Failures to weaken list colouring through prescribed separation

Ross J. Kang

Radboud University Nijmegen

STRUÇO Workshop Paris, 5/2019
Imagine *adversaries* to colouring

- that issue arbitrary lists of allowable colours per vertex
- but must give at least ℓ per list

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \chi$)
Imagine *adversaries* to colouring

- that issue arbitrary lists of allowable colours per vertex
- but must give at least ℓ per list

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \chi$)

Called *list chromatic number* or *choice number* or *choosability* ch
ch is not bounded by any function of χ

Theorem (Erdős, Rubin, Taylor 1980)

$\text{ch}(K_{d,d}) \sim \log_2 d$ (*and* $\text{ch}(K_{d+1}) = d + 1$)
ch is not bounded by any function of χ

Theorem (Erdős, Rubin, Taylor 1980)
$\text{ch}(K_{d,d}) \sim \log_2 d$ (and $\text{ch}(K_{d+1}) = d + 1$)

Rather, more closely related to density

$\text{ch}(G) \gtrsim \log_2 \delta$ for any G of minimum degree δ
ch is not bounded by any function of χ

Theorem (Erdős, Rubin, Taylor 1980)

$\text{ch}(K_{d,d}) \sim \log_2 d$ (*and* $\text{ch}(K_{d+1}) = d + 1$)

Rather, more closely related to density

$\text{ch}(G) \gtrsim \log_2 \delta$ *for any* G *of minimum degree* δ

Still poorly understood

Conjecture (Alon & Krivelevich 1998)

$\text{ch}(G) \lesssim \log_2 \Delta$ *for any* bipartite G *of maximum degree* Δ
Separation makes it "easier"?

What if lists connected by edge are all disjoint?

Theorem (Kratochvíl, Tuza, Voigt 1998)

\[\text{ch}^{\text{sep}}(K_d + 1) \sim \sqrt{d} \]

Theorem (Füredi, Kostochka, Kumbhat 2014)

\[\text{ch}^{\text{sep}}(K_d, d) \sim \log_2 d \]

Theorem (Esperet, Kang, Thomassé 2019)

\[\text{ch}^{\text{sep}}(G) = \Omega(\log \delta) \] for any bipartite \(G \) of minimum degree \(\delta \)

Question: Does \(\text{ch}^{\text{sep}} \) grow in \(\delta \)?

Problem: Almost-disjointness of lists is not monotone under edge-addition!
Separation makes it “easier”?

What if lists connected by edge are all *almost* disjoint?
What if lists connected by edge are all *almost* disjoint, so 1 common colour?
Separation makes it “easier”?

What if lists connected by edge are all *almost* disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability ch_{sep}
Separation makes it “easier”?

What if lists connected by edge are all \textit{almost} disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability ch_{sep}

\textbf{Theorem (Kratochvíl, Tuza, Voigt 1998)}

\[\text{ch}_{\text{sep}}(K_{d+1}) \sim \sqrt{d} \]
Separation makes it “easier”?

What if lists connected by edge are all *almost* disjoint, so 1 common colour?

Call the corresponding least \(\ell \) separation choosability \(\text{ch}_{\text{sep}} \)

Theorem (Kratochvíl, Tuza, Voigt 1998)

\[\text{ch}_{\text{sep}}(K_{d+1}) \sim \sqrt{d} \]

Theorem (Füredi, Kostochka, Kumbhat 2014)

\[\text{ch}_{\text{sep}}(K_{d,d}) \sim \log_2 d \]
Separation makes it “easier”?

What if lists connected by edge are all *almost* disjoint, so 1 common colour?

Call the corresponding least ℓ separation choosability ch_{sep}

Theorem (Kratochvíl, Tuza, Voigt 1998)

$\text{ch}_{\text{sep}}(K_{d+1}) \sim \sqrt{d}$

Theorem (Füredi, Kostochka, Kumbhat 2014)

$\text{ch}_{\text{sep}}(K_{d,d}) \sim \log_2 d$

Theorem (Esperet, Kang, Thomassé 2019)

$\text{ch}_{\text{sep}}(G) = \Omega(\log \delta)$ for any bipartite G of minimum degree δ
Separation makes it “easier”?

What if lists connected by edge are all *almost* disjoint, so 1 common colour?

Call the corresponding least \(\ell \) separation choosability \(ch_{\text{sep}} \)

Theorem (Kratochvíl, Tuza, Voigt 1998)
\[ch_{\text{sep}}(K_{d+1}) \sim \sqrt{d} \]

Theorem (Füredi, Kostochka, Kumbhat 2014)
\[ch_{\text{sep}}(K_{d,d}) \sim \log_2 d \]

Theorem (Esperet, Kang, Thomassé 2019)
\[ch_{\text{sep}}(G) = \Omega(\log \delta) \text{ for any bipartite } G \text{ of minimum degree } \delta \]

Question: Does \(ch_{\text{sep}} \) **grow in** \(\delta \) **?**

Problem: Almost-disjointness of lists is not monotone under edge-addition!
Theorem (Kratochvıl, Tuza, Voigt 1998)
\[\text{ch}_{\text{sep}}(K_{d+1}) \sim \sqrt{d} \]

Theorem (Esperet, Kang, Thomassé 2019)
\[\text{ch}_{\text{sep}}(G) = \Omega(\log \delta) \text{ for any bipartite } G \text{ of minimum degree } \delta \]

Question: Does \(\text{ch}_{\text{sep}} \) grow in \(\delta \)?
Theorem (Kratochvíl, Tuza, Voigt 1998)
\[\text{ch}_{\text{sep}}(K_{d+1}) \sim \sqrt{d} \]

Theorem (Esperet, Kang, Thomassé 2019)
\[\text{ch}_{\text{sep}}(G) = \Omega(\log \delta) \text{ for any bipartite } G \text{ of minimum degree } \delta \]

Question: Does \(\text{ch}_{\text{sep}} \) grow in \(\delta \)?

Related question: Does every graph of high minimum degree contain either

- a large clique or
- a large minimum degree bipartite induced subgraph?
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree \(\delta \) has a bipartite induced subgraph of minimum degree \(\Omega(\log \delta) \)
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $d/2$ rather than $C \log d$
Bipartite induced density

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $d/2$ rather than $C \log d$
- If true, it is sharp up to constant factor
Bipartite induced density

Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $d/2$ rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković ’13)
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $d/2$ rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković ’13)
- True with “semi-bipartite” instead of bipartite
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $d/2$ rather than $C \log d$
- If true, it is sharp up to constant factor
- 2 rather than $\Omega(\log \delta)$ corresponds to presence of an even hole (Radovanović and Vušković ’13)
- True with “semi-bipartite” instead of bipartite
- True with $\Omega\left(\frac{\log \delta}{\log \log \delta}\right)$ (Kwan, Letzter, Sudakov, Tran 2018+)
Suppose minimum degree δ and there is a proper k-colouring
Suppose minimum degree δ and there is a proper k-colouring.

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph with at least $\frac{n\delta}{2}$ edges distributed across these classes.

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges.
Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph

$\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges

So it has minimum degree $\Omega\left(\frac{\delta}{k}\right)$ if the colouring is balanced...
Suppose minimum degree δ and there is a proper k-colouring
Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph
$\geq \frac{n\delta}{2}$ edges are distributed across these
By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges
So it has minimum degree $\Omega(\frac{\delta}{k})$ if the colouring is balanced...

Theorem (Esperet, Kang, Thomassé 2019)

*Any graph with fractional chromatic number at most k and minimum degree δ has a bipartite induced subgraph of minimum degree at least $\frac{\delta}{2k}$.***
Suppose minimum degree δ and there is a proper k-colouring

Each of $\sim \frac{k^2}{2}$ pairs of colour classes induces a bipartite graph

$\geq \frac{n\delta}{2}$ edges are distributed across these

By pigeonhole, one has $\gtrsim \frac{n\delta}{k^2}$ edges

So it has minimum degree $\Omega\left(\frac{\delta}{k}\right)$ if the colouring is balanced . . .

Theorem (Esperet, Kang, Thomassé 2019)

Any graph with fractional chromatic number at most k and minimum degree δ

has a bipartite induced subgraph of minimum degree at least $\frac{\delta}{2k}$.

Conjecture (Harris 2019)

Any triangle-free graph with degeneracy δ^* has fractional chromatic number

$O\left(\frac{\delta^*}{\log \delta^*}\right)$
Imagine *adversaries* to colouring

- that issue arbitrary matchings specifying pairwise conflicts of colours
- between lists of size ℓ on vertices joined by an edge

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \text{ch}$)
Correspondence colouring

Imagine *adversaries* to colouring

- that issue arbitrary matchings specifying pairwise conflicts of colours
- between lists of size ℓ on vertices joined by an edge

What is least ℓ for which colouring is always possible? (Necessarily $\ell \geq \chi$)

Called *correspondence chromatic number* or *DP-chromatic number* χ_{DP}
Correspondence colouring
Correspondence even “harder”

Or rather, it is much more closely linked with density

\[\chi_{DP}(G) \gtrsim \frac{\delta}{\log \delta} \text{ for any } G \text{ of minimum degree } \delta \]
Correspondence even “harder”

Or rather, it is much more closely linked with density

\[\chi_{DP}(G) \gtrsim \frac{\delta}{2 \log \delta} \text{ for any } G \text{ of minimum degree } \delta \]

Theorem (Bernshteyn 2019, cf. Molloy 2019)
\[\chi_{DP}(G) \lesssim \frac{\Delta}{\log \Delta} \text{ for any triangle-free } G \text{ of maximum degree } \Delta \]

NB: This settles correspondence version of conjecture of Alon & Krivelevich
What if lists connected by edge are all *almost* disjoint, so 1 conflict?
A generalisation to multigraphs is natural (also for “adaptable choosability”)

Call the corresponding least ℓ least conflict choosability ch_{DP1}

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$\text{ch}_{\text{DP1}}(G) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\delta} \log \delta$ for any G of minimum degree δ

An analogue of Heawood’s Formula (roughly of form $\chi = O(\sqrt{g} + 1)$)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$\text{ch}_{\text{DP1}}(G) = O((g + 1)^{1/4} \log(g + 2))$ for any simple G embeddable on a surface of Euler genus g
A generalisation to multigraphs is natural (also for “adaptable choosability”)

Call the corresponding least \(\ell \) least conflict choosability \(\text{ch}_{\text{DP1}} \)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

\[\text{ch}_{\text{DP1}}(G) \lesssim 2\sqrt{\Delta} \text{ for any (multigraph) } G \text{ of maximum degree } \Delta \]

NB: \(\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\Delta} \text{ for a 2-vertex } G \text{ of multiplicity } \Delta \) (!)
Correspondence and separation

A generalisation to multigraphs is natural (also for “adaptable choosability”)

Call the corresponding least ℓ least conflict choosability ch_{DP1}

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$\text{ch}_{\text{DP1}}(G) \lesssim 2\sqrt{\Delta}$ for any (multigraph) G of maximum degree Δ

NB: $\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\Delta}$ for a 2-vertex G of multiplicity Δ (!)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\frac{\delta}{\log \delta}}$ for any G of minimum degree δ
Correspondence and separation

A generalisation to multigraphs is natural (also for “adaptable choosability”)

Call the corresponding least ℓ least conflict choosability ch_{DP1}

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

\[ch_{DP1}(G) \lesssim 2\sqrt{\Delta} \text{ for any (multigraph) } G \text{ of maximum degree } \Delta \]

NB: \[ch_{DP1}(G) \gtrsim \sqrt{\Delta} \text{ for a 2-vertex } G \text{ of multiplicity } \Delta \ (!) \]

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

\[ch_{DP1}(G) \gtrsim \sqrt{\frac{\delta}{\log \delta}} \text{ for any } G \text{ of minimum degree } \delta \]

An analogue of Heawood’s Formula (roughly of form $\chi = O(\sqrt{g+1})$)

Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

\[ch_{DP1}(G) = O((g + 1)^{1/4} \log(g + 2)) \text{ for any simple } G \text{ embeddable on a surface of Euler genus } g \]
Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)

$$\text{ch}_{\text{DP}_1}(G) \lesssim 2\sqrt{\Delta} \text{ for any (multigraph) } G \text{ of maximum degree } \Delta$$

NB: $$\text{ch}_{\text{DP}_1}(G) \gtrsim \sqrt{\Delta} \text{ for a 2-vertex } G \text{ of multiplicity } \Delta \text{ (!) }$$
Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)
\[\text{ch}_{\text{DP1}}(G) \lesssim 2\sqrt{\Delta} \text{ for any (multigraph) } G \text{ of maximum degree } \Delta \]

NB: \[\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\Delta} \text{ for a 2-vertex } G \text{ of multiplicity } \Delta \]

Theorem Redux (Dvořák, Esperet, Kang, Ozeki 2018+)
Given simple \(H \) and a vertex partition \(L : [n] \rightarrow \binom{V(H)}{\ell} \) satisfying
- \(\frac{1}{\ell} \sum_{i \in L(v)} \deg(i) \leq D \) for every \(v \in [n] \)
- \(\ell \gtrsim 4D \),

there is an independent set that is transversal to the partition \(L \)

* Observed in ongoing work with Kelly
Theorem (Dvořák, Esperet, Kang, Ozeki 2018+)
\[\text{ch}_{\text{DP1}}(G) \lesssim 2\sqrt{\Delta} \text{ for any (multigraph) } G \text{ of maximum degree } \Delta \]

NB: \[\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{\Delta} \text{ for a 2-vertex } G \text{ of multiplicity } \Delta \] (!)

Theorem Redux (Dvořák, Esperet, Kang, Ozeki 2018+)

Given simple \(H \) and a vertex partition \(L: [n] \to (V(H)) \) satisfying
\[\frac{1}{\ell} \sum_{i \in L(v)} \deg(i) \leq D \text{ for every } v \in [n] \]
\[\ell \gtrsim 4D, \]

there is an independent set that is transversal to the partition \(L \)

So closely related to Haxell 2001 (with instead \(\deg(i) \leq D \) and \(2D \)) and

Theorem (Bollobás, Erdős, Szemerédi 1975, cf. Szabó & Tardos 2006)
\[\text{ch}_{\text{DP1}}(G) \gtrsim \sqrt{2\Delta} \text{ for some multigraph } G \text{ of maximum degree } \Delta \]

and also to List Colouring Constants...

Observed in ongoing work with Kelly
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$
Conjecture (Esperet, Kang, Thomassé 2019)
Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)
$\chi(G) \lesssim \sqrt{\frac{2n}{\log n}}$ for any triangle-free graph G on n vertices
Conjecture (Esperet, Kang, Thomassé 2019)

Any triangle-free graph of minimum degree δ has a bipartite induced subgraph of minimum degree $\Omega(\log \delta)$

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)

$\chi(G) \lesssim \sqrt{\frac{2n}{\log n}}$ for any triangle-free graph G on n vertices

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot 2018+)

$\text{ch}(G) = O\left(\sqrt{\frac{n}{\log n}}\right)$ for any triangle-free graph G on n vertices