The distance-*t* chromatic index of graphs

Ross J. Kang

Centrum Wiskunde & Informatica / Utrecht

Maastricht, 8/2012 Workshop on Graphs and Matroids

R. J. Kang (CWI)

Let G = (V, E) be a (simple) graph.

The distance between two edges in G is the number of *vertices* in a shortest path between them, i.e. distance in the line graph L(G) of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

Let G = (V, E) be a (simple) graph.

The distance between two edges in G is the number of *vertices* in a shortest path between them, i.e. distance in the line graph L(G) of G. (So adjacent edges have distance 1.)

A distance-t matching of G is a set of edges no two of which are within distance t in G.

A distance-t edge-colouring is an assignment of colours to edges of G such that each colour class induces a distance-t matching.

The distance-t chromatic index $\chi'_t(G)$ of G is the least integer k such that there exists a distance-t edge-colouring of G using k colours.

Remarks:

- $\chi'_1(G)$ is the chromatic index $\chi'(G)$ of G.
- A distance-2 matching is an induced matching and so χ'₂(G) is the strong chromatic index sχ'(G) of G.
- $\chi'_t(G) = \chi((L(G))^t)$ where $(L(G))^t$ is the t^{th} power of the line graph.

글 > - + 글 >

A proposed practical motivation for χ'_t :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

A proposed practical motivation for χ'_t :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

A proposed practical motivation for χ'_t :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

A proposed practical motivation for χ'_t :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

A proposed practical motivation for χ'_t :

Timeslot assignment (TDMA) for wireless sensor networks.

- Each matching in the colouring corresponds to a set of simultaneous pairwise transmissions among sensors in a particular timeslot.
- The distance requirement models the range of network interference that results from transmission between two sensors.

Scope of current work

Two main settings (with Δ large):

• $\chi'_t(G)$ for graphs G of maximum degree Δ :

$$\chi_t'(\Delta) := \max\{\chi_t'(\mathcal{G}) : \Delta(\mathcal{G}) \leq \Delta\}.$$

Scope of current work

Two main settings (with Δ large):

• $\chi'_t(G)$ for graphs G of maximum degree Δ :

$$\chi'_t(\Delta) := \max\{\chi'_t(G) : \Delta(G) \le \Delta\}.$$

2 $\chi'_t(G)$ when G is also prescribed to have girth at least g:

$$\chi'_t(\Delta, g) := \max\{\chi'_t(G) : \Delta(G) \le \Delta, \operatorname{girth}(G) \ge g\};$$

particularly, when does $\chi'_t(\Delta, g)$ becomes $o(\chi'_t(\Delta))$ in terms of g?

Large girth

Background

t = 1.

Vizing's Theorem implies that $\chi'_1(\Delta) = \Delta + 1$ and $\chi'_1(\Delta, g) \ge \Delta$ for all g.

Background

t = 2.

Erdős and Nešetřil proposed the problem of determining $\chi'_2(\Delta)$ in 1985. They suggested as extremal the multiplied 5-cycle $\implies \chi'_2(\Delta) \ge 1.25\Delta^2$. Molloy and Reed (1997) showed $\chi'_2(\Delta) \le 1.998\Delta^2$ for large enough Δ .

Background

t = 2.

Erdős and Nešetřil proposed the problem of determining $\chi'_2(\Delta)$ in 1985. They suggested as extremal the multiplied 5-cycle $\implies \chi'_2(\Delta) \ge 1.25\Delta^2$. Molloy and Reed (1997) showed $\chi'_2(\Delta) \le 1.998\Delta^2$ for large enough Δ .

The complete bipartite graphs $K_{\Delta,\Delta} \implies \chi'_2(\Delta, 4) \ge \Delta^2$. NB: Faudree, Gyárfás, Schelp, Tuza (1990) conjectured $\chi'_2(\Delta, 4) = \Delta^2$. Mahdian (2000) showed $\chi'_2(\Delta, 5) = O(\Delta^2/\log \Delta)$ (and in fact the stronger result for all C_4 -free graphs).

A probabilistic construction shows $\chi_2'(\Delta,g) = \Omega(\Delta^2/\log \Delta)$ for all $g \ge 5$.

7 / 22

A table for $\chi'_t(\Delta)$ and $\chi'_t(\Delta, g)$ (Δ large)

$t \setminus g$	3 (lowe	r/upper)	4	5		
1	Δ	$\Theta(\Delta)$				
2	$1.25\Delta^2$ $1.998\Delta^2$		$\Theta(\Delta^2)$	$\Theta(\Delta^2/\log \Delta)$		
3	?	?	?	?	?	
:	?	?	?	?	?	

э

A distance-t version of the Erdős-Nešetřil problem

Consider the following upper bound:

$$\chi_t'(\Delta) \leq 1 + \Delta((\mathcal{L}(\mathcal{G}))^t) \leq 1 + 2\sum_{j=1}^t (\Delta - 1)^j < 2\Delta^t.$$

Problem

For each $t \geq 3$, is $\limsup_{\Delta \to \infty} \chi'_t(\Delta) / \Delta^t$ less than $2 - \varepsilon$ for some $\varepsilon > 0$?

NB: Molloy and Reed solved the t = 2 case with $\varepsilon > 0.002$.

We next show $\limsup_{\Delta\to\infty} \chi'_t(\Delta)/\Delta^t$ is positive for every fixed $t \geq 3$.

Two constructive lower bounds

Proposition (K and Manggala)

For arbitrarily large Δ , there exists a bipartite, Δ -regular graph of girth 6 such that $\chi'_3(G) = \Delta^3 - \Delta^2 + \Delta$.

t = 3, $\Delta = 3$: point-line incidence graph of the Fano plane.

Two constructive lower bounds

Proposition (K and Manggala)

Fix $t \ge 2$. For arbitrarily large Δ , there exists a Δ -regular graph such that $\chi'_t(G) > \Delta^t / (2(t-1)^{t-1})$.

 $t = 4, \Delta = 6.$

A table for $\chi'_t(\Delta)$ and $\chi'_t(\Delta, g)$ (Δ large)

$t \setminus g$	3 (lower/	upper)	4	5	6		
1	$\Delta +$	1	$\Theta(\Delta)$				
2	$1.25\Delta^2$	1.998∆ ²	$\Theta(\Delta^2) = \Theta(\Delta^2)$			$\log \Delta$	
3	Δ^3	$2\Delta^3$	$\Theta(\Delta^3)$?	
4	$0.0185\Delta^{4}$	$2\Delta^4$?	?	?	?	
5	$0.00195\Delta^{5}$	$2\Delta^5$?	?	?	?	
			?	?	?	?	

э

3

Large girth

Main theorem I

Theorem (Kaiser and K) For each $t \ge 2$, $2 - \limsup_{\Delta \to \infty} \chi'_t(\Delta) / \Delta^t \ge 0.00008$.

I.e. the *t*-E-N problem affirmed with a *uniform* choice of ε for all *t*.

Theorem (Kaiser and K)

For each $t \ge 2$, $2 - \limsup_{\Delta \to \infty} \chi'_t(\Delta) / \Delta^t \ge 0.00008$.

This relies on colouring graphs with sparse neighbourhood counts.

Theorem (Kaiser and K)

For each $t \geq 2$, $2 - \limsup_{\Delta \to \infty} \chi'_t(\Delta) / \Delta^t \geq 0.00008$.

This relies on colouring graphs with sparse neighbourhood counts.

Lemma (Molloy and Reed (1997))

Let $\delta, \varepsilon > 0$ be such that $\varepsilon < \frac{\delta}{2(1-\varepsilon)}e^{-\frac{3}{1-\varepsilon}}$ and let $\hat{\Delta}_0$ be large enough. If $\hat{G} = (\hat{V}, \hat{E})$ is a graph with maximum degree at most $\hat{\Delta} \ge \hat{\Delta}_0$ such that at most $(1-\delta)(\frac{\hat{\Delta}}{2})$ edges span each $N(\hat{v}), \hat{v} \in \hat{V}$, then $\chi(\hat{G}) \le (1-\varepsilon)\hat{\Delta}$.

Thus the *t*-E-N problem can be resolved by showing neighbourhood counts in $(L(G))^t$ with $\Delta(G) \leq \Delta$ are at most $(1 - \delta) \cdot 2\Delta^{2t}$.

Assume G = (V, E) is Δ -regular. Let $e \in E$ be arbitrary. Set $\hat{N} := N_{L(G)^t}(e)$.

Set $\hat{S} := E(L(G)^t[\hat{N}])$ and, for contradiction, assume $|\hat{S}| > (1 - \delta) \cdot 2\Delta^{2t}$.

Assume G = (V, E) is Δ -regular. Let $e \in E$ be arbitrary. Set $\hat{N} := N_{L(G)^t}(e)$.

Set $\hat{S} := E(L(G)^t[\hat{N}])$ and, for contradiction, assume $|\hat{S}| > (1 - \delta) \cdot 2\Delta^{2t}$. Consider

$$\tau(e, f) := \max\{0, (\#ef\text{-walks with} \le t + 1 \text{ edges}) - 1\}.$$

Esc := # walks with $\le t + 1$ edges, first edge in \hat{N} , last edge in $E - \hat{N}$.

Claim

$$\sum_{e,f\in\hat{N}} au(e,f) + \mathsf{Esc} < 4\delta \cdot \Delta^{2t}.$$

Claim

$$\sum_{e,f\in\hat{N}}\tau(e,f)+\mathsf{Esc}<4\delta\cdot\Delta^{2t}.$$

Set

$$A^* := A_1 \cup \cdots \cup A_{t-1} \cup B_t$$
,
 $\sigma_t(u, v) := \#uv$ -walks with $\leq t$ edges and first edge in \hat{N} .

Claim

$$\sum_{u,v\in A^*} \sigma_t(u,v) > \alpha \cdot \Delta^{2t-1}.$$

< 🗗

Main theorem I: t = 3

For t = 3, we can extend the argument of Molloy and Reed for t = 2, which applies Jensen's Inequality twice for a lower bound on the number of C_4 s in $N_{(L(G))^3}(e)$, $\forall e \in V$.

Theorem (Kaiser and K)

$$2-\limsup_{\Delta o\infty}\chi_3'(\Delta)/\Delta^3\geq 0.0002$$
 .

A table for $\chi'_t(\Delta)$ (Δ large)

t	lower	upper				
1	$\Delta + 1$					
2	$1.25\Delta^{2}$	1.998∆ ²				
3	Δ^3	1.9998∆ ³				
4	$0.0185\Delta^4$	$1.99992\Delta^4$				
5	$0.00195\Delta^{5}$	1.99992∆ ⁵				
:	•					

Remarks:

- The general proof gives an alternative solution to the E-N problem, albeit with a much weaker constant.
- It remains possible that $\limsup_{\Delta \to \infty} \chi'_t(\Delta) / \Delta^t = o(1)$ as $t \to \infty$.

Main theorem II

Theorem (Kaiser and K)

For $t \ge 2$, all graphs G of girth at least 2t + 1 and maximum degree at most Δ have $\chi'_t(G) = O(\Delta^t / \log \Delta)$.

Large girth

Main theorem II

Theorem (Kaiser and K)

For $t \ge 2$, all graphs G of girth at least 2t + 1 and maximum degree at most Δ have $\chi'_t(G) = O(\Delta^t / \log \Delta)$.

By a probabilistic construction, this bound is tight up to a constant factor dependent upon t^1 .

Proposition (Kaiser and K)

There is a function $f = f(\Delta, t) = (1 + o(1))\Delta^t/(t \log \Delta)$ (as $\Delta \to \infty$) such that, for every $g \ge 3$ and every Δ , there is a graph G of girth at least g and maximum degree at most Δ with $\chi'_t(G) \ge f(\Delta, t)$.

¹If girth at least 3t - 2, the upper bound can be strengthened to $O(\Delta^t/(t \log \Delta)) \otimes A$

A table for $\chi'_t(\Delta, g)$ (Δ large)

$t \setminus g$	3	4	5	6	7	8	9	10	11	•••
1		$\Theta(\Delta)$								
2	$\Theta(\Delta^2)$)	$\Theta(\Delta^2/\log \Delta)$							
3	Θ	$(\Delta^3) \qquad \Theta(\Delta^3/\log \Delta)$					7)			
4	$\Theta(\Delta^4)$?				Θ($\Theta(\Delta^4/\log\Delta)$		
5	$\Theta(\Delta^5)$? $\Theta(\Delta^5/\log$				$\Delta^5/\log\Delta)$				
:	:						:			

Graphs & Matroids 2012

- 一司

20 / 22

3

Large girth

Open problems

Is there some ε > 0 such that lim sup_{Δ→∞} χ'_t(Δ)/Δ^t ≥ ε for all t?
Is it true that lim sup_{Δ→∞} χ'_t(Δ, 2t)/Δ^t > 0 for all t ≥ 4?

Thank you!

R. J. Kang (CWI)

Distance chromatic index

Graphs & Matroids 2012 22

2 / 22

æ