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ABSTRACT. It is well-known that affine Hecke algebras are very useful to describe
the smooth representations of any connected reductive p-adic group G, in terms
of the supercuspidal representations of its Levi subgroups. The goal of this paper
is to create a similar role for affine Hecke algebras on the Galois side of the local
Langlands correspondence.

To every Bernstein component of enhanced Langlands parameters for G we
canonically associate an affine Hecke algebra (possibly extended with a finite R-
group). We prove that the irreducible representations of this algebra are naturally
in bijection with the members of the Bernstein component, and that the set of
central characters of the algebra is naturally in bijection with the collection of
cuspidal supports of these enhanced Langlands parameters. These bijections send
tempered or (essentially) square-integrable representations to the expected kind
of Langlands parameters.

Furthermore we check that for many reductive p-adic groups, if a Bernstein
component B for G corresponds to a Bernstein component B" of enhanced Lang-
lands parameters via the local Langlands correspondence, then the affine Hecke
algebra that we associate to 8" is Morita equivalent with the Hecke algebra as-
sociated to 9. This constitutes a generalization of Lusztig’s work on unipotent
representations. It might be useful to establish a local Langlands correspondence
for more classes of irreducible smooth representations.
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INTRODUCTION

Let F' be a non-archimedean local field and let G be a connected reductive alge-
braic group defined over F. The conjectural local Langlands correspondence (LLC)
provides a bijection between the set of irreducible smooth G(F)-representations
Irr(G(F)) and the set of enhanced L-parameters ®.(G(F)), see [Bor, Vog, ABPS5].

Let s be an inertial equivalence class for G(F) and let Irr(G(F'))°* be the associ-
ated Bernstein component. Similarly, inertial equivalence classes s¥ and Bernstein
components ®.(G(F))*  for enhanced L-parameters were developed in [AMS1]. It
can be expected that every s corresponds to a unique sV (an “inertial Langlands
correspondence” ), such that the LLC restricts to a bijection
(1) Irr(G(F))° +— ®e(G(F))* .
The left hand side can be identified with the space of irreducible representations of
a direct summand H(G(F))® of the full Hecke algebra of G(F'). It is known that in
many cases H(G(F))*® is Morita equivalent to an affine Hecke algebra, see [ABPS5,
§2.4] and the references therein for an overview.

To improve our understanding of the LLC, we would like to canonically associate
to 5V an affine Hecke algebra H(s") whose irreducible representations are naturally
parametrized by ®(G(F))* . Then (1) could be written as

Vv

(2) Lr(G(F))° = Trr (H(G(F))*) +— Lr(H(s")) = ®.(G(F))*",

and the LLC for this Bernstein component would become a comparison between two
algebras of the same kind. If moreover H(s") were Morita equivalent to H(G(F))®,
then (1) could even be categorified to

(3) Rep(G(F))® = Mod(H(s")).

Such algebras H(s") would also be useful to establish the LLC in new cases. Suppose
one would like to match s (essentially a set of cuspidal enhanced Langlands param-
eters for a Levi subgroup £(F)) with a yet unknown supercuspidal Bernstein block
for L(F). Motivated by some examples, we increase the scope of (3) by considering
it only for the full subcategories of finite length objects:
(4) Repy (G(F))* = Moda(H(s")).
One could compare H(s") with the algebras H(G(F'))® for various s = [L(F), 0],
and only the Bernstein components Irr(G(F'))® for which (4) holds would be good
candidates for the image of ®(G(F))*  under the LLC. If one would know a lot
about H(s), this could substantially reduce the number of possibilities for a LLC
for both ®¢(L(F))*" and ®(G(F))s".

This strategy was already employed by Lusztig, for unipotent representations
[Lusb, Lus7]. Bernstein components of enhanced L-parameters had not yet been
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defined when the papers [Lusbh, Lus7] were written, but the constructions in them
can be interpreted in that way. Lusztig found a bijection between:

e the set of (“arithmetic”) affine Hecke algebras associated to unipotent Bern-
stein blocks of adjoint, unramified groups;

e the set of (“geometric”) affine Hecke algebras associated to unramified en-
hanced L-parameters for such groups.

However, the comparison of these two families of Hecke algebras is not enough to
specify a canonical bijection between Bernstein components on the p-adic and the
Galois sides. The problem is that one affine Hecke algebra can appear (up to isomor-
phism) several times on either side. This already happens in the unipotent case for
exceptional groups, and the issue seems to be outside the scope of these techniques.
In [Lus5, 6.6-6.8] Lusztig wrote down some remarks about this problem, but he does
not work it out completely.

The main goal of this paper is the construction of an affine Hecke algebra for any
Bernstein component of enhanced L-parameters, for any G. But it quickly turns out
that this is not exactly the right kind of algebra. Firstly, our geometric construc-
tion, which relies on [Lus2, AMS2], naturally includes some complex parameters z;,
which we abbreviate to Z. Secondly, an affine Hecke algebra with (indeterminate)
parameters is still too simple. In general one must consider the crossed product
of such an object with a twisted group algebra (of some finite “R-group”). We
call this a twisted affine Hecke algebra, see Proposition 2.2 for a precise definition.
Like for reductive groups, there are good notions of tempered representations and
of (essentially) discrete series representations of such algebras (Definition 2.6).

Theorem 1. [see Theorem 3.18]

(a) To every Bernstein component of enhanced L-parameters s* one can canonically
associate a twisted affine Hecke algebra H(s",Z).
(b) For every choice of parameters z; € Rsq there exists a natural bijection

B(G(F))* +— Trr(H(sY,2)/({zi — zi}1))

(¢) For every choice of parameters z; € R>y the bijection from part (b) matches
enhanced bounded L-parameters with tempered irreducible representations.

(d) Suppose that @e(g(F))sv contains enhanced discrete L-parameters, and that z; €
Rs1 for all i. Then the bijection from part (b) matches enhanced discrete L-
parameters with irreducible essentially discrete series representations.

(e) The bijection in part (b) is equivariant with respect to the canonical actions of
the group of unramified characters of G(F).

This can be regarded as a far-reaching generalization of parts of [Lusbh, Lus7]:
we allow any reductive group over a non-archimedean local field, and all enhanced
L-parameters for that group. We check (see Section 5) that in several cases where
the LLC is known, indeed

(5) H(G(F))® is Morita equivalent to H(s",Z)/({zi — 2i}:)

for suitable z; € R<1, obtaining (3). Notice that on the p-adic side the parameters z;

are determined by H(G(F'))°, whereas on the Galois side we specify them manually.

In fact, in all our examples we can take z; = qllr/ . That is a good sign, which
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indicates that in general z; = qllp/ 2 could be the best specialization of the parameters
to compare with an affine Hecke algebra coming from a p-adic group.

Yet in general the categorification (3) is asking for too much. We discovered
that for inner twists of SL,(F) (5) does not always hold. Rather, these algebras
are equivalent in a weaker sense: the category of finite length modules of H(G(F))®
(i.e. the finite length objects in Rep(G(F))?) is equivalent to the category of finite

dimensional representations of H(s",Z)/({z; — q}:ﬂ}i)-

Let us describe the contents of the paper more concretely. Our starting point is
a triple (G, M, ¢€) where
e (G is a possibly disconnected complex reductive group,
e M is a quasi-Levi subgroup of G (the G-centralizer of the connected centre
of a Levi subgroup of G°),
e ¢€ is a M-equivariant cuspidal local system on a unipotent orbit CM in M.

To these data we attach a twisted affine Hecke algebra H (G, M, ¢€,Z). This algebra
can be specialized by setting Z equal to some 7z € (C*)?¢. Of particular interest is
the specialization at 2’ = 1:

H(G, M, q€,2) /({7 — 1}i) = O(T) x C[Wee, t],

where T' = Z(M)°, while the subgroup Wye C Ng(M)/M and the 2-cocycle
h: Wq25 — C* also come from the data.

The goal of Section 2 is to understand and parametrize representations of the
algebra H(G, M, ¢€,Z). We follow a strategy similar to that in [Lus3]. The centre
naturally contains O(T)Vet¢ = O(T/W¢), so we can study Mod(H(G, M, ¢€, 7)) via
localization at suitable subsets of T'/Wye. In Paragraph 2.1 we reduce to represen-
tations with O(T")"We¢-character in WeeTys, where Tys denotes the maximal real split
subtorus of T. This involves replacing H(G, M, q€,Z) by an algebra of the same
kind, but for a smaller G.

In Paragraph 2.2 we reduce further, to representations of a (twisted) graded Hecke
algebra H(G, M, ¢€,r). We defined and studied such algebras in our previous pa-
per [AMS2]. But there we only considered the case with a single parameter r,
here we need ¥ = (ry,...,rg). The generalization of the results of [AMS2] to a
multi-parameter setting is carried out in Section 1. With that at hand we can use
the construction of “standard” H(G, M, ¢&€,1r)-modules and the classification of irre-
ducible H(G, M, ¢€, r)-modules from [AMS2] to achieve the same for H(G, M, ¢&, Z).
For the parametrization we use triples (s, u, p) where:

e s € (G° is semisimple,

e u € Zg(s)° is unipotent,

epc Irr(wo(Z(;(s,u))) such that the quasi-cuspidal support of (u, p), as de-
fined in [AMS1, §5], is G-conjugate to (M,CM q¢).

Theorem 2. [see Theorem 2.13]

(a) LetZ € R‘io. There exists a canonical bijection, say (s,u, p) — Ms,uyp’g, between:
e G-conjugacy classes of triples (s, u, p) as above,
o Ir(H(G,M,q€,Z)/({zi — zi}i))-
(b) Let Z € Ril. The module M&u,pj is tempered if and only if s is contained in a
compact subgroup of G°.
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(c) Let 7 € R‘il. The module Ms’wp’g 1s essentially discrete series if and only if u
is distinguished unipotent in G° (i.e. does not lie in a proper Levi subgroup).

In the case M = T, CM = {1} and ¢€ trivial, the irreducible representations in
H(G®, T, q€ = triv) were already classified in the landmark paper [KaLu], in terms
of similar triples. In Paragraph 2.3 we check that the parametrization from Theorem
2 agrees with the Kazhdan—Lusztig parametrization for these algebras.

Remarkably, our analysis also reveals that [KaLu] does not agree with the classifi-
cation of irreducible representations in [Lus5]. To be precise, the difference consists
of a twist with a version of the Iwahori-Matsumoto involution. Since [KaLu] is
widely regarded (see for example [Ree, Vog]) as the correct local Langlands corre-
spondence for Iwahori-spherical representations, this entails that the parametriza-
tions obtained by Lusztig in [Lusbh, Lus7] can be improved by composition with a
suitable involution. In the special case G = Sp,,, (C), that already transpired from
work of Mceglin and Waldspurger [Wal].

Having obtained a good understanding of affine Hecke algebras attached to dis-
connected reductive groups, we turn to Langlands parameters. Let

¢: Wp x SLy(C) — LG

be a L-parameter and let p be an enhancement of ¢. (See Section 3 for the precise
notions.) Let GY; be the adjoint group of the complex dual group G¥ and let G, be
the simply connected cover of GY,. Let Zgv (¢(Ir)) be the centralizer of ¢(Ir) in
Gy, and let J, = Z{ v (¢(Ir)) denote its inverse image in GY.. Similarly, we consider
the group G, defined to be inverse image in G, of the centralizer of $(Wp) in GY,.
We emphasize that the complex groups J, and G4 can be disconnected — this is the
main reason why we have to investigate Hecke algebras for disconnected reductive
groups.

Recall that ¢ is determined up to GV-conjugacy by ¢|lw, and the unipotent el-
ement uy, = qZ)(l, (3 %)) As the image of a Frobenius element is allowed to vary
within one Bernstein component, (¢[1,,us) contains almost all information about
such a Bernstein component.

The cuspidal support of (ug, p) for G = G is a triple (M,CM,¢€) as before.
Thus we can associate to (¢, p) the twisted affine Hecke algebra H (G, M, q€,Z).
This works quite well in several cases, but in general it is too simple, we encounter
various technical difficulties. The main problem is that the torus 7' = Z(M)° will not
always match up with the torus from which the Bernstein component of ®.(G(F))
containing (¢, p) is built.

Instead we consider the twisted graded Hecke algebra H(G, M, ¢€,r), and we
tensor it with the coordinate ring of a suitable vector space to compensate for the
difference between GY. and GV. In Paragraph 3.1 we prove that the irreducible
representations of the ensuing algebra are naturally parametrized by a subset of the
Bernstein component ®.(G(F))$  containing (¢, p). In Paragraph 3.3 we glue fami-
lies of such algebras together, to obtain the twisted affine Hecke algebras H(s",Z)
featuring in Theorem 1. This requires careful analysis of the involved tori and root
systems, which we perform in Paragraph 3.2.

We discuss then, in Section 4, the relation of the above theory with the stable
Bernstein center on the Galois side of the LLC. In Section 5 we explain and work
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out the examples of general linear, special linear and classical groups. It turns out
that, for general linear groups (and their inner twists) and classical groups, the ex-
tended affine Hecke algebras for enhanced Langlands parameters (with a suitable
specialization of the parameters) are Morita equivalent to those obtained from rep-
resentations of reductive p-adic groups. In the case of inner twists of special linear
groups we establish a slightly weaker result.

Let us compare our paper with similar work by other authors. Several mathe-
maticians have noted that, when two Bernstein components give rise to isomorphic
affine Hecke algebras, this often has to do with the centralizers of the corresponding
Langlands parameters. It is known from the work of Bushnell-Kutzko (see in par-
ticular [BuKu2]) that every affine Hecke algebra associated to a semisimple type for
GL,(F) is isomorphic to the Iwahori-spherical Hecke algebra of some [[;, GLy, (F3),
where > . n; < n and F; is a finite extension of the field F'. A similar statement
holds for Bernstein components in the principal series of F-split reductive groups
[Roc, Lemma 9.3].

Dat [Dat, Corollary 1.1.4] has generalized this to groups of “GL-type”, and
in [Dat, Theorem 1.1.2] he proves that for such a group Zgv(¢(Ir)) determines
[I; Rep(G(F'))®, where s runs over all Bernstein components that correspond to
extensions of |1, to W x SLy(C). In [Dat, §1.3] Dat discusses possible generaliza-
tions of these results to other reductive groups, but he did not fully handle the cases
where Zgv(¢(IF)) is disconnected. (It is always connected for groups of GL-type.)
Theorem 1, in combination with the considerations about inner twists of GL, (F) in
Paragraph 5.1, provide explanations for all the equivalences between Hecke algebras
and between categories found by Dat.

Heiermann [Hei2, §1] has associated affine Hecke algebras (possibly extended with
a finite R-group) to certain collections of enhanced L-parameters for classical groups
(essentially these sets constitute unions of Bernstein components). Unlike Lusztig
he does not base this on geometric constructions in complex groups, rather on affine
Hecke algebras previously found on the p-adic side in [Heil]. In his setup (2) holds
true by construction, but the Hecke algebras are only related to L-parameters via
the LLC, so not in an explicit way.

In [Hei2, §2] it is shown that every Bernstein component of enhanced L-parameters
for a classical group is in bijection with a Bernstein component of enhanced unram-
ified L-parameters for a product of classical groups of smaller rank. (Some cases
require extending the relevant notions to full orthogonal groups, which is straight-
forward.) So in the context of [Hei2] the data that we use for affine Hecke algebras
are present, and the algebras appear as well (at least up to Morita equivalence),
but the link between them is not yet explicit. In Paragraph 5.3 we discuss how our
results clarify this.

Acknowledgements.
We thank the referees for their detailed reports, which were very helpful to clarify
parts of the paper.
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1. TWISTED GRADED HECKE ALGEBRAS

We will recall some aspects of the (twisted) graded Hecke algebras studied in
[AMS2]. Let G be a complex reductive group, possibly disconnected. Let M be a
quasi-Levi subgroup of G, that is, a group of the form M = Zg(Z(L)°) where L is
a Levi subgroup of G°. Notice that M° = L in this case.

We write T' = Z(M)° = Z(M°)°, a torus in G°. Let P° = M°U be a parabolic
subgroup of G° with Levi factor M° and unipotent radical U. We put P = MU.
Let t* be the dual space of the Lie algebra t = Lie(T).

Let v € m = Lie(M) be nilpotent, and denote its adjoint orbit by CM. Let
¢€ be an irreducible M-equivariant cuspidal local system on CM. Then the stalk
ge = g€|, is an irreducible representation of Ays(v) = mo(Zas(v)). Conversely, v and

ge determine CM and ¢&€. By definition the cuspidality means that Resﬁﬁ 88)

direct sum of irreducible cuspidal Ajso(v)-representations. Let € € Irr(Apze(v)) be
one of them, and let £ be the corresponding M°-equivariant cuspidal local system
on CM °. Then & is a subsheaf of ¢&. See [AMSI, §5] for more background.

The triple (M,CM,q€) (or (M,v,qe)) is called a cuspidal quasi-support for G. We
denote its G-conjugacy class by [M,CM, ¢€]¢. To these data we associate the groups

Wye = Ng(g€)/M,  where Ng(¢€) = Staby, (ar)(¢€),
Wae = Staby.,, () (¢€) /M = Ngen (M) /M,
Wg = StabNGO(MO)((‘:)/MO = NG° (MO)/MO?
Rye = Na(P,q€)/M,  where Ng(P, ¢€) = Na(¢€) N Ng(P).
The group Wge acts naturally on the set
R(G°,T) :={a e X*(T)\ {0} : a appears in the adjoint action of T" on g}.

By [Lusl, Theorem 9.2] (see also [AMS2, Lemma 2.1]) R(G°,T) is a root system
with Weyl group We = W .. The group Ree is the stabilizer of the set of positive
roots determined by P and

)a€ is a

(1.1)

Wee = W;g X Rge.
We choose semisimple subgroups G; C G°, normalized by Ng(¢€), such that the
derived group Gg,, is the almost direct product of the G;. In other words, every G
is semisimple, normal in G°M, normalized by We (which makes sense because it is

already normalized by M), and the multiplication map
(1.2) mgage: Z(GO>O X G1 X+ xGg— G°

is a surjective group homomorphism with finite central kernel. The number d is
not specified in advance, it indicates the number of independent variables in our
upcoming Hecke algebras. Of course there are in general many ways to achieve
(1.2). Two choices are always canonical:

o G =0Gyg,, withd=1,
(1.3) e cvery Gj is of the form Ny Ny --- Ny, where {Ny,..., Ny}

is a Ng(¢€)-orbit of simple normal subgroups of G°.
In any case, (1.2) gives a decomposition
(1.4) g="2(g) Dg1 ®--- Dgqg where Z(g) = Lie(Z(G")), g; = Lie(Gj).

Each root system

R; = R(G]‘T, T)= R(Gj, G;N T)
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is a Wye-stable union of irreducible components of R(G°,T). Thus we obtain an
orthogonal, We-stable decomposition

(1.5) R(GO,T) =Ry U---URy.

We let ¥ = (r1,...,rg) be an array of variables, corresponding to (1.2) and (1.5) in
the sense that r; is relevant for G; and R; only. We abbreviate

(C[F] = (C[I‘l, cee ,I‘d].

Let §: (Wye/ I/V;g)2 — C* be a 2-cocycle. Recall that the twisted group algebra
C[Wge, ] has a C-basis {N,, : w € Wye} and multiplication rules

Nw : Nwl = h(w, w')Nww/.

In particular it contains the group algebra of W;E'
Let ¢: R(G°,T)rea — C be a Wyg-invariant function.

Proposition 1.1. There exists a unique structure of an associative graded algebra
on ClWye, t] @ S(t*) @ C[r], such that:
(i) the twisted group algebra C[Wye, ] is embedded as subalgebra in degree 0;
(ii) the algebra S(t*) @ C[¥] of polynomial functions on t ® C? is embedded as a
subalgebra, with twice the usual grading on S(t*) and each r; in degree 2;
(11i) C[r] is central;
(i) the braid relation EN,, — Ny, *& = c(a)rj(§ — *§)/a
holds for all £ € S(t*) and all simple roots o € R;
(v) NwéNv_1 =7¢ for all £ € S(t*) and v € Re.

Proof. For d = 1,Gy = G§,, this is [AMS2, Proposition 2.2]. The general case can
be shown in the same way. (]

We denote the algebra just constructed by H(t, Wye, cr, ). When Wye = Wee,
there is no 2-cocycle, and write simply H(t, Wes cr). It is clear from the defining
relations that

. )" QClr] = Ot x 7¢ 1s a central subalgebra o t, Wee,cr,0).
1.6) St @ C[F] = Ot x C)Wee i 1 subalgebra of H(t, W,e, cF
By a central character of an H(t, Wy, cr’, f)-module we shall mean an element of

t/Wye x C¢ by which O(t x CH)Wee acts on that module. For ¢ € tWee = Z(g)Mae
and (m, V) € Mod(H(t, Wye, cr', ) we define (¢ ® 7, V) € Mod(H(t, Wye, cr, ) by

(€@ m)(fifeNw) = f1(QO)7(f1f2Nw) f1 € S(t"), fo € Clr],w € We.

To the cuspidal quasi-support [M, Cf)\/[ ,¢€] we associated a particular 2-cocycle
Be: (Wae/Wee)? = C*,

see [AMS]1, Lemma 5.3]. The pair (M°,v) also gives rise to a Wyg-invariant function
¢: R(G°,T)ea — Z, see [Lus2, Proposition 2.10] or [AMS2, (12)]. We denote the
algebra H(t, Wye, cT, fige ), with this particular ¢, by H(G, M, ¢&,T).

In [AMS2] we only studied the case d = 1,R; = R(G°,T), and we denoted
that algebra by H(G, M, ¢€). Fortunately the difference with H(G, M, ¢€,T) is so
small that almost all properties of H(G, M, ¢€) discussed in [AMS2] remain valid for
H(t, Wye, T, ige). We will proceed to make this precise.

Write v = vy + - -+ 4+ vg with v; € g; = Lie(G;). Then

ijwo :Cé‘fl—l—---—i—(f%d , where M; = M°NGj.
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The MP°-action on (CM° €) can be inflated to Z(G°)° x M; x --- x My, and the

pullback of £ becomes trivial on Z(G°)° and decomposes uniquely as
(1.7) Ml =E1® - ®&q

with £; a Mj-equivariant cuspidal local system on qu)\;[ 7. From Proposition 1.1 and
[AMS2, Proposition 2.2] we see that

(1.8) H(GO, M°.E, F) = H(Gl, My, 51) - H(Gd, My, gd)
Furthermore the proof of [AMS2, Proposition 2.2] shows that
(1.9) H(G, M, ¢€,7) = H(G°, M°,E,¥) x C[Rye, tge]-

1.1. Standard modules.

To parametrize the irreducible representations of the above algebras we use some
elements of the Lie algebras of the involved algebraic groups. Let og € g be semisim-
ple and y € Zg4(0p) be nilpotent. We decompose them along (1.4):

00 =0+ 001+ -+ 004 with 005 € 85,02 € Z(g),
y=uy1+---+yqg withy; €g;.
Choose algebraic homomorphisms 7;j: SLa(C) — Zg;(00,;) with dv; (§§) = vj-

Given 7 € C?, we write 0; = a9 j + d; (TOJ _%) and

a7 (§ %)

oc=o09+d

d
(1.10) Yl (
(6 5%
Notice that [0, y;] = [0, y;] = 2r;jy;. Let us recall the construction of the standard
modules from [Lus2, AMS2]. We need the groups

M;(y;) = {(gj, M) € Gj x C* : Ad(g;)y; = Ajy; },
Me(y) = {(g.X) € G° x (C*): Ad(g)y; = AJy; Vj = 1,....d},
M(y) = {(g.}) € G°Ng(q€) x (C*)*: Ad(g)y; = Ny; Vi = 1,....d},

n _31)+...+d7d(rg _id),
)-

=21

and the varieties
Py, = {g(P°NG;) € Gj/(P°NGy) : Ad(g )y, € Co + Lie(U N Gy)},
Py = {gP° € G°/P° : Ad(g~ ")y € C}" + Lie(U)},
Py = {gP € G°Ng(¢€)/P : Ad(g~ ")y € CM + Lie(U)}.

The local systems &;,& and ¢€ give rise to local systems Sj,c‘f and ¢€ on Py, Py
and Py, respectively. The groups M;(y;), M °(y) and M (y) act naturally on, respec-
tively, (Pyj,gj),(Pg,(‘j) and (P, ¢€). With the method from [Lus2] and [AMS2,
§3.1] we can define an action of H(G, M, g€, F) x M (y) on the equivariant homology
Hiv‘[(y)o(Py, ¢€), and similarly for H?“”"(Pg,é) and Hj”j<y)°(7>yj,zfj). As in [Lus2]
we build
o M( )o .
E =C ® H,” 4 (Pyjﬂgj)‘

Yj,05,T5 R -
Hiy g0 (13 })



10 A.-M. AUBERT, A. MOUSSAOUI, AND M. SOLLEVELD

Similarly we introduce
Ao

EZCJ)JJ? = Caf ® H* ®)° (P';? g)’
ey ()

Eyor=Cor @ 7MW (P, q8).
ey ()

By [AMS2, Theorem 3.2 and Lemma 3.6] these are modules over, respectively,
H(Gj, Mj, 5]) X WO(ZGj (0'07]‘, yj)), H(GO, MO, g, F) X 7T0(Zgo (O'(), y)) and
H(G, M, q€, %) xm0(Zgong(qe) (00, y)). This last action is the reason to use G°Ng(¢€)
instead of G in the definition of P,.

When P, is nonempty, Py d(g)y is nonempty for some g € G°Ng(¢€). As Ppq(g)y
gPy = Py, it suffices to consider the cases where Py is nonempty. Then Py,
Py x Rge [AMS2, (17)] and (1.9) leads to a natural module isomorphism

11l

H(G7M7q(€,F)
H(G°,M°,£,F) " y,0,7"

It can be proven in the same way as the analogous statement with only one variable
r, which is [AMS2, Lemma 3.3].

(1.11) By ,r=ind

Lemma 1.2. With the identifications (1.8) there is a natural isomorphism of
H(G°, M°, E,T)-modules

EO ~Y Cg-z ® EO

(o]
Y,0,T y101r1® ®E

Yd,0d,Td’

which is equivariant for the actions of the appropriate subquotients of Mo(y)

Proof. From (1.2) and Z(G°)Z(G;) C P° we get natural isomorphisms

(1.12) Pyy X = X Py, — Py

Looking at (1.7) and the construction of £ in [Lus2, §3.4], we deduce that

(1.13) E=E ®---® &y as sheaves on Py

From (1.2) we also get a central extension

(1.14) 1 — kermge — Z(G°)° x My(y1) X -+ x My(yq) — M°(y) — 1.

Here ker mgo refers to the kernel of (1.2), a finite central subgroup which acts

trivially on the sheaf £ ® --- ® &5 = m{;.£. Restricting to connected components,
we obtain a central extension of M°(y)° by

M = 7(G°)° x My(y1)° X -+ x My(ya)°

In fact, equivariant (co)homology is inert under finite central extensions, for all
groups and all varieties. We sketch how this can be deduced from [Lus2, §1]. By
definition . . _

H;\(Zo(y)o (P;? g) = H* (Mo(y)o\(r X P;)? FE)

for a suitable (in particular free) M°(y)° -variety I' and a local system derived from
£. On the right hand side we can replace M °(y)° by M without changing anything.
If T is a suitable variety for M, then I x T is also one. (The freeness is preserved

because (1.14) is an extension of finite index.) The argument in [Lus2, p. 149] shows
that

H*(M\(T' x Py),r€) = H*(M\(L x T x Py), 5, &) = Hi (Py, E).
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In a similar way, using [Lus2, Lemma 1.2], one can prove that

(1.15) =W (P2 &) = HM (P2 €).

The upshot of (1.12), (1.13) and (1.15) is that we can factorize the entire setting
along (1.8), which gives

(1.16) HY (P, E) @0 HYMW (P, &) = BN (P2 €).

The equivariant cohomology of a point with respect to a connected group depends
only on the Lie algebra [Lus2, §1.11], so (1.14) implies a natural isomorphism

HZ(GO)o({l}) X H&l(yl)o({yl}) XX H}Qd(yd)o({?/d}) = H;io(y)o({y})‘
Thus we can tensor both sides of (1.16) with C, 7 and preserve the isomorphism. [J

Given p; € Irr(m(Za,(00,5,y;))), we can form the standard H(G}, M, £;)-module

o

Yjs0jiipg Homﬂo(ZGj (00.9:) (P> Eyy,dy ﬂ"])
Similarly p° € Irr(wo(ZGO (00, y))) and p € II'I‘(?TO(ZGONG(qg) (00, y))) give rise to
E:l(/),a 700 Homﬂo(zcO (20,y)) (n° E?(J),Uf)’

E

y7o—7r7p T

(1.17)

HomWO(ZGONG(qS)(Umy)) (p; Ey,tff)'

We call these standard modules for respectively H(G°, M°, £, 7) and H(G, M, ¢€,T).
The canonical map (1.2) induces a surjection

(1.18) m0(Za, (00,1,91)) X - -+ X W0(Zg (00,4, Ya)) = To(Zge (00, Y))-

Lemma 1.3. Let p° € Irr(mo(Zge (00,y))) and let ®C.l_1 p; be its inflation to

H;»lzl 70(Zc; (00,5, v5)) via (1.18). There is a natural isomorphism of H(G°, M°, £, T)-
modules

~C,, ®FE,

Y1,01,71,P1

®---QF;

;UFP Yd,Td>TdPd’
Every ®j 1P € Irr(H 17m0(Za;(00,5,y;))) for which ® Ey. o0, 1S nonZETO
comes from mo(Zge (ao,y)) via (1.18).

Proof. The module isomorphism follows from the naturality and the equivariance in
Lemma 1.2.
d d : d o

Suppose that ®j:1 pj € Imr(]_[j:1 mo(Za; (007j,yj))) appears in ®j:1 Ey oiri
By [AMS2, Proposition 3.7] the cuspidal support ¥z s, )(¥5,p5) is Gj-conjugate
to (Mj,Cé\jj,é’j). In particular p; has the same Z(G;)-character as &;, see [Lusl,
Theorem 6.5.a]. Hence ®;p; has the same central character as mg, €. That central
character factors through the multiplication map (1.2) whose kernel is central, so
®;p; also factors through (1.2). That is, the map (1.18) induces a bijection between
the relevant irreducible representations on both sides. O

For some choices of p the standard module E, ;7 , is zero. To avoid that, we
consider triples (o9, y, p) with:
® o( € g is semisimple,
e y € Z4(09p) is nilpotent,
e pE II‘I“(T['D(ZG(O'(), y))) is such that the cuspidal quasi-support q¥z, () (¥, p)
from [AMS1, §5] is G-conjugate to (M,CM, q€).
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Given in addition ¥ € C%, we construct o = og+dy (SPF) € gasin (1.10). Although
this depends on the choice of ¥, the conjugacy class of o does not.
By definition
H(GONG(qg)a M, q¢, F) = H(Ga M, q¢, F)a
but of course mo(Zgong(4)(00,y)) can be a proper subgroup of mo(Zg(00,y)). As
shown in the proof of [AMS2, Lemma 3.21], the functor ind"(Za(90.u)) ) provides

m0(ZGoNg (q€)(90,Y)
a bijection between the p in the triples for G°Ng(¢€) and the p in the triples for G.
g Za(0w)
m0(ZgoNg (q€) (90:9))

For p = p we define, in terms of (1.17),

(1‘19) Ey7o-77?7p = Ey70-7F7ﬁ'

We would like to exhibit the central characters of these standard H(G, M, ¢€, ¥)-
modules. It has turned out that the treatment of this aspect in [AMS2] was flawed,
we correct that here. We fix a homomorphism of algebraic groups

Yv: SLo(C) = M with  dvy, (3§) =v.
We write
(1.20) dvy ([1) —01) =0y =0y1+ -+ 0yq where o, ;€ Lie(M NGj).

For 7 € C? we put
TOy = T10y1 + -+ 1q0, 4 € M.

We record the linear bijection

Yo: t®CY — t®C% oy, 1)
(00,7) +— (00 + 7oy, 7)

Here the target is a linear subspace of m @ C? and the inverse map is
vt (0,7) = (0 — Fo,, 7).

The next result is a correction of [AMS2, Proposition 3.5], which was based on a
wrong interpretation of [Lus4, §8]. Our improvement consists mainly of adding ¥:F!
at the right places.

Proposition 1.4. Let (y,0,7) be as in (1.10) and assume that P, is nonempty.

(a) (Ad(Ng(P,q€)G®)o —Toy,) Nt is a single Wyg-orbit in t.

(b) The H(G, M, ¢€,¥)-module E, 7 admits the central character
((Ad(Ng(P, ¢€)G®)o — Fo,) N, 7).

(¢) The pair (y, o) is G°-conjugate to one with oy and Fo, + d7 ( o i

(d) Suppose (y,o) has the properties as in (c). Then og,0, and d5 (§ ) commute,
and o, —|—dﬁ'(‘01 (1)) € tr.

(e) Suppose (y,o) has the properties as in (c). Then the central character of Ey ,

P
can be expressed as Wye (0'0 + (fo, +dy ( ry 2))7 77)'

Proof. (a) By [Lus4, Theorem 8.11}, H(G}, M;,&;,r;) is canonically isomorphic to
the endomorphism algebra of a certain perverse sheaf K;, in the G; x C*-equivariant

bounded derived category of constructible sheaves on g;. According to [Lus4,
§8.13.a], there exists a canonical surjection

(1.21)  HE,.ox (point) = O(g; ® C)*C" = O(g;)% @ Clrj] — Z(End(Kj)).
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By [AMS2, Lemma 2.3] the right hand side is

(122)  Z(End(K))) = Z(H(Gj, Mj, &,17)) = O(tng;)"% @ Clry).

By [Lus4, §8.13.b], the composition of (1.21) and (1.22) corresponds to an injection
like ¥, namely

(tNg;)/Weg, ®C — Irr(O(g; & €)%<

1.23
(1.23) (00,4,75) = (004 +Tj0u;, 7))

)

where the right hand side is the variety of semisimple adjoint orbits in g; ®C. Hence
(Ad(Gj)aj — rjov;) NtNg; = Ad(Gj)oo,; NtN g;

is either empty or a single Wg -orbit. We will see in the proof of part (b) that it is
nonempty. Combining these statements for all j = 1,...,d, we find that (Ad(G°)o —
To,) Nt is a single We-orbit Weo’ C t. As M stabilizes m and centralizes t:

Ad(G°M)o N (t+ 7o) = Ad(M)(Weo' + 7o) N (t+ 7o)
= (Wea' + Ad(M)7o,) N (t+7oy).

Here Ad(M) (7o) lies in the derived subalgebra of m, so the right hand side of (1.24)
equals Weo' + 7o,,. In other words,

(Ad(G°M)o — Fo,) Nt = Weo'.
As Ng(P,¢€)G°/G°M = Wye /We, we can pass from Ad(G°M )-orbits to
Ad(Ng(P, ¢€)G°)-orbits in the required way.
(b) The assumption P, # ) implies that Hy(y)O(P;;, £) is nonzero. By [Lus2,

—

Proposition 8.6.c] and because the semisimple adjoint orbits in Lie(M (y)°) form an
irreducible variety, EJ - is nonzero for all eligible (0,7)] ~.

The action of O(tN gj)WEJ' ® Clrj] on B, 5. »; can be realized as

Z(H(Gjanvgjarj)) — Héj XCX(pOint) - H;\(/[j(yj)o(yj) - H}\k@(yj)o(,Pyj)

(1.24)

and then the product in equivariant homology. By construction H }\k/.r-(y-)o (y;) acts on
VAN
Ey; 0,r; via the character (oj,7;)/ ~. Hence H/, .. (point) acts via the character
J
Ad(G; x C*)(oj,75). In view of (1.21)-(1.23), Z(H(G}, M;,&j,rj)) acts via
((Ad(Gj)aj = rjow;) Mg Nt 7))
For all j = 1,...,d together, this shows that Z(H(G°, M°,E,T) acts on E° - as

y70.77”

o —r1oy,) Nt 7). Now we use that Ng(P, q ~ e/We an
((Ad(GO) X ) _> N hat N (P g)GO/GO Wq /W d
Z(H(G, M, ¢€,v)) = Z(H(G°, M°, £, 7)) Wae/We

and we conclude with (1.11).

(c) By part (b) with 7 = 0 we may assume that op € t. Then exp(y) is contained
in the reductive group Zg(0g)°, so we can arrange that the image of 4 lies in there.
Applying part (b) to this group, we find g € Zg(0p)° such that

Ad(g)o = o9+ Ad(g)dy (5 %) liesin t+ 7oy,

Then Ad(g)d¥ (§ %) — 7o, € t, so (Ad(g)y, Ad(g)o) has the required properties.
(d) The assumption and o, € m imply that dy(§ %) € m. As 0g € t = Z(m),
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it commutes with both o, and dvy (é _01). The latter two differ by an element of

t = Z(m), so they commute as well. It follows that

(1.25) Xy 2%7(8291)%(2612)
is an algebraic cocharacter of T'. By definition of tg, the derivative
dxyw: r = dy ((1) _01) — 1oy

evaluates to an element of X, (7T') ®z R = tg for every r € R.
(e) As in the proof of part (c), we may assume that im(y) C Zg(09)°. Put s, =
v (2% §) and consider the parameter (Ad(sy)o, Ad(sy)y, 7). We have

Ad(sy)o + sy, = 09 +dY ( qug) —7(—sy) € L.

Here —s, is the semisimple element in the slo-triple d-, (91 8) , —Sy, —U, which is
conjugate to v, sy,dv, (§9) by 7» (% §) € M. Thus part (c) says that

Wae (00 + 700 + 47 (773) . 7)

is also the central character of I, ; i

7p. D

1.2. Irreducible modules.

The standard modules and the irreducible modules which are annihilated by
must be treated somewhat differently from the others. We need an improvement on
the analysis in [AMS2, Lemma 3.9 and Proposition 3.10].

o
Theorem 1.5. Let Ey,ao,o,p
each r;j acts as zero.

(a) EZ,UO,O,pO /
use the homological grading from H.(Py,&).

(b) For each d € Z,

@nzd Holr (Z0 (o0.4) (0 Ha (P, €))

is an H(G®, M*°, &, F)-submodule of Ey , ¢ so-
(c) E} 5,000 has a unique irreducible quotient isomorphic to the module M,

from [AMS2, Proposition 3.8].

o be a nonzero standard H(G®, M°, €, ¥)-module on which

= Homy (7.0 (00,)) (0 Hx (P, £)) as graded C[We]-modules, where we

,00,0,p°

In the proof of [AMS2, Lemma 3.9] it was assumed incorrectly that S(t*) acts
semisimply on EJ o o, which lead to the wrong claim that it is always completely
reducible as H(G°, M°, &, ¥)-module.

Proof. (a) By [Lus4, 10.13], Ey , o, can be identified with H*(sz’,z‘:) as graded
We x mo(Zageo (00, y))-representations. In fact these finite groups both preserve the
homological grading. Now apply Hom (7 .. (0o.)) (%, ?) to both modules.

(b) First we assume that og is central in g. Write
H(G®, M®,€,F) = 5(Z(9)") © H(Gger, M N Ger, €, T)

as in (1.8). Then S(Z(g)*) acts on E? by the character oy and the restriction

y,O’o,O,pO
of E;m’o,po to H(Gﬁer, M NGy, €, r) is
Ey00=Coo ® Hf/fo(y)o(Po,S).
o () v

M° (y)°
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Here HY"W' (P2 €) is a graded H(GS,, M N G5, €, F)-module by [Lus2, Theorem
8.13], although typically not semisimple. As Cy is a graded H., (y)o({y})—module

it follows that Ej,, is a graded H(Gg,,, M N Gy, &, r)-module. For E ,  as

H(G®, M°, &, r)-module, we can still say that the action of H(G®°, M° &) only
raises degrees, and that an element x € H(G®, M°, E,T) of degree n can only raise
the degree of an element of E , o by at most n.

Now we lift the condition on oy and we consider the Levi subgroup Q° = Zge (o)
of G°. By Proposition 1.4.a, Z(Lie(M°®)) contains a G°-conjugate of oy. Upon
replacing (y,00) by a suitable G°-conjugate, we may assume that M° centralizes
00, so that Q° D M°. By [Lus6, Corollary 1.18], there is a natural isomorphism of

H(G®°, M*°, &, F)-modules

(126) Wex S(t") ® B (=H(G,M°E) © B  — E

o Y,00, Y,00, 00,0°
W2 ws (1) H(Q°,M?°,E)

We note that [Lus6, Corollary 1.18] is applicable because » = 0 and ad(og) is an
invertible linear transformation of Lie(Ug-), where Uge is the unipotent radical of
a parabolic subgroup of G° with Levi factor @°. The map (1.26) comes from a
morphism 73?5’20 — Py, which entails that it changes all homological degrees (see

part a) by the same amount, namely dim P, — dim 73520. From (1.26) we deduce
that, as S(t")-modules and as graded vector spaces,

yaoo[dunPQ —dimP? ] @ Cw ®c EyUOO @ (w)* Efgmo,
weWe /WE° weWe /WE°

where [- - -] denotes a degree shift.

We denote the ideal generated by the r; by (r). As (r) is divided out in (1.26),
the action of w € Wg on S(t*) reduces to the usual action, induced from the action
of We on t. Thus the property established above in the case o central remains
valid here: the action of an element x € S(t*) of degree n on E, ,, 0 can only raise
degrees, and raises them by at most n. Since

H(G®, M°,€,7)/(F) = S(t*) @ C[We]

as vector spaces and C[W¢] preserves the degrees (because it sits in degree 0,
see also part a), the degree properties of E, 5,0 also hold when we regard it as
H(G°, M°, &, r)-module. In particular, for any d € 7 the sum of the subspaces in
degrees > d is a submodule. The action of mo(Zge (00, y)) preserves the degrees, so
this remains valid for

Homﬂo(ZGO(ffmy))( Ey 00,0 0) = E; 70,0,0°°

Combine that with part (a) to obtain the stated form.

(c) With parts (a,b) instead of [AMS2, Lemma 3.9], the proof of [AMS2, Proposi-
tion 3.10] still works. It shows that E} 500,00 has a unique irreducible subquotient
isomorphic to My ; , o and that the part of B, 0 po n one specific homologi-
cal degree projects bijectively onto this subquotient. More precisely, the argument

[AMS2, (40)—(42)] shows that this subquotient appears as

Homﬂ'Q(ZGo (Uo,y)) (p Hd(PO 5)) C E;,a’o,o,po7
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where d is the minimal degree for which this space is nonzero. By part (b),

0,>d I o o ¢
Eyo00,0 = EBn>d Homz (7, (Uo7y))(p ’H”(Py’g))
is a H(G°, M°, &, r)-submodule. Further

o,d . 00 o,>d ~ o o &
Ey,oo,O,pO = By 50,0,0° /Ey,oo,O,pO = Homyz, (70 (O—Ovy))(p 7Hﬂl(py’ £))

as C[Wg]-modules. The proof of part (b) can be modified to study the

H(G°, M°, &, r)-module E;’goopo. In the case that og is central, it shows that
o,d

y.00,0,p0 18 & semisimple module, on which the H(G°, M°, &, r)-action factors through
evgy0: H(G®,M°,E,¥)/(f) — C[Wg]
fx = f(oo)x fesk),xeClWel.
WexS(t*)
W& xS (t)
ty of modules that admit the S(t* @ C)-character (og,0), because Wé’? = (We)oy-

When oy is not central, the functor ind from (1.26) preserves irreducibili-

. A WexS(t9) .. .. Q°
Hence defo < S() preserves the semisimplicity of Ey, 50,0,0°"
This shows that the distinguished irreducible subquotient of EJ | . is a direct
summand of EZ:go,O, po- Oince EZ:gO70’po is a quotient of Ey ; 0, s0 is our distin-
guished subquotient. O

The next result generalizes [AMS2, Theorem 3.20] to several variables r;. We
define Irrz(H(G, M, ¢€,T)) as the set of equivalence classes of those irreducible rep-
resentations of H(G, M, ¢&,T) on which each r; acts as 7;.

Theorem 1.6. Fiz i € C?. The standard H(G, M, g€, T)-module Ey 5 p is nonzero
if and only if qVz,(50)(y, p) = (M, CM q&) up to G-conjugacy. In that case it has
a distinguished irreducible quotient M, 7 ,, which appears with multiplicity one in

E, 57,
y7U’r7p
The map My , 5, < (00,y,p) sets up a canonical bijection between

Irr7(H(G, M, ¢€,7)) and G-conjugacy classes of triples as after Lemma 1.3.

Proof. For H(G}, M;, ;) this is [AMS2, Proposition 3.7 and Theorem 3.11], where
we use Theorem 1.5 to replace the input from the flawed [AMS2, Lemma 3.9]. With
(1.8) and Lemma 1.3 we can generalize that to H(G®, M°,E,r). The method to go
from there to H(G°Ng(¢€), M, ¢€,T) is exactly the same as in [AMS2, §3.3-3.4] (for
H(G°, M°,€&) and H(G°Ng(¢€), M, ¢€)). That is, the proof of [AMS2, Theorem
3.20] applies and establishes the theorem for H(G°N¢g(¢€), M, ¢€,T). In view of
(1.19) we can replace G°Ng(¢€) by G. O

The irreducible module M, , , has the same central character as the standard
module E, ;= , of which it is a quotient. It can be found in Proposition 1.4.

The above modules are compatible with parabolic induction, in a suitable sense
and under a certain condition. Let Q C G be an algebraic subgroup containing M,
such that Q° is a Levi subgroup of G°. Let y,o,7,p be as in Theorem 1.6, with

o,y € q = Lie(Q). By [Ree, §3.2] the natural map

(1.27) m0(Zq(0:9)) = m0(Zgnze (00)(¥)) = T0(Zzg(00) () = m0(Zc(0,y))
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is injective, so we can consider the left hand side as a subgroup of the right hand
side. Let p% € Irr(mo(Zg(o,y))) be such that Y74 (00) (Y5 p?) = (M,CM ¢&). Then

Q Q
Ey’a,r,p,My’Ump,Ey o2 and M~ are defined.

0,7,

Further, PQ° is a parabolic suybgroup of G° with Q° as Levi factor. The unipotent
radical R, (PQ°) is normalized by Q°, so its Lie algebra ug = Lie(R,(PQ°)) is stable
under the adjoint actions of Q° and q. By (1.4) ug decomposes as the direct sum
of the subspaces ug ; = ug N g;. In particular ad(y;) acts on ug ;. We denote the
cokernel of ad(y;): ug,; — ug,; by yug ;. From [o;,y;] = 2r;y; we see that ad(o;)
descends to a linear map yug ; — yuUQ,;-

Following Lusztig [Lus6, §1.16], we define

€y Lie(M%(y)°) — C
(o,7) —  det(ad(oj) — 2rj : yug; — JUQ;)

All parameters for which parabolic induction could behave problematically are zeros
of a function ¢, ;.

Proposition 1.7. Lety, 0,7, p be as in Theorem 1.6, and assume that €, j(o,7) # 0
foreach j=1,...,d.

(a) There is a natural isomorphism of H(G, M, g€, r)-modules

- Q ~ @
H(G, M, g€, T) H(QM 4.9 B orpe = EB,) Homzy (2 (0.)) (P £) @ Eyorp;

where the sum runs over all p € Irr(mo(Zg(o,y))) with
quzc(ao)(y7 p) = (M7 C{i\/lv qg)
(b) For =0 part (a) contains an isomorphism of S(t*) x C[Wye, tge]-modules

= Q ~ Q .
H(G, M, &%) H(Q qu 7) M, 500 = @p Hotry (7(0,)) (0™, P) @ M,y 5,

(¢) The multiplicity of M, .5, in H(G, M, ¢€,T) ® EY

Lo 18
H(QMqE5) ¥7"P
[p9: p]WO(ZQ(U7y))' It already appears that many times as a quotient, via
EfanQ — MfanQ. More precisely, there is a natural isomorphism

Homygur,g6.5) (M2 - 0s My.o o) = Hotr (2 (0.4 (0%, 0)"

Proof. For twisted graded Hecke algebras with only one parameter r this is [AMS2,
Proposition 3.22], as corrected in [AMS2, Theorem A.1] and in the version with
quasi-Levi subgroups as discussed on [AMS2, p. 47]. Using Theorem 1.6, the proof
of that result also works in the present setting. O

For an improved parametrization we use the Iwahori-Matsumoto involution, whose
definition we will now generalize to H(G, M, ¢&,r). Extend the sign representation
of the Weyl group W;g to a character of Wye which is trivial on Rye. Then we define

(1.28) IM(Ny) = sign(w) Ny, IM(r;) =rj, IM(§) = =€ (€ € ).

Notice that IM is canonically determined by G, P, M and ¢&, precisely the data that
are needed to define H(G, M, ¢&,1). Twisting representations with this involution is
useful in relation with the properties temperedness and discrete series (with which

Theorem 1.6 is incompatible), see [AMS2, §3.5].
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Proposition 1.8. (a) Fiz 7€ C?. There exists a canonical bijection

(00,4, P) = M, 27 0 ) o070
between conjugacy classes triples as in Theorem 1.6 and Irrz(H(G, M, ¢€,T)).
(b) Suppose that R(T) € R%o' Then IM*My d_,(,? ﬁ) . 1is tempered if and only

Yy 0_07. —00,T,pP
if o9 € itg = iR ®y X*(T)

. d % . . .
(¢) Suppose that R(7) € RY,. Then IM My,d“?@f?)—oo,ﬁp is essentially discrete

series if and only if y is distinguished in g. In this case o9 € Z(g).
(d) Let ¢ € g% = Z(g)%/%". Then part (a) maps (¢ + 00, y,p) to
IM*M - .
¢® y7dﬂ7<6 ,OF) —00,7,p
(e) Suppose that R(7) € RY,, and that og € itg + Z(g). Then

IM*M

L A

(0 _F>faof,p'
(f) Suppose that oo, oy +dy ( _01 (1)) € t (which can always be arranged by Proposition

* * .
1.4.c). Both IM Mya@(g —OF> and IM E%CW(S —OF) ooip admit the central
character Wyge (UO + (Fo, + d ( —DF g))’ 'F’).

—00,7,p

Proof. Part (a) follows immediately from Theorem 1.6. Parts (b) and (c) are con-
sequences of [AMS2, §3.5], see in particular (82) and (83) therein.
(d) From (1.17) and Lemma 1.3 we see that

EZ/:UI—C,FJ) = _C ® Eyzo'lvva

whenever both sides are defined. By Theorem 1.6 the analogous equation for M, ,/ 7 ,
holds. Apply this with ¢/ = d¥y (g_OF) — g and use that IM* turns —( into (.

(e) Notice that o9 — 0, € itg. We may assume that P, is nonempty, so that (1.11)
holds. Write p = 7" x p° as in [AMS2, Lemma 3.13]. By Lemma 1.3 and [Lus6,
Theorem 1.21](for the simple factors of G3,)

GO
Me - =M dr ®C_
yadﬁ(g _0-’)_‘7077_"7/)0 y7d'7<6 _F)+(O'Z—UO),F,/JO 9z
GO
— E der R ® C_ — EO .
57 ) tor-eorr @ €0 = Er(50)
By [AMS2, Lemma 3.16], which uses (1.11), we may identify
M = —rx M° .
y,d’7<6 _(]F)—ao,ﬁp e yxﬁ(g _OF) —00,7,p°

Similarly [AMS2, Lemma 3.18] gives an isomorphism of H(G, M, ¢&€, T)-modules

E /= . =7KE° " )
yadv(g _(]F)—ao,r,p y7d“7<6 _(];)—ao,r‘,p"
Applying IM* to both these modules, we obtain the desired statement.
(f) Since the first module is a quotient of the second, it suffices to consider the
latter. From (1.28) we see that the effect of IM* on central characters is Wye(o, ) —
Wye(—o, 7). Combine that with Proposition 1.4.e. O
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2. TWISTED AFFINE HECKE ALGEBRAS

We would like to push the results of [AMS2] and the previous section to affine
Hecke algebras, because these appear more directly in the representation theory of
reductive p-adic groups. This can be achieved with Lusztig’s reduction theorems
[Lus3]. The first reduces to representations with a “real” central character (to be
made precise later), and the second reduction theorem relates representations of
affine Hecke algebras with representations of graded Hecke algebras.

Our goal is a little more specific though, we want to consider not just one (twisted)
graded Hecke algebra, but a family of those, parametrized by a torus. We want to
find a (twisted) affine Hecke algebra which contains all members of this family as
some kind of specialization. Let us mention here that, although we phrase this
section with quasi-Levi subgroups and cuspidal quasi-supports, all the results are
equally valid for Levi subgroups and cuspidal supports.

Let G be a possibly disconnected complex reductive group and let (M,CM, ¢&)
be a cuspidal quasi-support for G. For any t € T = Z(M)° the reductive group
Gy = Z¢(t) contains M, and we can consider the twisted graded Hecke algebra

H(Gt) Ma qg, F) = H(tv NGt (qg)/M’ thv hq&t)-

Here ¥ = (ry,...,ry) refers to the almost direct factorization of G§ induced by (1.4).
Let us investigate how this family of algebras depends on ¢t. For any t € T, the
2-cocycle bger of Ng,(¢€)/M 1is just the restriction of fge: ng — C*. This can
be seen from [Lusl, §3] and the proofs of [AMSI, Proposition 4.5 and Lemma 5.4].
More concretely, the perverse sheaves (prl)qu and (pr1)|q€ on L1e(G) from [AMS2,

(90)] and [Lus2, §3.4] extend the perverse sheaves QF*(QE ) and g, (qE ) on Lie(G)Rrs
(see [AMS2, SS2] for the definition) from [AMSl §5]. The latter naturally contain

the corresponding objects g, *(qé' ) and g, *(qE ) for G¢. We denote the category
of G-equivariant perverse sheaves on a G-variety X by Pg(X). The algebra

C[Ng, (¢€)/M, tge 1] = Endpg, Lie(Gi)ns (qut,*(q?))

from [AMS1, Proposition 4.5 and Lemma 5.4] is canonically embedded in

(C[qu, hqg] = EndPgLie(G’)Rs (QW* ((/]‘é)) :

We will simply write Wye ¢+ for Ng,(¢€)/M, and bue for e ¢

On the other hand, the parameter function ¢;: R(Zg(t)°, T)rea — C could depend
on t, we have to specify which ¢ we use for a given root a. Recall that ¢;(«) was
defined in [Lus2, §2]|. For any root a € R(G°,T):

0o C Lie(Gy) <= a(t) = 1.

From [Lus2, Proposition 2.2] we know that R(G°,T) is a root system, so
R(G°,T)NRa C {a,2c, —a, —2a} for every nondivisible root a.

Proposition 2.1. [Lus2, Propositions 2.8, 2.10 and 2.12]

Let y € m be an element of the nilpotent orbit defined by the cuspidal quasi-support
(M, CY',¢€).

(a) Suppose that R(G°,T) NRa = {a, —a}. Then ci(a) satisfies

(2.1) 0=ad(y)® gy > go and 0+#ad@®)*“2: g4 — ga.
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This condition is independent of t, as long as go C Lie(Gy). So we can unam-
biguously write c(a) for ci(a) in this case. Moreover c¢(a) € N is even.
(b) Suppose that R(G°,T) NRa ={«a, 2a, —a, —2a}.

When a(t) =1, {a,2a} C R(Zg(t)°,T). Then ci(«) is again given by (2.1),
and it is odd. We write c(a) = ci(«) for such a t € T. Furthermore ¢;(2c) is
given by (2.1) with 2« instead of o, and it equals 2.

When o(t) = —1, still 2 € R(Z¢(t)°,T), and c:(2«) is given by (2.1) with
2« instead of . It equals 2, and we write c(2a) = 2.

With the conventions from Proposition 2.1, ¢; is always the restriction of
c: R(G°,T) = C to R(Zg(t)°, T)red-
Now we construct the algebras that we need.

Proposition 2.2. Consider the following data:
e a root datum R = (R, X, RY,Y) with a basis of R and an orthogonal decom-
position R = |_|j-{:1 R;;
e an array of invertible variables Z = (z1, ... ,2zq),
o a finite group I' acting on R, stabilizing each R; and the set of simple roots;
o W (R) x I'-invariant functions A\: Ryeqa — Z>0o and
A {a € Riea: A= ZY} — ZZO,'
e a 2-cocycle : T? — C*;
o for every v € I' an element t, € Hom(X,C*) such that a(ty) = 1 for all
a € R and such that v - 0, := x(ty)0ys defines an action of I' on C[X] =
span{f,: x € X} by algebra automorphisms.
The vector space
CIX) & Clz, 7] @ CIW (R)] © CIF
admits a unique algebra structure such that:
(i) C[X],C[Z,Z" '] and C[T, 4] are embedded as subalgebras.
(ii) C|z,Z7') = Clz1,2; ' .., 24,2, "] is central.
(i4i) The span of W(R) is the Iwahori-Hecke algebra H(W (R),Zz*") of W (R) with
parameters Z°M®) . That is, it has a basis {N,, : w € W(R)} such that
Ny N, = Ny if l(w)+{(v) = L(wv),
(N, + z;A(a))(Nsa — z;‘(a)) = 0 ifac€ R;isa simple root.
() ForyeT,we W(R) and x € X:

NyNybo Nyt = Ny -12(ty) 0y )

(v) For a simple root o € Rj and x € X :
ea:Nsa - NSaesa(:r) =

{ (22 = 27 (0, — 6, 1))/ (B0 — 0-0) oV ¢ 2y

(Z;\(a) . Zj—A(oc)+ e_a(z;\*(oz) . Zj—A*(a)))(Gx - Hsa(x))/(eo — 094) oV ey

Proof. In the case I' = 1, the existence and uniqueness of such an algebra is well-
known. It follows for instance from [Lus3, §3|, once we identify T, from [Lus3]

with z?(a)NSa. It is called an affine Hecke algebra and denoted by H (R, A\, \*, Z).
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Consider the linear bijection

Ay H(R,N A Z) — H(R, A\, N, Z)
N0, — vavflx(t,y)e,y(z)'

By assumption A,|c[y) is an algebra homomorphism, while A, |y (g z2») is an
algebra homomorphism because I' stabilizes A and the set of simple roots. As

sa(T)(ty) = z(ty),

A'y (amNsa - Nsaesa(z)) (tv)(QWstva - Nsvaasva(z))'

=
Similarly one computes, using v(R;) = R;:

0, — 0 Oye — 0
AMe) =My 7z~ Tsal@) | _ Aya) _ =A(ye)y 772~ Usya(z)
A7<(zj —z; ) T ) = x(ty)(zj -z, ) - H_Vw
An analogous formula holds in the case a¥ € 2Y of (v), because I' stabilizes \*.

This shows that A, respects all the multiplication rules of H(R, A, \*, Z), and hence
is an algebra automorphism. The map

I' = Awt(H(R,\ N, Z)) :y — A,

is a group homomorphism, because it so when we restrict to C[X] or to H(W (R), Z2**).
Pick a central extension I'" of I and a central idempotent py such that C[T',f] =
pyC[I'"]. Now the same argument as in the proof of [AMS2, Proposition 2.2] shows

that the algebra
(2.2) CII,t] x H(R, A\, A", Z) = ph(C[I‘Jr] X H(R,\ A Z) CTT x H(R,\, N\, Z)
has the required properties. O

Since (2.2) is built from an affine Hecke algebra H(R, A\, \*, Z) and a twisted group
algebra C[I', i,¢|, we refer to it as a twisted affine Hecke algebra. When Rge = 1,
specializations of H(R,\, \*,Z) at ¥ = 7 € R¢, figure for example in [Opdl]. In
relation with p-adic groups one should think of the variables Z as as (qjl./ 2)?:1, where
q; is the cardinality of some finite field.

In this section we focus on the following instances on Proposition 2.2. We take

the root datum
R(G°,T) = (R(GO,T),X*(T),R(GO,T)V,X*(T))

with simple roots determined by P and the decomposition of R(G°,T') corresponding
to the decomposition (1.4) of g. Then W(R) = W, and we may identify

C[X]® C[Z,Z7 '] = O(T x (C*)9).
We take I' = Rye and ¢, = 1 for all v. We define, for a € R(G°,T)yeq:

Ma) = c(a)/2 2a0 ¢ R(G°,T)
53 M) = c(a)/2 2a ¢ R(G°,T),a" € 2X,(T)
23) @) = cla)2+ca)/4 20 € RGT)
M) = cla)/2—c(2a)/4  2a € R(G°,T).
By Proposition 2.1 A(a) € Z>q in all cases. For fj = f5¢ [AMS2, (91)] says that

C[mq57 hqc‘)] = Endchie(G)Rs (qﬂ-* (&\é)) .
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We denote the algebra constructed in Proposition 2.1, with these extra data, by
H(G, M,qE,Z). When d = 1 we simply write H(G, M, ¢€). We record that

(2.4) H(G, M, q€) = H(G, M, q&,Z)/({zi —z; : 1 < i,j < d}).
The same argument as for [AMS2, Lemma 2.8] shows that
(2.5) H(G, M,qE,Z) = H(R(G°,T), \,\*,Z) % End;;GLiC(G)RS (qmi(¢€)).

If we are in one of the cases (1.3), then with this interpretation H(G, M, ¢&,Z)
depends canonically on (G, M,q€). In general the algebra H(G, M, ¢E,Z) is not
entirely canonical, since it involves the choice of a decomposition (1.4).

Lemma 2.3. O(T x (C*)Y)Wee = O(T)Wet @ C[Z,Z ] is a central subalgebra of
H(G, M,q€,Z). It equals Z(H(G, M, q€,Z)) if Wye acts faithfully on T

Proof. The case Wye = 1,d = 1 is [Lus3, Proposition 3.11]. The general case follows
readily from that, as observed in [Sol3, §1.2]. O

For ( € Z(G) N G° and (mw,V) € Mod(H(G, M, q¢,Z)) we define (( ® m, V) €
MOd(H(G7M7 qg7i)) by

(€@ m)(f1faNw) = f1(O)7(f1faNw) f1 €O(T), f2 € C[Z,Z ], w € Wye.

2.1. Reduction to real central character.
Let T = Ty, X T}s be the polar decomposition of the complex torus 7', in a unitary
and a real split part:

Tun = Hom(X*(T), S') = exp(itg),

(2.6) Tis = Hom(X™(T),R>0) = exp(tr).

We write the polar decomposition of an arbitrary element ¢ € T" as
t=(t|t|™") [t| € Tun x Tis.

By Lemma 2.3 every irreducible representation of H (G, M, ¢€,Z) admits a

O(T x (C*)®)Wae_character, an element of T/W,e x (C*)?. We will refer to this
as the central character. Following [BaMo, Definition 2.2] we say that a central
character (Wgt, 2) is “real” if 2’ € Rio and the unitary part ¢ |t|~! is fixed by We.

For t € T we define Z¢(t) to be the subgroup of G generated by Zq(t) and the root
subgroups for o € R(G°,T) with o € 2X.(T) and a(t) = —1. Thus R(Zg(t)°,T)
consists of the roots a € R(G°,T) with so(t) = t. All roots a € R(G°,T') with
Sa € Zg(t) have root spaces in Zg(t)°, so A(«) and A*(«) are the same for G° and for
Zg(t). The analogue of R ¢ for Z~G(t) is Rye ¢, the stabilizer of R(Z~G(t)°, T)NR(P,T)
in quﬂf‘

Our first reduction theorem will relate modules of H(G, M, ¢&€,Z) and of
H(ZNG(t), M, ¢€,Z). Assuming that every z; acts via a positive real number, we end
up with representations admitting a real central character. To describe the effect on
O(T x (C*)%)-weights, we need some preparations. Consider the set

Wi ={weWg:w(R(Za(t)°, T) N R(P,T)) C R(P,T)}.

Recall that the parabolic subgroup P C G° determines a set of simple reflections
and a length function on the Weyl group q0c = We. We use this to define two
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cones in tg = X, (T') @z R:
tt ={z€tr:(z,a) >0Va e R(P,T)},

tg == {ZaeR(RT) zao) 1 xg < 0}.

Lemma 2.4. (a) W} is the unique set of shortest length representatives for

We /W (Zg(t)°,T) in We.
(b) Uwewg w it equals th!, the analogue of th for the group Zg(t)°. The same

holds for t;f{’Jr.
(¢) {z €tp: Wiz Ctg} equals t]i’t, the analogue of ty for Za(t)°.
Proof. (a) This well-known when R(Zg(t)°, T) is parabolic subsystem [Hum, Propo-
sition 1.10.c and §1.6], and the general case is mentioned in [Lus7, proof of Lemma
3.4]. For completeness, we provide a proof.

For any w € We, w™'W(P,T)NR(Z¢(t)°,T) is a positive system in R(Zq(t)°,T).

By [Hum, Theorem 1.8] there exists a unique v € W (Zg(t)°,T) such that

v Hw T 'W(P,T)NR(Za(t)°, T)) = W(P,T) N R(Za(t)°, T).
This is also the unique v € W (Zq(t)°, T) such that
wo(R(Zg(t)°,T) N R(P,T)) C R(P,T).

Hence W is a set of representatives for We /W (Za(t)°, T).

Consider w € Wg of minimal length in wW(Z¢(¢)°,T). By [Hum, Proposition
5.7, w(a) € R(P,T) for all @ € R(Z¢(t)°,T) N R(P,T), so w € W, We deduce
that every left coset of W (Z¢q(t)°,T) contains a unique element of minimal length,
namely its representative in Wg
(b) Suppose that z € t§ and o € R(Z¢(t)°,T) N R(P,T). For all w € W} we have
wa € R(P,T), so

(o, w™tz) = (war, z) > 0.

Hence Uwewg w_ltﬁg - tI'Rt’t. Let S be a sphere in tg centred in 0. Then

vol(S) /vol(S M) = [We| and  vol(S)/vol(S Nth") = [W(Zg(t)°,T)|.
With part (a) it follows that
(2.7) [WE| vol(S N th) = [We| vol(S N th)/|W (Za(t)°, T)| = vol(S N ).
Since tﬁg is a Weyl chamber for Wg, the translates wtﬁ intersect tﬁg only in a set of
measure zero. Hence the left hand side of (2.7) is the volume of SN Uwewg w .
As Uwewg w‘ltﬁg C tﬁ"t and both are cones defined by linear equations coming from

roots, the equality (2.7) shows that they coincide.
The same reasoning applies to t; and the dual root systems.

(c) The definition of W entails Wgtﬂg’t C tg. Conversely, suppose that x € tg and
that Wiz C tz. For every w € W} and every X € tﬂ%ﬁz

(z, w™ A = (wz, \) <O0.
In view of part (b) for £, this means that z € t"". O

Theorem 2.5. Lett € Tyy,.
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(a) There is a canonical equivalence between the following categories:
o finite dimensional H(Zg(t), M, q€,Z)-modules with O(T x (C*)%)-weights
in tThs x RL,;
o finite dimensional H(G, M, ¢, Z)-modules with O(T x (C*)?)-weights in
WyestTis x R .
It is given by localization of the centre and induction, and we denote it (sugges-
(G,M ¢ Z)
(Za(t),M.q€.2)’
(b) The above equivalences are compatible with parabolic induction, in the following
sense. Let Q C G be an algebraic subgroup such that Q N G° is a Levi subgroup

of G° and Q D M. Then

. H(G,M g€ Z) . H(Z(t),MqEZ) _ . TH(G,MgEZ) . H(Q,MqE Z)
indy Zo.nrae.2) ° "z aaez) — PQas ) © My, 1,010 2)

. . H
tively) by de

x\d\ oo . TH(G,M,¢E 7) .
(c) The set of O(T x (C*)%)-weights of lnd’H(Zg(t),M,qg,i)(V) is

{(wt',2):w e %nggo’t, (t',2) is a O(T x (C*))-weight of V.

(d) Parts (a)—(c) hold more generally for any twisted affine Hecke algebra
H(R, A\, A, Z) x C[I', 8] as in Proposition 2.2. Then the algebra associated to
t € Hom(X,S') is H(Ry, X, R)Y,Y, X\, \*,Z) x C[Ty,t], where Ry = {a € R :
sa(t) =1t} and (W (R)T) = W(R:) x I

Proof. (a) The case d = 1, = 1 was proven in [Sol3, Theorem 2.1.2], building upon
[Lus3, Theorem 8.6] when Rge = 1.
Let %Z;g — Mye be a central extension as in (2.2). Extend it trivially to a central

extension m;.SW;S — Wye and let 9‘{;87t be the inverse image of Rye; C Wye, in
+ o
f)fiqg e Then

H(G, M, q€,7) = H(G®, M°, &,7Z) x p,C[R%],

(2.8) : ) - .
H(ZG(t)7Ma qé’,z) = H(ZGO(t)’M ’g7z) X ph(c[%;rg,t]

As py € (C[ker(i)‘{;g — Mye)] is a central idempotent, we may just as well establish
the analogous result for the algebras

(2.9) H(G®, M°,E,7) x Ry and  H(Zgeo(t), M°,E,Z) x R .

Since we are dealing with finite dimensional representations only, we can decompose
them according to the (generalized) weights for the action of the centre. Fix (z,?2) €
Tis X Rio- Denote the category of finite dimensional A-modules with weights in U
by Mody/(A). We compare the categories

MOdf,Wq&ttxx{Z} (H(Zé’o (t)7 MO? g, Z) ~ %;_g,t)7

(2.10) o o .
MOdf,Wq&tt;vx{Z} (H(G ,M ,6,Z) X SR;%)

The most appropriate technique to handle the general case is analytic localization,
as in [Opdl, §4] (but there with fixed parameters z1,...,z24). For an open subset
U CT x(C¥)4 let C*(U) and C™¢(U) denote the algebras of complex analytic,
respectively meromorphic, functions on U. We assume that U is We-stable. The
restriction map O(T x (C*)?) — C*(U) is injective because U is Zariski-dense, and
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we can form the algebras

(211)  H/meU) = can/me (1) Wae ® H(G°, M°,E,7) x R
O(Tx(Cx)d)Wae

As observed in [Opdl, Proposition 4.3], the finite dimensional modules of H**(U)

can be identified with the finite dimensional modules of H(G°, M°, E,Z) x 9‘{; with

O(T x (C*)%)-weights in U.

In [Sol3, Conditions 2.1] it is described how one can find an open neighborhood
Uy C T x (C*)? of (¢, Z), which is so small that localization to Uy is more or less
equivalent to localization at (¢',2). We take U = WUy and U = Wee +Uo. By
Lusztig’s first reduction theorem [Lus3], in the version [Sol3, Theorem 2.1.2], there
is an embedding of

HE(U) = 2 (U)Wae ® H(Zao (1), M°,€,7) x R},
O(Tx (Cx)d)Vae t ’
in H*(U), which moreover is a Morita equivalence. The canonicity of this construc-
tion is hardly documented in the literature, so we address that here. Let C(T") be
the quotient field of O(T). By [Lus3, §5], the identity on O(T x (C*)9) extends to
an algebra isomorphism

) - =—17 ™~ ) ) = we,
(2.12) (C(T) x Wge) @ C[Z,Z27'] = H(G°, M°,&,Z) D oy C(T) Ve
The image of w € qug under this isomorphism is denoted 7,,. For a simple root
a € R(G;T,T), [Lus3, §5] gives the explicit formula

O — 1 O + 1
0o TN ] g 2N

(2.13) Too +1= (2} VN, +1)

where \*(«) is interpreted as A(«) if ¥ ¢ 2X,(T'). As observed in [Lus3, Proposition
3.9], the multiplication relation (v) from Proposition 2.2 can be rewritten as

f(Tsa +1) = (Tsa + Dsa(f) = [ = sa(f) [ € O(T).

Thus 75, + 1 arises directly from the multiplication rules in H(G°, M°,E,Z), and in
that sense it is canonically associated to . Since w — 7, is multiplicative and W(;g
is generated by simple reflections, this entails that all the 7, are canonical.

The isomorphism (2.12) can be extended with NER;% on both sides, and then
we put Ty = TNy for w € Wi and v € 9%;%. All this can also be done for

H(Z};(t)o, M°,E,7Z) x R;S ;» which involves analogous elements 7,,; for w € Wye ;.
Then (2.12) shows that

(2.14) HEU) = H™(U) : frus = fro  f€C™U),w e Wyey

is an injective algebra homomorphism. It is canonical because the elements 7, ¢
and 7, are so. It is shown in [Sol3, Theorem 2.1.2] that (2.14) restricts to the
aforementioned embedding H3"(U) — H**(U), which is therefore canonical.

It follows that the composed functor

H(GO,MO,&,z)xmq*S
H(Zgo (£),M° £ Z) xR, |

Mod (H{™(U)) — Mod (H™(U)) — Modyu (H(G°, M°,€,7) x R;)

ind : MOdf,U (H(Z~G° (t)a Moag?z) X m;f,t) -
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is a canonical equivalence of categories. We specialize this at We +tt’ x {Z} C U and

we restrict to modules on which py acts as the identity. Via (2.10) and (2.8) this
gives the required equivalence of categories ind?(GMa€.2)

H(ZG(t)7M7q57i)'
(b) We just showed that the above functor is really induction between localizations
H(Q’M7qg7z)‘
the acclaimed compatibility with parabolic induction is just an instance of the tran-
sitivity of induction.

(c) Lemma 2.4.a and the constructions in [Sol3, §2.1] entail that

of the indicated algebras. Similar remarks apply to the functor ind

. H(G,M g€ 7) o 2
(2.15) de(Z};(t),M,qg,Z)(V) = C[ReWe, bge] C[i"‘q?t,hqs] Vv

as O(T x (C*)?)-modules. Notice that the group Rqe ¢ acts from the right on R WE,
because it stabilizes R(Zqg(t)°,T) N R(P,T). Since

H(Zg(t), M, g€, 7) = H(Zo(t)°M, M, g€, 7Z) x C[Rg 1, lge ],

the O(T x (C*)9)-weights of V come in full R ¢ s-orbits. It was observed in the proof

of [Opd1, Proposition 4.20] that the O(T x C*)9)-weights of Cw ® V (w € Wgot)

are precisely (wt',Z) with (#,2) a O(T x (C*)%)-weight of V. Multiplication by

N, (v € Rye) just changes a weight (¢, Z) to (yt/, Z). These observations and (2.15)
(G,M,¢€,Z)

x\d : < aH
prove that the O(T" x (C*)%)-weights of 1ndH(Z~G(t)7M7q£7i)(V) are as stated.

(d) In the arguments for parts (a)—(c), the specific shapes of A\, \*,f and Rye from
G do not play a role. Further, all the arguments from [Sol3, §2.1] work just as
well when R,e does not fix 1 € T but Ryel C T consists of elements in the kernel
of all @ € R(G°,T). Therefore the entire proof goes through in the generality of
Proposition 2.2. O

As a consequence of Theorem 2.5, the study of irreducible H(G, M, ¢&€, Z)-modules
on which each z; acts by a positive number can be reduced to the study of irre-
ducible H(Zq(t), M, ¢€,Z)-modules with a central character in tTys/Wye; x RL,.
The advantage is that the entire group Wye = W(Za(t)°,T) Rqe ¢ fixes t, which
implies that we can continue the analysis in the same way as for central characters
in Tys/Wee s x R,

In our reduction process we would like to preserve the analytic properties from
[AMS2, §3.5]. Just as in [AMS2, (79)], we can define O(T)-weights for modules of
affine Hecke algebras or extended versions such as H(Zg(t), M, qE,Z). We denote
the set of O(T)-weights of a module V' for such an algebra by Wt(V'). We can apply
the polar decomposition (2.6) to it, which gives a set |Wt(V')| C Tis.

Let us recall the definitions of temperedness and discrete series from [Opd1, §2.7].

Definition 2.6. Let V' be a finite dimensional H(G, M, ¢&,Z)-module. We say
that V' is tempered (respectively anti-tempered) if [Wt(V')| C exp(tg), respectively
C exp(—tg).

Let tg~ be the interior of t; in tg. We call V' discrete series (resp. anti-discrete
series) if [Wt(V')| C exp(tz ™), respectively C exp(—tz~ ). The module V is essen-
tially discrete series if its restriction to H(G/Z(G°)°, M/Z(G°)°,q€,Z) is discrete
series, or equivalently if [Wt(V')| C exp(Z(g) ® t5 ).
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The next result fills a gap in [Sol3, Theorem 2.3.1], where it was used between
the lines. Similar results, for G, only and with somewhat different notions of
temperedness and discrete series, were proven in [Lus7, Lemmas 3.4 and 3.5].

Proposition 2.7. The equivalence from Theorem 2.5.a, and its inverse, preserve:
(a) (anti-)temperedness,
(b) the discrete series.

~ - . H(G, M€ Z)
(¢) The H(Zq(t), M, q€,Z)-module lndH(Zb(t),M,qg,i)

if and only if V is essentially discrete series and R(Zq(t)°,T) has full rank in
R(G°,T).

(V') is essentially discrete series

Remark 2.8. The extra condition for essentially discrete series representations is
necessary, for the centre of Z¢(¢)° can be of higher dimension than that of G°.

Proof. Let V be a finite dimensional H(Zq(t), M, ¢€, Z)-module with O(T x (C*)%)-
weights in t7T}5 X Rio.
(G,Mq€ Z)

: . H . .
(a) The O(T)-weights of lndH(Zb(t),M,q&i)(V) were given in Theorem 2.5.c. As

log = exp~': Tps — tg is Wye-equivariant, it entails that

. yH(G,M,¢€,Z) . t
log |Wt(md7{(z~c(t),M,q8,E)V)‘ = ReWe log |[Wt(V)].

Recall from Lemma 2.4.c that
' ={rctp: Wir Ctg} = {2 €t : RyeWhr C t5}.

Comparing these with the definition of (anti-)temperedness for G' and for Zg(t), we

(G,M,¢€,Z) .
(Z~G(t)7M’q5?Z)(V) is so.

(b) We have to assume that Z(G°®) is finite, for otherwise exp(tz ) is empty and

there are no discrete series representations on any side of the equivalences.
Suppose that V is discrete series. Then Zg(t)° is semisimple, so R(Zq(t)°,T) is

of full rank in R(G°,T'). This implies that tﬂg_’t is an open subset of t; ~. The same

o H(G’Mngzi)
argument as for part (a) shows that ind_, (Zos() M qE.2)

. 7H(G,M,q€,Z) . . . .
Conversely, suppose that de (Ze().Mq S,Z)(V) is dlscret? series. It is tempered,
so V is tempered and |[Wt(V)| C exp(ty’"). Assume that Zg(t)° is not semisimple.

Then

see that V is (anti-)tempered if and only if indZ

(V') is discrete series.

ty = Lie(Z(Zb(t)o)) = ﬂaeR(Zb(t)c’ T) kera

has positive dimension. In particular t7, contains nonzero elements A\ € tff{r, for
example the sum of the fundamental weights for simple roots not in RR(Zq(¢)°,T).
Let ¢ € T be any weight of V. Then log|t'| € tﬂg’t C Lie(Zg(t)g.,). Hence

(log|t'|, A\) = 0, which means that log|t'| € tz \ tz . But ¢’ is also a weight of

. dH(q,M,qE)
H(Za (t),M,g€) R

This contractiction shows that Zg(¢)° is semisimple.

(V), and that is a discrete series representation, so log [t'| € t; .

Suppose now that log [t'| does not lie in the interior of tﬂg’t. Then it is orthogonal

to a nonzero element ) in the boundary of ti%’J“t. By Lemma 2.4.b we can choose a

t / *,4 /s 3 : H(Gszqg’Z)
w € Wg such that w\" € tg". Theorem 2.5.c wt’ is a weight of md?—[(Z};(t),M,qe,i)( ),
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and it satisfies
(log |wt'|, w\') = (log|t'|, ') = 0.

This shows that log |wt'| ¢ t5~, which contradicts that indZ(G’M’qg’Z)

ot aen (V) 1S dis-
crete series. Therefore log [t/| belongs to tﬂgf’t. As t' was an arbitrary weight of V,
this proves that V is discrete series.

. H(G,M,gE Z) ) . ) ) .
(c) Suppose that ind (Tt M g g,z)(v) is essentially discrete series. Its restriction to

H(G/Z(G®)°, M/Z(G®)°, ¢€, Z) is discrete series, so by what we have just proven V is
discrete series as a module for ”H(Z(;Z\(;))o(t), M/]Z(G°)°, ¢€,Z), and Z%)o(t)o
is semisimple. Then R(Z¢(t)°, T) has full rank in R(G°,T) and the restriction of V
to the smaller algebra H(Zq(t)°/Z(G°)°, M/Z(G°)°, ¢€,7Z) is also discrete series, so
V' is essentially discrete series.

Conversely, suppose that V is essentially discrete series and that R(Zq(t)°,T)
has full rank in R(G°,T). The second assumption implies that Z(G°)° is also the

connected centre of Zg(t)°. The same argument as in the tempered and the discrete
series case shows that

. H(G, M€ Z) __
‘Wt(lndH(Zb(t),M,qg,Z)V)} C exp(ty ™ @ Z(g))-

(G7M7q£7i)

This means that ind_ (Zoe(t).M g g,z)(v) is essentially discrete series. O

Suppose that t' € Wyet. Then we can apply Theorem 2.5.a also with ¢’ instead of
t, and that should give essentially the same equivalence of categories. We check this
in a slightly more general setting, which covers all ¢’ € TN Ad(G)t. (Recall that for
g,h € G we write Ad(g)(h) = ghg™!.) By [Lus4, §8.13.b] and Proposition 1.4.a

(2.16) T NAd(G)t equals TN AA(Ng(T))t D Wet.

Let g € Ng(M) = Ng(T'), with image g in Ng(M)/M. Conjugation with ¢ yields
an algebra isomorphism

Ad(g): H(Za(t), M, q€.2) — H(Za(gtg™"), M, Ad(g™")"¢€. ),
Ad(g)(Nw) = Ngwg*h Ad(g)ew = eond(gfl) = 05_7337 Ad(g)Z] = Zy,
where w € Wye and x € X*(T). Notice that this depends only on g through its
class in Ng(M)/M.

Lemma 2.9. Lett € Ty, and g € Ng(M). Then

. MG MgEZ) o . H(GMAd(g—)* € 2) e
1ndH(Z~G(t)aM7qS,Z) — Ad(g) o 1nd’H(Z~G(gtg_1)7M,Ad(g_1)*q87i‘) o Ad(g )

(2.17)

as functors between the appropriate categories of modules of these algebras (as spec-
ified in Theorem 2.5).

Remark 2.10. This result was used, but not proven, in [Lus5, §4.9 and §5.20] and
[Sol3, Theorem 2.3.1].

Proof. Our argument for Theorem 2.5.a, with (2.2), shows how several relevant re-
sults can be extended from H(G°M, M, ¢€,7Z) to H(G, M,qE,Z). This justifies the
below use of some results from [Lus3], which were formulated only for H(G°M, M, ¢&).

Let (m, V') be a finite dimensional H (G, M, ¢€)-module with O(T x C*)-weights in
WeetTrs x Ryo. In [Lus3, §8] V' is decomposed canonically as @,/ ew, et VeTrer Where
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Vi, is the sum of all generalized O(T)-weight spaces with weights in ¢'Tis. Then
Vi, is a module for H(Za(t'), M, ¢€) and

. JH(G,M4EZ)
(218) V — de(Z};(t/),M,qé’,i)(W,Tm).

Assume that g € Ng(M,q€), so g € Wye. Then Vig,, and V17, are related
via multiplication with an element 75, which lives in a suitable localization of
H(G, M, q€,Z) [Lus3, §5]. We can rewrite the right hand side of (2.18) as

. H(G M g€ 7) e M(G,MgE F)
(2.19) mdq.[(zb(th,qg’z) (Té‘/g_lthrs) =Tg (mdq.t(zb(gfgq)’M,qg,z) (Vg‘lthrs))'

From [Lus3, §8.8] and [Soll, Lemma 4.2] we see that the effect of conjugation by
75 on H(G, M, q€,Z) and H(Zq(t), M, ¢€, Z) boils down to the algebra isomorphism
(2.17). The right hand side of (2.19) becomes

x . H(G,M4EZ —1\%
Ad(g) Ode(Zb(gtg—l),M,qs,Z) o Ad(g~)*(Vir.),

which proves the lemma for such g.
Now we consider a general g € Ng(M). We will analyse

(G,M,Ad(gil)*qg,i) —1\*
CetotaHaiad(gyz.z) © A7) (Vi)
From the above we see that the underlying vector space is
P r(Adg ) Vin) = @ Adlg) Vi, = Ad(g)V-
wEGWoeg™/gWae 197" weWoe /Wae v

The action of H(Za(gtg™"), M, Ad(g~")*¢€,Z) = Ad(9)H(Zc(t), M, q€, Z) works out
to

(2.20) Ad(g)* oind)}

(Ad(9)h) - (Ad(g™")"v) = Ad(g™")"(h-v).
Thus (2.20) can be identified with V. O

2.2. Parametrization of irreducible representations.
Next we want to reduce from H(Zq(t), M, ¢€,Z)-modules to modules over
H(G¢, M, ¢€,7). The exponential map for T' x C* gives a We s-equivariant map

expy: t®CY — T x (C1)4, expy(z,71,...,7q) = (exp(x)t,expr1,...,exXpryq).
Notice that the restriction exp,: tg & R — T, ¥ Rio is a diffeomorphism.

Theorem 2.11. Lett € Tyy.

(a) There is a canonical equivalence between the following categories:
e finite dimensional H(Gy, M, ¢€,T)-modules with O(t ® C%)-weights in
tR @ Rd;
e finite dimensional H(Zg(t), M, q€,Z)-modules with O(T x (C*)%)-weights
in tTs x RY ).
It is given by localization with respect to central ideals in combination with the
map exp,. We denote this equivalence by (expy)s.
(b) The functor (exp;)« is compatible with parabolic induction, in the following
sense. Let Q C G be an algebraic subgroup such that Q N G° is a Levi sub-
group of G° and Q D M. Then

. H(Za(t),M,qE 7) Qy _ . H(G¢,M g€ Z)
indy, o Mge ) © (P )x = (€xPy)x 0 indyy oy ).
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(¢) The functor (exp,)« preserves the underlying vector space of a representation,
and it transforms a S(t*®C%)-weight (x,7) into a O(T x (C*)?)-weight exp,(x, 7).

(d) The functors (exp, )« and (exp,); ! preserve (anti-)temperedness and (essentially)
discrete series.

(e) Parts (a)-(d) also apply to a twisted affine Hecke algebra H(R, X, RV, Y, \, \*, Z) x
CI[T, t] as in Proposition 2.2, and at € Hom(X, S') fived by W (R)xT. Then the
associated twisted graded Hecke algebra is H(Y ®7C, W (R), k,¥) x C[I', t], where
k(o) = Ma) + a(t)\*(a), with the convention that \*(a) = M) if 2o ¢ R.

Proof. (a) The case d = 1,5 = 1 was proven in [Sol3, Corollary 2.1.5], building on
[Lus3, Theorem 9.3] when Rge = 1.

We use the similar techniques and notations as in the proof of Theorem 2.5.a. By
the same argument as over there, it suffices to compare the categories

MOdf,qu,ttt’X{Z} (H(Z~G(t)o7 Moa g’ Z) X %;g’t)v
Mod e, tog(e) < frog(2)y (FI(ZG (1), M, €,8) 3 Re ).
Recall from (2.3) that the parameter functions for these algebras are related by

cr(a) = 2M«) 200 ¢ R(Zg(t)°,T),
(2.22) c(a) = AMa)+ N(a) 20 € R(Za(1)°,T), a(t) =1,
ct(20)/2 = AMa) — () 200 € R(Zg(t)°,T), a(t) = —1.

(2.21)

Let us define k: R(Zg(t)°, T)red — R by

E(a) = 2Xa) 2a ¢ R(Zg(1)°,T),
Ela) = Ma)+ a(t) \*(a) 200 € R(Zg(t)°,T).

The only difference between H(t, W (Zg(t)°,T), k¥) and H(Zqg(t)°, M°, E,T) arises
from roots o € R(Z¢(t)°,T) \ R(Z¢(t)°,T) with a(t) = —1. The corresponding
braid relations are
Ng & —%¢Ny, = (Ma) = X(a)rj(§ —*&/a  inH(t,W(Zg(t)°,T), k¥,
Ns, & —%29€Ns,, = c(20)r;(§ —%22€)/(20) in H(Zq(t)°, M°,E,T).

(2.23)

Since s, = S24 and ¢;(2a) = 2(A(a) —A*(@)), these two braid relations are equivalent,
and we may identify

(2.24) H(t, W(Za(t)°, T), kF) x R, = H(Za(t)°, M°, E,F) x Rz .

Let V C t x C? be a W,¢ -stable open subset. Recall H3"(U) from (2.11). Similarly
we can form the algebra

H(V) = 0 (V)Vaer @ H(L W (Zg(t)°, T), kE) x 9.
O(t®cd)wq£,t ’

The argument for [Opd1, Proposition 4.3] shgws that its finite dimensional modules
are precisely the finite dimensional H(t, W (Zq(t)°,T'), kr) X ER(} ,~modules with
O(t@® Ch)-weights in V. If exp, is injective on V, it induces an algebra isomorphism
(2.25) expy: O (exp, (V) Waet — can(y)Waese,

We suppose in addition that V is contained in a sufficiently small open neighborhood
of tg @ R%. In view of the relations between the parameters (2.22) and (2.23), we
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can apply [Sol3, Theorem 2.1.4.b]. It shows that (2.25) extends to an isomorphism
of Can(V)Wae t-algebras

Dy H" (exp (V) — H(V),
which is the identity on (C[%;g ;|- To explain the canonicity of ®;, we use notations

from the proof of Theorem 2.5 for algebras involving meromorphic functions. By
construction ®; is the restriction of an isomorphism

Hi(expy (V) —  HPe(V) = O"(V) x C[Weeyt, ge]
fTw —  (f oexpy)Tw ’

where f € C™¢(exp,(V)) and 7, € H"*(V) is an analogue of
Tw € Hi™(expy (V) = C™(expy (V) 1 C[Woe 1, ge]-

For a simple root o € R(G;T,T), it is known from [Lus3, §5] that
>
a+k(a)r;’

(2.26)

(2.27) oo +1= (N5, +1)

This element arises canonically from the definition of H(Zg(t)°, M°, £,T), because
the multiplication relation (iv) in Proposition 1.1 can be rewritten as

§(Ns, +1) msaf =¢{ "¢

a a
——— — (s 1
a+ k(a)r; (Noo +1)

As w > 7, is multiplicative on W(Zg(t)°, T) and 7y = 7y N, for w € W (Zg(t)°,T)
and v € Ryey, it follows that all 7, with w € Wye; are canonical. This is shows
that (2.26) and ®; are canonical.

Choosing for V a small neighborhood of W ;log(¥') x {log(z)} in t® C4, &,
induces an equivalence between the categories of modules with weights in, respec-
tively, Wye +tt' x {Z} and Wye ¢ log(t') x {log(2)}. In view of [Opdl, Proposition 4.3]
and (2.24), this provides the equivalence between the categories (2.21).

Since @ fixes py € (C[D‘i;&t], we can restrict that equivalence to modules on which
py acts as the identity.

(b) For G° this is shown in [BaMo, Theorem 6.2] and [Sol2, Proposition 6.4]. Ex-
tending G° to a disconnected group boils down to extending the involved algebras
by C[Rge ¢, fqe] or C[D‘{?&t, b4¢]. As we noted in proof of part (a), the algebra homo-
morphism ®; used to define (exp,) is the identity on C[Rye ¢, 14e] C C[%;&t]. Hence
this extension works the same on both sides of the equivalence, and the argument
given in [Sol2, §6] generalizes to the current setting.
(¢) By construction [Sol3, §2.1] (exp,)«m = moexp; as O(T x (C*)%)-representations.
(For f € O(T x (C*)?) the action of f o exp, on the vector space underlying 7 is
defined via a suitable localization.) This immediately implies that (exp,). has the
effect of exp, on weights.
(d) This result generalizes the observations made in [Slo, (2.11)]. Let V be a finite
dimensional H(Zq(t), M, ¢€)-module with O(T x (C*)%)-weights in tT,s X Rsq. By
part (b)

Wt ((exp,); V) = exp; {(Wt(V)) C tg.
By assumption t € Ty, so we get

Wi(V)] = exp (R(Wt((exp,); 'V))).
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Comparing [AMS2, Definition 3.24] and Definition 2.6, we see that (exp,)s and
(exp;); ! preserve (anti-)temperedness and the discrete series. With [AMS2, Defini-
tion 3.27] we see that ”essentially discrete series” is also respected.

(e) From H(Gy, M°,E,Z) to H(R, X, RV, Y, \, \*, Z) is only a notational change. The
particular shape of Wye; and of f,¢ does not play a role in the proof, so when we
replace them by more general I" and 4, the above arguments remain valid. O

=

Theorems 2.5 and 2.11 together provide an equivalence between H(Gy, M, g€, T)
modules with central character in tg/Wye; x R? and H(G, M, ¢€, Z)-modules with
central character in WyetTys/Wye X Rio, where t € Tyy.

Recall from [AMS2, Corollary 3.23] and Theorem 1.6 that we can parametrize
Irr#(H(Gy, M, g€, T)) with Ng, (M)/M-orbits of triples (o9, C, F), where og € t, C is
a nilpotent Zg, (0¢)-orbit in Zg(og) and F is an irreducible Z¢, (0¢)-equivariant local
system on C such that Wz, (,,)(C,F) = (M, CM ¢&), up to Zg,(00)-conjugacy.

To find all irreducible representations with S(t*)"e¢-character in tg (those are
all we need for the relation with affine Hecke algebras) it suffices to consider such
triples (o9, C,F) with o¢ € tg. To phrase things more directly in terms of the group
G, we allow t to vary in Ty, and we replace o9 by ' = texp(og) € tTys. In other
words, we consider triples (¢',C, F) such that:

e t' € T with unitary part t = ¢'|t/|71;
e C is a nilpotent Z¢g(t')-orbit in Zy(t') = Lie(Gy).
e F is an irreducible Zg(t')-equivariant local system on C with
q\IJZ(;(t’)(Cw]:) = (M’ CZJJ\/Iv qf,‘), up to ZG(t/)'COHjUgaCY'
To such a triple we can associate the standard H(Gy, M, ¢&€, r)-modules

(2.28) 705 and IM*E

E .

y,log\t’HdV(o 7 )iTp y,—loglt’|+d“7(6 _0,:) 7P’
where y € C and p is the representation of mo(Zg(t',y)) on F,. Furthermore
v: SLo(C) — Zg(t')° is an algebraic homomorphism with

(2.29) dy(§8)=y and dy(§ %) €t+o,

where o, is as in (1.20) and d¥ (5 °.) is given by (1.10). The modules (2.28) have
distinguished irreducible quotients
*
My,log\t’HdV(S 0.) 7 and - IM My,—loglt’HdV(S 0.) 70
By [AMS2, Corollary 3.23] all these representations depend only on the N¢, (M) /M-
orbit of (¢',C, F), not on the additional choices.
For 7 € Rio we consider the irreducible H(G, M, ¢&€, Z)-module

. H(G,M,EZ %
(2.30) Sl ) (expy). IM Mydﬂ(logz 0

H(Z(t),M,q8,7) 5 gz

)flog\t’lJogZ,p.

Lemma 2.12. Fiz 7 € R‘io. The representations (2.30) provide a bijection between
Irrz(H(G, M, ¢€,Z)) and Ng(M)/M-orbits of triples (t',C, F) with arbitrary t' € T
and (C,F) as above.

Proof. For irreducible H(Zq(t), M, g€, Z)-representations with central character in
W 1tTrs X R this follows from [AMS2, Corollary 3.23] and Theorems 2.11 and 2.5.
We note that at this point we still have to consider Ng, (M) /M-conjugacy classes of
parameters (t',C, F).
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With Theorem 2.5.a we extend this to the whole of Irrz(H (G, M, ¢€,Z)). In view
of (2.16), this involves the choice of a unitary element ¢ in a Ng(M)-orbit in 7.
But by Lemma 2.9 the parametrization does not depend on that choice. Hence the

representation (2.30) depends, up to isomorphism, only on the Ng(M)/M-orbit of
(t',C, F). O

To simplify the parameters, we would like to get rid of the restriction ¢’ € T — we
would rather allow any semisimple element of G°. It is also convenient to replace C
by a single unipotent element (contained in expC) in G°, and F by the associated
representation of the correct component group.

As new parameters we take triples (s, u, p) such that:

e s € (° is semisimple;

e u € Z¢(s)° is unipotent;

o p € Irr(mo(Zg (s, u))) with q¥z,s)(u, p) = (M,C), ¢€) up to G-conjugacy.
Assume that s € T and choose an algebraic homomorphism -, : SLy(C) — Zg(s)°
with

(2.31) Y (§1)=u and dvy, (§L)) € t+oo.
Using the decomposmon (1.4) of g we write, like in (1.10),
. 1
(2.32) Yu (2 .%) =exp <d’yu<°gz_lgg5)) € M.
For 7 € Rio we define the standard H(G, M, ¢€, Z)-module
E L (G M qE Z) IM* E . .
spE = G s 1) Mg 2) (CXPslsl = ) logu,d’ﬁt(lo(g) ? o ) —log |s|,log Zp
—log 2
and its irreducible quotient
- . TH(G,M,gE 7) N
M., o = / L) IMF M B} .
s 2 = Iy 2 00 Mg ) (SFPsls| 1) mgumz(lo% ’ —12g5> —log s],log Z,p

Starting from (s, u, p, Z), this expression means that first we take logarithms to ob-
tain parameters for representations of the twisted graded Hecke algebra
H(Ggs-1, M, ¢€,T). The associated module of that algebra, from Theorem 1.6,
is composed with the Iwahori-Matsumoto involution IM and subsequently trans-
formed into a module of the twisted affine Hecke algebra H(Zg(s |s|=1), M, qE,Z)
by the functor (expgs-1)« from Theorem 2.11. Finally, this module is induced to
H(G, M, ¢€,Z) in the sense of Theorem 2.5.

Even when s ¢ T, the condition on p and [AMS2 Propositions 3.5.a and 3.7]
guarantee the existence of a gy € G° such that ggsgo € T'. In this case we put

(2.33) Esupz = Egosg(Il,goung,go-p,Z and Mgz Mgosgo g0ugy 902"

We extend the polar decomposition (2.6) to this setting by

Is| := g5 " 190595 | 0.
With the Jordan decomposition in G° it is possible to combine s and u in a single
element g = su € G°. Then s equals the semisimple part gg, u becomes the
unipotent part gy and p € Irr(m(Za(g))).
Now we come to our main result about affine Hecke algebras. In the case that
G is connected, it is almost the same parametrization as in [Lusb, §5.20] and [Lus?7,
Theorems 10.4]. The only difference is that we twist by the Iwahori-Matsumoto
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involution. This is necessary to improve the unsatisfactory notions of (-tempered
and (-square integrable in [Lus7, Theorem 10.5].

Theorem 2.13. Let Z € Rio.
(a) The maps
(gap) = (S =gs,u = ngp) = Ms,u,p,}?

provide canonical bijections between the following sets:
e G-congugacy classes of pairs (g, p) with g € G° and p € IH‘(?T()(ZG(g))) such
that qUy,,(g6) (90, p) = (M,C), q€) up to G-conjugacy;
e G-congugacy classes of triples (s,u, p) as above;
o Irr(H(G, M, q€,7)).

(b) Suppose that s € T. The representations Esyu%g and Msﬂhpyg admit the (’)(T)Wq5 -
character Wyes Xuv(2)Ft, with xu. as in (1.25) and the arrow defined as in
(1.10).

(c) Suppose that 7 € RL,. The following are equivalent:

e s is contained in a compact subgroup of G°;
o s|=1;

o M., is tempered;

o Eg .y, is tempered.

(d) When Z € Ril, M&u?p’g is essentially discrete series if and only if u is distin-
guished in G°. In this case |s| € Z(G°).

There are no essentially discrete series representations on which at least one

z;j acts as 1.
(e) Let ¢ € Z(G)NG°. Then

MCSMM%E = C ® Msvuvpvg and EC&%ME = C ® E57U7P7E7

where (® is as defined after Lemma 2.3. B B
(f) Suppose that Z € ]R‘il and |s| € Z(G®). Then Es, 7= Mg, p 5.

Proof. (a) The uniqueness in the Jordan decomposition entails that the first map is
a canonical bijection.

We already noted in (2.33) that, for every eligible triple (s, u, p), s lies in Ad(G°)T".
Therefore we may restrict to triples with s € T. Consider the map

(s,u,p) — (S, Cigis),f),

where F is determined by Fiogy = p. As in the proof of [AMS2, Corollary 3.23], this
gives a canonical bijection between G-conjugacy classes of triples (s,u, p) and the
parameters used in Lemma 2.12. Furthermore (2.31) just reflects (2.29), so Lemma
2.12 yields the desired canonical bijection with Irrz(H (G, M, ¢&, Z)).

(b) By Proposition 1.8.f the H(Z¢(s|s| 1), M, ¢€, F)-representation

2.34 IM*E -
(2:34) log u,dva, (103 z lgg g> —log |s|,log Z,p
admits the central character We 51 (log |s| £ dyu,.(log Z), log Z).

By Theorems 2.11.c and 2.5.c the central character of Eau’ p,z7 becomes

(Wq58 Yu,v(g)a 2) - Wqé' (S %u,v(g)ilu 27) .
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The same holds for the quotient M, S,,0,7
(c) Suppose that s € T. By [AMS2, (84)] the representation (2.35) and its quotient

(2.35) IM* M (logg 0

log u,d7u 0 —logZ

)—log |s],log Z,p

are tempered if and only if log|s| € itg. By definition log|s| € tg, so this condition
is equivalent to log|s| = 0. This is turn is equivalent to |s| = 1 and to s € Tyy.
By Theorem 2.11.d and Proposition 2.7.b this is also equivalent to temperedness of
Es,u,p,é’ or Ms,u,p,é’-

The proof of part (a) shows that also for general s, temperedness is equivalent to
|s| = 1. This happens if and only if s lies in the unitary part of a torus conjugate to
T, which in turn is equivalent to s lying in a compact subgroup of G°.

(d) As in part (c), it suffices to consider the case s € T

Suppose that M, s,u,p,7 18 essentially discrete series. By Proposition 2.7.c and Theo-

rem 2.11.d the representation (2.35) has the same property. Moreover we saw in the

proof of Proposition 2.7.c that Z/;/ger(s\srl)o is semisimple. Up to doubling some

roots (with respect to T'), Zggcr(slsl_l)o has the same root system, so that group is
semisimple as well.

By assumption log Z € R‘io. Now [AMS2, (85)] says that logw is distinguished in
Lie(Zg(s|s|™1)°). In view of the aforementioned semisimplicity, this is the same as
distinguished in g. So u is distinguished in G°.

Conversely, suppose that u is distinguished in G°, or equivalently that logwu is
distinguished in g. As w commutes with s, it also commutes with |s| and with
s|s|~'. This implies that R(Zq(s|s|~")°,T) and R(Zg(s|s|~")°,T) have full rank
in R(G°,T). By [AMS2, (85)], Theorem 2.11.d and Proposition 2.7.c M, ,z is
essentially discrete series.

Suppose that either of the above two conditions holds. Then |s| € T}s commutes
with the distinguished unipotent element u € G°. This implies that the semisimple
subalgebra Clog |s| C g is contained in Z(g). Hence |s| € Z(G°). Moreover [AMS2,
Theorem 3.26.b] and Lemma 1.3 imply that Es,u’p,g = Ms’u,p’g.

Finally, suppose that H(G, M, ¢€,Z) has an essentially discrete series representa-
tion on which Z; acts as 1. Its dimension is finite, so it has an irreducible subquo-
tient, say ]\Zfs,%mg. Then IM* Mgy, —1og |s|,log 7,0 Testricts to an essentially discrete
series representation of H(Zg(s|s|~1)°, M°, ), which is annihilated by r;. By (1.8)
and (1.9) it contains a H(G, Mj, £;)-representation with the same properties. But
[AMS2, Theorem 3.26.c] says that this is impossible.

(e) By Proposition 1.8.d

(exXPegjcs|—1)« IM* M (1ogz 0

log u,d, 0 —log 2.) —log|¢s|,log Z,p

logzZ 0

0 —logZ

eXPele|-1sls|-1)« 1O ® IM* M
(exPe|c|-15)s|-1)+ 108 [C] 10gu,d%(

)—logICS\,logZp.
From Theorem 2.11.a and the definitions of (®,log |(|® we see that this equals

( @ (expy|s)-1)« IM* M L (logZ 0 .

lOg uvd’Yu ( 0 — log E) _IOg ‘S‘Jngvp
Since ( is central in G, H(Zb(s\s\*l), M, ¢€,Z) does not change upon replacing s by
H(G,M ¢ )

H(Zon (5]~ 1). M E.2) This proves the claim for M, , , z,

(s, and (® is preserved by ind
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while the argument for E‘s’wp’g is analogous.
(f) We use Theorems 2.5.a and 2.11.a to translate the statement to modules over
H(G, M, ¢€,7), with I acting as log(2) € R‘io. Then we apply Proposition 1.8.e. [

Let us discuss the relation between the parametrization from Theorem 2.13.a and
parabolic induction. Suppose that () C G is an algebraic subgroup such that QN G°
is a Levi subgroup of G° and M C Q. Let (s, u, p) be as above, with s,u € Q°. Also
take p¥ € Irr(mo(Zg(s,u))) with qV7,(s) (U, p?@) = (M,CM, q&) up to Q-conjugation.

Recall €; from 17. We extend it to the current setting by defining

- S (log7 3
Eu,j(swz) = €logu,j <d7u ( ng —lggZ) — log ’8’,10g Z)

Corollary 2.14. Assume that €, (s,Z) # 0 for each j =1,...,d.
(a) There is a natural isomorphism of H(G, M, q€, Z)-modules

— _Q ~ Q ) -
H(G’ M7 q87 Z) H(Q,J%ﬂg,i) Eszuva72 - @p Homﬂ-o(ZQ (5>u)) (p ) p) ® Es,u,p,zv

where the sum runs over all p € Irr(mo(Za (s, u))) with qUyz, (5 (u, p) =
(M,CM ¢&) up to G-conjugation. For Z = T this isomorphism contains

— W Q ~ Q |/ -
H(G’ M’ qS? Z) H(Q,Jg,qé’,i) Msvuvavg - @p HomﬂO(ZQ(Svu)) <p ’ p) ® Ms,u,p,z'

b) The multiplicity of M, >in H(G,M,q€,Z ® EY .18
) plicity of My in MG M aE7) | @ FD, o

[p?: p]WO(ZQ(&u)). It already appears that many times as a quotient, via
o y

0 o » More precisely, there is a natural 1somorphism
5,U,P,2 5,U,P,2

Homyy g ar,qe,2) (M f wp@, Msupz) = Hom (7, (s,u) (P 0)-

Proof. Recall that the analogous statement for twisted graded Hecke algebras is
Proposition 1.7. To that we can apply the Iwahori-Matsumoto involution, supported
by [AMS2, (83)]. Next, part (b) of Theorem 2.11 allows us to apply part (a) while
retaining the desired properties. The same goes for Theorem 2.5. Then we have
transferred Proposition 1.7 to the representations E‘S’u’p,g and M&u’p’g. U

Notice that the parameters in Theorem 2.13.a do not depend on 2. This enables
us to relate Irrz(H(G, M, g€, Z)) to an extended quotient of T by We, as in [ABPS5,
§2.3] and [AMS2, (87)]. The 2-cocycle f4e of Wye gives rise to a twisted version of
the extended quotient T'//We, see [ABPS5, §2.1].

Theorem 2.15. Let 7 € ]Rio. There exists a canonical bijection

pamge (T)/Waey,e — Iirz(H(G, M, g€, Z))
such that:
L4 /«LG,M,qS(Tun//WqS)hqg = Irr,?,temp(H(Ga M, q¢, Z)) when Z € R%l;

e the central character of pa i qe(t, m) is (qut )Z’(Z),Z), for some algebraic
cocharacter x of Za(t)°.

Remark 2.16. Together with [Sol3, Theorem 5.4.2] this proves a substantial part
of the ABPS conjectures [ABPS1, §15] for the twisted affine Hecke algebra

H(G, M, q&,Z). For Z € (0,1]%, e nqe(Tun//Wae )s,e is the anti-tempered part of
Irrz(H(G, M, ¢€,Z)), compare with [AMS2, Theorem 3.29].
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Proof. From Proposition 2.2 we see that
H(G, M, q€,Z)/(Z1 —1,...,2q — 1) = O(T) x C[We, 4e]-
By [ABPS5, Lemma 2.3] there exists a canonical bijection

(T//Wae)tge — Irr(O (OT( )T)>4 g&/wq:u% ?qe])
. >q , .
(tm) = Coxm=indorcwhe b (Ct ® Vo)

We consider C; x m; as an irreducible H(G, M, g€, Z)-representation with central
character (Wyet,1). By Theorem 2.15 there exist u and p, unique up to Zg(t)-
conjugation, such that C; x m = M; 4, ,1. Now we define

16 Mg () = My p 2.

This is canonical because Theorem 2.13.a is. The properties involving temperedness
and the central character follow from parts (c) and (b) of Theorem 2.13. O

2.3. Comparison with the Kazhdan—Lusztig parametrization.

Irreducible representations of affine Hecke algebras were also classified in [KaLu,
Ree], in terms of equivariant K-theory. This concerns the cases with only one com-
plex parameter ¢ = z2, which is not a root of unity. In terms of Proposition 2.2 this
means that A = \* = 1. In view of (2.3) and [Lus2, Proposition 2.8|, this happens
if and only if 7" = M° is a maximal torus of G° and v = 1. For the upcoming
comparison we assume that M = Zqg(T) equals T. Then mo(Zy(v)) = 1, ¢€ is the
trivial representation and

Rue = No(T. B) /T = G/,

where B is a Borel subgroup of G° containing T (called P before). The Kazhdan—
Lusztig parametrization was extended to algebras of the form

H(G,T,q€ = triv) = H(R(G°,T), A\ =1,\" =1,2) X Rye
in [ABPS4, §9]. The parameters are triples (t4,u, p), where

tq € T' is semisimple;
u € (GG° is unipotent and tqutl;l = uf;

ngu is the variety of Borel subgroups of G° containing ¢, and u;
p € Irr(mo(Z¢(tq, w))) such that every irreducible component of Plro(Zgo (tu)

appears in H*(Bgl;u, C).
Two triples of this kind are considered equivalent if they are G-conjugate. The

representation M (tq,u, p) attached to these data is the unique irreducible quotient
of the standard module

(2.36) thﬂhp = Homﬂo(zc(tqyu)) (p, H, (Bthg“ X mqg, C))

The classification of H(G°,T,E = triv) with ¢ = z = 1 goes back to Kato [Kat,
Theorem 4.1], see also [ABPS4, §8]. With [ABPS4, Remark 9.2] and the subsequent
argument (which underlies the above for ¢ # 1) it can be extended to H(G, T, ¢€ =
triv). The parameters are the same as above (only with ¢ = 1), and the irreducible
module is

(2.37) M((t1,u, p) = Homy (7,00 (s Hau) (B x Rge, €)),
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where d(u) refers to the dimension of Btl’ as a real variety. Clearly M (t1,u, p) is

again a quotient of Ethu,pv but for ¢ = 1 (2.36) has other irreducible quotients as
well, in lower homological degree.

Lemma 2.17. The above set of parameters (ty,u,p) is naturally in bijection with
the sets of parameters used in Theorem 2.13.a.

Proof. By [ABPS4, Lemma 7.1], we obtain the same G-conjugacy classes of param-
eters if we replace the above t, by a semisimple element s € Zgo(u). In Theorem
2.13 we also have parameters (s, u, p), but with a different condition on p, namely
that

Q‘I’ZG(S) (ua P) = (Tv v=1qc= tI’iV).
By definition this is equivalent to
(2.38) Vi (s)0 (U, ps) = (T,v =1, € = triv),

for any irreducible constituent ps of p|ﬂo(ZzG(s)o(u))' Write r = logz € R and y =
log(u) € Lie(Zg(s)). According to [AMS2, Proposition 3.7] for the group Zg(s)®,
(2.38) is equivalent to ps appearing in

oor=Cor ©  HMY(PC)=H(P,C).
7Y% ()

To make this more explicit, we assume (as we may) that s € T. Then Zp(s) =
Zc(s)° N B is a Borel subgroup of Z¢g(s)® and

(2.39) P, ={9Zp(s) € Zc(s)°/Zp(s) : Ad(g Yy € Lie(Zp(s))} =
{075(5) € Za(s)°/Zn(s) - u € gZn(s)g™") = B (ppo

Hence (2.38) is equivalent to p, appearing in H, (B} (s )O,(C). Let p° be a mp(Zgo (s, u))-

constituent of p containing ps. By [ABPS4, Proposition 6.2] there are isomorphisms
of Zge (s, u)-varieties

(2.40) BE" 2 B = BY 0 X Lo (5,1) [ Zg (s ().

With this and Frobenius reciprocity we see that the condition on p; is also equivalent
to p° appearing in H, (BGO ,C). We conclude that the parameters (s, u, p) in Theorem
2.13 are equivalent to those in [ABPS4, §9], the only change being s <+ . O

Proposition 2.18. The parametrization of Irr,(H(G,T,q€ = triv)) obtained in
Theorem 2.13.a agrees with the above parametrization by the representations
M (tq, u, p), when we set ¢ = 2% € R>o and take Lemma 2.17 into account. Moreover
the standard modules E, u,p,z and th w,p are isomorphic.

In other words, our classzﬁcatzon of irreducible representations of affine Hecke
algebras agrees with that of Kazhdan—Lusztig and the extended versions thereof.

Remark 2.19. Our parametrization differs from the one used by Lusztig in [Lus5,
§5.20] and [Lus7, Theorem 10.4], namely by the Iwahori-Matsumoto involution.
Thus Proposition 2.18 shows that the classification of unipotent representations of
adjoint simple groups in [Lus5, Lus7] does not agree with the earlier classification
of Iwahori—spherical representations in [KaLu].
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Proof. Let (s,u,p) be a triple as above, and choose an algebra homomorphism

Yu: SLa(C) = Zg(s)® with v, (§ 1) = u. Then we can take t, = sy, (§ %1 ), where
22 = q. Recall that M (t,,u, p) is a quotient of th%p from (2.36). Write p = p° 7%,
where

" € Irr(Ryeuspe) With  Rgeuspo = m0(Za(s,u))pe /m0(Zao (s, 1)).
From [ABPS4, (72)] we see that Ey, ., equals
(2.41) Hom (7.0 (s,u)) (p°, Hi(BG:,C)) x 7.

To the part without x7 we can apply [EvMi], which compares the two parametriza-
tions. In [EvMi] both the Iwahori-Matsumoto involution and a related “shift” are
mentioned. This involution is necessary to get temperedness for the same param-
eters in both classifications. Unfortunately, it is not entirely clear what Evens
and Mirkovich mean by a “shift”, for signs can be inserted at various places. In
any case their argument is based on temperedness and a comparison of weights
[EvMi, Theorem 5.5], and it will work once we arrange the modules such that
these two aspects match. With this in mind, [EvMi, Theorem 6.10] says that
the H(Zgo(s|s|™!), T, triv)-module obtained from Homy(z . (s.u)) (0% He(BGs, C))

via Theorems 2.5 and 2.11 is IM*FE 0 . The extension with the
yvd’yu(o _T>_10g|8|7r7p0

group Rye is handled in the same way for all algebras under consideration here,
namely with Clifford theory. It follows that applying Theorems 2.5 and 2.11 to
(2.41) yields

(2.42) (IM Ey,d"/u<6 _()T)—loglsl,r,ﬂo) nT

Moreover IM is the identity on C[R,e], so the large brackets are actually superfluous
here. Notice that the subgroup of I' appearing in Zg(s|s|™1) is L ad(Goysjs|-1 the
stabilizer of the Ad(G®)-orbit of s|s|~!. The action of Rye u 5,0 underlying x7 in
(2.41) comes from the action of my(Z¢g(s,u)) on H*(B%G(S|S|,1)O X ' pq(geo)s|s-1, C)-

By (2.39) for the group Zg(s|s|™1):
Za(sls|-1)e X Tad(ce)sisi-1 = Py-

Via this equality the mo(Zg(s,u))-action on H, (B%G(s\s\—l)o X L ad(go)s|s|-15 C) agrees
with the action on

~ M(y)°
H*(Py,C) = (C\s|,7" y @g H, (v) (Py,(C)
=MW ({y})

from [AMS2, Theorem 3.2.d]. Hence

(e (; _Or)flogls|,r,p°) ar=IM"(E (5.0.) toglsrs 7)
= IM” (Ey,d7u<6 PT)—log\s\,r,po NT*) = IM*Ey,dfyu<6 Pr)—log|s|,r,p’

We see that the standard modules E’tq,%p and E’S7u7p7z give the same module upon
applying Theorems 2.5 and 2.11. Hence they are isomorphic.

From here on we have to assume that ¢ = 22 € Ry is not a root of unity.
We recognize the unique irreducible quotient of the right hand side as (2.35), a
part of the definition of MSM%Z. Using Theorems 2.11 and 2.5 again, but now
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in the opposite direction, we see that both M;, , . and M(t,, u, p) are the unique
irreducible quotient of

(G,M,E)

. H
lndH<zb(s|s|—1),M,qg> (exps-1)+ IM" E logz 0

logu,d7u< 0 — 1ng>—10g |s],log z,p”

Thus the two parametrizations agree when ¢ = 22 # 1.
For ¢ = z = 1 a different argument is needed. We note that (2.41) still applies,
which enables us to write

M(ty = s,u, p) = Homry (70 (s,u)) (P> Haguy(Bgs, C)) < 7.

From the definition of the X*(T)-action in [Kat, §3] we see that H,(Bgs,C) is
completely reducible as a X™*(T')-module. With [ABPS4, Theorem 8.2] we deduce
that the weight space for s € T' is, as (Wj¢)s-representation, equal to

Homuy (7 (s.u)) (s Haguy (B s)e X Tad(ee)s: C)) =
Homz(z, o (w) (1°, Hau) (B (5)2: C)) % 7.

From [AMS2, (34)] we can also determine the X*(T')-weight space for s in My, , 1.

First we look at the S(t*)-weight — log |s| in M _154151,0,000 that gives MyQi log 5],0,0°"
As in [AMS2, Section 3.2], we denote the underlying W (Z¢q(s)®, T')-representation
by My po. Next we replace Zg(s)® by Zg(s) and p° by p = p° x 7%, obtaining the
(Wye ) s-representation

o

(243) Y,— 10g|5|’07p0

X T =My o XT.
Applying the Iwahori-Matsumoto involution and Theorem 2.11, we get

* Q°
(244) (eXps‘s‘*l)*IM (My,— log |s],0,p°

X T).

The previous S(t*)-weight space (2.43) for —log |s| has now been transformed into

the X*(T)-weight space for s in the representation M, s,u,p,1 With respect to the group

Za(s). To land inside M. s,u,p,1 With respect to G, we must still apply Theorem 2.5.

But that does not change the X*(7T')-weight space for s, so we can stick to (2.44).
For r = 0,z = 1 the map (expy,-1)« becomes the identity on C[W¢], see [Sol3,

(2.5) and (1.25)]. It remains to compare the C[Wg]-modules
(245)  IM*(My,e x7) and  Homry(z, o) (0%, Haw)(Bgg (s, C)) x 7.

By definition [AMS2, Section 3.2] M, o is the W(Z¢(s)°, T')-representation associ-
ated to (y,p°) by the generalized Springer correspondence from [Lusl]. It differs
from the classical Springer correspondence by the sign representation, so

My po = sign @ HomWO(ZZG(s)O(U)) (po, Hd(u)(B%G(s)O’ C))

On both sides of (2.45) the actions underlying x7 come from the action of Z¢g(s, u)
on H*(B%G(s)o X T'ad(aoys; C) = Hi(Py, C). Moreover IM(w) = sign(w)w for w €
W(Za(s)°,T) and IM is the identity on the group R for Zg(s). We conclude that
the two representations in (2.45) are equal.

This proves that M(t; = s,u,p) and M, ,1 have the same X (T')-weight space
for the weight s. Since both representations are irreducible, that implies that they
are isomorphic. O
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3. LANGLANDS PARAMETERS

Let F' be a non-archimedean local field and let G be a connected reductive group
defined over F'. In this section we construct a bijection between enhanced Langlands
parameters for G(F') and a certain collection of irreducible representations of twisted
Hecke algebras.

We have to collect several notions about L-parameters, for which we follow [AMS1].
For the background we refer to that paper, here we do little more than recalling the
necessary notations. Let GV be the complex dual group of G. It is endowed with an
action of the Weil group W g, which preserves a pinning of GV. The Langlands dual
group is “G = GY x Wp.

Definition 3.1. A Langlands parameter for “G is a continuous group homomor-
phism
¢: Wge x SLQ((C) — QV x Wg

such that:

o ¢(w) € GVw for all w € Wg;

o (W) consists of semisimple elements;

® ¢lg1,(c) Is algebraic.
We call a L-parameter:

e bounded, if ¢(Frobr) = (¢, Frobg) with ¢ in a compact subgroup of G;
o discrete, if Zgv (¢)° = Z(GYV)WF-°,

With [Bor, §3] it is easily seen that this definition of discreteness is equivalent to
the usual definition with proper Levi subgroups.
Let G be the simply connected cover of the derived group Gy, . Let Zgv.(¢) be

the image of Zgv(¢) in the adjoint group G.;. We define
(3.1) Zésvc(qb) = inverse image of Zgv (¢) under Go. — GYy.

Notice that the conjugation action of QS\Q x Wg on QSVC descends to an action of
GY xWg on G,..

Definition 3.2. To ¢ we associate the finite group Sy := WO(Z};_V (¢)). An enhance-
ment of ¢ is an irreducible representation of Sy. A
The group GV acts on the collection of enhanced L-parameters for G by

g-(¢,p) = (969" g-p), where g-p(a)=p(g~"ag) for a € S,.
Let @e(Lg) be the collection of GV-orbits of enhanced L-parameters.

Let us consider G(F') as an inner twist of a quasi-split group. Via the Kottwitz
isomorphism it is parametrized by a character of Z(GY.)WF, say (g. We say that
(6, p) € ®e(EG) is relevant for G(F) if Z(GYL)WF acts on p as (g. The subset of
®.(L'G) which is relevant for G(F) is denoted ®.(G(F)).

As is well-known, (¢, p) € ®.(*G) is already determined by ¢|w, (the restriction
to the first factor of W g x SLy(C)), the unipotent element ug := ¢(1, (1)) and the
enhancement p. Sometimes we will also consider GV-conjugacy classes of such triples
(¢|wp,ug, p) as enhanced L-parameters. An enhanced L-parameter (¢|w,.,v,qe)
will often be abbreviated to (¢, ge). We will study enhanced Langlands parameters
via their cuspidal support, as introduced in [AMSI].
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Definition 3.3. For (¢, p) € ®c(G) we write G4 = Zésvc(qb\wl,), a complex reductive
group. We say that (¢, p) is cuspidal if ¢ is discrete and (ug = ¢(1, (1)), p) is a
cuspidal pair for G in the sense of [AMS]1, §3]. (This means that p = F, o for a Gy-
equivariant cuspidal local system F on Cff.) We denote the collection of cuspidal
L-parameters for G by ®cusp(LG), and the subset which is relevant for G(F) by
Peusp(G(F)).-

We denote the cuspidal quasi-support of (ug,p), in the sense of [AMSI, §5], by
[M,v,qé€]g,. In particular v € M C Gy C Gg.

Proposition 3.4. [AMS]1, Proposition 7.3]

Let (¢, p) € ®o(G(F)). Upon replacing (¢, p) by G¥ -conjugate and replacing (M, v, qe)
by a Gg-conjugate, there exists a Levi subgroup L(F) C G(F) such that (¢|w ., v, ge)
is a cuspidal L-parameter for L(F'). Moreover

LY X Wpg = Zgvew,(Z(M)°),
and this group is uniquely determined by (p, p) up to GV -conjugation.

Inside G, we can conjugate £¥ x W p with elements of GV. A subgroup of the form
g(LY x Wr)g~! projects naturally onto W, but unlike £ it does not necessarily
contain Wp. If (¢, p') € ®.(¥L), then g - (¢',p') is an enhanced L-parameter for
g(CV X WF)g_l.

Suppose that (¢, p) is as in Proposition 3.4. We define its modified cuspidal
support as

L\I/(va p) = (‘Cv X Wp, ¢)|WF7U7 qe)/gv’conjUgaCy'
The right hand side consists of a Langlands dual group and a cuspidal enhanced
L-parameter for that (up to GY-conjugacy). Every enhanced L-parameter for “G
is conjugate to one as above, so “U can be considered as a well-defined map from
®.(¥G) to GV-conjugacy of pairs consisting of a W p-stable Levi subgroup of G
and a cuspidal L-parameter for the associated L-group. Notice that LU preserves
boundedness of enhanced L-parameters.

We also need Bernstein components of enhanced L-parameters. Recall from [Hai,
§3.3.1] that the group of unramified characters of £(F') is naturally isomorphic to
((Z(£V)'¥)w,)°. We consider this as an object on the Galois side of the local
Langlands correspondence and with Lemma A.1 we write

(3-2) Xur(PL) = (Z(L))wy)” = (Z(LY 1 Ip)w )’

Given (¢, p') € ®(L(F)) and z € Z(LY x 1p)w,, we define (2¢/, p') € ®.(L(F)) by
2¢' = ¢ on Ip x SLy(C) and (2¢')(Frobg) = Z¢' (Frobp),

where Z € Z(L"Y x Ir) represents z.

Definition 3.5. An inertial equivalence class for ®.(G(F)) is the GY-conjugacy
class sV of a pair (LY x Wp,s}), where L£(F) is a Levi subgroup of G(F') and s/ is
a Xpr(EL)-orbit in ®eusp(L(F)).

The Bernstein component of ®¢(G(F)) associated to sV is
(3.3) B (G(F))* =20 (LY x Wp,s)).

We denote the set of inertial equivalence classes for ®(G(F)) by BY(G(F)).
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In this way, we obtain a partition of the set ®¢(G(F')) analogous to the partition
of Irr(G(F')) induced by its Bernstein decomposition:
(3.4) De(G(F)) =

\%

5
I—LVE%V(Q(F)) ‘I)e(g(F)) 9
We note that ®.(L(F))*% is a torsor for the quotient of the complex torus Xy, (LL)
by a finite subgroup. In particular ®¢(L(F' ))EZ is isomorphic to a torus as complex
algebraic variety, albeit not in a canonical way.
With an inertial equivalence class 5V for ®.(G(F)) we associate the finite group

(3.5) W,y = stabilizer of s} in Ngv (LY x Wg)/L".

Let Wev 4 be the isotropy group in Wyv of (¢|w,v,qe) € s/. With the generalized
Springer correspondence [AMS1, Theorem 5.5] we can attach to any element of
Ly=1(LY x Wg, ¢y, qe) an irreducible projective representation of Wyv 4. More
precisely, consider the cuspidal quasi-support

qt = [G¢ N E;:/’ v, qe]G¢’

where £Y C G2 is the preimage of £¥ under GY, — GV. In this setting we write the
group Wye from (1.1) as Wy By [AMS1, Lemma 8.2] Wy is canonically isomorphic
to Wev ¢, qe- According to [AMS1, Proposition 9.1] there exist a 2-cocycle kg of W
and a bijection (canonical up to the choice of k4 in its cohomology class)

Ly POTHLY % WE, ¢y, ge) — Trr(C[We, gt)-
It is given by applying the generalized Springer correspondence for (G, gt) to (ug, p).

Theorem 3.6. [AMS1, Theorem 9.3]
There exists a bijection

De(G(F)) = (Re(L(F))L)/Wev),,
(¢,p) = (5(e, p), LS9, p)).

It is almost canonical, in the sense that it depends only on the choices of 2-cocycles
Kqt as above.

3.1. Graded Hecke algebras.

In Theorem 2.15 we saw that the irreducible representations of a (twisted) affine
Hecke algebra can be parametrized with a (twisted) extended quotient of a torus by
a finite group. Motivated by the analogy with Theorem 3.6, we want to associate
to any Bernstein component ®.(G(F))¢  a twisted affine Hecke algebra, whose ir-
reducible representations are naturally parametrized by ®(G(F)) . As this turns
out to be complicated, we first do something similar with twisted graded Hecke alge-
bras. From a Bernstein component we will construct a family of algebras, such that
a suitable subset of their irreducible representations is canonically in bijection with
D.(G(F))*". Of course this will be based on the cuspidal quasi-support [M, v, q€la,
for the group

(3.6) Gy =2 (Plwy)-

As before, we abbreviate T = Z(M)°. Let LY be the preimage of £ in G.. We
record that by [AMS1, (99)]

(3.7) M=GynL.

2
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Let g€ be the M-equivariant cuspidal local system on ij\/{g v

representations of mo(Zy(v)) = mo(Za(logv)). We compute the group Wye from
(1.1) for Gy. Let Map = Zgv (¢lw,) N LY/Z(G") be the image of M in G, then
the definition of Zésc(gzﬂwp) in (3.1) shows that

(3.8) Ng, (M, q€)/M = (Zgv (¢lw ) N Ngv (Map,4€))/Map.

o

with ¢€logy = qe as

Every element of GV which normalizes M normalizes Z(M)°, and then Proposition
3.4 shows that it also normalizes £V x W . Hence (3.8) is isomorphic to

(Zgv(¢lwyp) N Ngv(LY X Wg,qE))/Zev (dlw,) =

3.9
(3.9) (ng (¢lwp) N Ngv (ﬁv X WF,qg))ﬁv/ﬁv = Wev 4,

where the equality sign follows from LV - (¢|w,,CM  ¢€) = LY - (¢, qe) € Po(LL).

logv?
One problem for the construction of twisted graded Hecke algebras is that Z(G")°

was left out of QSYC, so we can never see it when working in G4. We resolve this in

a crude way, replacing G4 by Gy x X (YG). Although that is not a subgroup of
GV or G, the next result implies that its Lie algebra and the real split part of its
centre have the desired shape.

Lemma 3.7. We use the notations from Proposition 3.4. The natural map
T x Xoe(¥G) = X (PL)

is a finite covering of complex tori.

Proof. In Proposition 3.4 we saw that

(3.10) LY x Wp = Zgvw, (T).

Hence the image of M° under the covering Gy, — GY.. is contained in LY. It also
shows that W fixes T pointwise, so

T = (Z(M)" )y,

As £V is a Levi subgroup of GV, it contains Z(G")°. Hence there exists a natural
map

(3.11) T x Xu(G) = (Z(M)'F x Z(G")'r)

o

w, = (ZL)) e, = Xu(PL).

The intersection of Z(G")° and Gy, is finite and T lands in Gy, N LY, so the kernel
of (3.11) is finite.
Recall from Proposition 3.4 that (W) C LY x Wg. Hence

Z(LY x Wp) CZgv(¢(Wp)) and Z(L! x Wp)° C Zgy (6(Wr))°.

Since M°® is a Levi subgroup of Zgy (¢(Wr))° and by (3.10), T' equals Z(LY X W )°.
In particular

dim 7T = dimZ(L! x Wp)° = dimZ(L! % 1),
=dimZ(LY x Ip)3y, —dimZ(G" x Ir)Sy,,

showing that both sides of (3.11) have the same dimension. As the map is an alge-
braic homomorphism between complex tori and has finite kernel, it is surjective. [
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Recall tlgat s). came from the cuspidal quasi-support (M, v, ge). For (¢p|w ., v, ge) €
D (L(F))°c we can consider the group

Zés\{:(gbdwlr) X an(Lg) = G¢b X an(Lg)’

which contains M x an(LQ) as a quasi-Levi subgroup. We choose an almost direct
factorization for Gy x Xy (FG) as in (1.2) and we put

H((bbv v, g¢, I_:) = H(qu)b X an<Lg)7 M x an(Lg)a q87 F)
= H(Lie(Xue (" L)), Wev g, , €T, ge )
where Wv 4, comes from (3.8)—(3.9). From Lemma 3.7 we see that

H (¢, v, g€, ) = H(Zgy (¢slw ), M, q€, F) @ S (Lie(Xnr ("G))*)
= H(Gyg,, M, q&,7) @ S(Lie(Z(GY % Ir)w,)").
We say that a representation of H(¢yp, v, g€, T) is essentially discrete series if its re-
striction to H(Gg,, M,¢&,T) is so, in the sense of [AMS2, Definition 3.27]. That
means that the real parts of its weights (as H(Gyg,, M, ¢€, T)-representation) must
lie in Lie(Z(Gy,)°) @ tg -

Let Xur(PL) = X0 (P L) un X X (P L)1 be the polar decomposition of the complex
torus Xpr(“L). Let (dp|lwp,v,qe) € ®o(L(F))*% with ¢, bounded. Suppose that
(6, p) € B(G(F))*" with:

Pl = bbl1p;
(3.13) o ¢(Frobp)gy(Frobp) ™! € Xpp(PLY )rs;
o dolsLyc) (6 %) € Lie(M).

For such (¢, p) and 7 € C¢ we define

B@,p,7) =IM By, 1) dou((Erobe)-1on(Frobm)+ad(§ )

M(¢? P, r) = IM M]og(ﬂ¢),10g(¢(FI‘0bF)71¢b(Fr0bF))+d(g(g _O,F)f,p S Irr(H(¢b7 v, g€, r))

(3.12)

, € Mod(H(¢y, v, ge, 1)),

If in addition d¢ (§ %) € Lie(T) + o, as can always be arranged by Proposition
1.4.c, then we define an algebraic cocharacter X, = Xu,v of T' by

(3.14) Xow(2) = (L (5.%) ) (75" 2)
We note that x4, stems from [AMSI, Lemma 7.6] and that
AXp0(F) = dé (5 O) — 7o

Theorem 3.8. Fiz 7€ C? and (¢y|wp, v, qe) € Bo(L(F))L with ¢y bounded.
(a) The map (¢, p) — M(p,p,7) defines a canonical bijection between

b L\I;—l(ﬁ\/ X WF? XHY(LE)TS(bb’WF? ’U7 qE),’

e the irreducible representations of H(¢y,v,qe, ¥) with central character in

Lie(Xnr (Y L)rs)/Wev 6, X {7}

(b) Assume that R(7) € R,. The following are equivalent:

® ¢ is bounded; -
Lw(p,p) = (LY x Wk, dplwp, v, ge);
E(¢,p,T) is tempered;
M (o, p,T) is tempered.
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(¢) Suppose that R(7) € ]R‘io. Then ¢ is discrete if and only if M (¢, p,T) is essen-
tially discrete series and the rank of R(Gg ,T) equals dimg(T).

In this case ¢(Frobg)gy(Frobg)~! comes from an element of Z(G3,) x X (FG)
via Lemma 3.7.
(d) Let ¢ € Xur(*G)rs. Then
M(C:Cb, Ps 77) = IOg(C) ® M(¢7 P 7:‘) and E(C¢a Ps F) = IOg(C) ® E(qb) Ps F)

(e) Suppose that R(F) € R, and that ¢(Frobg)¢y(Frobg)™! comes from
Z(Gg,) x X (FG) via Lemma 3.7. Then M (¢, p,7) = E(¢, p, 7).

(f) If do ((1) 91) € Lie(T) + oy, then E(¢,p,7) and M(p,p,T) admit the central
character Wyv 4, (log(¢(Frobg)gp(Frobp)™1) £ diy,»(7), 7).

Proof. (a) By Theorem 3.6 every element of LU 1 (LY x W, Xy (VL) sl Wy, v, ge)
has a representative (¢, p) with ¢|w, in Xu(L)spplw,. Then ¢|1, is fixed, so
d|lw, can be described by the single element ¢(Frobg)gy(Frobg)™t € Xy (PLY)ss.
Since an(L LY)s is the real split part of a complex torus, there is a unique logarithm

(3.15) oo = log (¢(Frobp)@y(Frobp) ™) € Lie(Xn (LY )ys).

Clearly (¢p, v) is the unique bounded L-parameter in X, (“L).s(¢p, v). Hence every
element of GY; that centralizes ¢ also centralizes ¢, which implies

G¢ = Zésvc(qﬂwl‘_‘) - Zégc(¢b|WF) = G¢b.
In particular ¢(SL2(C)) C G, and

7T0<ZG¢ (U¢)) = 7o (ZG% (0'0, log(u¢))) .
By assumption ¢¥g, (ug, p) = (v,qe), and by [AMS2, Proposition 3.7] this cuspidal
quasi-support is relevant for
H(¢p, v, ge,T) = H(Gy, x Xue("G), M x Xu(*G), ¢E, ).

By Proposition 1.4.c, (¢, p) is conjugate to an enhanced L-parameter with all the
above properties, which in addition satisfies

dolsr, (o) (§ %) € Lie(M).

Consequently (log(ug), 00,7, p) is a parameter of the kind considered in Section 1,
and ¢[gr,(c) can play the role of v from (1.10). By reversing the above procedure
every parameter (y,o’, 7, p') for H(¢y, v, ge, ¥) gives rise to an element of

L\Ij_l(ﬁv A WFa an(LE)rSQSb’WF» v, QE).
The equivalence relations on these two sets of parameters agree, for both come from
conjugation by G, .

Now it follows from Theorem 1.6, Proposition 1.4 and Proposition 1.8.f that

L\Ij_l(‘cv X Wg, an(Lﬁ)rs¢b|Wp »y Uy qe)

parametrizes the part of Irr,.(H(¢yp, v, ge)) with central character in
Lie(Xur(“L)1s) /Wev gp.0.9¢ X {7}

As in [AMS2, Theorem 3.29] and Proposition 1.8, we compose this parametrization
with the Iwahori-Matsumoto involution from (1.28). Then the representation asso-
ciated to (¢, p) becomes (¢, p,r).
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(b) By [AMS2, Theorem 3.25] and [AMS2, (84)] the third and the fourth statements
are both equivalent to

d(Frobp)¢y(Frobr) ™t € Lie(Xu (P L) un).

But by construction this lies in Lie( Xy, (“£)ys), so the statement becomes ¢(Frobg) =
ép(Frobp). As (¢p,v) is the only bounded L-parameter in Xy (*L)w(dp,v), this
holds if and only if ¢ is bounded. Since the map ¥ preserves ¢|w, the statement
¢(Frobr) = ¢p(Frobr) is also equivalent to

LU(,p) = (LY % Wr, dlwy, v, ge).
Knowing these equivalences, the equality M (¢, p,7) = E(¢, p,T) is given in Propo-
sition 1.8.b.
(c) Suppose that ¢ is discrete. Then

Go =Zgy (6(Wr))° = Zgy (¢s(Wr),0)°

is a reductive group in which ¢(SL2(C)) has finite centralizer. This implies that G is
semisimple and that g is distinguished in it. The first of these two properties implies
that G; is a full rank subgroup of Gg,, and that G;b is also semisimple. In other
words, R(G;b, T') has rank equal to the dimension of T'. Then u, is distinguished in

3, as well, and [AMS2, (85)] says that M (¢, p,7) is essentially discrete series.

Conversely, suppose that M (¢, p, 7) is essentially discrete series and that the rank
of R(GY,,T) equals dimg(7T'). Then Gy, is semisimple and by [AMS2, (85)] uy €
Gy is distinguished in G . Hence Zg, (ug)° is contained in the unipotent group
ZG,, (ug)®, and itself unipotent. It is known (see for example [Ree, §4.3]) that

Zgy ()° = Zg, (#(SL2(C)))°

is the maximal reductive quotient of Zg,(ug)°. Hence Zgy (4)° is trivial, which
means that ¢ is discrete.

In this case Proposition 1.7.c says that og € Z(Lie(G¢b X Xm(Lg))). Via the
exponential map, that translates to the statement about ¢(Frobg)¢,(Frobg) .
(d) This is a direct consequence of Proposition 1.8.d (and, for E(¢, p,T), also the
proof thereof).
(e) Via (3.15), the condition becomes oq € Z(Lie(Gg, x Xn:(*G))). Apply Proposi-
tion 1.8.e.
(f) This follows from Proposition 1.4.e with v = ¢[gr,c)- O

We conclude this paragraph with some remarks about parabolic induction. Sup-
pose that Q(F) C G(F) is a Levi subgroup such that ¢ has image in *Q. Let QY be
the inverse image of Q" in G/, by [Bor, §3] it equals Zgv (Z(Q; X Wr)°). Therefore
(3.16) Zoy ($slw ) = Zgy (dulwp) N Zgy (Z(Q x Wr)°)

| = Gy, N Zgy (2(Q! x Wr)°).

This in turn shows that
% N Zoy (dolwr) = Zoy (on(Wr))°

is a Levi subgroup of G3,. Furthermore Z&y (d|w ) contains M, for the cuspidal

quasi-support of (¢, p) with respect to G is the same as the cuspidal quasi-support
of (¢, p?) with respect to L'Q, for a suitable p@ € Irr(S(z)Q) [AMS1, Proposition 5.6.a].
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Let ¢ be the character of Z(G..) determined by p, an extension of the character
(g € Irr(Z(GY.)WF) which was used to define G(F)-relevance. Let (< € Trr(Z(QY.))
be derived from ¢ as in [AMS1, Lemma 7.4]. Let p; € C[Sy] and p.o € (C[Sd)g] be
the central idempotents associated to these characters.

Let 84,0 be the component group of the centralizer of uy in Zlgg (¢lw ), or equiv-

alently the component group of the centralizer of (¢(Frob), ue) in (3.16). By [AMSI,
Lemma 7.4.c] there exist a canonical isomorphism and a canonical injection

pceClSF] = pC[Ss,0] = pcC[Sy).

This enables to restrict representations of Sy to S(f, and it shows that enhancements
for ¢ € ®(Q(F')) can just as well be constructed via (3.16) and Sy g.

That is, Gy, X Xnr(¥G) and Z5 (6w ) X Xnr (LG) fulfill the conditions of [AMS2,
Proposition 3.22] and Corollary 9.14. Tt follows that the families of representations

(¢7 P, 7_") — Elog(U¢),10g(¢(FrObF)7l¢b(Fr0bF))+d‘£(g _0,,-,‘) 7,0 S MOd(H(¢b7 v, g€, r))?

(92:7) = Mg 1) 108(6(Frobie) 11 Frobp))ad(§ 0.7 € TTE(G, v, 06, F))

are compatible with parabolic induction in the same sense as [AMS2, Proposition
3.22] and Corollary 2.14. In view of [AMS2, (83)] this does not change upon applying
the Iwahori-Matsumoto involution, so it also goes for the representations E(¢, p, 7)
and M (¢, p,7) considered in Theorem 3.8.

3.2. Root systems.

We fix an inertial equivalence class sV for ®.(G(F')), represented by a cuspidal
L-parameter (¢|w,.,v,qe) for L(F). We use the notations from Proposition 3.4 and
(3.7), in particular T = Z(M)° = Z(LY)WF°. We define

(3.17) J = Zgy (0h,.),

a variation on Gy from (3.6). The groups T, J and M = G, N LY depend only on
(LY,s)). We note that J is reductive, possibly disconnected and

(3.18) Gy CJ and G =Z;(¢(Frobr))°.

In this paragraph, we use the convention that a root system is a finite and integral
root system.

Proposition 3.9. Define R(J°,T) as the set of « € X*(T') \ {0} which appear in
the adjoint action of T on Lie(J®).

(a) R(J°,T) is a root system.

(b) There exists a (¢1|lw ., v, ge) such that R(G ,T)rea = R(J°,T)red-

(c) Ift € T commutes with GV, then it lies in the kernel of every a € R(J°,T).

Remark 3.10. This result does not imply that R(G7,,T) equals R(J°,T). For

example, suppose that G = Uy, is an unramified unitary group and ¢;(Ir) = 1.

Let £V be the diagonal torus in G¥ = GLg2,4+1(C). For s} we can take the set of

enhanced L-parameters corresponding to the unramified characters of £(F'). Then
J° = SL2n+1(C), G;l = SOQn+1(C) and T =LV N SOQn+1(C).

In this case R(GZI,T) has type B,,, whereas R(J°,T') has type BC,,.
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Proof. (a) From [Lus2, Proposition 2.2] we know that every R(Gj,T) is a root
system. However, this result does not apply to our current J°, as (M, v, qe) need
not be a cuspidal quasi-support for a group with neutral component J°.

We will check that R(J°,T) satisfies the axioms of a root system. We fix a
N (T)-invariant inner product on X*(7T") ®z R (which exists because N ;(T")/Z;(T)
is finite). For a € R(J°,T) we define oV € X,(T) ®zR as the unique element which
is orthogonal to

{z e X*(T)®zR: (z,a) =0}
and satisfies (", a) = 2. Every single o € R(J°,T) appears in R(Gg,T) for a
suitable choice of ¢ (see the construction of ¢; below), which entails that o € X, (T).
For arbitrary «, 8 € R(J°,T) we have to show that
(1) (", B) € Z;
(2) sq4(B) € R(J°,T), where so: X*(T) — X*(T) is the reflection associated to
a and aV.

Assume first that o and g are linearly independent in X*(7"). The element ¢(Frobp) €
LY x'W g centralizes T' and normalizes .J°, so it stabilizes each of the root subspaces
ga C Lie(J°). Let A, (respectively Ag) be an eigenvalue of Ad(¢(Frobp))lg, (re-
spectively Ad(¢(Frobr))|g,). Since a and 3 are linearly independent, we can find a
t € T with a(t™!) = Ay and B(t™1) = Ag. Define (¢¢|w ., v,qe) € 5} by

(319) ¢t|IF = ¢|IF and ¢t(Fr0bF) = ¢(FrObF)(image of ¢ in gél/er)'

Clearly «, 8 € R(Gg,,T). Since this is a root system, (i) and (ii) hold for o and f8
inside R(Gg,,T). Then they are also valid in the larger set R(J°,T).

Next we consider linearly dependent «, 5. Then s,(8) = —f, so (ii) is automati-
cally fulfilled.

Suppose that there exists a v € R(J°,T) \ Qo which is not orthogonal to a. As
before, we can find ¢, ¢3 such that a,y € R(G;’SQ,T) and 3,7 € R(G;3,T). Hence
both {«,~v} and {3,~} generate rank two irreducible root systems in X*(7T'), and
these root systems have the same Q-span. From the classification of rank two root
systems we see that QauN R(J°, T') is either {£a} or {£+a&, +2a} for a suitable a&. In
particular (i) holds, because

(", B) € £{1,2,4} C Z.

Finally we suppose that Qo N R(J°,T) is orthogonal to R(J°,T) \ Qa. As above,
we may pick ¢ such that a € R(G;’),T). By assumption 8 = ca for some ¢ € Q*.
Pick ¢ so that 8 € R(G;t,T). As

<5\/7 B) =2= <ava Oé>,

we have ca = 8 € X*(T) and ¢ 1oV = Y € X, (T). It follows that c € +-{1/2, 1,2}
and (o, B8) € £{1,2,4}.

(b) Let A be a basis of the reduced root system R(J°,T");eq — which is well-defined
by part (a). Let Ay € C (o € A) be an eigenvalue of Ad(¢(Frobg)) on g4. Since A
is linearly independent, we can find t; € T with a(tfl) = Ay for all @ € A. We put
¢1 1= ¢y, where ¢y, is defined by (3.19). Then A is contained in the root system
R(G;51 ,T). The Weyl group of (J°,T) is generated by the reflections s, with o € A,
so it equals the Weyl group of (G‘;)1 ,T). In particular it stabilizes R(G‘(;)1 ,T). Every

element of R(J°, T)eq is in the Weyl group orbit of some o € A, so R(Gy ,T)
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contains R(J°, T')req.
(c) Such a t commutes with GY. and with J, so its image under the adjoint repre-
sentation of J° is trivial. (]

By [Lusl, Theorem 9.2] and Proposition 3.9,
(3.20) Negg (T)/Zas (T) = W(R(GG,, T)) = W(R(J®,T)).
The group Nj;(T) acts naturally on R(J°,T). Let Nj/(T) be the preimage of
W(R(J°,T)) in Njo(T), by (3.20) it surjects onto W (R(J°,T)). We write
(3.21) S =W(R(J®,T)) =Ny(T)/Zs(T).
Since LY = Zgy (T) and J° = Zgy (¢|1,)°
& =Nye(T)/Zey (9(Ip))° = Nyo (L) /(T N LY).
Any element of G;l which normalizes T = TW¥ will also normalize £Y x Wp =
Zgvyw(T) and M =Zg, (T) = Z¢,(T), while by [AMS2, Lemma 2.1] it stabilizes
CM and ¢€. The group
(3.22) Wev C Ngv(LY x Wg) /LY =Ngv(T)/LY
from (3.5) stabilizes the £Y-conjugacy classes of X (LY)(d|w v, ge) and of
(3.23) M =Gy NL =GyNL.
Further, the group Zgv(¢|1,) automatically normalizes J = Zésvc (¢|1,). Hence we
can express Wyv as
(3.24) Wev 22 (Ngv(T) N Zgv(@l1z)) / Zev (d]1,)-
As LY = Zgv(T) and J/Z(GL) = Zg,,(¢|1,), we deduce from (3.24) that there is a
canonical isomorphism
(3.25) Ny(T)/Z5(T) — Wyv.

In particular Wyv acts on R(J°,T) and naturally contains WJ,. We choose a ¢;

as in Proposition 3.9, which will play the role of a basepoint on 5%. Then W2, =

W(R(G;,,T)) fixes (¢1/wp, v, qe) € s, but Wev need not fix ¢1|w.
Clearly the set

(3.26) Xoe(FL) gy = {2 € X (ML) : 261 =¢v 1}

only depends on s}, not on ¢1. Moreover it is finite, for it consists of elements
coming from the finite group Ly, NZ(L"). Writing

(327) ,,Tsv = an(Lﬁ)/an(Lﬁ)d)la
we obtain a bijection
(3.28) Tov — s5p: 2 = [2¢1|wp, 0, ge).

Via this bijection we can retract the action of Wyv on 5% to Tyv. Then W, fixes
1€ Tyv. If ¢g = togy is another basepoint, like ¢1, then also W(R(G;O,T)) =W,

so tg € (T)W:V. Consequently the action of W, on T;v is independent of the choice
of ¢1. On the other hand, the action of W,v on T;v may very well depend on the
choice of the basepoint ¢.
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Analogous to (3.26), we consider the finite group
Ty, ={teT tp1 =¢v 1}
=T N {lg1(Frobp)l ' ¢1(Frobp) " : 1 € Zgy (¢1(IF), v, q€)}.
From Lemma 3.7 we get a natural, finite covering of tori
(3.29) T[Ty, x Xue(*G) — Tov,

which is injective on T'/Tj,. In general the elements of R(J°,T) do not descend

to characters of X,,,(¥L), and even if they do, they need not descend further to

characters of T,v. The former problem arises in the setting of Remark 3.10, and the

latter problem already occurs for the Levi subgroup GLa(F) x GLa(F') of GL4(F).
To set things up properly, extend ¢;|w,. to

(¢1’WF7U¢>17P) € q)e(Lg) with q\I/G’(;/)l (U¢1,p) - [M,’U, qe]Gd,l .

We consider ¢;(Frobp) as a semisimple automorphism of J. By [Ste, Theorem 7.5]
¢1(Frobp) stabilizes a Borel subgroup By of J°, and a maximal torus T thereof.

Then Bf?l(Fme)’o is a Borel subgroup of Gj, = Jor(Frobr).o - containing Tj)l(FrObF)’o

as maximal torus. By conjugation in GZI we may assume that ug, € B?l(FrObF)’O,

and then

M > TP 5 p = 7M.
We recall that T is the centre of the Levi subgroup M° of G;. Hence the restriction
map

(3.30) R(GS,, T3 ™°PP°) U {0} — R(GS,,T) U {0}
has the property that the full preimage of any o € R(G;1 ,T) is contained in a single

irreducible component of R(G;l,Tfl(FrObF)’o). As ¢1(Frobp) stabilizes (B, Ty), the
restriction map

o o Frobp),o
(3.31) R(J°,Ty) = R(GS,, Ty P2

induces a bijection between the ¢;(Frobg)-orbits of irreducible components of
R(J°,Ty) and the set of irreducible components of R(G;l,Tfl(Fme)’o). From (3.30)
and (3.31) we see that the preimage in R(J°,Ty) of any a € R(G5 ,T) is contained
in single ¢;(Frobg)-orbit of irreducible components of R(J°,T;). That paves the
way for the following definition.

Definition 3.11. For each a € R(J°, T)yeq, we define m,, € Z~o by the following
requirements:

e Suppose that the preimage of o in R(J°, T) lies in a single irreducible com-
ponent of that root system. Then m, is the smallest positive integer such
that Ty, C ker(mqa).

e Suppose that the preimage of o in R(J°,Ts) meets k > 1 irreducible compo-
nents of that root system, permuted transitively by the action of ¢;(Frobp).
Then my = ma(Frobr) equals k times the number mq, (Frob%) computed (as
in the first bullet) with respect to the action of ¢ (Frob%). Equivalently, m,
is k times the analogous number obtained by replacing W with the Weil
group of the degree k unramified extension of F'.
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These conditions guarantee that mqya descends to a character of T'/Ty,. Moreover
My, is the minimal such natural number, unless maybe when o € 2X*(7T") and k even.
Extend maa to a character of T/Ty, x Xn:(LG), trivial on the second factor. In
view of Proposition 3.9.c, mya« is trivial on the kernel of (3.29), and hence descends
naturally to a character of T,v. We define

(3.32) Ry = {maa YOS R(JO,T)red} C X*(Tsv).

Recall that in the proof of Proposition 3.9 we fixed an inner product on X*(7T') @z R,
invariant under N;(T")/Z;(T) = Wev.

Lemma 3.12. (a) Rgv is a reduced root system, and it is stable under the action
of Wev on X*(Tyv).
(b) For o and f in the same irreducible component of R(J°, T )red, Ma = mg or
~2 114112
ma = [l {B[]" mgs.
(¢) For each o € R(J°, T )red, @ /o € Xi(T) @z Q defines a cocharacter of Tyv.

Proof. (a) The realization of Wgv in (3.24) makes that it normalizes Tp,. From
T; O T and (3.25) we see that Wsv can be represented by elements of N;(T') that
normalize T;. Then W,v stabilizes all the data that go into the definition of m,, so
the map a — mg is constant on Wyv-orbits. Consequently Rsv is Wyv-stable. In
particular Rgv is stable under all the reflections s,,,5 = sg with mgf € Rsv. Hence
Rgv is a (possibly non-integral) root system with Weyl group

(3.33) W(Rev) = W(R(J°,T)) = WS,

By construction R,v is reduced, it remains to see that it is integral. The lattice ZRsv
is stable under W (Rsv ), so we can form the semidirect product W, = W (Rgv )X ZRsv .
We let any x € ZRsv act on X*(T) ®zR by the translation ¢,. Then W, is generated
by the affine reflections sqtna with @ € R(J°,T)eq and n € myZ. If we consider
W, as a group of affine transformations of ZRsv ®z R, we are in the setting of [Bou,
Proposition VI.2.5.8]. It says that W, is the affine Weyl group of a reduced integral
root system, namely RY, . Hence Ryv is integral as well.

(b) By definition, in R(J°,T')sed:

(3.34) sa(mgB) = mgh —mp(a’, Ba.
On the other hand, in the integral root system Rgv:
(3.35) Smaa(maB) = maB — (maa)”, mgB)maa

Comparing (3.34) and (3.35), we see that mg(a", 8) € myZ.

By the Wyv-invariance of o — my, it suffices to consider simple roots «, 8 in one
irreducible component of R(J° T)eq. If they have the same length, then they are
Wv-associate and m, = mg. That leaves the case where their lengths differ, say o
is longer. Replacing o and 8 by W(R(J°,T))-associate simple roots, we can achieve
that they are not orthogonal and (o, 8) = —1. Then (3.34) and (3.35) entail that
mg > mg. More precisely, in that case

(BY,a)=—al*18]7% € {~1,-2,-3}

and my € mg(BY, a)"1Z, s0 ma = mg or my = || 72 ||8]|* mp.
(c) In view of the covering map (3.29), it suffices to show that a/m, defines a
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cocharacter of T'//Ty,. From the finite covering T — T'/Tj, we obtain inclusions

X.(T) C Xu(T/Ty,) C Xu(T)®zQ,
X*(T/Ty,) < X*(T) C XH(T/Ty,) ®z Q.

The reflection s, acts on X,(T) ®z Q by

\

(3.36) T 84(z) =7 — (7, a)a” =1 — (v, mya)a’ /ma.

Since s, € W,v normalizes Ty, , the action (3.36) stabilizes X, (T'/Ty, ).

Suppose that m,, is the smallest positive integer such that msa descends to a
character of T'/Ty,. Then mqo is indivisible in X, (T/Ty,), so there exists an z €
X*(T/Ty,) such that (z, mqa) = 1. For that x, (3.36) shows that

o’ fma =1 — sa(x) € X (T/Ty,).

When this characterization of m, does not hold, then «/2 € X*(T') and mya/2 is
the smallest multiple of o that descends to a character of T'/Ty, (as remarked after
Definition 3.11). As o € 2X*(T"), the irreducible component R; of R(J°, T)yeq that
contains « has type Cj,, and it is contained in a direct summand Z" of X*(T'). Then
X*(T/T,) contains mqo/ /2 for every long root &’ € Ry, so it contains m,f for every
short root 8 € Ry. From this and part (b) we deduce that mg = m, (provided that
Cy, has rank > 1 so that it has short roots). It follows that QRy N X*(T/Ty,) =
meZ". In particular

XH(T/Ty,) = (@) @ maa/2.
Since the pairing between X, (T/Ty,) and X*(T'/Ty,) is perfect, there exists y €
X.(T)Ty,) N (o) with (y, maa/2) = 1. This y is o /maq. O

Lemma 3.12 implies that
(3.37) Rov i= (Rev, X" (Tov), RV, Xi(Tov))
is a root datum with an action of Wyv D W2, = W(R,v).

Lemma 3.13. Let a € R(J°,T)peq and t € T.

(a) If (maa)(t) =1, then a € R(Gy . T).
(b) Suppose that R(G§¢1,T) contains o or 2a.. Then (mya)(t) =1 or

(maa)(t) = =1 and (maa)¥ € 2X,(Tyv).

Proof. (a) Suppose that mqa is the smallest multiple of o that descends to a charac-
ter of T'/Ty,. From «a(t)™> =1 we see that a(t) € a(Ty,). In particular there exists
at' € tTy, with a(t') = 1. By the definition of Ty, , t¢1 and ¢'¢; are LY-conjugate.
Hence a € R(G} . T) = R(Gy,, . T).

When this characterization of m, does not hold, we need a more involved ar-
gument. Following Definition 3.11, we write mq = kmg(Frob%). This means that
k irreducible components of R(J° Ty) are relevant for «, and they are permuted

transitively by ¢1(Frobr). Now a is a root for (G, ,T) if and only if a is a root

for Z ;((t¢1(Frobx))¥)°, the version of Gy, With Frob% instead of Froby. More pre-
cisely, the root subspaces for « in these two groups are naturally in bijection. Since
T centralizes ¢1(Frobp) € LY x Wg,

(té1 (Frobp))® = t*¢1 (Frobk).
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The root subspace for o and Zj((t$1(Frobr))*)° depends only t* (regarding ¢; as
fixed). By assumption

(ma(Frobk)a) (tF) = (k7 tmaa) (tF) = (mao)(t) = 1.

This brings us back to a situation analogous to the first part of the proof, and we
conclude as over there.

(b) The reflection s, stabilizes t¢; € ] = Tev. Thus s, fixes ¢ considered as element
of Tyv. As R,v is a root datum, we have reduced to the well-known setting of Weyl
groups acting on complex tori associated to root data. In that setting we conclude
with [Lus3, Lemma 3.15]. O

We endow R,;v with the set of simple roots determined by the Borel subgroup
By C J°. We look for parameter functions A and A* on R4 which are compatible
with specialization to the graded Hecke algebras from Paragraph 3.1. Recall from
(2.3) that \*(a) is defined to be A(a) unless « is a short root in a type B root
subsystem of Rgv.

Proposition 3.14. (a) There exist unique Wyv -invariant parameter functions
A Ryv — Qso, N {maa € Ryv @ (maa)” € 2X,(Tyv)} — Q

such that, for every (¢p|wp,v,q€) € s} with ¢, bounded, the reduction of
H(Rsv, A\, \*,Z) via Theorems 2.5 and 2.11 gives the subalgebra
H(Lie(Xne(*L)), (W) g, cF) of H(¢s, v, qe, T) from (3.12).

(b) The basepoint ¢1 of s} can be chosen so that X has image in Zxq, \* has image
in Z>o and X > X\* on the domain of \*.

(¢) Lett'¢y be another basepoint as in part (b), and let moo € Rgv. Then (mqa)(t)
equals 1 or (mga)(t') = —1,8,(t') =t' and \*(maa) = 0.

Proof. (a) The aforementioned reduction produces twisted graded Hecke algebras
with vector space Lie(Tyv) = Lie(Xy(FL)), finite group (WS )e, and trivial 2-
cocycle, as required. However, the roots for the resulting graded Hecke algebra
are mqa, whereas in (3.12) the root system is contained in R(J°,T'). We reconcile
this by imposing ¢(mqa) = mqc(a), which is allowed because it preserves the braid
relations in a graded Hecke algebra (Proposition 1.1).

For ¢, = ¢1, (2.23) imposes the conditions
(3.38) A(maa) + A (maa) = mac(a) a € R(J°, T)red,
where c(a) € Zso is computed as in Proposition 2.1, with respect to G . Given
¢1‘1F’ v and ge, the value of ¢(«) depends only on the root subspaces for a and 2«
in Gig,. The proof of Lemma 3.13.a shows that these root subspaces depend (up
the isomorphism) only on (mq«)(t).

In view of Lemma 3.13.b, we need to consider at most two values of ¢(«) for
¢ € 5): one for ¢; and maybe another one, say ¢*(«a), for a t¢; with (mqea)(t) = —1.
When R(GY; , T) contains 2a but not «, we must rescale ¢*(a) = ¢(2a)/2 so that it
really refers to « like c¢().

When (mqa)V ¢ 2X.(Tsv), Lemma 3.13 says that R(Gy,,, T) contains a or 2« if
and only if (mya)(t) = 1. By convention A*(mga) = A(mqa), and the only way to
solve (3.38) is setting

(3.39) A(maa) = c(a)mqa /2 € Qsp.
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Next consider an a € R(J®,T)req With (mea)Y € 2X,(Tyv). Then s, o fixes to;
if (mqa)(t) = —1, so we have to consider ¢*(a) € Z>p. If @ and 2a do not be-
long to R(G§¢1,T) for one such ¢, then the above argument shows that they do not
lie in R(GY, ,T) for any such ¢. In that case, in the twisted graded Hecke alge-

(23
bra H(t¢1, v, ge, ¥) the element Ny, satisfies a braid relation with trivial parameter
c*(a) :=0.
For any t € T with (mqa)(t) = —1, (2.23) imposes the new condition
(3.40) A(maa) = X (maa) = mec™ (o) € Zso.

Clearly (3.38) and (3.40) admit the unique solution
(3.41) A(maa) = (c(a) + c(@)ma/2, A (mea) = (c(a) — c*(a))mq /2.

We address the W,v-invariance. Represent v € Wyv in N;(7T') as in (3.25). Then
it acts on the entire setting by conjugation, so A o v and A* o v are parameter
functions which also fulfill the requirements with respect to reduction to graded
Hecke algebras. With the uniqueness of the solutions to the above equations, we
find that Aoy = X and A* oy = A\*.

(b) By (3.39) and (3.40) we have

A(mqa) >0 and A(maa) > X' (mea) for all maa € Rgv.

If ¢*(a) > ¢(a), then we exchange them. This can be achieved with the method from
the proof of Proposition 3.9.b: take a new basepoint ¢y such that (mya)(t') = —1
while ¢’ lies in the kernel of every other simple roots of R(J°,T). This assures that
A* takes values in Q>o.

Case 1: (mqaa)Y ¢ 2X.(Tyv)

When 2a ¢ R(J°,T), Proposition 2.1.a ensures that c¢(«) is even. When 2a €
R(J°,T) and still (maa)Y ¢ 2X,(Tyv), Lemma 3.12 shows that the relevant irre-
ducible components of R(J°,T) and Rsv have type BC,, and C,,, respectively. In
particular m, = 2mg for any other simple root in the same component of R(J°,T),
and m,, is even. Hence (3.39) is always an integer.

Case 2: (mqa)” € 2X.(Tov),2a ¢ R(GG,,T)

In view of (3.41), we need to show that

(3.42) (c(a) £ " (a))mq is even.

By Proposition 2.1.a, ¢(«) is even. Select t € T' with (mqo)(t) = —1.

e If a lies in R(Gy,,,T) but 2a does not, then ¢*(a) is also even.
o If o, 2a0 ¢ R(Gy,,, T) then we argued in the proof of part (a) that ¢*(a) = 0.
e Suppose 2« lies in R(G§¢1,T). If mq would be odd, we could arrange that
a(t) = —1. Then (2a)(t) = 1, so 2« would lie in both R(Gy, ,T) and
R(G(‘;51 ,T). That contradicts our assumptions, so m,, is even. By Proposition
2.1 either ¢*(a) = ¢;(2a) /2 or ¢*(a) = ¢() and it is always an integer.
In all these three instances (3.42) holds.
Case 3: (ma)” € 2X.(Tv),2a € R(GY ,T)
Again we need to verify (3.42), and we pick a t € T with (maa)(t) = —1. By
Proposition 2.1.b, ¢(a) is odd.

e If ,2a € R(GY;,,T), then ¢*(e) is also odd.
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e Suppose myq is even and not «, 2a € R(Gyy . T). If o, 2a ¢ R(Gyy , T), then
we argued in the proof of part (a) that ¢*(a) = 0. Otherwise, by Proposition
2.1 either ¢*(a) = c¢(a) or ¢*(a) = ¢;(2a)/2, and this is always an integer.

e Suppose m, is odd and not «,2a € R(G§¢1,T). Here we can arrange that
a(t) = —1, so that (2«)(t) = 1. Then the root subspace ga, is the same for
Gg, as for Gy, , so 2a € R(Gy, ,T) # o and ¢*(a) can be computed from
Gy, alone. By Proposition 2.1.b ¢*(a) = ¢;(2a)/2 = 1, which is odd.

In these three instances, (3.42) is indeed valid.

(¢c) By Proposition 3.9.b s4(t') = t/, so (mqa)(t') € {£1}. Suppose that (m,a)(t') =
—1 and A*(mqa) # 0. Then ¢(a) > ¢*(«) with respect to ¢1, but ¢(a) < ¢*(a)) with
respect to t'¢1. That would give A*(mqa) < 0 with respect to t'¢1, which disqualifies
t'¢1 as basepoint in the sense of part (b). So if (mya)(t') = —1, then we must have
A (mga) = 0. O

3.3. Affine Hecke algebras.

Recall that W,v acts naturally on the root system R(J°,T). Let RT(J°,T) be
the positive system defined by the ¢(Frobp)-stable Borel subgroup By of J°. Any
two such Bj; are J°-conjugate, so the choice is inessential. This also determines the
positive (co-)roots for the root datum R,v from (3.27), (3.32) and (3.37).

Since W, acts simply transitively on the collection of positive systems for R(.J°,T'),
we obtain a semi-direct factorization

Wg\/ — WSO\/ X 9:{5\/7
Rev = {w € Wev : wR*(J°,T) = RT(J°, T)}.

To sV we can associate the affine Hecke algebra H(Rsv, A\, \*,Z), where ¢; is as in
Proposition 3.14 and A and A* satisfy (3.38) and (3.40). However, this algebra takes
only the subgroup W, of W,v into account. To see Wyv 4, we can enlarge it to

(343) H(Rﬁ\/ s )\, )\*, Z) X (C[i)%sv’%’v,qe, hsv,¢>1,v,qe] =
(3.44) H(Rev, A\, N, Z) End;% Lie(Go, s (qme(q€)).

But W,v can also contain elements that do not fix ¢1. In fact, in some cases Wyv
even acts freely on Tyv, see [ABPS3, Example 5.3].

Proposition 3.15. Assume that the almost direct factorization (1.2) of J® induces
a decomposition of R(J°,T) which is Wv -stable.
(a) The group Rev acts canonically on H(Rsv, A\, \*,Z), by algebra automorphisms.
(b) This can be realized in a twisted affine Hecke algebra

H(Rﬁv,)\, A, Z) X C[msv, hﬁv] = H(Rsv,)\, AF, Z) X End;]Lie(J)Rs (q7r* (qE))

in which (3.43) is canonically embedded.
Proof. (a) The action of Rev on Tev comes from (3.28). This determines an action on
O(Tyv) = CIX*(Tyv)]. Any v € Rgv maps 0, to an invertible element of C[X*(T,v)].
That is,

YO0y = 040Ny, with X\, , € C*.

The linear part z — vz is an automorphism of X*(7sv ), and the translation part of
o

v: Tev — Tyv is given by A -1, = z(y(1)). Since W, is normal in Wev,
(Wso\/)’y(l) = (7W50V7_1)1 - (Wsov)l - Wso\/'
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More precisely, writing
Ry = {maa : 0 € R(G3,, Thea} = mR(G3, T
as in (3.32) and Proposition 3.9.b, we have
fa€ Rev s a(y(1) = 1} 2 mR(GS 1y Thred = MR(GEA ™ T
= v(mR(GG,, T)rea) = V(Rev) = Rev.

Hence the elements \,-1 = (1) € T fulfill the conditions in Proposition 2.2.
According to [AMS1, Lemma 9.2] there exists a canonical algebra isomorphism

1/}7)(151 : C[W5V7¢1 ) K"z’lavuqe] - C[W5V77(¢1)’ H7(¢1)7U:q6] N

Let us recall its construction. There is a G4, -equivariant local system g, (&\c‘f) on
(Gg,)rs, an analogue of K and K*. It satisfies

(3.45) CIWev 61+ Kign wae] = Endp(c, s (a7 (6)).

Choosing a lift ny € N, (M) of ~ and following the proof of [AMS1, Lemma 5.4],
we find an isomorphism

(3.46) gby: qme(q€) — qm. (Ad(ny)*¢€).

Then 1 ¢, v4e s conjugation with gb,.

In this context [AMS1, Lemma 5.4] says that there are canonical elements gb,, €
Endpa,, )ps (a7 (¢€)) (w € W2,) which via (3.45) become a basis of C[W2/]. Since
W2, is normal in Wyv, ) 4, v 4 stabilizes the set {gb,: W2 }. Moreover v € R,v,
SO Yy ¢, v,qe Permutes the set of simple reflections in W,.

By Proposition 3.14 the parameter functions A and A* are Wyv-invariant, so by
Proposition 2.2 R,v acts canonically on H(Rsv, A, \*, Z) by algebra automorphisms.
(b) The same construction as in the proof of Proposition 2.2 yields an algebra

(347) H(REV,A,)\*,Z) X C[%ﬁvv usv]a

in which the action of Rsv on H(Rsv, A\, A*, Z) has become an inner automorphism.
This works for any 2-cocycle fzv. It only remains to pick it in a good way, such
that hsv|(W5v,¢,v,q6)2 equals Kgv ¢y ge (Which is hge for Gy). For this we, again, use
the maps ¢by from (3.46). The cuspidal local system Ad(n.)*¢€ does not depend
on the choice of n,, because ¢€ is M-equivariant. Furthermore gb, is unique up to
scalars, so
qby - ¢by = Ay 47 gbyy for a unique A\, ., € C*.

We define fv by bsv(7,7’) = A,,4. This is a slight generalization of the construction
in Section 1 and in [AMS1, Lemma 5.4]. As over there,

C[Wﬁvv hsv]v
(C[ms\ﬁ hﬁv]'

Endp, o) (47 (45))
EnngLie(J)RS (qﬂ—* (qg))

11

As the J-equivariant sheaf QW*(E_]\(C:’) on Lie(J)rs contains the Gg-equivariant sheaf
qm«(q€) on Lie(Gg)Rrs,

(3.48) bev (ng)2 — (Wev/ 5Ov)2 = %?v — C*
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2 — CX, for every (¢|wy,v,q€) € 5} For ¢ = ¢; this

extends Kgv g ge: (Wev o)
means that
H(R5\/ ) )‘) )‘*7 Z) X C[WSV7¢17 K’5V7¢1 7an5]'

is canonically embedded in (3.47). O

The algebra from Proposition 3.15.b is attached to s and the basepoint ¢1 of s},
chosen as in Proposition 3.14.b. To remove the dependence on the basepoint, we
reinterpret H(Rsv, A, A*,Z). Recall that W, acts naturally on s} (which is diffeo-
morphic to Tyv). We can replace C[X*(T,v)] by O(s}), then (i)—(iv) in Proposition
2.2 still work equally well.

Every a € R,v is by definition a character of Tyv, so via the choice of ¢; it becomes
a function on s}/. By Proposition 3.14.c, an alternative basepoint t'¢; gives the same
function « on s}, or leads to the new coordinate a(t')o = —a on s).. In the latter
case, the property A\*(«) = 0 from Proposition 3.14.c ensures that the multiplication
rule (v) from Proposition 2.2 is the same with respect to the coordinates o and —a.
This entails that Proposition 2.2 defines an algebra structure on

0(52) ® C[z) Zﬁl] ® C[ 5OV]7

independent of ¢;. We call this algebra H(s%,W;v, A\, A%, Z). It is isomorphic to
H(Rsv, A, A*,Z), but only via the choice of a basepoint of 5%. In Proposition 3.15.a

we showed that PRsv acts naturally on ’H(sz, s A, A", Z). Applying Proposition
3.15.b, we obtain an algebra

(349)  H(sk, Wer, AN 2) x Bndf 1o (gm(€)), where J = Z§, (¢]1,.)-

Now we suppose that the almost direct factorization of J° induces a Wv-stable
decomposition of R(J°,T) (and, equivalently, of Rsv). We focus on two algebras
obtained in this way:
e H(s",z), the algebra (3.49) when J; = J3,,, with only one variable z;
e #(s",Z), the algebra (3.49) when (1.2) induces the finest possible W,v-stable
decomposition of R(J°,T).

Lemma 3.16. The algebras H(sY,z) and H(sY,Z) depend only on sV, up to canon-
1cal isomorphisms.

Proof. The above construction shows that H(s",z) and H(s",Z) are uniquely deter-
mined by (s}, By), where By serves only to determine the positive roots in R(.J°, T).
Up to GV-conjugation, this pair is completely determined by sV.

The G, -normalizer of s}, is contained in J, and the pointwise stabilizer of s} in J
is just M, see (3.18) and (3.23). Given s} and M, [AMS2, Lemma 2.1.a] shows that
all possible choices for By are conjugate by unique elements of N jo(M°)/M°. Thus
all possible (s}, B';) underlying sV are conjugate to (s, By) in a canonical way. Any
element of GY, which realizes such a conjugation provides a canonical isomorphism
between H(s",z) (respectively H(s",Z)) and its version based on (s'}, B). O

Example 3.17. Suppose that (¢, p) is itself cuspidal, so LY = GV and qe = p.
Then J° = M°, v is distinguished in that group, 7" = 1 and R(J°,T) is empty.
Furthermore Wyv = 1 because Ngv (LY x Wg)/LY = 1. Consequently

H(sV,2) = O(Tyv) ® Clz,27 '] and H(s',Z) = O(Tov) @ Clz1,2, ", ..., 24, z;l],

where d is the number of simple factors of J3,, .
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For (¢, p) as in (3.13), let M (&, p, ) be the irreducible H(s", Z)-module obtained
from M (¢, p,logZz) € Irr(H(¢p,v, qe,T)) via Theorems 2.5 and 2.11. Up to G-
conjugation, every element of ®.(G(F))*" is of the form described in (3.13), so this
definition extends naturally to all possible (¢, p). Similarly we define E(¢,p,?) as
the “standard” H(s",Z)-module obtained from E(¢, p,log Z) € Mod(H(¢y, v, ge, T))
via Theorems 2.5 and 2.11.

We formulate the next result only for H(s",Z), but there is also a version for
H(sY,z). In view of (2.4), the latter can be obtained by assuming that all z; are
equal.

Theorem 3.18. (a) For every 7 € RY ) there exists a canonical bijection
(I)e(g(F)) - Irrg(’H(ﬁv,Z)) : (¢7p) = M(¢7p7 2;_')

(b) Both M(¢,p,%) and E(¢,p,Z) admit the central character Wev (¢lwp, v, ge) €
@e(C(F))ﬁz/st, where |1, = Pl1, and ¢(Frobp) = ¢p(Frobr)Xs . (2) with X ¢
as in (3.14). We may also take X;i instead of X¢v-

sY

(¢) Suppose that Z € R%l. Equivalent are:
® ¢ is bounded;
o E(¢,p,2) is tempered;
o M(¢,p, ?) is tempered.
(d) Suppose that Z € Ril. Then ¢ is discrete if and only if M (¢, p, Z) is essentially
discrete series and the rank of Rev equals dime(Tyv / Xnr (5G)).
In this case ¢(Frobg)dy(Frobgr)~! comes from an element of Z(J°) x X (FG)
via Lemma 3.7 and (3.28).
(e) Suppose that ¢ € Z(GY x Ip)w, stabilizes Do(G(F))* . Via (3.28) ¢ determines
a unique element to € Tyv. (For instance ¢ € an(Lg), in which case t; =
(Xu(¥L)gv.) Then

M(Co,p,2) =tc @ M(¢,p,2) and E(Ch,p,2) =tc @ E(¢,p, 2).

(f) Suppose that Z € R, and that ¢(Frobp)g,(Frobp) ™1 comes from an element of
Z(J°) x Xu(EG) via Lemma 3.7 and (3.28). Then E(¢, p,Z) = M(¢,p, 2).

Proof. (a) Let us fix the bounded part ¢;, and consider only ¢ in Xu.(“L)s¢p. We

need to construct a bijection between such (¢, p) and the set of irreducible H(s", Z)
modules on which Z acts as 2 and with O(s})-weights in

WSV (an<L£)rs¢ba v, QG) - 5%'

We want to apply Theorem 2.5.a here, but we need to check that it can be done in
a canonical way. Let H(s", ¢y, Z) be the twisted affine Hecke algebra with the same
O(s}), parameters A\, \* and 2-cocycle ;v as H(s",Z), but with root system

Rﬁvﬂgb = {a (S Rﬁv : 5a(¢b) = ¢b}
and finite group
st,d)b = W(Rﬁvﬁi’b) ~ mﬁv,d’b?

where Ryv 4, is the stabilizer of Rgv g, N R:v in Wyv 4,. For an open W,v-stable
subset U C s/ we can extend our algebras with analytic or meromorphic functions
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on U, like (2.11) that yields the algebras

H(s!,2)™ /e (U) = (Y, 2) @y yw,n CIMU),
H(s", 0, )" (U) = H(S", $1,2) Qpy(puy o CMe(U).

If we rewrite this in terms of H(Rgv, A\, \*,Z) x C[R,v, isv] using a basepoint ¢,
then (2.12) shows that there is an isomorphism of C™¢(U/)Ws¥-algebras

(C™e(U) % C[Wev, hee]) @ CZ,27] = H(s",2)™(U)

(350) fw — fTw f € Cme(U),w € Wyv

Here the 7, for w € W,v are determined by the 7, = N, for v € R,v and the 7,, for
simple roots a.. From Proposition 3.14.c and the explicit formula (2.13) we see that
Ts,, does not change if we choose a different basepoint, say t'¢1. Namely, if a(t') = 1,
then ¢1 and t'¢; give the same coordinate 0,. Otherwise a(t') = —1 and t'¢ gives
the coordinate a(t')8, = —6,, but then \*(«) = 0 and (2.13) is again the same with
respect to ¢1 and with respect to t'¢1. Hence (3.50) is canonical.

Similarly, (3.50) holds for H(sY, ¢, Z), then with canonical elements 7, 4, for
w € Wyv 4,. Like in (2.14), this leads to a canonical embedding

H(s" o, Z2)"(U) — H(s",Z)™(U)

fTw,¢b = fTw ’
which for suitable U restricts to H(sY, ¢p, Z2)**(U) — H(s',Z)*(U). This entails
that the entire proof of Theorem 2.5 can be applied to H(s",Z) and H(s", ¢y, Z),

independent of a basepoint of ). In particular Theorem 2.5.(a,d) yields a canonical
equivalence between

(3.51)

(i) the category of finite length H(s",Z)-modules with weights in
st (XHF(L[’)rs(bbv v, q6) X {5}7
(ii) the category of finite length H(s", ¢, Z)-modules with weights in
(Xue (L) s, v, ge) x {Z}.
To (ii) we will apply Theorem 2.11, with the Wyv 4, -fixed point (¢p,v,ge) € s/ in
the role of t. The resulting twisted graded Hecke algebra clearly has vector space

Lie(Xu(FL)) and finite group Wev 4,, while by (3.48) the 2-cocycle v restricts to

— 2
ﬁsvy¢b7v’qe - hqg on Wﬁv,(bb.

We have to be careful because we need to carry Theorem 2.11 out in a canonical
way, independent of the choice of a basepoint of s).. First we look at the parameter
function k: Rev g, ea — R from (2.23), with respect to basepoints ¢1,t'¢1 as in
Proposition 3.14.b. If a(t’) = 1, then clearly k(«) is the same for ¢; and t'¢;.
Otherwise «a(t') = —1, then Proposition 3.14.c says that A\*(a) = 0, so again k(«)
is the same for ¢; and for ¢'¢1. Now (2.23) and (3.38)—(3.41) show that with ¢ =
¢b(FrobF)¢1 (I‘._‘\I'Owbp)_1

k(o) = { mac(a/mey) if a(t) =1,

mac*(a/my) if at) = —1.

In view of the conventions for ¢*(a) in the proof of Proposition 3.14, k(«) always
equals mqyc(a/my,) for ¢, = tpy. It follows that in this application of Theorem 2.11
we have to use the twisted graded Hecke algebra

H(Lie(an(Lﬁ)), Wev 4, CT, hqg) = H(¢p, v, ge, T).
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For a small open neighborhood V of Lie( X (L)) @ RY in Lie(X, (L)) @ CY, the
map

expy, : (T,71,...,74) + (exp(w)dy, expry, ..., exprq)
provides a diffeomorphism between V' and expy, (V) C s} x (C*)?. Upon choosing
a basepoint ¢; for s}, (2.26) shows that there is an algebra isomorphism

H(sva ¢bv Z)me(expd>b V) _:_> H(¢b7 v, g€, I?)me(v) = Cme(v) A (C[Wﬁv,qbba hqéf]
(3.52) fTw.é, — (f oexpy, ) Tw,

where f € C™¢(expy, V) and w € Wyv 4,. Between (3.37) and (3.50), we saw that
Tw,¢, does not depend on the choice of a basepoint of s}, and we already argued after
(2.27) that the elements 7, are canonical. Therefore the map (3.52) is canonical.
This means that we can carry out the entire proof of Theorem 2.11 for H(s", ¢y, Z)
with the basepoint ¢1, and then the outcome does not depend on the choice of ¢;.
Thus Theorem 2.11 yields a canonical equivalence between (ii) above and

(iii) the category of finite length H(¢y, v, g€, ¥)-modules with weights in
Lie(Xp (PL)1s) x {log Z}.
Of course, the equivalences between the categories (i), (ii) and (iii) (from Theorems
2.5 and 2.11) can be restricted to irreducible modules in each of these categories. By
Theorem 3.8 the set of isomorphism classes of irreducible objects in (iii) is canonically
in bijection with
(3.53) FUHLY 1 W, Xae (ML) s w0, g€)-

The resulting bijection between (3.53) and the subset of Irr(H(s",Z)) with the ap-
propriate central character could depend on the choice of an element in the Wyv-orbit
of ¢p. Fortunately, the proof of Lemma 2.9 applies also in this setting, and it en-
tails that the bijection does not depend on such choices. Now we combine all these
bijections, for the various ¢,. This gives a canonical bijection between ®q(G(F))¢’
and Irrz(H(sY,Z)).
(b) By Theorem 3.8.f E(¢, p,log Z) admits the central character
Wev g,.0.9¢ (00 £ dX,0(log 2),10g 7)

where o is given by (3.15). Applying Theorems 2.11 and 2.5 produces the represen-
tation E(¢, p, Z), with the central character that sends Frobg to ¢(Frobg)Yy.,(2)*?
That is just Wev (¢|w ., v, g€). The same holds for the quotient M (¢, p, Z) of E(¢, p, Z).
(c) This follows from Theorem 3.8.b, Theorem 2.11.d and Proposition 2.7.a.
(d) Notice that by the very definition of Rsv, it has the same rank as R(J°,T).

Suppose that ¢ is discrete. By Theorem 3.8.c M (¢, p,log 2) is essentially discrete
series as a module for H(¢y, v, g€, log Z), and the rank of R(G;b, T) equals dimc(T').
Now Theorem 2.11.d and Proposition 2.7.c say that M (¢, p, ) is essentially discrete
series. The root system R(J°, T) contains R(GY, ,T), so its rank is at least dimc(7)
— and hence precisely that, for it obviously cannot be strictly larger. By Lemma 3.7
T is a finite cover of Tyv /an(L G), so both these tori have the same dimension.

Conversely, suppose that M (¢, p,Z) is essentially discrete series and that the
rank of R(J°,T) equals dimc(Tsv/Xne(FG)). By Proposition 2.7.c the root system
R(Gg,, T) has the same rank, which we already saw equals dim¢(7'). In combination
with Theorem 2.11 we also obtain that the H(¢y, v, ge, log Z)-module M (¢, p,log 2)
is essentially discrete series. Now Theorem 3.8.c tells us that ¢ is discrete.
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By Theorem 2.13.d ¢(Frobg)dy(Frobg)~! lies in Z(G®) for a complex reductive
group G° with maximal torus Tyv and Weyl group W,. That is the Weyl group
of (J°,T), so via Lemma 3.7 ¢(Frobg)¢,(Frobg)~! must come from an element of

6 X Xur(¥G) which is centralized by J°.

(e) As LW(¢o,p) = ¢LU(¢,p) € sf, ¢ determines a unique element of Tyv. It is
invariant under GV and G, because ¢ comes from Z(G"). Now the claim follows
from Theorem 3.8.d in the same way as Theorem 2.13.e was derived from Proposition
1.8.d.

(f) Reasoning as in the last lines of the proof of part (d), we see that
d(Frobg)éy(Frobr) ™t € Z(G°). Apply Theorem 2.13.f.

Comparing Theorem 3.18.b with [AMS1, Definition 7.7] we see that, when z' =
+1/2 o).
);

O

qr ", the central character of M(¢,p,q i /2 ) equals the cuspidal support of (¢,
Part ( ) says that Theorem 3.18 is equlvarlant with respect to twists by X, (*G
that is, equivariant with respect to twisting by unramified characters of G(F').

The bijection obtained in part (a) is compatible with parabolic induction in the
same sense as Corollary 2.14. For reference, we formulate this precisely. We use the
notations as in (3.16) and after that. Recall from pages 36 and 17 that

€ (6(Frobp)dy(Frobr) ™, 2) = erogu, (46 (§ 5) +log(@(Frobr) ~ ¢y(Frobr)), 7)

is a function which detects parameters for which parabolic induction could behave
undesirably.

Lemma 3.19. Let Q = Q(F') be a Levi subgroup of G(F') and assume that
€ug,j (qﬁ(FrobF)ngb(FrobF)_l,Z) #0 foreach j=1,...,d.
(a) There is a natural isomorphism of H(s",Z)-modules

H(s"7) ©  E99,p% 2 =P Homga(p?,p) @ B0, p,7),
H(s) oZ)

where the sum runs over all p € Irr(8¢) with LU (¢, p?) = LU(, p).
(b) The multiplicity of M(¢,p,2) in H(sV,Z) ® E9(¢,p?,2) is [p? : plge- It

H(s) ) P
already appears that many times as a quotient of H(sV,Z) ®@ M%(¢,p%, 7).
H(sé,i)

Proof. As observed after (3.16), the bijection in Theorem 3.8.a is compatible with
parabolic induction in the sense of Corollary 2.14. The bijection in Theorem 3.18.a
is obtained from Theorem 3.8 by means of the reduction Theorems 2.5 and 2.11.
Since these reduction theorems respect parabolic induction, Corollary 2.14 remains
valid in the setting of Theorem 3.8, and it gives the desired results. U

4. THE RELATION WITH THE STABLE BERNSTEIN CENTER

Let ®(*G) be the collection of GV-orbits of L-parameters for 'G. Recently, inspired
by [Vog], Haines has considered the stable Bernstein center in [Hai]. We will explore
below the relation of the latter with the Bernstein components ®o(*G)¢"

The notion of stable Bernstein center which we employ here naturally lives on
the Galois side. In principle it should be related to stable distributions on G(F')
[Hai, §5.5], but that connection is currently highly conjectural. Because of that,
we will consider it for all inner twists of a given reductive connected p-adic group
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G(F') simultaneously. Let G*(F') be a quasi-split F-group which is an inner twist of
G(F'). The equivalence classes of inner twists of G* are parametrized by the Galois
cohomology group H'(F,G*;). For every o € H'(F,G?,), we will denote by G, (F)
an inner twist of G*(F') which is parametrized by a. By construction

(I)e(Lg) = |_| )(I)E(ga(F))~

Definition 4.1. The infinitesimal character of an L-parameter ¢ € ®(*G) (or an
enhanced L-parameter (¢, p) € ®(LG)) is the G¥-conjugacy class of the admissible
morphism A\y: Wp — GY x Wy (trivial on SLy(C)) defined by

Ap(w) = ¢ (w, (”“"{'}UQ ||w||91/2 )) we Wp.

With this notion we can reinterpret Theorem 3.18.b as: the infinitesimal character
of (¢, p) equals the infinitesimal character of the central character of M (¢, p, q?l/ 2).
Remark 4.2. As noticed in [Hai, §5], if ¢ is relevant for G(F'), it may happen
that Ay is not relevant for G(F') anymore. This is why A, is called an admissible
morphism, i.e. an L-parameter without the relevance condition. In contrast, for
every ¢ € ®(LG), we have Ay € ®(XG), for A4 is relevant for G*(F).

Definition 4.3. An inertial infinitesimal datum i for ®(*G) is a pair (! M, iL ),
where M is a Levi L-subgroup of XG, i.e. "M = MY x W with M"Y a W p-stable
Levi subgroup of GV and iz, is the MY-conjugacy class of the X (P M)-orbit of
a discrete admissible morphism A\: Wp — MY x Wy (trivial on SLo(C)). Another
such object is regarded as equivalent if the two are conjugate by an element of GV.
The equivalence class is denoted

i= (Mv X WF,iLM)gv = [./\/l\/ X Wg, )\]gv.
We will write BY,(FG) for the set of inertial infinitesimal equivalence classes.
For every inertial infinitesimal datum i = (MY x W g, iy )gv, iz has the struc-

ture of an affine variety over C (see [Hai, § 5.3]). The stable Bernstein center for “G
is the ring of regular functions on the disjoint union Ui:(LM,iLM)G%SVt(LQ) L g

acHY(F,G*,

We will attach to each inertial equivalence class for ®¢(G(F')) an inertial infini-
tesimal datum, as follows:

Definition 4.4. For every cuspidal inertial equivalence class
5\/ = (‘C A WF’XHI“(L‘C) : (¢a p)) € %\/(g(F))’ we set

inf(s") := (MY 1 W, (Xur("M) - Ag) m)gv,
where MY x W is a Levi L-subgroup of G which minimally contains A\y,(Wp).

We remark that if ¢ has nontrivial restriction to SLy(C), then we may have
MY Wi C LY x Wg and Xy (PL) € X (M),
For every i = [MY x Wg, Agv € BY(LG) we set:

P LA . A is minimally contained in MY x Wp
P.("G) = {(qﬁ,p) €2(°9) : 14 Ao € (Xue(EM) - X v ‘

In this way, we obtain a partition of the set ®.(*G) (a ”stable Bernstein decompo-
sition”):

(4.1) o.("9) =| | | e(MG)"

ieBY, (LG
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It is worth to observe that, in contrast with Section 3, the above definitions involve
only the Langlands parameter ¢ € ®(*G) and not the enhancement of ¢. In par-
ticular (¢, p) and (¢, p’) are always contained in the same ®.(*G)". Consequently
the decomposition (4.1) is coarser than the Bernstein decomposition of ®(*G) from
(3.4). However, under the local Langlands conjecture, it is a union of L-packets.
Indeed, let i = [MY x Wg, Agv € BY(¥G). From the definition of i we see that

ot9) = || ] ] y(Ga(F)).

ocEHl(F,g;d) (AX) v SV ¢€‘I>(Lg)7(>\¢)gv:(>\x)gv
Define

BY(G) = B (Ga(F)).

I—IaeHl(F,g;d)
Theorem 4.5. Fori € BY(LG), we write BY(LG); := {s¥ € BV (LG) : inf(sV) = i}.
Then

o, (“G)*" .

i

Loy
(I)e( g) o |_|5\/€%V(Lg)
Proof. Use that for any enhanced Langlands parameter (¢, p) € ®.(“G), the infini-
tesimal character Ay of ¢ coincides with the infinitesimal character A, of its cuspidal
support (¢, ge) [AMS1, (108)]. O

This theorem implies that (4.1) is a partition of ®¢(“G) in subsets which are at
the same time unions of Bernstein components and unions of L-packets.
Combining Theorems 4.5 and 3.18, we obtain:

Corollary 4.6. For every i € BY(YG) and every z € R%,, there is a canonical
bijection

Ly Voo

®.(LG) HUSVE%V(L% Irrx(H(sY, Z)).

Remark 4.7. It is natural to expect that a certain compatibility should exist

between the algebras H(s",Z) when sV runs over the set BY(XG);, for a fixed

1= [MV X Wpg,Agv. A naive guess would be that there exist ”"spectral trans-

fer morphisms” (as introduced for affine Hecke algebras by Opdam [Opd2]) between

the algebras H(s",Z) for sV € BY(XG);, the role of the lowest algebra being played

by an algebra H(sY,Z), with sy = [MY x Wg, A, 1]gv.

5. EXAMPLES

In this section we will work out some affine Hecke algebras attached to Bernstein
components of Langlands parameters. In the examples that we consider the local
Langlands correspondence is known, and it matches Bernstein components on the
Galois side with Bernstein components on the p-adic side. We will compare the
Hecke algebras associated to Bernstein components that correspond under the LLC.

All our examples are inner forms of split groups, so Xy, (*£) = Z(£Y)° and we
may replace “G by GV.

5.1. Inner twists of GL, (F).

Recall that F' is a local non-archimedean field, and let gr be the cardinality of
its residue field. Let D be a division algebra with centre F' and dimp(D) = d°.
Take m € N and consider G(F') = GL,,(D). It is an inner form of GL,(F') with
n = md. In fact G(F') becomes an inner twist if we regard D, the Hasse invariant
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h(D) € {z € C* : z% = 1} or the associated character xp of Z(SL,(C)) as part of
the data. Up to conjugacy every Levi subgroup of G(F') is of the form

= Hj GLp,; (D)  with Zj mj=m

Let (¢ = €D, ¢j, p = ®;jp;) € Peusp(L(F)). In [AMSI, Example 6.11] we worked out
the shape of cuspidal Langlands parameters (¢;, p;) for GL;,, (D). Namely

0= djlw,® Sq; where Sy, is the irreducible d;-dimensional representation
of SLy(C) and ¢;j|w, is an irreducible representation of dimension m;d/d;.
(This says that ¢; is discrete.)
o Sy, = Z(SLy,;a(C)) and p; is the character associated to GLy,, (D), that is,
pj(exp(2mik/(m;d)) I ;m,a) = h(D)%. (So (¢4, pj) is relevant for GL,; (D))
e lem (d,mjd/dj) = mjd, or equivalently ged(d, m;d/d;) = d/d;. (This gua-
rantees cuspidality.)
It is known that two irreducible representation ¢; and ¢, of W are isomorphic
up to an unramified character twist if and only if their restrictions to Iz are iso-
morphic. Hence we can adjust the indexing so that ¢[1, = €, gb?eth Because
the restriction of each ¢; to Ir decomposes as sum of irreducible representations
of Ir with multiplicity one, we find that R(J°,T) = [], Ac,—1. To determine the
Hecke algebra of the associated Bernstein component s of ®(G(F)), we make a
simplifying assumption: if m; = m; and ¢; differs from ¢; by an unramified twist,
then (]51 = ¢j'
We adjust the indexing so that

=[[,6Ln.(D), o=D ¢ »=@). 0"

where ¢; and ¢; are not inertially equivalent if ¢ # j. Let s’ be the Bernstein
component of ®¢(GLy,,e, (D)) determined by (42, p2*). Choose an isomorphism
Mae;m;(C) = Mp,.4/4,(C) ® Mg,e,(C) and let 1,, be the multiplicative unit of the
matrix algebra M,,(C). Then

Gy = Zst,,(©)(@(Wr)) = SLa(C) N ] [ (Lmsasa; ® GLa,e,(C) = SLa(C) N ] [ G
M = SLn(C) N [ [.(Lm.asa, ® GLa,(©)%),

T =~ SL,(C) N Hi(lmid/di ® Z(GLq, (C))”), R(Gy,T) H Aei-1,

T; = {¢i ® xi € B(GLy, (D)) : Xi € Xux("GLn, (D))} /112, (C

Ty = Hz T;Zv _ 1—[Z T;el" Wev = W5v7¢ & Hz Sel..

Here p1;, denotes the functor of taking k-th roots of unity and ¢4, denotes the number
of unramified twists z; € Xy (YGLyy,, (D)) such that z;¢; = ¢; in Qcusp(GLp, (D)).
The cyclic group pu,, (C) is naturally embedded in the onedimensional complex torus
X (FGLy,, (D)). Furthermore we can decompose ug = [[; ug:, where ug; belongs
to the unique distinguished unipotent class of 1,,,.4/4, ® GLg,(C)%. By [Lus2, 2.13]
this implies c¢(a) = 2d; for all o € R(Gy;T,T). Then X a) = ty,d; on R(Gy,;T,T),
whereas A* does not occur. We conclude that

(5.1) H(sY,Z) = H(Rev, \, Z) ® H(GLe,q,(C), GLg, (C)%, v, &% 2;),
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. d;
a tensor product of affine Hecke algebras of type GL,, with parameters zzd)’ . The
1/2

most appropriate specialization of (5.1) is at z; = ¢4 ~. Indeed this recovers the
exact parameters found by Sécherre in [Secl, Théoreme 4.6], see (5.3).

Now we consider Hecke algebras on the p-adic side. By the local Langlands cor-
respondence for GL,,,(D) (see [HiSa, §11] and [ABPS2, §2]), (¢, p;) is associated
to a unique essentially square-integrable representation o; € Irr(GLy,, (D)). More-
over the condition lem(d, m;d/d;) = m;d guarantees that o; is supercuspidal, by
[DKV, Théoreme B.2.b]. (This is a formal consequence of the Jacquet-Langlands
correspondence, so in view of [Bad] it also holds in positive characteristic.) Hence

(2%, p2%) € Peusp(GLim, (D)%)  corresponds to 0% € Trteysp(GLim, (D)%).

Let s; denote the inertial equivalence class for GLyy,,e, (D) determined by

(GLy, (D)%, 02%). In [SeSt1, Théoreme 5.23] a s;-type (J;, 7;) was constructed. The
Hecke algebra for (J;,7;) was analysed in [Secl, Théoreme 4.6], Sécherre found an
isomorphism

(5.2) H(GLp,e; (D), Ji, 1) = H(GLe,, qF)
where the right hand side denotes an affine Hecke algebra of type GL,, with param-
eter q . (for a suitable f; € N depending only on o; or ¢;, see below) From the

explicit description in [Secl, §4] one sees readily that the isomorphism (5.2) respects
the natural Hilbert algebra structures on both sides.

Remark 5.1. Let ¢,, denote the torsion number of oy, i.e., the number of unramified
characters x; of GLy,, (D) such that x; ® o; = 0;. It equals t4,.

It D = F, then f; = t,,. In general, f; = s, ts,, Where s,, is the reducibility
number of o;, as defined in [SeSt2, Introduction] (see also [Sec2, Theorem 4.6]).
The number s, coincides with the invariant introduced in [DKV, Théoréme B.2.b]
(as it follows for instance from [BHLS, Eqn. (1.1) and Definition 2.2]), itself equal
to the integer d;. Hence f; admits the following description in terms of Langlands
parameters:

(5.3) fi = So;te; = dit¢¢'

Write M(F) = [[; GLp, (D)%, 0 = @; 0 and let s be the inertial equivalence
class of (M(F), o) for GL,,(D). In [SeSt2, Theorem C] a s-type (J,7) was con-
structed, as a cover of the product of the types (J;, 7;) for 5;. Moreover it was shown
that

(5.4) H(GLy( ® H(GLe,, qh).

Since (5.2) was an isomorphism of Hilbert algebras, so is (5.4). Notice that the
1/2

right hand side is also the specialization of H(s",Z) at z; = ¢~. Thus there are
equivalences of categories

(5.5) Rep(GLyn(D ))5NMod(® HGLel,qF))NMod< (s",2)/({z: — 1/2}1)).

It was shown in [BaCi, §5.4] that, since these equivalences come from isomorphisms
of Hilbert algebras, they preserve temperedness of representations. Then [ABPS4,
Lemma 16.5] proves that (5.5) maps essentially square-integrable representations to
essentially discrete series representations and conversely.
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The torus underlying &), #(GLe,, qf;l) is Ts = [M(F), 0] pm(ry, which by the LLC
for GL;,(D) is naturally isomorphic to the torus Tyv underlying H(s",Z). Then
[ABPS3, Theorem 4.1] shows that, with the interpretation as in Lemma 3.16 (which
highlights the tori in these affine Hecke algebras), the equivalences (5.5) become
canonical. This means in essence that we use the local Langlands correspondence
for supercuspidal representations as input. With Theorem 3.18 we obtain canonical
bijections
(5.6)  Irr(GLu(D))* +— Irr(H(s",2)/ ({2 — g1 °}i)) <— ®e(CGL, (D))
Proposition 5.2. The union of the bijections (5.6) over all Bernstein components
for GL,,,(D) equals the local Langlands correspondence for GLy, (D).

Proof. In [ABPS2, §2] the LLC for GL,,(D) was constructed by starting with irre-
ducible essentially square-integrable representations of Levi subgroups, then apply-
ing parabolic induction and finally taking Langlands quotients. In the context of
types and covers thereof, [BuKul, Corollary 8.4] shows that the maps (5.5) commute
with parabolic induction. They also commute with taking Langlands quotients, be-
cause for these groups every Langlands quotient is the unique irreducible quotient
of a suitable representation.

Thus we have reduced the claim to the case of irreducible essentially square-
integrable representations. From [DKV, §B.2] we see that Rep(GLy,(D))*® only con-
tains such representations if mie; = m. We may just as well consider the group
GL,e; (D), which we prefer because then we can stick to the above notation. All
its irreducible essentially square-integrable representations are generalized Steinberg
representations built from 7;,. By construction the bijection (5.6) for GL,y,, (D)%
sends Ts, to Tyyv.

Let xi € Xn(GLy, (D)), with Langlands parameter ¢; € Xy (*GLyy,(D)). The
generalized Steinberg representation St(o’) based on o’ = (x;0;)®% is the irreducible
essentially square-integrable subrepresentation of the parabolic induction of
(5.7) Vi(lfei)mxigi @ - ® Vi(eﬁl)/zxioi
to [[; GLm,e, (D), where v; denotes the absolute value of reduced norm map for
GLy,, (D). There is a unique such subrepresentation by [DKV, Théoreme B.2.b]. By
definition [ABPS2, (12)] St(¢’) has Langlands parameter t;¢; ® S, .

Now we plug St(¢’) in (5.6) and we use the property discussed under (5.5). Thus

we end up with an essentially discrete series representation of H(s",z)/ ({z; —q};/ 2}1)
Vv

By Theorem 3.18 it corresponds to a discrete element of ®e(GLyy,e, (D))% . Its
enhancement p; is uniquely determined by the requirement that it is relevant for
GL,e, (D), so we can ignore that and focus on the L-parameter. The image of W
under this L-parameter is contained in GLjy,, (D)"Y = GL,y,,q(C)%, so it can only
be discrete if it is of the form 1; ® 7, s1,,(c) for some irreducible m;d-dimensional
representation of Wg. Since the cuspidal support of the enhanced L-parameter lies
in Tyyv, 1; must be an unramified twist of ¢;. From (5.7) and the expression for the
central character of M (v; @, s1,(c) pi» 2i) given in Theorem 3.18.b we deduce that
¥ = ti¢;. Thus (5.6) agrees with the local Langlands correspondence for essentially
square-integrable representations. Il

5.2. Inner twists of SL,(F).
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This paragraph is largely based on [ABPS2, ABPS3|. We keep the notations from
the previous paragraph. For any subgroup of GL,, (D), we indicate the subgroup of
elements of reduced norm 1 by a #. Thus

GY(F) = GLin(D)* = {g € GLy(D) : Nrd(g) = 1} = SLin(D).
The inner twists of GL,,(F") are in bijection with the inner twists of SL,,(F), via
GLyn(D) 5 GLyy,(D)* = SLyy (D).

The L-parameters for GL,,(D)* are the same as for GL,,(D), only their image is
considered in PGL,,(C). In particular every discrete L-parameter

¢*: Wp x SLy(C) — PGL,(C)

lifts to an irreducible n-dimensional representation of Wg x SLy(C). The local
Langlands correspondence for these groups was worked out in [HiSa, ABPS2]. It
provides a bijection between the Bernstein components on both sides of the LLC,
which will use implicitly as s? <> s,

Let ¢ = ®i¢z®e" be as before, and let ¢f € ®(L!(F)) be the obtained by composi-
tion with the projection GL,(C) — PGL,(C). Every Bernstein component contains
L-parameters of this form. There is a central extension

1= Zgs = Syt = Ry — 1
where Ry; = 7m0(Zpgr, (c) (ime¥)) and

Z4t = Z(SLn(C))/Z(SLa(C)) N Zsr, () (6°)°.
Let pf be an enhancement of ¢f. The restriction p = pf| Z, is an enhancement of ¢,

so as before we may assume that it has the form p = ®¢p? ¢ Cuspidality of (¢!, pf)
depends only (¢, p), it holds whenever p; is associated to the inner twist GL,,, (D)
of GL,,(F) via the Kottwitz isomorphism. We assume that this is the case, and that
(¢, p*) € Peusp(LH(F)). We note that Gy, is the same for GL,, (D) and SL,,(D), and

that ¢ and ¢f have the same connected centralizer. Consequently
° :G;, Gd)jj/Go gfﬁw, Mou:M(;,
¢ﬁ7 H Aezfla )_t¢d vaER(G¢ZT T)CR( d)?iv )

Let 5% be the inertial equivalence class for ®¢(GL,,(D)*) determined by (¢*, p*).
(In spite of the notation " does not determine it uniquely.) Then

Tev = (] 75) /2(GLa( v =] Se.-
The cuspidal local system g€ associated to (gbﬂ, p*) satisfies
Ree = Wern [Woy = Rgev = Ry
The algebra
(5.8) H(Ryv, N\ Z) = H(Gqsﬂ, n, v, P, Z)

is a subalgebra of H(Rsv, A, Z), corresponding to the projection Tov — Typv. It is
contained in

%(EVﬁ)Z) - H(Rgﬁ\ﬂ )‘7 Z) X (C[g{(j)% hd)ﬁ]
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Here the twisted group algebra and the 2-cocycle f4s = f4sv are given by
C[%d)ﬁ? %ﬁ] = pp(c[8¢ﬁ]7

while the action of Ry on (5.8) comes from its natural action on Rgv.
For better comparison with the p-adic side we also determine the graded Hecke
algebras attached to s®. Let ((ﬁg,pﬁ) € ®eusp(L¥(F)) be an unramified twist of

(¢%, p*) which is bounded. Let W be the stabilizer of gf)g in Wssv. Then W° =
W(G° jj,T) is the subgroup of W of ﬂ W, generated by the reflections it contalns
The parabohc subgroup of G°ﬁ generated by M° o and upper triangular matrices

determines a group R o such that

W¢b:W¢§ >49‘i

The 2-cocycle f ot on w ot is the restriction of bﬁuv: WQW — C*. The root system

R ; is again a product of systems of type A, namely H A1 if gzbb ®j¢; - % Then

o
W, = H Se, and  tyv = Lie(Ty) = () Lie(T3))) /Z(g1,(C)).
It follows that
(5.9) H(gbb, v, g€, F) = H(’tﬁnv, W¢u ,T, hd)u) & H(’tsuv, W(z)u , F) X C[%w , hd)u].
b b b b b

The Hecke algebras for Bernstein components of SL,, (D) were computed in [ABPS3].
They are substantially more complicated than their counterparts for GL,,, (D), and in
particular do not match entirely with the above affine Hecke algebras for Langlands
parameters. To describe them, we need some notations. Let PP be a parabolic
subgroup of GL,, (D), with Levi factor M. Consider the inertial equivalence classes
sm = [M, o]y and s = [M, 0]qr,,(p)- Recall from (5.4) that H(GL,, (D)) is Morita
equivalent with

H(Rs, A ) = Q) H( (GLe,, ¢11).
We need the groups
XM(s {fyelrr(/\/l/MﬁZ(GL (D) :v®0 €spm},
XGLm<D> — {y € Irr(GLy,(D)/GLy, (D) Z(GL,(D))) : v @ I9-™ P (o) € s},
={we NGLm(D)(M)/(M) : Iy € It (M/MPZ(GL, (D)) : w(y @ o) € 501}
By [ABPS3, Lemma 2.3] W/ = W, x %! for a suitable subgroup R, and
X GEm(P)(g) /XM (5) 22 RE

by [ABPS3, Lemma 2.4]. The group X Sm(D)(5) acts naturally on Ty x W.

Let of be an irreducible constituent of o| . Every inertial equivalence class for
SL, (D) = GL,,(D)* is of the form s* = [Mﬁ,aﬁ]GLm(D)u. By [ABPS3, Theorem 1]
there exists a finite dimensional projective representation V,, of X GLmﬁ) such that
7—[(GLm(D)ﬂ)Sn is Morita equivalent with one direct summand of

(5.10) (H(Ras A, gs) @ Endg (V)X @Ko MME) o gae
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The other direct summands correspond to different constituents of o :. In (5.10)
the group

X (M/MH) = {x € X (M) : MF C ker x}
acts only via translations of T,. We denote the quotient torus Ty /Xy, (M/M?!) by
Tgti and its Lie algebra by tg.

From now on we will be more sketchy. The below can be made precise, but for
that one would have to delve into some of the technicalities of [ABPS3], which are
not so relevant for this paper. Although it is not so easy to write down all direct
summands of (5.10) explicitly, we can say that they look like

XM(s,0t) < R

sft

(5.11) (H(X*(TE), Re, X (T¥), Ry, A, ¢5) ® Endc(V,z))

for suitable XM(s,0%) ¢ XM(s) and Ve C Vuo (From the below argument for
graded Hecke algebras one sees approximately how (5.11) arises from (5.10).) This
algebra need not be Morita equivalent to a twisted affine Hecke algebra as studied
in this paper. The problem comes from the simultaneous action of X™(s, o) on Tﬁﬁ
and V,4: if that is complicated, it prevents (5.11) from being Morita equivalent to a
similar algebra without Endc(V),:). If we consider (5.11) as a kind of algebra bundle
over Tsﬁ, then these remarks mean that V,; could introduce some extra twists in this
bundle, which take the algebra outside the scope of this paper. Examples can be
constructed by combining the ideas in [ABPS3, Examples 5.2 and 5.5].

That being said, the other data involved in (5.11) are as desired. It was checked
in [ABPS5, Lemma 5.5] that:

(i) The underlying torus T,; = T? /XM(s,0%) is naturally isomorphic to T, =
(MM,
(il) Ws x R, = W, is isomorphic to Wyv = Wev X Rgav.
(iii) The space of irreducible representations of (5.11) is isomorphic to a twisted
extended quotient

(Tsﬁ//Wsﬁ)Kan = (Tsﬁv//WﬁﬁV)ﬁaﬁa
and the 2-cocycle k.4 of W is equivalent to the 2-cocycle f v of Wisv.
Let us also discuss the graded Hecke algebras which can be derived from (5.10) and
(5.11). The algebra (’)(Tf)xﬂ/{(s)w5 is naturally contained in the centre of (5.10).
This entails that we can localize at suitable subsets of T / WExM (s). Fixt e
(T#)un. By localization at a small neighborhood of U of WEXM(s)t(T).s, we can

effectively replace XM (s) by the stabilizer of X™(s);, and RE by the stabilizer RE (t)
of Wy XM(s)t. Then (5.10) is transformed into the algebra

(5.12)  Can(U)MOVE g (H(RE A ) ® Ende (V)X O s 934()
oMW

where RE = (X*(Tf),RE,X*(If),R;/). But XM(s) acts by translations on 77, so

XM(s); consists of all the elements that fix Tﬁ entirely. From the description of

the actions on (5.10) in [ABPS3, Lemma 4.11] we see that X (s); acts only on
Endc(V,). Then

(5.13) Endc(V,)X" @) = End y (g, (Vi) = EBM Endc (V)
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is a finite dimensional semisimple algebra. The direct summands of (5.10) and of
(5.12) are in bijection with the 9% (¢)-orbits on the set of direct summands of (5.13).
That holds for any t € (Tsﬁ)un, in particular for s ome ¢ with R (t) =1, so in fact the
direct summands Endc(V,s) of (5.13) parametrize the direct summands of (5.10)

o
and of (5.12). Thus (5.12) is a direct sum of algebras

#
(5.14) Con (U)X OV ® (H(RE A, gs) © Ende (V) 0 R (1)
@(Tg‘)XM(E)Ws?

Here (uf, V,z) is a projective representation of M (). In such situations there is a
Morita equivalent algebra embedding

C[mﬁﬁ(t)ah] - End(C(V,uﬁ)jf mﬁﬁ(t)

r — u (r)='r,

for a suitable 2-cocycle . Via this method (5.14) is Morita equivalent with

#
(5.15) Con (U)X ()W ® H(RE A, gs) » C[Rge(8), 1].
oM

From the property (iii) of the algebra (5.11) we see that f has to be the restriction of
hev to Ry ()2, By Theorems 2.5.a and 2.11.a the algebra (5.15) is Morita equivalent
with

#
(5.16) Con (U)X (0I5 ®  HE,W(Re)t, qs) ¥ C[Rg (1), v ].
o) M e

Hence the equivalence between Rep(SLy,(D))* = Mod(’H(GLm(D)ﬁ)Eu) and the
module category of (5.11) restricts to an equivalence between

#
Mod ;s ()70 (#(GLn(D)H*)) and
MOdf,(tg)rs (H(t§7 W(Rs)ty QS) X C[msﬁ (t)7 hsﬁ\/]) :

Every finite length representation in Rep(SLy,(D))* decomposes canonically as a

. . . # . .
direct sum of generalized weight spaces for (9(T~.§j )X MW , so by varying ¢ in (7 f )un
we can describe all such representations in terms of these equivalences of categories.

In this sense
(5.17) H(’tﬂ,, W(Rﬁ)tv %) X C[msﬂ (t>v hsnv]

is the graded Hecke algebra attached to (5ﬁ,t). Suppose that t corresponds to
(qbg,pﬁ) € ®eusp(LH(F)), where M = L(F). Then we can compare (5.17) with
(5.9). Using the earlier comparison results (i), (i) and (iii), we see that (5.17) is the
specialization of (5.9) at r = log(gs)-

We conclude that, for a Bernstein component s* of SL,, (D), corresponding to a
Bernstein component sV of enhanced L-parameters:

e The twisted graded Hecke algebras attached to sf and to sV are isomorphic.

e The twisted affine Hecke algebras attached to s* and to s*¥ need not be
isomorphic, but they are sufficiently close, so that their categories of finite
length modules are equivalent.
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5.3. Pure inner twists of classical groups.
Take n € N and let G be a F-split connected classical group of rank n. That is,
G, is one the following groups:

(i) Spy,,, the symplectic group in 2n variables defined over F,
(ii) SOgp+1, the split special orthogonal group in 2n+1 variables defined over F,
(iii) SOagy,, the split special orthogonal group in 2n variables defined over F,

Let V* be a finite dimensional F-vector space equipped with a non-degenerate sym-
plectic or orthogonal form such that G (F') equals Sp(V*) or SO(V*). The pure
inner twists G, of G correspond bijectively to forms V of the space V* with its
bilinear form (,) [KMRT, §29D-E]. If G}(F) = Sp(V*), then the pointed set
H,(F,G}) has only one element and there are no nontrivial pure inner twists of
Gr. If Gi(F) = SO(V*), then elements of Hy(F,G;) correspond bijectively to the
isomorphism classes of orthogonal spaces V' over F' with dim(V) = dim(V*) and
disc(V)) = disc(V*). The corresponding pure inner twist of G’ (F') is the special
orthogonal group SO(V).

Let G,,(F') be a pure inner twist of G} (F') (we allow G, (F') = G (F')). It is known
(see for instance [ChGol), that up to conjugacy every Levi subgroup of G, (F) is of
the form

(5.18) L(F)=G,-(F) x Hj GLy, (F),

where > m;+n~ =n and G, (F) is an inner twist of the split connected classical
group G*_ defined over F, of rank n~, which has the same type as G (F). There
is a natural embedding Stdrg of LG into GLyv(C) x Wp, where NV = 2n + 1 if
G} = Spy,,, and NV = 2n otherwise.

Let (¢, p) € Peusp(L(F)). The factorization (5.18) leads to

(5.19) Stdego = @ @j(% ® ¢)).

Because we consider only pure inner twists in this section, it would be superfluous
to replace G by GY. We refrain from doing so in this section, and we use the
objects, which before where defined in terms of G, now with the same definition
involving just GY. For instance, instead of the group S, defined in Definition 3.2,
we will take the component group m(Z,v(¢)) and we use a variation on ®.(*G)
with that component group. The restriction of an enhancement p to the center
of LV still determines the relevance. For instance, if the restriction to Z(LY) is
trivial, then it corresponds to the split form, otherwise it corresponds to a non-split
form. Hence, we can decompose p = o0 ® ®j pj, where (¢, 0) € Peysp(G,- (F)) and
(¢j7pj) € (IDCusp(GLmj(F)) for each J-

Let I; (resp. 1) be the set of (classes of) self-dual irreducible representations
of Wr which occur in Stdrg o ¢ and which factor through a group of the type of
GV (resp. of opposite type of G¥). Let Ig be a set of (classes of) non self-dual
irreducible representations of W g which occur in Stdrg o ¢, such that if 7 € Ig then
7V ¢ 19, and maximal for this property. We denote the irreducible a-dimensional
representation of SLy,(C) by S,.

On the one hand (¢, p;) satisfy the conditions stated in Paragraph 5.1, i.e.
¢; is an irreducible representation of Wr and p; is the trivial representation of
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WQ(ZGLmj ©)(#5))- On the other hand, by [Mou, Proposition 3.6] we have

(5.20) Stdeg _ oo = P @ (r©S.) & P GTB

Tel} a odd,a=1 Tel, a even,a=2

where a, € Z>o. As introduced by Mceglin, let Jord(y) be the set of pairs (7,a)
with 7 € Irr(Wp), a € Z~¢ such that 7 X S, is an irreducible subrepresentation of
StdLgn_ o .

The group S, is isomorphic to (Z/2Z)P for some integer p. It is generated
by elements of order two, by z: 42, o where (7,a),(7',d") € Jord(¢) without hy-
pothesis on the parity of a and by z;, when a is even. The character p satisfies
p(2r2i-12r2i41) = —1 for all 7 € I} and i € [1, 21T and p(zr,2) = (—1)" for all
7€l and i€ [1, %]

If 7 is an irreducible representation of W and of dimension m such that 7|y,
V|1, then 7 2 V2 with 2 € X (“GL,,(F)). Replacing 7 by 72'/2 (where 2!/
is any square root of z), we can assume that 7 = 7V. In the following, for all j
we assume that, if qb}/ is inertially equivalent to ¢;, then gb}/ = ¢;. Note that a
self-dual irreducible representation of Wg is necessarily of symplectic-type or of
orthogonal-type.

We choose a basepoint ¢ (inside its inertial equivalence class) as follows:

~

[\

e if m; = m; and ¢; differs from ¢; by an unramified twist, then ¢; = ¢;;

e if ¢ is an unramified twist of ¢;, then we can assume that ¢} = ¢;;

o if ¢/ = ¢;, then i = j.
For an irreducible representation 7 of W g, we will denote by e, the number of times
that 7 appears in a GL factor of £V and by ¢, the multiplicity of 7 in ¢|w, so that

@ 2677’@@67— T®TY ) D,

Telfuly Tel)
dlwr,= P Qertl)roPelrary).
Telfuly Telf

The following groups are associated to this ¢:

Gy 2 [T Spac,+6,(C) x [ Oze,46,(C) x S( 1T 0267-—1-67-(@)) x ][ GLe.(C)

Tel, TEI;;,dimT even TEIg,dimT odd Tl
M= T ((C) xSp,(C)) x J] (€*)x
Te]; TEI;
] o) xS( I1 OgT((C)) x [T )
TEI$7dimT even T€I$7dim7' odd TGIg

Here S(H), for a matrix group H, means the elements of determinant 1 in H. The
above expression for G naturally factors as I cr—urtu 19 G2, and similarly for M°.

This is an almost direct factorization of G¢ in the sense of (1.2). With that we can
write

(5.21) T~ J[ (©9, RG;T= ][] RGT.D).

—LIrturo —LIturo
Telyurfurg Telyjurfurg
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Let us record the root systems R, = R(GT,T):

condition R; R req

e =20 %] o)
Tel, e #0,0,=0| Ce,
¢, 0,6, 70| BC., | B.,
e, =0 (%} 1%}
Tely e, #0,6;,=0| D, | D,
er #0,0: #0 | Be, B

1 %) 1%/
2 Ac, 1| Ae. 1

N

€r

0
T€I¢

WV

€r

To justify the above choice of a basepoint ¢, we need to check that ng detects as
many roots as possible. Let us consider the restriction ¢|g,:

Stdig © ol = ¢l & €D (S5l @ 6] 1)
= D Ce+t)rhee @ erlrhe o).

reliul(; Tel)

We have assumed that for 7 € Ig, Tliy % 77|, and we know that an irreducible
representation 7 of W decomposes upon restriction to Ix as

(5.22) Tlt, = 0 ® 0F°PF @ L @ gFrbE

for some irreducible representation ¢ of Ir. Here for all w € If, gFrobl (w) =
f(Frob " wFrobk.). If we assume 7|1, = 7V|1,, then 0¥ = 9Pk for some integer
1 between 0 and ¢, — 1. Then we have 6§ = 0Fr°b%v >~ gFrobZ  This implies that
i = 0 ort;is even and i = t;/2. In the first case, #¥ = 6 and in the second
case 0¥ = gFbF”  We denote by IQLH (resp. I, ) the subset of I; (resp. 1)
corresponding to the first case, and define I;_ as the remaining subset of I; U I;.

For any 7, let 7/ be a twist of 7 by an unramified character of W g, such that 7’ is
self-dual but not isomorphic to 7. For 7 € I;_ the type of 7/ is opposite to that of

7, which motivates the superscipt +—. The three sets I;Jr, I(;f, I;rf are considered
modulo the relation 7 ~ 7/. We find that

J® = ng (qb‘IF)O = HTGI(;7 Sp267-+fq—+€,r/ ((C)tT X HTEI++ S026T+€7-+f7_/ (C)tT X
¢
tr/2 tr
(5.23) HTGW GLae, 1, +¢,,(C)'/? x HTelg GLe, (C)".

For all 7 € I;Jr, we have an embedding of (C*)*" into (C*)°" x SOy, 4¢,(C)* and
the latter is embedded diagonally as Levi subgroup in SO2¢, 1¢,+¢_, (C)t. We have
the same kind of embedding for 7 € Ig~ and 7 € Ig. For 7 € I;r*, the embedding
of (C*)* in GLae, y¢,4¢_,(C) is given by

(21, 2. ) — diag(z1, ..., 2ze.,1,..., 1,2} ...,zfl),

er
with £, 4+ £ times 1 in the middle.
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From (5.23) we see that R(J°,T') is a union of irreducible components R(J°,T');.
Comparing these data with the earlier description from (5.21) and the subsequent
table, we deduce that R(J°,T); ed = R(G‘;,T)T,red for all 7. Hence R(J°, T )req =
R(G;, T')red, as required for a good basepoint ¢. In particular W, = (G;, T).

We note that Z(LY)° = T, see (5.21). Since ¢;: Wp x SLy(C) = GL,,,(C) is
cuspidal, it is irreducible and trivial on SLy(C). Thus we can write

vV _ gV _ oV er
£ =G, (©) x ]|, OLany(© = G © < ]| (- s o Clatimr) (O

It follows from (5.22) that dim(7) = ¢, dim(é) with 6 € Irr(Ir), and that
Xu("L) =]

Here uj denotes the functor of taking the k-th roots of unity in ring. In particular
t, equals | Xy (“GL,,)+|, the number of unramified characters y such that x7 = 7.
In the following table, which stems largely from [Mou, §4.1], we describe the root
systems and the Weyl groups. We may omit the cases e; = 0, because there all the
root systems and Weyl groups are trivial.

€r
— —+ 0 lutr (C) °
TEI¢ IJI¢ IJI¢

TE M., M, condition | R(J°,T), WZ\(/;[Z Wﬁ:
__ l; =0 Ce. Se. X (Z)27)°" | Se. % (Z)2Z)°"
I¢ ((CX)ET % Spe((C) ( / )e ( / )@
b #0 BC., Se, X (Z)22)°7 | S.. x (Z/2Z)°"
I+ (C*)e x Sp,(C), £ =0 Ce. Se, X (Z]22)° | S.. x (Z/2Z)"
¢ (C*)° x 0(C) b #0 BC., Se. X(Z)2Z2)° | Se. x (Z)2Z)°"
(=0 D, Se. % (Z/22)°7 | S, x (Z/2Z)°
o o | Se 0 @22 7] S0, % (2/22)
l-#0 B.. Se, X (Z]22)° | S.. x (Z/2Z)°"
s <1 %] 1 1
I S ) {}
€r > 2 Aeffl Se.,. SeT

For all T € IJJF such that £, = 0 # e, take
rr =diag(1,...,1,(94),1,...,1) € Oz, (C) \ SO2¢,(C).

It normalizes M, T, ¢ and generates W]\Cj[: / W, The finite group Rsv is generated
by such elements r,. More precisely, let

C::{TEI;F|€T:0},
Coven := {7 € C | dim 7 even},
Codd :={7 € C | dim T odd}.
It was shown in [Mou, §4.1] that:
e if G =Spy or G =SOpN with N odd, then

%ﬁv = TEC’<TT>;

o if G = SOy and £ = GL} x ... x GLY x SOy with N even and N’ > 4,
then
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e if G=SOpy and L = GrLgl1 X ... X GLf;: with IV even, then
MRyv 2 (rr) x {rrrp | 7,7 € Coga)-
T€Ceven
From the shape of M? we can describe the unipotent element v,:

M? Uy 14
(C*)e xSp, (C) | (1°) x (2,4,...,2d —2,2d) | L, =d(d+1)
(C*)e x SO (C) | (1°) x (1,3,...,2d — 3,2d — 1) 0, =d?

(C)e (1)

To be complete, let us describe the cuspidal representations of Apze(v;). We have

d = . —
AMo (’U.,-) = (Z/2Z>d__1 <ZT,2a,a € [[L d]]> 1f T E Iﬂ
T (Z/QZ) = <ZT726L71«ZT72G+1, a G [[17 d - 1ﬂ> lf T 6 I¢

Moreover, the cuspidal irreducible representation e, of Apse(v,) satisfies
€r(2r2q4) = ()" if 7 € Iqj and  €7(2zr2q—1272q41) = —1if 7 € qu.

For all 7 € I;r U Idj, denote by a, the biggest part of the partition of v, and by a’.
the biggest part of the partition of v,s. In case v» = 1, we will assume that a. =0
if € I and a} = —1if 7 € I;} (this is compatible with Proposition 3.14).

Finally, we consider the parameter functions. The number m, from Definition
3.11 equals ¢, unless 7 € Irr(WF);f_,ET = 0 and « is a long root in a type C
root system, then m, = t./2. Recall that Rsv consists of the roots mya with
a € R(J°, T)yeq- Multiplication by m, does not change the type of R(J°,T),, only
in the exceptional case, there C,_ is turned into Be._.

If @ € Rrred is not a short root in a type B root system, then by [Lus2, 2.13]
c(a) = 2, so AM(a) = mq. For the simple short root a; € R;yeq we have c(a,) =
ar +1,¢*(a;) = a,. + 1 and my = t,. Hence

Mar) = (ar +al +2)t;/2 and N(a;) = |a; — al|t; /2.
We conclude that
(5.24) H(s",Z) = H(Rsv, \, \*, Z) x C[R,v].

Via the specialization of z, at qllp/ 2, (5.24) becomes the extended affine Hecke algebra
given in [Hei2]. Moreover, it was shown in [Hei2] that there is an equivalence of

categories between Rep(G(F))® and the right modules over H(s",Z)/({z, — q};/2}7).
Together with the LLC for G(F') we get bijections

i\

(5.25) Irr(H(sv,Z) /({zr — q;/Q}T)) s Te(G(F))® s ®e(G(F))* .

It does not seem unlikely that this works out to the same bijection as in Theorem
3.18.a. But at present that is hard to check, because the LLC is not really explicit.

Example 5.3. We consider an example that illustrates many of the above aspects.
Let 7: W — GL4(C) be an irreducible representation of W g, self-dual of symplec-
tic type and let ¢: Wp x SLa(C) — SO37(C) be defined by

Stdgrs, o =1K (S5 S3®51) BENR (S3dS1) &7 (S4B ),
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with £&: Wp — C* an unramified quadratic character. We have
Z5047(c) (Plw ) = S0g(C) x SO4(C) x Sps(C),

and ¢ defines a L-packet IL,(Spsg(F)) with 2° elements, of which two are super-
cuspidal. Let o € II,(Spsg(F')) be supercuspidal, corresponding to an enhanced
Langlands parameter (p,e) with ¢ cuspidal. Consider G(F') = Spsg(F'), the Levi
subgroup

L(F) = GL4(F)? x GL1(F)? x Spyg(F)
and an irreducible supercuspidal representation 792K 193X o of L(F). The cuspidal
pair 5 = [L£(F), 722 X 193 X o] of G(F) admits sV = [L£Y,¢,¢] as dual inertial
equivalence class, where ¢: Wg x SLy(C) — LV,

LY = GL4(C)? x GL1(C)3 xS037(C) and Stdpvop = (1@7)P?0(101Y)B .
We assume that 7|1, =6 & gFrobr with #Y =2 6, so t, = 2. We first compute s

10
O =I5, © 1E @ 15 @ If @77y = 0700 P e 171,
J° = Zge(dlie)° = Sp1p(C)? x SO19(C).

The torus 7' is decomposed as T = (C*)? x (C*)3. The first part (C*)? is embed-
ded in an obvious way in (C*)? x Spg(C) and then in Sp,(C)? diagonally as Levi
subgroup. The second part (C*)? is embedded in (C*)3 x SO13(C) and then in
SO19(C) as Levi subgroup as well. The root system R(J°,T') (resp. R(J°,T)req) is
BCjy x Bs (resp. By x B3), so W3, = Wp, x Wpg,.

From the above discussion, we can see that ¢ is already a basepoint. If we denote
by ¢ the parameter defined by ¢/ = (7' &7 V)82 & (€ B EV)E3 @, then ¢ is another
basepoint. Indeed, we have:

Slw, = 7010 @ 1915 @ ¢4

Gy, = Zgv(¢lw )" = Sp1o(C) x SO15(C) x SO4(C)
Mg = Zev(dlw,)° 22 (€)% x Spg(C)) x ((C)? x SO9(C)) x SO4(C)
dlwy = 7% @ 76 @ 199 @ P10
% = Zgv(¢'|wp)° 2 Sp4(C) x Spg(C) x SOy(C) x SO10(C)
M3 = Zev (¢ lwp)° 2 (C)? x Spg(C) x SO(C) x ((C*)? x S04(C)).

Here R,v is trivial, so Wev = W?2. Denote by ai,as (resp. fi1, 52, 3) the simple
roots of By (resp. Bs) with ao (resp. f3) the short root. Then a; = a’5 = 5,
ag = a}) = 3, a; = 4 and af = 0. The parameters are given by A(a1) = t, = 2,
A(B1) = A(B2) =1 and

LAt+2 5+3+2

Maz) =t = 6, A(B) = > e

5 =LA ()= —— =1

| >

=5, M(as) = t,

/

Specializing Z to q}; 2, the quadratic relations in the Hecke algebra become

(Nsal - q%)(Nsal + QE2) = O’ (N5a2 - q%)(NSQQ + qgg) = 0’
5/2 —5/2 1/2 —1/2 .
(Nsﬁ3 _ qF/ )(N553 +qp / ) =0, (Nsﬁi _ qF/ )(Nsﬂi +q5 / )=0 (i=1,2).
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APPENDIX A.

In this appendix we prove a number theoretic result which probably has been
known for a long time, but for which we could not find a reference. Let W be the
Weil group of the non-archimedean local field F', Ix the inertia subgroup and Pg
the wild inertia subgroup of Wg. Let Frobr € Wg a geometric Frobenius element
and let gr be the cardinality of the residue field of F'.

Lemma A.1. Z(Wp) =Z(1p) = Z(Pr) = {id}.

Proof. According to [Jan, §3], Pr is a free pro-p group on more than one generator.
In particular its centre is trivial.

It follows from [Ser, Corollary 1 to Proposition IV.2.9] that an arbitrary element
x of Ir \ Pp does not commute with some elements of Pp. Namely, we apply [ibid]
to the Galois group of some finite Galois extension E/F', which we choose so large
that = ends up in the ramification group Gal(E/F)q but not in Gal(E/F);. Then
[ibid] says that x does not commute with most elements of Gal(E/F);, and we can
lift that noncommutativity back to Ir = Gal(Fs/F)o. Hence Z(Ir) = {id}.

The group Ir/Pp is isomorphic to Z/Zp and the conjugation action of Frob}l
on it equals raising elements to the power ¢ [Iwa]. Hence Frob%a with z € Ip,n €
Z \ {0} does not commute (in Wg/Pg) with most elements of Ir/Pr. As Wp =
UnezFrobIp, we find that Z(Wpg) = {id}. O

Lemma A.1 is used in the definition of X,,,(¥G) in (3.2), and was already used in
the same way in [AMS1].
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