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o and w

A clique has all possible edges and a stable set has none.
The clique number w is the size of a largest clique.

The stability number « is the size of a largest stable set.
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Consider sets “close” to cliques or stable sets, tuned by a parameter! ¢ € [0,1].

"Note (or foreshadowing): for now consider c as fixed.
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of minimum degree > ¢(¢ — 1) is called a c-clique;
of maximum degree < (1 —¢)(¢—1) is called a c-stable set.

we is size of a largest c-clique. ac is size of a largest c-stable set.

How does the behaviour change as we tune ¢ between 0 and 17

"Note (or foreshadowing): for now consider c as fixed.
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Ramsey numbers?

Ramsey (1930) proved the existence of
R(k) = min{n : |V(G)| = n = max{a(G),w(G)} = k}.

Theorem (Spencer 1977, Conlon 2009)

V20 < R(K) < 400 a5 k S 0.

*Pictures borrowed from the cover of Soifer (2009) and homepages.
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Magnification

What happens at ¢ =1/27
From when is it superlinear in k? ... superpolynomial? ...exponential?

A vertex subset with ¢ vertices
of minimum degree > ¢(¢ — 1) is called a c-clique;

of maximum degree < (1 —¢)(¢{ —1) is called a c-stable set.

Consider ¢ = 1/2 + & where € = ¢(¢) is a real function tending to 0 as £ — oc.
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RZ(k) = min{n : |V(G)| = n= max{a.(G),w:(G)} = k}.
Theorem (Erd8s and Pach 1983)
R /5 (k) = O(K?). (i 1/2(k) = Q(klog k/ log log k) by previous.)

Problem (Erdés and Pach 1983)
“We suspect that the order of magnitude of Ry ,(k) is in fact close to klog k.”

Theorem (Kang, Long, Patel and Regts 2016+)
R{/»(k) = O(klog k).



Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Cklog k vertices there is a set of k vertices
inducing minimum degree k/2 + Q(\/k/ log k) in the graph or complement.



Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Cklog k vertices there is a set of k vertices
inducing minimum degree k/2 + Q(\/k/ log k) in the graph or complement.

Call a subset of ¢ vertices excessive if it induces minimum degree
> 1(¢ — 1) + ¢ for some excess ¢ > 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.



Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Cklog k vertices there is a set of k vertices
inducing minimum degree k/2 + Q(\/k/ log k) in the graph or complement.

Call a subset of ¢ vertices excessive if it induces minimum degree
> 1(¢ — 1) + ¢ for some excess ¢ > 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A *variable” quasi-Ramsey bound to produce a set of £ > 2k vertices that
is Q(+v/£) excessive either in the graph or complement.



Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Cklog k vertices there is a set of k vertices
inducing minimum degree k/2 + Q(\/k/ log k) in the graph or complement.

Call a subset of ¢ vertices excessive if it induces minimum degree
> 1(¢ — 1) + ¢ for some excess ¢ > 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A *variable” quasi-Ramsey bound to produce a set of £ > 2k vertices that
is Q(+v/£) excessive either in the graph or complement.

2. Reduction from a Q(v//) excessive set of Dk vertices, D > 1 fixed, to an
excessive set of exactly k vertices.



Proof outline

Theorem (Kang, Long, Patel and Regts 2016+)

For some C > 0, in any graph on Cklog k vertices there is a set of k vertices
inducing minimum degree k/2 + Q(\/k/ log k) in the graph or complement.

Call a subset of ¢ vertices excessive if it induces minimum degree
> 1(¢ — 1) + ¢ for some excess ¢ > 0.

Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A *variable” quasi-Ramsey bound to produce a set of £ > 2k vertices that
is Q(+v/£) excessive either in the graph or complement.

2. Reduction from a Q(v//) excessive set of Dk vertices, D > 1 fixed, to an
excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.
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Proof ingredient 1: graph discrepancy

Lemma (1)
For fixed v > 0, let c =1/2 +v/+/€ — 1. Then R.(k) = O(klogk).

<~

For some C > 0, in any graph on Cklog k vertices there is a set of { > k
vertices inducing minimum degree £/2 + Q(\/E) in the graph or complement.

Note: This improves on the Erdés and Pach bound Ry (k) = O(k log k).

Theorem (Erdés and Spencer 1974)
For n large and }log,n < t < n any graph G = (V, E) with |V| = n has

e(S )<5|>‘ Q (¢ \/log(n/1)) .

scv \5|<t
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Take X' C [¢ — 1] arbitrary with |X’| = k. By the above, for all i € X’
IN() N X'| > k/2 + vk/VE— 15V = k/2 + (v/vV/D — 15/ D)Vk. O
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Lemma (3)

Suppose X is of size £ = {1 + ¢, inducing minimum degree > § = 61 + 2.
Then there exists X1, Xo C X with |Xi| = £1 and |Xz| = {2 such that either
X1 induces minimum degree > §1 or X, induces minimum degree > 6

Proof.

Start with X1, X> an arbitrary partition of X with [X1| = ¢1 and | Xz| = £2.

If a € X1 has degy (a) < 61— 1and b € X, has degy, (b) < d2 — 1, swap them.
The number of edges in X; increases by at least

degy, (b) — degy (a) —1 >0 —degy,(b) —degy (a) —1 >0 -6 - +1=1

(where the —1 accounts for the possibility of the edge ab).
At some point we cannot find two vertices to swap, but then we are done. [J
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Beginning with Ck log k vertices, here are the rough proof ingredients.

1. A “variable” quasi-Ramsey bound to produce a set of £ > 2k vertices that
is Q(+v/?) excessive either in the graph or complement.

2. Reduction from a Q(v/¢) excessive set of Dk vertices, D > 1 fixed, to an
excessive set of exactly k vertices.

3. Partition of an excessive set into two parts of prescribed size at least one
of which is excessive.

First apply 1. If £ £ 0 (mod k), then apply 3 to lop off a possibly excessive
piece of size Dk, with Dk = £ (mod k) and D > 1 fixed, then possibly apply 2.
Otherwise apply 3 repeatedly to partition an excessive set of size =0 (mod k)
into roughly equal parts of size =0 (mod k), one excessive.
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Summary and open questions

For the quasi-Ramsey numbers
RZ(k) = min{n : |V(G)| = n= max{a.(G),w:(G)} = k} and
Rc(k) =min{n : |V(G)| = n = max{a(G),w:(G)} > k},
e identified a sharp transition for R.(k) at ¢ = 1/2 4 ©(4/log¢/¢), and
e solved a problem of Erdés and Pach by showing Ry (k) = O(klog k).

Open questions:

e The remaining log log k factor for Ry /,(k)?

e How strict could the inequality R.(k) < RZ (k) be?

For fixed ¢ € (1/2,1), is limsup,_, ., k™' log(R(k)/Rc(k)) > 0?
Hypergraphs? (See next page.)
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Theorem (Erd8s and Pach 1983, cf. Kang, Pach, Patel and Regts 2015)
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i.e. there is some graph on Cklogk/loglog k vertices such that any
set of £ > k vertices is excessive in neither the graph nor complement.



Heterogeneously weighted random graph

Theorem (Erd8s and Pach 1983, cf. Kang, Pach, Patel and Regts 2015)
Ry/2(k) = Q(klog k/ log log k).

i.e. there is some graph on Cklogk/loglog k vertices such that any
set of £ > k vertices is excessive in neither the graph nor complement.

Let z = Clog k for some suitably chosen fixed ¢ > 0.
log log k

Let V:Vlumquwhere\V1|:"':|VZ|:(1_%) «

Generate E randomly for any v; € V; and v; € V, by

1_(22)~H)-1 Gf i+
Plviv € E) = {% + Ezz;*‘“ if i =
2 =J

There is a chance the graph G = (V, E) has the desired properties.



Proof ingredient 2: set system discrepancy

Theorem (Spencer 1985, Lovéasz, Spencer and Vesztergombi 1986)

For Ai,..., A, C [n] and p € [0, 1], there exists Y C [n] such that for all i
140 Y| = plAi| < 6y

For H ={A1,..., A} C 2l define the discrepancy of H as
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Spencer showed that disc(H) < 6+/n for any such .
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Theorem (Spencer 1985, Lovéasz, Spencer and Vesztergombi 1986)

For Ai,..., A, C [n] and p € [0, 1], there exists Y C [n] such that for all i
140 Y| = plAi| < 6y

For H ={A1,..., A} C 2l define the discrepancy of H as
disc(H) := min, c(_q 13v Maxsesc D e X(1)-
Spencer showed that disc(H) < 6+/n for any such .

If A is the incidence matrix of I, i.e. A is the n X n matrix given by

1 ifjeA,
Aj = .
0 otherwise.

then the linear discrepancy is

lindisc(H) := cg?o?ﬁv xe%l,T}VHA(X —0)|lco-

Via Lovész, Spencer and Vesztergombi, lindisc(3) < 6+/n for any such K.

Apply this result with ¢ the all p vector.
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Outline proof of Lemma (1).
Let G = (V, E) be a graph on Cklog k vertices and define for any X C V
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Let Vo = V. Form Vi1 in step i + 1 by letting Xi C V; maximise D, (X;) and
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Claim 1 implies that Xj; is the desired subset.




Claim 1 For any j € [m], H; has minimum degree > 3(|X;;| — 1) +v/|X;| — 1.
Proof of Claim 1.
If not there exists x € X;; with degy,. (x) < 3(1X;| — 1) 4+ v, /|X;| — 1.
J
Let Xi = X; \ {x}. Since D(X;) >0,

X;.|—1
D.(X]) = e(X}) — 1(Pi7h) —w(1x;| - 1)*/2

1
2
X,
> e(X;) — 3(51) =y J1X] — 1= w(1X;| — 1)*2

X;.
> e(X;) — 3(%9) — X [% = Du(X;)

(since n*/2 > \/n— 1+ (n—1)*?), contradicting maximality of D, (X;). O



