References for Tobias Barthel's talks

Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. Nilpotence and stable homotopy theory. I. Ann. of Math. (2), 128(2):207–241, 1988.

Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1–49, 1998.

Douglas C. Ravenel. Localization with respect to certain periodic homology theories. Amer. J. Math., 106(2):351–414, 1984

Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Ann. of Math. Stud.. Princeton University Press, 1992. Appendix C by Jeff Smith.

Tobias Barthel and Agnès Beaudry, Chromatic structures in stable homotopy theory, arxiv:1901.09004, 2019

Tobias Barthel, Tomer Schlank, and Nathaniel Stapleton. Chromatic homotopy theory is asymptotically algebraic. arXiv:1711.00844, 2017.

Agnès Beaudry, Paul G. Goerss, and Hans-Werner Henn. Chromatic splitting for the K(2)-local sphere at p = 2. arXiv:1712.08182, 2017.

Michael J. Hopkins, Mark Mahowald, and Hal Sadofsky. Constructions of elements in Picard groups. In Topology and representation theory (Evanston, IL, 1992), volume 158 of Contemp. Math., pages 89–126. Amer. Math. Soc., 1994.

Ethan S. Devinatz and Michael J. Hopkins. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups. Topology, 43(1):1–47, 2004.

Mark Hovey. Bousfield localization functors and Hopkins’ chromatic splitting conjecture. In The Čech centennial (Boston, MA, 1993), volume 181 of Contemp. Math., pages 225–250. Amer. Math. Soc., 1995.

Piotr Pstragowski. Chromatic homotopy is algebraic when p > n2 + n + 1. arXiv:1810.12250, 2018.

Tobias Barthel, Markus Hausmann, Niko Naumann, Thomas Nikolaus, Justin Noel, and Nat Stapleton. The Balmer spectrum of the equivariant homotopy category of a finite abelian group. Invent. Math. 216 (2019), no. 1, 215–240.

Shachar Carmeli, Tomer Schlank, and Lior Yanovski, Ambidexterity in chromatic homotopy theory, arxiv:1811.02057, 2018

John P.C. Greenlees and Hal Sadofsky. The Tate spectrum of vn-periodic complex oriented theories. Mathematische Zeitschrift, 222(3):391–405, 1996.

Michael Hopkins and Jacob Lurie, Ambidexterity in K(n)-local stable homotopy theory, 2013

Paul Balmer. Tensor triangular geometry. In International Congress of Mathematicians, Hyderabad (2010), Vol. II, pages 85–112. Hindustan Book Agency, 2010.

Back to the EAST2019 page.