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α and ω

Kk

A clique has all possible edges and a stable set has none.

The clique number ω is the size of a largest clique.

The stability number α is the size of a largest stable set.



αc and ωc

Consider sets “close” to cliques or stable sets, tuned by a parameter† c ∈ [0, 1].

A vertex subset with ` vertices
of minimum degree ≥ c(`− 1) is called a c-clique;
of maximum degree ≤ (1− c)(`− 1) is called a c-stable set.

ωc is size of a largest c-clique. αc is size of a largest c-stable set.

How does the behaviour change as we tune c between 0 and 1?

†Note (or foreshadowing): for now consider c as fixed.
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Ramsey numbers‡

Ramsey (1930) proved the existence of

R(k) = min {n : |V (G)| = n⇒ max{α(G), ω(G)} = k}.

Theorem (Erdős 1947, Erdős and Szekeres 1935)

√
2
k+o(k)

≤ R(k) ≤ 4k−o(k) as k →∞.

‡Picture borrowed from the cover of Soifer (2009).
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Ramsey numbers‡

Ramsey (1930) proved the existence of

R(k) = min {n : |V (G)| = n⇒ max{α(G), ω(G)} = k}.

Theorem (Spencer 1977, Conlon 2009)

√
2
k+o(k)

≤ R(k) ≤ 4k−o(k) as k →∞.

‡Pictures borrowed from the cover of Soifer (2009) and homepages.



Quasi-Ramsey numbers

Ramsey (1930) still implies, for any c ∈ [0, 1], the existence of

R∗c (k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} = k} and

Rc(k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} ≥ k}.

Note that R∗c (k) ≥ Rc(k) always, and both parameters are monotone in c.

Moreover, R0(k) = R∗0 (k) = k and R1(k) = R∗1 (k) = R(k) = exp(Θ(k)).

As we tune c between 0 and 1, how does R∗c (k) or Rc(k) change?
From when is it superlinear in k? . . . superpolynomial? . . . exponential?
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Proposition (Erdős and Pach 1983)

Fix c ∈ [0, 1].

• If c < 1/2, then R∗c (k) = Θ(k).

• If c > 1/2, then Rc(k) = exp(Θ(k)).

An intuition for this transition comes from max{αc(Gn,1/2), ωc(Gn,1/2)}.

What happens at c = 1/2?



Quasi-Ramsey numbers

R∗c (k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} = k} and

Rc(k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} ≥ k}.

As we tune c between 0 and 1, how does R∗c (k) or Rc(k) change?
From when is it superlinear in k? . . . superpolynomial? . . . exponential?

Proposition (Erdős and Pach 1983)
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Magnification

What happens at c = 1/2?
From when is it superlinear in k? . . . superpolynomial? . . . exponential?

A vertex subset with ` vertices
of minimum degree ≥ c(`− 1) is called a c-clique;
of maximum degree ≤ (1− c)(`− 1) is called a c-stable set.

Consider c = 1/2 + ε where ε = ε(`) is a real function tending to 0 as `→∞.
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Variable sharp threshold

The “variable” quasi-Ramsey numbers

Rc(k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} ≥ k}.

Theorem (Erdős and Pach 1983)

R1/2(k) = O(k log k) and R1/2(k) = Ω(k log k/ log log k).

Theorem (Kang, Pach, Patel and Regts 2015)

For some nonnegative real function ν = ν(`), let c = 1/2 + ν
√

log `/`.

• If ν = o(1) as `→∞, then Rc(k) = k1+o(1) as k →∞.

• If ν = Θ(1) as `→∞, then Rc(k) = kΘ(1) as k →∞.

• If ν = ω(1) as `→∞, then Rc(k) = kω(1) as k →∞.

Again an intuition for this transition comes from max{αc(Gn,1/2), ωc(Gn,1/2)}.
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Theorem (Erdős and Pach 1983)

R1/2(k) = O(k log k) and R1/2(k) = Ω(k log k/ log log k).

Theorem (Kang, Pach, Patel and Regts 2015)

For some nonnegative real function ν = ν(`), let c = 1/2 + ν
√

log `/`.

• If ν = o(1) as `→∞, then Rc(k) = k1+o(1) as k →∞.

• If ν = Θ(1) as `→∞, then Rc(k) = kΘ(1) as k →∞.

• If ν = ω(1) as `→∞, then Rc(k) = kω(1) as k →∞.

Again an intuition for this transition comes from max{αc(Gn,1/2), ωc(Gn,1/2)}.



Variable sharp threshold

The “variable” quasi-Ramsey numbers

Rc(k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} ≥ k}.
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Fixed exactly halfway

The “fixed” quasi-Ramsey numbers:

R∗c (k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} = k}.

Theorem (Erdős and Pach 1983)

R∗1/2(k) = O(k2). (R∗1/2(k) = Ω(k log k/ log log k) by previous.)

Problem (Erdős and Pach 1983)

“We suspect that the order of magnitude of R∗1/2(k) is in fact close to k log k.”

Theorem (Kang, Long, Patel and Regts 2016+)

R∗1/2(k) = O(k log k).
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Theorem (Erdős and Pach 1983)

R∗1/2(k) = O(k2). (R∗1/2(k) = Ω(k log k/ log log k) by previous.)
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Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Ck log k vertices there is a set of k vertices
inducing minimum degree k/2 + Ω(

√
k/ log k) in the graph or complement.

Call a subset of ` vertices excessive if it induces minimum degree
≥ 1

2
(`− 1) + ζ for some excess ζ ≥ 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of ` ≥ 2k vertices that
is Ω(

√
`) excessive either in the graph or complement.

2. Reduction from a Ω(
√
`) excessive set of Dk vertices, D > 1 fixed, to an

excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.

First apply 1. If ` 6≡ 0 (mod k), then apply 3 to lop off a possibly excessive
piece of size Dk, with Dk ≡ ` (mod k) and D > 1 fixed, then possibly apply 2.
Otherwise apply 3 repeatedly to partition an excessive set of size ≡ 0 (mod k)
into roughly equal parts of size ≡ 0 (mod k), one excessive.
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Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed ν ≥ 0, let c = 1/2 + ν/
√
`− 1. Then Rc(k) = O(k log k).

⇐⇒

For some C > 0, in any graph on Ck log k vertices there is a set of ` ≥ k
vertices inducing minimum degree `/2 + Ω(

√
`) in the graph or complement.

Note: This improves on the Erdős and Pach bound R1/2(k) = O(k log k).

Theorem (Erdős and Spencer 197)

ny graph G = (V ,E) with |V | = n has

e(S)− 1

2

(
|S |
2

)

∣∣∣∣∣ = Ω () .
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Theorem (Erdős and Spencer 1972)

For n large any graph G = (V ,E) with |V | = n has

max
S⊆V

∣∣∣∣∣e(S)− 1

2

(
|S |
2

)∣∣∣∣∣ = Ω
(
n3/2

)
.



Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed ν ≥ 0, let c = 1/2 + ν/
√
`− 1. Then Rc(k) = O(k log k).

⇐⇒

For some C > 0, in any graph on Ck log k vertices there is a set of ` ≥ k
vertices inducing minimum degree `/2 + Ω(

√
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Note: This improves on the Erdős and Pach bound R1/2(k) = O(k log k).

Theorem (Erdős and Spencer 1974)

For n large and 1
2

log2 n < t ≤ n any graph G = (V ,E) with |V | = n has

max
S⊆V ,|S|≤t

∣∣∣∣∣e(S)− 1

2

(
|S |
2

)∣∣∣∣∣ = Ω
(
t3/2

√
log(n/t)
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.



Proof ingredient 2: set system discrepancy

Lemma (2)

Suppose X is of size ` = Dk, D > 1, inducing minimum degree ≥ `/2 + ν
√
`.

Some X ′ ⊆ X of size k induces minimum degree ≥ k/2 + (ν/
√
D − 15

√
D)
√
k.
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Proof ingredient 3: greedy swaps

Lemma (3)

Suppose X is of size ` = `1 + `2 inducing minimum degree ≥ δ = δ1 + δ2.
Then there exists X1,X2 ⊆ X with |X1| = `1 and |X2| = `2 such that either
X1 induces minimum degree ≥ δ1 or X2 induces minimum degree ≥ δ2

Proof.
Start with X1,X2 an arbitrary partition of X with |X1| = `1 and |X2| = `2.
If a ∈ X1 has degX1

(a) ≤ δ1 − 1 and b ∈ X2 has degX2
(b) ≤ δ2 − 1, swap them.

The number of edges in X1 increases by at least

degX1
(b)− degX1

(a)− 1 ≥ δ − degX2
(b)− degX1

(a)− 1 ≥ δ − δ2 − δ1 + 1 = 1

(where the −1 accounts for the possibility of the edge ab).
At some point we cannot find two vertices to swap, but then we are done.
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Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Ck log k vertices there is a set of k vertices
inducing minimum degree k/2 + Ω(

√
k/ log k) in the graph or complement.

Call a subset of ` vertices excessive if it induces minimum degree
≥ 1

2
(`− 1) + ζ for some excess ζ ≥ 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of ` ≥ 2k vertices that
is Ω(

√
`) excessive either in the graph or complement.

2. Reduction from a Ω(
√
`) excessive set of Dk vertices, D > 1 fixed, to an

excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.

First apply 1.

If ` 6≡ 0 (mod k), then apply 3 to lop off a possibly excessive
piece of size Dk, with Dk ≡ ` (mod k) and D > 1 fixed, then possibly apply 2.
Otherwise apply 3 repeatedly to partition an excessive set of size ≡ 0 (mod k)
into roughly equal parts of size ≡ 0 (mod k), one excessive.



Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Ck log k vertices there is a set of k vertices
inducing minimum degree k/2 + Ω(

√
k/ log k) in the graph or complement.

Call a subset of ` vertices excessive if it induces minimum degree
≥ 1

2
(`− 1) + ζ for some excess ζ ≥ 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of ` ≥ 2k vertices that
is Ω(

√
`) excessive either in the graph or complement.

2. Reduction from a Ω(
√
`) excessive set of Dk vertices, D > 1 fixed, to an

excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.

First apply 1. If ` 6≡ 0 (mod k), then apply 3 to lop off a possibly excessive
piece of size Dk, with Dk ≡ ` (mod k) and D > 1 fixed, then possibly apply 2.

Otherwise apply 3 repeatedly to partition an excessive set of size ≡ 0 (mod k)
into roughly equal parts of size ≡ 0 (mod k), one excessive.



Proof ingredients

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Ck log k vertices there is a set of k vertices
inducing minimum degree k/2 + Ω(

√
k/ log k) in the graph or complement.

Call a subset of ` vertices excessive if it induces minimum degree
≥ 1

2
(`− 1) + ζ for some excess ζ ≥ 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of ` ≥ 2k vertices that
is Ω(

√
`) excessive either in the graph or complement.

2. Reduction from a Ω(
√
`) excessive set of Dk vertices, D > 1 fixed, to an

excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.

First apply 1. If ` 6≡ 0 (mod k), then apply 3 to lop off a possibly excessive
piece of size Dk, with Dk ≡ ` (mod k) and D > 1 fixed, then possibly apply 2.
Otherwise apply 3 repeatedly to partition an excessive set of size ≡ 0 (mod k)
into roughly equal parts of size ≡ 0 (mod k), one excessive.



Summary and open questions

For the quasi-Ramsey numbers

R∗c (k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} = k} and

Rc(k) = min {n : |V (G)| = n⇒ max{αc(G), ωc(G)} ≥ k},

• identified a sharp transition for Rc(k) at c = 1/2 + Θ(
√

log `/`), and

• solved a problem of Erdős and Pach by showing R∗1/2(k) = O(k log k).

Open questions:

• The remaining log log k factor for R∗1/2(k)?

• How strict could the inequality Rc(k) ≤ R∗c (k) be?

• For fixed c ∈ (1/2, 1), is lim supk→∞ k−1 log(R(k)/Rc(k)) > 0?

• Hypergraphs? (See next page.)
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Heterogeneously weighted random graph

Theorem (Erdős and Pach 1983, cf. Kang, Pach, Patel and Regts 2015)

R1/2(k) = Ω(k log k/ log log k).

i.e. there is some graph on Ck log k/ log log k vertices such that any
set of ` ≥ k vertices is excessive in neither the graph nor complement.

Let z =
ζ log k

log log k
for some suitably chosen fixed ζ > 0.

Let V = V1 ∪ · · · ∪ Vz where |V1| = · · · = |Vz | =

(
1− 1

2z

)
k.

Generate E randomly for any vi ∈ Vi and vj ∈ Vj by

P(vivj ∈ E) =

{
1
2
− (2z)−4(i+j)−1 if i 6= j ;

1
2

+ (2z)−8i if i = j .

There is a chance the graph G = (V ,E) has the desired properties.
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Proof ingredient 2: set system discrepancy

Theorem (Spencer 1985, Lovász, Spencer and Vesztergombi 1986)

For A1, . . . ,An ⊆ [n] and p ∈ [0, 1], there exists Y ⊆ [n] such that for all i
||Ai ∩ Y | − p|Ai || ≤ 6

√
n.

For H = {A1, . . . ,An} ⊆ 2[n], define the discrepancy of H as

disc(H) := minχ∈{−1,1}V maxS∈H
∑

i∈S χ(i).

Spencer showed that disc(H) ≤ 6
√
n for any such H.

If A is the incidence matrix of H, i.e. A is the n × n matrix given by

Aij =

{
1 if j ∈ Ai ,

0 otherwise.
,

then the linear discrepancy is

lindisc(H) := max
c∈[0,1]V

min
x∈{0,1}V

‖A(x − c)‖∞.

Via Lovász, Spencer and Vesztergombi, lindisc(H) ≤ 6
√
n for any such H.

Apply this result with c the all p vector.
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Proof ingredient 1: graph discrepancy

Lemma (1)

For fixed ν ≥ 0, let c = 1/2 + ν/
√
`− 1. Then Rc(k) = O(k log k).

Outline proof of Lemma (1).

Let G = (V ,E) be a graph on Ck log k vertices and define for any X ⊆ V

Dν(X ) := |D(X )| − ν|X |3/2.

Let V0 = V . Form Vi+1 in step i + 1 by letting Xi ⊆ Vi maximise Dν(Xi ) and
Vi+1 = Vi \ Xi . Stop after step t + 1 if |Vt+1| < 1

2
|V |.

Let {i1, . . . , im} ⊆ [t] be those i with D(Xi ) > 0. Wlog
∑

j∈[m] |Xij | ≥ 1
4
|V |.

Claim 1 For any j ∈ [m], Hij has minimum degree ≥ 1
2
(|Xij | − 1) + ν

√
|Xij | − 1.

Claim 2 For any ` ∈ [m − 3], D(Xi`+3 ) ≤ 5
6
D(Xi`).

Then ( 5
6
)(m−1)/3D(Xi1 ) ≥ D(Xim ) ≥ 1 ⇒ m − 1 ≤ 3 log6/5 D(Xi1 ) ≤ 6 log6/5 k.

Pigeonhole guarantees some |Xij | ≥
|V | log(6/5)

25 log k
= C log(6/5)

25
k ≥ k if C ≥ 25

log(6/5)
.

Claim 1 implies that Xij is the desired subset.
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Claim 1 For any j ∈ [m], Hij has minimum degree ≥ 1
2
(|Xij | − 1) + ν

√
|Xij | − 1.

Proof of Claim 1.
If not there exists x ∈ Xij with degHij

(x) < 1
2
(|Xij | − 1) + ν

√
|Xij | − 1.

Let X ′ij = Xij \ {x}. Since D(Xij ) > 0,

Dν(X ′ij ) = e(X ′ij )−
1
2

(|Xij
|−1

2

)
− ν(|Xij | − 1)3/2

> e(Xij )− 1
2

(|Xij
|

2

)
− ν
√
|Xij | − 1− ν(|Xij | − 1)3/2

> e(Xij )− 1
2

(|Xij
|

2

)
− ν|Xij |

3/2 = Dν(Xij )

(since n3/2 >
√
n − 1 + (n − 1)3/2), contradicting maximality of Dν(Xij ).


