and for
every λ ∈ σ(aP ) we have P (λ) = 0. This provides an independent proof of the algebraic closedness
of C (or the ‘Fundamental Theorem of Algebra’). It has more than a little in common with those
given in Theorem 7.7.57 and Exercise 13.7.19. 2

G.7.2 Characters and the Gelfand homomorphism

Lemma G.7.8 If A,B are unital algebras and α : A → B is a unital (i.e. α(1A) = 1B) algebra
homomorphism then σ(α(a)) ⊆ σ(a).

Proof. If λ 6∈ σ(a) then a− λ1 ∈ A is invertible. Then α(a− λ1) = α(a)− λ1 ∈ B is invertible, thus
λ 6∈ σ(α(a)). �

Lemma G.7.9 Let A be a unital Banach algebra. Then every non-zero character ϕ : A→ C satisfies
ϕ(1) = 1, ϕ(a) ∈ σ(a) ∀a ∈ A and ‖ϕ‖ = 1, thus ϕ is continuous.

Proof. If ϕ(1) = 0 then ϕ(a) = ϕ(a1) = ϕ(a)ϕ(1) = 0 for all a ∈ A, thus ϕ = 0. Thus ϕ 6= 0 ⇒
ϕ(1) 6= 0. Now ϕ(1) = ϕ(12) = ϕ(1)2 implies ϕ(1) = 1.

We have just proven that every non-zero character is a unital homomorphism. Thus by Lemma
G.7.8, σ(ϕ(a)) ⊆ σ(a). Since the spectrum of z ∈ C clearly is {z}, this means ϕ(a) ⊆ σ(a), thus
|ϕ(a)| ≤ ‖a‖ by Proposition G.7.3, whence ‖ϕ‖ ≤ 1. Since we require ‖1‖ = 1, we also have
‖ϕ‖ ≥ |ϕ(1)|/‖1‖ = 1. �

The following is one of the most important applications of Alaoglu’s Theorem G.6.3:

Proposition G.7.10 Let A be a unital Banach-algebra. Write Ω(A) for the set of non-zero charac-
ters A→ C, and for each a ∈ A define â : Ω(A)→ C, ϕ 7→ ϕ(a). Let τ be the initial topology on A
defined by {â | a ∈ A}, i.e. the weakest topology making all â continuous. Then (Ω(A), τ) is compact
Hausdorff.

Proof. We have just proven that (non-zero) characters are automatically continuous with norm one, so
that Ω(A) ⊆ (A∗)≤1. By definition, â(ϕ) = ϕ(a). Thus the topology generated by the â is exactly the
σ(A∗, A)-topology (restricted to Ω(A)). Let {ϕι} be a net in Ω(A) that converges to ψ ∈ A∗ w.r.t. the
σ(A∗, A)-topology. Then for all a, b ∈ A we have ψ(ab) = limι ϕι(ab) = limι ϕι(a)ϕι(b) = ψ(a)ψ(b),
so that ψ ∈ Ω(A). Thus Ω(A) ⊆ (A∗)≤1 is σ(A∗, A)-closed, thus compact since (A∗)≤1 is σ(A∗, A)-
compact by Alaoglu’s theorem. (Note that σ(A∗, A) is Hausdorff.) �
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All results so far only assumed A to be a unital Banach algebra. But note that a non-commutative
algebra A may well have Ω(A) = ∅. (This holds for all matrix algebras Mn×n(C), n ≥ 2 since these
are simple so that a homomorphism to another algebra B must be zero or injective, the latter being
impossible for B = C for dimensional reasons.)

Proposition G.7.11 Let A be a commutative unital Banach algebra. Then

(i) If ϕ ∈ Ω(A) then kerA ⊆ A is a maximal ideal, and every maximal ideal is the kernel of a
unique ϕ ∈ Ω(A).

(ii) For each a ∈ A we have
σ(a) = {ϕ(a) | ϕ ∈ Ω(A)}. (G.10)

Proof. (i) Every ϕ ∈ Ω(A) is continuous, thus M = kerϕ is a closed ideal. We have M 6= A since
ϕ 6= 0. This ideal has codimension one since A/M ∼= C and therefore is maximal.

Now let M ⊆ A be a maximal ideal. Since maximal ideals are proper, no element of M is
invertible. For each b ∈M we have ‖1− b‖ ≥ 1 since otherwise b = 1− (1− b) would be invertible by
Lemma G.7.1(ii). Thus 1 6∈ M , so that M is a proper ideal containing M . Since M is maximal, we
have M = M , thus M is closed. Now by Proposition G.4.1(vi), A/M is a normed algebra, and by a
well-known algebraic argument the maximality of M implies that A/M is a division algebra. Thus
A/M ∼= C by the Gelfand-Mazur Theorem G.7.5, so that there is a unique isomorphism α : A/M → C
sending 1 ∈ A/M to 1 ∈ C. If p : A→ A/M is the quotient homomorphism then ϕ = α ◦ p : A→ C
is a non-zero character with kerϕ = M . This ϕ clearly is unique.

(ii) [AC!] We already know that {ϕ(a) | Ω(A)} ⊆ σ(a), so that it remains to prove that for
every λ ∈ σ(a) there is a ϕ ∈ Ω(A) such that ϕ(a) = λ. If λ ∈ σ(a) then a − λ1 6∈ InvA. Thus
I = (a− λ1)A ⊆ A is a proper ideal. Using Zorn’s lemma, we can find a maximal ideal M ⊇ I. By
(i) there is a ϕ ∈ Ω(A) such that kerϕ = M . Since a− λ1 ∈ I ⊆M = kerϕ, we have ϕ(a− λ1) = 0
and therefore ϕ(a) = λ. �

Remark G.7.12 While not directly relevant here, the Gleason-Kahane-Zelazko Theorem [110, 167]
says: Every bounded linear functional ϕ on a commutative unital Banach algebra satisfying ϕ(a) ∈
σ(a) ∀a is multiplicative. This implies that if A is a unital Banach algebra then every codimension
one linear subspace that contains no invertible element is an ideal (maximal, of course). 2

Proposition G.7.13 If A is a unital commutative Banach algebra, the map

π : A→ C(Ω(A),C), a 7→ â (G.11)

is a unital homomorphism, called the Gelfand homomorphism (or representation) of A, and ‖π(a)‖ =
r(a) ≤ ‖a‖ for all a ∈ A. Thus

kerπ = {a ∈ A | r(a) = 0}.

Proof. It is clear that π is linear. Furthermore, 1̂(ϕ) = ϕ(1) = 1 and

â(ϕ1ϕ2) = (ϕ1ϕ2)(a) = ϕ1(a)ϕ2(a) = â(ϕ1)â(ϕ2),

so that π is a unital homomorphism. We have

‖â‖ = sup
ϕ∈Ω(A)

|â(ϕ)| = sup
ϕ∈Ω(A)

|ϕ(a)| = r(a) ≤ ‖a‖,

where we used (G.10) and Proposition G.7.3. �
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Definition G.7.14 Let A be a commutative unital Banach algebra and π : A → C(Ω(A),C) its
Gelfand representation. The set kerπ = r−1(0) ⊆ A is called the radical radA of A. Its elements are
called quasi-nilpotent. If radA = {0}, thus π is injective, then A is called semisimple. An element
a ∈ A is called nilpotent if an = 0 for some n ∈ N.

If a ∈ A is nilpotent then the series b =
∑∞

n=0 a
n converges since it breaks off after finitely many

terms. As before, this implies 1− a ∈ InvA. Since the same holds for a/λ whenever λ 6= 0, we have
σ(a) ⊆ {0}. Thus r(a) = 0, so that nilpotent elements are quasi-nilpotent. In fact, σ(a) = {0} since
a nilpotent element cannot be invertible.

As a first application we have the following (which can be proven without the Gelfand represen-
tation, but less naturally):

Exercise G.7.15 Let A be a unital Banach algebra and a, b ∈ A with ab = ba. Prove that r(a+b) ≤
r(a) + r(b) and r(ab) ≤ r(a)r(b).

The Gelfand homomorphism can fail to be injective or surjective or both. There are unital
commutative Banach algebras A for which radA = A, thus π = 0.

Proposition G.7.16 Let A be a commutative unital Banach algebra and a ∈ A such that A is
generated by {1, a}. Then the map â : Ω(A) → σ(a) is a homeomorphism. The same conclusion
holds if a ∈ InvA and A is generated by {1, a, a−1}.

Proof. We know from (G.10) that â(Ω(A)) = σ(a), thus â is surjective. Assume â(ϕ1) = â(ϕ2), thus
ϕ1(a) = ϕ2(a). Since the ϕi are unital homomorphisms, this implies ϕ1(an) = ϕ2(an) for all n ∈ N0,
so that ϕ1, ϕ2 agree on the polynomials in a. Since the latter are dense in A by assumption and
the ϕi are continuous, this implies ϕ1 = ϕ2. Thus â : Ω(A) → σ(a) is injective, thus a continuous
bijection. Since Ω(A) is compact and σ(a) ⊆ C Hausdorff, â is a homeomorphism by Proposition
7.4.11(ii). This proves the first claim.

For the second claim, note that ϕ(a)ϕ(a−1) = ϕ(aa−1) = ϕ(1) = 1, thus ϕ(a−1) = ϕ(a)−1, for
each ϕ ∈ Ω(A). This implies that ϕ1(an) = ϕ2(an) also holds for negative n ∈ Z. Now ϕ1, ϕ2 agree
on all Laurent polynomials in a, thus on A by density and continuity. The rest of the proof is the
same. �

Exercise G.7.17 Let A be unital commutative Banach algebra and a ∈ InvA. Prove:

(i) σ(a−1) = {λ−1 | λ ∈ σ(a)}.

(ii) If ‖a‖ ≤ 1, ‖a−1‖ ≤ 1 then σ(a) ⊆ S1.

Example G.7.18 Consider the Banach space A = `1(Z,C) with norm ‖ · ‖ := ‖ · ‖1. For f, g ∈ A,
define (f ? g)(n) =

∑
m∈Z f(m)g(n−m). Then

‖f ? g‖ =
∑
n∈Z

∣∣∣∣∣∑
m∈Z

f(m)g(n−m)

∣∣∣∣∣ ≤∑
n∈Z

∑
m∈Z

|f(m)g(n−m)| = ‖f‖1‖g‖1.

Thus f ? g ∈ A. It is clear that ? is bilinear with 1 = δ0 as unit, and assocativity is easy to check.
Thus (A, ‖ ·‖, ?,1) is a unital Banach algebra. In view of δn ?δm = δn+m, this algebra is generated by
the element a = δ1 ∈ InvA, which satisfies ‖δ1‖ = 1 and ‖δ−1

1 ‖ = ‖δ−1‖ = 1. Therefore, by Exercise
G.7.17 we have σ(a) ⊆ S1. For z ∈ S1 define

ϕz : f 7→
∑
n∈Z

f(n)zn, (G.12)
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which is absolutely and uniformly convergent since f ∈ `1. It is clear that ϕz(δn) = zn, so that
ϕz(δnδm) = ϕz(δn+m) = zn+m = ϕz(δn)ϕz(δm), proving ϕz ∈ Ω(A). In particular, ϕz(a) = z, so that
σ(a) = S1. Now Proposition G.7.16 gives Ω(A) = {ϕz | z ∈ S1}. By uniform convergence in (G.12),

one finds that f̌(z) = ϕz(f) is continuous in z and ̂̌f(n) =
∫ 1

0
f̌(e2πit)e−2πitdt = f(n) ∀n. We have

‖π(f)‖ = r(f) = sup
z∈S1

|ϕz(f)| = sup
z∈S1

|f̌(z)| = ‖f̌‖∞,

which vanishes only if f = 0 (by the fact that g ∈ C(S1,C) vanishes if and only if ĝ(n) = 0 ∀n ∈ Z,
cf. e.g. [270]). Thus π : `1(Z)→ C(S1,C) is injective, and A is semisimple. But π is not surjective:
Its image consists precisely of those continuous functions g ∈ C(S1,C) for which

∑
n∈Z |ĝ(n)| < ∞.

For such a function g the Fourier series converges uniformly to g, but we have seen in Section G.5.3
that there are g ∈ C(S1,C) for which the Fourier series converges not even pointwise everywhere.
(And g ∈ C(S1,C) with

∑
n∈Z |ĝ(n)| =∞ are found easily, like g(eit) = |t| for t ∈ [−π, π].)

For g ∈ C(S1,C) define ‖g‖B =
∑

n∈Z |ĝ(n)|. Now put B = {g ∈ C(S1,C) | ‖g‖B <∞}. We have
seen that the Gelfand representation of `1(Z) is an isometric isomorphism (`1(Z), ‖ · ‖1)→ (B, ‖ · ‖B).
Now we can give a slick proof (due to Gelfand) of a theorem proven by Wiener with much more
effort: If g ∈ B satisfies g(z) 6= 0 ∀z ∈ S1 then its multiplicative inverse h = g−1 is in B (thus
has absolutely convergent Fourier series). Proof: Let f = π−1(g) ∈ `1(Z). We have seen that
Ω(A) = S1 and ϕz(f) = g(z) for all z ∈ S1. Now the assumption g(z) 6= 0 ∀z implies that
0 6∈ σ(f) = {ϕz(f) | z ∈ S1}, so that f is invertible in `1(Z). Thus π(f) = g ∈ B is invertible.
Since the product on B is pointwise multiplication, this proves that h = g−1 ∈ B, thus has absolutely
convergent Fourier series. (While this is a beautiful proof, it should be mentioned that now there
are really elementary proofs of Wiener’s theory, see [225].) 2

In discussing when π is an isomorphism, we limit ourselves to the case where A is a C∗-algebra.
(After all, C(X,C) is a C∗-algebra.)

G.7.3 Gelfand isomorphism for commutative unital C∗-algebras

Definition G.7.19 Let A be a C-algebra with an involution ∗. Then a ∈ A is called

• self-adjoint if a = a∗.

• normal if aa∗ = a∗a.

• unitary if aa∗ = a∗a = 1. (Obviously A needs to be unital.)

Proposition G.7.20 Let A be a unital C∗-algebra. Then

(i) 1∗ = 1 and ‖1‖ = 1 (thus this need not be assumed) and ‖a∗‖ = ‖a‖ for all a ∈ A.

(ii) If a ∈ A is normal then r(a) = ‖a‖.

(iii) If u ∈ A is unitary then σ(u) ⊆ S1.

(iv) If a ∈ A is self-adjoint then σ(a) ⊆ R.

(v) Every character ϕ : A→ C satisfies ϕ(a∗) = ϕ(a) for all a ∈ A, i.e. is a ∗-homomorphism.
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Proof. (i) We compute 1 = (1∗)∗ = (11∗)∗ = 1∗∗1∗ = 11∗ = 1∗. Now ‖1‖2 = ‖1∗1‖ = ‖1‖, and since
‖1‖ 6= 0 this implies ‖1‖ = 1. Furthermore, ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, which implies ‖a‖ ≤ ‖a∗‖.
Replacing a by a∗ gives the opposite inequality.

(ii) If b = b∗ then ‖b‖2 = ‖b∗b‖ = ‖b2‖, and induction gives ‖b2n‖ = ‖b‖2n ∀n. If a is normal, then

‖a2n‖ = ‖(a∗)2na2n‖1/2 = ‖(a∗a)2n‖1/2 = (‖a∗a‖2n)1/2 = ‖a‖2n ,

since a∗a is self-adjoint. Now Theorem G.7.4 gives

r(a) = lim
n→∞

‖a2n‖1/2n = lim
n→∞

(‖a‖2n)1/2n = ‖a‖. (G.13)

(iii) We have ‖u‖2 = ‖u∗u‖ = ‖1‖ = 1, and in same way ‖u−1‖ = ‖u∗‖ = 1. Now Exercise G.7.17
gives σ(u) ⊆ S1.

(iv) First proof: Given λ ∈ σ(a), write λ = α + iβ with α, β ∈ R. For each n ∈ N, put
bn = a + (inβ − α)1. For z ∈ C, we clearly have σ(a + z1) = σ(a) + z, so that iβ(n + 1) =
α + iβ + (inβ − α) ∈ σ(bn). Thus with Proposition G.7.3 we have

(n2 + 2n+ 1)β2 = |iβ(n+ 1)|2 ≤ r(bn)2 ≤ ‖bn‖2 = ‖b∗nbn‖ = ‖(a− α1− inβ1)(a− α1 + inβ1)‖
= ‖(a− α1)2 + n2β21‖ ≤ ‖a− α1‖2 + n2β2,

which implies β2 ≤ ‖a− α1‖2/(2n+ 1). Taking n→∞ gives β = 0, thus λ ∈ R.
Second proof: Since ez ≡ exp(z) =

∑∞
n=0 z

n/n! converges absolutely for all z ∈ C, Lemma 3.1.8
gives convergence of exp(a) for all a ∈ A. It is easy to verify (ea)∗ = e(a∗) and ea+b = eaeb, provided
ab = ba. Thus if a = a∗ then (eia)∗ = e−ia = (eia)−1 so that eia is unitary and therefore σ(eia) ⊆ S1

by (iii). Now for all λ ∈ C we have

eia − eiλ = (ei(a−λ1) − 1)eiλ =

(
∞∑
k=1

(i(a− λ1))k

k!

)
eiλ = (a− λ1)beiλ,

where b = i
∑∞

k=1
(i(a−λ1))k−1

k!
∈ A. Since a− λ1 and b commute, we have eia − eiλ 6∈ InvA whenever

λ ∈ σ(a). Thus
{eiλ | λ ∈ σ(a)} ⊆ σ(eia) ⊆ S1,

and this implies σ(a) ⊆ R.
(v) If a = a∗ ∈ A then σ(a) ⊆ R by (iv), and Lemma G.7.9 gives ϕ(a) ∈ σ(a) ⊆ R. If now a ∈ A,

put b = a+a∗

2
, c = a−a∗

2i
. Then b = b∗, c = c∗ and a = b+ ic. Now

ϕ(a∗) = ϕ(b− ic) = ϕ(b)− iϕ(c) = ϕ(b) + iϕ(c) = ϕ(b+ ic) = ϕ(a),

where we used that ϕ(b), ϕ(c) ∈ R as shown before. �

Remark G.7.21 1. Since (ii) implies ‖a‖ = ‖a∗a‖1/2 = r(a∗a)1/2 for all a ∈ A and the spectral
radius r(a) by definition depends only on the algebraic structure of A, the latter also determines the
norm, which therefore is unique.

2. The first proof of (iv) is shorter, but the second seems conceptually clearer in that it boils
down to the simple (iii) and the special case σ(ea) = exp(σ(a)) of the spectral mapping theorem. 2

Theorem G.7.22 If A is a commutative unital C∗-algebra then π : A→ C(Ω(A),C) is an isometric
∗-isomorphism.
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Proof. For all a ∈ A,ϕ ∈ Ω(A), using Proposition G.7.20(v) we have

π(a∗)(ϕ) = â∗(ϕ) = ϕ(a∗) = ϕ(a) = ϕ∗(a) = â(ϕ∗) = π(a)(ϕ∗).

Thus π(a∗) = π(a)∗, so that π is a ∗-homomorphism, and π(A) ⊆ C(Ω(A),C) is self-adjoint.
Since A is commutative, all a ∈ A are normal, thus satisfy r(a) = ‖a‖ by Proposition G.7.20(ii).

Together with ‖π(a)‖ = r(a) for all a this implies that π is an isometry. Since A is complete, this
implies that the image π(A) ⊆ C(Ω(A),C) is complete, thus closed.

If ϕ1 6= ϕ2 then there is an a ∈ A such that ϕ1(a) 6= ϕ2(a), thus π(a)(ϕ1) = â(ϕ1) 6= â(ϕ2) =
π(a)(ϕ2). This proves that π(A) ⊆ C(Ω(A),R) separates the points of Ω(A). Since π is also unital,
Corollary E.2.6 gives π(A) = π(A) = C(Ω(A),C). �

Example G.7.23 1. If X is compact Hausdorff then we know from Theorem E.3.7 that the map
X → Ω(C(X,C)), x 7→ ϕx is a bijection. Now Theorem G.7.22 gives us the much better result
that X can be recovered as a topological space from C(X,C), considered as an abstract C∗-algebra,
forgetting that it consists of functions living on some space.

2. If X is a completely regular space, we have Cb(X,C) ∼= C(βX,C). Thus Ω(Cb(X,C)) ∼= βX.
Since the Stone-Čech compactification has not been used in this section, this homeomorphism could
be taken as the definition of βX (which, however, would be a much more complicated construction
of βX than via embedding X into [0, 1]C(X,[0,1])). 2

Corollary G.7.24 Let A be a unital C∗-algebra and a ∈ A normal. Then there is a unique unital
∗-homomorphism αa : C(σ(a),C)→ A such that αa(z) = a, where z is the inclusion map σ(a) ↪→ C.

Proof. Let B ⊆ A be the closed subalgebra generated by {1, a, a∗}. Since a is normal, B is a
commutative unital C∗-algebra. By Theorem G.7.22, there is an isometric ∗-isomorphism π : B →
C(Ω(B),C). We claim that the continuous map â : Ω(B)→ σ(a) is a homeomorphism. This is proven
essentially as Proposition G.7.16, except that B now is generated by {1, a, a∗}. If ϕ1(a) = ϕ2(a) then
by Theorem G.7.22(i) we have ϕ1(a∗) = ϕ1(a) = ϕ2(a) = ϕ2(a∗). Thus ϕ1, ϕ2 coincide on all
polynomials in a, a∗, and therefore on B. Now we define αa to be the composite of the maps

C(σ(a),C)
ât→ C(Ω(B),C)

π−1

→ B ↪→ A,

where the first map is ât : f 7→ f ◦ â. It is clear that αa is a unital homomorphism. If z : σ(a) ↪→ C
is the inclusion, then αa(z) = π−1(z ◦ â) = π−1(â) = a. Any continuous unital homomorphism
α : C(σ(a)) → B sending 1 to 1A and z to a coincides with αa on the polynomials C[x]. Since the
latter are dense in C(σ(a),C) by Stone-Weierstrass, we have α = αa. �

The above construction is called the continuous functional calculus, since αa(f), where f ∈
C(σ(a),C), can be interpreted as f(a). It is not hard to prove that σ(f(a)) = f(σ(a)).

Remark G.7.25 If A,B are commutative unital C∗-algebras then every unital homomorphism
α : A → B gives rise to a map α∗ : Ω(B) → Ω(A), ϕ 7→ ϕ ◦ α. It is easy to see that α∗ is
continuous w.r.t. the (weak-∗) topologies on Ω(A),Ω(B). Clearly id∗A = idΩ(A), and (h◦k)∗ = k∗ ◦h∗.
This means that we have a contravariant functor F : CC∗1 → CH from the category of unital
commutative C∗-algebras and unital homomorphisms to the category of compact Hausdorff spaces
and continuous maps, given by A 7→ Ω(A) on the objects and by α 7→ α∗ on the morphisms. If
X ∈ CH then C(X) is a commutative C∗-algebra and the map X → Ω(C(X)), x 7→ ϕx is a home-
omorphism. (That it is a bijection was shown in Theorem E.3.7. It is clearly continuous, thus a
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homeomorphism since both spaces are compact Hausdorff.) This proves that F is essentially sur-
jective. And there is a contravariant functor G : CH → CC∗1 given by X 7→ C(X) on the objects
and by C(X, Y ) → Hom(C(Y ), C(X)), g 7→ f ◦ g on the morphisms. The functor G is essentially
surjective by Gelfand duality: Every commutative unital C∗-algebra is isomorphic to C(X) for a
compact Hausdorff space X. With some more effort one shows that F,G are full and faithful, form-
ing a contravariant equivalence CC∗1 ' CHop. This can be generalized to a contravariant equivalence
CC∗n ' LCHop

p , where CC∗n stands for commutative C∗-algebras and non-degenerate homomorphisms
(α : A→ B is non-degenerate if α(A)B ⊆ B is dense) and LCH consists of locally compact Hausdorff
spaces with proper continuous maps between them. 2

Remark G.7.26 In all of this section, we assumed our Banach algebras to be unital. If this is not
the case there are two standard ways of adding a unit: Given a Banach algebra, defining Ã = A⊕C
as vector space, with multiplication (a, α)(b, β) = (ab + αb + βa, αβ), one easily checks that this

is makes Ã an algebra with unit (0, 1). With ‖(a, α)‖′ = ‖a‖ + |α|, Ã is a Banach algebra. But
this will rarely be a C∗-norm, even if A is a C∗-algebra. With a bit more work one verifies that
‖(a, α)‖ = supb∈A≤1

‖ab + αb‖ is a C∗-norm on Ã extending ‖ · ‖. (Submultiplicativity follows from

the that ‖(a, α)‖ is the operator norm of the linear map L(a,α) : b 7→ ab + αb.) Now in a non-
unital algebra, one defines σ(A) = σÃ(a). For the further steps, cf. e.g. [220]. In particular, every
commutative C∗-algebra is isometrically ∗-isomorphic to C0(Ω(A),C), where Ω(A) is locally compact
Hausdorff, and compact if and only if A is unital.

An alternative approach to unitizing A is given by the multiplier algebra M(A) = {(L,R)}, where
the pairs (L,R) are the double centralizers from Exercise G.5.23. They form a unital algebra under
the obvious addition, with product (L1, R1)(L2, R2) = (L1◦L2, R2◦R1) and unit (idA, idA). The map
ι : A→M(A), c 7→ (Lc, Rc) is a homomorphism. If A is unital then for every (L,R) ∈M(A) we have
(L,R) = ι(c), where c = L(1) = R(1), thus ι is surjective. If now A is a C∗-algebra, then so is M(A)
with (L,R)∗ = (R∗, L∗), where L∗(a) = L(a∗)∗, R∗(a) = R(a∗)∗, and norm ‖(L,R)‖ = ‖L‖ = ‖R‖
that makes ι : A→ M(A) an isometric ∗-homomorphism. Thus ι : A→ M(A) is an isomorphism if

A is unital. If A is non-unital then Ã→M(A), (a, α) 7→ ι(a) + α1M(A) is an isometric embedding.

If X is a locally compact Hausdorff space, Exercise 7.8.64 gives ˜(C0(X),F) ∼= C(X∞,F). On the

other hand, M(C0(X,F)) ∼= C(βX,F), cf. e.g. [220, Example 3.1.3], so that Ã and M(A) are the
generalizations of the one-point and Stone-Čech compactifications X∞ and βX, respectively, to non-
commutative C∗-algebras. (Recall that βX exists for more spaces than the locally compact spaces,
namely for all completely regular spaces. Also recall from Exercise 8.3.14 that passing from X to
C(X,R) or C0(X,R) we lose information about X if X is not completely Hausdorff or locally compact
Hausdorff, respectively. We know that C0(X,C) is a commutative C∗-algebra for every topological
space X, and with the isomorphism C0(X,C) ∼= C0(X/∼0,C) from Exercise 8.3.14, where X\∼0 is
the locally compact Hausdorff quotient of X, we have Ω(C0(X,C)) ∼= X/∼0.) 2

Remark G.7.27 If one carefully looks through the proofs of this section, one finds that all of them
also hold over F = R, except for Theorem G.7.4 and everything that depends on it: The matrix(

0 −1
1 0

)
∈M2×2(R) has empty spectrum over R. For more on real Banach and C∗-algebras see e.g.

[191, 248]. 2
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G.8 A quick look at more general topological vector spaces

topological vector spaces ⊃ metrizable vector spaces (= F-spaces)
∪ ∪

locally convex spaces ⊃ Fréchet spaces ⊃ Banach spaces

Recall the Definition 7.8.24 of topological vector spaces. Here we only consider F ∈ {R,C}. Note
that a topological vector space need not be Hausdorff. But since (V,+, 0) is a topological group, the
results of Section D imply that a T0 topological space automatically is T3.5. (But not necessarily T4,
since RR is a topological vector space, but not normal, cf. 8.1.46.)

All topological vector spaces that we have encountered so far were normed spaces, with the
exception of the dual V ∗ of a Banach space equipped with the weak∗ topology σ(V ∗, V ), encountered
in Section G.6.

Definition G.8.1 A set S ⊆ V in a topological vector space is called bounded if

Definition G.8.2 A net {xι}ι∈I in a topological vector space V is called Cauchy net if for every
open neighborhood U of zero there is a ι0 ∈ I such that ι, ι′ ≥ ι0 implies xι − xι′ ∈ U .

A topological vector space V is is called complete if every Cauchy net in V converges.

It is easy to see that this definition coincides with the metric one when the topology of V comes
from a norm.

Definition G.8.3 A metric d on a vector space V is called invariant if it satisfies d(x, y) = d(x +
z, y + z) for all x, y, z ∈ V or, equivalently, d(x, y) = d(x− y, 0) for all x, y ∈ V .

A topological vector space is called metrizable if there exists an invariant metric inducing the given
topology.

Note that it is not true that equipping a vector space with the topology induced by a translation
invariant metric automatically it becomes a TVS! The discrete metric d(x, y) = 1 whenever x 6=
y induces the discrete topology on V so that (V,+, 0) is a topological abelian group, but scalar
multiplication F× V → V, (α, x) 7→ αx is not continuous in α!!!!

If ‖ · ‖ is a norm then the metric d(x, y) = ‖x − y‖ is invariant. But not every invariant metric
arises from a norm: If d is an invariant metric and we define ‖x‖ = d(x, 0) then x = 0 ⇔ x = 0 and
subadditivity holds by

‖x+ y‖ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(0,−y) = d(x, 0) + d(y, 0) = ‖x‖+ ‖y‖,

but there is no reason why ‖cx‖ = |c|‖x‖ should hold for c ∈ F. In fact:

Definition G.8.4 A topological vector space V with topology τ is called normable if there is a norm
‖ · ‖ on V such that τ = τd, where d(x, y) = ‖x− y‖ ∀x, y ∈ V .

A topological vector space is called an F -space if there exists an invariant metric d on V such
that τ = τd.

Clearly every normed space is an F -space, but there are F -spaces that are not normable.
We recall the definition from Section 8.5.5:

Definition G.8.5 A topological vector space V (over R or C) is called locally convex if it is T0 and
0 ∈ V has a neighborhood base consisting of convex open sets.
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Theorem G.8.6 A T0 topological vector space is locally convex if and only if its topology arises from
a family of seminorms separating the points.

Proof. Let F be a family of seminorms on the vector space V . Assume that for every 0 6= x ∈ V
there is a seminorm ρ ∈ F such that ρ(x) 6= 0. Define

S = {ρ−1([0, ε)) | ρ ∈ F , ε > 0}.

It is clear that
⋃
S = V , so that there is a topology τ on V having S as a subbase. The sets

ρ−1([0, ε)) are convex open neighborhoods of 0, and so are the finite intersections that form the base
B associated to S. Thus τ is a locally convex topology.

�

Proposition G.8.7 The topology of a T0-topological vector space is metrizable if and only if it arises
from a countable family of seminorms.

Such a space is called a Fréchet space. (Clearly every Banach space is Fréchet.)

Proof. Let {‖ · ‖n}n∈N be a family of seminorms inducing the topology. Then

d(x, y) =
∞∑
n=1

‖x− y‖n
1 + ‖x− y‖n

defines a metric. As in Lemma 8.3.27(iii) one shows that it induces the given topology.
�

Remark G.8.8 Note that the metric defined in the above proof is translation invariant, i.e. d(x, y) =
d(x − y, 0). Using this, we have d(x − z, 0) = d(x, z) ≤ d(x, y) + d(y, z) = d(x − y, 0) + d(y − z, 0).
Thus x 7→ d(x, 0) almost is a norm, but not quite since d(cx, 0) = cd(x, 0), where c ∈ F, does not
hold. It is not hard to find examples of Fréchet spaces that are not Banach spaces: For f ∈ C∞(R)
define ‖f‖n = ‖f (n)‖∞ for all n ∈ N0. Now

S = {f ∈ C∞(R) | ‖f‖n <∞ ∀n = 0, 1, . . .}

with the topology induced by the family of seminorms {‖ · ‖n} is a Fréchet space (the space of
test functions, important in distribution theory), but not Banach. 2

We close this section and the book by noting that there are topological vector spaces that are
neither metrizable nor locally convex, yet important. But this is not the place to go into them.

• A TVS is metrizable (thus F-space) if and only it is T0 and there is a countable open neigh-
borhood base {Un} of zero. The metric can then be chosen translation invariant. Proof: This
is just an application of Theorem G.7.5.

• A TVS is locally convex if and only if the set of all open convex balanced subsets is a base for
the open neighborhoods of 0.

This is equivalent to the topology coming from a family F of seminorms. The space is then T0

if and only if F separates the points.

• A LCS is metrizable (i.e. Fréchet) if and only if its topology comes from a countable family of
seminorms. Equivalently, it is T0, has a countable convex neighborhood base {Un} for 0.
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• A LCS is normable if and only if it is T0, locally convex and has a non-empty open bounded
set. (A subset A ⊆ V is bounded if for every open U 3 0 there is a λ > 0 such that A ⊆ λU .)

Proof. for the‘only if’ statements: 1) Take Un = B(0, 1/n)
3) If {ρn} are countably many seminorms, define d(x, y) =

∑
n 2−n min(ρn(x − y), 1). Then the

Bd(0, 1/n) are a convex open neighborhood base for 0.
4)
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[124] H. Hahn: Über Folgen linearer Operationen. Monatsh. Math. Phys. 32, 1-88 (1922).

[125] P. R. Halmos: Naive set theory. Van Nostrand, 1960.
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24-34.

[202] J. H. Manheim: The genesis of point set topology. Pergamon Press, 1964.
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of net, 97
of sequence, 93
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adjoint functor, 426
Alexander’s subbase lemma, 156, 167, 171, 179
algebra
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of countable choice, 413, 477
of countable dependent choice, 63, 414

Axiom of choice for finite sets (ACF), 175

Banach algebra, 448, 472

Banach space, 55, 472
reflexive, 473
uniformly convex, 474

base, 73
for the closed sets, 73

Boolean algebra, 35, 43, 342, 422
complete, 331

boundary, 40
bounded

function, 23
set in metric space, 22

box topology, 133, 168

canonical net associated with a filter, 102
Cantor (middle third) set, 337
categories

equivalence, 393, 425
isomorphism, 387, 425

category, 423
opposite, 424

character of an algebra, 449
clopen, 34
closed ball, 28
closed set

in metric space, 22
in topological space, 33

closure, 37
cofinal, 98
compactification, 200

Alexandrov, 206
one-point, 206
Stone-Čech, 270, 348

complete accumulation point, 49, 156
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at a point, 104
joint, 145
separate, 145

Continuum Hypothesis, 140, 281
contraction, 427

principle, 427
weak, 428

contraposition, 405
convergence

of a function, 105
of filter, 100
of net, 94
of sequence, 91

convex set
in Rn, 196, 306
in ordered space, 84

coproduct
of topological spaces, 120

coproduct of sets, 410
cover, 151

point-finite, 248
covering dimension, 323
Croft’s lemma, 65
curve, 349

Jordan, 363
Peano, 349

cut-point, 307

DCω, 63, 414
dense, 46
derived set, 47
diagonal, 138, 257
diam(eter), 22
dimension

covering, 323
large inductive, 323
separation-, 321
small inductive, 323

direct product
of sets, 411
of topological spaces, 132

directed set, 94
discrete family, 291

of subsets, 262
disjoint union, 410

dist(A,B), 22
dist(x,A), 22
double centralizer, 483
dyadic rationals, 250, 255, 367

embedding, 119, 162, 221
endomorphism (in a category), 385
epimorphism, 107, 148, 423
equivalence relation, 408

closed, 125
open, 125
smallest, 409

eventual filter of a net, 102
eventually, 94
extension of continuous functions

existence, 69, 164, 216, 222, 255, 297
uniqueness, 107

extrinsic property, 265

fiber product, 148
filter, 43, 99, 171

convergence of, 100
function applied to, 101
maximal, 171

finite intersection property, 100, 155, 181, 188
fixed point theorem

of Banach, 427
of Brouwer, 317
of Caristi, 429
of Schauder, 319

Fréchet space, 498
frequently, 97
Fun, 405, 424
function

bounded, 23
closed, 110
continuous, 23, 105
open, 110
proper, 216
semicontinuous, 112, 296, 429
uniformly continuous, 69

functor, 424
contravariant, 425

generic point, 51
graph of a function, 138, 167
groupoid, 385

hereditary property, 33, 76
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connectedness, 313
homotopy groups πn, 389

Hilbert
cube, 458
space, 457

homeomorphism, 23, 109, 162
homotopy

equivalence, 378
groups πn, 389
of functions, 377

ideal in an algebra, 449
idempotent, 275, 343
inductive dimension

large, 323
small, 323

inequality
Cauchy-Schwarz, 21, 453
Hölder, 21, 452
Minkowski, 21, 452

interior, 37
intrinsic property, 265
inverse function theorem, 310
isolated point, 32
isometry, 23
isomorphism (in a category), 423

lattice, 421
bounded, 422
distributive, 422

Lebesgue number, 185
left inverse, 412
length of path, 369
lexicographic ordering, 83
limit, 22
locally finite family

of functions, 262
of subsets, 262

long line, 128
long ray, 83

Martin’s axiom, 140, 281
maximal element, 415
maximal ideal, 449, 491
measure zero, 97, 354–356, 481
metric, 19

discrete, 32
discrete (standard), 20

equivalence of, 29
space, 20
uniformly discrete, 191

metric space
complete, 55
completely metrizable, 58, 211
geodesic, 366
geodesically complete, 373
length space, 372
metrically convex, 366
proper, 225
properly metrizable, 225
totally bounded, 185
with Lebesgue property, 185

midpoint
approximate, 373
strict, 366

monoid, 385
monomorphism, 423

natural transformation, 425
neighborhood, 43

base, 85
filter, 43
open, 43

neighborhood filter, 100
net, 94

convergent, 94
universal, 175

norm, 21, 194
equivalence of, 30

normal element of ∗-algebra, 494
nowhere dense, 47

object
initial, 423
terminal, 220, 423

open ball, 26
open set

in metric space, 26
in topological space, 27

opposite category, 424
order

(partial), 415
linear, 415
partial, 408
total, 415

partition of unity, 261
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path, 357
composite, 357
length of, 369
parametrized by arc-length, 371
rectifiable, 369
reversed, 357

path-component, 357
point

generic, 51
isolated, 32
of continuity, 104

point-finite, 248
preorder, 408
profinite

group, 341
space, 340

projective space, 131
proper

function, 216
metric space, 225

property
extrinsic, 265
hereditary, 33, 76
intrinsic, 265
topological, 109, 265

proximity, 283
pseudometric, 19, 51, 258, 272
pullback, 148
pushout, 146

quasi-component, 305, 328
quotient

completely Hausdorff, 267
Kolmogorov, 127
locally compact Hausdorff, 267

quotient map, 122

rectifiable, 369
refinement, 287
regular closed, open, 42
relation, 408

equivalence, 408
order, 408

relatively compact, 160
reparametrization, 383
retraction, 309

of X → ∂X does not exist, 318
of Cantor set to closed subsets, 339

Riemann integral, 97

right inverse, 412

saturated, 124
saturation, 124
section, 412
self-adjoint

element of ∗-algebra, 494
subalgebra, 446

semicontinuity, 112, 296
seminorm, 21
separated, 243
separation-dimension, 321
sequence, 22

Cauchy, 55
converges, 22, 91

sequence space, 451
compact subsets, 457
completeness, 455
separability, 456

set
Fσ, 64
Gδ, 69
Gδ, 64
bounded, 22
closed, 22, 33
convex, 306
cozero-, 266
dense, 46
directed, 94
functionally closed, 251
functionally open, 266
locally closed, 210
nowhere dense, 47
open, 26, 27
perfect, 47
regular closed, 42
regular open, 42
star-shaped, 358
zero-, 251

sgn, 459
shrinking, 248
singleton, 32
Sorgenfrey line, 79, 84, 87, 153, 243, 245, 329
Sorgenfrey plane, 137, 245, 265
space

above another, 149
Banach, 55, 472
below another, 147
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Fréchet, 498
Hilbert, 457
locally convex topological vector, 297, 498
metric, 20
normed, 21, 469
topological, 27
uniform, 61

specialization preorder, 51
spectrum

Gelfand — of commutative Banach algebra,
209

maximal — of commutative ring, 436
of a Boolean algebra, 344
prime — of commutative ring, 435

Sperner’s lemma, 314
sphere, 129, 138, 207
subbase, 81

lemma of Alexander, 156, 167, 171, 179
subcategory, 423

full, 423
reflective, 426

subcover, 151
subnet, 98
subsequence, 93
subspace, 27
support, 261
supremum, 178
symmetric, 440

Theorem
Alaoglu, 484
Baire’s, 62
Banach-Steinhaus, 478
Borsuk-Ulam, 381
bounded inverse, 482
Brouwer’s fixed point, 317
Caristi’s fixed point, 429
closed graph, 483
Dini’s, 190
Dugundji’s extension, 297
Ekeland’s variational, 431
Fundamental – of Algebra, 196, 398, 490
Gelfand-Mazur, 490
Hahn-Banach, 469, 471
Hahn-Mazurkiewicz, 362
Heine-Borel, 194
Hellinger-Toeplitz, 478, 483
Hopf-Rinow, 373

intermediate value, 309
Kolmogorov-Riesz (M.)-Fréchet, 468
Lavrentiev, 70
Menger, 367
Morse-Sard, 355
Nagata-Smirnov metrization, 296
open mapping, 481
Osgood’s, 65
Poincaré-Miranda, 316
Riesz (F.)-Markov-Kakutani representation, 467
Schauder’s fixed point, 319
Stone-Weierstrass, 446
Tietze-Urysohn extension, 255
Tychonov, 167, 169, 176
uniform boundedness, 477
Urysohn’s metrization, 257
Weierstrass, 443

topological group, 209, 327, 439
topological property, 109, 265
topological space, 27

T0, 51
T1, 35
T2, 35
T3, 235
T4, 235
T5, 241
T6, 251
T2.5, 267
T3.5, 264
σ-compact, 214, 215
Čech-complete, 281
Alexandrov, 52
Baire, 62
cocountable, 31, 50
cofinite, 31, 50
collectionwise normal, 237, 288
compact, 151
compactly generated, 232
completely Hausdorff, 267
completely metrizable, 58
completely normal, 241
completely regular, 264
connected, 35, 106, 301, 306
contractible, 379
countably compact, 180
countably paracompact, 295
dense-in-itself, 47
discrete, 31
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extremally disconnected, 330
first countable, 86, 92, 111
fixed point property, 309
Fréchet, 92, 123
generalized ordered, 84, 244
Hausdorff, 35
hemicompact, 214
hereditarily compact, 161
hereditarily disconnected, 325
hereditarily normal, 241
hyperconnected, 50
indiscrete, 31
irreducible, 50
k-, 232
Lindelöf, 151, 180
locally compact, 196, 204
locally compact, strongly, 209
locally connected, 304
locally Euclidean, 205, 361
locally path-connected, strongly, 361
locally path-connected, weakly, 361
metacompact, 289
metrizable, 27
Noetherian, 161
normal, 235
ordered, 82
paracompact, 288
paracompact M -, 298
path-connected, 358
Peano, 363
perfectly normal, 251
Polish, 283
profinite, 340
pseudocompact, 189, 257, 263
realcompact, 271
reducible, 50
regular, 235
rim-compact, 286
scattered, 48
second countable, 74, 111
semiregular, 79, 240
separable, 75
sequential, 92, 123, 232
sequentially compact, 183
simply connected, 386
smallest neighborhood, 52, 361
Stone, 330
Stonean, 330

strongly Hausdorff, 267
strongly zero-dimensional, 334
supercompact, 180
totally disconnected, 325
totally separated, 327
weakly countably compact, 182
weakly Hausdorff, 160
with Knaster property, 142
with Souslin property, 77, 141
with unique Hausdorff compactification, 277
zero-dimensional, 329

topological vector space, 209
locally convex, 297, 498

topology, 27
σ(V ∗, V )-, 484
box, 133
coarser, 33, 110
compact-open, 228
coproduct, 120
direct sum, 120
Euclidean, 31
final, 115
finer, 33, 110
generated by family of sets, 82
induced, 27
initial, 116
order, 82
product, 132
quotient, 122
subspace, 27
usual, 31
weak-*, 484
Zariski — on Spec(R), 435
Zariski — on affine space, 34, 436

Torus, 130, 398
transfinite induction, 419
transfinite recursion, 420
trigonometric polynomial, 447

ultrafilter, 171, 348, 466
principal, 177, 347

ultranet, 175
uniform space, 61
unitary element of ∗-algebra, 494
unitization, 227
universal property

of X∞, 220
of direct product of sets, 411
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of direct product of spaces, 133
of direct sum of spaces, 120
of disjoint union (coproduct) of sets, 411
of pullback of spaces, 149
of pushout of spaces, 147
of quotient spaces, 124

universally closed, 61, 271
Unordered sums, 96
upper bound, 415
Urysohn

“Lemma”, 249
metrization theorem, 259

vector field, 318, 380

weak contraction, 428
weight, 74, 164, 271
well-ordered, 417, 418

Zabreiko’s lemma, 484
zero-set, 251
Zorn’s Lemma, 415
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