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Introduction

Problem definition
Let G = (V, E) be a (simple) graph.

The distance between two edges in G is the number of vertices in a
shortest path between them, i.e. distance in the line graph L(G) of G.
(So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within
distance t in G.
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Introduction

Problem definition

A distance-t edge-colouring is an assignment of colours to edges of G such
that each colour class induces a distance-t matching.

The distance-t chromatic index x;(G) of G is the least integer k such that
there exists a distance-t edge-colouring of G using k colours.

Remarks:
e x\}(G) is the chromatic index x'(G) of G.

e A distance-2 matching is an induced matching and so x5(G) is the
strong chromatic index sx/(G) of G.

o \4(G) = x((L(G))?) where (L(G)) is the t'h power of the line graph.
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Introduction

Problem definition

A proposed practical motivation for x}:

Timeslot assignment (TDMA) for wireless sensor networks.

@ Each matching in the colouring corresponds to a set of simultaneous
pairwise transmissions among sensors in a particular timeslot.

@ The distance requirement models the range of network interference
that results from transmission between two sensors.
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Introduction

Scope of current work

Two main settings (with A large):

Q@ X:(G) for graphs G of maximum degree A:

YA(A) == max{x,(G) : A(G) < A}.
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Introduction

Scope of current work

Two main settings (with A large):

Q@ X:(G) for graphs G of maximum degree A:
Xt(A) == max{x;(G) : A(G) < A}.
@ x;(G) when G is also prescribed to have girth at least g:
X:(A, g) = max{x;(G) : A(G) < A, girth(G) > g};

particularly, when does x;(A, g) becomes o(x;(A)) in terms of g?
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Introduction

Background

t=1

Vizing's Theorem implies that xj(A) = A+ 1
and xj(A, g) > A for all g.
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Introduction

Background

t=2.

Erdés and Ne3etfil proposed the problem of determining x5(A) in 1985.
They suggested as extremal the multiplied 5-cycle == x5(A) > 1.25A2.

Molloy and Reed (1997) showed x5(A) < 1.998A2 for large enough A.
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Introduction

Background

t=2.

Erdés and Ne3etfil proposed the problem of determining x5(A) in 1985.
They suggested as extremal the multiplied 5-cycle == x5(A) > 1.25A2.

Molloy and Reed (1997) showed x5(A) < 1.998A2 for large enough A.
The complete bipartite graphs Kaa = x5(A,4) > A2,
NB: Faudree, Gyarfas, Schelp, Tuza (1990) conjectured Y5(A,4) = A

Mahdian (2000) showed x5(A,5) = O(A?/log A) (and in fact the
stronger result for all Cy-free graphs).
A probabilistic construction shows x5(4, g) = Q(A2/log A) for all g > 5.
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Introduction

A table for x,(A) and x:(A, g) (A large)

t \ g || 3 (lower/upper) 4 ‘ 5 ‘
1 A+1 o(A)
2 1.25A% | 1.998A% | ©(A?) | ©(A%/log A)
3 ? ? ? ? ?
? ? ? ? ?
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Bounded degree

A distance-t version of the Erdds-Nesetfil problem
Consider the following upper bound:

X:(8) <1+ A((L(6)) <1 +2Z J < 2A°,

Problem
For each t > 3, is limsupa_,o, X:(A)/A? less than 2 — ¢ for some ¢ > 07 J

NB: Molloy and Reed solved the t = 2 case with £ > 0.002.

We next show limsupa_,., X:(A)/A! is positive for every fixed t > 3.
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Bounded degree

Two constructive lower bounds

Proposition (K and Manggala)

For arbitrarily large A, there exists a bipartite, A-regular graph of girth 6
such that x5(G) = A3 — A% + A.

t = 3, A = 3: point-line incidence graph of the Fano plane.
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Bounded degree

Two constructive lower bounds

Proposition (K and Manggala)

Fix t > 2. For arbitrarily large A, there exists a A-regular graph such that
X:(G) > At/ (2(t —1)t1).

t=4, A=6.
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Bounded degree

A table for x,(A) and x:(A, g) (A large)

t \ g 3 (lower/upper) 4 ‘ 5 ‘ 6 ‘
1 A+1 o(A)
2 1.25A% [ 1.998A% | ©(A?) | ©(A?/log A)
3 A3 2A3 o(A3) ?
4 0.0185A% 2A* 7 ? 7
5 0.00195A° 2A° ?
: : ? 712 ?
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Bounded degree

Main theorem |

Theorem (Kaiser and K)
For each t > 2, 2 — limsupa_,o, X:(A)/A! > 0.00008. J

l.e. the t-E-N problem affirmed with a uniform choice of ¢ for all t.
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Bounded degree

Main theorem I: proof idea

Theorem (Kaiser and K)
For each t > 2, 2 — limsupa_,o, X:(A)/A" > 0.00008. J

This relies on colouring graphs with sparse neighbourhood counts.
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Bounded degree

Main theorem I: proof idea

Theorem (Kaiser and K)
For each t > 2, 2 — limsupa_,o, X:(A)/A" > 0.00008. }

This relies on colouring graphs with sparse neighbourhood counts.
Lemma (Molloy and Reed (1997))

Let §,& > 0 be such that € < 2(1 i=e)® e and let Ay be large enough.
IfG = (V, E) is a graph with maximum degree at most A > Ay such that
at most (1 —6)(%) edges span each N(¥), v € V, then x(G) < (1 —¢)A.

Thus the t-E-N problem can be resolved by showing neighbourhood counts
in (L(G))t with A(G) < A are at most (1 — §) - 2A2¢.
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Bounded degree

Main theorem I: proof idea

Assume G = (V, E) is A-regular. Let e € E be arbitrary.
Set N := NL(G):(e).

Set §:= E(L(G)![N]) and, for contradiction, assume |5| > (1 — §) - 2A2¢.

R. J. Kang (CWI) Distance chromatic index Graphs & Matroids 2012 15 / 22



Bounded degree

Main theorem I: proof idea

Assume G = (V, E) is A-regular. Let e € E be arbitrary.
Set N := NL(G):(e).

Set §:= E(L(G)![N]) and, for contradiction, assume |5| > (1 — §) - 2A2¢.
Consider

7(e, ) := max{0, (#ef-walks with < t + 1 edges) — 1}.

Esc := # walks with < t + 1 edges, first edge in N, last edge in E — N.
Claim
Deren (e f) + Esc < 45 - A%, J

= = = = =
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Bounded degree

Main theorem I: proof idea

Claim
Ze,feN T(e, f) + Esc < 40 - A2t J
3
LR
Set

A* ::AIU.”UAt—IUBt,
o¢(u, v) := #uv-walks with < t edges and first edge in N.
Claim
ZU,veA* or(u,v) > a- A2t-1 J
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Bounded degree

Main theorem I: t = 3

For t = 3, we can extend the argument of Molloy and Reed for t = 2,
which applies Jensen's Inequality twice for a lower bound on the number of

C4S in N(L(G))3(e), Vee V.

Theorem (Kaiser and K)
2 — limsupa_,qo X5(A)/A3 > 0.0002. J
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Bounded degree

A table for x,(A) (A large)

t lower ‘ upper

1 A+1

2 1.25A% 1.998A2
3 A3 1.9998A3
4 || 0.0185A* | 1.99992A%
5 | 0.00195A° | 1.99992A°

Remarks:

@ The general proof gives an alternative solution to the E-N problem,
albeit with a much weaker constant.

@ It remains possible that limsupa_, .. X:(A)/Af = o(1) as t — oo.
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Large girth

Main theorem Il

Theorem (Kaiser and K)

For t > 2, all graphs G of girth at least 2t + 1 and maximum degree at
most A have x;(G) = O(A?/log A).
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Large girth

Main theorem Il

Theorem (Kaiser and K)

For t > 2, all graphs G of girth at least 2t + 1 and maximum degree at
most A have x;(G) = O(A?/log A).

By a probabilistic construction, this bound is tight up to a constant factor
dependent upon t*.

Proposition (Kaiser and K)

There is a function f = f(A, t) = (1 + o(1))At/(tlog A) (as A — o0)
such that, for every g > 3 and every A, there is a graph G of girth at least
g and maximum degree at most A with x,(G) > f(A,t).

LIf girth at least 3t — 2, the upper bound can be strengthened:ito O(A'/(tlogA)):
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Large girth

A table for \}(A, g) (A large)

t\g| 3 [4]5]ef[7]s]o]10]u]
1 o(A)
2 0(A?) ‘ O(A?%/log A)
3 o(A?) \ O(A3/log A)
4 o(A%Y) ? ‘ O(A*/log A)
5 o(A>) ? | ©(A%/log A)
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Conclusion

Open problems

@ s there some & > 0 such that limsupa_,., X:(A)/A" > ¢ for all t?
@ Is it true that limsuppa_,oo X:(A,2t)/At > 0 for all t > 47
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Thank you!
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