The distance- t chromatic index of graphs

Ross J. Kang
Centrum Wiskunde \& Informatica / Utrecht

Maastricht, 8/2012
Workshop on Graphs and Matroids

Problem definition

Let $G=(V, E)$ be a (simple) graph.
The distance between two edges in G is the number of vertices in a shortest path between them, i.e. distance in the line graph $L(G)$ of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

Problem definition

Let $G=(V, E)$ be a (simple) graph.
The distance between two edges in G is the number of vertices in a shortest path between them, i.e. distance in the line graph $L(G)$ of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

Problem definition

A distance-t edge-colouring is an assignment of colours to edges of G such that each colour class induces a distance- t matching.

The distance- t chromatic index $\chi_{t}^{\prime}(G)$ of G is the least integer k such that there exists a distance- t edge-colouring of G using k colours.

Remarks:

- $\chi_{1}^{\prime}(G)$ is the chromatic index $\chi^{\prime}(G)$ of G.
- A distance-2 matching is an induced matching and so $\chi_{2}^{\prime}(G)$ is the strong chromatic index $s \chi^{\prime}(G)$ of G.
- $\chi_{t}^{\prime}(G)=\chi\left((L(G))^{t}\right)$ where $(L(G))^{t}$ is the $t^{\text {th }}$ power of the line graph.

Problem definition

A proposed practical motivation for χ_{t}^{\prime} :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Problem definition

A proposed practical motivation for χ_{t}^{\prime} :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Problem definition

A proposed practical motivation for χ_{t}^{\prime} :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Problem definition

A proposed practical motivation for χ_{t}^{\prime} :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Problem definition

A proposed practical motivation for χ_{t}^{\prime} :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Scope of current work

Two main settings (with Δ large):
(1) $\chi_{t}^{\prime}(G)$ for graphs G of maximum degree Δ :

$$
\chi_{t}^{\prime}(\Delta):=\max \left\{\chi_{t}^{\prime}(G): \Delta(G) \leq \Delta\right\} .
$$

Scope of current work

Two main settings (with Δ large):
(1) $\chi_{t}^{\prime}(G)$ for graphs G of maximum degree Δ :

$$
\chi_{t}^{\prime}(\Delta):=\max \left\{\chi_{t}^{\prime}(G): \Delta(G) \leq \Delta\right\} .
$$

(2) $\chi_{t}^{\prime}(G)$ when G is also prescribed to have girth at least g :

$$
\chi_{t}^{\prime}(\Delta, g):=\max \left\{\chi_{t}^{\prime}(G): \Delta(G) \leq \Delta, \operatorname{girth}(G) \geq g\right\} ;
$$

particularly, when does $\chi_{t}^{\prime}(\Delta, g)$ becomes $o\left(\chi_{t}^{\prime}(\Delta)\right)$ in terms of g ?

Background

$t=1$.
Vizing's Theorem implies that $\chi_{1}^{\prime}(\Delta)=\Delta+1$ and $\chi_{1}^{\prime}(\Delta, g) \geq \Delta$ for all g.

Background

$t=2$.
Erdős and Nešetril proposed the problem of determining $\chi_{2}^{\prime}(\Delta)$ in 1985. They suggested as extremal the multiplied 5 -cycle $\Longrightarrow \chi_{2}^{\prime}(\Delta) \geq 1.25 \Delta^{2}$. Molloy and Reed (1997) showed $\chi_{2}^{\prime}(\Delta) \leq 1.998 \Delta^{2}$ for large enough Δ.

Background

$t=2$.
Erdős and Nešetril proposed the problem of determining $\chi_{2}^{\prime}(\Delta)$ in 1985. They suggested as extremal the multiplied 5 -cycle $\Longrightarrow \chi_{2}^{\prime}(\Delta) \geq 1.25 \Delta^{2}$. Molloy and Reed (1997) showed $\chi_{2}^{\prime}(\Delta) \leq 1.998 \Delta^{2}$ for large enough Δ.

The complete bipartite graphs $K_{\Delta, \Delta} \Longrightarrow \chi_{2}^{\prime}(\Delta, 4) \geq \Delta^{2}$. NB: Faudree, Gyárfás, Schelp, Tuza (1990) conjectured $\chi_{2}^{\prime}(\Delta, 4)=\Delta^{2}$. Mahdian (2000) showed $\chi_{2}^{\prime}(\Delta, 5)=O\left(\Delta^{2} / \log \Delta\right)$ (and in fact the stronger result for all C_{4}-free graphs).
A probabilistic construction shows $\chi_{2}^{\prime}(\Delta, g)=\Omega\left(\Delta^{2} / \log \Delta\right)$ for all $g \geq 5$.

A table for $\chi_{t}^{\prime}(\Delta)$ and $\chi_{t}^{\prime}(\Delta, g)(\Delta$ large $)$

$t \backslash g$	3 (lower/upper)	4	5	\cdots	
1	$\Delta+1$	$\Theta(\Delta)$			
2	$1.25 \Delta^{2}$	$1.998 \Delta^{2}$	$\Theta\left(\Delta^{2}\right)$	$\Theta\left(\Delta^{2} / \log \Delta\right)$	
3	$?$	$?$	$?$	$?$	$?$
\vdots	$?$	$?$	$?$	$?$	$?$

A distance- t version of the Erdős-Nešetřil problem

Consider the following upper bound:

$$
\chi_{t}^{\prime}(\Delta) \leq 1+\Delta\left((L(G))^{t}\right) \leq 1+2 \sum_{j=1}^{t}(\Delta-1)^{j}<2 \Delta^{t}
$$

Problem

For each $t \geq 3$, is $\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t}$ less than $2-\varepsilon$ for some $\varepsilon>0$?

NB: Molloy and Reed solved the $t=2$ case with $\varepsilon>0.002$.
We next show $\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t}$ is positive for every fixed $t \geq 3$.

Two constructive lower bounds

Proposition (K and Manggala)

For arbitrarily large Δ, there exists a bipartite, Δ-regular graph of girth 6 such that $\chi_{3}^{\prime}(G)=\Delta^{3}-\Delta^{2}+\Delta$.
$t=3, \Delta=3$: point-line incidence graph of the Fano plane.

Two constructive lower bounds

Proposition (K and Manggala)

Fix $t \geq 2$. For arbitrarily large Δ, there exists a Δ-regular graph such that $\chi_{t}^{\prime}(G)>\Delta^{t} /\left(2(t-1)^{t-1}\right)$.
$t=4, \Delta=6$.

A table for $\chi_{t}^{\prime}(\Delta)$ and $\chi_{t}^{\prime}(\Delta, g)(\Delta$ large $)$

$t \backslash g$	3 (lower/upper)		4	5	6	\cdots
1	$\Delta+1$		$\Theta(\Delta)$			
2	$1.25 \Delta^{2}$	$1.998 \Delta^{2}$	$\Theta\left(\Delta^{2}\right)$			$\Theta\left(\Delta^{2} / \log \Delta\right)$
3	Δ^{3}	$2 \Delta^{3}$	$\Theta\left(\Delta^{3}\right)$			
4	$0.0185 \Delta^{4}$	$2 \Delta^{4}$	$?$	$?$	$?$	$?$
5	$0.00195 \Delta^{5}$	$2 \Delta^{5}$	$?$	$?$	$?$	$?$
\vdots	\vdots	\vdots	$?$	$?$	$?$	$?$

Main theorem I

Theorem (Kaiser and K)
For each $t \geq 2,2-\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t} \geq 0.00008$.
I.e. the t-E-N problem affirmed with a uniform choice of ε for all t.

Main theorem I: proof idea

Theorem (Kaiser and K)
For each $t \geq 2,2-\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t} \geq 0.00008$.
This relies on colouring graphs with sparse neighbourhood counts.

Main theorem I: proof idea

Theorem (Kaiser and K)
For each $t \geq 2,2-\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t} \geq 0.00008$.
This relies on colouring graphs with sparse neighbourhood counts.
Lemma (Molloy and Reed (1997))
Let $\delta, \varepsilon>0$ be such that $\varepsilon<\frac{\delta}{2(1-\varepsilon)} e^{-\frac{3}{1-\varepsilon}}$ and let $\hat{\Delta}_{0}$ be large enough. If $\hat{G}=(\hat{V}, \hat{E})$ is a graph with maximum degree at most $\hat{\Delta} \geq \hat{\Delta}_{0}$ such that at most $(1-\delta)\binom{\hat{\Delta}}{2}$ edges span each $N(\hat{v}), \hat{v} \in \hat{V}$, then $\chi(\hat{G}) \leq(1-\varepsilon) \hat{\Delta}$.

Thus the t-E-N problem can be resolved by showing neighbourhood counts in $(L(G))^{t}$ with $\Delta(G) \leq \Delta$ are at most $(1-\delta) \cdot 2 \Delta^{2 t}$.

Main theorem I: proof idea

Assume $G=(V, E)$ is Δ-regular. Let $e \in E$ be arbitrary. Set $\hat{N}:=N_{L(G)^{t}}(e)$.

Set $\hat{S}:=E\left(L(G)^{t}[\hat{N}]\right)$ and, for contradiction, assume $|\hat{S}|>(1-\delta) \cdot 2 \Delta^{2 t}$.

Main theorem I: proof idea

Assume $G=(V, E)$ is Δ-regular. Let $e \in E$ be arbitrary. Set $\hat{N}:=N_{L(G)^{t}}(e)$.

Set $\hat{S}:=E\left(L(G)^{t}[\hat{N}]\right)$ and, for contradiction, assume $|\hat{S}|>(1-\delta) \cdot 2 \Delta^{2 t}$.
Consider
$\tau(e, f):=\max \{0,(\# e f$-walks with $\leq t+1$ edges $)-1\}$.
Esc : $=\#$ walks with $\leq t+1$ edges, first edge in \hat{N}, last edge in $E-\hat{N}$.
Claim
$\sum_{e, f \in \hat{N}} \tau(e, f)+\mathrm{Esc}<4 \delta \cdot \Delta^{2 t}$.

Main theorem I: proof idea

Claim
$\sum_{e, f \in \hat{N}} \tau(e, f)+\mathrm{Esc}<4 \delta \cdot \Delta^{2 t}$.

Set

$$
A^{*}:=A_{1} \cup \cdots \cup A_{t-1} \cup B_{t}
$$

$$
\sigma_{t}(u, v):=\# u v \text {-walks with } \leq t \text { edges and first edge in } \hat{N} .
$$

Claim
$\sum_{u, v \in A^{*}} \sigma_{t}(u, v)>\alpha \cdot \Delta^{2 t-1}$.

Main theorem I: $t=3$

For $t=3$, we can extend the argument of Molloy and Reed for $t=2$, which applies Jensen's Inequality twice for a lower bound on the number of $C_{4} \mathrm{~s}$ in $N_{(L(G))^{3}}(e), \forall e \in V$.

Theorem (Kaiser and K)
$2-\lim \sup _{\Delta \rightarrow \infty} \chi_{3}^{\prime}(\Delta) / \Delta^{3} \geq 0.0002$.

A table for $\chi_{t}^{\prime}(\Delta)(\Delta$ large $)$

t	lower	upper
1	$\Delta+1$	
2	$1.25 \Delta^{2}$	$1.998 \Delta^{2}$
3	Δ^{3}	$1.9998 \Delta^{3}$
4	$0.0185 \Delta^{4}$	$1.99992 \Delta^{4}$
5	$0.00195 \Delta^{5}$	$1.99992 \Delta^{5}$
\vdots	\vdots	\vdots

Remarks:

- The general proof gives an alternative solution to the E-N problem, albeit with a much weaker constant.

Main theorem II

Theorem (Kaiser and K)
For $t \geq 2$, all graphs G of girth at least $2 t+1$ and maximum degree at most Δ have $\chi_{t}^{\prime}(G)=O\left(\Delta^{t} / \log \Delta\right)$.

Main theorem II

Theorem (Kaiser and K)
For $t \geq 2$, all graphs G of girth at least $2 t+1$ and maximum degree at most Δ have $\chi_{t}^{\prime}(G)=O\left(\Delta^{t} / \log \Delta\right)$.

By a probabilistic construction, this bound is tight up to a constant factor dependent upon t^{1}.

Proposition (Kaiser and K)

There is a function $f=f(\Delta, t)=(1+o(1)) \Delta^{t} /(t \log \Delta)($ as $\Delta \rightarrow \infty)$ such that, for every $g \geq 3$ and every Δ, there is a graph G of girth at least g and maximum degree at most Δ with $\chi_{t}^{\prime}(G) \geq f(\Delta, t)$.
${ }^{1}$ If girth at least $3 t-2$, the upper bound can be strengthened to $O\left(\Delta^{t} /(t \log \Delta)\right)$.

A table for $\chi_{t}^{\prime}(\Delta, g)(\Delta$ large $)$

$t \backslash g$	3	4	6	7	8	9	10	11	\ldots
1	$\Theta(\Delta)$								
2	$\theta\left(\Delta^{2}\right)$		$\Theta\left(\Delta^{2} / \log \Delta\right)$						
3	$\Theta\left(\Delta^{3}\right)$				$\theta\left(\Delta^{3} / \log \Delta\right)$				
4	$\theta\left(\Delta^{4}\right)$?				$\Theta\left(\Delta^{4} / \log \Delta\right)$		
5	$\theta\left(\Delta^{5}\right)$?				$\Theta\left(\Delta^{5} / \log \Delta\right)$		
	:					:			

Open problems

(1) Is there some $\varepsilon>0$ such that $\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta) / \Delta^{t} \geq \varepsilon$ for all t ?
(2) Is it true that $\lim \sup _{\Delta \rightarrow \infty} \chi_{t}^{\prime}(\Delta, 2 t) / \Delta^{t}>0$ for all $t \geq 4$?

Thank you!

