
University of Oxford

�

On improper colouring of unit disk graphs

Ross J. Kang

Lady Margaret Hall

Submitted for transfer of status to DPhil candidacy

January 2005
Department of Statistics, 1 South Parks Road, Oxford



I certify that this is my own work (except where otherwise indicated).

Candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Abstract

In this paper, we examine the problem of finding the defective chromatic
number of unit disk graphs.

In the introduction, we survey the current state of research into im-
proper colouring and into unit disk graphs. This is intended not only to pro-
vide background for the following chapter, but also to give a self-contained
overview of these two interesting fields of research.

Most of the original work is in the second chapter, where we show that
the unit disk improper colourability problem is NP-complete in nearly all
cases. This work is joint work with Jean-Sébastien Sereni (Université de
Nice and INRIA, France), a fellow doctoral student with whom I worked
while on an academic visit to INRIA in Sophia Antipolis.

The concluding chapter gives some open problems to consider, some
specific to improper colouring of unit disk graphs but others under the topic
of (colouring) unit disk graphs in general.
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Chapter 1

Introduction

In this paper, we examine the problem of finding the defective chromatic
number of unit disk graphs. This problem has not been considered before.
Most of the original work is in the second chapter, where we show that the
unit disk improper colourability problem is NP-complete in nearly all cases.
This work is joint work with Jean-Sébastien Sereni (Université de Nice and
INRIA, France), a fellow doctoral student with whom I worked while on an
academic visit to INRIA in Sophia Antipolis.

In this chapter, we survey the current state of knowledge regarding unit
disk graphs and the defective colouring problem. Here, we also give the
definitions and background that are required for the next chapter. Note
that throughout this paper we will assume rudimentary background in graph
theory and in complexity; we refer the reader to West [56] and Garey and
Johnson [15], respectively, for basic terminology.

1.1 Unit disk graphs

The study of unit disk graphs stems partly from applications in communica-
tion networks. The frequency assignment problem (otherwise known as radio
channel assignment or frequency allocation) is one of the most prominent
and well-studied of these applications. In frequency assignment, we have
a fixed configuration of radio transmitter towers. Each tower transmits a
radio signal (or set of signals) at a chosen frequency and has a transmission
area (usually a disk of given radius centred at the tower) in which receivers
can detect the tower’s signal. The signals of two towers might interfere if
their transmission areas intersect (usually if the distance between the towers
is too small). In this case, we must choose the transmitters frequencies that
are far enough apart in the radio spectrum; otherwise, receivers in the inter-
section area will not be able to distinguish between conflicting signals. Since
it is expensive to buy bandwidth, our aim is, under these requirements, to
allocate frequencies to the transmitter towers so as to minimise the over-
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CHAPTER 1. INTRODUCTION 4

all amount of frequency bandwidth used. For more thorough and general
treatment of the frequency assignment problem, consult [27].

The unit disk colourability problem is one of the simplest models for
radio channel assignment and it is also one of the most well-studied [19, 8,
33, 18, 32]. In this model, we assume that transmitter towers are scattered
in the plane, all towers have the same transmission range and operating
bandwidth, and there are no physical obstacles (such as skyscrapers, clouds
or geographical features) to omnidirectional transmission; hence, the trans-
mission areas are uniform disks centred at the towers. We assume that the
frequencies used are uniformly spaced, e.g. integers, and we must give two
towers different frequencies if their transmission areas intersect. We can de-
rive a graph from the intersection of the transmission areas (i.e. represent
each tower by a vertex and connect two vertices if the disks of the respective
towers intersect), and it is clear that, under this model, the channel assign-
ment problem is simply to find a proper colouring of the resulting graph
that uses the least number of colours.

The graph we derive above is just a unit disk graph, but we now give
an alternative, more precise definition. We are given an arbitrary set of n
points fixed in the plane and a fixed positive quantity d. At each point, we
centre a disk of diameter d. We connect two points if their disk’s interiors
intersect; that is, we connect two points if they are less than distance d apart.
Note that the value of d is arbitrary and we may assume d to be 1 without
loss of generality. Any graph that is isomorphic to a graph constructed in
such a manner is called a unit disk graph. For any unit disk graph G, the
configuration of points in the plane together with an appropriate value of d
that gives rise to G is called a representation (also called model, embedding
or realisation) of G.

1.1.1 Classes of graphs related to unit disk graphs

In this part, we describe some graph classes related to the class of unit disk
graphs that are also important to the frequency allocation problem.

The class of unit disk graphs is part of an important family of graph
classes. Let Σ be a set of sets and G be a class of graphs. For each family
F ⊆ Σ, the intersection graph of F , denoted Ω(F), is the graph with vertex
set F and U adjacent to V , U 6= V , if their intersection is nonempty. The
intersection class of Σ, denoted Ω(Σ) is the class of graphs {Ω(F)|F ⊆ Σ}.
We say G is an intersection class if G is isomorphic to Ω(Σ) for some Σ. There
is extensive theory on intersection graphs: read [38] for more background.

Clearly, by setting Σ to be the set of open unit-diameter disks in the
plane, we see that the class of unit disk graphs is an intersection class; we
denote this class by UD. If instead we set Σ to be the set of open disks
(of arbitrary radii) in the plane, then we obtain the class of (general) disk
graphs; we denote this class by D. The class of disk graphs is also important
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to radio channel assignment [19], since it models radio towers with varying
transmission strength.

Another generalisation of the unit disk graph class is obtained by ex-
amining higher dimensions. For example, let Σ be the set of open (unit)
balls in 3-dimensional space; this graph class could be important to fre-
quency assignment with extensive space travel(!) but, for the present, it has
applications in the analysis of molecules (consult [20]).

We can also restrict to one dimension. If we restrict UD to a line (i.e. let
Σ be the set of open unit intervals on the line), then we obtain the class UI of
unit interval graphs (also known as indifference graphs). Analogously, if we
restrict D to a line, then we obtain the class I of (general) interval graphs.
These classes model radio channel assignment on a long, narrow stretch of
land such as a highway, for instance; however, there also applications in
genetics [55] and in scheduling [17].

Consider intersection graphs of sets of closed disks (of arbitrary radii)
whose interiors do not intersect; such graphs are called disk contact graphs.
Long ago, the following beautiful result was known [26, 47]: the class of
disk contact graphs is precisely the class of planar graphs. We will denote
the class of planar graphs by P. Clearly, P ⊆ D. (Note that P is not an
intersection class.)

We note that the star K1,6 is a planar interval graph, but not a unit disk
graph; the cycle C4 is a planar unit disk graph, but not an interval graph;
also, the complete graph K5 is a unit disk graph as well as an interval graph,
but not planar. Therefore, the classes I, UD and P are incomparable under
the inclusion relation.

The class I is well known to be a perfect class – a graph G is perfect if
for every induced subgraph H of G, the chromatic number χ(H) is equal to
the clique number ω(H) – however, the cycle C5 is a planar unit disk graph
that is not perfect.

Figure 1.1 illustrates the inclusion relationship between the graph classes
we have defined in this section. An arrow from one graph class to another
means that the first is included in the second.

For each of these graph classes, it is important to note the complexity
of the recognition problem, i.e. given a graph G, determine whether or not
G belongs to the class. Unit interval graph recognition is polynomial [45],
as is interval graph recognition [28], and contact disk graph recognition is
the same as planarity testing and hence polynomial. However, for unit disk
graphs [7] and general disk graphs [22], the recognition problem is NP-hard.
Surprisingly, it is not yet known whether these NP-hard problems are in NP.

1.1.2 Complexity on restriction to unit disk graphs

In this part, we survey complexity results for the restrictions to the class of
unit disk graphs and to related classes.
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not perfect

perfect

UI UD D

I

P

Figure 1.1: A diagram of the relationship between graph classes UI, I, UD,
D andP.

For channel assignment as well as other applications (mostly related to
communications networks), it is important to consider various computa-
tional problems for the class of unit disk graphs. The classical problem of
finding a minimum dominating set (a set of vertices A is a dominating set if
every other vertex in the graph is adjacent to some member of A) restricted
to UD is related to the problem of optimally placing emergency senders in
a communication network [51]. Given n points in the plane, the problem of
finding a maximum subset of points no two of which are at distance d or
greater is the same as the maximum clique problem for the corresponding
unit disk graph [8]. We will examine the unit disk colourability problem in
more detail in the next part. See Table 1.1 for a summary of what is known
about these problems, comparing the restrictions to interval graphs, to unit
disk graphs, to planar graphs and to disk graphs.

Table 1.1: Relative complexity for certain problems restricted to the graph
classes I, UD and P.
Problem I UD P D

CHROMATIC NUMBER P [40] NPC [8] NPC NPC
CLIQUE P [40] P [8] P Open
INDEPENDENT SET P [16] NPC [8] NPC NPC
DOMINATING SET P [4] NPC [34] NPC NPC
CONNECTED DOMINATING SET P [44] NPC [29] NPC NPC

Clark, Colbourn and Johnson [8] give a systematic analysis of these
problems restricted to unit disk graphs. For UD 3-COLOURABILITY,
UD INDEPENDENT SET and UD DOMINATING SET, they provide NP-
completeness proofs which all rely on the same embedding (by Valiant [52])
and reduction from the corresponding problems restricted to P (well known
to be NP-complete [15]). This indicates a strong complexity relationship
between the classes P and UD.

For UD CLIQUE, the authors exhibit a polynomial-time algorithm which
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assumes a unit disk embedding is known. Here follows a (very) brief sketch
of this algorithm. Let G be a unit disk graph and assume we have an
arbitrary fixed unit disk embedding of G. For each pair of points x and
y with xy ∈ V (G), let Dx,y be the set of points z such that both d(x, z)
and d(y, z) are at most d(x, y) (where d(x′, y′) is the distance between x′

and y′ in the embedding). It is shown that any clique must be a subset of
one of these “lozenges” Dx,y. Also, it shown that each such set Dx,y is the
complement of a bipartite graph (and hence it is polynomial to determine a
maximum size clique in Dx,y). Hence, to find the size of a maximum clique
in G, it suffices to run a polynomial-time algorithm on the sets Dx,y for
each pair of vertices (x, y) and clearly this algorithm runs in polynomial
time overall. There is also a polynomial algorithm that does not require
a representation [43]. Note that PLANAR CLIQUE is clearly polynomial
since K5 is non-planar (due to the Kuratowski’s theorem). The complexity
of DISK CLIQUE is still open.

As the table indicates, the problems restricted to interval graphs (hence
unit interval graphs) are all polynomial. We note, in particular, a simple
algorithm that solves both INTERVAL CLIQUE and INTERVAL CHRO-
MATIC NUMBER simultaneously:

Proposition 1 If G is an interval graph, then χ(G) = ω(G), and χ(G) =
ω(G) can be found in polynomial time.

Proof. We assume we have an interval representation for G and order the
vertices by the left endpoints of the respective intervals. We apply greedy
colouring, i.e. properly colour the vertices in order and always assign the
smallest possible colour. Clearly, this is a polynomial-time algorithm, so it
remains to show that it gives the best colouring. Suppose we are at the
point in the greedy process when vertex x receives c, the largest colour used
overall. The interval (a, b) associated with x intersects with c − 1 intervals
whose vertices were coloured 1 through c − 1. These intervals all have left
endpoints that are smaller than a and hence all share the point a. Hence,
we have a clique of size c (namely, x and its c − 1 neighbours coloured 1
through c − 1). We have that ω(G) ≥ c ≥ χ(G) and, since ω(G) ≤ χ(G) in
general, equality holds. �

Except possibly for DISK (CONNECTED) DOMINATING SET, each
of the NP-hard problems in Table 1.1 has a “good” heuristic [3, 33, 23, 13]:
for each such problem, there is a polynomial-time approximation algorithm
with constant performance guarantee and some even have polynomial-time
approximation schemes (a PTAS is a polynomial-time approximation algo-
rithm that, given an instance of the problem and ε > 0, returns a solution
within a factor 1+ ε of the optimal solution. On the other hand, for general
graphs, none of these problems has a PTAS unless P = NP [31, 2, 24, 25].
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1.1.3 The unit disk colourability problem

For the frequency assignment problem, our focus is upon UD CHROMATIC
NUMBER. We give, in this part, an in-depth discussion of this problem.

In particular, to aid understanding of the proofs in the second chap-
ter, we now give brief descriptions of the NP-completeness proof of UD 3-
COLOURABILITY given in [8] and the proof of the following more general
result.

Theorem 1 (Gräf, Stumpf and Weißenfels [18]) For each fixed l ≥ 3, the
problem UD l-COLOURABILITY is NP-complete.

The proof for NP-completeness of UD 3-COLOURABILITY given in [8]
is a reduction from PLANAR 3-COLOURABILITY for graphs with max-
imum degree at most 4. The most important section of this proof is the
(polynomial-time) generation of a restricted planar embedding such that
the edges are only drawn on lines of the integer grid (hence the need for
graphs with maximum degree at most 4). Subsequently, the embedded
edges are replaced by sequences of unit disk graphs that “communicate”
the 3-colourability of the original graph. This is a relatively simple NP-
completeness technique known as local replacement (cf. [15]).

For Theorem 1, Gräf, Stumpf and Weißenfels attempt to generalize this
approach; however, the first main difficulty is that reduction from PLANAR
l-COLOURABILITY for l > 3 is impossible due to the four-colour theorem.
Instead, the reduction is from general l-COLOURABILITY, but this intro-
duces two new difficulties: higher degrees and crossing edges. To handle
the first difficulty, they use a new (non-planar) graph embedding in which
the edges are still drawn on lines of the integer grid, but each high-degree
vertex v is replaced by a set of points M(v) of size deg(v) spread apart in
the integer grid (and such that, for u 6= v, the convex hulls of M(u) and
M(v) do not intersect). For the second difficulty, it is necessary to find an
auxiliary unit disk graph for the crossing of two edges that communicates
l-colourability information (see Figure 2.4 in the next chapter).

Our proofs in the next chapter will borrow heavily on these ideas.
We have already noted that I is a perfect class and, in the last part,

showed that there is a polynomial algorithm to find the clique and chromatic
numbers. In contrast, UD is not a perfect class and we just noted that there
is no polynomial algorithm to find the chromatic number of unit disk graphs
(unless P = NP). However, UD CLIQUE is polynomial and this raises the
question of whether there is a bound on the chromatic number in terms of
the clique number for unit disk graphs. The following straightforward result
answers this question in the affirmative.

Proposition 2 (Peeters [42]) There is a polynomial algorithm that, for any
unit disk graph G, generates a proper colouring of G with at most 3ω(G)−2
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colours. This is a polynomial approximation algorithm for UD CHRO-
MATIC NUMBER with performance guarantee of 3.

Corollary 1 For any unit disk graph G, χ(G) ≤ 3ω(G) − 2.

Proof of Proposition 2. We assume we have the unit disk representation
for G and order the vertices lexicographically, i.e. we order the points first
by x-coordinate, then by y-coordinate. Like in the proof of Proposition
1, we apply greedy colouring according to this ordering. Clearly, this is a
polynomial-time algorithm, so it remains to show that it uses at most 3ω−2
colours. Suppose we are at the point in the algorithm when vertex x receives
c, the largest colour used overall. Let D be the open unit disk centred at x.
Because of the ordering we chose, all of the previously coloured neighbours
of x lie within a sector of D with angle less than π radians. Note that any
two points in the interior of a sector with angle π/3 radians are less than
distance 1 apart (and each less than distance 1 from x). Hence the points
in the interior of such a sector form a clique together with x. It follows that
the number of previously coloured neighbours of x is at most 3(ω(G) − 1)
and this implies that c ≤ 3(ω(G) − 1) + 1. �

By similar arguments, it can be shown that

• For any unit disk graph G, the degeneracy δ∗(G) – the supremum
of the minimum degree over all induced subgraphs of G – is at most
3ω(G)−3. (On the other hand, however, there is an example of a unit
disk graph whose degeneracy meets this bound [32])

• For any unit disk graph G, the maximum degree ∆(G) is at most
6ω(G) − 6. In particular, the greedy algorithm on any ordering is a
6-approximation.

• For any disk graph G, χ(G) ≤ 6ω(G) − 5.

Proposition 2 was given in 1991; however, there has been no signifi-
cant improvement since. Gräf, Stumpf, and Weißenfels [18] provide a more
sophisticated heuristic called the STRIPE algorithm, but it also has perfor-
mance guarantee of 3. Because of results for colouring of random unit disk
graphs (see [35]), it is plausible that there could be a better bound on χ(G)
in terms of ω(G) for unit disk graphs. Note that there are classes of unit
disk graphs with χ(G) ≥ 3

2ω(G) [32]; however, it is still open whether the
bound on the ratio χ(G)/ω(G) for unit disk graphs should be closer to 3/2
or 3.

1.2 Improper colouring

A colouring of a graph G is a labelling c : V (G) → S. The elements of S
are called colours and the vertices of one colour form a colour class. We
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say that c is an l-colouring if |S| ≤ l. Given a graph G, a colouring c
of G, and a subset S of V (G), the impropriety (or defect) of a vertex v
restricted to S under c, denoted imc

S(v), is the number of neighbours of v in
S in the same colour class. We say that a vertex is proper in S under c if
imc

S(v) = 0 and improper otherwise. The impropriety (or defect) of c in S is
imS(c) = maxv∈S{imS(v)}. For the abovementioned notions, we will often
drop the superscript or subscript if the context is clear. A colouring is k-
improper if its impropriety in G is at most k. We say a graph is k-improper
l-colourable if it has a k-improper l-colouring. The k-improper chromatic
number χk(G) is the least l such that G is k-improper l-colourable. This
notion was introduced by Cowen, Cowen and Woodward [10] (however, they
use the notation (l, k)-colourable). Note that 0-improper colouring is exactly
proper colouring; hence, the 0-improper chromatic number is precisely the
chromatic number χ(G).

We will also consider a more restrictive version of colouring and its im-
proper analogue. An l-list assignment of G is a function L which assigns
to each vertex v ∈ V (G) a set of size at most l. An L-list colouring is a
colouring c such that c(v) ∈ L(v) for all v ∈ V (G). We say a graph G
is k-improper l-choosable (or k-improper l-list colourable) if given any l-list
assignment L, G has a k-improper L-list colouring. The k-improper choos-
ability chk(G) is the least l such that G is k-improper l-choosable. This
notion was first considered by Borowiecki, Drgas-Burchardt and Mihók [5].
The notion of (0-improper) choosability was introduced independently by
Erdös, Rubin and Taylor [12] and Vizing [53] in the 1970’s.

Note that every k-improper l-choosable graph is k-improper l-colourable
and hence χk(G) ≤ chk(G), since the assignment L(v) = {1, . . . , l} for all v
is an l-list assignment. Also note that if a graph is k-improper l-colourable,
then it is k1-improper l1-colourable for any (k1, l1) ≥ (k, l). (By (x1, y1) ≥
(x2, y2), we mean x1 ≥ x2 and y2 ≥ y2.)

1.2.1 General results on improper (list) colouring

A k-improper l-colouring is a partition of the vertices into induced subgraphs
each with maximum degree at most k. In particular, this means that, if G
is k-improper l-colourable, then it is also (proper) ((k + 1)l)-colourable.

It is intuitively plausible that finding an optimum k-improper colouring
for fixed k ≥ 1 is more “difficult” than finding an optimum proper colouring
because the former requires more information. In particular, suppose that
we are colouring the vertices sequentially. Perhaps we are performing an
online colouring – vertices are presented one at a time and each vertex
must be affixed a colour before the next vertex is presented. For proper
colouring, to know what colours are available for a vertex, we need only
know the colours assigned to the previously coloured neighbours; however,
for improper colouring, we also require the defect of each such vertex in the
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colouring so far.
This intuition bears out when we consider the complexity of the k-

improper l-colouring problem. For fixed l ≥ 3, l-COLOURABILITY is NP-
complete, and determining whether a graph is bipartite can be performed in
polynomial time. On the other hand, k-IMPROPER l-COLOURABILITY
is NP-complete for (k, l) ≥ (1, 2) and (k, l) ≥ (0, 3) [9]. Furthermore, as for
proper colouring, it is known that, for any k, there exists ε > 0 such that
χk cannot be approximated to within a factor of nε unless P = NP.

This hardness result leads us to consider (weak) bounds. Recall two
elementary lower bounds for the (proper) chromatic number:

Proposition 3 For any graph G, χ(G) ≥ ω(G) and χ(G) ≥ |V (G)|
α(G) (where

α(G) is the size of the maximum independent set of G).

It is straightforward to generalise this result for k-improper colouring.
First, define a k-dependent set to be a subset of vertices whose induced
subgraph has maximum degree at most k and let αk(G) be the size of the
maximum k-dependent set. (Thus, a 0-dependent set is an independent set
and α0(G) = α(G).)

Proposition 4 For any graph G, χk(G) ≥ ω(G)
k+1 and χk(G) ≥ |V (G)|

αk(G)
.

Similarly, the following is a familiar upper bound:

Proposition 5 For any graph G, χ(G) ≤ ∆(G) + 1 (where ∆(G) is the
maximum degree of G).

Consider the following approximation result for graphs of bounded de-
gree.

Proposition 6 (Lovász [30]) Let G be a graph with maximum degree ∆ ≤
l(k +1)− 1. There is an algorithm to k-improper l-colour G in O(∆|E(G)|)
time.

Now the k-improper analogue to Proposition 5 is a corollary.

Corollary 2 For any graph G, χk(G) ≤
⌈

∆(G)+1
k+1

⌉

.

Proof of Proposition 6. Begin with an arbitrary l-colouring c of G.
Suppose some vertex v has more than k neighbours in the same colour class.
By the bound on the maximum degree, there must be some colour class with
at most k members in the neighbourhood of v. We simply change v to this
colour. This reduces the total number of monochromatic edges of c by at
least one; hence, this process terminates in at most |E(G)| steps. �

The bound in Corollary 2 still holds when χk is replaced by chk.
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1.2.2 Improper (list) colouring planar graphs

Improper colouring for planar graphs was first considered by Cowen, Cowen
and Woodward [10]. Improper choosability for planar graphs first consid-
ered by Eaton and Hull [11] and Škrekovski [48]. The motivation for this
study stems from the four-colour theorem. A generalisation of this much-
celebrated result asks the following question: for fixed k, what is the small-
est pk (p∗k) such that every planar graph is k-improper pk-colourable (p∗k-
choosable)? Here is a summary of the progress on this question.

The question for k-improper colourability is fully answered. Every planar
graph is 4-colourable [1] and K4 is a planar graph that is not 3-colourable.
For the other values of k, the answer is given by [10]. They give simple
examples to show that, for each k, there is a planar graph that is not k-
improper 2-colourable and there is a planar graph that is not 1-improper
3-colourable. They prove that every planar graph is 2-improper 3-colourable.
In summary, p0 = p1 = 4 and pk = 3 for all k ≥ 2.

The question for k-improper choosability has one lingering gap. The ele-
gant proof of Thomassen [50] shows that every planar graph is 5-choosable.
There are examples of planar graphs that are not 4-choosable [54, 39]. Eaton
and Hull [11] and Škrekovski [48] independently showed that every planar
graph is 2-improper 3-choosable. These results (and the examples from
[10]) imply that p∗0 = 5, p∗1 ∈ {4, 5}, and p∗k = 3 for all k ≥ 2. It is an open
question to determine whether p∗1 is 4 or 5.

Related questions for graphs on surfaces of higher genus [9], planar
graphs with prescribed girth [48, 49] and graphs with prescribed maximum
average degree [21] have been studied. The most natural further question,
though, is to determine the complexity of improper colouring for planar
graphs.

The proof of the four-colour theorem naturally extends to a quartic al-
gorithm for 4-colouring a planar graph [1]; indeed, a quadratic algorithm
has been developed [46]. The 2-improper 3-colouring proof of [10] naturally
extends to a linear algorithm. It is well-known that it is NP-complete to
determine if a planar graph is 3-colourable and that 2-colouring is polyno-
mial for general graphs. The remaining complexity questions are answered
as follows.

Theorem 2 (Cowen, Goddard, Jesurum [9])

1. It is NP-complete to determine if a planar graph is 1-improper 3-
colourable.

2. For fixed k ≥ 1, it is NP-complete to determine if a planar graph is
k-improper 2-colourable.

Part 2 of Theorem 2 is important to us since we will be using this re-
sult in the next chapter. The proof relies on a reduction from 1-improper
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2-colourability, which in turn is reduced from 3-SAT. For an idea of the
methods used in proving hardness for improper colouring, let us briefly ex-
amine the former reduction.

Let G be a planar graph. For each vertex v in G, we introduce the fol-
lowing (planar) structure Dv. The vertex set of Dv consists of the k − 1 in-
dependent sets of size 2k+1 B1, . . . , Bk−1 and the k−1 vertices c1, . . . , ck−1.
We set c0 = v. Connect all possible edges between Bi and the vertices ci−1

and ci, for 1 ≤ i ≤ k − 1. See Figure 1.2.

B1 B2 B3

v = c0 c1 c2 c3

Figure 1.2: The structure Dv for k = 4.

In any k-improper 2-colouring of Dv , the vertices ci must all have the
same colour. (If ci−1 and ci have different colours, then one of these vertices
has impropriety greater than k, since one of the colours appears at least
k + 1 times in Bi.) Thus, v is adjacent to k − 1 vertices with the same
colour (namely the ci) and has impropriety at least k − 1. However, in the
2-colouring where all the ci have the same colour as v and all members of
the Bi have the other colour, v has impropriety exactly k − 1. Therefore,
the resulting planar graph G′ is k-improper 2-colourable if and only if G is
1-improper 2-colourable. Clearly, this construction is polynomial.



Chapter 2

Improper colouring of unit
disk graphs

In this chapter, we present some analysis for the unit disk improper coloura-
bility problem.

Our motivation for this analysis is the following problem proposed by
Alcatel Space. Satellites send information to stationary receivers on earth.
Each receiver is listening on a chosen frequency (or set of frequencies) and
can receive information in a certain area (usually modelled by a disk centred
at the receiver). The signals of two receivers might interfere if their areas
intersect and, in this case, they should normally be listening on different
frequencies. However, the intensity of the signal sent by the satellite to
a receiver u is supposed to be large near u, and to decrease quickly with
distance. Hence, even if the reception areas of receivers u and v intersect,
the intensity of the signal sent to v is assumed to be low near u. Furthermore,
if u and v have close reception frequencies, then the signal for v contributes
interference (otherwise called noise) to the signal received by u, and vice
versa. If the total noise does not exceed a certain threshold, then u can still
distinguish its signal (perhaps by use of error-correcting coding conventions).
We wish to allocate frequencies to the receivers so as to minimise the total
bandwidth used.

Like in the case of traditional radio channel assignment, unit disk graphs
can be used in a simple model of this problem. We assume that the receivers
are scattered in the plane, all receivers have the same reception range and
operating bandwidth, there are no physical obstacles to transmission: the
reception areas are uniform disks centred at the receivers. We define the
same intersection graph as before: the vertices are the receivers and place
an edge between two vertices if their corresponding disks intersect. We
furthermore assume that nearby towers contribute noise only if they are on
the same channel and that they contribute exactly one unit of noise. We
must colour the vertices (i.e. assign a frequency to each receiver) to satisfy

14
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the threshold constraint. If we let k be the threshold value (i.e. a receiver
can still distinguish its signal if the sum of noises is at most k), then it is
clear that, under this model, our problem is to find an optimal k-improper
colouring of the resulting unit disk graph.

Before we begin, let us first remark that every clique is a unit disk graph,
indeed, a unit interval graph; hence, for each fixed k and l, there exists a
unit disk (interval) graph that is not k-improper l-colourable.

2.1 Improper colouring interval graphs

Proposition 7 For any k ≥ 0, there exists a unit interval graph Ik with
maximum degree and clique number equal to 2k +2 which is not k-improper
2-colourable.

Proof. To construct Ik, just start with a (2k + 2)-clique K = K2k+2 and
add a vertex u linked to exactly (k + 2) vertices of K. Suppose Ik has a
k-improper 2-colouring: K must have exactly (k+1) vertices of each colour.
Thus any vertex of K has impropriety k in K. As u has (k + 2) neighbours
in K it must have at least one neighbour of each colour and hence cannot
be coloured, a contradiction. Ik is clearly a unit interval graph. �

Note that if we compute Lovász’ bounds (from Proposition 4 and Corol-
lary 2) for the graph Ik, we find that its k-improper chromatic number is
either 2 or 3, so it is 3. In particular, this shows that there is little hope
of improving Lovász’ upper bound for general unit interval graphs. On the
other hand, for any even k there exist k-improper 2-colourable graphs which
have Lovász’ upper bound of 3.

Proposition 7 raises the question of the complexity of k-improper l-
colouring unit interval graphs for fixed k and l. We prove now that this
problem is polynomial for general interval graphs, and we provide a dy-
namic programming algorithm.

Note that any unit interval graph is bi-simplicial, i.e. the neighbourhood
of any vertex induces at most two cliques. As orientation, we make the
following observation:

Proposition 8 Given k and l, any bi-simplicial graph G with maximum
degree at least (2l − 1)(k + 1) is not k-improper l-colourable.

Proof. Let v be a vertex of degree at least (2l− 1)(k +1) and suppose that
c is a k-improper l-colouring of G with c(v) = 1. Let H be the subgraph
of G induced by the neighbours of v not coloured with colour 1. Clearly, H
is k-improper (l − 1)-colourable. Note also that, since v has impropriety at
most k, H has at least (2l − 1)(k + 1) − k = 2(l − 1)(k + 1) + 1 vertices.
As G is bi-simplicial, H can be partitioned into two cliques. But then, one
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of these cliques must be of size at least (l − 1)(k + 1) + 1, contradicting the
fact that H is k-improper (l − 1)-colourable. �

Theorem 3 The k-improper l-colourability problem restricted to interval
graphs is in P for any fixed k and l.

Proof. Let G be an interval graph. We preprocess the graph by computing
ω(G) (and this can be done in polynomial time). We may assume that
ω(G) ≤ l(k +1); otherwise, G is not k-improper l-colourable by Proposition
4. Now assume we have an interval representation for G. Let v1, . . . , vn be
the vertices of G ordered by the left endpoints of the respective intervals.
We will consider the vertices one-by-one according to this order and assign
v1 colour 1.

For this algorithm, we maintain all valid partial k-improper l-colourings
of the induced subgraph processed so far; however, we discard vertices that
are not required. More precisely, suppose v records the next vertex to be
processed and we wish to extend all of the partial colourings (and discard
ones that are impossible to extend). We need only maintain a list of all valid
partial k-improper l-colourings (together with accumulated improprieties) of
a set S, where S contains all previously coloured neighbours of v.

It is clear that, if the vertex vj is not adjacent to v = vs, where j < s,
then vj is not adjacent to vi with i ≥ s (and hence we can safely remove vj

from S). Furthermore, the maximum number of vertices in S at any given
point in time is ω − 1, since S together with v induces a clique. Thus, a list
of size (lk)ω(G) ≤ (lk)l(k+1) is sufficient. Furthermore, the step of colouring
a vertex and updating the list is clearly polynomial in time. �

Unfortunately, this result does not fully answer the complexity question
for improper colouring of interval graphs. It is unknown whether, for k > 0
fixed, there is a polynomial-time algorithm to find χk(G) given an interval
graph G.

2.2 Unit disk k-improper l-colourability, l ≥ 3

Since the l-colourability problem for unit disk graphs is NP-complete for any
fixed l ≥ 3 (cf. Theorem 1 on page 8), we expect that, for any fixed k ≥ 1,
the corresponding k-improper l-colourability problem is also NP-complete.
We show now that our expectation is indeed correct, by using a reduction
similar to that of [18].

Theorem 4 Unit disk k-improper l-colourability is NP-complete for fixed
k ≥ 0 and l ≥ 3.
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Before beginning the outline for the proof of this result, we give the
following

Lemma 1 Suppose K1 is a (k+1)-clique, K2 is a ((l−1)(k+1))-clique, and
K3 is a j-clique, 1 ≤ j ≤ k +1. Let H be the graph formed by connecting all
edges between K1 and K2 and between K2 and K3. Then H is k-improper
l-colourable, and in any k-improper l-colouring of H, any vertex of K1 and
any vertex of K3 must receive the same colour.

Proof. Suppose we have a k-improper l-colouring of H, let u ∈ K3 and
assume without loss of generality that u has colour 1. The subgraph induced
by K1∪K2 is an (l(k+1))-clique, so every colour appears exactly (k+1) times
in this clique and any vertex v in K1 ∪ K2 has impropriety k in K1 ∪ K2.
Hence, the colour 1 may not appear on the vertices of K2. As K2 is an
((l− 1)(k +1))-clique, each colour other than 1 must appear exactly (k +1)
times within K2 and thus has impropriety k in K2. Clearly, the vertices of
K1 and K3 must be coloured 1. It is easy to check that this is indeed a valid
k-improper l-colouring. �

Our approach will generalise that of Gräf, Stumpf and Weißenfels and
we want to show how, given any graph G, to construct a corresponding
unit disk graph Ĝ = (V̂ , Ê) which is k-improper l-colourable if and only
if G is l-colourable. The key to our approach is to generalise the auxiliary
graphs. We will describe k-improper l-colourable analogues for each of the
four auxiliary graphs that they employ. We shall use the same embedding
for the given graph G, and the unit disk graph embedding needs only a
slight technical modification to accommodate a larger auxiliary graph for
crossings.

2.2.1 Construction of the auxiliary graphs

First, we introduce the graphs that will replace the edges in an embedding of
G. All of these graphs are unit disk graphs and, except for the last one, use
the same embeddings as in [18]. The remaining properties are given without
proof since they generally follow immediately from the construction or a
simple application of Lemma 1. Like in the cited reference, our construction
makes frequent use of cliques. In figures, these cliques will be represented
by circles using the following convention:

• a small circle with a + represents a (k + 1)-clique;

• a large circle with a ? represents a (l − 2)(k + 1)-clique; and

• a large circle with a × represents a (l − 1)(k + 1)-clique.
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If cliques of other size are needed, they will be represented by a large circle
with the number of vertices of the clique written in it. An edge between two
cliques means that all possible edges between the two cliques are present.

Definition 1 A (k, l)-wire of order m, denoted W m
k,l, consists of m+1 (k +

1)-cliques WV0, . . . ,WVm and m ((l − 1)(k + 1))-cliques WC1, . . . ,WCm.
For each 1 ≤ i ≤ m, all members of the clique WCi are connected to the
members of both WVi−1 and WVi. The cliques WV0 and WVm are called
output cliques.

A (k, l)-wire of order 3 is shown in Figure 2.1.

WV0 WV1 WV2 WV3

WC1 WC2 WC3

Figure 2.1: The (k, l)-wire W 3
k,l.

Proposition 9 A (k, l)-wire of order m has the following properties:

1. W m
k,l has m(l − 1)(k + 1) + (m + 1)(k + 1) = (ml + 1)(k + 1) vertices;

2. a (k, l)-wire is k-improper l-colourable, but not k-improper (l − 1)-
colourable;

3. each k-improper l-colouring assigns the same colour to all members of
WV0, . . . ,WVm, and, in particular, the output cliques receive the same
colour; and

4. a (k, l)-wire is a unit disk graph.

Definition 2 A (k, l)-chain of order m, denoted Km
k,l, consists of a W m

k,l

together with an additional j-clique WF connected with WVm, for some
1 ≤ j ≤ (l−1)(k +1). The clique WV0 is called the fixed output clique while
WF is called the forced output clique.

A (k, l)-chain of order 3 is shown in Figure 2.2.

Proposition 10 A (k, l)-chain of order m has the following properties:

1. Km
k,l has (ml + 1)(k + 1) + j vertices, where j is the size of WF ;

2. a (k, l)-chain is k-improper l-colourable, but not k-improper (l − 1)-
colourable;
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WC1 WC2 WC3

WV0 WV1 WV2

j

WFWV3

Figure 2.2: A (k, l)-chain of order 3 K3
k,l.

3. each k-improper l-colouring assigns the same colour i to all members
of any of the cliques WVx, 1 ≤ x ≤ m, and each member of the clique
WF must receive a colour that is different from i;

4. for each pair of different colours (i1, i2) from the set {1, 2, . . . , l} there
exists a k-improper l-colouring in which the forced and fixed output
cliques receive colours i1 and i2, respectively; and

5. a (k, l)-chain is a unit disk graph.

We now introduce the graphs that will replace the high degree vertices
of G.

Definition 3 A (k, l)-clone of size m ≥ 2, denoted Cm
k,l, consists of the

7m− 7 (k + 1)-cliques CV1, . . . , CV7m−7, the 7m− 6 ((l − 1)(k + 1))-cliques
CC0, . . . , CC7m−7, and the m (k + 1)-cliques O0, . . . , Om−1. For 1 ≤ i ≤
7m− 7, all members of the clique CVi are connected to the members of both
CCi−1 and CCi. For each 0 ≤ i ≤ m − 1, all members of Oi are connected
to the members of CC7i. The cliques O0, . . . , Om−1 are called output cliques.

A (k, l)-clone of size 2 is shown in Figure 2.3.

CC1

CV2
CC2 CC3

CV4
CC4

CV5
CC5

CV6
CC6

CV3 CV7
CC7

CV1

O1

CC0

O0

Figure 2.3: The (k, l)-clone C2
k,l.

Note that, in the corresponding auxiliary graph described in [18], every
third clique was connected to an output vertex for technical reasons. For
similar reasons, every seventh ((l−1)(k+1))-clique is connected to an output
clique in our construction.
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Proposition 11 A (k, l)-clone of size m has the following properties:

1. Cm
k,l has (7m− 6)(l − 1)(k +1) + (7m− 7)(k + 1) +m(k +1) = ((7m−

6)l + m − 1)(k + 1) vertices;

2. a (k, l)-clone is k-improper l-colourable, but not k-improper (l − 1)-
colourable;

3. each k-improper l-colouring assigns the same colour to all members of
the output cliques; and

4. a (k, l)-chain is a unit disk graph.

Finally, we introduce the graphs Hk,l that will replace the edge crossings
in an embedding of G. This construction is based on the graph Hl used
in [18] (in the cited paper, it appears as Hk). We replace all vertices of
Hl by (k + 1)-cliques and we replace all edges of Hl by (k, l)-chains of the
appropriate order (either 1 or 2) so that the resulting graph has a unit disk
representation.

When replacing edges in Hl, we have taken care to orient the (k, l)-
chains so that we do not introduce cliques of size greater than l(k + 1); in
particular, only the forced output cliques of the (k, l)-chains may be incident
with the ((l−2)(k+1))-cliques Ci of Hk,l. Note then that each (k+1)-clique
representing a former vertex of Hl is incident to a ((l − 1)(k + 1))-clique of
some (k, l)-chain, and this ensures that, in a k-improper l-colouring of Hk,l,
each (k + 1)-clique is assigned a single colour.

See Figure 2.4 for a description of how Hk,l is derived.

Definition 4 Let a (k, l)-crossing, denoted Hk,l, l ≥ 3 be the graph in Fig-
ure 2.5. The cliques V0, . . . , V3 are called output cliques.

Proposition 12 A (k, l)-crossing has the following properties:

1. Hl,k has (37l − 2)(k + 1) vertices;

2. a (k, l)-crossing is k-improper l-colourable, not k-improper (l − 1)-
colourable;

3. each k-improper l-colouring c satisfies
c(V0) = c(V2) and c(V1) = c(V3);

4. there exist two k-improper l-colourings c1 and c2 which satisfy
c1(V0) = c1(V2) = c1(V1) = c1(V3) and
c2(V0) = c2(V2) 6= c2(V1) = c2(V3); and

5. a (k, l)-crossing is a unit disk graph.
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(a)

(b)

1 1

2 1

1

1

2

1

1

2

1

1

1

1

1

1

2

1 2

1

1

22

2

?

? ?

?

?
C1 C2

V0

V3

V2

C4 C3

V1

Figure 2.4: The derivation of the (k, l)-crossing Hk,l from the l-crossing Hl:
(a) Hl, where the circles represent (l− 2)-cliques and (b) a schematic figure
of Hk,l, where each (k, l)-chain is represented by a directed edge (the edge
is directed from the fixed output vertex to the forced output vertex of the
chain) together with an integer (the order of the chain).

2.2.2 Embedding of the unit disk graph

As mentioned earlier, we shall use the same embedding of the given graph G,
or rather, the embedding of the graph G′. However, for our auxiliary graphs,
we must accommodate for the necessity of a larger unit disk representation
for Hk,l.

As in [18], we will make use of so-called representatives and hence we shall
generate proper distance models. Recall from their paper that a) because of
certain properties, it suffices to represent each clique by one vertex called a
representative, and b) a unit disk model with distance value d is proper if the
distance between any two vertices or representatives in the model is unequal
to d. With the use of representatives, our (k, l)-wires and (k, l)-chains are no
different from l-wires and l-chains, respectively. We can thus use exactly the
same embeddings. Similarly, our (k, l)-clone embedding is identical to the
l-clone embedding, except that output vertices are placed on the x-axis at
distance 56 (instead of 24). The reason we have chosen this larger distance
is to give room for the (k, l)-crossing embedding. Figure 2.6 shows how a
distance model with distance 6 can be constructed for the (k, l)-crossing.
The output vertices are placed at distance 24 from the centre.

The final construction of the unit disk graph Ĝ is now straightforward
and follows [18].
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V3

C3

V2

C2

V1

C1

V0

C4

C0

?

?

?

?

?

Figure 2.5: The (k, l)-crossing Hk,l.
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V2

V1

V3

V0

x x + 24x − 24

y − 24

y

y + 24

C4

C3

C2

C1

Figure 2.6: An embedding of the (k, l)-crossing: a bold-lined disk represents
(l − 1)(k + 1) copies of the same disk, a dash-lined disk represents k + 1
copies of the same disk while each of the five remaining disks represents
(l − 2)(k + 1) copies of the same disk.
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2.2.3 Proof of theorem

Proof of Theorem 4. To prove that Ĝ is k-improper l-colourable if and
only if G is l-colourable, we again follow [18]. The only difficulty lies in the
possibility of multiple colours being assigned to a forced output clique of a
(k, l)-chain. This difficulty can only arise for vertices in G with degree 1,
and we can choose Ĝ so that a fixed output clique is incident to each such
vertex. �

2.3 Unit disk k-improper 2-colourability, k ≥ 1

It is not clear if we should expect the k-improper 2-colourability problem
for unit disk graphs to be NP-complete, as 2-colourability is polynomial
in general, while the planar k-improper 2-colourability problem, k ≥ 1, is
NP-complete (cf. Theorem 2(2) on page 12).

Theorem 5 Unit disk k-improper 2-colourability is NP-complete for any
fixed k ≥ 1.

Our reduction is from k-improper 2-colourability of planar graphs. Given
any planar graph G, we will show how to construct, in polynomial time, a
unit disk graph Ĝ which is k-improper 2-colourable if and only if G is.
Our construction is based on [18], but, for the embedding, we have added
the condition of planarity. Hence, we do not require a crossing auxiliary
graph. On the other hand, since we are dealing entirely with k-improper
2-colouring, we must take care to handle impropriety appropriately.

2.3.1 Construction of the auxiliary graphs

These graphs are unit disk graphs. We will give the corresponding unit disk
representations later. First, we introduce the graphs that will replace the
edges in an embedding of G.

Definition 5 A (k, 2)-bond, denoted Bk,2, has vertex set {v0, . . . , v2k+2}.
For the edge set, the vertices {v1, . . . , v2k+1} induce a clique, v0 is adjacent
to any vi, i ≤ k + 1, and v2k+2 is adjacent to any vi, i ≥ k + 1. The vertices
v0 and v2k+2 are called output vertices.

A (k, 2)-bond is shown in Figure 2.7.

Proposition 13 A (k, 2)-bond has the following properties:

1. Bk,2 has 2k + 3 vertices;

2. a (k, 2)-bond is k-improper 2-colourable, not k-improper 1-colourable;
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vk+1 v2k+2

v0

k k

Figure 2.7: The (k, 2)-bond Bk,2.

3. each k-improper 2-colouring of Bk,2 assigns the same colour to v0 and
v2k+2;

4. suppose v0 is adjacent to j ∈ {0, . . . , k} additional vertices u1, . . . , uj

and furthermore suppose that v0, u1, . . . , uj are precoloured with the
same colour: then v2k+2 has impropriety at least j in any k-improper
2-colouring of Bk,2;

5. under the same conditions as the previous property, there exists a k-
improper 2-colouring of Bk,2 such that v2k+2 has impropriety j; and

6. a (k, 2)-bond is a unit disk graph.

Note that, in the case of the third and fourth properties, we say that v0

is coloured with external impropriety j.

Proof. The first two properties are easy to establish. For the remainder of
the proof we will assume that c is a k-improper 2-colouring of Bk,2.

To prove the third property, suppose that c(v0) = 1 and c(v2k+2) = 2.
Remark that, as {v1, . . . , v2k+1} induces a (2k + 1)-clique, then one colour,
say 2, must appear exactly k + 1 times. Hence, any such vertex coloured
2 has impropriety k in the clique, and so cannot be a neighbour of v2k+2.
However, among v1, . . . , v2k+1, there are only k non-neighbours of v2k+2.
This is a contradiction.

To prove the fourth property, suppose that c(v0) = c(u1) = · · · = c(uj) =
1. Since v0 has impropriety j, colour 1 appears at most k − j times among
v1, . . . , vk+1. As v1, . . . , v2k+1 is a (2k + 1)-clique, there are at least k
vertices of colour 1. We deduce that there are at least j vertices among
{vk+1, . . . , v2k+1} coloured 1. Since c(v2k+2) = 1 by the above, v2k+2 has
impropriety at least j.

For the fifth property, again suppose that c(v0) = c(u1) = · · · = c(uj) =
1. Set c(v1) = c(v2) = · · · = c(vk−j) = 1. Set c(vk−j+1) = c(vk−j+2) = · · · =
c(v2k−j+1) = 2. Set c(v2k−j+2) = c(v2k−j+3) = · · · = c(v2k+2) = 1. It is
routine to check that this colouring satisfies our requirement.

We will describe the embedding of Bk,2 in the next section. �
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Definition 6 A (k, 2)-wire of order m, denoted W m
k,2, is the left-to-right

concatenation of m (k, 2)-bonds B1, . . . , Bm. The extreme vertices, v0 of B1

and v2k+2 of Bm, are called output vertices.

A (k, 2)-wire of order 3 is shown in Figure 2.8. The following properties
follow from Proposition 13.

kk

B2

kk

B1

kk

B3

Figure 2.8: The (k, 2)-wire of order 3 W 3
k,2.

Proposition 14 A (k, 2)-wire of order m has the following properties:

1. W m
k,2 has m(2k + 2) + 1 vertices;

2. a (k, 2)-wire is k-improper 2-colourable, not k-improper 1-colourable;

3. each k-improper 2-colouring of W m
k,2 assigns the same colour to the

output vertices;

4. if an output vertex v of Bi has external impropriety j ∈ {0, . . . , k},
then, in any k-improper 2-colouring of W m

k,2, the other output vertex
of Bi has impropriety at least j;

5. if an output vertex v of Bi has external impropriety j ∈ {0, . . . , k},
there exists a k-improper 2-colouring of W m

k,2 such that the other output
vertex of Bi has impropriety j; and

6. a (k, 2)-wire is a unit disk graph.

Definition 7 A (k, 2)-clone of size m ≥ 2, denoted Cm
k,2, consists of m

output vertices o1, . . . , om, such that there is an (k, 2)-wire Wi between oi

and oi+1 for each 1 ≤ i < m.

A (k, 2)-clone of size 3 is shown in Figure 2.9. Note that we have defined
the (k, 2)-clone to have arbitrarily order, but we will apply (k, 2)-clones of
bounded order to our embedding.

Proposition 15 A (k, 2)-clone has the following properties:

1. Cm
k,2 has l(2k + 2) + 1 vertices, for some l ≥ m;

2. a (k, 2)-clone is k-improper 2-colourable, not k-improper 1-colourable;
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Figure 2.9: A (2, 2)-clone of size 3 C3
2,2.

3. each k-improper 2-colouring of Cm
k,2 assigns the same colour to all out-

put vertices;

4. in any k-improper 2-colouring of Cm
k,2, the sum of external impropri-

eties of the output vertices (cf. the remark following Proposition 13)
is at most k;

5. given a sequence s1, . . . , sm of non-negative integers whose sum is at
most k, there is a k-improper 2 colouring of Cm

k,2 such that the external
impropriety of oi is si, 1 ≤ i ≤ m; and

6. a (k, 2)-clone is a unit disk graph.

Proof. For the fifth property, we colour the vertices of Cm
k,2 starting at

o1. Suppose c(o1) = 1. By Proposition 14(5), since o1 and o2 are output
vertices of W1, there exists a k-improper 2-colouring of W1 such that o2 has
impropriety s1. Now, c(o2) = 1 and, if we set the external impropriety of
o2 in W2 to s1 + s2, we will have external impropriety s2 for o2 in Cm

k,2. By
Proposition 14(5), there exists a k-improper 2-colouring of W2 such that o3

has impropriety s1 + s2. We can carry on like this until we have coloured
all of Cm

k,2, since s1 + s2 + · · · + sm ≤ k.
The other properties use similar applications of Proposition 13. �

Definition 8 For any odd positive integer m, a (k, 2)-link of order m, de-
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noted Km
2,k, is defined as follows. The vertex set is {v0, . . . , vx(k,m)+1}, where

x(k,m) =

{

mk(k + 1) if k is even
mk(k + 1) + k + 1 if k is odd

For the edge set, we join vi and vj if and only if |i− j| ≤ k+1. The vertices
v0 and vx(k,m)+1 are called output vertices.

A (2, 2)-link of order 1 is shown in Figure 2.10.

v1 v3 v5 v7

v4 v6v2v0

Figure 2.10: The (2, 2)-link of order 1 K1
2,2.

Proposition 16 A (k, 2)-link has the following properties:

1. Kk,2 has x(k,m) + 2 vertices;

2. a (k, 2)-link is k-improper 2-colourable, not k-improper 1-colourable;

3. for any k-improper 2-colouring of Kk,2 in which the output vertices
receive the same colour, the output vertices both have non-zero impro-
prieties;

4. there exists a k-improper 2-colouring of Kk,2 such that the output ver-
tices receive different colours and both vertices have impropriety zero;

5. there exists a k-improper 2-colouring of Kk,2 such that the output ver-
tices receive the same colour and both vertices have impropriety one;
and

6. a (k, 2)-link is a unit disk graph.

Proof. The first two properties are easy to establish.
For the third property, suppose c is a k-improper 2-colouring of Kk,2

such that both output vertices are coloured 1. By symmetry, suppose that
v0 has impropriety 0. Then we must have c(vi) = 2 for all i ∈ {1, . . . , k+1}.
In particular, note that im{v1,...,vk}(vk+1) = k so any vertex vi with i ∈
{k +2, . . . , 2k +2} must be coloured 1. More generally, we see that the only
possibility is that c(vi) = 1 if and only if (m − 1)(k + 1) + 1 ≤ i ≤ m(k + 1)

for m an even integer. However, since x(k,m)
k+1 is even, the k + 1 vertices

with indices between (x(k,m)
k+1 − 1)(k + 1) + 1 and x(k,m) are coloured 1 =
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c(vx(k,m)+1). Since these k + 1 vertices are adjacent to vx(k,m)+1 we have a
contradiction.

For the fourth property, we use the above forced colouring. In other
words, set c(v0) = 1, c(vx(k,m)+1) = 2 and for 1 ≤ i ≤ x(k,m), set c(vi) = 1
if and only if (m− 1)(k + 1) + 1 ≤ i ≤ m(k + 1) for m an even integer. It is
simple to check that the output vertices have impropriety zero.

For the fifth property, we use the following colouring. Set c(v0) =
c(vx(k,m)+1) = 1. For any 1 ≤ i ≤ x(k,m), set c(vi) = 1 if and only if
the index i is between (m− 1)k + 1 and mk for m an even integer. Clearly,
under this colouring, v0 is adjacent to exactly one vertex with colour 1,
namely, vk+1. For the impropriety of vx(k,m)+1, we have to check the par-

ity cases for k. If k is even, then x(k,m)
k

is odd and the only neighbour of

vx(k,m)+1 with colour 1 is vx(k,m)−k; if k is odd, then x(k,m)−1
k

is odd and the
only neighbour of vx(k,m)+1 with colour 1 is vx(k,m). In either case, vx(k,m)+1

has impropriety one.
We will describe the embedding of Kk,2 in the next section. �

Definition 9 A (k, 2)-chain of order (m,n), denoted K
(m,n)
k,2 , consists of

the concatenation of a (k, 2)-wire of order j (B1B2 · · ·Bj) with a single
(k, 2)-link of order n (K1) then with another (k, 2)-wire of order m − j
(Bj+1Bj+2 · · ·Bm) for some 1 < j < m. The extreme vertices, v0 of B1 and
v2k+2 of Bm, are called output vertices.

A (2, 2)-chain of order (2, 1) is shown in Figure 2.11. The following
properties follow from Propositions 13 and 16

K1 B2B1

Figure 2.11: The (2, 2)-chain of order (2, 1) K
(2,1)
2,2 .

Proposition 17 A (k, 2)-chain of order (m,n) has the following properties:

1. K
(m,n)
k,2 has m(2k + 2) + x(k,m) + 2 vertices;

2. a (k, 2)-chain is k-improper 2-colourable, not k-improper 1-colourable;

3. for any k-improper 2-colouring of K
(m,n)
k,2 in which the output vertices

receive the same colour, the output vertices both have non-zero impro-
prieties;
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4. there exists a k-improper 2-colouring of K
(m,n)
k,2 such that the output

vertices receive different colours and both vertices have impropriety
zero;

5. there exists a k-improper 2-colouring of K
(m,n)
k,2 such that the output

vertices receive the same colour and both vertices have impropriety one;
and

6. a (k, 2)-chain is a unit disk graph.

Now, we introduce the graphs that will replace the high-degree vertices
in G.

2.3.2 Embedding of the unit disk graph

Given any graph G, we will now show how to compute a distance model with
distance value 1 of a unit disk graph Ĝ which is k-improper 2-colourable if
and only if G is k-improper 2-colourable. First, we embed G in the plane in
a suitable way. Then we construct Ĝ so that the vertices and edges of the
original graph are replaced by the auxiliary graphs described above. Because
of the definition of the (k, 2)-chain, there are naturally two different classes
of unit disk embeddings depending on the parity of k. We will only fully
describe the case of even k since the other case is similar.

In [8], the authors use an orthogonal embedding of G, i.e. a planar em-
bedding of G such that each edge corresponds to an arc made up of horizontal
and vertical line segments. In [18], each edge corresponds to an arc made
up of horizontal and vertical line segments in the embedding of G; however,
crossing edges are permitted and, to take account of high-degree vertices,
each vertex is represented by a (possibly degenerate) line segment. Here, we
will use what is called a box-orthogonal embedding. A box-orthogonal em-
bedding of G is a planar embedding of G such that each edge is represented
by alternate horizontal and vertical line segments and each vertex is repre-
sented by a (possibly degenerate) rectangle, called a box (See Figure 2.12).
We assume that all line segments, including those at the perimeter of a box,
lie on lines of the integer grid. There is a box-orthogonal embedding for
each planar graph and one can be computed in polynomial time [14, 41].

Let G = (V,E) be any planar graph. We generate a box-orthogonal
embedding of G. Let us assume that no two edges meet at a point, i.e. no
box is degenerate and no two edges meet at the corner of a box. (We can
do this by expanding each box by distance 1/2 in each of the four directions
then doubling the scale of the grid).

Each vertex v ∈ V is replaced by a box Box(v), and we denote the deg(v)
points of contact with edges by M(v). We aim to embed a (k, 2)-clone in
the perimeter of Box(v) such that its output vertices replace the vertices in
M(v). We can do this by starting at an arbitrary point of M(v) and proceed
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(a) (b)

Figure 2.12: (a) An arbitrary planar graph G and (b) a box-orthogonal
embedding of G.

in clockwise direction about the perimeter. We extend the (k, 2)-clone with
an embedding of a (k, 2)-wire to the next grid point in the perimeter and
continue until all members of M(v) have been included. It only remains to
describe the unit disk embedding of some (k, 2)-wire between two adjacent
grid points.

Each edge e ∈ E is replaced by a line A(e) consisting of alternate hori-
zontal and vertical line segments of the grid. Clearly, A(e) has integer grid
length. We aim to embed a (k, 2)-chain along A(e). Since we use (k, 2)-wires
to extend a (k, 2)-chain to arbitrary length, it suffices to describe the unit
disk embedding of some (k, 2)-chain between two adjacent grid points.

We first describe unit disk embeddings for the elementary auxiliary
graphs: the (k, 2)-bonds and (k, 2)-links.

We will denote the embedding of a (k, 2)-link of order m by Em
K . Each

centre of the disk replacing a vertex of Km
k,2 lies on a line. The points are

distributed equidistant from each other. Let the distance between adjacent
vertices vi and vi+1 be d = mk

mk(k+1)+1 . Since (k +2)−1 ≤ d < (k +1)−1, vi is

adjacent to vj if and only if |i−j| ≤ k+1. Also, we can easily check that the
distance in Em

K between output vertices is precisely mk. See Figure 2.13.
We will use two different embeddings for the (k, 2)-bonds. In the first

embedding, we will denote it Ea
B , the disks for the output vertices of Bk,2

are touching (but not intersecting), hence, the distance between the output
vertices is 1. The first embedding is illustrated in Figure 2.14(a). Note that
the two bold disks represent cliques of size k. In the second embedding, we
will denote it Eb

B , all of the disks lie on a line. The output vertices of Bk,2

are at distance 2−2d′, where d′ = 1
k+3 and the central vertex vk+1 of Bk,2 is

midway between them. The centres of the two k-clique disks are at distance
1 − d+d′

2 from the nearer respective output vertices. See Figure 2.14(b).
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Figure 2.13: An embedding of the (2, 2)-link of order 1.
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(a) Ea
B

(b) Eb
B

Figure 2.14: Two embeddings of a (k, 2)-bond: (a) Ea
B and (b) Eb

B .



CHAPTER 2. IMPROPER COLOURING OF UNIT DISK GRAPHS 33

Clearly, Ea
B can be concatenated with itself, as can Eb

B . See Figure 2.15.
Also, Eb

B can be concatenated with Em
K and with Ea

B . See Figure 2.16.
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(a) Ea
B

Ea
B

(b) Eb
B

Eb
B

Figure 2.15: (a) The concatenation of two copies of Ea
B and (b) of two copies

of Eb
B .
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(a) Eb
B

E1
K

(b) Eb
B

Ea
B

Figure 2.16: (a) The concatenation of Eb
B with E1

K and (b) of Eb
B with Ea

B.

We will use these constructions to show that there are embeddings of
some (k, 2)-wire and of some (k, 2)-chain between two adjacent grid points.
We first scale the grid so that two adjacent grid points are distance u = 5k+8
apart. We embed a (k, 2)-wire W ∗ of order 3k + 6 by concatenating k + 3
copies of Eb

B with k copies of Ea
B with k + 3 more copies of Eb

B. This
embedding has length (k + 3)(2 − 2d′) + k + (k + 3)(2 − 2d′) = 5k + 8, as
required. We embed a (k, 2)-chain K∗ of order 2(k+3)+1 by concatenating
k + 3 copies of Eb

B with E1
K with k + 3 more copies of Eb

B . This embedding
has also has length 5k + 8, as required.

Since, in Eb
B, the distance between an output vertex and any other vertex
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Figure 2.17: The embedding of W 2
k,2 around a right-angle turn.

is at least 1
2(2

3 + 3
4) > 1√

2
, Eb

B can be concatenated with a perpendicular

copy of itself (to bend around corners). See Figure 2.17. Now, for each
vertex v, we embed W ∗ between grid points along the perimeter of Box(v)
to obtain a (k, 2)-clone whose output vertices are precisely M(v). Also, for
each edge e we embed W ∗ between grid points along A(e), except for one
pair of grid points between which we embed a K∗, to obtain an embedding
of a (k, 2)-chain along A(e). The resulting graph is Ĝ.

Remark: for the case of odd k, we choose the values d = mk+1
(mk+1)(k+1)+1 ,

d′ = 1
k+3 and u = 5k + 9.

2.3.3 Proof of theorem

Proof of Theorem 5. Let G = (V,E) be any graph. The construction of
the corresponding unit disk graph Ĝ and its embedding can clearly be done
in polynomial time. It remains to show that G is k-improper 2-colourable
if and only if Ĝ is. Each vertex v ∈ V is replaced by a box, and then the
points of contact with edges are denoted by M(v). These points are then
replaced by the output vertices of a (k, 2)-clone if |M(v)| ≥ 2. The set of
output vertices is denoted I(v) (where I(v) = {v} if |M(v)| = 1).

“=⇒”: Let c be a k-improper 2-colouring of G. We want to construct
a k-improper 2-colouring of Ĝ. First, for any vertex v of G, we colour the
vertices of I(v) by c(v).

Second, for any edge e = xy of G, let Ke be the (k, 2)-chain which
connects I(x) to I(y) in Ĝ. If c(x) 6= c(y), then we apply Proposition 17(4)
to colour Ke. If c(x) = c(y), then we apply Proposition 17(5).

Last, for any vertex v of G, let Cv be the (k, 2)-clone whose output
vertices are I(v). Since c is a k-improper 2-colouring, we can apply Propo-
sition 15(5) to colour Cv. In this way, we obtain a k-improper 2-colouring
of Ĝ.

“⇐=”: Let ĉ be a k-improper 2-colouring of Ĝ. We want to construct



CHAPTER 2. IMPROPER COLOURING OF UNIT DISK GRAPHS 35

a k-improper 2-colouring of G. By Proposition 15(3), for any vertex v of
G, we can assign the colour of the vertices of I(v). By Proposition 15(4)
and Proposition 17(3), it is clear that the colouring generated is indeed a
k-improper 2-colouring of G. �



Chapter 3

Plan for future work

There is a plethora of promising open problems related to the material in
this paper. First, we review some of the established open problems related
to sections 1.1 and 1.2 of the introduction. Second, we discuss three major
candidates for further work arising from the unit disk improper colourability
problem. All of these problems are candidates for future doctoral research.
For each problem, the statement is followed by a discussion of background
and possible approaches.

3.1 Established open problems

Problem 1 Is the (unit) disk graph recognition problem in NP?

As we noted earlier, (unit) disk graph recognition is NP-hard. To show
it is in NP, the obvious approach, by guessing a representation then checking
it, does not work, since it may be possible that, for some (unit) disk graph,
every representation has a disk with irrational coordinates. It was shown in
Lemma 8 of [7] that (unit) disk graph recognition is in PSPACE.

Problem 2 For fixed n, how many unit disk graphs of order n are there?

The enumeration problem for unit disk graphs has not been well-studied
and it would be interesting to obtain good bounds on the number of such
graphs.

Problem 3 Is there a disk graph that is not a containment disk graph?

We are given an arbitrary set of n points v1, . . . , vn and n positive reals
d1, . . . , dn. At each point vi, we centre a disk of diameter di. We connect
two points if one point is contained in the other’s disk. Any graph that is
isomorphic to a graph constructed in such a manner is called a containment
disk graph. We denote the class of containment disk graphs by CD. Note
that the term containment here is different from the usual meaning (cf. [38]).

36
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The class of containment disk graphs was introduced in [32]. They
showed that K3,3 is a containment disk graph but not a disk graph. Thus,
CD 6⊆ D. The above asks whether the converse is true. It is possible that the
following class of graphs may provide a solution to Problem 3. Let T1 = K3.
We obtain Tk+1 from Tk as follows. For each face of Tk other than the un-
bounded face, place a vertex at the centre and connect it to all vertices on
the boundary of the face. Clearly, since it is planar, Tk is a disk graph for
each k.

Conjecture 1 For some k, Tk is not a containment disk graph.

Problem 4 Is DISK CLIQUE NP-hard?

In [6], the authors introduce the class of bounded-ratio disk graphs. A
graph is an r-bounded disk graph if it is the intersection graph of a set of
disks whose largest disk has radius at most r times the radius of its smallest
disk. We denote the class of such graphs by rBD. Clearly,

UD ⊆ rBD ⊆ D ⊆ {general graphs}

for each r. At one end of this continuum, the problem of finding a maximum
clique is in P while, at the other end, the problem is NP-complete. We wish
to determine where the change in complexity is along this continuum.

Problem 5 What is the tight upper bound on the ratio χ(G)/ω(G) for unit
disk graphs?

As we mentioned in section 1.1.3, the tight upper bound on χ/ω for unit
disk graphs is between 3/2 and 3. The work of McDiarmid [35] on random
unit disk colouring suggests that this value should be closer to 3/2. There
are similar gaps for disk graphs and double disk graphs (consult [32]).

Problem 6 Is every planar graph 1-improper 4-choosable?

In the notation of section 1.2.2, this would answer the question of whether
p∗1 is equal to 4 or 5.

3.2 Open problems related to unit disk improper
colourability

Since this area of study has not been visited before, there are many new
problems to consider. Faced with the establishment of NP-completeness for
nearly all cases, there are three natural questions to consider.

The first natural question is to consider bounds and approximation.
Analagous to Problem 5,
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Problem 7 Is there a good bound on the ratio (k+1)χk(G)
ω(G) for unit disk

graphs?

The remark in section 1.1.3 that ∆(G) ≤ 6ω − 6 for any unit disk graph
G combined with Corollary 2 gives that this ratio is at most 6; however, we
would expect that this ratio would be much closer to 3, if not lower.

A related area of interest is to develop good heuristics for the k-improper
chromatic number for any fixed k ≥ 1. One avenue of investigation is the
STRIPE algorithm of [18] which is a 3-approximation for the chromatic
number of unit disk graphs. In this algorithm, the unit disk representation
is divided into strips of small enough width so that they can be coloured
efficiently. They prove that strips of width at most

√
3/2 induce cocompa-

rability graphs which, being perfect graphs, can be coloured efficiently with
ω({strip graph}) colours. If, for the improper colouring problem for cocom-
parability graphs, there is an efficient algorithm or good approximation, this
approach could produce a better ratio than 6.

The second natural question is to restrict the UD improper colourability
problem and investigate whether the problem remains NP-hard. For (unit)
interval graphs, we showed that the problem is in P when we fix both k and
l; however, it is open to determine if, for fixed k, finding the k-improper
chromatic number of a (unit) interval graph is polynomial. We here give
two other natural restrictions worth further study.

Problem 8 Restricted to weighted induced subgraphs of the triangular lat-
tice, is k-IMPROPER l-COLOURABILITY NP-complete?

For communication networks, we often work with the triangular lattice
T , as this is known to give the most efficient cover (cf. [37]). The points of
the triangular lattice are integer linear combinations of the vectors ~p = (1, 0)

and ~q = ( 1
2 ,

√
3

2 ). To produce T , we join any two points at distance 1 apart.
Note that T is a unit disk graph.

For any graph G, a weight assignment ω is an association of each vertex
v ∈ V (G) with a non-negative weight ωv. Given a graph G and a weight
assignment ω, a weighted colouring cω of G is an assignment to each vertex
v ∈ V (G) of a multiset cω(v) of size ωv. Our definition here differs from
[37] to generalise to improper colouring: a vertex may be assigned multiple
instances of the same colour. Given that the weights ωv represent replacing
v by a clique of size ωv, there is a natural analogue for weighted k-improper
colouring for fixed k.

The authors in [37] show that the (proper) 3-colourability problem re-
stricted to weighted induced subgraphs of the triangular lattice is NP-
complete. It is possible to generalise their approach to show that, for fixed
k, the corresponding k-improper 3-colourability problem is NP-complete.
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Conjecture 2 For fixed (k, l) ≥ (1, 2) or (k, l) ≥ (0, 3), the k-improper
l-colourability problem restricted to weighted induced subgraphs of the trian-
gular lattice is NP-complete.

Note that it is not yet known whether, for weighted induced subgraphs
of the triangular lattice, l-colourability for fixed l > 3 is NP-complete.

Problem 9 What is the complexity of distinct weighted improper coloura-
bility?

In light of the motivating problem given by Alcatel (cf. page 14), it is
sensible to prevent receivers at the same site from having the same frequency.
We again consider weighted graphs, and, given a graph G and a weight as-
signment ω, we define a distinct weighted colouring to be a weighted colour-
ing such that the colours at each vertex are all distinct. Thus, a distinct
weighted k-improper colouring is a weighted k-improper colouring such that
predetermined cliques must have distinct colours. We expect this problem
to be NP-complete.

The third natural question is to consider the k-improper chromatic num-
ber for random unit disk graphs. It already seems likely that extensions of
[36] and [35] for improper colourability are feasible.
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